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INTRODUCTION not contain a complete bibliography. Where it was pos-

I T is well known that in ferromagnets there can occur
the formation of a domain structure: that is, a splitting
of the specimen into regions of coexisting phases with
different d1rect10ns of the magnetic moment M (see, for
example,[ ) An analogous phenomenon occurs in
ferroelectric materials!"**} and also in superconduc-
tors (the intermediate state)t’®), Recently the existence
of a domain structure has been detected in nonferro-
magnetic metals, under the conditions that produce the
de Haas—van Alphen effect,!”®) and in antiferromag-
nets.

The various problems of the theory of domain struc-
ture have been treated in a large number of books and
review articles. In particular, for ferromagnets there
is the very popular review by Kitte1{1°) (see alsol'!’*#ly,
The present article presents in detail those results that
have been obtained recently and that have not previously
appeared in monographs or reviews. A significant part
of the article is devoted to consideration of basic prob-
lems of the theory. A detailed description is given of
those properties of the domain structure that are inde-
pendent of the properties of the model. As concrete ex-
amples, the domain structures in uniaxial and cubic
ferromagnets are considered. Experimental results are
cited only by way of illustration.

Some generally accepted ideas have proved to be
wrong and are subjected to criticism in this article.
Such criticism is necessary because the erroneous ideas
mentioned have been widely disseminated and are ex-
pounded in many textbooks.

The number of papers devoted to the theory of domain
structures is very large. In order not to complicate the
reading, we shall restrict ourselves to the minimum
number of citations; therefore the literature list will
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sible, we have tried to cite those books and articles of
foreign authors that have been translated into Russian.

1. CONDITIONS FOR COEXISTENCE OF PHASES.
SURFACE TENSION

a) Thermodynamic relations. In Chapter 1 we shall
neglect the effects of electrostriction and magnetostric-
tion and shall therefore make no distinction between the
free energy and the thermodynamic potential. The
thermodynamic relations written below for dielectrics
and magnets are ones that we shall use often in what
follows.

Polarization of dielectrics can be produced by two
methods: by assigning either the distribution of external
charges p(x) or the conductor potentials ¢;. In the first
case, the free energy is a quantity # defined as follows:

8F = (4n)™ S E (x) 6D (x) d°x = S odp (x) &*x, (1.1)

where E is the electric field, D is the induction, ¢ is the
electrostatic potential (E = —v¢), and the integration is
carried out over all space, including the region outside
the body. It is convenient to introduce also the so-called
total free energy of the body, Fiq:

Fro=F ~ | (B (x)/8m) P, (1.2)

8T = — SP (x) 8E, (x) dV, (1.3)
where Eo(X) is the field produced by the assigned char-
ges p(X) in a vacuum, and where P(X) is the dipole mo-
ment of unit volume. The integration in formula (1.3)
extends only over the volume V occupied by the dielec-
tric (P(x) # 0). If the conductor potentials @i are as-
signed, then the free energy is the quantity
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F=5— | EDin)d x=F — F esau, (1.4)

8F = —(4m) S D (x)8E (x) Px = — ) eb¢; (1.5)
i
here e; are charges on the conductors.

Analogous relations are valid also for magnets, If
the conduction currents j(x) are assigned, and if they
produce a magnetic field H(x), the free energy is defined
as follows:

8F = — (lm)"S B (x) 8H (x) d*x = —c 5 A (x) 8 (x) &°%, (1.6)
where B = curl A is the magnetic induction, and where c
is the velocity of light.

The total free energy Fi is

ﬁot:

& | 182 (x)/8m) dox, 1.7)

8F, = — SM (x) 8H,(x),dV; (1.8)
here Hy(x) is the field produced by the assigned currents
J(x) in a vacuum, and M(x) is the magnetic moment of
unit volume. Relations él.l)—(l.S) are given in the book
of Landau and Lifshitz.l*

Magnetization of a magnet can be produced by another
method; namely, by placing the magnet in the field of a
superconducting ring or of a system of such rings. In
this case, as is well known, the flux through the ring
remains constant, whereas the superconducting current
in the ring can change upon introduction of the magnet.
We shall show that in this case the free energy is the
quantity

F =& + [ [B(® B @/l (1.9)*
= (4m~{ H (x) 8B (x) P’x, (1.10)
where the integration is carried out over the volume
outside the superconductor (inside the superconductor,
B = 0).

By introducing the potential ¢(H = -V¢) and using
the fact that div B(x) = div 6 B(x) = 0, we can put the
integrand in (1.10) into the form

—div (p6 B(x)) + @ div 8B (x) = —div (p6B (x)).

The potential ¢ is a many-valued function; it changes
by 471/c upon going around the current I along a closed
contour that passes through the aperture of the ring. By
using the fact that B, = 0 on the surface of the super-
conductor, it is easy to see that the integral in (1.10)
reduces to an integral over the two sides of a surface
capping the ring, and that it is equal to 16Q/c, where Q
is the flux through the ring. In the general case,

8F =1 1:8Q

Thus the quantity # actually is the thermodynamic po-
tential in the variables Qi, and for given fluxes Q; it
must be a minimum,

Besides this quantity, it is convenient to introduce
also the total free energy #;,; for given fluxes Q;:

Fot=F — S!H{)' (x)8n] d*x, B.F = (4n)! S (HOB — H,, 6H.) d*x,

(1.11)
where Hi(x) is the field produced by the system of

*[HB] =H X B.

A. PRIVOROTSKII

superconducting rings, with the fluxes through them
frozen, in a vacuum.

We can express the integrand in the second formula
(1.11) in the form H-6B—- Hy-6Ho = (H— B)*6Hg
+(B— Hg)'6Hy + H- (6 B— 6Hg). On setting 6Hy = — Voo
and H =—-vg, we get

(B—H,)8H; = — div {69, (B—H,)],
H (6B—68H,) = —div [¢ (5B — 6H))].

By using the fact that
5 (B—H[)dS = 5 (6B —8H}) dS =0,

where the integration extends over a surface covering
the aperture of the superconducting ring, it is easy to
see that the only contribution to 6% tot comes entirely
from the term (H— B)-5H;; that is, that

8 F= — S M (x) 8H, (x) V.. (1.12)
An analogous relation holds also for the total free en-
ergy ‘Ftot of dielectrics:

Fi=F + 5 [E? (x)/8n] d°x,
8F = — 5 P (x) 6E; (x) dV.

where Eg(x) is the field produced in a vacuum at the
given conductor potentials ¢;.

All the relations given above are valid for an arbi-
trary relation between H and B (or between E and D).
In partlcular this relation may be nonlocal (see Section
¢ and also® ) If the relation between the field and the
induction is local, then one can introduce a free-energy
density as follows:

(1.13)

E

F= _—(4n)1§DdE F=F{(4n)1ED,

= — (4my S BdH, F=F- (4n)*HB.
0
The value of F is a minimum at given field (E or H),
the value of F at given induction (D or B).
The following relations for the total free energies
are also derived in the book "]

Foi= S {F — (EY/8x)] &V = 5 (F— ED/8u)—(1/2) PE,] dV =
= S {F+ (ED/8n)— (1/2) PE,) aV, (1.14)
Form S (F - (H28m)] dV = S [F — (HB/85) — (1/2) MH,] dV —

= § 17+ (B/8) — (1/2) MH,} av . (1.15)

In these formulas, the integrand vanishes outside the
body, so that the integration extends only over the vol-
ume V of the body.

From formulas (1.3), (1.8), (1.12), and (1.13) it fol-
lows that the properties of a test particle (that is, a
body which, because of its small dimensions, has prac-
tically no effect on the sources of the field) are indepen-
dent of how the electrification (magnetization) is pro-
duced, provided the fields E, and E; (or Ho and Hg) prac-
tically coincide inside the body. This result, however,
was obvious beforehand.

b) Uniaxial and cubic ferromagnets. By way of illus-
tration, we consider first the model of a uniaxial ferro-
magnet described in the book of Landau and Lifshitz.t*]
In this model, the free energy of unit volume of the
ferromagnet is
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H
F = Fo (M) — (4a0)1 S BdH = F,(M)—MH— (H2/87).  (1.16)
0

The integral in formula (1.16) is calculated at a fixed
value of the magnetic moment M, which must then be
found by minimization of ¥ at given H; that is, from the
equation (8 F/aM)H 0. The energy thus determmed
possesses the necessary property

01" B H

] : S T T M(H),

where the differentiation of F is carried out with allow-
ance for the M(H) dependence.

The quantity Fo(M) is basically of exchange origin
and in the first approximation is isotropic. Anisotropy
appears only when relativistic interactions are taken
into account:

Fo(M) = Fo (IM |) + Ugp.

In the model under consideration, the magnetic aniso-
tropy energy is

Uan = (M) pM?sin?0, p >0,

where 6 is the angle of inclination of the magnetic mo-
ment to the axis of easy magnetization (the z axis;

M, = M cos 9). In the plane perpendicular to this axis,
there is no anisotropy in the present approximation.
The relativistic origin of the anisotropy energy shows
up in the fact that it is proportional to M°. The constant
B in general is by no means small. In particular, it
may be much larger than unity. The contrary case is
also possible.

The absolute value of the magnetic moment M may
be considered constant. In this case Fy(I|M|) is a con-
stant, unimportant in the thermodynamics, and we shall
hereafter omit it. _

On minimizing F at given H, we obtain an equation
that determines the orientation of the magnetic moment:

ﬂMsinecosﬂ=——H,sinO+H,cos (: (1.17)

the magnetic field H lies in the xz plane.

When HZ/3 + HZ/3 < (BM)*”, the free energy F as a
function of the angle 6 has two minima, of which one
corresponds to absolute stability and the other to a
metastable state. Thus in this case, two different values
of M (two /phases) are poss1ble for the same H. In the
region Hy” + H/ 3> (BM)?°, metastable states are im-
possible, and consequently the direction of the magnetic
moment M at a given H is uniquely determined.

The natural parameter for describing the amount of
anisotropy is not g8 but

5/45": = [(an/aHx)Hz=0 —11.

In the case of weak anisotropy this parameter is small
in comparison with unity; and in the case of large
anisotropy, large. The table below gives values of

8, B/4m, M, and BM?/2 for several uniaxial ferromagnets.

Substance  |Parameter | gy ga{‘fs's (BM2)/2, erglem®
Co 4.2 0.33 1400 4.1-108
MnSh 0.025 2.10-3 | 8900 1.108
Mn,Sh 0.06 4.8-10-3| 2900 0.25-108
Pfe,,0,, (magneto- | 43.4 3.45 330 2.2.108
plumbite)
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In cubic ferromagnets the anisotropy energy has the
form

Uan=p' M2 (mim; + mim? 4+ m3m?)/2,

where m,, m:, m; are the direction cosines of the vector
M with respect to three mutually perpendicular axes.
When 8’ > 0, these axes are axes of easy magnetization.
The constant 8’ is usually small in comparison with
unity. In iron, #’ = 0.29, M = 1700 G, g'M/2=4.2

x 10° erg/cm®. Instead of equation (1.17) one obtains

for cubic ferromagnets a more complicated equation,
which we shall not write down. The maximum number
of phases at a given field H in cubic ferromagnets is six
(in the case H = 0).

