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The current status of the theory of the electronic structure of polymers containing conjugated bonds is
reviewed. Compounds having conjugated bonds have a number of remarkable physical properties, and
they occupy a central point in quantum-mechanical studies. The energy of the first optical transition

as a function of the molecular length shows unusual behavior. As the molecule is lengthened, the en-
ergy of the first transition approaches a finite value called the gap. Hence such a polymer is a semi-
conductor. A first attempt to explain the gap was based on the hypothesis of spontaneous alternation of
bond lengths. The review presents this hypothesis and subjects it to a thorough critique. It has recently
been shown that the mechanism that gives rise to the gap in these systems is interaction of electrons
and an associated Mott metal-dielectric transition. This conclusion was first based on the unrestric-
ted Hartree- Fock method, and later upon exact solutions for the one-dimensional problem. The article

reviews these studies. Polymers with conjugated bonds also show non-trivial magnetic properties, in
spite of their lack of d and f electrons. The magnetic properties of these compounds can be described
on the basis of the one-dimensional Hamiltonian of Hubbard. Here an exact solution of the wave func-
tions of the ground and excited states is found and the exact excitation spectrum is analyzed. The
ground state of these polymers proves to be antiferromagnetic at absolute zero. The spin-wave spec-
trum begins at zero. Hence these systems show appreciable paramagnetism at finite temperatures.
This review analyzes the relation of the paramagnetic susceptibility and the intensity of the EPR sig-
nal to the temperature and the polymer length. In conclusion, the review lists problems and questions
in the theory of the electronic structure of conjugated polymers that await solution.
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1. INTRODUCTION

THE problem of the electronic structure of long conju-
gated chains already has a rather substantial history.
Beginning with the first theoretical studies,[!) research
in this field has continued more or less intensively for
more than thirty years. We shall briefly describe the
chemical structure and types of conjugated molecules.
The most widespread element of these systems is the

polyene chain H H
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In terms of classical organic chemistry, a polyene
chain is characterized by a large number of unsatura-

ted (multiple) C = C bonds. From the standpoint of
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electronic structure, this means the following. A car-
bon atom has four valence electrons. Three of them are
in hybridized sp® orbitals, and form saturated bonds

(or ¢ bonds) with the neighboring carbon atoms and the
hydrogen atom. Since we are dealing with a long mole-
cule, we can say that the saturated bonds form a low-
lying completely-filled band. The wave function of the
fourth electron (m electron) has the symmetry of the 2p,
function of the carbon atom (the z axis lies perpendicu-
lar to the plane of the drawing; see (1)), and the corre-
sponding band is called the 7 band. The CH fragment
contains an odd number of electrons, and in this sense
the chain in (1) is analogous to a chain of sodium or
hydrogen atoms. Various groups can occur at the ends
of such a chain: hydrogen atoms, CH; groups, benzene
rings; in addition, some of the hydrogen atoms in the
main chain can also be substituted by CH; groups and
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other saturated radicals. It turns out that the electronic
properties of the 7 electron system proper change
rather weakly upon such a substitution. For example,
this can be seen by comparing the optical spectra of
conjugated molecules having different substituents.’
Hence, we shall characterize polyene molecules only by
the number N of 7 electrons in the main chain, and shall
state whether the chain is open or closed.

There are also long conjugated systems that differ
from polyene chains, e.g., the polyacenes (a linear sys-
tem made of benzene rings in which neighboring benzene
rings have one bond in common), the polyphenylacety-
lenes (a polyene chain in which H atoms alternate with
Ce¢H; benzene rings), etc. We note that graphite is also a
system with conjugated bonds. Finally we note the
peculiar compounds recently synthesized by Sladkov,
Kasatochkin, et al (see[2]), which consist only of car-
bon. The chemical structure of these compounds, called
the cumulenes, is reflected by the formula

HC=...=C=C=C=...=CH,

The cumulenes are strictly linear, and have two de-
generate m bands that are characterized by a projection
of the angular momentum on the axis of the molecule of
m = +1. Of course, this degeneracy is removed in the
crystal field, but the corresponding splitting is small,
and it does not affect the optical properties of the mole-
cules. The length of these molecules in the crystallite
is as much as 1000—1500 links. More detailed informa-
tion on the chemical and physical properties of polymers
having conjugated bonds can be found in the mono-
graphs (%]

The scientific interest in these systems primarily
involves practical demands. As we know, molecules
with conjugated bonds occur as constituent parts in a
number of biologically active molecules (vitamin A,
chlorophyll, etc.). It has recently been found possible
to use polymers with conjugated bonds in practice as
semiconductors with good working properties and also
as catalysts for a number of very important reac-
tions.[?7

In the physics literature, interest in such systems
has arisen in line with Little’s'®] suggestion of using
long molecules having conjugated bonds to create super-
conductors having high critical temperatures. This idea
has stimulated experimental study of such interesting
one-dimensional systems as highly conductive complexes
based on tetracyanoquinodimethane (TCNQ)L® and or-
ganic chains contamm% regularly incorporated atoms of
the metals Pt and Irt (Fig. 1). A very large number of
studies in quantum chemistry have been concerned with
systems having conjugated bonds. Moreover, the very
birth of quantum chemistry involved the appearance of
the first studies on the electronic structure of benzene.
Thenceforth all the theoretical methods have been
worked out on systems having conjugated bonds. How-
ever, only recently has the use of the most rigorous
methods of many-body theory made it possible to eluci-
date a number of fundamental problems of the electronic
structure of large conjugated systems.

In speaking of the factors that have stimulated theor-

Dwe should say that the complete chemical names of the molecules
undergo considerable changes upon substitution.
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etical studies of the electronic structure of polymers
having conjugated bonds, we cannot but note the follow-
ing.

One-dimensional models have been rather widely
used in the theory of the condensed state of matter as a
“‘testing range’’ for testing various theoretical construc-
tions whose mathematical treatment proves too complex
in the three-dimensional case. It suffices to mention the
studies of Van Hove, Kac, ete.t**™] to find the equation
of state of one-dimensional gases, Dyson’s study{'*] on
the vibrational spectrum of a disordered chain, and the
studies of Bethe,[') Hulten,!**] and others{!*] on deter-
mining the properties of a one-dimensional antiferro-
magnetic chain, etc 2 However, the one-dimensional
model usually permits one to analyze only the mathe-
matical structure of a theory. Its physical adequacy to
a real situation remains in question, since the lack of
one-dimensional objects hinders comparison of experi-
ment with mathematically exact (or almost exact) one-
dimensional solutions. Polyene and cumulene chains
were until recently the only actually-existing one-
dimensional objects. In principle, studying them can
help in selecting physically correct theories that des-
cribe not only their own structures, but also, e.g., the
metal-dielectric transition, the antiferromagnetic state,
and phase transitions in three-dimensional crystals.
Hence, the problem of the electronic state of long conju-
gated chains is of general scientific importance.

We shall note the relation of the problem of the Mott
metal-dielectric transition to the electronic structure of
polymers having conjugated bonds. As we have men-
tioned, each CH fragment in a polyene chain has an odd
number of electrons. That is, a polyene should be a
metal from the standpoint of its band system. However,
experiment has shown that conjugated polymers of the
polyene type are semiconductors.

Mottl!™ has given qualitative arguments favoring
the idea that any condensed substance (implying poly-
mer chains as well) must undergo a metal-dielectric
transition as the atoms are separated. However, these
arguments are too general, and they do not answer the
question why graphite is a conductor (albeit a poor one),
while conjugated polymers are semiconductors, given
the same electronic parameters. We shall spell out
these arguments below, and this will make it possible to
explain the experimental data on the electronic struc-
ture and physical properties of these compounds.

A series of studies by Brooker and his assoc-

D1In order to get a picture of the large scope of studies with one-di-
mensional models, it suffices to become acquainted with the collected
volume of articles ['¢] (which is indeed already out of date).
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iates['®!%) have established the experimental facts that
the theory must explain, and they can be formulated as
follows ;%]

a) The wavelength of the first electronic transition
in the spectra of symmetrical cyanine dyes (Fig. 2),
which contain an odd number of carbon atoms in the
main chain, increases by 1, = 1000 £ 50 A upon addition
of each additional HC = HC group. This ‘‘red shift’’ does
not decline when we go to longer chains. In other words,
this means that the energy AE of the first optical tran-
sition approaches zero as the number N of atoms in-
creases to infinity.

b) In the molecules of polyenes (and also those of
unsymmetrical dyes), the band of the first transition lies
in a region of shorter wavelength than this rule implies,
and its energy approaches a finite limit different from
zero as N — o, This limiting value has been termed the
energy gap AE_. Its value as obtained bg extragolation
of frequencies from N = 30 is 2.25 eV(**) (seel*" for a
summary).

The behavior of the energy of the first transition in
the symmetrical dyes (point a) can be explained within
the framework of very simple one-electron methods:
the ‘“free electron’’ method and the molecular orbital
(MO) method.

The free-electron model gives the following formula

for AE: %324

AE = h?® (8md*) ' (N + 1)/N?

(d = cos 30° - 1.40 A for a polyene chainl'®l). Conse-
quently the wavelength of the first transition is propor-
tional to N, and A, ~ 900 A.*) Considering the crude-
ness of the model, this agrees satisfactorily with
Brooker’s data. In the simplest variant of the MO
method,

AE = — 4B sin [2/2 (N + D)},

so that Ax ~ N, A, = he/8. If we take g = 4.0 eV, as has
been obtained by analyzing the spectra of short poly-
enes, we also get agreement with Brooker’s results.
However, these simple formulas, which give a zero
value for AE, do not reflect the situation in the poly-
enes (which ought to be described better by the simple
methods, since they do not contain heteroatoms). As
Mulliken has shown, the result is also the same in the
refined variants of the MO method. We note that the
difference in behavior of AE,, between the symmetrical
dyes and the polyenes is remarkable in general, re-
gardless of the results given by the simple methods,
since these chains differ only in their end groups. When
we increase the number of atoms, so that we can neglect
end effects, their ‘‘bulk’’ characteristics (including
AE ) should coincide. Thus, optical experimentation
has posed two problems for the theory: 1) to elucidate
the reasons for appearance of a gap in the spectra of
the polyenes; 2) to elucidate the reasons for the differ-
ence in properties of the symmetrical dyes and the
polyenes.

