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This article presents in detail those results in ferromagnetic domain theory that have been obtained
recently and have not previously appeared in monographs or reviews. A significant part of the article
is devoted to consideration of basic problems of the theory. A detailed description is given of those
properties of the domain structure that are independent of the properties of the model. As concrete
examples, the domain structures in uniaxial and cubic ferromagnets are considered. Experimental
results are cited only by way of illustration. Some generally accepted ideas have proved wrong and
are subjected to criticism in this article.
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INTRODUCTION

1 Τ is well known that in ferromagnets there can occur
the formation of a domain structure: that is, a splitting
of the specimen into regions of coexisting phases with
different directions of the magnetic moment Μ (see, for
example,'-1"3-'). An analogous phenomenon occurs in
ferroelectric mater ia ls [ 1 ' 4 > 5 ] and also in superconduc-
tors (the intermediate state)'-1'6-1. Recently the existence
of a domain structure has been detected in nonferro-
magnetic metals, under the conditions that produce the
de Haas—van Alphen effect,'-7'8-1 and in antiferromag-
nets. C 9 ]

The various problems of the theory of domain struc-
ture have been treated in a large number of books and
review articles. In particular, for ferromagnets there
is the very popular review by Kittel'-10-' (see also'-11'12-').
The present article presents in detail those results that
have been obtained recently and that have not previously
appeared in monographs or reviews. A significant part
of the article is devoted to consideration of basic prob-
lems of the theory. A detailed description is given of
those properties of the domain structure that are inde-
pendent of the properties of the model. As concrete ex-
amples, the domain structures in uniaxial and cubic
ferromagnets are considered. Experimental results are
cited only by way of illustration.

Some generally accepted ideas have proved to be
wrong and are subjected to criticism in this article.
Such criticism is necessary because the erroneous ideas
mentioned have been widely disseminated and are ex-
pounded in many textbooks.

The number of papers devoted to the theory of domain
structures is very large. In order not to complicate the
reading, we shall restrict ourselves to the minimum
number of citations; therefore the literature list will

not contain a complete bibliography. Where it was pos-
sible, we have tried to cite those books and articles of
foreign authors that have been translated into Russian.

1. CONDITIONS FOR COEXISTENCE OF PHASES.
SURFACE TENSION

a) Thermodynamic relations. In Chapter 1 we shall
neglect the effects of electrostriction and magnetostric-
tion and shall therefore make no distinction between the
free energy and the thermodynamic potential. The
thermodynamic relations written below for dielectrics
and magnets are ones that we shall use often in what
follows.

Polarization of dielectrics can be produced by two
methods: by assigning either the distribution of external
charges p(x) or the conductor potentials φ^. In the first
case, the free energy is a quantity JF defined as follows:

= (4π)-» J Ε (χ) 6D (χ) Λ = J φδρ (χ) d'x, (1.1)

where Ε is the electric field, D is the induction, φ is the
electrostatic potential (E = -νφ), and the integration is
carried out over all space, including the region outside
the body. It is convenient to introduce also the so-called
total free energy of the body, ^jot·

•^ot=^-jl E ?( x )/8«]^. (1-2)

e^tot jP(x)6E0(x)dF, (1.3)

where E0(x) is the field produced by the assigned char-
ges p(x) in a vacuum, and where P(x) is the dipole mo-
ment of unit volume. The integration in formula (1.3)
extends only over the volume V occupied by the dielec-
tric (P(x) Φ- 0). If the conductor potentials φ·χ are as-
signed, then the free energy is the quantity
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(1-4)

(1.5)

here ej are charges on the conductors.
Analogous relations are valid also for magnets. If

the conduction currents j(x) are assigned, and if they
produce a magnetic field H(x), the free energy is defined
as follows:

δ# = - (Απ)-1 j Β (χ) δΗ (χ) <Ρχ = —c"1 j Α (χ) δ] (χ) dsx, (1.6)

where Β = curl A is the magnetic induction, and where c
is the velocity of light. ^

The total free energy &^ is

Η? (χ)/8π (1.7)

(1.8)

here Ho(x) is the field produced by the assigned currents
j(x) in a vacuum, and M(x) is the magnetic moment of
unit volume. Relations (1.1)—(1.8) are given in the book
of Landau and Lifshitz.^1-1

Magnetization of a magnet can be produced by another
method; namely, by placing the magnet in the field of a
superconducting ring or of a system of such rings. In
this case, as is well known, the flux through the ring
remains constant, whereas the superconducting current
in the ring can change upon introduction of the magnet.
We shall show that in this case the free energy is the
quantity

& = & + j [Η (χ) Β (χ)/4π] d»x (1.9)*

b& = (4η)-1! Η (χ) δΒ (χ) d3x, (1.10)

where the integrat ion i s c a r r i e d out o v e r the vo lume

outside the superconductor ( ins ide the superconductor,

B = 0).

By introducing the potential <p(H = — νφ) and using
the fact that div B(x) = div 5B(x) = 0, we can put the
integrand in (1.10) into the form

—div (<ρδ B(x)) + φ div 6B (x) = —div (φδΒ (χ)).

The potential φ is a many-valued function; it changes
by 4JTI/C upon going around the current I along a closed
contour that passes through the aperture of the ring. By
using the fact that B n = 0 on the surface of the super-
conductor, it is easy to see that the integral in (1.10)
reduces to an integral over the two sides of a surface
capping the ring, and that it is equal to I6Q/c, where Q
is the flux through the ring. In the general case,

Thus the quantity .Factually is the thermodynamic po-
tential in the variables Qj, and for given fluxes Qj it
must be a minimum.

Besides this quantity, it is convenient to introduce
also the total free energy ^j.0(. for given fluxes Qj:

superconduct ing r i n g s , with the f luxes through them

frozen, in a vacuum.

We can e x p r e s s the integrand in the second formula

(1.11) in the form Η · δ Β - Ηί,-δΗί, = (H-B)-6Hi
+ (Β - Hi) · δ Hi + Η · (δ Β - δ Hi). On setting δ Hi = - νδφ'ο
and Η = — νφ, we get

Η (δΒ - δ

By us ing the fact that

where the integrat ion extends o v e r a sur face cover ing

the aperture of the superconduct ing ring, it i s e a s y to

s e e that the only contribution to 6 . F t o t c o m e s ent i re ly

from the term ( Η - B) -5Hi; that is, that

) = - div [φ (δΒ

= j (6B-6H;) <JS=o,

= - j M(x)6H;(x)dV. (1.12)

An analogous relation holds also for the total free en-
ergy ^'iot of dielectrics:

where Ei(x) is the field produced in a vacuum at the
given conductor potentials φ^.

All the relations given above are valid for an arbi-
trary relation between Η and Β (or between Ε and D).
In particular, this relation may be nonlocal (see Section
c and also'-8-'). If the relation between the field and the
induction is local, then one can introduce a free-energy
density as follows:

F= -(4jt)"1 \ D dE, F = F + (in)-1 ED,

BdH,

The value of F i s a minimum at given field (E or H),

the value of F at given induction (D or B).

The following re lat ions for the total free energ ies

a r e also derived in the book1-1-1:

j = | [/•-(ED/8n)-(l/2)PE0]dF =

= j [F + (EO/8n)-(l/2)PE0]dV, (1.14)

= j [/1-(ΗΒ/8π)-(1/2)ΜΗ0] dV =

(1.11)
where Ηό(χ) is the field produced by the system of

*[HB] =H XB.

In these formulas, the integrand vanishes outside the
body, so that the integration extends only over the vol-
ume V of the body.

From formulas (1.3), (1.8), (1.12), and (1.13) it fol-
lows that the properties of a test particle (that is, a
body which, because of its small dimensions, has prac-
tically no effect on the sources of the field) are indepen-
dent of how the electrification (magnetization) is pro-
duced, provided the fields E o and Ei (or Ho and Hi) prac-
tically coincide inside the body. This result, however,
was obvious beforehand.

b) Uniaxial and cubic ferromagnets. By way of illus-
tration, we consider first the model of a uniaxial ferro-
magnet described in the book of Landau and Lifshitz.1-1-1

In this model, the free energy of unit volume of the
ferromagnet is
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= /O(M)-MH-(H2/8n). (1.16)

The integral in formula (1.16) i s calculated at a fixed
value of the magnetic moment M, which must then be
found by minimization of F at given H; that i s , from the
equation (8F/aM)jj = 0. The energy thus determined
p o s s e s s e s the necessary property

where the differentiation of F i s car r ied out with allow-
ance for the M(H) dependence.

The quantity F0(M) is basically of exchange origin
and in the first approximation is i sotropic. Anisotropy
appears only when relat iv is t ic interact ions a r e taken
into account:

F0(M) = M l Μ I) + Um.

In the model under consideration, the magnetic aniso-
tropy energy is

#an = (V2) βΜ2 sin2 θ, β > 0,

where θ i s the angle of inclination of the magnetic mo-
ment to the axis of easy magnetization (the ζ axis;
M z = Μ cos Θ). In the plane perpendicular to this axis,
there i s no anisotropy in the present approximation.
The relat ivist ic origin of the anisotropy energy shows
up in the fact that it i s proportional to M2. The constant
β in general is by no means smal l . In par t icu lar , it
may be much l a r g e r than unity. The contrary case is
also possible.

The absolute value of the magnetic moment Μ may
be considered constant. In this case F 0 ( | M | ) is a con-
stant, unimportant in the thermodynamics, and we shall
hereafter omit it.

On minimizing F at given H, we obtain an equation
that determines the orientation of the magnetic moment:

βΛί sin θ cos θ = — Hz sin θ -f Η, cos θ; (1.17)

the magnetic field Η l ies in the xz plane. ^

When Η2/3 H2/3 < 2/3(/3M) , the free energy F as a
function of "the angle θ has two minima, of which one
corresponds to absolute stability and the other to a
metastable state. Thus in this case, two different values
of Μ (two phases) a re possible for the same H. In the
region H ^ 3 + H | / 3 > (/3M)2/3, metastable s ta tes a re im-
possible, and consequently the direct ion of the magnetic
moment Μ at a given Η i s uniquely determined.

The natural p a r a m e t e r for describing the amount of
anisotropy i s not β but

β/4π = [(dBx/dHx)Hz=0 _ l]-i.

In t h e c a s e of w e a k a n i s o t r o p y t h i s p a r a m e t e r i s s m a l l

i n c o m p a r i s o n wi th u n i t y ; and in t h e c a s e of l a r g e

a n i s o t r o p y , l a r g e . T h e t a b l e be low g i v e s v a l u e s of

β, β/4-η, Μ, and /3M2/2 for several uniaxial ferromagnets .

In cubic ferromagnets the anisotropy energy has the
form

C/an = β'Λ/2 (m\m\ + m\m\ + m\m\)/2,

w h e r e m i , m 2 , m 3 a r e t h e d i r e c t i o n c o s i n e s of t h e v e c t o r

Μ with respect to three mutually perpendicular axes.
When β' > 0, these axes a re axes of easy magnetization.
The constant β' i s usually smal l in comparison with
unity. In iron, β' = 0.29, Μ = 1700 G, β'Η?/2 = 4.2
χ 105 e rg/cm 3 . Instead of equation (1.17) one obtains
for cubic ferromagnets a more complicated equation,
which we shall not write down. The maximum number
of phases at a given field Η in cubic ferromagnets i s six
(in the case Η = 0).

In the nonuniform case there i s added to the free en-
ergy a t e r m dependent on the derivat ives of the magne-
tization:

Substance

Co
MnSb
MnsSb
Pfe12O19 (magneto-

plumbite)

Parameter

4.2
0.025
0.06

43.4

β/4π

0.33
2-10-3

4.8-10-3
3.45

Μ,
gauss

1400
8900
2900

330

(0Λ/2)/2, erg/cm'

4.1-10»
1-10»

0.25-10»
2.2-10»

Ψ = ] [Um - ΜΗ -

tnonunif= (<*/2

f / n o n u n i f l d°x.

(1.18)

Because of the exchange origin of the nonuniformity
energy, it i s independent of the absolute direct ion of Μ
in the crysta l . The constant a i s usually of o r d e r
10"12 cm 2 .