In the nonuniform case there is added to the free en-
ergy a term dependent on the derivatives of the magne-
tization:

F = 100 — ME — (H87) + Uopume] &*x.

Uhonunit= (OL/Z) (0M )/ 6zy)?. (1.18)

Because of the exchange origin of the nonuniformity
energy, it is independent of the absolute direction of M
in the crystal. The constant o is usually of order
107 em?®.

The relation between M and H in the nonuniform case
is found from the condition that the free energy #, con-
sidered as a functional of M(x) at fixed H(X), must be a
minimum. One must allow for the fact that | M| =
= const; that is, that the infinitely small variation 6 M(x)
is perpendicular to M(x): 6 M(X) = 6a(x) x M(x). One can
then write the condition for minimization of # in the
form

M, Hgyl =0,
Herr = —(F/8M (x))ucx)- (1.19)
In uniaxial ferromagnets, ’
Hege = H + 6 (MD I + «AM, (1.20)

where 1 is the unit vector along the axis of easy magne-
tization (the z axis). This result was derived int#23. At
the boundary between the ferromagnet and vacuum, the
derivative of M along the normal to the surface must
vanish:

aM/on = 0.

This is also the condition for vanishing of the surface
part of the variation of the free energy % (the natural
boundary condition).

In view of the fact that the free energy Z remains
unchanged in infinitely small changes 5 M(x) that satisfy
the condition |M| = const (that is, 6 M 1 M), the variation
of the free energy can be expressed in the form (1.6);
and consequently, all the necessary thermodynamic re-
lations are satisfied in the model under consideration.

c¢) Conditions for coexistence of phases. On a boun-
dary of separation between phases in magnets, the elec-
trodynamic boundary conditions

H; = const, B, = const

(1.21)

must be satisfied; Hy is the tangential component of the
magnetic field, B, is the normal component of the mag-
netic induction. These follow from the equations of
magnetostatics curl H = 0, div B = 0. In addition, on a
phase-separation boundary the thermodynamic condition
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for coexistence of phases must be satisfied. To derive
this condition, we note that the continuity of H, and B,
at the phase-separation boundary plays the same role
in our case as does the equality of temperatures and
pressures in a liquid-vapor system. A natural require-
ment for equilibrium is equality of the thermodynamic
potentials in the variables H; and B;,. Since we are
neglecting magnetostriction, this thermodynamic poten-
tial is the free energy

F' = F + (4n)~'H,B,. (1.22)

For given H; and By, this quantity attains a minimum at
equilibrium.

Thus the condition for equilibrium of phases has the
form

H
Fi(H;, By)=F,(H;, Bn), F'=—(4n)"\ BdH+(4n)  H,B,. (1.23
)

0

The equality F; = Fz means that the separation boundary
is at a position of neutral equilibrium with respect to a
displacement in the direction perpendicular to it. For
ferroelectric materials, the analogous set of conditions
has the form

F' (E;, D,) = const,

(1.24)

E; = const, D, = const,

(1.25)

F'(Ey, Do)=F+(4n)E Dn—*(4n)'ISDdE+(4n)"1EnD,, (1.26)

The number of boundary conditions is four; this coin-
cides with the number of independent variables—three
components of magnetic (electric) field and one function
Z(X, y) determining the position of the separation boun-
dary. Therefore the magnetostatic (electrostatic) prob-
lem of subdivision into domains can be stated correctly
as follows: it is required to find a solution of Maxwell’s
equations with the boundary conditions (1.21) to (1.23)
or (1.24) to (1.25).

We emphasize that the derivation given above for the
condition for coexistence of phases was not related to
the specific nature of the magnetic (ferroelectric) ma-
terial and is valid for all cases of coexistence of mag-
netic (ferroelectrlc) phases. These results were ob-
tained int** (see also'® J)

In the case of coexistence of superconducting and
normal phases, the boundary condition becomes simpli-
fied, since in the superconducting phase B = 0. The
problem of the intermediate state differs somewhat
from the other problems of the theory of domain struc-
ture, although this difference is not one of principle. In
the superconductmg phase it is convenient not to intro-
duce the vector H at all (see, for example, ) With
this way of describing things, boundary conditions are
imposed only in the normal phase, in which H = B (the
magnetization of a normal metal may be neglected). On
the boundary with the superconductor, Hy, = 0 (electro-
dynamic condition) and H = H, = const (thermodynamic
condition). The problem of the intermediate state was
solved by Landau®'®"'¢J,

An important special case is a phase equilibrium
such that on the separation boundary, not only is H; con-
tinuous, but so also is Hj,. We recall that the condition
Hn = const does not follow from Maxwell’s equations.

A. PRIVOROTSKII

In this case the relations (1.21) to (1.26) can be rewrit-
ten as follows:

H
H-=const, Bp:=const, F=—(4n)1 S B dH = const,
0

(1.27)

E=const, D,-=:const, F— —(4n)? SDdEr: const. (1.28)
]

The equality F = const follows from the conditions

F' = const and H, (E)) = const. The role of these boun-

dary conditions will be elucidated in Chapter 3.

For the model of a uniaxial ferromagnet that was
described above, the relation (1.27) means that the mag-
netic field is perpendicular to the axis of easy magne-
txzatmn (Hy = 0) and is less in absolute value than SM
(see ) In this case, two equally stable states are pos-
sible:

Mo =M., = HJJB, My = My, = H,JB,
My =—M,=M[M1 — (HIPM)X2, ~

The phase-separation boundary must here be parallel
to the axis of easy magnetization (this follows from the
equality By, = B,,,, which in this case means that

M;, = M,,,). The orientation of the separation boundary
in the plane perpendicular to the easy axis may be arbi-
trary.

We shall now discuss in more detail the conditions
for phase coexistence in a uniaxial ferromagnet when
H,, # Hy,. In this case the equalities (1.21) to (1.23) can
not be interpreted as simply as before, and we shall
consider only the most important limiting cases.

1) Ferromagnet with large anisotropy (8 = =), In this
case the anisotropy energy is zero, since the magnetiza-
tion M does not deviate from the easy axis, and

F = —MH, — (H8n) + (H,Bal4n),
M, = —M. =M.

Let the separation boundary form an angle y with the z
axis, and let the y axis be chosen in the plane of the
boundary (Fig. 1). If we use the fact that

— (H?/8n) -+ (H » B, f4n)
= —(H}/8n) -i- (8n)™1 [BL — (4nM,)?],

it is easy to see that this quantity must be the same on
both sides of the separation boundary. Therefore the
condition F] = F; takes the form M, H, =M, H,,
whence it follows that

Hy 4+ Hp=0 (B =oco). (1.29)
Since H, = Ht(x, z) €08 ¥ — (Bp — 47Mp) sin ¢, where
Ht(x, z) is the projection of H,; on the xz plane, this con-
dition is equivalent to the following:
Hion =B gy (B = oo). (1.30)

Either of these two relations, (1.29) or (1.30), can be
rz

L\

¥

h:Y

z FIG. 1
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used as the thermodynamic boundary condition. Thus if
the separation boundary is inclined to the z axis, then

on this boundary H, and H,, do not vanish and H,, # H_,.
The converse statement is also valid.

Formulas (1.29) and (1.30), which we obtained under
the assumption that 8 = «, are actually valid also when
the inequalities 8/47 > 1 and H << 8M are satisfied.

The analogous formulas are correct for uniaxial
ferroelectric materials in which the direction and mag-
nitude of the polarization vector P do not change even in
a strong field E. In such ferroelectric materials, the
thermodynamic boundary condition has the form

E’zl + Ezz = (J,

or
Eis,y = D, tg .

2) Ferromagnets with small anisotropy (8/47 < 1).
In this case phase coexistence is possible in fields
H S BM < 47M. Therefore the condition B, = const can
be written, in the zeroth approximation with respect to
the parameter 8/4m, in the form

M, = const.

(1.31)
For simplicity, we shall consider only the case
Hy=Hp, =0, Ma =M, =0

and shall suppose that the boundary plane is parallel to
the y axis and forms an angle ¢ with the axis of easy
magnetization (Fig. 2). The angles formed by the vectors
M, and M, with the z axis are equal respectively to 8,
and to —6,; it then follows from the condition (1.31) that
) — 6, =7— ¢y — B2; thatis, 8, —6; = 7— 2y. The inde-
pendent parameters may be considered to be, for exam-
ple, the angles 6, and §,. The four quantities Hy , Hy,,
H, , and H,, are connected by four relations: two rela-
tions are obtained from the equation of state of the mag-
net (1.17) with 6 = 6, and with 6 = 6,;* two other rela-
tions are the conditions H; = const and F'(H;, By)

= const. Thus for given M, and M., the field at the
phase- separation boundary is determined uniquely.

It must be noted, however, that the system of four
equations mentioned above does not have, for all values
of the parameters 6, and 6:, a solution corresponding
to the coexistence of stable phases. In particular, the
so-called 90-degree boundary (8, = 7/2, 0, = m, ¥ = 1/4)
in a uniaxial ferromagnet with small anisotropy can not
be realized.* In fact, on substituting in equation (1.17)
the values 6 =6, and 6 = —6,, we get the two relations

H, = Hey = 0.
The condition H, = Hy, in this case has the form
Hy = Hyye
The free energy F' can be expressed in the form
F'= U,y —MMH,; — (H3/8n) -+ (Hy/3mn),

*Usually the relation (1.17) is considered an equation for M at given
H. It is the condition for an extremum (with respect to M) of the free
energy F(M, H) = Uan—-M-H—(Hz/SQ. It must be remembered that the
values of @ at which the free energy F has a maximum correspond to

absolutely unstable states and must be rejected.
*On this point an error was committed in reference [4].
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the last two terms may be neglected, since H ~ SM.
Since My, - Hy = MH, /2 and M, - Hy, = — MH,, /2, it is
easy to see that from the condition Fj = Fj there follows

H. = H,, = M/2.

The state M, = M, H, =8M/2, H, =0 corresponds,
as is easy to prove, not to a minimum but to a maximum
of the free energy F at given H; that is, it is absolutely
unstable. This means that in a uniaxial ferromagnet
with small anisotropy, a 90-degree boundary is im-
possible, t"

In many textbooks on ferromagnetism (see also.[m:'),
a 90-degree boundary with H, = H; = 0 is considered.

On such a boundary, the condition ¥} = F} is not satis-
fied; and one of the phases, the one whose magnetization
is perpendicular to the easy axis, is absolutely unstable.
Such a boundary, also, cannot be realized.

The range of values 6, and 6. in which the coexistence
of stable phases is possible has dimensions (in the 6,6;
plane) of order unity. The boundaries of this region have
not been found in analytic form.