We note immediately that the overwhelming majority
of the theoretical studies have been concerned with
solving the first problem. This has happened for the
following reasons. Polyene chains and symmetrical
dyes differ in the same way that an ideal crystal and a

N increases by two upon addition of each link.
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crystal containing an impurity do. Hence, whereas use
of the translational symmetry allows one to derive for
the polyenes a set of rigorous results (and sometimes
even exact; see below), this cannot be done with the
symmetrical dyes. Furthermore, theoretical descrip-
tion within the framework of model Hamiltonians re-
quires considerably fewer undefined parameters (to be
determined by comparison with experiment) for the poly-
enes than for the dyes. Naturally, this also increases
the reliability of the obtained results. Finally, interpre-
tation of the optical data themselves is more unequivo-
cal for the polyenes than for the dyes. Hence, this arti-
cle will also discuss mainly the first problem. We shall
treat briefly at the end of the review the possible rea-
sons for the differences between the spectra of the
polyenes and the dyes.

2. THE HYPOTHESIS OF ALTERNATION OF BONDS
IN LONG POLYENE CHAINS

In this chapter, we shall examine the hypothesis that
the reason for existence of the gap in the electronic
spectra of the polyenes is instability of the ground
(metallic) state of a chain of equal bonds with respect
to nuclear shifts that create a configuration having
alternating bond lengths. This hypothesis is now appar-
ently only of historic interest in the problem of the elec-
tronic state of long molecules having conjugated bonds.
Nevertheless, it served until recently as the only ex-
planation for the gap in the optical spectrum of the poly-
enes. Moreover, this viewpoint impresses chemists
studying the properties of polymers having conjugated
bonds, since the difference between double and single
bonds has been established experimentally for short
chains. Apparently this is the very fact that explains
the great tenacity of this hypothesis. For example, sev-
eral recent monographs devoted to organic semiconduc-
tors present this hypothesis as being an established
fact.'*°] Along this line, we shall give a rather well
developed presentation and detailed critique of these
notions.

The qualitative side of the problem is fully contained
in the statement known as the ‘‘Peierls theorem’’?®]
that a one-dimensional‘metal cannot exist. We shall
present its content for the case of interest to us. *"

Let there be a one-dimensional homoatomic chain of
equal bonds, each atom of which contributes one elec-
tron to the system. We shall assume that the adiabatic
approximation is satisfied. The electronic levels of
such a system in the one-electron approximation form
a single band that is half-filled in the ground state. Let
us consider a perturbation V that amounts to an infini-
tesimally small shift of every other atom in a given
direction (alternation). Then the band splits into two
bands separated by an energy gap. Only the lower band
is filled in the ground state. Such a perturbation mixes
levels that are symmetric with respect to the Fermi
level. Since states whose energies are close to the
Fermi level are almost degenerate, the correction to
the levels calculated by the perturbation theory is linear
in V, and it is negative for levels in the lower band. At
the same time, the correction for the rest of the levels
and also the increase in the potential energy of the
skeleton are quadratic in V. Consequently, the total en-
ergy of the chain declines. That is, the configuration of
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an infinite equal-bonded homoatomic chain proves to be
unstable.

In concluding the discussion of the Peierls theorem,
we emphasize that its proof is substantially based on
the assumption that the one-electron system is at least
qualitatively true. In other words, the mechanism of
creation of the gap described by the Peierls theorem is
necessarily realized whenever no other mechanism to
create one exists (electron-phonon interaction to create
a superconducting gap, interelectronic interaction lead-
ing to a metal-dielectric transition, etc.).

Before we proceed to a quantitative description of
the alternation, let us introduce the Hamiltonian of the
discussed 7 system:

A "+ ~ ot - “ b 72
= Z ChaCmobmn + 2 YamCroCnoCe Cmo -+ Haq;
n,’m,aq n, m, 6, 0"

@)

Here ¢; and & are the operators for creation and
annihilation of electrons of spino at the nodes n and m,
respectively, and Bym 18 the resonance integral of the
bond between atoms n and m. It is usually considered
to be a certain standard function of the bond length Ron

between the atoms n and m:

Brmn =B (Rpma) < 0. 3
Since the length of the C = C bond in different conjugated
molecules differs little from its mean value 1,40 A (the
length of the C = C bond in benzene), we can replace the

function (3) with its expansion in the vicinity of the mean

distance:
Brn =B (Ro) + B (Ro)SR . 4

The second term in (2) describes the Coulomb repulsion
of electrons, and y,,, is the Coulomb integral. Finally,
&, is the energy of the o electrons, which we can con-
sider accurately enough to be equal to the sum of ¢ en-
ergies of their bonds in the molecule:

%a :mzn Ea (Rmn)v Ec (Rmn) = Eu (Ro)+(kmn/2) (men)z- (5)

The possibility of alternation of bond lengths in infin-
ite polyene chains has been studied in’*!, even before
the existence of a gap in their energy spectrum had been
shown. These authors wanted to answer the question
whether the alternation that is observed in short poly-
enes persists as we go to longer chains (for example, it
amounts to 0.14 & in butadiene (N = 4)t28) ang
0.10—0.12 & in tetraene (N = 8)[*%]), They treated the
problem by the simple MO method (i.e., with Ymn = 0
in Eq. (2)), and used different values of the resonance
integrals (i8;] > |B.l) for the bonds differing in length
(r1 < r2).

Although the final conclusion of these studies that
alternation in the one-electron approximation is ener-
getically unfavorable later proved to be wrong, the ex-
pressions for the one-electron energy levels derived
therein

en == (B1 + B + 2B,B, cos k)"

were correct. They showed that a gap arises in the
one-electron spectrum of a chain when alternation ex-

(6)

FIG. 3. Form of the one-electron
potential. [30:31]
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ists. Kuhnt?*2%°! first advanced the hypothesis of

alternation as the reason for appearance of a gap. In
these studies he calculated the spectrum of eigenvalues
of the one-electron Hamiltonian with a potential whose
shape is shown in Fig. 3. The equation was solved
numerically with this potential function, but the obtained
values of the energies of the transitions are satisfac-
torily described by the formula

AE = (R¥/8mL%) (N + 1) + V, (1 — N-Y),

Here N is the number of atoms in the chain and L is its
length. One can get satisfactory agreement with experi-
ment by setting V, ~ 2 eV. However, it remained un-
clear here how the alternation of the bond lengths arose.

A more rigorous proof of the energy advantage of
alternation was required to make the treatment more
convincing. The first proofs of this type were given
inl?929%] by direct calculation in the MO approxima-
tion and comparison of the electronic energies of con-
figurations having different degrees of alternation. A
favorable distinction of the study by Longuet-Higgins
and Salem!®) consists in the fact that their proof that
alternation is necessary in the MO approximation was
separate from their numerical estimates, and they car-
ried it out for a well defined simple model.

Let us calculate E for a cyclic polyene containing
4n + 2 atoms under the assumption that consecutive
bonds and the corresponding B n values alternate. The
equations of the simple MO method lead to the expres-
sion (6) for the one-electron energies with the quasi-
momentum k = 27j /(2n + 1), where j =0, +1, +2, ..., +n.
The one-electron levels form two bands: a filled one
BrL+ Be=< €g = — |81 — B:l), and a vacant one (|8; — Sl
< €. < |B1 + B:I), which are separated by a forbidden
band of width 2(|B8, — Bz|). Hence the m-electron part of
the energy of the ground state is:

En:‘2 Z €. (7)
k=-n

Let the chain be brought in any way whatever into a
state having equalized bonds, and then let a small change
in the nuclear coordinates occur such that one of each
two consecutive bonds lengthens by 6R, while the other
shortens also by 8R. Upon applying (4)—(7), we can der-
ive in the limit N — <« the following formula for the en-
ergy change AE(x) for such a shift: (%%

AE (z) = az® + ba2® In (z,/z),
a = (k/2) + LB /n (B ILb=2(B)m[B | zo =4 B/,
z = 8RIR,

Here k is the force constant of the hypothetical ¢ bond
and R is the bond length in the equal-bonded chain. Since
the second term on the right-hand side is always larger
than the first for small x, AE(x) has a maximum at
x = 0. If we minimize (8) with respect to x, we can de-
termine the equilibrium distance, and consequently, the
width of the gap.

In order to make quantitative estimates, we must
know the parameters k and g that enter into Eq. (8).
Within the framework of the semiempirical approach
that we have applied, it seems most consistent to deter-
mine them by comparison with experimental data on the
vibrational frequencies and geometries of the organic
molecules. Such a method has been developed in-*%],
The essence of the method amounts to the following.