The relat ion between Μ and Η in the nonuniform case
is found from the condition that the free energy &, con-
sidered as a functional of M(x) at fixed H(x), must be a
minimum. One must allow for the fact that |M| = Μ
= const; that i s , that the infinitely smal l variation δ Μ(χ)
i s perpendicular to M(x): 6M(x) = 6a(x) χ M(x). One can
then write the condition for minimization of <F in the
form

[M, H,effl = 0 ,
tteff = -(6JF76M (x)W). (1.19)

In uniaxial ferromagnets ,

H e f f = Η β (Ml) 1 + αΔΜ, (1.20)

where 1 is the unit vector along the axis of easy magne-
tization (the ζ axis). This resul t was derived i n [ 1 3 : l . At
the boundary between the ferromagnet and vacuum, the
derivative of Μ along the normal to the surface must
vanish:

dM/dn = 0.

This is a lso the condition for vanishing of the surface
p a r t of the variation of the free energy & (the natural
boundary condition). _

In view of the fact that the free energy ^ r e m a i n s
unchanged in infinitely smal l changes δ Μ(χ) that satisfy
the condition |M| = const (that is , δ Μ 1 Μ), the variation
of the free energy can be expressed in the form (1.6);
and consequently, all the necessary thermodynamic r e -
lations a r e satisfied in the model under consideration.

c) Conditions for coexistence of phases . On a boun-
dary of separat ion between phases in magnets, the elec-
trodynamic boundary conditions

H| = const, Bn = const (1.21)

must be satisfied; Hj- is the tangential component of the
magnetic field, ^ is the normal component of the mag-
netic induction. These follow from the equations of
magnetostatics curl Η = 0, div Β = 0. In addition, on a
phase-separat ion boundary the thermodynamic condition
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for c o e x i s t e n c e of p h a s e s must be sat i s f ied . To der ive
th is condition, we note that the continuity of H t and B n

at the phase- separat ion boundary p l a y s the s a m e ro le
in our c a s e a s d o e s the equal i ty of t e m p e r a t u r e s and
p r e s s u r e s in a l iquid-vapor s y s t e m . A natural r e q u i r e -
ment for equi l ibr ium i s equal i ty of the thermodynamic
potent ia l s in the v a r i a b l e s H t and B ^ Since we a r e
neg lect ing magnetos t r ic t ion, t h i s thermodynamic poten-
tial i s the free e n e r g y

F' = F + (4π)"1^ηΒη. (1-22)

For given H^ and B n , this quantity attains a minimum at
equilibrium.

Thus the condition for equilibrium of phases has the
form

Η

) = /-;(H,, Bn), j
ο

κ)'1 HnBn. (1.23)

The equality Fi = Fa means that the separat ion boundary
i s at a position of neutral equilibrium with r e s p e c t to a
displacement in the direct ion perpendicular to it. For
fer roe lect r ic mater ia l s , the analogous set of conditions
has the form

F' (E t, i)n) = const,

E, = const, Dn = const,

( 1 . 2 4 )

( 1 . 2 5 )

>n)-lEnDn. ( 1 - 2 6 )

The number of boundary condit ions i s four; th is coin-
c i d e s with the number of independent v a r i a b l e s — t h r e e
components of magnet ic ( e l e c t r i c ) field and one function
z(x, y) determin ing the pos i t ion of the separat ion boun-
dary. There fore the magnetos ta t ic ( e l e c t r o s t a t i c ) prob-
l e m of subdiv is ion into domains can be stated c o r r e c t l y
a s fo l lows : it i s requ ired to find a solut ion of M a x w e l l ' s
equat ions with the boundary condit ions (1.21) to (1.23)
or (1.24) to (1.25) .

We e m p h a s i z e that the der ivat ion g iven above for the
condit ion for c o e x i s t e n c e of p h a s e s w a s not re la ted to
the spec i f i c nature of the magnet ic ( f e r r o e l e c t r i c ) ma-
ter ia l and i s val id for a l l c a s e s of c o e x i s t e n c e of mag-
net ic ( f e r r o e l e c t r i c ) p h a s e s . T h e s e r e s u l t s w e r e ob-
tained i n [ 1 4 : I ( s e e a l s o [ 8 ] ) .

In the c a s e of c o e x i s t e n c e of superconduct ing and
normal phases , the boundary condition becomes simpli-
fied, since in the superconducting phase Β = 0. The
problem of the intermediate state differs somewhat
from the other problems of the theory of domain s t ruc-
ture, although this difference i s not one of principle. In
the superconducting phase it is convenient not to intro-
duce the vector Η at all (see, for example,1-1-1). With
this way of describing things, boundary conditions a re
imposed only in the normal phase, in which Η = Β (the
magnetization of a normal metal may be neglected). On
the boundary with the superconductor, H n = 0 (electro-
dynamic condition) and Η = H c = const (thermodynamic
condition). The problem of the intermediate state was
solved by L a n d a u L l 5 ' i e ] .

An important special case is a phase equilibrium
such that on the separat ion boundary, not only i s Hj. con-
tinuous, but so also is H n . We recal l that the condition
H n = const does not follow from Maxwell's equations.

In this case the relat ions (1.21) to (1.26) can be rewri t-
ten as follows:

H^const, B n ^const, F= — (4η)"1 f Β dH= const,
(1.27)

E = const, O^const , F= — (4π)"1 \OdE = const. (1.28)
ο

The equal i ty F = c o n s t fo l lows f rom the condit ions
F' = const and H n ( E n ) = const. The ro le of t h e s e boun-
dary condit ions wi l l be e luc idated in Chapter 3.

F o r the model of a uniaxial f e rromagnet that w a s
described above, the relat ion (1.27) means that the mag-
netic field i s perpendicular to the axis of easy magne-
tization (H z = 0) and i s l e s s in absolute value than βΜ
(see 1- 1 3). In this case, two equally stable s ta tes are pos-
sible:

Μ» = M,2 = HJ$, Myi = Μ ϊ 2 = Hy!fi,
Mzl = — M:2. = Μ U — (ΗφΜ)ψ>\

The phase- separation boundary must h e r e be paral le l
to the axis of easy magnetization (this follows from the
equality B m = B ^ , which in this case means that
M m = M n 2 ) . The orientation of the separat ion boundary
in the plane perpendicular to the easy axis may be arbi-
t r a r y .

We shall now discuss in more detail the conditions
for phase coexistence in a uniaxial ferromagnet when
H m ^ Hn2· I n t h i s c a s e t h e equalities (1.21) to (1.23) can
not be interpreted as simply as before, and we shall
consider only the most important limiting cases .

1) Ferromagnet with large anisotropy (β = <*>). In this
case the anisotropy energy is zero, since the magnetiza-
tion Μ does not deviate from the easy axis, and

F' - -M1Hl - (HV8n) + (#ηβΒ/4π),
Μ η = - M 2 2 = Μ.

Let the separat ion boundary form an angle φ with the ζ
axis, and let the y axis be chosen in the plane of the
boundary (Fig. 1). If we use the fact that

it i s e a s y to s e e that th i s quantity must be the s a m e on
both s i d e s of the separat ion boundary. There fore the
condition F i = Fa t a k e s the form M Z i H Z i = M Z 2 H Z 2 ,
whence it fo l lows thatwhence it fo l lows that

l2 = 0 (β = (1.29)

Since H z = H t ( X ) z ) cos ψ - ( B n - 4πΜη) sin φ , where
H t ( x z) i s t n e Projection of H t on the xz plane, this con-

dition i s equivalent to the following:

Ht ,*.„ = Bn tg ψ (β = oo). (1.30)

Ei ther of these two r e l a t i o n s , (1.29) or (1.30), c a n be

FIG. 1
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used a s the thermodynamic boundary condition. Thus if
the separat ion boundary is inclined to the ζ axis, then
on this boundary Η , and Η , do not vanish and Η.,, Φ- Η „.zi z^ χι χ·*
The c o n v e r s e s t a t e m e n t i s a l s o val id.

F o r m u l a s (1.29) and (1.30) , which w e obtained under
the assumption that β = °ο, a re actually valid also when
the inequalities β/4π 3> 1 and Η <C /3Μ are satisfied.

The analogous formulas a r e c o r r e c t for uniaxial
fe r roe lec t r ic m a t e r i a l s in which the direction and mag-
nitude of the polarization vector Ρ do not change even in
a s trong field E. In such ferroe lectr ic m a t e r i a l s , the
thermodynamic boundary condition has the form

or

Ettx.zt =

= 0,

tg ψ.

2) F e r r o m a g n e t s with smal l anisotropy (β/4π <C 1).
In this case phase coexistence is possible in fields
Η ^ βΜ <C 4πΜ. Therefore the condition Bn = const can
be written, in the zeroth approximation with respect to
the p a r a m e t e r β/4π, in the form

Mn = const.

F o r s i m p l i c i t y , we shal l c o n s i d e r only the c a s e

(1.31)

υι = Hi2 = 0, M = My, •0

a n d s h a l l s u p p o s e t h a t t h e b o u n d a r y p l a n e i s p a r a l l e l t o

the y axis and forms an angle φ with the axis of easy
magnetization (Fig. 2). The angles formed by the vectors
Mi and M2 with the ζ axis a re equal respectively to θχ

and t o - # 2 ; it then follows from the condition (1.31) that
φ - 0i = π - φ - θ 2 ; that is , θ 2 - θ ι = π - 2ψ. The inde-
pendent p a r a m e t e r s may be considered to be, for exam-
ple, the angles 9L and θ 2 . The four quantities Η χ ι , Η ^ ,
H Z l , and H Z 2 a re connected by four re lat ions: two re la-
tions a r e obtained from the equation of state of the mag-
net (1.17) with θ = θι and with θ = θ2;* two other re la-
tions a re the conditions Hj. = const and F'(H(·, Bn)
= const. Thus for given Mi and M2, the field at the
phase- separat ion boundary is determined uniquely.

It must be noted, however, that the system of four
equations mentioned above does not have, for all values
of the p a r a m e t e r s θι and θ2, a solution corresponding
to the coexistence of stable phases . In par t icu lar , the
so-called 90-degree boundary (θι = π/2, θ2 = π, ψ = π/4)
in a uniaxial ferromagnet with small anisotropy can not
be rea l ized.* In fact, on substituting in equation (1.17)
the values θ = θ ι and θ =-θ2, we get the two relat ions

= Hx2 = 0 .

T h e c o n d i t i o n = H j . 2 i n t h i s c a s e h a s t h e f o r m

T h e f r e e e n e r g y F ' c a n b e e x p r e s s e d i n t h e f o r m

f" = Uin - M , H , - (

*Usually the relation (1.17) is considered an equation for Μ at given
H. It is the condition for an extremum (with respect to M) of the free
energy F(M, Η) = υ 3 η - Μ · Η - ( Η 2 / 8 π ) . It must be remembered that the
values of θ at which the free energy F has a maximum correspond to
absolutely unstable states and must be rejected.
*On this point an error was committed in reference [ 1 4 ] .

' FIG. 2

the last two t e r m s may be neglected, since Η ~ /3Μ.

Since M^ · H t l = Μ Η χ ι / 2 and M t 2 · H t 2 = - M H Z 2 / 2 , it is

easy to see that from the condition Fi = F 2 there follows

#*i = Hz2 = βΛί/2.

The state Μ χ ι = Μ, Η χ ι = /3M/2, Η Ζ ι = 0 corresponds,
as i s easy to prove, not to a minimum but to a maximum
of the free energy F at given H; that i s , it is absolutely
unstable. This means that in a uniaxial ferromagnet
with smal l anisotropy, a 90-degree boundary is im-
p o s s i b l e . [ 1 7 ]

In many textbooks on ferromagnet ism (see also1-13-1),
a 90-degree boundary with B.y = H2 = 0 is considered.
On such a boundary, the condition Fj = F 2 i s not sa t i s-
fied; and one of the phases , the one whose magnetization
is perpendicular to the easy axis, is absolutely unstable.
Such a boundary, also, cannot be real ized.

The range of values θι and θ 2 in which the coexistence
of stable phases i s possible has dimensions (in the θ ιθ 2

plane) of order unity. The boundaries of this region have
not been found in analytic form.

In cubic ferromagnets , a 90-degree boundary is pos-
sible; the magnetizations Mi and M2 in this case a r e
directed along mutually perpendicular easy axes, so
that Hi = H2 = 0 and f\ = F 2 = Fi = F 2 = 0. Such a boun-
dary was considered in p a p e r s of Lifshitz c " ^ and
Neel1-19'20-1 and has been frequently observed in iron
(see, for example, the review^1 0-1).