In cubic ferromagnets, a 90-degree boundary is pos-
sible; the magnetizations M, and M. in this case are
directed along mutually perpendicular easy axes, so
that H, = H, =0 and F; = F» = F] = F2 = 0. Such a boun-
dary was considered in papers of Lifshitz''®] and
Néelt'®*%) and has been frequently observed in iron
(see, for example, the review"'®)),

3) Angle between the boundary and the axis of easy
magnetization small (8 arbitrary). We shall give without
derivation the thermodynamic boundary condition for
this case, correct through terms of order #° It has the

* form

H21+H22:0 ("{J—»O),

the same as in the case B = = (see (1.29)); but this time
it is valid only in the second order with respect to .

d) Structure of domain boundaries. Surface tension.
We shall now consider the problem of the transitional
layer between domains, assuming that the thickness of
this layer is large in comparison with the distance be-
tween atoms (this situation occurs in all cases of co-
existence of magnetic phases). It will be shown, in par-
ticular, that the problem of the transition layer has a
solution only when the condition (1.23) for coexistence
of phases is satisfied. This problem is one-dimensional;
and in consequence of Maxwell’s equations, the values
of H; and B, do not change in the transition layer. The
values of B, and Hy, can change in the direction perpen-
dicular to the separation boundary (along the £ axis).
Far from the separation boundary (for £ — +«), they
must approach the asymptotic values B and Hj,. The

orientation of the separation boundary with respect to

the crystallographic axes we here consider arbitrary.
The free energy in the case under consideration is a

functional of the distribution By(£) and Hp(£):
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[ FiBi®, Ha @y

F =
A specific form of this functional is so far not neces-
sary for our purposes.
We introduce also the free energies
F=F -+ [ HOBOA

and

Fl=Ftat [ B Bade= | P(H. ), Bi®} . (1.32)
The values of By, and H; are connected with Fand &
as follows:
B, (&)/4n= — (8.4 /5, ENuger
H; (&)/4n= (65 /6B, (§)5,c0)-

It is easily seen that these equations are the Euler-
Lagrange equations for the functional .#’ under the
supplementary conditions By, = const and H; = const. If
there is a functional relation between By(£) and Hy(£),
then one of these equations is a consequence of the other
two.

In order that the functional ¥’ may have an extremum,
it is necessary that the integrand in (1.32) take a unique
value at £ — + . Thus we again obtain the condition for
coexistence of phases Fi(H, By) = Fa(Hy, By).

This investigation shows that the structure of the
transition layer can be found'**} by minimization of the
free energy 5. '

The analogous statement of the problem for ferro-
electric materials has meaning in the vicinity of the
Curie point. Far from the Curie point, the change of Dy
and of E, at the phase-separation boundary occurs in
distances of the order of interatomic distances; that is,
the problem of the structure of a domain wall loses
meaning.

The surface tension A is the contribution of the do-
main wall to the free energy % (here we suppose that
the currents j(x) that produce the magnetic field are
given). If on the phase-separation boundaries, besides
the conditions (1.21) and (1.23), the condition Hy, = H,,
is also satisfied (inside the wall, H, may vary as usual),
then from the equality F) = F; it follows that F, = F,
(see (1.27)). In this case the surface tension can be de-
fined as follows:

A= [ IF(B/®, Ha@)d—F == o).

But if Hy # Hp, then also F, # ¥, and the value of A
cannot be defined in such a manner. In fact, the position
of the separation boundary is desined only to within the
wall thickness &. Therefore in the case F; # F; it is
impossible uniquely to isolate from the quantity
tff“{Bt(E), Hp(£)} d£ that part that is due to the forma-
ion of a domain boundary. The indeterminacy in the
surface energy is of the order of 6(F, — ¥,). If this
quantity is small, then the surface tension can be de-
fined approximately. Otherwise, the energy due to
formation of a domain boundary becomes nonlocal, and
the concept of surface tension loses meanigg.["g

In uniaxial ferromagnets, the condition F; = F; is
satisfied only for boundaries parallel to the axis of easy
magnetization. For large angles of deviation of the
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boundary, the surface tension cannot be defined by any
reasonable method.

In superconductors, this difficulty is absent, since
on th% separation surfaces By, = 0 and consequently
Fl = Y.

The simplest and at the same time most important
case of phase coexistence in uniaxial ferromagnets was
investigated in_the papers of Bloch"? and of Landau
and Lifshitz' 1. In this case, the magnetizations of the
coexisting phases are opposite in direction and parallel
to the easy axis, and the field H is zero. Inside the
transition layer, the magnetization M rotates about the
normal to the separation boundary (the x axis), remain-
ing parallel to the plane of the boundary (M, = M cos 6,

= M sin 6, My = 0). The function §(x) is determined
by minimization of the functional (see (1.18))

oo

Feoog = 5 [-g- M?2sin? 6+ -3 (9M/02)? | dz
= S [% M?sin® @3- M2 (66/01)2] dz

under the conditions 6(— =) = 0, 6(+=) = 7. The Euler-

Lagrange equation for this problem has the form

(1.33)

af” — P sinB cos 6 = 0,
After simple calculations, one obtains
cos 6 = — th (2/8),

where 6 = (@/B)*? is the thickness of the domain boun-
dary.
The surface tension A is equal to the integral (1.33):

A =2 (aB)i/2 M* = 2B8M2, (1.34)

The domain wall in crystals of cubic symmetry was
investigated int*''®), The surface tension of a 180-de-
gree boundary parallel to a plane of type (001) in a cubic
crystal is

Aiggo = (aﬂ’)lla Mz,

The thickness of a 180-degree boundary in this case is
determined by magnetostriction and is appreciably lar-
ger than (a/8')*/%. In iron, Ase = 1.8 erg/cm? 0%

In cubic ferromagnets, 90° boundaries are often ob-
served: H = 0, the magnetizations M; and M, are paral-
lel to the crystallographic axes [100] and [010], and the
plane of the boundary is the (110) plane. The energy of
such a boundary is['®

Agge ==0.863 (aﬂ')‘/= ME'

and the thickness of the transition region is of order
(o /B;)1/2-

The structure of a domain boundary in ferroelectric
materials near the Curie point was described in the re-
view(?*]. The transition region in superconductors was
investigated by Ginzburg and Landau.'?*? Other types of
domain boundaries were considered inf®J,

Certain specific properties are possessed by phase-
separation boundaries in thin metal films, whose thick-
ness is comparable with the thickness of the transition
layer. We shall not consider this case. The theory of
thin magnetic films is set forth, for example, in the
books 24,




THERMODYNAMIC THEORY OF FERROMAGNETIC DOMAINS

2. DOMAIN STRUCTURES IN FERROMAGNE TS

a) Simplest domain structures. We shall first ex-
plain why a division into domains occurs in massive
specimens. We shall consider as an example a plane-
parallel ferromagnetic plate of thickness I, cut perpen-
dicularly to the easy axis (the ferromagnet is assumed
to be uniaxial). We shall suppose that the dimensions of
the plate in the plane perpendicular to the eaxy axis are
infinite and that the anisotropy is extremely large
(B/4m — ). In addition, we shall suppose for simplicity
that there is no external field (H, = 0). In such a plate,
a uniform state is possible: magnetization M parallel to
the easy axis, internal field H = —47M. The free energy
per unit volume in this case is FUMf = Funif _ o7pp e
state considered is metastable, since H and M are anti-
parallel (in the case of small anisotropy, this state
would be absolutely unstable), and it is obvious there
exists a structure with smaller free energy. Such a
structure is the so-called Kittel structuret®? shown in
Fig. 3. The arrows show the directions of the magne-
tization. The free energy of this structure consists of
two parts: the energy of surface tension on the phase-
separation boundaries (this energy, per unit area of the
plate, is Al/a = 286 M'l/a) and the energy of emergence
of the domains to the surface. The latter is due to the
fact that near the specimen surface (at distances of the
order of the domain width a), there is a nonuniform
magnetic field H ~ 47M (in general, the emergence en-
ergy includes also anisotropy energy). By symmetry it
is evident that the field H on the phase- separation boun-
daries is perpendicular to the separation boundaries, so
that not only the conditions (1.21) and (1.23) for coexis-
tence of phases but also the more exacting equations
(1.27) are satisfied. The magnetic field distribution is
calculated, for example, in the book of Landau and
Lifshitz.t The energy of emergence of the domains to
the specimen surface, per unit area of the plate (with
allowance for the two sides of the plate), is 1.7 Ma.
The domain width a is determined by minimization of
the sum

285M? (U/a) + 1.7 M?a,
that is,
a~ 11 (ponte.

The total free energy of the domain structure shown
in Fig. 3 increases, on increase of the plate thickness
1, in proportion to I'?, whereas the free energy of the
uniform state is proportional to the first power of /. It
is therefore clear that a division into domains will be
energetically advantageous at sufficiently large speci-
men dimensions (I >, ~ f9).

The role of the energy of surface tension and of the
energy of emergence of the domains to the surface was
demonstrated (for another model) in the paper of Landau
and Lifshitz.[**d In the same paper, the dependence of

FIG. 3
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the domain width a on the plate thickness I was derived;
it has the form a ~ ‘%2,

In an external magnetic field Hy, perpendicular to the
specimen surface, the concentrations of the phases
change, and the layer boundaries must bend near the
surface, ™) just as in superconductors.t*? If the boun-
daries were to remain straight, the conditions for phase
coexistence, F'(H;, B,)) = const, would not be satisfied
(for a given distribution of magnetization M(x), the mag-
netostatic problem has a unique solution, and it is not
possible to impose an additional condition). The curva-
ture of the boundaries near the specimen surface is of
the order of Hy/47M (the magnetostatic problem con-
tains no other dimensionless parameters, since /47
= o),

The simple structure shown in Fig. 3 is actually ob-
served only in quite thick plates (see, for exam-
ple,t?®?"); and for large dimensions I, a complication
of this structure occurs (see the next section), and the
dependence of a on! changes. But the basis of the struc-
tures that do form is, as before, a division into two
phases with opposite magnetizations.

In cubic crystals with a positive anisotropy constant
B’, in zero external field, there can occur a structure
with closed flux, suggested by Lifshitz{'®) (Fig. 4). The
emergence energy in this case is magnetostrictive en-
ergy, which is proportional to the volume of the closure
prisms; that is, its amount per unit area of the plate
surface is proportional to the domain width a. The mag-
netostriction energy can be estimated!®’ by ascribing
to the triangular domains an effective uniaxial aniso-
tropy energy U = kM*, Iniron, k = 3.3 x 107, Thus is
obtained an upper bound for the magnetostrictive energy
of the whole body. 3 The energy of the structure shown
in Fig. 4, per unit area of the plate surface, is

E = (kM?a/2) 4 (Atgoel/a).

On minimizing this expression, we obtain the dependence
of aoni:

a= (2A180°l/kMz)l/’.
In the case of iron
e =62.10"2 12 ¢cm

For the ratio a//'’* we obtain an estimate that bounds it
from below, since the magnetostriction energy is ac-
tually less than kM?a /2.