If we assume that the presence of the 7 electrons
causes a small change in the bond lengths by R, and

®
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in the angles by 8¢, as compared with their values in
a hypothetical molecule without the 7 electrons, then in
the MO approximation the energy of the molecule has
the form

E=E® +2 2 B:P:+ ; (1/2) kSR + g (12) (k2 R?) 861, (g)
Here the Bj are the resonance integrals for consecutive
atoms, and the P; are the corresponding elements of the
density matrix. If we vary the total energy in (9) with
respect to independent SRy, and 5¢; with (4) taken into
account), we get the values of Ry, and 5¢; that minimize
it. The found values of 6Ryy, and 6¢; depend in a complex
way on the elements of the density matrix. They must be
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FIG. 4. Skeleton of 18-annulene (C;gH,3).

used were not fitted correctly to the experimental data
on the geometry and vibrational spectra of small mole-
cules having conjugated bonds. Hence, the agreement

substituted into the expression for E, and then (9) is trans-found in these studies of the gap width with experiment

formed into a nonlinear equation for finding P;. We must
again substitute the solution of this equation into the
formulas for 6R,, and 3¢y, etc., until this iteration
procedure leads to self-consistency. For a molecule
that does not contain closed rings, the variation of (9)
with respect to 6R; gives

8R; = —2BiP/(k: + 2BiP;), Ri;= Ryi+OR,. (10)

This formula contains four parameters R, B'i, k;, and
8"). To determine them, we can use the fact that P; is
fixed by symmetry properties alone for four substances
(graphite, benzene, ethylene, and acetylene), and the
equilibrium distances have been measured by x-ray dif-
fraction. Then the obtained parameter values can be
tested by calculation and comparison with experimental
data on the bond lengths for a large number of organic
molecules. Moreover, when the equilibrium distances
have been determined, Eq. (9) is converted to quadratic
form with respect to small shifts of the nuclei from the
equilibrium positions. This permits us to construct.in
the usual way the equations of motion for the vibrational
coordinates of the molecule and to find the correspond-
ing frequencies of the normal vibrations, which can also
be compared with experimentally determined frequencies
in the infrared absorption spectra of the molecules.
This provides another independent way of determining
semiempirically the parameters k, 8', and 8”. This
procedure has been carried out in 35] | and values were
found for these parameters that satisfy a large number
of the experimental data, and which are hence quite re-
liable.

Using these parameters gives a gap width AE
= 0.1—0.3 eV. This is an order of magnitude smaller
than the value AE, . = 2.25 eV'?J obtained by extra-
polating the experiniental data. We note that the au-
thors of***], who used another method of determining the
parameters, likewise got AE_ = 0.25 eV. This disagree-
ment between the experimental data on the size of the
gap and the theoretical calculations from the alternation
hypothesis served as the first clue that the latter was
false. We should also point out an experimental proof“]
of lack of alternation in the cyclic molecule C3His
(Fig. 4).

A further development of studies along this line was
a series of studies by Shustorovich and Popov.[*#7
They used a semiempirical variant of the self-consis-
tent field method for calculating the band structure of
polyene chains. Upon accounting for interelectronic in-
teraction, these authors got a gap width close to the ex-
perimental value. However, the parameters that they

cannot serve as a proof of the alternation hypothesis.

We should mention one inconsistency in-*®3, In order
to determine the equilibrium distances in an infinitely
long polyene, they used a formulat®®} similar to (10)
that was derived in“‘j, whereas a general analysis of
the applicability of this formula implies that it is in-
applicable when the energy depends on x as x° In X.

We note that, although Longuet-Higgins and Salem’s
result on the instability of an equal-bonded configura-
tion of a polyene in the MO approximation with respect
to alternation directly stems from the Peierls theorem,
we cannot consider it to be trivial in this sense and ex-~
tend it without concrete analysis to any extended conju-
gated system. One of the conditions for satisfaction of
this theorem is that the appropriate nuclear displace-
ment can mix the states of the upper and lower halves
of the band. The question of whether alternation of
bonds satisfies this criterion must be elucidated separ-
ately in each concrete case. Thus, the treatment inl®7
of the situation in the polyacenes showed that alterna-
tion cannot occur here, since the adjoining bands have a
symmetry such that interaction with an antisymmetric
vibration does not mix the states belonging to them.

Let us briefly discuss another attempt to explain the
existence of a gap in the optical spectrum of the poly-
enes that involved adducing notions of plasma oscilla-
tions. Plasma oscillations in polyene chains were first
treated inf*®), Just as in the three-dimensional case,
its authors found that the plasmon spectrum in an equal-
bonded chain begins at some finite frequency (i.e.,

lim w_(k) = w__ #0). They also expressed the idea
k—0 P P

that the first optical transition in the polyenes involves
excitation of a plasmon. Thus the experimentally-ob-
served dependence of the frequency of the transition on
the number of atoms is explained by the fact that the
limiting plasma frequency differs from zero. However,
it has later been shown!®® that the authors of'*®J were
too much fascinated with the analogy with the three-
dimensional problem, and they estimated incorrectly a
number of matrix elements for interelectronic interac-
tion. A more correct treatment'*®J showed that the
plasmon spectra in an equal-bonded polyene chain (more
exactly, in a chain having a metallic-type one-electron
spectrum) begins at zero (for small k, w(k)

~ kIn*® (k,/k)).? This result refuted the interpretation

“In the cumulenes, as the study by Shustorovich and Popov [27]
implies, another plasma branch exists in addition to this one, and it
also begins at zero.
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of the optical data proposed inl®®7,

The studies *™**) have treated plasma oscillations of
a polyene chain under the assumption that its one-elec-
tron spectrum has a gap. They showed that the limiting
value of the plasma frequency is 5—6 eV for a gap of
AE_ ~ 2.5 eV. Thus, the plasma-wave spectrum lies
considerably higher that the spectrum of one-particle
excitations, and it does not appreciably affect the ob-
served optical absorption.

It was shown in{**] that another branch of collective
excitations can exist in polyene chains besides the
plasma oscillations: Wannier-Mott excitons. They
should give rise to a hydrogen-like series in the ab-
sorption spectrum (possibly lacking the first line) lying
near the fundamental interband transition. Such a spec-
trum has not yet been detected experimentally.

3. CORRELATION OF ELECTRONS AND THE ENERGY
SPECTRUM OF POLYENE CHAINS

As we have pointed out, the first impulse that struck
investigators with the idea that bond alternation is the
reason for the gap in the electronic spectrum of the
polyenes was the experimentally-observed alternation
of bond lengths in short chains. Then supported by the
Peierls theorem on the instability of a one-dimensional
metal with respect to electron-phonon interaction, this
explanation began to seem the only one possible. At the
same time, the very statement that an equal-bonded
chain is a metal in its electronic structure (i.e., a sub-
stance having a partly-filled valence band) is based on
the assumption that the band system (and in particular,
that of the ordinary MO method) is always suitable for
describing the ground and lowest excited states of a
system of this type. However, as we have mentioned in
the Introduction (Chap. 1), Mott (see’'?**7) has given a
qualitative explanation for the necessity of a metal-
dielectric transition as the lattice constant a increases
in substances having partly-filled bands (e.g., the hypo-
thetical crystal of hydrogen atoms), even when one
neglects electron-phonon interaction. In terms of form-
ulas, this means that the ground state for some substan-
ces (metals) is correctly described by a wave function
in the form of a Slater determinant constructed of Bloch
functions (the LCAO method). In this case we get a
partly-filled band and metallic conductivity. For other
substances (in spite of the fact that they are made of
atoms having incompletely filled shells), the ground
state is correctly described by a Slater determinant
whose elements are atomic functions or Wannier func-
tions (the Heitler- London (HL) or valence-bond (VB)
method). Most naturally, this second method leads to an
arrangement of spins characteristic of an antiferromag-
net. Here the lowest excited states, which are not separ-
ated from the ground state by a gap, are spin waves, and
they are not accompanied by charge transport. The lat-
ter becomes possible only for excited states involving
migration of an electron from one atomto another, and
these are separated from the ground state by a gap,
~I—- A. We should expect that we must use an expan~
sion to describe the metal-dielectric transition within
the framework of the band model (MO) that is an inter-
mediate variant between the MO and VB methods.

In searching for the golden mean, Lowdin[*®] has de-
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veloped a method of calculating the electronic wave
functions of crystals and molecules that amounts to a
synthesis of the two fundamental approximations. This
method has been called the alternating molecular orbi-
tal (AMO) method, or in the more general case, the
method of different orbitals for different spins (MDODS).

The ideas that Lowdin used here were first applied by
Hylleraas'®3 for calculating the helium atom and by
Weinbaum*™? to calculate the hydrogen molecule. Other
names are also used for the AMO method that concre-
tize the system of calculation used. Thus, if the varia-
tion of the energy is performed on a component of the
wave function with a definite multiplicity by the AMO
method, the corresponding method is called the extended
Hartree- Fock method (EHFM). However, if one does not
isolate the stated component, the method is called the
unrestricted Hartree- Fock method (UHFM). There is
also the term ‘‘generalized HF method’’, which denotes
in different studies either the EHFM or the UHFM.
Hence we shall not use it.

Mott’s ideas were first adduced to explain the finite
value of the first electronic transition in long polyene
chains by Misurkin and one of the present authors.[*]
We discussed the nontrivial solutions of the self-consis-
tent field (SCF) equation for the 7 electrons of a polyene
chain. The one-dimensional Hamiltonian of Hubbard[*®]
was used to describe the polyene chain inf*®:

F=B 2 Cho(Cort, o +Cot, 0) +7 3 rnets. o, (11)
Here 8 < 0 is the resonance integral, y > 0 is the
Coulomb-interaction parameter per atom, a, is the
Coulomb integral, and C;; and C,, are the operators
for creation and annihilation of an electron having a spin
respectively of o = t, +.

Hubbard!*? proposed the Hamiltonian of (11) to des-
cribe the d and f electrons in the transition metals and
rare earths. The suitability of this approximation for
describing a polyene chain will be discussed below.

In the applied approximation, the Hartree- Fock equa~
tions have the form

EiCya=0oChq+B (Chis, o+ Comt, o) + 11y, oClas (12)

Here the C_ are the coefficients of the expansion of
the molecufgr orbital ¥, in terms of the atomic @
and the n, = %:ICE)Ol2 n, are the averages over the

sought state.
Equations (12) have the solution

E; = ag + 0,5y = [(y8)? -+ 4B2 cos? (nl/N)1"2, (13)

where 2N is the number of atoms in the chain.

