УСПЕХИ ФИЗИЧЕСКИХ НАУК

новые приборы и методы измерений

621.384.62

ЛИНЕЙНЫЕ ИНДУКЦИОННЫЕ УСКОРИТЕЛИ — НОВЫЕ ГЕНЕРАТОРЫ МОЩНЫХ ПУЧКОВ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ

Ю. П. Вахрушин, И. М. Матора

СОДЕРЖАНИЕ

117 120
120
100
123
128
131
136
136

1. ВВЕДЕНИЕ

Развитие исследований в области управляемого термоядерного синтеза ¹ и новых методов ускорения ² привело к созданию в начале 60-х годов новых линейных ускорителей мощных пучков релятивистских электронов ³⁻⁵, принцип работы которых был предложен Боверси ⁶ еще в конце 30-х годов.

Использование этих так называемых линейных индукционных ускорителей (ЛИУ) уже позволило провести исследования по программе «Астрон»⁷ в США, а в СССР — известные дубненские эксперименты по отработке коллективного метода ускорения ⁸⁻¹¹.

Эксплуатация первых двух действующих ЛИУ (рис. 1 и 2) показала, что этот весьма простой метод ускорения является перспективным, так как он позволяет при к. п. д. в десятки процентов получать релятивистские пучки в сотни и тысячи ампер при хорошей надежности и повторяемости результатов. В ряде лабораторий уже ведутся интенсивные разработки ЛИУ ¹²⁻¹⁸, развивается их теория, методы расчета, происходит совершенствование конструкции. Ведутся исследования безжелезных и плазменных ускорителей этого типа ¹⁹⁻²³.

В обзоре систематизируются и обобщаются результаты известных авторам работ в области этого нового направления ускорительной техники.

2. ПРИНЦИП РАБОТЫ

На рис. З приведена конструктивная схема индукционной системы ЛИУ, поясняющая принцип действия ускорителя. При изменении в сердечниках магнитного потока в ускорительной трубке в соответствии с законом электромагнитной индукции возбуждается вихревое электрическое

Рис. 1. Инжектор установки «Астрон». Энергия пучка 3,7 Мэв, ток 350 а.

Рис. 2. Ускоритель ЛИУ-3000. Энергия пучка 3 Мэв, ток 200 а.

поле. При достаточной протяженности системы среднее значение напряженности поля E₀ на оси системы можно записать в виде

$$E_0 = -(N/\mathcal{L}) \ S \ \partial B/\partial t, \tag{1}$$

или

$$E_0 = N U_1 / \mathcal{L}, \tag{2}$$

где N — число сердечников, S — сечение одного сердечника, B — среднее по сечению значение индукции в сердечнике, U_1 — прикладываемое

к первичной обмотке напряжение, \mathcal{L} — длина системы, $\partial B/\partial t$ — скорость изменения индукции в сердечнике.

Требование моноэнергетичности пучка электронов ведет к необходимости поддержания линейного изменения индукции в течение рабочей части времени т_и импульса.

В этом случае (1) принимает вид

 $E_0 = -(N/\mathcal{L}) \ S\Delta B/\tau_{\mathbf{u}}, \ (3)$

где Δ*В* — приращение индукции за время импульса τ_и.

Можно показать, что энергия, передаваемая пучку электронов за время импульса, определяется выражением

 $W_1 = I_{\pi} \Delta B S N_i$

где I_п — ток пучка.

Видно, что эта энергия пропорциональна изменению потока в сердечнике индуктора и не зависит от длительности импульса. Для полного использования материала сердечника следует перед подачей импульса напряжения на первичную обмотку перевести сердечник в область отрицательного насыщения, что почти всегда и делается ^{4,5}. Этот процесс обычно называется *размагничиванием*. Максимально возможная величина тока ускоряемых электронов при наличии фокусировки, достаточной для компенсации расталкивающего действия сил пространственного заряда, определяется в основном мощностью коммутирующего элемента в первичной цепи системы, и в настоящее время ускорение пучка с током в десяток килоампер представляется реальным.

Длительность импульса ускоряющего напряжения в ЛИУ принципиально может быть любой. Однако рост поперечного сечения сердечника индуктора при увеличении длительности импульса свыше нескольких микросекунд в соответствии с (3) приводит к таким размерам индукционной системы, при которых вес ферромагнитного материала сердечников становится неприемлемо большим. При длительности импульса меньше нескольких десятков наносекунд потери энергии на перемагничивание сердечника достигают величины, при которой использование ферромагнетика в ускорителе становится малоэффективным. Для этой области длительности импульсов могут быть применены безжелезные линейные индукционные ускорители ²². Можно полагать, что диапазон

Рис. З. Схема индукционной системы ЛИУ.