Strictly speaking, in an infinite plate such a structure
is metastable, and a preferable state would be a uniform
one with magnetization oriented along an easy axis that
is parallel to the plane of the plate. But in even a small
external field perpendicular to the plane of the plate,
the structure shown in Fig. 4 becomes energetically
advantageous. In the absence of a field, this structure
can be energetically advantageous in a plate of finite
dimensions, if the ends of the plate are parallel to an

N N\,

FIG. 4
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easy axis. The structure shown in Fig. 4 has often been
observed in iron (see, for example, '%***®y A curious
structure is that of Néel (Fig. 5)t%%), which is observed
in iron strips cut so that the length of the strip coin-
cides with a {110] direction. The method of magnetic
flux closure shown in Fig. 5 was suggested by Lawton
(thesis, Cambridge, 1949) and was described int%7,

In many textbooks it is supposed that the structure
with closed flux (internal field H = 0) shown in Fig. 4 is
also realized in uniaxial ferromagnets with small aniso-
tropy. Actually such a structure is impossible, even if
it is supposed that the magnetization in the triangular
closure domains is turned from the easy axis by an
internal field H ~ 8M.U'™ In fact, a 90-degree boundary
cannot be realized: the phase-coexistence condition
F'(H;, By) = const can be satisfied only if one of the
phases is absolutely unstable (see Secion c¢ of Chapter
1).*

The conditions for coexistence of phases can be ob-
tained from the equations of the microtheory (see Sec-
tion d of Chapter 1). In the present model these are the
static equations (1.19) and (1.20) of Landau and Lifshitz,
which are themselves derived from the condition that
the free energy % be a minimum. Therefore a structure
that does not satisfy the boundary condition F; = F; does
not correspond to an energy minimum.

The problem of the domain structure of uniaxial
ferromagnets with small anisotropy has still not been
solved. The paper[”] presents a rather complicated
model of such a structure and discusses the difficulties
of the theory (see also the following section). It is ob-
vious, however, that in the zeroth approximation with
respect to the parameter g/4r < 1, the flux must close
within the specimen; that is, on the specimen surface
the component M, of the magnetization normal to the
surface must vanish. Since the magnetization M can
deviate from the easy axis only in the presence of an
internal field H, it is obvious that near the surface of

0
T il %
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FIG. 5

*In the literature it is often assumed that formation of locally un-
stable states is necessary for attainment of a minimum of the free energy
of the whole body, #. The fact is cited that Maxwell’s equations make
the problem nonlocal. But it can be shown that the condition for a
minimum of the free energy 5 leads to a local condition that the free-
energy density F, considered as a function of M at given local value of
H, be a minimum. In order to prove the instability of the triangular
closure domains, it is sufficient to consider only infinitely small pertur-
bations of the form 8H = 0, M = (47)™! curl §A, §A = {§A(x), 0, 0},
where 8A(X) is an arbitrary function of its three variables (6Mz # 0),
localized within the triangular domains, and the x axis is chosen along
the direction of M in the triangles. Such a perturbation decreases the
anisotropy energy without dusturbing the equations curl H = 0 and div
B=0.
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the specimen there is a nonuniform field H ~ gM-*:"3
which must orient the magnetization almost perpendicu-
lar to the easy axis. The component of this field per-
pendicular to the easy axis and consequently parallel to
the surface must differ from zero. This field will pene-
trate beyond the boundaries of the specimen (to distan-
ces of the order of the domain width a) and can be meas-
ured. We remark that fields of the order of 10* Oe have
been frequentlry observed over the surface of monocrys-
tals of cobalt,"?®} in which /47 ~ 1/3, and cannot be
explained within the framework of the generally accep-
ted theory, in which deviation of the magnetization from
the easy axis is allowed in the absence of an internal
field H.

c) Plane model of the branching of the domain struc-
ture of uniaxial ferromagnets., With increase of the
plate thickness I, a progressive branching of the do-
mains in the vicinity of the surface becomes thermo-
dynamically advantageous. This was first observed by
Landau in an investigation of the intermediate state of
superconductors.[16 The initial stage of branching in
ferromagnets was considered in a paper of Lifshitz,['®]

In uniaxial ferromagnets, in contrast to superconduc-
tors, branching of the domains becomes advantageous
at rather small dimensions /. Therefore great interest
attaches to the problem of the extremely branched
structure. A plane model of such a structure was con-
structed inl*") for the case of a uniaxial ferromagnet
with small anisotropy. It was shown that the dependence
of the layer width a on the plate thickness ! changes:

a ~ 1*”°, This dependence was observed in cobalt (see,
for example,t?*°°)), The same de%endence was obtained
by Landau for superconductors.[w

We shall formulate the magnetostatic problem of the
emergence of domains to the surface. We suppose that
there is no external magnetic field and that the axis of
easy magnetization is perpendicular to the plane of the
ferromagnetic plate. The energy density of emergence
is

F = Uy + (H*8n) = (Y,) BM? sin?8 + (H*/8x).

In the limit of small anisotropy, the second term may
be neglected, since H ~ M sin 6. Thus in the first ap-
proximation, the field H may be neglected, and the equa-
tions of magnetostatics reduce to the single equation

divM =0 (|M|=M = const).

From the mathematical point of view, the problem
reduces to solution of the eikonal equations
(%)2—}—(%)2:1, %—:rotA,
A={0, A(z, 2), O}
The lines of force are the lines of equal values of the
vector potential A.

A model of the branched structure is shown in Fig. 6.
At a depth h, which will be calculated below, each do-
main splits. With approach to the surface, the width of
the new domains increases, until it becomes equal {o
a/3. At this point a new splitting occurs. The process
continues until the dimensions of the domains that are
forming becomes comparable with the thickness 6 of a
domain wall.

The concentration of the opposite phase in an orig-
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inal domain (of width a) after the n-th splitting is deter-
mined by the recurrence relation

en = (28)cp + (1B (1 —eacy); o =173,

that is

= (3) £ (1/9) + . . . + (1/3™).

For n — « we get ¢, = 1/2. This means closure of
the magnetic flux within the specimen; that is, vanishing
of the component of the magnetization normal to the
surface (averaged over distances of the order of 5).

A schematic drawing of the splitting is shown in
Fig. 7. The fine solid lines represent the lines of force.
The heavy lines show the phase-separation boundaries.
The lines of force consist of sections of straight lines
and of arcs of circles whose centers are at the points
0, O, and O”. In the central domain, the lines of force
are parallel to the axis of easy magnetization. The
magnetization M is parallel (or antiparallel) to the easy
axis at the beginning and at the end of each stage of
splitting.

From the flux-conservation condition it follows that
a point on the separation boundary must be equally dis-
tant from the straight line of force emanating from the
point O’, and from the arc passing through the center of
the figure, which is the continuation of that straight line
in its role as a line of force (in the latter case, what is
meant is the distance along a radial line). Therefore

a,/3 = R, [(cos 8,) "1 —1].
We have in addition
by = R, g 0,.

It will be shown below that the angles 6, are small
(of the order of (5/a,)*’®). Therefore

R, =2a,/36%,

2.1
=2an/36,, (2.1)

in which

an=a/3"1,

The parameters R, h,,, and 6, are determined by
the minimization condition for the total energy connec-
ted with the splitting. The anisotropy energy in the sec-
tion of height h is

8 R, {c0s2(8/2) a,/2cos8
rdr -+ v dr’
[H"—(un/z)]/cos 3] an/G cos2(8/2)

o= pMe fsinzedo [
0

By using (2.1) and also the fact that 6, <1, and by
neglecting terms of order a 9 , we get

Ut = (4/45) BM?a2B,,
The surface-tension energy E‘™ is*
E™ = 3h,A,
where A = 280 M°; 6 is the thickness of the domain wall,
i.e.,
E™ = 4B5M?3a,/8,.

The angle 6, is determined by the minimization condi-
tion for the sum U™ + (2E‘/3). The second term
includes only the energy of the boundaries of the cen-
tral domain. Thus in a given step we shall minimize the
energy that is connected with the splitting. After simple
calculations we get

07 = 306/a,,.
The total energy of the region ot thickness a, and height
hy, is
Fm =0 4 E@ =2V 10/3 V' 3) pM2ay 261,
By using

Zal=art—(1BYI, At = —1/ VI,

we get
> 3%1FM) = (5/2) b B M2a% 28V,

h= 2 hp = 1/4;"2 (aS/,/Gl/,)’
n

A=83 V10 (V3I—1)=1.15;
A=8/ V103V 3—1)=0.60.
The total energy of the specimen per domain of thick-
ness a is
E=2 g 3R 4 2B8M? (1 — 24) = 28 M?2a (2haV26%2 + 8la™),
A= (5h; — M)/ =1,29,
where [ is the plate thickness.
It is still necessary to minimize the energy per unit
area of the plate surface, that is E/a. This gives
a = 51/3l2/3/7‘,2/3, Ela = 6l2/3ﬁM252/3l‘/3,
h = (ho/40) 1 = 0171, hy = k(1 — (1/3V3)], hy = hy/ (3 3)"1,
8, = 3"2)/ 10 (5/A) /3. (2.2)
It is easily shown that

h— 3 =3V,

If this quantity is of the order of 6§, that is (3v3)D
~ 1/85, then a, ~ &, whereas 6, ~ 1. Thus the total
number of splittings is

Pmax ~ (2/3 (In 3)~! In (1/8).
Figure 6 corresponds to the case /6 ~ 10%. It is seen
that the number of splittings is still quite small. With
increase of [, the ratio a/l! decreases, that is the angle
of inclination of the boundaries decreases, while the
number of splittings increases.

*In Section d of Chapter 1 it was shown that, strictly speaking, the
concept of surface tension loses meaning for boundaries inclined to the
axis of easy magnetlzatlon since the surface energy is defined only to
within 8(F, —F,). For boundaries parallel to the easy axis, F, = . In
the case under consideration, the inclination of the boundaries is smali
(of order 6), and the indeterminacy in the surface energy is small in
comparison with A.
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The structure actually observed is not plane. On a
surface perpendicular to the easy axis in a cobalt mono-
crystal, very comphcated patterns are observed (see,
for example ®}), Similar patterns have been observed
in Mn;Sb.'*) Nevertheless the relation a ~ I*° is
satisfied, [26:3°]

It is interesting to compare the energy of the
branched structure (2.2) with the energy of the un-
branched structure, which is obviously of the order of
BM*(61)"%. 1t is easily seen that the unbranched struc-
ture ceases to be stable for! >, ~ C6, where Cis a
numerical coefficient independent of 3. In order to esti-
mate this coefficient, it is necessary to know the energy
of the unbranched structure accurately, since all the
numerical factors occur to the sixth power in the ratio
1./6.*

In superconductors according to estimates of L1fsh1tz
and Sharvin,'®?) the numerical coefficient [ /8~ (50)°,
and therefore the branched structure is never observed.
In ferromagnets with small anisotropy, the situation is
different. It follows from experiment that the multiplier
C is not very large; in every case it is many orders
smaller than in superconductors. Because the multi-
plier C does not contain literal parameters, the problem
of the unbranched structure cannot be formulated cor-
rectly within the framework of macrotheory."*”? In par-
ticular, an important contribution to the energy of the
unbranched structure is made by boundaries inclined to
the axis of easy magnetization, and this contribution
cannot be taken into account within the framework of
macrotheory. The difficulties are due to the fact that
the ratio I/a is not very large and does not contain large
parameters of the type 4n/8. To explain the properties
of the unbranched structure would, strictly speaking, be
possible only by solving the static Landau-Lifshitz
equation (1.19) in the whole volume of the specimen,
which seems to us impossible. As has already been
indicated, the situation in superconductors is much more
favorable. Although the ratio 6/ ¢ Still contains no
small parameters, it is nevertheless so small that the
approximation being used occasions no doubts.