3) Angle between the boundary and the axis of easy
magnetization small (jS a r b i t r a r y ) . We shall give without
derivation the thermodynamic boundary condition for
this case, c o r r e c t through t e r m s of order ψ2. It has the
form

the same a s in the case β = °° (see (1.29)); but this t ime
it is valid only in the second order with respect to ψ.

d) Structure of domain boundaries. Surface tension.
We shall now consider the problem of the transit ional
layer between domains, assuming that the thickness of
this layer i s large in comparison with the distance be-
tween atoms (this situation occurs in all cases of co-
existence of magnetic phases) . It will be shown, in par-
t icular , that the problem of the transi t ion layer has a
solution only when the condition (1.23) for coexistence
of phases is satisfied. This problem i s one-dimensional;
and in consequence of Maxwell's equations, the values
of Hj. and B n do not change in the transi t ion layer. The
values of B t and H n can change in the direction perpen-
dicular to the separat ion boundary (along the ξ axis).
Far from the separat ion boundary (for ξ — ±°°), they
must approach the asymptotic values B^ and H n . The

orientation of the separat ion boundary with respect to
the crystal lographic axes we here consider a rb i t ra ry .

The free energy in the case under consideration is a
functional of the distribution B t(C) and Η η ( ξ ) :
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A specific form of this functional is so far not neces-
sary for our purposes.

We introduce also the free energies

and

r 1 j Hn(l)Bndl= j F'{Hn(l), Β,α)}άξ. (1.32)

The values of B n and Hj are connected with J? and
as follows:

Bn (ξ)/4π = - (δ#/6Ηη (ξ))ΐΐ((ξ),

It i s e a s i l y s e e n that t h e s e equat ions a r e the E u l e r -

Lagrange equat ions for the funct ional^ 7 ' under the

supplementary condit ions B n = c o n s t and H t = const . If

there is a functional relation between Β^(ξ) and Ηη(ξ),
then one of these equations is a consequence of the other
two.

In order that the functional S* may have an extremum,
it is necessary that the integrand in (1.32) take a unique
value at ξ — ± °°. Thus we again obtain the condition for
coexistence of phases Fl(H t, Bn) = F2(Ht, Bn).

This investigation shows that the structure of the
transition layer can be found'-14-' by minimization of the
free energy JF' .

The analogous statement of the problem for ferro-
electric materials has meaning in the vicinity of the
Curie point. Far from the Curie point, the change of Dj.
and of E n at the phase-separation boundary occurs in
distances of the order of interatomic distances; that is,
the problem of the structure of a domain wall loses
meaning.

The surface tension Δ is the contribution of the do-
main wall to the free energy & (here we suppose that
the currents j(x) that produce the magnetic field are
given). If on the phase-separation boundaries, besides
the conditions (1.21) and (1.23), the condition H m = H n 2

is also satisfied (inside the wall, Hn may vary^as usual),
then from the equality Fi = Fi it follows that Fi = F 2

(see (1.27)). In this case the surface tension can be de-
fined as follows:

Δ =

But if H m £ Hn 2, then also Fi ^ F 2 , and the value of Δ
cannot be defined in such a manner. In fact, the position
of the separation boundary is delined onlŷ  to within the
wall thickness 6. Therefore in the case Fi / F2 it is
impossible uniquely to isolate from the quantity
jF{Bt(i), H n ( | ) } d i that part that is due to the forma-
tion of a domain boundary. The indeterminacy in the
surface energy is of the order of 6(F\ — f 2). If this
quantity is small, then the surface tension can be de-
fined approximately. Otherwise, the energy due to
formation of a domain boundary becomes nonlocal, and
the concept of surface tension loses meaning/ 1 ^

In uniaxial ferromagnets, the condition F x = F 2 is
satisfied only for boundaries parallel to the axis of easy
magnetization. For large angles of deviation of the

boundary, the sur face t e n s i o n cannot be defined by any

r e a s o n a b l e method.

In superconductors , t h i s difficulty i s absent, s i n c e

on the separat ion s u r f a c e s ^ = 0 and consequent ly

Fi = ? 2 .

The s i m p l e s t and at the s a m e t i m e m o s t important

c a s e of phase c o e x i s t e n c e in uniaxial f e r r o m a g n e t s w a s

invest igated in the p a p e r s of Bloch 1 - 2 1 3 and of Landau

and Lifshitz'-1 3-'. In th i s c a s e , the magnet i za t ions of the

c o e x i s t i n g p h a s e s a r e oppos i te in d i rec t ion and para l l e l

to the easy axis, and the field Η is zero. Inside the
transition layer, the magnetization Μ rotates about the
normal to the separation boundary (the χ axis), remain-
ing parallel to the plane of the boundary (Mz = Μ cos Θ,
i/L· = Μ sin Θ, MJJ = 0). The function 0(x) is determined
by minimization of the functional (see (1.18))

j [ | ]di (1.33)

under the conditions θ(— <») = 0, θ(+») = Ή. The Euler-
Lagrange equation for this problem has the form

<χθ" — β sinB cos θ = 0.

After s i m p l e ca lcu lat ions , one obtains

cos θ = — th(i/6),

where δ = (α/β)1 is the thickness of the domain boun-
dary.

The surface tension Δ is equal to the integral (1.33):

Δ = 2 (αβ)1'2 Μ2 = 2β8Μ2. (1-34)

The domain wal l in c r y s t a l s of cubic s y m m e t r y w a s

invest igated i n [ 1 8 ' i e : i . The sur face t e n s i o n of a 1 8 0 - d e -

g r e e boundary p a r a l l e l to a plane of type (001) in a cubic

c r y s t a l i s

The thickness of a 180-degree boundary in this case is
determined by magnetostriction and is appreciably lar-
ger than (α/β1)1'2. In iron, Δ180ο = 1.8 erg/cm 2 . c i o ]

In cubic ferromagnets, 90° boundaries are often ob-
served: Η = 0, the magnetizations Mj. and M2 are paral-
lel to the crystallographic axes [100] and [ΟΙΟ], and the
plane of the boundary is the (110) plane. The energy of
such a boundary is1-19-1

Δ90« = 0.863 (αβ')1/!Μ«,

and the t h i c k n e s s of the t rans i t ion r e g i o n i s of o r d e r

(α/β'Ϋ/2.
The structure of a domain boundary in ferroelectric

materials near the Curie point was described in the re-
view1-22-'. The transition region in superconductors was
investigated by Ginzburg and Landau. Other types of
domain boundaries were considered in1-8-1.

Certain specific properties are possessed by phase-
separation boundaries in thin metal films, whose thick-
ness is comparable with the thickness of the transition
layer. We shall not consider this case. The theory of
thin magnetic films is set forth, for example, in the
books [ 2 4 ] .



T H E R M O D Y N A M I C T H E O R Y O F F E R R O M A G N E T I C D O M A I N S 561

2. DOMAIN STRUCTURES IN FERROMAGNETS

a) Simplest domain structures. We shall f irst ex-
plain why a division into domains occurs in massive
specimens. We shall consider a s an example a plane-
para l le l ferromagnetic plate of thickness I, cut perpen-
dicularly to the easy axis (the ferromagnet is assumed
to be uniaxial). We shall suppose that the dimensions of
the plate in the plane perpendicular to the eaxy axis a r e
infinite and that the anisotropy i s extremely large
(β/Απ — °°). In addition, we shall suppose for simplicity
that there is no external field (Ho = 0). In such a plate,
a uniform state is possible: magnetization Μ paral le l to
the easy axis, internal field Η = — 4πΜ. The free energy
p e r unit volume in this case is F u n i f = F*™* = 27ΓΜ2. The
state considered is metastable, since Η and Μ a r e anti-
para l le l (in the case of small anisotropy, this state
would be absolutely unstable), and it is obvious there
exists a s t ructure with smal ler free energy. Such a
s t r u c t u r e is the so-called Kittel structure^ 2 5- 1 shown in
Fig. 3. The a r r o w s show the direct ions of the magne-
tization. The free energy of this s t ructure consists of
two p a r t s : the energy of surface tension on the phase-
separat ion boundaries (this energy, p e r unit a r e a of the
plate, is ΔΖ/a = 206M2Z/a) and the energy of emergence
of the domains to the surface. The la t ter is due to the
fact that near the specimen surface (at distances of the
o r d e r of the domain width a), there is a nonuniform
magnetic field Η ~ 4πΜ (in general, the emergence en-
ergy includes also anisotropy energy). By symmetry it
i s evident that the field Η on the phase- separat ion boun-
dar ies is perpendicular to the separat ion boundaries, so
that not only the conditions (1.21) and (1.23) for coexis-
tence of phases but a lso the more exacting equations
(1.27) a r e satisfied. The magnetic field distribution is
calculated, for example, in the book of Landau and
Lifshitz.1-1-' The energy of emergence of the domains to
the specimen surface, p e r unit a r e a of the plate (with
allowance for the two s ides of the plate), i s 1.7 M2a.
The domain width a is determined by minimization of
the sum

that i s ,

2βδΛί2(Ζ/α)

a « 1 1 (βδΖ)«/2.

The total f ree e n e r g y of the domain s t ructure shown

in Fig. 3 i n c r e a s e s , on i n c r e a s e of the p late t h i c k n e s s

Z, in proport ion to Z l / 2, w h e r e a s the f ree e n e r g y of the

uniform s ta te i s proport ional to the f i r s t power of I. It

i s there fore c l e a r that a d iv i s ion into domains wi l l be

energetically advantageous at sufficiently large speci-
men dimensions (Z > Zc ~ βδ).

The role of the energy of surface tension and of the
energy of emergence of the domains to the surface was
demonstrated (for another model) in the paper of Landau
and Lifshitz.1-13·1 In the same paper, the dependence of

the domain width a on the plate thickness Ζ was derived;
it has the form a ~ Z l / 2 .

In an external magnetic field Ho, perpendicular to the
specimen surface, the concentrations of the phases
change, and the layer boundaries must bend near the
surface,^ 1 4 · 1 just a s in s u p e r c o n d u c t o r s . ^ If the boun-
d a r i e s were to r e m a i n straight, the conditions for phase
coexistence, F ' (H t , Bn) = const, would not be satisfied
(for a given distribution of magnetization M(x), the mag-
netostatic problem has a unique solution, and it i s not
possible to impose an additional condition). The curva-
ture of the boundaries near the specimen surface is of
the order of Η 0 /4πΜ (the magnetostatic problem con-
tains no other dimensionless p a r a m e t e r s , since /3/4π
= «) .

The s imple s t ructure shown in Fig. 3 is actually ob-
served only in quite thick plates (see, for exam-
ple,1-2 6 '2 7-1); and for large dimensions I, a complication
of this s t ructure occurs (see the next section), and the
dependence of a on Ζ changes. But the bas i s of the s t ruc-
tures that do form is, as before, a division into two
phases with opposite magnetizations.

In cubic crys ta l s with a positive anisotropy constant
j3', in zero external field, there can occur a s t ructure
with closed flux, suggested by Lifshitz C l 8 : ) (Fig. 4). The
emergence energy in this case is magnetostrictive en-
ergy, which is proportional to the volume of the closure
p r i s m s ; that i s , i t s amount per unit a r e a of the plate
surface is proportional to the domain width a. The mag-
netostriction energy can be estimated'-1 8-1 by ascribing
to the t r iangular domains an effective uniaxial aniso-
tropy energy U = kM*. In iron, k = 3.3 χ 1(Γ*. Thus is
obtained an upper bound for the magnetostrictive energy
of the whole body.1'18-1 The energy of the s t ructure shown
in Fig. 4, per unit a r e a of the plate surface, i s

On minimizing this express ion, we obtain the dependence
of a on Ζ:

In the c a s e of i ron

a = 6.2-ΙΟ"2

cm

For the ra t io a/Z l /2 we obtain an es t imate that bounds it
from below, since the magnetostr ict ion energy i s ac-
tually l e s s than k M 2 a / 2 .

Strictly speaking, in an infinite plate such a s t ructure
i s metastable, and a preferable state would be a uniform
one with magnetization oriented along an easy axis that
is paral le l to the plane of the plate. But in even a small
external field perpendicular to the plane of the plate,
the s t ructure shown in Fig. 4 becomes energetical ly
advantageous. In the absence of a field, this s t ructure
can be energetically advantageous in a plate of finite
dimensions, if the ends of the plate a r e paral le l to an

FIG. 3 FIG. 4
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easy axis. The structure shown in Fig. 4 has often been
observed in iron (see, for example,1·10'12'28-'). A curious
structure is that of Neel (Fig. 5) C 2 t i ] , which is observed
in iron strips cut so that the length of the strip coin-
cides with a [HO] direction. The method of magnetic
flux closure shown in Fig. 5 was suggested by Lawton
(thesis, Cambridge, 1949) and was described in'-28-'.