If N =2p + 1, then the levels that are filled in the
ground state are those that have a minus sign before the
square-root term in (13), and that have —p < I < p. The
excited states have a plus sign before the square root in
(13). The levels that are filled in the ground state
correspond to the following values of the coefficients:

Clo = [c0s 0, (2N) /%] einvi/N | 1 [sin 0 (2N) /2] ehmv+My/v (14)

where —p < [ < p. The wave functions of the vacant

molecular orbitals have the form
(15)

Chog= — To [5in 0, (2N) ™3] itV 1 [c05 0, (2N)™V/2] ebnvu+ NN,

where
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sin 26; = y8 [(y8)? + 42 cos? (nl/N)] 12,

. ={+1 (0 =1), (16)
ol o=y
The parameter § is determined from the equation
p
@M (2(B1) 2 (048 +oost (NI =1. (17)
=-p

Equation (17) has two solutions. The first solution 6 = 0
corresponds to the ordinary Hartree-Fock method, with

Chi=CLy, E,=2Bcos(nl/N).

When 6 # 0, the energy of the ground state of a poly-
ene chain is lower than whend = 0 for N — «., The
ground state of the system for 6 # 0 is separated from
the excited states by a gap equal to

AE = 2y8, (18)

where & > 0 is determined from (17). As calculated
per electron, the UHFM gives the following expression
for the energy E(N)/N (N — «)L48J;

/2

& (8) = o+ (4p/m) 5 ((52y%/4B) 1 cos® k)™ dk + 7 (0,25 -+ 82).

0
This expression implies that €(6) < ¢(0). We note that
€(6) shows the proper asymptotic behavior (apart from
the coefficient) as the nuclei are separated, i.e., as B/y
— 0:[!8]

e (8) = oo = 2BVt ...,

whereas the exact energy here behaves as € = a5

—-2.76 Bz/y + ...,[13] while the energy given by the ordin-
ary MO method €(0) = aq + (48/7) + 0.25y behaves in-
correctly.

We can explain the correct asymptotic behavior of
€(6) by the existence in the UHFM wave function of a
component arising from the VB method, which permits
us to account for a considerable part of the correlation
energy of the polyene chain.

We should mention the very important asymptotic be-
havior of AE as (y/8) — 0. Here

AE = 16e-2n 181,

Equations (13) and (17) permit one to estimate the
energy of the first electronic transition as a function of
N. For the parameter values B =—-2.4 eV, y = 5.42 eV,
which are apparently close to their actual values in a
polyene chain,[5°] numerical analysis has shown that
the theoretical values of AE(N)[**) agree well with the
experimental values (Fig. 5). Thus, the features of the
optical spectrum of the polyenes can be explained by
correctly taking account of interelectronic interaction
without resorting to the hypothesis of alternating bond
lengths.

Bychkov, Gor’kov, and Dzyaloshinskiil®*} and
Popov.®] have shown that if one assumes that the en-
ergy gap in long one-dimensional systems stems from

FIG. 5. Theoretical and experimental values of
AE (N). [*]
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the joint effect of alternation and interelectronic corre-
lation, then A = (A% + A2 )12
However, as we see from the results o
Ag] ® 0.14¢xp, and Agxy & Acorr for the real param-
eters characteristic of polyene chains. Hence, even if
alternation is energetically advantageous, it can contri-
bute no more than one percent to the experimental value
of the observed optical gap. The problem of the ener-
getic advantage of alternation becomes more complica-
ted when we take account of interaction of electrons. In
particular, the simple qualitative ideas that lead to the
Peierls theorem and the necessity of alternation are in-
applicable when there is a correlational gap, since now
all the corrections to the energy due to alternation are
of the second order in terms of the perturbation that
they introduce, and they have differing signs. Conse-
quently, the problem of existence of alternation can be
solved only by numerical calculations of its energy ad-
vantage. Popov was the first to perform such a calcula-
tion.[®*) His fundamental system was the same as that
used in deriving Eq. (8). However, instead of using Eq.
(6) for the one-electron levels ek, he used the formula

ex = = ((v8) -+ B2 -+ BE + 2BB, cos k),

£(33-35,48] ,

The latter differs from (13) in that the assumed alterna-
tion has been introduced; the energy of the o skeleton
was taken into account as it was int**J, As we should
expect, the final result depends on the numerical values
of ¥ and B; the estimate of the parameters in{**} leads
to the conclusion that the equal-bonded configuration is
energetically favorable. The authors of{**J came to the
same conclusion.”

Thus, a new hypothesis has appeared for the source
of the gap in the optical spectrum of a long polyene
chain. Within the framework of this hypothesis, this gap
is explained by interaction of electrons. Accounting for
electronic interaction within the framework of the UHFM
suffices here for obtaining the gap in the spectrum of a
polyene chain.

The properties of other polymers with conjugated
bonds for which experimental data on the optical spectra
exist were studied in"** by the same method.

As we know, the first electronic transition in a cumu-
lene chain of N carbon atoms has a frequency of the
order of 1.0 eV as N — «,[%J Thus the cumulenes are
dielectrics, whereas graphite shows metallic conductiv-
ity (albeit small in comparison with typical metals).

The results of the calculations show that the UHFM
gives a finite value for AE of the first electronic transi-
tion in a long cumulene chain for any y > 0. Here the
value of AE agrees well with experiment for the actual
parameter values. For graphite, there is a gap in the
one-particle spectrum only when y/2|3| > 1.13. How-
ever, the actual values give 3/2|8| = 1.13. Thus, the
results of the UHFM correctly describe the optical
properties of the cumulenes, and they do not contradict
experiment for graphite,

S)The opposite result was obtained in [54], and an alternating con-
figuration proved to be energetically more favorable than the equal-
bonded one within the framework of the EHFM. However, the ex-
tremely small energy gain from alternation (~0.04 eV per atom) and
the use of parameters that had not been calibrated against the vibra-
tional spectra render the conclusions of [5*] not very convincing.
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We note also that the experimentally-studied proper-
ties of one-dimensional chains of complexes based on
TCNQ (the position and size of the gap in the one-elec-
tron spectrum and the charge distribution along the
stack of molecules) are described well within the frame-
work of the correlation model without adducing the hypo-
thesis of alternation. The same conclusion has been
drawn from a study of organic chains containing incor-
porated Pt and Ir atoms for which, in particular, relia-
ble X-ray data exist.l

Here we must also mention the approximation in
which one assumes that Yup = éuuy. At first glance,
this approximation seems inconsistent, since it ignores
the long-range nature of the Coulombic interaction.
However, as Ruedenberg has shown, as well as Murrell
and Salem,[“] the effect of y,, , (1 ;4 v) on the electronic
spectrum can be partially taken into acecount by renorm-
alizing the parameters y and g, at least in the SCF ap-
proximation. Since the parameters are chosen em-
pirically, taking account of v, (1 # v) is not important
qualitatively. This v1ew5)o1nt was directly confirmed in
a study by Fukutome, who also found nontrivial solu-
tions of the SCF equatlons for a polyene chain. However,
in contrast tol*®J, all of the y p Were accounted for
in'®%, Here he obtained a nontrivial solution of the SCF
equations whose properties are fully analogous to those
of the solution described by Eqs. (13)—(16) for 56 > 0.

Let us examine another aspect involved in the non-
trivial solution of (12). We recall that Eqs. (12) have
two solutions: trivial (6 = 0) and nontrivial (5 # 0). The
question arises: what type of perturbation can convert
the system from the unstable state described by the
trivial solution to a state described by the nontrivial
solution 3 # 0?°) This question is answered int®, It
turns out that the trivial solution is unstable with res-
pect to an arbitrarily small perturbation caused by spin
polarization of the electron clouds of the polyene. For
example, such a perturbation might be the addition of an
electron to the chain. In the Hartree-Fock approxima-
tion, the Hamiltonian of (11), apart from a constant, has
the following form for a system of 2N electrons:

G%’o= %50 (k) &zo&u, (19)
Here €o(k) = 28 cos k, and al*{0 and a, are the operators
for creation and annihilation of an electron in the band
state &, = (N)**z (sin kv)/pp, ,. Such a choice of band
functions made it possible to take explicit account of
end effects. As we shall see, this has proved to be im-~
portant in applications. Addition of an electron to the
chain leads to a small change in the Hamiltonian of (19):

QG;Z = <§Aé’o -+ ; A-a&:a‘igo., (20)

Here k = 7— k, and we assume that the added electron
has entered the lowest vacant orbital with k = 7/2 and
c = t. Transformation to the new operators

B35 = (dno — Tolndgy) (1 + 802,
b = (a5, 4 Tobadno) (1-+ER) 2
diagonalizes the Hamiltonian of (20). In order to satisfy
9 As we mentioned above, the state described by the trivial solution

of the SCF equations (8 = 0) is unstable with respect to vibrations of
the chain involving alternating bonds.
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self-consistency, the value of Ay calculated from the
new ground-state function
Vi =bul+ [ BB 0),
h<—
where n = 2N + 1, must co1nc1de with the original value,
This gives an equation for A;:
2

Ap=—A,=A, (y/m) 5 dk [4p* cos? kA% "2 = 1
0

which agrees with (17). The expression for the energies
of the filled and vacant levels also agrees with (13). An
exception is the level for k = 7/2: € —T4A.

Thus, the authors oft*%J have extendéd the UHFM
solution to long polyene chains having an odd number of
electrons, or neutral polyene radicals.