The results given above from investigation of the
branched structure are valid also for ferromagnets of
cubic symmetry. In this case the anisotropy energy for
small deviations from the easy axis can be written in
the form Uy, = (8’ M?%6%)/2. The surface- tensmn energy
A can be expressed in the form A = 28’6 M?, where
6 = [(a/B8)!]/2 is a coefficient of proportlonallty, not
identical with the thickness of a domain wall. In cubic
ferromagnets the critical dimension [, is appreciably
larger because of the fact that the energy of the un-

*Strictly speaking, in order to calculate /. exactly it would be neces-
sary to consider the initial stage of branching; that is, to investigate the
stability of the unbranched structure with respect to infinitely small
perturbations.
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branched structure is very small.l*) By considering
the initial stage of branching, Lifshitz!'®) obtained for
1, the value

¢ = 8 (B'/k)® (a/f) 12,

In iron this quantity is of order 10* ¢m. It is for this
reason that cubic ferromagnets are especially suitable
for observation of a simple domain structure with clos-
ure triangles.

It is also possible to treat the problem of branched
domain structure in ferromagnets with an arbitrary
anisotropy constant. In order to estimate the param-
eters of such a structure, we shall suppose that in this
case also the picture shown in Fig. 6 is realized; that
is, a_ . /a_=1/3. This supposition is not in harmony
with the thermodynamic boundary condition Hy, + H,,
= 0 (see Section ¢ of Chapter 1), so that the method
presented below allows us to find only an upper bound
to the energy of the branched structure (as has already
been mentioned, the thermodynamic boundary condition
follows from the minimization condition for the free en-
ergy of the body, #).

We suppose that at each stage of the splitting the
boundaries of the central domain are parabolas
r = R, /cos® (6/2) and v’ = a,/6 cos® (6/2). The discon-
tinuity of the normal component of magnetization on the
phase-separation boundaries leads to the presence of a
magnetic field in the side domains:

H.(z, 2) = 8aMp=10,(z), H, < H: p=1+4np

In the central domain, in a first approximation, Hy, = 0.
The emergence energy is the energy of the magnetic
field, f(Hz/Bﬂ)dV. We omit the calculation, which is
analogous to that made in the case 8/47 < 1, and give
only the final result:

Ela = 6M? (AB8)2/3 (4nlim)'/3, a = (Bud/4m)'/3 (N3, h = 0.A17L

The relation a ~ {*”* has been observed also in mag-

netoplumbite.?®*"] By equating the energies of the
branched and unbranched structures in the case 8/4w
> 1, it is possible to estimate the critical dimension [,
above which the branching is certainly advantageous:
¢~ 0.87 x 10" p5. The ratio a, /I (where a, is the
domain dimension in the unbranched structure at] =1.)
is 1.2 x 10™. We note that the value obtained for { is
too large and for the ratio ac/lc too small, In the initial
stage of complication of the simple unbranched struc-
ture, there occurs a bending of the plane domain boun-
daries, in which the structure ceases to be two-dimen-
sional, and thereafter nuclei of reversed magnetization
appear near the surface.[*

¢) Plane model of branched domain structure in
cubic ferromagnets.* The simplest generalization of a
domain structure with closure triangles for a case in
which the plate surface is inclined to the easy axis is
the structure shown in Fig. 8, where

(n/4) — (v/2),
(/4) + (y/2).

The anisotropy- energy densxty in the triangular domains
is Ugp = (1/2)8'M® sin®y cos®y. In iron, B = 0.28. This
structure is unbranched, so that a ~ [*

I H

52

*The results described in this section were obtained in [33].
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In the case y ~ 1, the structure shown in Fig. 8 is
energetically disadvantageous. The total energy can be
appreciably decreased by formation of the branched
structure shown in Fig. 9. This figure shows only two
successive stages of the branching. Actually the sub-
division proceeds to the point at which the domain
dimensions become comparable with the thickness 8s0°
of a 180-degree boundary (this is much larger than the
thickness 6o of a 90-degree boundary). This enables
us to estimate the number of branchings:

n ~ In (a/8130°)/In 3.

In this way we can get rid almost completely of the
anisotropy energy. It is concentrated entirely in a thin
layer close to the surface of the specimen (at distances
of order 61sc0). The energy of such a structure, per unit
area of the plate surface (with allowance for the two
sides of the plate), is

E=[(4/31n3) (2V'2 Ago-+ Ayso-) In (a/8150°) (2.3)
- (2kM?2a/3) + Aysoo (I~ 2a) a] cos y.

The term proportional to In(a/61s0°) i8 the energy of the
branched boundaries (Age and Ajgec are the energies of
90-degree and 180-degree boundaries: Age = 0.863 X
A1goe ~ B'0ape M), After each branching the domain
dimensions are halved, but their number increases
correspondingly, and therefore the total energy of the
branched boundaries is proportional to the number of
branchings n. The branching is energetically advantage-
ous if this energy is less than the anisotropy energy of
the triangular domains shown in Fig. 8. For y ~ 1 and
a 2 0g00, this condition is always satisfied.

The second term represents the magnetostriction
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energy. We estimate it by ascribing to the quadrangular
domains an effective uniaxial anisotropy energy Uy

= kM Iniron, k = 3.3 x 107, As has already been indi-
cated, one obtains thus an upper bound to the magneto-
strictive energy of the whole body.[“’] The last term
represents the surface-tension energy of the unbranched
boundaries (the plate thickness ! is measured along an
easy axis). On minimizing this expression, we obtain a
quadratic equation for a. The positive root of this equa-
tion has the form

a=04661[1-+ (1’3, (2.4)

Ley=(2V 2 Agoe + Agsoe) kM2 I 3 ~ Bygef' e ~ Sysosf’/k 1n (B'/K). (2.5)

In the case of iron, I, = 6°107° cm.

Thus for small thicknesses, [ <1 er’ the relation
a = 0.233 ! should be satisfied, whereas for [ > [, this
becomes a square-root dependence, a = 0.466 (I, )2
despite the fact that the structure is branched. In the
latter case the energy is E = 0.62 kM® (lcll)‘/z. At very
large values of I, there should be observed an extremely
branched structure with a ~ 12, of the same type as
that considered in the preceding section. The energy of
such a structure is of the order of 8’63 M*'°. By
equating energies, we obtain for the critical thickness
the value I, ~ (B'/K)’Aggo.*

In the case of iron this value is of the order of
10° em, so that the extremely branched structure is
practically unattainable.

So far we have assumed that there is no external

field. In the presence of an external field H, perpen-
dicular to the plate surface, branching will be energetic-
ally advantageous also when the surface of the plate is
perpendicular to an easy axis. Instead of the structure
shown in Fig. 10, where siny = Ho/4mM, 6, = (1/4)
- 9/2), and &, = (7/4) + (y/2), and which was calculated
in**J (see alsol?)), in the case Ho ~ 27M the structure
shown in Fig, 11 should be formed. All the formulas for
this case are analogous to the preceding ones. They are
obtained from formulas (2.3)—(2.5) by setting y = 0 and
making the substitution

H

k- k[ — (Ho/4nMl

*We have not been able to allow for the numerical multiplier, since
the energy of the branched structure in the case under consideration
could not be calculated.
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Jz
FIG. 11

3. BULK PROPERTIES OF DOMAIN STRUCTURES.
THEORY OF THE IDEAL MAGNE TIZATION
(POLARIZATION) CURVE

a) Statement of the problem. In the preceding chap-
ter we saw that a division into domains leads to an
energy advantage proportional to the volume of the
specimen. The energy due to emergence of the domains
at the surface is small. Thus, for example, in the case
of the branched structure in a uniaxial ferromagnet this
energy is proportional to the 1/3 power of the specimen
volume. In many problems the effects due to the emer-
gence of domains at the surface may be unimportant,
Such problems include, in particular, the problem of the
ideal magnetization (polarization) curve,

The bulk properties of domain structures are simp-
lest in massive ellipsoidal bodies, in plane-parallel
plates, and in cylindrical specimens of elliptic cross
section. If the external field is uniform, then with
neglect of effects due to the emergence of domains at
the surface, it may be supposed that there exist in the
specimen several uniform phases separated by plane-
parallel boundaries. In the simplest cases, the number
of phases is two. Each of the phases constitutes a sys-
tem of domains in contact with domains of another
phase. In bulk specimens, the domain width is small in
comparison with the dimensions of the specimen.

The average values, over the domain structure, of
the magnetic field H and the magnetic induction B (or of
the electric field E and the electric induction D) are
uniform within such specimens. These values are con-
nected with the external field H, (or Eo) by the relations

Hop = (8ip — nn) ((Hr ) + nap ({ By, (3.1)

Eoi = (6in — nun) ((Er)) + nyn (( D)); (3.2)
here the double angular brackets indicate an average
over the specimen volume, and nji is the demagnetizing-
(depolarizing-) coefficient tensor,

The bulk properties of domain structures are com-
pletely described by specification of H; and B, (or E;
and Dp), the two angles that determine the orlentatlon
of the separation boundaries, and the concentrations of
the phases. These quantities satisfy the three equations
(3.1) (or (3.2)) and the condition for coexistence of pha-
ses

Fi(Hy, By)=F; (H,, Bn)
or
F: (Eh Dn)= F;(Ety Dn)

The number of equations is two less than the number of
unknowns. Two parameters must be determined from
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the minimization condition for the total free energy per
unit volume

Eq(Ho) =

Hp
V2§ OF @)+ (801 dox = Fy(Ho— 0)— [ (M)
b
Eg
E(Eq) =V 5 [F (x) — (B3j8)) d°x = £ (Bo — 0)— { ((P)) dE,
t
We consider first a ferromagnetic specimen in the
absence of an external field (H, = 0). It is easy to show
that if Ho = 0, that is if the external currents j vanish,
then the free energies

H(x)
F= —(4n)~1$ ( S BdH) d*x
and ’
F=F+ln ' [HOB®Px

coincide, independently of the nature and geometry of
the specimen. In fact, H-B = div [AxH] + A curl H,
where A is the vector potential. The second term in
this expression vanishes, since j = 0, and consequently
the integral of H- B reduces to the integral of a diver-
gence, i.e. to zero.

A similar situation occurs in ferroelectric materials
if Ep = 0, that is if the external charges and charges of
conductors vanish. In this case E *D = —div (¢D)

+ ¢ div D (¢ is the scalar potential), but div D = 0, and
on conductor surfaces ¢ = const and [D,dS =0,

The free energy F in a ferromagnet is Uy, + (H?/8m).
It is evident that when Hy = 0, the minimum of the free
energy is obtained when in the interior of the specimen
H, =H; =0, M; =— M. (then Uy, =0), and ¢, = ¢3; that is,
we have a special case of conditions (1.27). This result
is independent of the model. A similar statement is
valid also for ferroelectric materials,

b) Bulk properties of domain structures. Ideal mag-
netization curve of uniaxial ferromagnets. We shall
show further that in an arbitrary uniform external field
H,, independently of the model, the condition (1.27) for
coexistence of phases is the condition for a minimum of
the volume part of the total free energy F 1)

For calculation of Ftot it is convement to use the
relation (1.15), which can be expressed in the form

For= ((F)y — (8m)~* ((HB)) — (H, (M))/2).