 ферромагнитный сердечник, 2 — ускорительная трубка. длительностей импульсов для ЛИУ с ферромагнитными сердечниками лежит в интервале 20—700 нсек.

В ЛИУ, как и в высокочастотных линейных ускорителях, ускоряющее поле распределено вдоль всего ускорителя и нет зазора, к которому прикладывалось бы полное напряжение, соответствующее полной энергий ускоренного пучка. Это позволяет обходиться без громоздкого и опасного в эксплуатации газового хозяйства, увеличивать конечную энергию простым наращиванием числа ускорительных элементов. С другой стороны, в ЛИУ сохраняются достоинства трансформаторных установок, дающих возможность ускорять пучки с током в сотни и тысячи ампер при высоком к. п. д., что недоступно высокочастотным линейным ускорителям. Кроме того, как следует из (2), в ЛИУ может быть обеспечено получение пучка как с постоянной в течение импульса энергией, так и с изменяющейся по наперед заданному закону путем задания надлежащей формы импульса первичного напряжения.

3. ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Известно, что уравнения Максвелла для вихревого электрического поля Е и создаваемого постоянными токами магнитного поля Н анало-

Рис. 4. Схема и граничные условия индукционной системы ЛИУ-3000.

образными электродами являются первичные обмотки. Схема такой системы и распределение поля на внутренней ее границе даны на рис. 4. В этом случае решение уравнений Лапласа для составляющих поля будет иметь вид ²⁶

$$E_{z} = A_{1}I_{0}(k_{1}r) [B_{1}\cos(k_{1}z) + C_{1}\sin(k_{1}z)], \qquad (4)$$

$$E_r = A_2 I_1 (k_2 r) [B_2 \cos (k_2 z) + C_2 \sin (k_2 z)];$$
(5)

здесь $I_0(k_1r)$ — модифицированная функция Бесселя первого рода нулевого порядка, $I_1(k_2r)$ — модифицированная функция Бесселя первого рода первого порядка, $A_{1,2}$, $B_{1,2}$, $C_{1,2}$, $k_{1,2}$ — постоянные, определяемые граничными условиями.

гичны. Поэтому для определения ускоряющего электрического поля можно воспользоватьизвестными решениями ся лля магнитного поля постоянных токов, заменив в них вектор плотности ј на $\partial \mathbf{B}/\partial t$ ^{24,25}. Однарабочей области ЛИУ ко в всегда имеются электропровоэлементы (первичная дящие обмотка, электроды ускорительной трубки и т. п.), вследствие чего для точного расчета распределения Е следует решать уравнение Лапласа с соответствующими граничными условиями, задаваемыми конструкцией индукционной системы 4,25.

В индукционной системе ЛИУ-3000 ⁵ может поддерживаться вакуум без применения ускорительной трубки, а своеГраничные условия представляют собой периодическую функцию, которую можно разложить в ряд Фурье и, следовательно, записать в виде

$$E_{z,a} = \frac{\alpha_0}{2} + \sum_{n=1}^m \alpha_n \cos\left(n \frac{2\pi}{T} z\right) + \sum_{n=1}^m \beta_n \sin\left(n \frac{2\pi}{T} z\right), \qquad (6)$$

$$E_{r, \alpha} = \frac{\gamma_0}{2} + \sum_{n=1}^m \gamma_n \cos\left(n \frac{2\pi}{T} z\right) + \sum_{n=1}^m \delta_n \sin\left(n \frac{2\pi}{T} z\right). \tag{7}$$

Для граничных условий имеем

$$E_{z,a} = 0$$
 при $0 \le z < (h - h_1)/2,$ (8)

$$E_{z,a} = E_a$$
 при $(h - h_1)/2 < z \le h/2.$ (9)

Определив с помощью (6) — (9) постоянные в (4), получаем выражение для E_z

$$E_{z} = \eta E_{a} \left[1 + \sum_{n=1}^{m} E_{n} I_{0} \left(n \frac{2\pi}{h} r \right) \cos \left(n \frac{2\pi}{h} z \right) \right], \tag{10}$$

где

$$E_n = (-1)^n 4 \cos\left(n \frac{\pi}{2} \eta\right) \sin\left(n \frac{\pi}{2} \eta\right) / \pi \eta n I_0 \left(n \frac{2\pi}{h} a\right),$$

 $\eta = h_1/h.$

Нетрудно видеть, что

$$\eta E_a = U_1/h = E_0.$$

Тогда (10) запишется в виде

$$E_z = E_0 \left[1 + \sum_{n=1}^m E_n I_0 \left(n \frac{2\pi}{h} r \right) \cos \left(n \frac{2\pi}{h} z \right) \right]. \tag{11}$$

Член I_0 $(n \cdot 2\pi a/h)$ очень быстро растет с увеличением n, и поэтому в достаточно большой, наиболее интересной области с достаточной точностью можно ограничиться первым членом ряда.