In many textbooks it is supposed that the structure
with closed flux (internal field Η = 0) shown in Fig. 4 is
also realized in uniaxial ferromagnets with small aniso-
tropy. Actually such a structure is impossible, even if
it is supposed that the magnetization in the triangular
closure domains is turned from the easy axis by an
internal field Η ~ βΜ. [ 1 7 ] In fact, a 90-degree boundary
cannot be realized: the phase-coexistence condition
F'(Ht, BJJ) = const can be satisfied only if one of the
phases is absolutely unstable (see Secion c of Chapter

1)·*
The conditions for coexistence of phases can be ob-

tained from the equations of the microtheory (see Sec-
tion d of Chapter 1). In the present model these are the
static equations (1.19) and (1.20) of Landau and Lifshitz,
which are themselves derived from the condition that
the free energy & be a minimum. Therefore a structure
that does not satisfy the boundary condition F( = F'2 does
not correspond to an energy minimum.

The problem of the domain structure of uniaxial
ferromagnets with small anisotropy has still not been
solved. The paper '-17-' presents a rather complicated
model of such a structure and discusses the difficulties
of the theory (see also the following section). It is ob-
vious, however, that in the zeroth approximation with
respect to the parameter β/4π <C 1, the flux must close
within the specimen; that is, on the specimen surface
the component MJJ of the magnetization normal to the
surface must vanish. Since the magnetization Μ can
deviate from the easy axis only in the presence of an
internal field H, it is obvious that near the surface of

*In the literature it is often assumed that formation of locally un-
stable states is necessary for attainment of a minimum of the free energy
of the whole body, #. The fact is cited that Maxwell's equations make
the problem nonlocal. But it can be shown thaf the condition for a
minimum of the free energy 5" leads to a local condition that the free-
energy density ¥, considered as a function of Μ at given local value of
H, be a minimum. In order to prove the instability of the triangular
closure domains, it is sufficient to consider only infinitely small pertur-
bations of the form δΗ = 0, δΜ = (47Γ)"1 curl δΑ, δΑ = {δΑ(χ), 0, 0},
where δΑ(χ) is an arbitrary function of its three variables (δΜ ζ φ 0),
localized within the triangular domains, and the χ axis is chosen along
the direction of Μ in the triangles. Such a perturbation decreases the
anisotropy energy without dusturbing the equations curl Η = 0 and div
B = 0.

the specimen there is a nonuniform field Η ~ βΜ'-14'17-',
which must orient the magnetization almost perpendicu-
lar to the easy axis. The component of this field per-
pendicular to the easy axis and consequently parallel to
the surface must differ from zero. This field will pene-
trate beyond the boundaries of the specimen (to distan-
ces of the order of the domain width a) and can be meas-
ured. We remark that fields of the order of 104 Oe have
been frequently observed over the surface of monocrys-
tals of cobalt,-29] in which β/4π « 1/3, and cannot be
explained within the framework of the generally accep-
ted theory, in which deviation of the magnetization from
the easy axis is allowed in the absence of an internal
field H.

c) Plane model of the branching of the domain struc-
ture of uniaxial ferromagnets. With increase of the
plate thickness I, a progressive branching of the do-
mains in the vicinity of the surface becomes thermo-
dynamically advantageous. This was first observed by
Landau in an investigation of the intermediate state of
superconductors.'-16-^ The initial stage of branching in
ferromagnets was considered in a paper of Lifshitz.'-18-1

In uniaxial ferromagnets, in contrast to superconduc-
tors, branching of the domains becomes advantageous
at rather small dimensions I. Therefore great interest
attaches to the problem of the extremely branched
structure. A plane model of such a structure was con-
structed in1-17^ for the case of a uniaxial ferromagnet
with small anisotropy. It was shown that the dependence
of the layer width a on the plate thickness I changes:
a ~ Z2^3. This dependence was observed in cobalt (see,
for example, [2e'30-1). The same dependence was obtained
by Landau for superconductors.

We shall formulate the magnetostatic problem of the
emergence of domains to the surface. We suppose that
there is no external magnetic field and that the axis of
easy magnetization is perpendicular to the plane of the
ferromagnetic plate. The energy density of emergence
is

F = = (V {HV8n).

In the l imi t of s m a l l anisotropy, the second t e r m may

be neglected, since Η ~ βΜ sin Θ. Thus in the first ap-
proximation, the field Η may be neglected, and the equa-
tions of magnetostatics reduce to the single equation

divM=0 (| M | =M = const).

From the mathematical point of view, the problem
reduces to solution of the eikonal equations

1 dA \2 ι dA\Z . Μ . .
I -s—1 • + I -3—I = 1, -rr = rot A,
\ dx I ' \ dz I M

A = {0, A(x,z), 0}.

T h e l i n e s o f f o r c e a r e t h e l i n e s o f e q u a l v a l u e s o f t h e

v e c t o r p o t e n t i a l A .

A m o d e l o f t h e b r a n c h e d s t r u c t u r e i s s h o w n i n F i g . 6 .

A t a d e p t h h , w h i c h w i l l b e c a l c u l a t e d b e l o w , e a c h d o -

m a i n s p l i t s . Wi th a p p r o a c h t o t h e s u r f a c e , t h e w i d t h of

t h e n e w d o m a i n s i n c r e a s e s , u n t i l i t b e c o m e s e q u a l t o

a / 3 . A t t h i s p o i n t a n e w s p l i t t i n g o c c u r s . T h e p r o c e s s

c o n t i n u e s u n t i l t h e d i m e n s i o n s of t h e d o m a i n s t h a t a r e

forming becomes comparable with the thickness δ of a
domain wall.

The concentration of the opposite phase in an orig-
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inal domain (of width a) after the n-th splitting is deter-
mined by the recurrence relation

that is

= (2/3)̂ -, + (1/3) (1 - <:„-,); c, = 1/3,

cn •= (1/3) + (1/9) + . . . + (1/3").

F o r η — <M we get c ^ = 1/2. This means c losure of
the magnetic flux within the specimen; that i s , vanishing
of the component of the magnetization normal to the
surface (averaged over dis tances of the o r d e r of δ).

A schematic drawing of the splitting is shown in
Fig. 7. The fine solid l ines r e p r e s e n t the l ines of force.
The heavy l ines show the phase-separat ion boundaries.
The l ines of force consist of sections of straight l ines
and of a r c s of c i rc le s whose centers a r e at the points
O, O', and O". In the central domain, the l ines of force
are paral le l to the axis of easy magnetization. The
magnetization Μ i s para l le l (or antiparallel) to the easy
axis at the beginning and at the end of each stage of
splitting.

F r o m the flux-conservation condition it follows that
a point on the separat ion boundary must be equally dis-
tant from the straight line of force emanating from the
point O', and from the a r c passing through the center of
the figure, which is the continuation of that s traight line
in i t s role a s a line of force (in the l a t t e r case, what is
meant is the distance along a radial line). Therefore

aJZ = Rn [(cose,,)-1-!].

We have in addition

Κ = Rn tg θη.

It will be shown below that the angles θη a re small
(of the order of (6/a n ) 1 / 2 ) . Therefore

Rn = (2.1)

in which

The p a r a m e t e r s R n , h n , and θη a r e determined by
the minimization condition for the total energy connec-
ted with the splitting. The anisotropy energy in the sec-
tion of height h n i s

ί'">=βΛί2 \ sin2 θ (20 Γ \ rdr-\- 1 r ' d r ' l .
Ό [B,-(a_/2)]/cos θ α /6cos2(0/2)

By using (2.1) and also the fact that θη <C 1, and by
neglecting t e r m s of o r d e r a n # n , we get

£/<"> = (4/45) βΛ-Ραϊθ,,.

The s u r f a c e - t e n s i o n e n e r g y E < n > i s *

£<"> = 3ΛηΔ,

where Δ = 2/36Μ2; δ is the thickness of the domain wall,
i.e.,

£<"' = 4βδΜΧ/θη.

The angle θη is determined by the minimization condi-
tion for the sum U ( n ) + (2E<n)/3). The second term
includes only the energy of the boundaries of the cen-
tral domain. Thus in a given step we shall minimize the
energy that is connected with the splitting. After simple
calculations we get

T h e t o t a l e n e r g y o f t h e r e g i o n 0 1 t h i c k n e s s a n a n d h e i g h t

:«) = i/<n>+£<"> = (2 / Ϊ 0 / 3 Y%~) βΜ2ί4/2δ'/2.

, 23"" 1 αη / 2 = α 3 / 2 [ 1 - ( 1 / / 3 ) ] - 1 ,

h n i s

By using

2 4 / 2 = a3" [1 -

we get

2 Z^FM = (5/2) λ,βϋίν/ϋδ"*, λι = 8/3 ΥΪΟ (ΥΖ— 1) = 1.15;
η

h = 2 Κ = VA (α3/·/6ν·), λ2 = 8/ fTO (3 Yl-1) = 0.60.

The total e n e r g y of the s p e c i m e n per domain of thick-
n e s s a i s

£ = 2 2 S"-1^») + 2βδΜ2 (I — 2A) = 2βΜ2α (2λαΙ'2δ'Λ-f δΖα"1),

λ = (5λ,-λ2)/4 = 1,29,

where Ζ is the plate thickness.
It is still necessary to minimize the energy per unit

area of the plate surface, that is E/a. This gives

h = (λ2/4λ) I = 0.!17i, A, = h [1 - (1/3/3)], hn = hj (3/3)"-»,

θη = 3"/«ViO"(6Mi)«/3. ( 2 . 2 )

It i s e a s i l y shown that

If this quantity is of the order of δ, that is (3VS)n

~ 1/86, then a n ~ δ, whereas θη ~ 1. Thus the total
number of splittings is

«max ~ (2/3 (In 3)-1 In (Ζ/δ).

Figure 6 corresponds to the case Ζ/δ ~ 104. It is seen
that the number of splittings is still quite small. With
increase of Z, the ratio a/Z decreases, that is the angle
of inclination of the boundaries decreases, while the
number of splittings increases.

*In Section d of Chapter 1 it was shown that, strictly speaking, the
concept of surface tension loses meaning for boundaries inclined to the
axis of easy magnetization, since the surface energy is defined only to
within 6(F, -F2). For boundaries parallel to the easy axis, F, = F2. In
the case under consideration, the inclination of the boundaries is small
(of order θη), and the indeterminacy in the surface energy is small in
comparison with Δ.
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branched structure is very small.'-18-' By considering
the initial stage of branching, Lifshitz^18^ obtained for

The structure actually observed is not plane. On a
surface perpendicular to the easy axis in a cobalt mono-
crystal, very complicated patterns are observed (see,
for example,^283). Similar patterns have been observed
in Mn2Sb. [ 3 i : 1 Nevertheless the relation a ~ l2/a is
satisfied. L26>301

It is interesting to compare the energy of the
branched structure (2.2) with the energy of the un-
branched structure, which is obviously of the order of
/3M2(6Z)l/2. It is easily seen that the unbranched struc-
ture ceases to be stable for I > Zc ~ C6, where C is a
numerical coefficient independent of β. In order to est i-
mate this coefficient, it is necessary to know the energy
of the unbranched s t ructure accurately, since all the
numerical factors occur to the sixth power in the ra t io
lc/5*

In superconductors, according to es t imates of Lifshitz
and Sharvin,'-32-' the numerical coefficient Ι /δ ~ (50)6,
and therefore the branched s t ructure i s never observed.
In ferromagnets with small anisotropy, the situation is
different. It follows from experiment that the multiplier
C i s not very la rge ; in every case it i s many o r d e r s
smal le r than in superconductors . Because the multi-
pl ier C does not contain l i tera l p a r a m e t e r s , the problem
of the unbranched s t ructure cannot be formulated cor-
rect ly within the framework of macrotheory. '-17-' In par-
t icular, an important contribution to the energy of the
unbranched s t ructure is made by boundaries inclined to
the axis of easy magnetization, and this contribution
cannot be taken into account within the framework of
macrotheory. The difficulties a r e due to the fact that
the rat io Z/a is not very large and does not contain large
p a r a m e t e r s of the type 4π//3. To explain the p r o p e r t i e s
of the unbranched s t ructure would, s t r ict ly speaking, be
possible only by solving the static Landau-Lifshitz
equation (1.19) in the whole volume of the specimen,
which s e e m s to us impossible. As has a lready been
indicated, the situation in superconductors is much more
favorable. Although the r a t i o 6/i c s t i l l contains no
small p a r a m e t e r s , it is nevertheless so smal l that the
approximation being used occasions no doubts.