In order to find the condition for a minimum of Ft t» We
shall calculate in the linear approximation the change of
Ftot in a small change of the parameters that describe
the properties of the domain structure (this means a
small change of all the quantities, including ((H;)),

((M )Y, the orientation of the separation boundaries,
etc., at constant Hg). The relation (3.1) is equivalent to
the following:

Hoy = (Hy) + dangs (M g))- (3.3)

By use of (3.3) it is easy to show that
— H (M))/2 = — (Y2) ((HNSM)) + dnnal(M))SUM ).

By using the fact that
dan SUM )y = —8(HW),
it is easy to see that
— Hod(M)Y/2 = — (/o)(((H)S(M)) — (MHS(H)))
— = (8m)~ (((H)HBUBYY — (BN ((HY)).
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It is convenient to transform the mean ((H:-B)) as fol-
lows:

(HB)) = (H;By)) + (H,Bn)) = H{(Ba)) + (Ha)) Bn = (H)) ((B)).

Therefore the variation Gftot can be expressed in the
form
8F, =8 ((F))— (4ot ((HD)) 8 ((B)).

The variation 6{( F)) has the form

8 () = 8¢y (Fy— Fy) - ((BF)) = bey (F, F2)+ ((H8BY),

where 6c, is the change of concentration, and the aver-
age on the right side is carried out with the phase con-
centrations of the zeroth approximation. Similarly

8((B)y = 8¢y (By — By) + ((0B)) = 8¢y (Byy — Bay) + ((8B)).

On using

(H8By) —(H)) (S B)= ((H,8B,)) — (Hy)) (8Bn))=(((Hn — (H,))8B,)),

we finally get

617;01: Bey (Fy— Fp)+ (4n) ey (Hn— (Hn)) 8Byn+cy (Hon— ((Hp)) 8Byn).
It should be remarked that 6B, and 6B, are the pro-
jections of 6B, and &B; along the normal to the unper-
turbed separation boundary. Therefore 6B, £ 6 B,

If we do not assume in advance that F; = F;, then the
domain structure has three degrees of freedom, and the
variations dc,, By, and 6B, are independent Thus
from the condltlon that the f1rst variation aFtot shall
vanish, we get the conditions

F;zF;, Hn1=Hn2=((H"))'

Thus the thermodynamic boundary condition F; = F; may
itself be obtained from the minimization condition for
Fiot-

Thus by minimization of the volume part of the free
energy ﬁtot’ we obtain only the one additional condition
H,, = H,,. The number of relations remains one less
than the number of parameters determining the proper-
ties of the domain structure; that is, there is a degener-
acy in the problem. If the field H (Hl + H; = H, By, = By,
F1 = F2) and the phase concentrations ¢; and c: are
given, then the values of (M) and of Ftot do not change
on rotation of the phase-separation boundary about the
vector B; — Be.

Thus the relations (1.27) and (3.1) allow a one-
parameter family of structures, possessing the same
values of { M} and of Ftot The unknown parameter de-
termining the orientation of the phase-separation boun-
dary, and likewise the thickness of the layers, can be
found only by taking into account effects due to the
emergence of the domains at the surface. Nevertheless
the dependence of {M) on H, (the ideal magnetization
curve) can be determined as a result of solution of an
immensely simpler problem: for given H,, it is neces-
sary only to consider an arbitrary one of the structures
satisfying conditions (1.27) and (3.1), and to calculate
«M) for it.

If the number of coexisting phases N > 2, but the
domains as before are plane-parallel layers,* then the

*Structures of the “checkerboard” type and cylindrical structures
have a smaller number of degrees of freedom and can be realized only
in the case N = 2.
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first variation 6 Fy; has the form

A=N

8For= 2 SeaFi - (4n)y™ (Hr — (Hn)) 8Bn))-
For N = 3, the conditions Hm = an = Hm together
with the conditions for phase coexistence (1.21) and
(1.23) and the relations (3.1) uniquely determine the bulk
properties of the domain structure. Coexistence of three
phases is possible, for example, in cubic ferromagnets
if the internal field H is parallel to the diagonal axis
(111] and the separation boundaries are perpendicular
to the field.

Coexistence of four phases is possible, it appears,
only in special cases. In particular, in cubic ferromag-
nets four phases can coexist if the field H is parallel to
one of the easy axes and the phase-separation boundar-
ies are perpendicular to the field. If in a hexagonal
ferromagnet the uniaxial-anisotropy constant 8 is nega-
tive (cobalt has this property at temperatures above
200°C), then in a field H parallel to the hexagonal axis,
coexistence of six phases is possible.

Since formulas (1.14) for % in dielectrics are
analogous to formulas (1.15) for ;¢ in magnets, it is
obvious that in the interior of a ferroelectric specimen
the phase-coexistence conditions (1.28) must be satis-
fied.

In a uniaxjal ferromagnet the conditions H = const,
B, = const, F = const, as has already been pointed out,
mean that the phase-separation boundary is parallel to
the easy axis and the field H is perpendicular to this
axis. For given phase concentrations ¢, and c; (¢, + ¢z
= 1) and for given field H | z, the volume part of the
magnetization (M), as well as ﬁtot’ remains unchanged
on rotation of the separation boundary about the z axis.
This makes it possible to find the relation between
{M) and H, in the range where a domain structure ex-
ists, for all orientations of H, and of the crystallo—
graphic axes with respect to the ellipsoid axes. Lss

We shall take into account that for H, = 0 and H2 + H?
< (BM)* the ‘‘equation of state’’ of a umax1al ferromag-
net takes the form

BMy=Hy,  BMy=H,,  M,= = (M*—Mi— M2

Since H = const, the relation (3.3) can be rewritten in
the form

Hoy = H; + dang (M),
or, further, in the form

Hyy = 4niiyn (M), (3.4)

where
fn = g+ (Bl4m) (8:n — 8:5849). (3.9)

Formulas (3.4) and (3.5) determine the ideal magnetiza-
tion curve. The phase concentrations are determined
from the conditions
WM = (e —ca) (ME—ME—M5)'?, Me= My =
My =My = M= (M.

Mx?_ = <<Mx))s

¢) Magnetostriction and electrostriction. So far we
have disregarded the energy of elastic deformations. In
ferromagnets the magnetostrictive energy is small in
comparison with the anisotropy energy and the magneto-
static energy, but there are materials in which they are
comparable (see, for example, the book *®*)). In ferro-
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electric materials the electrostrictive energy is, as a
rule, comparable with the other forms of energy.t® We

note also that the problem of elastic deformations during

magnetization (polarization) is of independent interest.
Wesfhall here present briefly some results obtained
in
Magnetostrictive effects are described by the ther
thermodynamic relation for the free energy F (see
Appendix)
Ju; 1

~ = 1
dF = (o,k—FGik—HHin)da—HBdH,

(3.6)

where oy = 0); is the stress tensor. In an anisotropic
body, the free energy depends not only on the symmetric
components of the deformation tensor, u; = (1/2)
x [(auj /oxy) + (duk /5x;)], but also on the antisymmetric,
Vi = (1/2)[(ov; bxy) — (9w /ox;)] .* We shall introduce
also the free energy F’ in the variables H;, By, and
u; /oxy, where the indices t and n designate the com-
ponents tangential and normal to the phase-separation
boundary:

F' =F -+ (4n)"'H,B,,

aF (o — F'é + o HaBuba— = HiBi)d i BedH+ - o dB,.

dzy
Instead of the quantities ¥ and F’, which refer to
unit volume of the material, it is convenient in the
theory of elasticity to introduce the free energy corre-
sponding to a given mass, and specifically to the mass
of unit undeformed volume. To such quantities we shall
attach the subscript 0:

T 1 Ouy 1
dFo=(on— g HiBx) d 50— 7 (1 4-uu) BaH,

du;

. 1 1
dF, =(Ufk +a H, Bpdin I Hin) flm—#&ﬂ dup)(— B dH,--H AL ).

On the phase-separation boundaries, besides H; and
By, the values of 8u; /60X, and of ojxng = ojy are also
conserved; here the index @ numbers the components
in the plane of the boundary. In order to obtain the con-
dition for coexistence of phases, it is necessary to con-
struct the thermodynamic potential in the conserved
variables. For this purpose we put dF; into the form

. du;
Fy = (010 + g HnBubia— o HiBa) d 5

[

g duy

1
+ (0an— i HaBn) 52+ 0nnd 52 4 (- un) (— By M, + H, dB,).
The desired thermodynamic potential, which has a mini-
mum for given Hy,, By, u;/0X,, and ¢y, is the thermo-
dynamic potential
’ i 1
o, (H(li By, 'g:: , Uun—HHa.Bm Unn)

l 1 fu, duyp,
=F)— (oan—HHaB,,) L o

The complete system of boundary conditions has the

form

H,=const, B,=const, -—-=const, 0;,=const,

du;
dxg

(3.7)

, du; 1
(DO(HG, B, a—:' N oa,.—é—nH.,B,,, 0,.,.) = const.
(*1

We shall now consider an ellipsoidal specimen,
whose shape is maintained constant, placed in a uniform
external field Ho. In such a specimen there is the possi-
bility of a nonuniform deformation (changing from do-
main to domain), which on the average is zero.

*In the literature it is often asserted that in an anisotropic body the
stress tensor gy is asymmetric (see, for example, the books [371). This
assertion is incorrect. The correct resuit is obtained by taking account
of the asymmetric (proportional to vjx) terms in the expression for the
free energy.
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The bulk properties of the domain structure are
completely determined by specification of the eight
parameters that do not change on crossing a separation
boundary,

Hy, By, Oy, 1,

and of the concentration c; (by weight) of one of the two
phases (n is the unit vector normal to the plane of the
phase-separation boundary). Another six such param-
eters (du; /axa) are zero, since the ellipsoid remains
undeformed on the average. These quantities satisfy the
three equations (3.1), the phase-coexistence condition
(3.7), and the three additional equations

24N =a, (3.8)

where
h=cifs+cifa

Thus the number of equations is seven, two less than the
number of parameters that determine the bulk proper-
ties of the domain structure. In addition, it is necessary
to obtain the conditions for minimization of the volume
part of the total free energy ﬁt, considered as a func-
tion of the nine parameters that determine the bulk
properties of the domain structure, under the seven
supplementary conditions (3.1), (3.7), and (3.8).

Int®*) it was shown that from the condition for a
minimum of F; there is obtained only one additional
condition H,,, = H,, just as in the absence of magneto-
striction. Thus the degeneracy in the problem is re-
tained. But in the presence of magnetostriction, this
degeneracy can no longer be interpreted as simply as
before.

To this point we were dealing with an ellipsoid whose
shape was assumed fo remain unchanged. This means
that to the body are applied mechanical forces that pre-
vent a change of its shape. If such forces are absent,
then a body that has the form of an ellipsoid in the de-
magnetized (unpolarized) state can deform on applica-
tion of an external field and, in particular, can turn in
the external field under the action of the purely mag-
netostatic Maxwell stresses

Gy = (4n)t [H Hy — (H*/2)1.