Для иллюстрации отношение амплитуды первой гармоники к постоянной составляющей показано на рис. 5, *а* для нескольких значений a/hи h_1/h . Видно, что основное значение имеет величина отношения a/h и для достаточно однородного поля необходимо иметь a/h > 1. Исходя из условий, что граничная функция для радиальной составляющей нечетная, а в области, где гоt $\mathbf{E} = 0$ (что имеет место внутри системы),

$$\partial E_z/\partial r = \partial E_r/\partial z$$
,

из уравнений (5) и (7) получаем выражение для радиальной составляющей

$$E_r = E_0 \sum_{n=1}^{\infty} E_n I_1 \left(n \frac{2\pi}{h} r \right) \sin \left(n \frac{2\pi}{h} z \right). \tag{12}$$

Отношение первой гармоники E_{r1} к E_0 показано на рис. 5, б.

Приведенные выражения получены без учета искажения поля на краю системы. Анализ ослабления поля вблизи края системы ²⁷ показывает, что уже на расстоянии от края, равном трем диаметрам отверстия ($\sim 6a$), поле на оси с достаточной для практики точностью равно E_0 .

Анализ системы с ускорительной трубкой и электродами в виде дисков (см. рис. 3) дает выражения для поля вида ^{4,25}

$$E_{z} = E_{0} \left\{ 1 + \sum_{n=1}^{m} \alpha_{n} \left[I_{0} \left(n \frac{2\pi}{h} r \right) / I_{0} \left(n \frac{2\pi}{h} a \right) \right] \cos \left(n \frac{2\pi}{h} z \right) \right\}, \quad (11a)$$

$$E_r = \sum_{n=1}^{m} \delta_n \left[I_1 \left(n \frac{2\pi}{h} r \right) / I_1 \left(n \frac{2\pi}{h} a \right) \right] \sin \left(n \frac{2\pi}{h} z \right) \right], \qquad (12a)$$

где α_n и δ_n определяются условиями на границе. Как и в предыдущем случае, однородность поля в значительной степени определяется величиной отношения a/h, если a — диаметр отверстия в электродах, а h — расстояние между ними.

Рис. 5. Отношение амплитуды первой гармоники к постоянной составляющей (%). a) Осевая составляющая; б) радиальная составляющая. a/h = 2 (1), 1,5 (2), 1 (3) и 0,75 (4); $h_1/h = 1/4$ (1'-4') и 1/8 (1"-4").

При необходимости однородность поля может быть улучшена, если в рабочую; область ввести электропроводящий цилиндр^{28,29}. Во время импульса по цилиндру будет протекать ток

$$\mathbf{j}_a = \varepsilon \partial \mathbf{E}_a / \partial t + \sigma \mathbf{E}_a$$

при $|\epsilon \partial \mathbf{E}_a / \partial t_i^{\mathrm{I}}| \ll |\sigma E_a|$, что хорошо выполняется в диапазоне длительностей импульсов, характерных для ЛИУ,

$$j_a = \sigma E_a. \tag{13}$$

Из (13) и уравнения непрерывности заряда следует, что при $\sigma = \text{const}$ $E_a = \text{const.}$ Этому условию удовлетворяет требование $\eta = 1$ в уравнении (10), откуда следует, что амплитуда гармоник равна нулю во всей области внутри цилиндра. Величина электропроводности выбирается исходя из целого ряда условий ²⁹, и, например, для проектируемой установки ЛИУ-30/250 ¹² электропроводность квадрата поверхности лежит в диапазоне $10^{-4}-10^{-3}$ ом⁻¹. Проводящий цилиндр может быть выполнен из вакуумноплотной керамики с нанесенным на внутреннюю поверхность проводящим слоем и заменяет собой секционированную ускорительную трубку действующих ускорителей ^{4,5}.

.