The r e s u l t s given above from investigation of the
branched s t ructure a r e valid a lso for ferromagnets of
cubic symmetry. In this case the anisotropy energy for
small deviations from the easy axis can be written in
the form U a n = (β'Μ2θζ)/2. The surface-tension energy
Δ can be expressed in the form Δ = 2/3'δΜ2, where
δ = ί(α/β)ι/2]/2 is a coefficient of proportionality, not
identical with the thickness of a domain wall. In cubic
ferromagnets the cr i t ical dimension Zc is appreciably
larger because of the fact that the energy of the un-

* Strictly speaking, in order to calculate /c exactly it would be neces-
sary to consider the initial stage of branching; that is, to investigate the
stability of the unbranched structure with respect to infinitely small
perturbations.

Zc the value

= 8 (ψ Ik)* i/2.

I n i r o n t h i s q u a n t i t y i s o f o r d e r 1 0 4 c m . I t i s f o r t h i s

r e a s o n t h a t c u b i c f e r r o m a g n e t s a r e e s p e c i a l l y s u i t a b l e

f o r o b s e r v a t i o n o f a s i m p l e d o m a i n s t r u c t u r e w i t h c l o s -

u r e t r i a n g l e s .

I t i s a l s o p o s s i b l e t o t r e a t t h e p r o b l e m o f b r a n c h e d

d o m a i n s t r u c t u r e i n f e r r o m a g n e t s w i t h a n a r b i t r a r y

a n i s o t r o p y c o n s t a n t . I n o r d e r t o e s t i m a t e t h e p a r a m -

e t e r s o f s u c h a s t r u c t u r e , w e s h a l l s u p p o s e t h a t i n t h i s

c a s e a l s o t h e p i c t u r e s h o w n i n F i g . 6 i s r e a l i z e d ; t h a t

i s , a n + 1 / a n = 1 / 3 . T h i s s u p p o s i t i o n i s n o t i n h a r m o n y

w i t h t h e t h e r m o d y n a m i c b o u n d a r y c o n d i t i o n H Z 1 + H Z 2

= 0 ( s e e S e c t i o n c o f C h a p t e r 1 ) , s o t h a t t h e m e t h o d

p r e s e n t e d b e l o w a l l o w s u s t o f i n d o n l y a n u p p e r b o u n d

t o t h e e n e r g y o f t h e b r a n c h e d s t r u c t u r e ( a s h a s a l r e a d y

b e e n m e n t i o n e d , t h e t h e r m o d y n a m i c b o u n d a r y c o n d i t i o n

f o l l o w s f r o m t h e m i n i m i z a t i o n c o n d i t i o n f o r t h e f r e e e n -

e r g y o f t h e b o d y , ^ ) .

W e s u p p o s e t h a t a t e a c h s t a g e o f t h e s p l i t t i n g t h e

b o u n d a r i e s o f t h e c e n t r a l d o m a i n a r e p a r a b o l a s

r = R n / c o s 2 (Θ/2) and r ' = a n / 6 cos 2 (θ/2). The discon-
tinuity of the normal component of magnetization on the
phase-separat ion boundaries leads to the presence of a
magnetic field in the side domains:

Hx (χ, ζ) (ζ), μ = 1 + 4πβ"

In the centra l domain, in a first approximation, Η χ = 0.
The emergence energy i s the energy of the magnetic
field, J(H2/8?r)dV. We omit the calculation, which is
analogous to that made in the case β/4π < 1, and give
only the final resul t :

Ela = 6Λί2 (λβδ)2« (4π//μ)"3, α = (βμδ/4π)'/3 (Ζ/λ)2<'3, Α = 0.117Z.

The relat ion a ~ Ζ has been observed also in mag-
netoplumbite.'-2 6 '2 7-' By equating the energies of the
branched and unbranched s t r u c t u r e s in the case β/4π
^> 1, it i s possible to es t imate the cr i t ical dimension Zc

above which the branching is certainly advantageous:
Zc Μ 0.87 χ ΙΟ4 βδ. The ra t io a c / Z c (where a c i s the
domain dimension in the unbranched s t ructure at Ζ = Zc)
i s 1.2 χ 10~2. We note that the value obtained for Z c is
too large and for the ra t io a c / Z c too smal l . In the initial
stage of complication of the simple unbranched s t ruc-
ture, there occurs a bending of the plane domain boun-
d a r i e s , in which the s t ructure ceases to be two-dimen-
sional, and thereafter nuclei of r e v e r s e d magnetization
appear near the surface.'-26-1

c) Plane model of branched domain structure in
cubic ferromagnets.* The s implest generalization of a
domain s t ructure with c losure tr iangles for a case in
which the plate surface i s inclined to the easy axis is
the s t ructure shown in Fig. 8, where

δ, = (π/4) - ( γ / 2 ) ,
δ2 = (π/4) + (γ/2).

T h e a n i s o t r o p y - e n e r g y d e n s i t y i n t h e t r i a n g u l a r d o m a i n s

i s U a n = (l/2)/3'M* s in 2 y c o s 2 y . In iron, β' = 0.28. This
s t ructure is unbranched, so that a ~ Ζ .

*The results described in this section were obtained in [3 3].
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FIG. 8

In the case γ ~ 1, the s t ructure shown in Fig. 8 is
energetical ly disadvantageous. The total energy can be
appreciably decreased by formation of the branched
s t ructure shown in Fig. 9. This figure shows only two
success ive stages of the branching. Actually the sub-
division proceeds to the point at which the domain
dimensions become comparable with the thickness δι8ο°
of a 180-degree boundary (this i s much l a r g e r than the
thickness 690° of a 90-degree boundary). This enables
us to es t imate the number of branchings:

In this way we can get r id almost completely of the
anisotropy energy. It i s concentrated entirely in a thin
layer close to the surface of the specimen (at dis tances
of order 6i8o°). The energy of such a s t r u c t u r e , p e r unit
a r e a of the plate surface (with allowance for the two
s ides of the plate), i s

(
+ {2kM2a/3) + Δ18ο° (I — 2a) a'l\ cos γ.

T h e t e r m p r o p o r t i o n a l t o l n ( a / S i 8 o ° ) i s t h e e n e r g y of t h e
branched boundaries (Δ9 0° and Δ1 8 0° a r e the energies of
90-degree and 180-degree boundaries: Δ900 = 0.863 x
Δι 8 0° ~ |3'δ9ο°Μ2). After each branching the domain
dimensions a r e halved, but their number increases
correspondingly, and therefore the total energy of the
branched boundaries i s proportional to the number of
branchings n. The branching is energetical ly advantage-
ous if this energy is l e s s than the anisotropy energy of
the tr iangular domains shown in Fig. 8. For γ ~ 1 and
a ^ δ 1 8 0°, this condition i s always satisfied.

The second t e r m r e p r e s e n t s the magnetostrict ion

FIG. 10

energy. We est imate it by ascribing to the quadrangular
domains an effective uniaxial anisotropy energy U m s

= kM 2 . In iron, k = 3.3 χ 10~4. As has already been indi-
cated, one obtains thus an upper bound to the magneto-
str ict ive energy of the whole body. [ I 8 : i The last t e r m
r e p r e s e n t s the surface-tension energy of the unbranched
boundaries (the plate thickness I is measured along an
easy axis). On minimizing this express ion, we obtain a
quadratic equation for a. The positive root of this equa-
tion has the form

lcl = (2 V 2 Δ9

(2.4)

ββ0.β'/& ~ δ,80°β7Λ In (β'/ft). (2.5)

In t h e c a s e of i r o n , lCi = 6 · 10" 3 c m .
T h u s for s m a l l t h i c k n e s s e s , / <C Z C i , t h e r e l a t i o n

a = 0.233 I s h o u l d be s a t i s f i e d , w h e r e a s for I S> lc t h i s
b e c o m e s a s q u a r e - r o o t d e p e n d e n c e , a = 0.466 (lcinf 2,
d e s p i t e t h e fact t h a t the s t r u c t u r e i s b r a n c h e d . In t h e
la t ter case the energy i s Ε = 0.62 kM 2 (lCll)

l/2. At very
large values of I, there should be observed an extremely
branched s t ructure with a ~ Z2 / 3, of the same type a s
that considered in the preceding section. The energy of
such a s t ructure i s of the order of β 'δ 2 » 3 M 2 / l / 3 . By
equating energies, we obtain for the cri t ical thickness
the value Ic ~ (j3'/k)349 0o.*

In the case of i ron this value i s of the order of
103 cm, so that the extremely branched s t ructure i s
pract ical ly unattainable.

So far we have assumed that there i s no external
field. In the presence of an external field Ho perpen-
dicular to the plate surface, branching will be energet ic-
ally advantageous also when the surface of the plate is
perpendicular to an easy axis . Instead of the s t ructure
shown in Fig. 10, where s i n y = Η 0/4πΜ, δι = (π/4)
- (γ/2), and δ2 = (π/4) + (γ/2), and which was calculated
ixv-3*^ (see also 1 - 2 3 ), in the case H o ~ 2πΜ the s t ructure
shown in Fig. 11 should be formed. All the formulas for
this case a re analogous to the preceding ones. They a r e
obtained from formulas (2.3)—(2.5) by setting γ = 0 and
making the substitution

k-*kli -

FIG9

*We have not been able to allow for the numerical multiplier, since
the energy of the branched structure in the case under consideration
could not be calculated.
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the min imizat ion condit ion for the total f ree e n e r g y p e r

unit vo lume

FIG. 11

3. BULK PROPERTIES OF DOMAIN STRUCTURES.
THEORY OF THE IDEAL MAGNETIZATION
(POLARIZATION) CURVE

a) Statement of the problem. In the preceding chap-
ter we saw that a division into domains leads to an
energy advantage proportional to the volume of the
specimen. The energy due to emergence of the domains
at the surface is small. Thus, for example, in the case
of the branched structure in a uniaxial ferromagnet this
energy is proportional to the 1/3 power of the specimen
volume. In many problems the effects due to the emer-
gence of domains at the surface may be unimportant.
Such problems include, in particular, the problem of the
ideal magnetization (polarization) curve.

The bulk properties of domain structures are simp-
lest in massive ellipsoidal bodies, in plane-parallel
plates, and in cylindrical specimens of elliptic cross
section. If the external field is uniform, then with
neglect of effects due to the emergence of domains at
the surface, it may be supposed that there exist in the
specimen several uniform phases separated by plane-
parallel boundaries. In the simplest cases, the number
of phases is two. Each of the phases constitutes a sys-
tem of domains in contact with domains of another
phase. In bulk specimens, the domain width is small in
comparison with the dimensions of the specimen.

The average values, over the domain structure, of
the magnetic field Η and the magnetic induction Β (or of
the electric field Ε and the electric induction D) are
uniform within such specimens. These values are con-
nected with the external field Ho (or Eo) by the relations

Hot = (δ,* - ntk) « Hk » + nlk «Bk)), (3.1)

Eoi = (δ,» - π,*) (( Ek » + nik ({ Dt»; (3.2)

here the double angular brackets indicate an average
over the specimen volume, and njjj is the demagnetizing-
(depolarizing-) coefficient tensor.

The bulk properties of domain structures are com-
pletely described by specification of H t and B n (or E^
and Dn), the two angles that determine the orientation
of the separation boundaries, and the concentrations of
the phases. These quantities satisfy the three equations
(3.1) (or (3.2)) and the condition for coexistence of pha-
ses

or

The number of equat ions i s two l e s s than the number of

unknowns. Two p a r a m e t e r s must be d e t e r m i n e d from

f
ôt(H<>) - v~l ) Sn)] d»x = 4·ο((Η0,-- 0)- [ «Μ» dH0,

/fo.(Eo) = V'1 j ^ W - №*«)] d>* = Ftot(Ea = 0) - f «P» rfE0.
ό

We cons ider f i rs t a f e r r o m a g n e t i c s p e c i m e n in the

a b s e n c e of an e x t e r n a l f ie ld (H o = 0 ) . It i s e a s y to show

that if H o = 0, that i s if the externa l currents j vanish,

then the f ree e n e r g i e s

and

uixj

# = - ( 4 π ) " 1 j ( j BdH) d3x
ο

= & + (4η)-1 \ Η (χ) Β (χ) d? :

co inc ide, independently of the nature and g e o m e t r y of

the specimen. In fact, Η · Β = div [AxH] + A · curl H,
where A is the vector potential. The second term in
this expression vanishes, since j = 0, and consequently
the integral of Η · Β reduces to the integral of a diver-
gence, i.e. to zero.