As Berggren and Johansson(®*] have shown, the
gap in the spectrum of one-particle excited states can
be obtained not only by the UHFM, but also by the spin-
density wave method (SDWM) proposed by

Overhauser-®J, The Hamiltonian used in{*® has the
form . .
= 3 &g (k) Fr +

at,, —oazxa&k;uak{’. ~od (ki ky—k{—ky+n- 2“)(2 1)

¥
+lawr) 2
ki, BRI, R2, BL O
Here 3} _ and 4, _ are the operators for creation and
annihilation of an electron in the band state
o= (M) 3 guoe™  (—n<h<).
The ground state of a system having the Hamiltonian
of (21) is described in the UHFM by the wave function
(M) =[] 4k ks |0, (22)
where the A, are defined by Eq. (14), provided that we
make the fo owing replacement in the latter:
2N fegiky ako
If we introduce new operators according to the ex-
pressions

&k = C0S eklihf -+ sin ehaH,Q' s

6,, =sin Ohfz,., +cosOnariq, |

and choose the wave function of the ground state in the
form

S = 3 [ea (k) akon+ 2 (k) Bifia], (23)
then the effective self-consistent Hamiltonian has the
form

‘FZ(N)=I;I&:|0>,

where €,;,2(K) is determined by (13).

The wave function of (23) is a function of the Over-
hauser type.l®®) From the energetic standpoint, it is
equivalent to (22), since they both describe states of the
same energy and the same spectrum. Moreover, the
functions can be obtained from (22) by a certain unitary
transformation in spin-variable space.t®) Thus, the
UHFM and the SDWM are equivalent in treating a poly-
ene chain. This fact is all the more remarkable, since
there is no such equivalence in the one-dimensional case
of a free Fermi gas.[®%%)

The difference between the functions (22) and (23)
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consists only in the following. In the state described by
(22), the spin density at the atoms alternates according
to the law

(W89 | Py =(—1)*8, (¥, |85 ¥ | ¥y =0, (24)

in contrast to the state described by (23), for which

(W, | 85 DW= 0, (W, 87 | Wy = (—1)" 6. (25)

The authors oft®® calculated the spin density in a
long polyene radical for the UHFM wave function and its
doublet component. Here it turned out that the alterna-
tion of spin density along the chain with finite amplitude
persists, even after projection:

w2
pp=2SPy = (— 1" (4A/3x) 5 sin? pz (482 cos? z - A?) A dx.

[

Thus, both methods lead to alternation of spin density
in the chain. Still, the possible existence of such mag-
netic structures is fundamentally dubious. Actually, as
Lieb and Mattis [°®*) have shown, the ground state of
polyene-type chains having an even number of electrons
must be a singlet, and alternation of spin density cannot
exist in a singlet state as it does in (24) and (25). The
latter fact has been established by Fock'®®} and indepen-
dently by Vonsovskil and Svirskii.'®"> Alternation of
spin density in the singlet state arises from the circum-
stance that the UHFM function (22) and the SDWM func-
tion (23) are not eigenvectors of the operator S*, but
mixtures of multiplets having the values S =0, 1, 2, ...,
N/2.

However, a series of studies on conjugated
systems has recently appeared in which the UHFM wave
function was projected onto a state of definite multiplic-
ity, and then the energy was varied. That is, the EHFM
was used. The projection procedure can be carried out
as follows. 8]

Let a finite-rotation operator

[68,89]

o Vg 5VRE Py = T (o, B, 1)

act on the UHFM wave function ¥,(N);t¥*} here s is
the operator for the yth component of the total spin S:

(26)

8 = —(1/2)i 3 (@hsan; — alyam),
§(2) is the operator for the zth component of the total
spin:
81 = (1/2) %‘ (akran — ak,any),

and o, 8, and y are the Eulerian angles of the rotation.
Ifin addition we take an integral of the type

S = [(28 +1)/8n2 SH DS (o, B, y) T (o, B, 7) ¥, dex dP dy,

where Dg(a, B, v) is the matrix of the irreducible repre-
sentation of the three-dimensional rotation group, then
we can easily see that ¥(S) will be a function having the
definite multiplicity 2S5 + 1. Upon projection onto the
singlet state, D‘®(w, 8, ) = 1. Such a projection in
operator form permits us to write an overall expres-
sion for the energy in the EHFM approximation.

Another projection method based on Lowdin’s
studies™**! was used in**®,

Let us present the conclusions fromt®®**) of interest
to us here.

1. The difference between the ground state energies
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as calculated in the UHFM and EHFM approximations
approaches zero with increasing N (as 1/N). Thus, one
can use the simple one-determinant UHFM function in
order to get the self-consistent wave functions and en-
ergy spectrum within the framework of the EHFM for a
system having a large number of electrons.

2. The spin density <2S(Z)) in the EHFM differs from
the corresponding value in the UHFM by a factor
S/ + 1), where 28 + 1 is the multiplicity of the ground
state:

<\F(PMX¢D) I S:.,Z) ‘ \P(PMX‘I’)> =S (S "’V 1)_1 (W(HMX@) | SL«Z) \ \I;(I{MXQZ\)). (27)
Consequently, the spin density alternates in the state

¥(®) if S £ 0 and (5(2)) £ 0.
3. The correlation function

K (v) = (—1)v 8, (28)
approaches the following finite value as v — c:
K (v) = (¥® | S(;)S(;) RSN (29)

which coincides for infinite N with its value for the func-
tion ¥,;(N) of (20).

4. The spectra of excited states, and hence also the
width of the gap, agree for long chains within the frame-
works of the EHFM and the UHFM.

Equation (29) implies that an infinitely long polyene
chain in the ground state will have long-range magnetic
order amounting to antiferromagnetism. If the ground
state is not a singlet (e.g., a doublet for radicals), an
antiferromagnetic alternation of the mean values (S(z))
will also be observed with an amplitude given by
(24) and (27).

1t is of interest to trace the relation between the
values of the spin-correlation functions (26) and the
spin densities (27) in long polyene chains as obtained
within the framework of the UHFM. Without projection,
i.e., in the UHFM, there is the simple relation

K () = [ pu/2 [* (—1)u*L.

Bonner and Fisher(™] have obtained an analogous
relation between these quantities for a finite Heisenberg
chain upon turning off an alternating magnetic field adia-
batically.

However, as we have mentioned above, strictly speak-
ing, the (S(2)) must be identically zero in a singlet state.
The EHFM does not contradict this general statement,
according to (27). Still, the result is remarkable that as
we go from the even polyenes (to a doublet ground state),
i.e., as we add one atom to the long chain, then an anti-
ferromagnetic alternation of p, arises with finite am-
plitude according to the EHFM. Apparently, this indi-
cates instability of a ground state that is characterized
by a spin correlation function (28) that differs from zero
and p, = 0, with respect to appearance of antiferro-
magnetic alternation of (S{2)).” Naturally, this fact re-
quires further study.

4. EXACT RESULTS IN THE THEORY OF ELECTRONIC
STRUCTURE OF CONJUGATED SYSTEMS

Application of the UHFM and the EHFM to the prob-
lem of the electronic structure of chain-type molecules

'We note that a non-zero value of the correlation function of (28)
when (S‘(IZ)) =0 and {S$® = 0 had already been obtained by Kurata [7"]
in calculating spin correlation of paramagnetic impurities in metals.
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encounters some difficulties and objections. First,
Bychkov, Gor’kov, and Dzyaloshinskiil®*! showed in dis-
cussing a weakly non-ideal Fermi gas that, in the limit
in which the interaction constant for the electrons in the
one-dimensional case is small, one must account for
not only the Hartree- Fock diagrams (we are speaking
of the diagram representation of perturbation theory),
but a broader class of diagrams called the parquet dia-
grams. The authors of{*") concluded that transition to
a non-trivial state having a spin structure is impossi-
ble.

However, it has recently become understoodt ™3 that
this result is true only for a model of a one-dimensional,
weakly non-ideal Fermi gas with a repulsion that can be
represented by a 6-function. For Hubbard’s model, %]
one must also take account of flipping processes. With
the latter taken into account, the system proves unsta-
ble with respect to transition to an antiferromagnetic
state, in agreement with the UHFM.

We should mention also several studiest®™] jp
which they prove the impossibility of phase transitions
at finite temperatures in one-dimensional systems. On
the one hand, this theorem does not forbid a system to
have long-range order at absolute zero, and on the other
hand, it does not give the degree to which it is violated
at non-zero temperatures. A well-known example of
this type is the one-dimensional Ising model with a posi-
tive exchange integral. At a temperature strictly equal
to zero, the system is antiferromagnetic, and it has an
infinite spin- correlation distance. However, when T £ 0,
the long-range order vanishes, but here the correlation
distan;e depends exponentially on the temperature:

I = el/KT (I is the exchange integral). It is practically

infinite for I = 1 eV at room temperature. However, we
cannot take this estimate too seriously, since the exact

nature of the spin correlation in actual molecules is not
known,

The cited difficulties make it necessary to use more
exact methods of calculating the energy of the ground
state and the excitation spectrum in long molecules
having conjugated bonds. The circumstance that makes
it possible to get more exact results is the one-dimen-
sionality of the system. For example, let us treat a
one-dimensional classical gas made of hard, identical
spheres that interact only during collision. Owing to the
laws of conservation of energy and momentum, when
two spheres in one dimension collide, the spheres can
only exchange velocities, but they cannot vary them.
This means that the set of velocities of the spheres in
this system will not vary in time. That is, the momen-
tum distribution function is an integral of motion. This
fact is also manifested in the quantum case.