1.1

4. УСКОРЯЮЩАЯ СИСТЕМА

Под ускоряющей системой ЛИУ понимается индукционная система в совокупности с системой формирования прямоугольного импульса ускоряющего напряжения. Иногда под ускоряющей системой понимают только индукционную. Однако это не совсем точно, поскольку индукционная система является одним из элементов единого сильноточного контура, все элементы которого влияют на форму и величину импульса ускоряющего напряжения, особенно в наносекундном диапазоне. На рис. 6 приведена упрощенная схема ускоряющей системы, которая условно

Рис. 6. Упрощенная схема ускоряющей системы. а) Импульсная. система; 6) инпунционная система; \mathcal{O}_{II} — формирующая линия, K — ключ, C_{H} — накопительная емкость, U_{p} — напряжение размагничивания, C_{Φ} — емкость фильтра, L_{Φ} — индуктивность фильтра, $U_{1,2,3}$ — индукторы.

разделена на индукционную систему и систему формирования импульса, или, иначе, — импульсную систему.

Хотя качественно индукционная система ЛИУ и представляет собой набор одновитковых импульсных трансформаторов, применение метода расчета, используемого при проектировании импульсных трансформаторов, работающих в микросекундном диапазоне ³⁰⁻³², оказывается неудовлетворительным, особенно при использовании ферромагнетика с прямоугольной петлей гистерезиса ППГ ^{33,34}. Это вызвано следующим.

Во-первых, в теории импульсных трансформаторов рассматриваются процессы в сердечниках, выполненных из электротехнической стали, для которой характерна близкая к прямолинейной зависимость ΔB от H^{30} . Сравнительные же эксперименты показали, что более высокий к. п. д. в ЛИУ можно получить при использовании прецизионных магнитомягких сплавов с узкой, близкой к прямоугольной петлей гистерезиса. В'частности, в действующих ускорителях ^{4,5} применен железо-никелевый сплав 50НП. Процессы перемагничивания для этих сплавов имеют свои особенности ³⁵. При длительности импульса ускоряющего напряжения в десятки наносекунд возможно использование магнитомягких ферритов ^{23,28}. Исследование их характеристик перемагничивания показало, что ферриты марганец-цинковой группы имеют характеристики, по форме близкие к характеристикам сплавов с прямоугольной петлей гистерезиса (ППГ). Во-вторых, при характерных для ЛИУ длительностях импульсов в десятки и сотни наносекунд толщина ленты, из которой изготавливаются сердечники, выбирается в интервале 10—20 мкм. При такой толщине действие вихревых токов соизмеримо с действием магнитной вязкости ³⁵, что не учитывается в теории импульсных трансформаторов. Перемагничивание сердечника из ферромагнетика с ППГ с учетом вихревых токов и магнитной вязкости изложено в ряде работ, например ³⁵⁻³⁷, и с достаточной для практики точностью описывается уравнением

$$H(t) = H_0 + g(B) dB/dt;$$
 (14)

здесь H_0 — поле старта, величина которого зависит от марки материала и в несколько раз превышает коэрцитивную силу

$$g(B) = (\sigma d^2 / 8B_r) (B + B_r) + [R_m (1 - B^2 B_s^{-2})]^{-1},$$
(15)

где B_r , B_s — остаточная индукция и индукция насыщения, d — толщина ленты, из которой навит сердечник, σ — электропроводность ферромагнетика, R_m — постоянная, имеющая размерность om/m, величина; R_m зависит от марки материала. Первый член в правой части характеризует действие вихревых токов, для ферритов он равен нулю. Второй член обусловлен магнитной вязкостью и имеет место как для ферритов, так и для металлических ферромагнетиков.

Расчеты и эксперименты показывают, что для металлических сердечников первым членом можно пренебречь при толщине ленты меньше 5 мкм, а вторым — при толщине ленты больше 30—40 мкм. В ЛИУ используются ленты толщиной 10—20 мкм: так как применение ленты тоньше 5 мкм встречает технологические трудности, а стоимость ее сравнительно высока. При толщине же ленты больше 20 мкм падает к. п. д. и ухудшается использование материала ³⁸.

Проинтегрировав (14) по времени, получаем

$$\int_{0}^{t} [H(t) - H_{0}] dt = \int_{B_{\text{Hav}}}^{B(t)} g(B) dB.$$
 (16)

Интеграл в левой части называется импульсом поля, и при полном перемагничивании его значение не зависит от длительности и формы перемагничивающего напряжения и тока, так как

$$\int_{0}^{\tau} [H(t) - H_{0}] dt = \int_{-B_{s}}^{+B_{s}} g(B) dB = g_{1}(+B_{s}) - g_{1}(-B_{s}) = S_{\omega},$$

где т — длительность импульса при полном перемагничивании. Импульс поля при полном перемагничивании называется коэффициентом переключения и представляет собой количество электричества, отнесенное к единице длины сердечника и необходимое для его полного перемагничивания.