The torque can be absent only in definite cases, for ex-
ample in the cases of a long cylinder (wire) or plane-
parallel plate in an external field H, parallel to it. It
makes sense to consider just such cases. The ellipsoid-
ality of the specimen is conserved in such cases except
for effects due to the emergence of domains at the sur-
face and unimportant in the calculation of the volume
energy. This is due to the fact that the mean deforma-
tion duj /5%, will be uniform. The same situation can
occur also in cases in which the body is subjected to ap-
plied stresses that do not produce a torque. Such a
situation occurs, for example, in experiments with
stretched wires. In order to investigate the bulk prop-
erties of the domain structures in these cases, we point
out that in the previous problem (an ellipsoid of fixed
shape), the concept of the undeformed state had a condi-
tional character, since it was not assumed that in the
absence of deformation (8uy /axk = 0) and in the absence
of field (H = 0) the stresses oy, were also zero. We
shall now define the undeformed state in this same way.
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Then it is obvious that in those cases in which the ellip-
soidality of the specimen is conserved (although the
ratios of the semiaxes may change) and the specimen
remains uniform on the average, in the interior of the
specimen the following relations must be satisfied:

H = const, B, = const, ®,= const,du;/dx, = const, G = const,{Vix)=0.

The last relation is the condition that the body as a
whole shall not furn in the external field.

In** the magnetostriction of a uniaxial ferromagnet
was calculated with allowance for the domain structure.
Analogous results are valid also for ferroelectric ma-
terials (in all formulas of this section it is necessary
only to make the substitution H — E, B — D).

4. THEORY OF FINE FERROMAGNETIC PARTICLES

a) Brown’s theorem,'®) So far, we have considered
massive specimens, whose dimensions were assumed
to be large in comparison with the thickness & of a do-
main wall. If the dimensions of the specimen are less
than 6, then the specimen should be single-domain.
This was first predicted by Frenkel and Dorfman. [*%
For simplicity, we shall hereafter consider spherical
ferromagnetic particles with uniaxial anisotropy, in the
absence of an external field. Brown showed that if the
radius R of such a particle is less than a certain criti-
cal value R, the magnetization M in the specimen will
be rigorously uniform.* The possibility of a uniform
state explains the large values of the coercive force of
fine particles in the case of weak anisotropy.

The free energy & = % of a ferromagnetic particle
can be expressed as the sum of three terms

Frounit=(112) 0 | (@Mi/9z,)¥1aV,
Fa=/2)p § (M4 M5V,
Fm= 5 (H2/8m) d%% = 5 [(H?/87) — (HB/8m)] d®x = — (\/,) 5 MH dV.
If the magnetization in the specimen is uniform and

directed along the axis of eaxy magnetization, the free
energy of the particle is

F = 2u{(M)Y/3)V. (4.1)

We shall now show that in a nonuniform state with mean
magnetization (M)

5 unit — 2 MY3)V. (4.2)

To this end we consider the field H((M)) (x) produced by

a spherical particle with uniform magnetization (M)
(inside the specimen Hyppy = —47( M)/3) and the field

SH=H- H« M)’ where H is the true field produced by
the nonuniform magnetization of the particle. Then
F= [ EB0Ex> [ 1Hau3/82) + (HeonsdHn)dPx

= @r(M)¥3)V + S[H“M,, (6B — 4sbM)/4n] dox.
We note further that

S (H¢my»8B/4n) d°x = 0,

*We emphasize that in massive spherical specimen with small
anisotropy, the state with uniform magnetization would be absolutely
unstable, since the demagnetizing field H = —-47M/3 would be beyond
the limits of the metastability range (see paragraph b of Chapter 1).
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since H<< MY =~ Vorm) and 6B = curl 5 A, and that
S H¢omy M &x =0,

since inside the specimen H((M)) is uniform and {6 M)

= 0. This proves the inequality (4.2).
Thus it can be stated that

)+ vz M+ 25 ) v

FeminFo Fo= | [F (G
Instead of minimizing the right side under the condition
Mj = M’, we shall weaken this condition, requiring only
that

v S MV = M2, (4.3)
In addition, we shall require also that on the boundaries
of the specimen the condition 8 M; /6n = 0 shall be satis-
fied, as it must be by the exact solution of the nonuni-
form problem (see Sec. b of Chapter 1).

On varying %; under the condition (4.3), we get the
linear equation

(4.4)

where the characteristic quantity A is a Lagrange multi-
plier. The desired minimum can be expressed as fol-
lows in terms of A ip:

—aAM; + BM; (1 — 8:3) -+ Gn/3)(My)) = MM,

min Fo = Ay M2V/2. (4.9)

Equation (4.4) has a uniform solution with &, = #unif
(see formula (4.1)). In the nonuniform case the minimal
A corresponds to a solution of the form

M, = constj, (kr)Y i ), M. =M, =0 2 = )\,

where ji(x) = Is/2(x)/x'”%, and I/ is a Bessel function.
The eigenvalue of A is found from the boundary condi-
tion aMi/an = 0, which in this case takes the form

Ji (kR) =0,
that is,

ER—=74=2,08, A=az¥/R?,

where X, is the first zero of the function ji(x).
With use of (4.5) it is easy to see that the uniform
state is with certainty advantageous if

R < (3a/bnm)iiiz,,.

Thus we have proved the existence of a critical radius
and have found a lower bound to it.

It is obvious that in the case of high anisotropy
(8/4m >> 1) the critical radius R, >0 ~ (a/B)‘/z. It is
natural to expect that in this case the uniform state
ceases to be advantageous when a splitting into domains
becomes advantageous. By comparison of the free en-
ergy of a two-domain structure (Fig. 12) with ﬁ—‘“mf, it
is possible to find an upper bound to R,. The free en-
ergy of the structure shown in Fig. 12 is

F o= SutprMEs) 4 2 (@f)2MmB?, ¢ = 0215

(the first term is the magnetostatic energy, the second

f

FIG. 12
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is the surface-tension energy on the phase-separation
boundary). After simple calculations, we obtain finally*

(Ba/hm)\2zy < Re < 3 (aB)2/4n? [(4/3)—29]  (Bldm > 1).

We note that (ap)!”? ~ 86. Apparently in the case of
high anisotropy our upper bound coincides, at least in
order of magnitude, with the true value of the critical
radius R,.

b) Critical radius in the case of small anisotropy.

In the case of small anisotropy it can be shown, on the
basis of the work of Frei et al.,[** that the upper bound
to the critical radius R, closes in on the lower, so that
the formula

R = (3al4m)tizz, (4.6)

becomes exact in the limit g/47 — 0.

Frei et al.[%°} considered the stability of the uniform
state of a spherical particle with respect to infinitely
small perturbations; this offers the possibility of find-
ing an upper bound to R.. It was assumed that the com-
ponents of the magnetization in the nonuniform state
have the form

M, = Mcoso =~ M[1 — (1/2)e?], My, = M sin 0 &~ Mo,
o=o0(, 0«1,

where r and 6 are spherical coordinates and M(p is the
azimuthal projection of the vector M.

The change of field 6H(x) = H(x) — Ho(X) is propor-
tional to the change of the density of fictitious magnetic
charges. The latter in turn is proportional to w?,
Therefore the change in the magnetostatic energy, 6 7,
is

8 Fn, = 5 (H,6H/4n) d*x = S[Ho (6B — 4ndM)/4n] dx =

= — | HoM av = — @anrsz) Sm“dV.

Neglecting the anisotropy energy, we write the change
of the total free energy as follows:

90\ 2 1 dw \2
W) +;ﬂ—(—aT) + ﬁsteJ
We separate §.% into two terms:
=0F 1+ 087
R

6L¢,:naM2S r‘ldr§ sin0dd [ (2)*+ 2 (g—‘g)z-k%—f—;‘;i]
0 0

4::0)2

2 P
§F — L2 g {osi
X nﬂl2é12d1§sm6d0 {a[(

R h
—RY) 5 rtdr g sin 0 df-w?;
0 ?
here R, is determined by formula (4.6), and x, was de-
fined in the preceding section.
The condition for a minimum of 5.4 has the form

1 8 {00 1 8 (. o0
75 (P55 ) 5o 70 (500 55 ) — 733

(Z_(:)T:R:O, kz:‘%.

8F »= naM?z} (B2

-+ ke?=0,

r2sin? 8

' (4.7)

If one multiplies this expression by w and integrates
over the volume, it is easy to verify that the minimum
of 6.#, is zero.

The solution of the boundary problem (4.7) is

® ~ jy (kr) sin®.
Since for such a perturbation 6 &, = 0, it is easy to see

*We have here somewhat improved the estimate from above obtained
by Brown. [3%]
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that when R > R, the value of 6% is negative. On taking
account of the result obtained in the previous section,
we conclude that formula (4.6) determines the exact
value of the critical radius.

5. THEORY OF NUCLEI OF REVERSE
MAGNE TIZA TION*

a) Thermal activation of nuclei. As is well known,
the reason for magnetic hysteresis is the possibility of
existence of metastable states. In a uniaxial ferromag-
net, the metastable states can be realized in case

H + (i 1) < (M)

If the field H is directed along the axis of easy magne-
tization (Hx = Hy = 0) and is less in absolute value than
8M, the state with magnetization antiparallel to the field
is metastable.

The metastable state can be destroyed if, for exam-
ple, as a result of thermal fluctuations there is formed
a nucleus of opposite magnetization whose dimensions
are sufficiently large so that growth of the nucleus will
lead to a diminution of the free energy .% of the body. *?
We recall that a metastable state is stable with respect
to infinitely small perturbations (such perturbations in-
crease the free energy of the body), and that conse-
quently, for formation of a nucleus that can grow, it is
necessary to surmount a finite energy barrier. The
probability of formation of such nuclei as a result of
thermal fluctuations is proportional to exp(- Ry i,/ T),
where T is the temperature; the energy barrier R iy
is the work necessary for formation of a so-called
critical nucleus, which is in unstable equilibrium with
its surroundings: its shape is such that for given thick-
ness of the nucleus, the free energy # of the body will
be a minimum, and the thickness corresponds to a maxi-
mum of the free energy %. Thus the critical nucleus
corresponds to a saddle point of the functional #z(x, y),
where the function z(x, y) describes the form of the
nucleus. Here we assume that the dimensions of the
nucleus are large in comparison with the domain-wall
thickness §; this, as will be shown below, is correct
only in the case of weak metastability (H < gM). It is
only in this case that the nuclei can be treated within
the framework of macrotheory; in the contrary case,
the parameters of the critical nucleus must be found as
the result of a solution of the static equation of Landau
and Lifshitz,[*) Mx H off = 0-

In the work of Doring! ] (see also'?)), only nuclei of
ellipsoidal form were considered, and the possibility of
a deviation of the magnetization from the easy axis was
disregarded. In the weak-anisotropy case, this devia-
tion leads to a significant decrease in the sum of the
magnetostatic ener and the magnetic anisotropy en-
ergy. In referencel* 1 the exact form of the critical
nuclei was obtained for a number of limiting cases. It
was shown that the energy barrier Ry,j, in the weak-
anisotropy case is significantly smaller than in Doring’s.