A similar situation occurs in ferroelectric materials
if Eo = 0, that is if the external charges and charges of
conductors vanish. In this case Ε · D = —div (cpD)
+ φ div D {φ is the scalar potential), but div D = 0, and
on conductor surfaces φ = const and J DndS = 0.

The free energy F in a ferromagnet is U a n + (Η2/&ΤΓ).
It is evident that when Ho = 0, the minimum of the free
energy is obtained when in the interior of the specimen
Hi = H2 = 0, Mi = - Ma (then U a n = 0), and ci = c2; that is,
we have a special case of conditions (1.27). This result
is independent of the model. A similar statement is
valid also for ferroelectric materials.

b) Bulk properties of domain structures. Ideal mag-
netization curve of uniaxial ferromagnets. We shall
show further that in an arbitrary uniform external field
Ho, independently of the model, the condition (1.27) for
coexistence of phases is the condition for, a minimum of
the volume part of thej:otal free energy F^. 1 - 1 4 - 1

For calculation of F t o t it is convenient to use the
relation (1.15), which can be expressed in the form

)"1 «HB» - (Ho

In o r d e r to find the condit ion for a m i n i m u m of F ^ , w e

shal l ca lcu late in the l i n e a r approximat ion the change of

F^o(. in a s m a l l change of the p a r a m e t e r s that d e s c r i b e

the p r o p e r t i e s of the domain s tructure (this m e a n s a

s m a l l change of a l l the quant i t ies, including « H j » ,

« M j » , the or ientat ion of the separat ion boundar ies,

e t c . , at constant H o ) . The r e l a t i o n (3.1) i s equivalent t o

the following:

(3.3)

By u s e of (3.3) it i s e a s y to show that

- H06 «M»/2 = - (V

By us ing the fact that

Annth6((Mt)) = - «

it i s e a s y to s e e that

- H06((M»/2 = - (V2)(«H))8«M» - <

- = (8π)->(«Η»δ«Β)> - <(Β))δ «Η)».
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It is convenient to transform the mean ({Η · Β)) as fol-
lows:

«HB» = «Η,Β,» + ((HnBn)) = H,«B,» + ((Hn)) Bn = «Η» «B».

Therefore the variation fiF^ can be expressed in the
form

first variation 6F(-Oj. has the form

The variat ion 6« F » has the form

= 6c, (Λ - F2) + ((6F)) = 6c, (F, -F2) + ~ «ΗδΒ»,

where 6ci is the change of concentration, and the aver-
age on the right side is carried out with the phase con-
centrations of the zeroth approximation. Similarly

δ«Β» = fie, (B, - B2) + «6B» = 6c, (B,, - B2() + <(6B».

On using

-;<H» «6B»=

we finally get

η - {(Hn)))6Bn)),

It should be remarked that δ Β ι η and 6B 2 n are the pro-
jections of δΒι and 6B2 along the normal to the unper-
turbed separation boundary. Therefore δ Β ι η £ δ Β2 η.
If we do not assume in advance that Fi = F 2, then the
domain structure has three degrees of freedom, and the
variations 6cx, δ Β η ι , and δΒ η 2 are independent. Thus
from the condition that the first variation 5Ftot; shall
vanish, we get the conditions

Thus the thermodynamic boundary condition FJ = F£ may
itself be obtained from the minimization condition for

Thus by minimization of the volume part of the free
energy Fj.oj., we obtain only the one additional condition
H n i = H n 2 . The number of relations remains one less
than the number of parameters determining the proper-
ties of the domain structure; that is, there is a degener-
acy in the problem. If the field Η (Hi + H2 = H, B n i = B^,
Fi = F2) and the phase concentrations^ and C2 are
given, then the values of ((M)) and of F(.0(. do not change
on rotation of the phase-separation boundary about the
vector Bi — B2.

Thus the relations (1.27) and (3.1) allow a one-
parameter family of structures, possessing the same
values of (M)} and of F ^ . The unknown parameter de-
termining the orientation of the phase-separation boun-
dary, and likewise the thickness of the layers, can be
found only by taking into account effects due to the
emergence of the domains at the surface. Nevertheless
the dependence of <(M)) on Ho (the ideal magnetization
curve) can be determined as a result of solution of an
immensely simpler problem: for given Ho, it is neces-
sary only to consider an arbitrary one of the structures
satisfying conditions (1.27) and (3.1), and to calculate
«M» for it.

If the number of coexisting phases Ν > 2, but the
domains as before are plane-parallel layers,* then the

*Structures of the "checkerboard" type and cylindrical structures
have a smaller number of degrees of freedom and can be realized only
in the case Ν = 2.

4t= Σ

For Ν = 3, the conditions Η = = H f f l together

with the conditions for phase coexistence (1.21) and
(1.23) and the relations (3.1) uniquely determine the bulk
properties of the domain structure. Coexistence of three
phases is possible, for example, in cubic ferromagnets
if the internal field Η is parallel to the diagonal axis
[ i l l ] and the separation boundaries are perpendicular
to the field.

Coexistence of four phases is possible, it appears,
only in special cases. In particular, in cubic ferromag-
nets four phases can coexist if the field Η is parallel to
one of the easy axes and the phase-separation boundar-
ies are perpendicular to the field. If in a hexagonal
ferromagnet the uniaxial-anisotropy constant β is nega-
tive (cobalt has this property at temperatures above
200° C), then in a field Η parallel to the hexagonal axis,
coexistence of six phases is possible.

Since formulas (1.14) for &\οιίη dielectrics are
analogous to formulas (1.15) for ^ o i in magnets, it is
obvious that in the interior of a ferroelectric specimen
the phase-coexistence conditions (1.28) must be satis-
fied.

In a uniaxial ferromagnet the conditions Η = const,
B n = const, F = const, as has already been pointed out,
mean that the phase-separation boundary is parallel to
the easy axis and the field Η is perpendicular to this
axis. For given phase concentrations Ci and C2 (ci + C2
= 1) and for given field Η 1 z, the volume part of the
magnetization ((M)), as well as F(-o(-, remains unchanged
on rotation of the separation boundary about the ζ axis.
This makes it possible to find the relation between
((M)) and Ho in the range where a domain structure ex-
ists, for all orientations of Ho and of the crystallo-
graphic axes with respect to the ellipsoid axes.'-35-'

We shall take into account that for H z = 0 and H^ + H y

< (βΜ)2 the "equation of state" of a uniaxial ferromag-
net takes the form

Since Η = const, the relation (3.3) can be rewritten in
the form

Hoi = Η, + 4nn,k«Mh)),

or, further, in the form

Boi = innth((Mh)),
where

(3.4)

^iii ~ ^ift ~ί~ (β/4ϊΐ) (6;ft — &i3$h3)' \" * t

F o r m u l a s ( 3 . 4 ) a n d ( 3 . 5 ) d e t e r m i n e t h e i d e a l m a g n e t i z a -

t i o n c u r v e . T h e p h a s e c o n c e n t r a t i o n s a r e d e t e r m i n e d

f r o m t h e c o n d i t i o n s

c) Magnetostriction and electrostriction. So far we
have disregarded the energy of elastic deformations. In
ferromagnets the magnetostrictive energy is small in
comparison with the anisotropy energy and the magneto-
static energy, but there are materials in which they are
comparable (see, for example, the book1-36-1). In ferro-
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e l e c t r i c m a t e r i a l s the e l e c t r o s t r i c t i v e e n e r g y i s , a s a
ru le , comparab le with the other f o r m s of e n e r g y . [ 5 : 1 We
note a l s o that the p r o b l e m of e l a s t i c de format ions during
magnet izat ion (polar izat ion) i s of independent i n t e r e s t .
We shal l h e r e p r e s e n t br ief ly s o m e r e s u l t s obtained

Magnetos t r ic t i ve e f f e c t s a r e d e s c r i b e d by the ther
thermodynamic re la t ion for the f ree e n e r g y F ( s e e
Appendix)

where a i k = a k i i s the s t r e s s t e n s o r . In an an isotrop ic
body, the f ree e n e r g y depends not only on the s y m m e t r i c
components of the deformat ion t e n s o r , u j k = (1/2)
χ [(9Uj/9xk) + (8uij/9xi)], but also on the antisymmetric,
v ^ = (l/2)[(9u i/9xk) - (9uk/9xt)] .* We shall introduce
also the free energy F' in the variables H ,̂ Bn, and
9uj/9xk, where the indices t and η designate the com-
ponents tangential and normal to the phase-separation
boundary:

F' = Ρ + (Απ)-ΉηΒη,

± - -^ B, ± //„ dBn

Instead of the quantities F and F', which refer to
unit volume of the material, it is convenient in the
theory of elasticity to introduce the free energy corre-
sponding to a given mass, and specifically to the mass
of unit undeformed volume. To such quantities we shall
attach the subscript 0:

df" =(σ« - ΈΓH<B>) d 1SZ- ~L·

On the p h a s e - s e p a r a t i o n boundar ies, b e s i d e s Hj. and
B n , the v a l u e s of B\i^/dxa and of a j k n k = a j n a r e a l s o
c o n s e r v e d ; h e r e the index a n u m b e r s the components
in the plane of the boundary. In o r d e r to obtain the con-
dit ion for c o e x i s t e n c e of p h a s e s , i t i s n e c e s s a r y to con-
s t ruct the thermodynamic potent ia l in the c o n s e r v e d
v a r i a b l e s . For th i s purpose w e put dFi, into the form

The desired thermodynamic potential, which has a mini-
mum for given H a , Bn, 9Ui/8xff, and σιη, is the thermo-
dynamic potential

dun

The c o m p l e t e s y s t e m of boundary condit ions h a s the

a = const, Bn = const, y-i- = const, σ ί η = const,

%{H«,Bn, -gi- ,σαΛ—^-ΗαΒη,σηη) = const. (3.7)

We shall now consider an ellipsoidal specimen,
whose shape is maintained constant, placed in a uniform
external field Ho. In such a specimen there is the possi-
bility of a nonuniform deformation (changing from do-
main to domain), which on the average is zero.

*In the literature it is often asserted that in an anisotropic body the
stress tensor σ ^ is asymmetric (see, for example, the books [ 3 7 ]). This
assertion is incorrect. The correct result is obtained by taking account
of the asymmetric (proportional to Vĵ ) terms in the expression for the
free energy.

The bulk properties of the domain structure are
completely determined by specification of the eight
parameters that do not change on crossing a separation
boundary,

and of the concentration ci (by weight) of one of the two
phases (n is the unit vector normal to the plane of the
phase-separation boundary). Another six such param-
eters (8uj/9xa) are zero, since the ellipsoid remains
undeformed on the average. These quantities satisfy the
three equations (3.1), the phase-coexistence condition
(3.7), and the three additional equations

<^i-\ = 0, (3.8)
\ an / ' '

where

(f)=c'th+c'j2.

Thus the number of equat ions i s s e v e n , two l e s s than the
number of p a r a m e t e r s that d e t e r m i n e the bulk proper-
t i e s of the domain s t ructure . In addition, i t i s n e c e s s a r y
to obtain the condit ions for min imizat ion of the vo lume
part of the total f ree e n e r g y F[, c o n s i d e r e d a s a func-
t ion of the nine p a r a m e t e r s that d e t e r m i n e the bulk
p r o p e r t i e s of the domain s t ructure , under the s e v e n
supp lementary condi t ions (3.1) , (3 .7 ) , and (3.8).

In'"35"^ it w a s shown that f rom the condit ion for a
min imum of Fj there i s obtained only one additional
condit ion H n i = H n 2 , j us t a s in the a b s e n c e of magneto-
str ic t ion. Thus the d e g e n e r a c y in the prob lem i s r e -
tained. But in the p r e s e n c e of magnetostr ic t ion, th i s
d e g e n e r a c y can no longer be interpreted a s s i m p l y a s
before.