Recently, in developing the work of Bethe, '
Gaudin,t™? Yang,[™] and Lieb and Wut™? have derived
an exact expression for the eigenfunction of the Hamil-
tonian of (18). It has the form

(30)
¥ (ny, ngy o0 .y By)= g [Q. Plexp (i 2 kpng;) (o, <ng <. .. <ngy);

Here the nQ are the coordinates of the electrons, k,, k;,
..., Ky are the set of quasimomenta, which constitute
the quantum numbers of the system (in line with the re-
mark about a one-dimensional gas made above),

Q= (Q1, R, ..., Q) P=(Py, P, ..., Py are permuta-
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tions among the coordinates and the quasimomenta,
respectively, and [Q, P] are coefficients that depend
simultaneously on Q and P; they must be determined
from the Schrodinger equation and requirements of sym-
metry.

The Schriodinger equation gives the following relation
between these coefficients:

[Q, PI=Y2nQ, P,

Here the operator ?i?n has the form (]

Yo =1—(iy/2) + (sin k, —sin k) £ [sin ke — sin ko, - (iy/2)] 72,
Qi:a:Q;'f 01’=b=0;«
Pi=m=Pj, P;=n=Ppj,

Qg = Q, Py = P whenk £ i, j, and the operator P2b
interchanges Q; and QJ-. Here the energy eigenvalue of

the system is expressed in terms of the quasimomenta
ki as follows:

N
E=213]_§i cos k. (31)

If we systematically apply the operator ?ﬁgl, we can ex-
press any coefficient [Q, P] in terms of (a vector of
dimensionality N!) the coefficient [Q, I}, where I is the
unit permutation between the momenta k,, K2y ooy KN-
Using the conditions of cyclicity and the symmetry of
the wave function leads to a system of equations for the
coefficients [Q, I]. Omitting the further calculations,
which are given in considerable detail by Yang,[™) we
shall write out the transcendental equations for the
quasimomenta k; that arise from solving this system;

N/2
Nk,-=2n1j+ﬁ§’q>(pj), (32)
N Nj2
2 (P(f!l)=2n-fu+ﬂ§21p(ﬁa)+n, (33)

¢*PUB) = [sin k; — Ag -+ (ic/2)] [sin k; — Ap — (ic/2)J,
e¥ba) = (Ag— A+ ic) (Ag— Ap—ic) 2, c=1v/2|B); }

Herethe A, (o =1, 2, ..., N/2) are a set of numbers
that are all different from each other, and which gener-
ally can be complex. The phases ¥(a, B) and ¢(j, B) are
defined so that

_ﬂ<Re\|’(a1ﬁ)v REW(j,ﬁ)<ﬂ,

Ij (i=1,2,..,,NandJ, (@ = 1, 2, ..., N/2) are in-
tegers. They give the numbers of the eigenstates of the
system. For example, the total momentum Q of the sys-
tem is expressed in terms of them as follows:

N N N/2
Q=2 ky=2nN(3 1,4+ Ja).
3=1 J=1 a=1

In the ground state of the system, we must select o
and I] as follows:
Je=1,3,5 ..., N—1,

Iy = —N/2, —(NI2) -1, ..., (N/2) — 1. (34)

For quasi-homopolar levels, all of the k; are real, and
for convenience we can reduce all of them to the inter-
val (~u, 7).

In order to determine the excited triplet states,
following' ™, we shall choose J,, in the form

(35)

Here J @ is a certain number that determines the total
quasimomentum of the system. Equations (32) and (33)

Jo=0,2,4, ...,20—2,2n+1,..., N —1{,
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are solved by transforming to a continuous distribution
of the numbers k; and A ,. Here one can use the formal
equality p(k) = dj /dkj for the density of the numbers k.
over the segment (-7, 7) and o(A) = dcv/dAa for the
density of the numbers A , over the entire axis (—w, ).
Upon performing the necessary differentiation in (32)
and (33) under the conditions (34) and (35), we get the
following system of equations for the ground state:

p (k) = (2r)1 4 (cos k/2n) S bea (A) [+ 4 (A —sin k)2 dA,

o

§ hep (i) [ 44 (A — sin k)] dhe—2n0 (A) -+ 5 200 (A") [e*+(A — A UdA,

E —2NB S o (k) cos k dk.

If we perform a Fourier transformation of the func-
tion o(A), we can easily get expressions for p(k) and
o(A). While omitting this calculation, we shall give the
answer for the energy of the ground state, which was
first determined by Lieb and Wu:t

—4NB SJ‘ @) Jo (@) [o (1-- 2] do,

where Jo(w) and J(w) are Bessel functions.

It is of interest to compare the results of exact cal-
culation of the energy of the ground state with the re-
sults of the UHFM'®J (Fig. 6). The latter gives the en-
ergy of the separated atoms (1), the calculations by the
Hartree~Fock method (2) and the UHFM (3), and the
exact solution (4).

We shall give another result involving the energy of
the ground state that Lieb and Wu calculated. Let us
consider a series expansion of the energy in terms of
the small quantity y/2 (8| = ¢.L™ As ¢ — 0. we have

Eo/N [B| = — (/) + (e/2) — (¥/4n®) Z (e/2mp"

X [(2r— 1) NP (2n+ 1) (2722 f(n)+ 0 c32g—2micy;
f(n)= (2" —1)L(2n+3),

where {(x) is the Riemann zeta function.

1t is interesting to note that the series in the small
quantity c is asymptotic. The assertion that the expan-
sion of the energy of the ground state in terms of the
interaction constant will be asymptotic in nature had
been stated long ago. However, the cited expansion is
the first rigorous proof of this statement for a non-
trivial model in many-body theory.

5, THE ELECTRONIC-EXCITATION SPECTRUM OF A
ONE-DIMENSIONAL CHAIN HAVING CONJUGATED
BONN['IO,BO:]

The exactly-solvable Hubbard model permits us to
make a complete study of the excitation spectrum of a
chain having conjugated bonds. We shall give a qualita-
tive description of the spectrum in the limiting case in
which the distance between the CH-fragments is large.
All of the eigenstates in this limit are divided into
groups of almost degenerate states: homopolar, ionic,

M8l
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doubly-ionized, etc. The first group consists of 2N
(where N is the number of identical atoms in the sys-
tem) homopolar states of almost zero-point energy.

The splitting of the energy levels belonging to this group
is described by the Heisenberg spin Hamiltonian. We
should state that the UHFM does not give the spectrum
of homopolar states. In order to determine them, we
must use the method of random phases in the ground
state of the UHFM. This fact was first pointed out int

Bulaevskiil®J) has proposed another method for des-
cribing the homopolar states of conjugated molecules.
He obtained spin Hamiltonians that best approximate the
Hamiltonian of the type of 51) for the homopolar states.
Kohn'®J and Bulaevskiil®’ showed that an optical tran-
sition from the ground state, which is homopolar, to
other homopolar states is forbidden or of low intensity.

The second group consists of N * 2N jonic states hav-
ing energies of ~y. The lowest excited state of the sys-
tem to which an optical transition can occur belongs to
this group.

The third group consists of N(N—1) - 2N-1 states
having energy ~ 2y, etc. At actual equilibrium distan-
ces between the atoms, all the energy levels can also
be characterized by belonging to one of these groups.
Here one should add the prefix ‘‘quasi’’ to the name of
the group.

From the standpoint of exact solutions, the classifi-
cation into quasi-ionic and homopolar excited states is
carried out as follows. An ionic-type excitation involves
vacancies in the distribution of numbers I., while a
quasi-homopolar excitation involves vacancies in the
distribution of numbers J . In order to create a quasi-
ionic state of a system of N particles, we add to the
system of N particles in its ground state a (N + 1)-st
particle of quasimomentum k,, and then remove one of
the original particles having quasimomentum k.. The ex-
excitation energy in the quasi-ionic state is given by the
expression

AE (foy b)) = ¢ — n k) —w (k)

Here pu(k.) is the amount by which the energy E(M, M)

of the ground state of N particles would diminish upon
removing a particle of quasimomentum k_ having its spin
pointing upward (M — 1 particles remain with spin t and
M particles with spin +):

R )=E(M, My— E(M—1, M. (36)

The quantities p(k,) are found by directly calculating the
energies E(M — 1, M)k,, using Eqgs. (32) and (33).
Removal of one particle from a system of N particles
occurring in the ground state can be reflected by a
corresponding change in the numbers Ij and J,, in Egs.
(32) and (33). The numbers IN"1) and J&N‘l that
correspond to the excited state of the system of N—- 1
particles obtained by removing a particle of quasi-

momentum k, from &? systenh\?g N particles are rela-
ted to the numbers I o) and J(No (the ground state of

the system of partlcles) by the relations

IV 2 18 1 (072)0 (B — kmin) + (172)0 (k5 — k),

TN gD Lo (A—Ay),

Here @ (x) is a ®-function, and when N — «, k3, ——,
and kmax — 7. I we know the distribution of the num-
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bers ﬁN— 1) ang JE!N— 1), we can find the density p(k) of

statesjover the interval {—n, 7]. In Eq. (31), if we trans-
form from summation to integration, then we can deter-
mine the necessary energy values. We get for the en-
ergy of the system of N— 1 particles:

E(M—1, M), ao=E (M, M)+E;(—n)+Ey(ks)+ E»(Ao)s

where o
E, (k) =P cosk -+ 2B i 7, (@) 07 cos (@ sin k) [1 + exp (uo/2)I ™ do,
2 (37)
Ea(Ag) =28 5 J4 (@) 07 cos (@A) [eh (uw/&)] T do  (u=1/|B])-
0
We must take A, = « for a singlet excitation. Then
E; (Ao = ©) = 0, and we can find from (36) an expression
for the energy of a singlet quasi-ionic excitation

AE (ki k) =y + & (k) + & (k),

Here e(k.) = E;(—7) + Ej(kK) is the excitation energy of a
‘‘hole’’ having the quasimomentum k in the completely
filled band of the ground state of the system.