The work R that we must calculate is equal to the
change of the free energy Z due to the presence of the

nucleus. It can be expressed in the form (see(*!)
R= S [— 8M-H + [(SH)%/8x] + U, [d° -+ S Ads.  (5.1)

*In this chapter we quote results obtained in [*!].
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In formula (5.1), H is the field in the uniform meta-
stable state (that is, far from the nucleus), and 6H and
oM are the changes of field and of magnetization due to
the formation of the nucleus. The last term is the sur-
face tension on the phase-separation boundary, and the
integration extends over the surface of the nucleus.

We consider the surface tension. In Chapter 1 it was
shown that for boundaries inclined with respect to the
axis of easy magnetization, the concept of surface ten-
sion when g/47 < 1 has meaning only for small angles
of inclination of the boundary. It can be shown!*!J that
in the case 3/47 > 1, in fields H < M, the surface
tension can be defined with good accuracy for an arbi-
trary inclination of the boundary and is independent of
the angle of inclination. Below, we must consider only
such boundaries, for which the surface tension A can be
defined in accordance with (1.34).

In closing this section, we note that on the boundaries
of the nucleus the thermodynamic boundary condition
(1.23) is not satisfied. The reasons for this are the
same as those for which, in the analogous problem of
nuclei in a liquid- vapor system, the condition of equality
of pressure is not satisfied.

b) Elongated nuclei (weak fields). In the case to be
considered (uniaxial ferromagnet; H Il z), the critical
nucleus is symmetric about the easy axis (the z axis).
An axial section of the nucleus is shown schematically
in Fig. 13. The form of the critical nucleus is des-
cribed by the function po(z).

In a field small in comparison with BM, the ‘‘equa-
tion of state’’ of a uniaxial ferromagnet has the form

8H, = BM,,

that is, the magnetic permeability p in a direction per-
pendicular to the easy axis is

p =14 4np-i

It will be shown below that in a weak field (uH << 47M)
the nucleus is elongated along the easy axis (po(0) < [;
see Fig. 13) and the deviation of the magnetization from
the easy axis is small (M, < M). In this case the
equation div B = 0 can be linearized:

divB:%:—p(pGH,,) + 287 .
The field 6H and the polarization M, are produced by
fictitious ‘“magnetic charges,”’ concentrated on the sur-
face of the nucleus. Since the nucleus is elongated, the
‘“‘charge’’ density decreases slowly, and at points not
too far from the nucleus 6H, << uéH, (in the case of an
infinite, uniformly charged cylinder, the field 6H, would
be zero). Inside the nucleus the field §H, is also small
(appreciably smaller than outside it). Tgerefore in the

first approximation with respect to po(0)/l, the magne-
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FIG. 13

tization M, inside the nucleus does not deviate from the
axis of easy magnetization:

MP = 5H1)” —0

On the phase-separation boundary (at p = po(2)), the
condition B, = const must be fulfilled:

—4nMpo=4nMpy +pdHP (0= dpy/dz),

that is,
pOHP = — 8xMp,.

At not too great distances, the field GHF‘)Z’ is

SHD® — — 8uMpgpy/up. (5.2)

In order to determine the range of applicability of this
formula, we make in the equations of magnetostatics the
substitution

§H, = Mhy,  SH, = pif* Mh,, o = plfr.

Then the equations of magnetostatics take the form

divh =0, rot h = 0,

where the field h is produced by surface ‘‘charges”’

0 (z) = — (2/p) po (2).

For r > [ the field h has the dipole form; that is, it
decreases as (r® + z)°'2, It is obvious that formula
{5.2) is valid only when

p K L~ pi

In this range, the sum of the anisotropy energy and the
energy of the demagnetizing field 6H is

(1/2)BM3 + [(BH)2/8n} ~ (8 Hp)*/8n » (8H.,)%/8x.

On truncating the logarithmic integral (over p) at
distances p ~ p'”, we get
l
R= S (W (4 MY In [w2/21/pg (0)) 03P} + 2 M Hpg (pm~— po)} dz;
=1
here we have introduced the notation

om = AIMH = 2B8M/H > 6.

The saddle point of the functional R, that is the criti-
cal nucleusﬂ corresponds to a shape given by the equa-
tion (see-*!)

2/0m == = [(4nM/uH) In (4 M /uH)M {aresin (1 — pop3l)

07 [po (om—po)) ).
The energy barrier Ry, is

Rpin = (w¥/4) BEM20° (4 M /uH )2 [In (4 M JuH )] 2.

c) Spherical nuclei in the case of strong anisotropy,
and surface nuclei. 1) Spherical nuclei. In the case
g/At < 1, the range uH < 47M coincides with the range
of weak metastability, H << BM. In the case of strong
anisotropy (8/4m >> 1), the case 47M < H < 8M is also
possible; it will be investigated below.

If the anisotropy is large, then inclination of the mag-
netization to the easy axis is energetically disadvan-
tageous (Uyzp = 0). On the boundary of the nucleus, the
normal component of the magnetization undergoes a
jump ¢ = 2M,y,, which can be considered as a surface
density of fictitious magnetic charges, producing a de-
magnetizing field 6H.
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In the case under consideration, I turns out to be of
order po(0), and the role of the demagnetizing field is
unimportant:

(SH)*/8n ~ 4nM? ¢ MH.

The work R can be expressed in the form

R = —2MHV 4 AS = MH 2V + pnS), (5.3)

where V and S are the volume and surface of the nuc-
leus. This expression differs only by the multiplier of
V from the corresponding expression for an isotropic
liquid-vapor system. It is therefore obvious that the
critical nucleus must be spherical; that is,

R = 4aMH [— (2r¥3) + pmrtl,

where r is the radius of the nucleus. The maximum of
the function R(r) corresponds to

T = Pm,
R = (4n/3) MHp}, = (32/3) BM283 (M /H ).

2) Surface nuclei. In certain cases the formation of
surface nuclei may be more probable, since the corre-
sponding energy barrier Rgn is smaller than the bar-

rier that determines the probability of formation of
nuclei within the volume of the specimen (the latter we

shall here denote by R(V) ).
min

The simplest example is the case 471M < H < M.
We comment here that the field H = {0, 0, H} is the in-
ternal field, which does not coincide with the field H©
in a vacuum. The latter can be determined from the
conditions of continuity of Hi and B, on the surface of
the specimen. The work R is determined by formula
(5.3), where V is the volume of the nucleus and S is the
area of the separation boundary. On setting V = V/2
and S = 872, where V' and S’ are the volume and the
surface area of the doubled figure, it is easy to con-
clude that the critical nucleus has the form of a hemi-
sphere and that

RS = RYL/2 = (161/3) pM263 (BMH 2.

We emphasize that this result is independent of the
orientation of the easy axis with respect to the surface
of the specimen.

A representative value of Rmin/ T for typical ferro-
magnets (Fe, Co) at room temperature is of order 10°,
so that under ordinary conditions thermal activation of
nuclei is impossible. But for reasonable proximity to
the Curie temperature, the barrier R, ;,, may be sig-
nificantly decreased in consequence of the decrease of
magnetization (the values of 8 and 6 change little on ap-
proach to the Curie point). The formulas obtained are
still applicable near the Curie temperature, where
thermal activation of nuclei should become observable.
Qur estimates permit us to conjecture that the barrier
R,in Will be small in an observable region near the
limit of metastability (for H = gM, the barrier Ry,;,
= 0).

Recent papers of Lifshitz and Kagan'**? and of
Iordanskif and Finkel’shtefn(*®] investigated the forma-
tion of nuclei as a result of quantum-mechanical tunnel-

*It must be remembered that the probability of formation of surface
nuclei is proportional to the surface of the specimen, not to its volume.
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ing. In this case the probability of formation of nuclei
is proportional to exp (—2f ™ Im S), where Im S is the
imaginary part of the classical action. In the case of a
ferromagnet, it is possible to obtain an estimate of the
argument of the exponential function by means of the
Landau- Lifshitz equation[**]

%’—=Y[M, H efr]-
From dimensional considerations it follows that
E'Im S = (M8%hy) f (Bidn, PM/H),

where f is an unknown function, whose value for g ~ 4n
and SM— H ~ H ~ 8M should be of order unity. For
M=10°G and 5 ~ 10™° cm the value is

M8y ~ 105,

and consequently the probability of quantum tunneling is
extremely small; this is due to the large value of the
“‘mass’’ of a domain boundary,[!!%]

Analogous results for superconductors and for non-
ferromagnetic metals were obtained int*3,

APPENDIX

THERMODYNAMIC THEORY OF MAGNE TOSTRICTION.
THE STRESS TENSOR

We first find the dependence of the free energy on
the antisymmetric components of the deformation tensor

o du;  dup
Vin= 2 (ﬁzh _t?zi )'

We consider, for example, the free energy of a magnet
H

~ duiy = _ Auy . 1 Y
F (H H)_F (H._O, _azh) 2 | Ban
0

This quantity is unchanged in rotations

u= lorl, vy = —epe;, uy=0

if the field H is rotated simultaneously:

0H = [o H],
that is,

oF 1
S + g tiriBiogH =0
Hence it is easily found that

OF1vin)gs, v, = — g HiBa—HyBy). (A1)

In order to obtain an expression for the stress ten-
sor o, we calculate the change of the free energy, 6 %,
in an infinitely small displacement of the points of the
body, du(x). This quantity with sign reversed is equal
to the work of internal forces

o
dxp,

SR= S fidus dox,  fi—

For simplicity we shall suppose that the boundaries of
the body are fixed (that is, that 6upgyng = 0) and that the
deformation has no effect on the sources of the magnetic
field, which are outside the body; that is, that &j(x) = 0.

The change of free energy can be expressed in the
form

agz“:S 7 (x) d3x'—-—S F (x) dx — (dn)-2 S BOH dx,
Vo Vo v
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where Vo is the volume of the body, V' is the volume
outside the body, x’ = x + du(x), and #'(X’) is the changed
value of the free energy at that point of the body which
before the deformation had coordinates x. In the linear
approximation,

8F = S [F7 (x +bu) — F (x) duy] dox — (41 5 BOH dox.
Vo v
The quantity 6'F = F'(x + 6u) — F(x) is the so-called
material change. It is equal to

~ aF oF B .,
é’Fzméuih—}——a;;bvgk—-—G-é H,

where

dH,
dzxy

8'Hy = Hhp (x+8u) — Hy (x) = 0Hp +8u;

and use has been made of the fact that for small deform-
ations, G’uik = buy) and é’vik = bVig.

Thus the sum of the terms proportional to the change
of magnetic field 6H is

— 4 BOH d3x = —(4::)—15 rot ASH d3x = -1 S A8j d3x =0,
volv’

The equality to zero occurs because the sources of
the field have been assumed to be unchanged: §j(x) = 0.

Therefore 6% can be expressed in the form

= " oF  0bu; | + 08u; 1 , | @du; . By OHy
o7 = [am | i B TR — g BB HB) kb |-
We note that inside the body
1 oHp _ 1 Hy _ A 0 gy

am PR oz 4m R oz, | 4n oz
Therefore

o roF | o 1 -
oF = — S bt o | et Pt (HiBy+ HiB) | .

Hence it follows that

oF

St =gy +Fou '8—111_ (H B+ HpB). (A.2)

Relations (A.1) and (A.2) are equivalent to relation
(3.6) of the main text.

An analogous expression for the stress tensor in
dielectrics was obtained gby other methods) in the book
of Landau and Lifshitz.[*
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