To th is point w e w e r e dea l ing with an e l l i p s o i d whose
shape w a s a s s u m e d to r e m a i n unchanged. Th is m e a n s
that to the body are appl ied mechan ica l f o r c e s that pre-
vent a change of i t s shape. If such f o r c e s are absent,
then a body that h a s the form of an e l l i p s o i d in the de-
magnet i zed (unpolarized) s t a t e c a n de form on appl ica-
tion of an externa l field and, in part icu lar, c a n turn in
the externa l f ield under the act ion of the pure ly mag-
netostat ic Maxwel l s t r e s s e s

The torque can be absent only in definite c a s e s , for e x -
ample in the c a s e s of a long cy l inder (wire) or plane-
p a r a l l e l p late in an e x t e r n a l f ield H o para l le l to it. It
m a k e s s e n s e to cons ider just such c a s e s . The e l l ipso id-
al i ty of the s p e c i m e n i s c o n s e r v e d in such c a s e s e x c e p t
for e f f ec ts due to the e m e r g e n c e of domains at the sur-
face and unimportant in the ca lcu lat ion of the vo lume
e n e r g y . T h i s i s due to the fact that the m e a n de forma-
tion a u i / 9 % wi l l be uniform. The s a m e s i tuat ion can
occur a l s o in c a s e s in which the body i s subjected to ap-
p l ied s t r e s s e s that do not produce a torque. Such a
s i tuat ion o c c u r s , for e x a m p l e , in e x p e r i m e n t s with
s t r e t c h e d w i r e s . In order to i n v e s t i g a t e the bulk prop-
e r t i e s of the domain s t r u c t u r e s in t h e s e c a s e s , we point
out that in the p r e v i o u s p r o b l e m (an e l l i p s o i d of f ixed
shape), the concept of the undeformed s ta te had a condi-
tional character , s i n c e it w a s not a s s u m e d that in the
a b s e n c e of de format ion ( 8 u ^ / 9 x k = 0) and in the a b s e n c e
of f ield (H = 0) the s t r e s s e s c i k w e r e a l s o z e r o . We
shal l now define the undeformed s ta te in this s a m e way.
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Then it i s obvious that in those c a s e s in which the e l l ip-
so ida l i ty of the s p e c i m e n i s c o n s e r v e d (although the
r a t i o s of the s e m i a x e s may change) and the s p e c i m e n
r e m a i n s uniform on the a v e r a g e , in the in ter ior of the
s p e c i m e n the fo l lowing r e l a t i o n s must be sat i s f ied :

Η = const, Bn = const, Φ'ο = const,dui/dxa = const, α,η = const,(i>ii,) = 0.

The l a s t r e l a t i o n i s the condition that the body a s a
whole shal l not turn in the externa l f ield.

In'-35-' the m a g n e t o s t r i c t i o n of a uniaxial f e rromagnet
w a s ca lcu lated with a l lowance for the domain s t ructure .
Ana logous r e s u l t s a r e va l id a l s o for f e r r o e l e c t r i c ma-
t e r i a l s (in al l f o r m u l a s of th is s e c t i o n it i s n e c e s s a r y
only to make the substitution Η — Ε, Β — D).

4. THEORY OF FINE FERROMAGNETIC PARTICLES

a) Brown's theorem. [ 3 8 - 1 So far, we have considered
massive specimens, whose dimensions were assumed
to be large in comparison with the thickness δ of a do-
main wall. If the dimensions of the specimen a r e l e s s
than 6, then the specimen should be single-domain.
This was first predicted by Frenkel and Dorfman.'-39-1

For simplicity, we shall hereafter consider spherical
ferromagnetic par t ic le s with uniaxial anisotropy, in the
absence of an external field. Brown showed that if the
radius R of such a part ic le is l e s s than a certain cr i t i -
cal value R c , the magnetization Μ in the specimen will
be r igorously uniform.* The possibility of a uniform
state explains the large values of the coercive force of
fine p a r t i c l e s in the case^of weak anisotropy.

The free energy & = & of a ferromagnetic part ic le
can be expressed a s the sum of three t e r m s

J (dMt/dxh)VdV,

π ) ] Λ = _(i/2) f MH dV.

If the magnetization in the specimen is uniform and
directed along the axis of eaxy magnetization, the free
energy of the part ic le is

jF™>(2jt«M»V3)F. (4.1)

We shall now show that in a nonuniform state with mean
magnetization ((M))

jrunif= (2nMa/3)F. (4.2)

To this end we consider the field H//JJ\\(X) produced by

a spherical part ic le with uniform magnetization (M))

(inside the specimen H//ĵ \\ = — 4ττ((Μ))/3) and the field

δ Η = Η— Η//-|Λ, where H i s the t rue field produced by

the nonuniform magnetization of the par t ic le . Then

Jfm = j (£T!/8ji)d»jc> J[(H 2 «M»/8JT) + (Η«Μ > >δΗ/4π)ΙΛ

= (2n<(M»2/3)7

We note further that

«M > > (δΒ - 4πδΜ)/4π] d?x.

(Η,<Μ»δΒ/4π)

*We emphasize that in massive spherical specimen with small
anisotropy, the state with uniform magnetization would be absolutely
unstable, since the demagnetizing field Η = -4ττΜ/3 would be beyond
the limits of the metastability range (see paragraph b of Chapter 1).

s i n c e H* j^x = - V < P ( M » a n d δ Β = c u r l δ·Α, and that

Η<ίΜ>>δΜ d»x = 0,

since inside the specimen Η»^» is uniform and (6M))

^({Md)Mt] dV.

= 0. Th i s p r o v e s the inequal i ty (4.2) .
Thus it can be s tated that

. F > m i n . F 0 ,

Instead of min imiz ing the right s ide under the condition
M? = M2, we shal l weaken th is condit ion, requir ing only
that

V1 (4.3)

In addition, we shall require a lso that on the boundaries
of the specimen the condition 8Mj/8n = 0 shall be sat i s-
fied, a s it must be by the exact solution of the nonuni-
form problem (see Sec. b of Chapter 1).

On varying SFa under the condition (4.3), we get the
l inear equation

+ pMj (1 - δ,3) + (4π/3)«Μ,» = ΧΜ,, (4.4)

where the character i s t ic quantity λ is a Lagrange multi-
pl ier . The des ired minimum can be expressed a s fol-
lows in t e r m s of A m j n :

min ,r» = λω,ηΜ
27/2. (4.5)

Equation (4.4) has a uniform solution with &0 = ^ r U n i f

(see formula (4.1)). In the nonuniform case the minimal
λ corresponds to a solution of the form

Mz = const ·;Ί (kr)Ylm (n), Mx = My = 0. k2 = λ/α,

where ji(x) = I3/2(x)/x , and I3/2 i s a Bessel function.
The eigenvalue of λ i s found from the boundary condi-
tion 8Mj/9n = 0, which in this case takes the form

/,'(«?) = 0,

that i s ,

kR = xo =

where x 0 i s the f irst z e r o of the function j i(x) .
With u s e of (4.5) it i s e a s y to s e e that the uniform

state i s with cer ta inty advantageous if

R < (3α/4π)'/2χ0.

Thus we have proved the e x i s t e n c e of a c r i t i ca l rad ius
and have found a l o w e r bound to it.

It i s obvious that in the c a s e of high an isotropy
(J3/4TT » 1) the cr i t i ca l radius R c » δ ~ (o//3) l / 2. It i s
natural to e x p e c t that in th is c a s e the uni form s ta te
c e a s e s to be advantageous when a spl i tt ing into domains
b e c o m e s advantageous. By c o m p a r i s o n of the free en-
e r g y of a two-domain s t r u c t u r e ( F i g . 12) with.F 1 1 1 1 ^, it
i s p o s s i b l e to find an upper bound to R c · The free en-
e r g y of the s t ructure shown in Fig. 12 i s

<ίό) + 2 (αβ)ΐ/ 2.ν 2πβ 2, γ = °-2'15

(the f i r s t t e r m i s the magnetostat ic energy, the second

FIG. 12
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i s t h e s u r f a c e - t e n s i o n e n e r g y o n t h e p h a s e - s e p a r a t i o n

b o u n d a r y ) . A f t e r s i m p l e c a l c u l a t i o n s , w e o b t a i n f i n a l l y *

(3α/4π)'/2χ0 «£ Rc < 3 (αβ)'/2/4π* [(4/3)-2ν1 (β/4π > 1).

We note that (α/3)1/2 ~ j36. Apparently in the case of
high anisotropy our upper bound coincides, at leas t in
o r d e r of magnitude, with the true value of the cr i t ical
radius R c.

b) Critical radius in the case of small anisotropy.
In the case of smal l anisotropy it can be shown, on the
basis of the work of F r e i et al.,^40-1 that the upper bound
to the cr i t ical radius R c c loses in on the lower, so that
the formula

/? ς = (3α/4π)ΐ/2*0 (4.6)

becomes exact in the l imit /3/4ττ —* 0.
F r e i et ΒΙ. 1- 4 0- 1 considered the stability of the uniform

state of a spherical part ic le with respect to infinitely
small perturbat ions; this offers the possibility of find-
ing an upper bound to R c . It was assumed that the com-
ponents of the magnetization in the nonuniform state
have the form

Mz = Μ cosco « Μ [1 - (1/2)ω2], Μψ = Μ sin ω χ Μ ω,

ω = ω (Γ, θ ) < 1,

where r and θ a re spherical coordinates and M^ i s the
azimuthal projection of the vector M.

The change of field 6H(x) = H(x) - H0(x) i s propor-
tional to the change of the density of fictitious magnetic
charges. The la t ter in turn is proportional to ω 2 .
Therefore the change in the magnetostatic energy, 6^m,
i s

6.?rm = f (Η0δΗ/4π) d»x = j [Ho (δΒ — 4πδΜ)/4π] d3x =

= — j ΗοδΜ dV = — (2πΛί:/3) f coW.

Neglecting the anisotropy energy, we wri te the change
of the total free energy as follows:

4πω2}

We separate δ& into two terms:

2 — Λ"2)

h e r e R c i s determined by formula (4.6), and x 0 was de-
fined in the preceding section.

The condition for a minimum of δ ^ Ί has the form

If one multiplies this express ion by ω and integrates
over the volume, it i s easy to verify that the minimum
of δ .Fi is zero .

The solution of the boundary problem (4.7) is

ω ~ ;Ί (kr) sin9.

Since for such a perturbat ion δ ^ Ί = 0, it i s easy to see

that when R > R c the value of bf i s negative. On taking
account of the resul t obtained in the previous section,
we conclude that formula (4.6) determines the exact
value of the cr i t ical radius .

5. THEORY OF NUCLEI OF REVERSE
MAGNETIZATION*

a) Thermal activation of nuclei. As is well known,
the reason for magnetic hys teres i s is the possibility of
existence of metastable s ta tes . In a uniaxial ferromag-
net, the metastable s ta tes can be real ized in case

If the field Η i s directed along the axis of easy magne-
tization ( H x = Hy = 0) and is l e s s in absolute value than
βΜ, the state with magnetization antiparallel to the field
i s metastable.

The metastable state can be destroyed if, for exam-
ple, as a resul t of thermal fluctuations there is formed
a nucleus of opposite magnetization whose dimensions
a r e sufficiently large so that growth of the nucleus will
lead to a diminution of the free energy .Fof the body.'-42-'
We recal l that a metastable state is stable with respect
to infinitely small perturbat ions (such perturbat ions in-
crease the free energy of the body), and that conse-
quently, for formation of a nucleus that can grow, it i s
necessary to surmount a finite energy b a r r i e r . The
probability of formation of such nuclei as a resul t of
thermal fluctuations i s proportional to e x p ( - R m i n / T ) ,
where Τ i s the t e m p e r a t u r e ; the energy b a r r i e r R m j n

i s the work necessary for formation of a so-called
cri t ical nucleus, which i s in unstable equilibrium with
its surroundings: i ts shape is such that for given thick-
ness of the nucleus, the free energy .Fof the body will
be a minimum, and the thickness corresponds to a maxi-
mum of the free energy 3F. Thus the cr i t ical nucleus
corresponds to a saddle point of the functional JFz{x, y),
where the function z(x, y) descr ibes the form of the
nucleus. Here we assume that the dimensions of the
nucleus a r e large in comparison with the domain-wall
thickness δ; this, as will be shown below, is c o r r e c t
only in the case of weak metastability (H <C βΜ). It i s
only in this case that the nuclei can be treated within
the framework of macrotheory; in the contrary case,
the p a r a m e t e r s of the cr i t ica l nucleus must be found a s
the resu l t of a solution of the static equation of Landau
and Li f sh i tz , C l 3 ] Μ χ H e f f = 0.

In the work of DoringC4 3] (see also1-2-1), only nuclei of
ellipsoidal form were considered, and the possibility of
a deviation of the magnetization from the easy axis was
disregarded. In the weak-anisotropy case, this devia-
tion leads to a significant d e c r e a s e in the sum of the
magnetostatic energy and the magnetic anisotropy en-
ergy. In reference1-4 1-1 the exact form of the cr i t ical
nuclei was obtained for a number of limiting cases . It
was shown that the energy b a r r i e r R m i n in the weak-
anisotropy case i s significantly smal ler than in Doring 's .