As N — «, the width of the gap in the spectrum of
optically-observable intense quasi-ionic excitations
has the form

AE=AE (k,=n, k. =n)=y—4p+ 88 S Ji(0) o™ [1 4+ exp (u0/2)] do.
0

As was shown int"® | as y/|8| — 0,
AE ~ 8 (yp)an-lexp (—2 | | n/y).

We note that the exponential part of this expression
coincides with the expression for the gap in the UHFM.
However, the factor in front of the exponential can vary
greatly at small values of 1/2(8]. In particular, this
variation makes it necessary to vary the parameter
y/2|8] in order to match the calculated size of the slit
with the experimental value.

Upon taking account of the relation of the parameter
Ao to the total momentum of the system

0= (1/2)+ 5 Ty () 07 sin wAq [ch (ou/2)] do
0
the quantity E: (A,) in (37) gives an expression for the
spectrum of triplet quasi-homopolar excited states,

There are quasi-homopolar excitations of more com-
plex structure. Thus, for example, singlet excited states
can occur as bound states of two triplet excitations.
They also begin at zero (as N — «). However, in con-
trast to the latter, they have an endpoint at some quasi-
momentum ¢o. Apparently this endpoint of the spectrum
is analogous to the endpoint in the excitation sgectrum
in liquid helium that was found by Pitaevskil.[®*] As we
know, existence of an endpoint in a spectrum involves
instability of excitations with respect to decomposition
into two excitations. Figure 7 gives the general form of
the spectrum. It shows the singlet (1) and triplet (2)

FIG. 7. Energy spectrum of a
long polyene chain.
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quasi-homopolar excitations and the quasi-ionic excita-
tions (3).

However, the exact methods that have been developed
do not permit us unambiguously to solve the problem of
the correlational spin properties of these systems, since
a wave function of the type of (30) is too complex for
calculation of the means. In truth, there are some weak
arguments in favor of the idea that the ground state (at
T = 0) is antiferromagnetic (or in any case, the corre-
lation of two spins declines very slowly, e.g., as 1/n).
For example, these arguments include the double per-
iodicity of the triplet excitation spectrum, which is
characteristic of antiferromagnetic systems.

6. PARAMAGNETIC PROPERTIES OF POLYMERS
HAVING CONJUGATED BONDS

The quasi-homopolar states are very important in
determining the physical and chemical properties of
polymers having conjugated bonds. The fact that the
triplet excitation spectrum begins at zero for infinitely
long chains causes these molecules to be appreciably
paramagnetic.[®®®] In this regard, it is interesting to
discuss the existing data on the EPR spectra of long
carbon-chain polymers.

It was established'®®®] in 1959 that linear polymers
whose main-chain structure resembles the polyene
chain, e.g., H H

...C/ \C/ \C/”.,

CuIHs Culﬂa CoIHs

give intense EPR signals. Here the EPR spectrum con-
sists of a rather narrow single line having a g factor
close to that of a free electron. The nature of the varia-
tion of the spectra under different conditions (solid state
or in benzene solution)-***®J indicates that this EPR
spectrum arises from the intramolecular structure of
the polymers, rather than intermolecular interactions.
The intensity of the EPR signal increases with decreas-
ing temperature. From this fact, the authors off?8]
concluded that the observed EPR spectrum arises from
the ground state of the polymer, rather than from tran-
sition to excited states. The signal intensity also in-
creases with increasing length of the polymer chain.
Here the equivalent concentration of unpaired electrons
is 10""—10'° per gram of material. That is, it varies by
two orders of magnitude as a function of the chain length.

There are currently a number of interpretations of
the EPR experiments on carbon-chain polymers. We
shall discuss them without adhering to historical se-
quence. One of the explanations of these experiments,
which was based on the results of{7"%%%  was proposed
by Berlin, Vinograd, and Ovchinnikov.[®? As was im-
plied by[”], the spectrum of the lowest triplet excita-
tions of a polyene chain has the form

E)=8In|[/N, tne 8=4nBl, (2n|B|/v) (Lo (2| B|/)7

Here I, and I, are Bessel functions of imaginary argu-
ment, andn=+1,+2, ..., p < N. These excitations
show the property of additivity: E%(n,, n;) = E°(ny)

+ E°(nz), with n; # n;. The excitation n = |n| corresponds
to a z-axis projection of the spin equal to unity, while

n =—|n| corresponds to —1. If we apply to the system a
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magnetic field along the z axis, then the energy of this
excitation can be represented in the form

E(n) =@ n|/N)+ (|n|n) pgH,

Here u is the Bohr magneton, and g is the g-factor.

Upon treating the set of such excitations as a Fermi
gas having a zero chemical potential (but w1th a ‘“‘degen-
erate’’ zero level n = 0), the authors ofL%} derived the
following expression for the partition function:

o

zZ= 1] ¢ 4 g7 En/kTy

n=2o0

(38)

We get the following from (38) for the statistical mag-
netic susceptibility yo:

Ll o 1
2kT B (:8/2NKT) *

2F

Yo = = ZHE |y (39)

where F is the free energy.

The inequalitiest®’ 5/kT > 1 and pgH /kT <1 hold
under the experimental conditions of!®%)

If 5/NkT < 1, then we get from (39):

Xo = u3gN/§. (40)

Hence, for an infinite chain as calculated per unit vol-
ume, we get yo = 107°°n, where n is the number of 7
electrons per unit volume.

Equation (40) gives a fully exact value of the para-
magnetic susceptibility of an infinite polyene chain in
the Hubbard model at absolute zero, as the rigorous
calculations of Takahashil®? imply. The fact that the
paramagnetic susceptibility at absolute zero differs
from zero for this system relates polymers with conju-
gated bonds with the metals, whereas in terms of elec-
tric conductivity they are semiconductors. This is a
distinctive feature of Mott semiconductors in general.

The converse inequality /NkT >> 1 (at T < 300°)
holds for finite values of N (even rather large ones,

N~ 10® > 1). In this case we get from (39)”
= (2u2g%kT) ¢~5/NAT, (41)

As is implied by the theory of dispersion relations,

o0
the integral intensity of the EPR signal [I(w) dw is

proportional to the paramagnetic suscef)tibility X o-
Since the intensity standard commonly used experi-
mentally is diphenylpicrylhydrazyl, which is a para-
magnetic substance, the equivalent spin density is
= (4kT/p%g® %o,
since the spin susceptibility is
Asp = (R*8Y4KT) ngp

(42)

From (40) and (42) we get the equivalent spin concen-
tration for an infinite chain

neq =4kTn/6 = 4-1073.

8 For polyene chains § = 20 eV, and in accord with (40) and (41),
one should observe an appreciable paramagnetism only for rather long
chains, since e 8/NKT x ¢ 20/N-0.03 ~ ¢~ 30(N = 20). As recent studies have
shown, the value of § can be smaller by a factor of 2—3 for other sys-
tems (e.g., the polyphenylacetylenes, so that even chains containing
10—15 links can prove to be paramagnetic.
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Since experimentally we are dealing with finite
chains, neq < nga’). This result agrees with the experi-

mental results ®%®) for conjugated polymers.

Comparison of the experimental and theoretical
temperature-dependences of the EPR signal in these
molecules is very difficult. It has recently been found
that the time for relaxation of the paramagnetic suscep-
tibility of polyphenylacetylene to its equilibrium value
for a given T increases greatly with decreasing tem-
perature (below 20°C). However, this time is relatively
short above 20°C (minutes), and an increase in the
paramagnetic susceptibility with temperature is ob-
served in this temperature range, in agreement with
(41). Below 20°C, the susceptibility increases with de-
creasing temperature for reasonable observation times.

The authors of 3 explain the experimental depen-
dence of the intensity on T in this temperature range by
the idea that the triplet excited states have very long
lifetimes, and they do not succeed in relaxing to the
equilibrium concentration as the specimen is cooled.

In fact, the triplet-singlet relaxation time for the
benzene molecule already amounts to several seconds.
However, theoretical estimates and further studies of
relaxation processes in these systems are needed to
confirm this argument.

Another explanation of the EPR experiments on poly-
mer chains involves the concept of charge-transfer
complexes.tga] However, as we have said above, the
states in which charge transfer can occur (quasi-ionic)
are separated from the ground state by a considerable
gap. Hence it is hard to explain their origin. There is
also another viewpoint!®J which says that the para-
magnetism of polymer chains involves stabilization of
triplet excitations by conformational change of the mole-
cules. However, it is dubious that a large molecule
(N > 1) can change its nuclear configuration upon going
to the lowest (AE ~ 1/N) excited state. The problem of
the source of the EPR signal in carbon-chain polymers
requires further theoretical and experimental study.

7. LOCALSTATES IN POLYMERS HAVING
CONJUGATED BONDS

One of the possible methods of studying the elec-
tronic structure of periodic systems is to study the
effect on their energy spectrum of defects that have
been introduced in special ways. As we know, any viola-
tion of the periodicity of an ideal chain can lead to
splitting of local levels from the band of allowed states.
The local levels can lie either in the forbidden bands or
in regions above and below the two allowed bands.
Naturally, the levels that lie in the forbidden band are
of greatest interest. Int®}, the exact conditions for ap-
pearance of local states upon very simple perturbations
of the ideal polyene chain were obtained by the methods
of the theory of local perturbations. L] It was assumed
here that the reason for creatlon of the gap was alterna-
tion of bond lengths. Int®%J analogous conditions were
derived for the case in Wh1ch the gap is of purely corre-
lational or ‘‘combined’’ nature, and the results for the
two models were compared. It turned out that a pertur-
bation (a variation Ax of the Coulomb integral) of the
nth atom in the alternating-bond model leads to splitting
off of a local level in the forbidden band only when |[A¢|
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> 4 3,8 /nAE, while a change in the resonance integral
also generates a pair of local states only when the
weaker bond is strengthened, or the stronger bond is
weakened. In the correlational-gap model, a perturba-
tion of the even atoms gives approximately the same
result as in the alternation case, whereas action on an
odd atom splits off a local level even under an infini-
tesimally small perturbation. In this model, a change
in the strength of a bond does not at all give rise to
local states in the forbidden band. Thus, in principle,
study of local states that arise upon substitutions and
conformational changes in the chain can be used for
experimental choice between two theories of the elec~
tronic structure of the polyenes.