The work R that we must calculate i s equal to the
change of the free energy .Fdue to the presence of the
nucleus. It can be expressed in the form (see'-41-')

R = j [ - δΜ · Η + [(δΗ)2/8π] + <7an ]d3x + J AdS. (5.1)
*We have here somewhat improved the estimate from above obtained

by Brown. [38] *In this chapter we quote results obtained in [4 1].
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In formula (5.1), Η is the field in the uniform meta-
stable state (that is , far from the nucleus), and δ Η and
δ Μ a r e the changes of field and of magnetization due to
the formation of the nucleus. The last t e r m i s the sur-
face tension on the phase-separat ion boundary, and the
integration extends over the surface of the nucleus.

We consider the surface tension. In Chapter 1 it was
shown that for boundaries inclined with respect to the
axis of easy magnetization, the concept of surface ten-
sion when /3/4TT <5C 1 has meaning only for small angles
of inclination of the boundary. It can be shown^41-1 that
in the case β/4ττ 3> 1, in fields Η <C βΜ, the surface
tension can be defined with good accuracy for an arbi-
t r a r y inclination of the boundary and is independent of
the angle of inclination. Below, we must consider only
such boundaries, for which the surface tension Δ can be
defined in accordance with (1.34).

In closing this section, we note that on the boundaries
of the nucleus the thermodynamic boundary condition
(1.23) is not satisfied. The reasons for this a r e the
same as those for which, in the analogous problem of
nuclei in a liquid-vapor system, the condition of equality
of p r e s s u r e is not satisfied.

b) Elongated nuclei (weak fields). In the case to be
considered (uniaxial ferromagnet; Η II z), the cr i t ical
nucleus i s symmetr ic about the easy axis (the ζ axis).
An axial section of the nucleus is shown schematically
in Fig. 13. The form of the cr i t ical nucleus is des-
cribed by the function p o (z).

In a field small in comparison with βΜ, the " e q u a -
tion of s t a t e " of a uniaxial ferromagnet h a s the form

6H, = pMp,

that i s , the magnetic permeabi l i ty μ in a direction per-
pendicular to the easy axis is

It will be shown below that in a weak field (μΗ <C 47τΜ)
the nucleus i s elongated along the easy axis (po(0) <C Z;
see Fig. 13) and the deviation of the magnetization from
the easy axis i s smal l ( M p <C M). In this case the
equation div Β = 0 can be l inear ized:

tization Mi inside the nucleus does not deviate from the
axis of easy magnetization:

The field 6H and the polarization Mp a r e produced by
fictitious " m a g n e t i c c h a r g e s , " concentrated on the sur-
face of the nucleus. Since the nucleus i s elongated, the
" c h a r g e " density d e c r e a s e s slowly, and at points not
too far from the nucleus 6 H Z <?C μδΗρ (in the case of an
infinite, uniformly charged cylinder, the field δ Η ζ would
be zero). Inside the nucleus the field 6IL· is a lso smal l
(appreciably smal ler than outside i t) . Therefore in the
f irst approximation with respect to po(0)//, the magne-

On the phase-separat ion boundary (at ρ = Po(z)), the
condition B n = const must be fulfilled:

— 4πΜρ0 = 4πΜρ0 + μδΗ?> (p0 = dpo/dz),

that i s ,

™ = -8nMp\.

At not too great d is tances, the field δΗ < 2 ) i s

ό/3™»=-8πΜρορ0/μρ. (5.2)

In o r d e r to determine the range of applicability of this
formula, we make in the equations of magnetostat ics the
substitution

6H9 = Mhp, 6HZ = μ1'2 Mhz, ρ = μ1/*/·.

Then the equat ions of m a g n e t o s t a t i c s take the form

div h = 0, rot h = 0,

where the f ield h i s produced by sur face " c h a r g e s "

σ (z) = - (2/μ) p0 (ζ).

F o r r » I t h e f i e l d h h a s t h e d i p o l e f o r m ; t h a t i s , i t

d e c r e a s e s a s ( r 2 + z 2 ) . It i s o b v i o u s t h a t f o r m u l a

( 5 . 2 ) i s v a l i d o n l y w h e n

ρ < L ~ μ^Ι.

In th is range, the s u m of the an isotropy e n e r g y and the
energy of the demagnetizing field δ Η is

(1/2) PM' + [(δΗ)2/8π] » (δ #ρ)
2/8π > (δ#2)

2/8π.

On truncating the logarithmic integral (over p) at
distances ρ ~ μ 1 / 2Ζ, we get

Β = j [μ"1 (4πΜ)2 In

h e r e we have introduced the notation

(0)] p0

2p0

2 + 2nMHp0 (pm-p0)l dz;

FIG. 13

p m = MMH = 2βδΑΜ7 > δ.

The saddle point of the functional R, that i s the cr i t i -
cal nuc leus , c o r r e s p o n d s to a shape g iven by the equa-
tion ( s e e [ 4 1 ^ )

z/P™ = ± 1(4πΜ/μΗ) In (ίηΜ/μΗ)]1'2 {arcsin (1 - p o P^)

+ Pm[Po(Pm-Po)]1/2}.
The e n e r g y b a r r i e r R m j n i s

-ftmfn = (μ2/4) β3Λί2.53 (4πΜ/μΗ)''' [In (4πΜ/μ//)]1/,.

c) Spherical nucle i in the c a s e of s t rong an isotropy,
and sur face nucle i . 1) Spherical nucle i . In the c a s e
0/47Γ <~ 1, the range μΗ <C 4πΜ coincides with the range
of weak metastabil ity, Η -C βΜ. In the case of strong
anisotropy (β/4η 3> 1), the case 4πΜ C H C βΜ i s also
possible; it will be investigated below.

If the anisotropy i s la rge, then inclination of the mag-
netization to the easy axis is energetically disadvan-
tageous ( U a n = 0 ) . On the boundary of the nucleus, the
normal component of the magnetization undergoes a
jump σ = 2 Μ ι η , which can be considered as a surface
density of fictitious magnetic charges, producing a de-
magnetizing field δΗ.
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In the c a s e under cons iderat ion, I turns out to be of
o r d e r Po(0), and the ro le of the demagnet i z ing f ield i s
unimportant:

(6Η)2/8π ~ 4πΛί2 < ΜΗ.

The work R can be e x p r e s s e d in the form

R =- —2MHV + AS = MH (2F + pmS), (5.3)

w h e r e V and S a r e the vo lume and sur face of the nuc-
l e u s . This e x p r e s s i o n di f fers only by the mult ip l ier of
V f rom the correspond ing e x p r e s s i o n for an i so trop ic
l iquid-vapor s y s t e m . It i s there fore obvious that the
cr i t i ca l nuc leus must be spher ica l ; that i s ,

R = AnMH [ - (2ra/3) + pmr2l,

w h e r e r i s the rad ius of the nuc leus . The maximum of
the function R(r) c o r r e s p o n d s to

r = Pm>
(4π/3) MHpa

m = (32π φΜ/Η)\

2) Surface nuclei. In certain cases the formation of
surface nuclei may be more probable, since the corre-
sponding energy barrier R(^) is smaller than the bar-
rier that determines the probability of formation of
nuclei within the volume of the specimen (the latter we
shall here denote by R(Y) ).*

m i η

The simplest example is the case 4ττΜ <?C Η <C /3M.
We comment here that the field Η = {0, 0, H} is the in-
ternal field, which does not coincide with the field H < e )

in a vacuum. The latter can be determined from the
conditions of continuity of Hj and Bn on the surface of
the specimen. The work R is determined by formula
(5.3), where V is the volume of the nucleus and S is the
area of the separation boundary. On setting V = V/2
and S = S'/2, where V and S' are the volume and the
surface area of the doubled figure, it is easy to con-
clude that the critical nucleus has the form of a hemi-
sphere and that

RmL = Λίη?η/2 = (16π/3) βΛ/2δ3 φΜ/Η)":

We emphasize that this resul t i s independent of the
orientation of the easy axis with r e s p e c t to the surface
of the specimen.

A representat ive value of R m i n / T for typical ferro-
magnets (Fe, Co) at room temperature is of order 103,
so that under ordinary conditions thermal activation of
nuclei is impossible. But for reasonable proximity to
the Curie temperature , the b a r r i e r R m i n may be sig-
nificantly decreased in consequence of the decrease of
magnetization (the values of β and δ change little on ap-
proach to the Curie point). The formulas obtained are
still applicable near the Curie temperature, where
thermal activation of nuclei should become observable.
Our estimates permit us to conjecture that the barrier
R m j n will be small in an observable region near the
limit of metastability (for Η = /3M, the barrier R m i n

= 0).

Recent papers of Lifshitz and Kagan'-44-' and of
Iordanskii and Finkel'shtein1-4^ investigated the forma-
tion of nuclei as a result of quantum-mechanical tunnel-

ing. In this case the probability of formation of nuclei
i s proportional to exp(-2fi~1 Im S), where Im S is the
imaginary p a r t of the class ical action. In the case of a
ferromagnet, it is possible to obtain an est imate of the
argument of the exponential function by means of the
Landau-Lifshitz equation'-13-'

F r o m dimensional considerations it follows that

h-1 Im S = (Λ/δ·/»ν) / (β/4π,

where f is an unknown function, whose value for β ~ 4π
and |3M- Η ~ Η ~ j3M should be of order unity. For
Μ = 103 G and δ ~ 10"6 cm the value is

Μδ'/ny ~ 105,

and consequently the probability of quantum tunneling i s
extremely small ; this i s due to the large value of the
" m a s s " of a domain boundary.'-1 1 '4 6-'

Analogous resu l t s for superconductors and for non-
ferromagnetic metals were obtained in1-47-'.

APPENDIX

THERMODYNAMIC THEORY OF MAGNETOSTRICTION.
THE STRESS TENSOR

We first find the dependence of the free energy on
the ant i symmetr ic components of the deformation tensor

We consider, for example, the free energy of a magnet
Η

\ ' dxk I \ ' d x 4 / 4 n I
0

T h i s q u a n t i t y i s u n c h a n g e d i n r o t a t i o n s

u = Irorl, vik = —ε ; Λ ίω ;, ulh = 0,

if the field Η is rotated simultaneously:

6H = [ω Η],

t h a t i s ,

dF 1

H e n c e i t i s e a s i l y f o u n d t h a t

• uift 8it \ · /

In order to obtain an expression for the stress ten-
sor σ4 1 ί, we calculate the change of the free energy, δ&,
in an infinitely small displacement of the points of the
body, 6u(x). This quantity with sign reversed is equal
to the work of internal forces

For simplicity we shall suppose that the boundaries of
the body are fixed (that is, that δ % o u n ( j = 0) and that the
deformation has no effect on the sources of the magnetic
field, which are outside the body; that is, that 6j(x) = 0.

The change of free energy can be expressed in the
form

*It must be remembered that the probability of formation of surface
nuclei is proportional to the surface of the specimen, not to its volume.

f F'(x)i»x'—f ?(x)ti3x — (4n)-i f
v0 Vo v-

B6H <Px



THERMODYNAMIC THEORY OF F E R R O M A G N E T I C DOMAINS 573

where Vo is the volume of the body, ψ is the volume
outside the body, χ' = χ + 6u(x), and.F'( x ') is the changed
value of the free energy at that point of the body which
before the deformation had coordinates x. In the linear
approximation,

Vo
— (4π)"ΐ f

V

The quantity 6 ' F = F '(x + 5u) - F(x) i s the s o - c a l l e d

mater ia l change. It i s equal to

w h e r e

dHh

~diT
and use has been made of the fact that for small deform-
ations, 6'ujjj = 6Ujjj and δ ' ν ^ = δ ν ^ .

Thus the sum of the t e r m s proportional to the change
of magnetic field δ Η is

ΒδΗ(ί3χ

Vo+V
— (4π)-ι f-ι f rot ΑδΗ <fl = c"i f Αδ]<№ι = 0.

The equality to zero occurs because the sources of
the field have been assumed to be unchanged: 6j(x) = 0.
Therefore 6.F can be expressed in the form

Γ . dF &Ui ~ d&Ui 1 d&ut " - s

We note that inside the body

Therefore

Hence it follows that

duik

(A.2)

Relations (A.I) and (A.2) a r e equivalent to relat ion
(3.6) of the main text.

An analogous express ion for the s t r e s s tensor in
die lect r ics was obtained (by other methods) in the book
of Landau and Lifshitz. ^
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