Studying local states also opens up an interesting
possibility for detecting band alternation in chains that
contain two atoms (A and B) per unit cell (e.g., hetero-
cumulenes), In these systems, a gap already exists in
the energy spectrum, owing to the alternation of atoms.
Hence, neither alternation of bond lengths nor existence
of a correlational contribution to the gap is generally
necessary.'®J If bond alternation is actually absent (or
very small), then, as was shown int o] , all the possible
substituents can be divided into two groups (a and b) in
such a way that, e.g., a representative of group a will
give a local level only when attached to an atom of type
A, but not B, and vice versa. However, if the alternation
is substantial, then substituents of either group can
generate a local level when attached to any atom of the
chain.

Finally, we note that existence of local states can
explain the difference noted in the Introduction in the
behavior of the frequency of the first electronic transi-
tion between the symmetrical dyes and the polyenes.
Actually, it is highly probable that the introduction of
nitrogen atoms into the chain in the symmetrical dyes
(see Fig. 1) gives rise to local states near the band
boundary, so that the first electronic transition occurs
from a local level into the free band. Since the energy
of such a transition for long chains is small, extrapola-
tion of the experimental data must lead to a zero (or
almost zero) size of the gap.

8. ONE-DIMENSIONAL SEMICONDUCTORS HAVING
NON-INTEGRAL NUMBERS OF ELECTRONS PER
CELL

The discovery of organic one-dimensional semicon-
ductors based on TCNQ has posed a number of problems
for the theory. These systems are varied both in terms
of physical properties and in structure. There are a
number of charge-transfer complexes based on TCNQ
in which the electronic structure and properties resem-
ble the electronic structure of the components discussed
above. They contain one electron per center, and are
Mott semiconductors. Here the entire complex of their
physical properties can be described on the basis of the
ideas developed in the preceding sections.t® Of course,
their concrete electronic parameters differ .considerably
from those for compounds having conjugated bonds. For
example, for the system TCNQ™—NMP* (N-methylphena-
zine), which was studied by Epstein et al.,t®] 5 = 0.17
eV, g = 0.021 eV, and the gap in the quasi-ionic excita-
tion spectrum is 0.02 eV. The fact that the size of the
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gap is comparable to kT at room temperature greatly
complicates analysis of the experimental situation. This
case requires precise analysis of the partition function
using the Hamiltonian of (11). Recentily the studies of
the Yangs'®J and of Takahashit'®? have provided exact
equations for the partition function of the Heisenberg
antiferromagnetic Hamiltonian. Takahashi has derived
(but not published) exact equations for the partition func-
tion with the Hamiltonian of (11). However, the derived
equations are nonlinear and too complex, and conse-
quently they have not been solved in any of the studies.
We note a recent study by Shiba and Pincus,t!®) where
they performed a numerical analysis of the thermo-
dynamic quantities of a system having the Hamiltonian
of (11) that contained six centers in a ring.” Apparently,
the difficulties in the temperature generalization of
Hubbard’s one-dimensional model will very soon be
overcome.

However, there are charge-transfer complexes based
on TCNQ in which the number of electrons per center
(or per cell) is not unity. For example, there is 2/3
electron per TCNQ molecule in the salt Cs:TCNQs, and
1/2 electron in the salt TCNQ: (quinolinium)*. Other
situations can also occur. In all cases, it turns out that
analysis of the system based on Hubbard’s Hamiltonian
is insufficient, and we must take more detailed account
of the interaction of electrons.

Let us consider again the Hamiltonian of (11). How-
ever, we shall assume that the total number of electrons
is not equal to the number of centers, and hence the
electron density p = M/N is not equal to unity. We shall
study the energy of the ground state of the system in the
limit as y — . We can get the zero-order term in the
expansion of the energy by keeping in the Hamiltonian
of (11) only the part involving interaction of electrons.
In this Iimit, each electron is situated at its center, the
total energy is zero, and the ground state is highly de-
generate. When p < 1, a degeneracy is added to the
spin degeneracy of the system that involves the possibil-
ity of distributing the electrons over different centers.
This latter degeneracy is removed by using the kinetic-
energy operator in (11). It is essential to consider the
eigenstates of this operator that do not contain ionic
configurations.

For example, this condition is satisfied by a one-
determinant wave function (in the n-representation)
composed of one-electron wave eigenfunctions of the
kinetic-energy Hamiltonian with all the different quasi-
momenta. The spin part of this function must be chosen
so as to satisfy the condition that the function should be
antisymmetric with respect to simultaneous interchange
of the coordinates and spin of two particles (the total
spin of the system must be zero). Evidently ionic terms
are lacking in a function constructed in this way. In
other words, the eigenstates of the system in the limit
as y — o coincide with the states of the Hamiltonian

N
Fi=p 2 (C3Cvu+CiC), (43)

Here C;, and C, are the Fermi operators for creation

9We avail ourselves of the opportunity of thanking the authors of
[°8,100:1017 for sending preprints.
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and annihilation of an electron (but without the spin).
By varying the statistics of the particles, we take ac-
count of their strong repulsion at a given center.
Girardeau"'®) has used analogous ideas in the theory
of a one-dimensional Bose gas of impenetrable parti-
cles. The total number of electrons is Np. The process
of antisymmetrizing the obtained wave function with ac-
count taken of spin is important in obtaining the energy
in the next order of magnitude with respect to 8/y. We
can easily see that the contribution to the energy of the
ground state here is

EJN |B | = — (2/n) sin np.

It is hard to obtain the next term of the expansion in
this way. However, we can get it by using the exact
equations (32) and (33). Upon performing the appropri-
ate calculations, we have

EN|B)=~@2/n)ysinnp —(41n2 |B |/y) [p* — (p/27) sin 2mp)]+ ...
(44)
The last term in (44) involves removing the spin degen-
eracy. When p = 1, Eq. (44) goes over into an expres-
sion for the energy of the ground state for the Heisen-
berg antiferromagnetic Hamiltonian.

We can study the spectrum of the excited states in
the same way. In particular, for large /B, the excita-
tion spectrum coincides with that of the Hamiltonian of
(43), i.e., with the spectrum of an ideal spinless Fermi
gas on a lattice. This spectrum begins at zero:

e(k) =2|Pp||cosk —cosmp |, n>k>np,

and the corresponding system is a metal. The situation
can change when we take account of the interaction of
electrons situated at more than one center. For exam-
ple, let us consider a Hamiltonian of the following form:

K = H 1, + (12/2) 2 C3, 0Cv, 01C%41, 0xCv+1, o (45)
v, 01, 02

Here &) is the Hamiltonian given by (11), and the
second term is a Hamiltonian describing the repulsion
of electrons located at adjacent centers. For the sake
of concreteness, we shall treat the case p = 1/2, which
is characteristic of the system TCNQ:—M" (where M*
is any donor).

In order to study the properties of the ground state

and the excitation spectrum, we shall make y very large

(y/18] and y/y 12 — ). According to the ideas developed
above, the Hamiltonian of the first approximation will
have the form
Al N

071?1 =p VEI (C3Ch +C344C) + v vzt CiCColvn (46)
(the operators C;, and C,, have the same meanings as in
(43)). The Hamiltonian of (46) has been studied in detail
by exact methods in a number of studiest'®™°"] (this is
the Hamiltonian of an anisotropic Heisenberg chain of
spins). The most essential fact for us here is that the
system characterized by (46) transforms at y 5, = 2|8}
from a metal to a dielectric (when y < 2|3 it is a
metal, but when y,» > 2|g] it is a dielectric). The size
of the gap in the dielectric phase is[°%]

ho, fyn2 |~ ,
AL (ch‘—z”—ge—)ﬁ)‘, ch®=y2|B].

n=-o0

AE =

When y 1z is close to 2|3|, AE is highly non-analytic.

589

Thus we see that a system described by the Hamil-
tonian of (45) (or one more complex) can undergo a
Mott metal-dielectric transition that depends on p, y/8,
and y;2/8. A detailed theory of the transition at finite y
has not been constructed, and is a matter for the future.

The possibility of a Peierls lattice distortion in these
systems is also a topic for study.

9. CONCLUSION

As the material presented in this review indicates,
we can consider the fundamental features of the elec-
tronic structure of simple homoatomic chains having
conjugated bonds to have been elucidated. Only the prob-
lem of the spin structure of the ground state of these
systems and the associated problem of their magnetic
properties (antiferromagnetism and ferromagnetism)
require further study. The difficulties encountered here
are general in nature, and apparently, solving them will
make it possible to advance considerably further toward
constructing a general theory of cooperative magnetic
phenomena.

In the last decade, a large number of polymers with
conjugated bonds have been synthesized that have more
complicated main-chain structures than the poly-
enes.[?®®) Many of them are used in practice as
thermally stable semiconductors, catalysts, etc. (seeEe]
and Chaps. V and VI). Hence it is important to study the
electronic structure and energy spectrum of such chains
by using the methods developed in the theory of the poly-
enes. Evidently, a number of new problems will arise
here that involve taking account of possible distortions
of their linear structure, calculating the most probable
configurations, estimating the effect of intermolecular
interaction, etc., since these effects are always impor-
tant in real polymeric materials. The theoretical ex-
planation of the unusual catalytic properties of conjuga-
ted polymers is worthy of especial attention.
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