После интегрирования (16) с учетом (15) получаем выражение для импульса поля

$$\int_{B_{\text{Hay}}=-B_{r}}^{B(t)} g(B) \, dB = \frac{\sigma d^{2}}{16B_{r}} \left[B(t) + B_{r} \right]^{2} + \frac{B_{s}}{R_{m}} \left[\operatorname{arcth} \frac{B_{r}}{B_{s}} + \operatorname{arcth} \frac{B(t)}{B_{s}} \right].$$
(17)

Наклон кривых перемагничивания резко изменяется при $B > 0.75B_s$. Поэтому обычно нецелесообразно перемагничивать сердечник до $B > B_r$. Принимая во внимание то, что в интервале $-B_r \leq B \leq B_r$ функцию arcth можно приближенно представить линейной функцией, из (17) получаем импульс поля

$$Q(\lambda) \approx (B_r \sigma d^2/4) \lambda^2 + (2B_s/R_m) \operatorname{arcth} (B_r/B_s) \cdot \lambda,$$

где $\lambda = \Delta B(t)/2B_r$. При $\lambda = 1$ из (17) следует

$$S_{\omega}=S_{\omega e}+S_{\omega 0},$$

где $S_{\omega e}$ — составляющая коэффициента переключения, обусловленная действием вихревых токов, а $S_{\omega 0}$ — обусловленная действием вязкости. Далее,

$$Q(\lambda) = S_{\omega e} \lambda^2 + S_{\omega 0} \lambda. \tag{18}$$

Продифференцировав (18) по t, с учетом того, что при прямоугольном импульсе напряжения $d\lambda/dt = 1/\tau$, получаем

$$H(t) = H_0 + (S_{\omega 0}/\tau) + (S_{\omega e}/B_r) (\Delta B(t)/\tau).$$
(19)

Видно, что с точностью до принятых допущений динамическая петля гистерезиса расширяется за счет поля старта и магнитной вязкости и имеет наклон, обусловленный вихревыми токами. В табл. I приведены расчет-

Таблица I

	Э,ЭА, ЭАА	65HII	45HII, 50HII	79HM, 79HMA	80HXC	42HC	38HC, 50HXC	Карбо- ниль- ное железо	
Электропро- водность, 10 ⁻⁶ 1/ом • м	10	4	2,22	1,8	1,58	1,17	1,17	0,18	
Перепад ин- дукции, тл	4	2,5	2,8	1,4	1,3	1,8	1,8	0,5	
Толщина ленты, 20 мкм 30 50 100	$\begin{array}{c c} 50\\ 130\\ 500\\ 2000\\ 4500\\ 12500\\ 50000 \end{array}$	$ \begin{array}{c c} 10\\ 30\\ 130\\ 500\\ 1130\\ 3120\\ 12500 \end{array} $	10 20 80 310 700 1940 7780	$\begin{array}{c} - \\ 10 \\ 30 \\ 130 \\ 280 \\ 790 \\ 3150 \end{array}$	$\begin{array}{c} - \\ 10 \\ 30 \\ 100 \\ 230 \\ 640 \\ 2550 \end{array}.$	$ \begin{array}{c} - \\ 10 \\ 30 \\ 110 \\ 240 \\ 660 \\ 2630 \end{array} $	$\begin{array}{c} - \\ 10 \\ 30 \\ 100 \\ 230 \\ 630 \\ 2500 \end{array}$	$ \begin{array}{c} - \\ - \\ - \\ 10 \\ 30 \\ 110 \end{array} $	$\left.\right\} S_{\omega e}$

Значение коэффициента переключения S we (мккул/м) для ряда сплавов

Таблица II

Характеристики наиболее употребительных магнитомягких материалов

Марка сплава	Толщина пенты d, мкм	Остаточная индукция В _г , тл	Коэрцитивная сила Н _с , а/м	Поле старта H ₀ , а/м	Полный коэф- фициент пере- ключения S ₀₀ , мккул/м
50НП 34НКМП 79НМ	$ \begin{array}{c} 5 \\ 10 \\ 20 \\ 5 \\ 10 \\ 3 \\ 5 \\ 10 \\ 10 \\ \end{array} $	1,4 1,4 1,3 1,5 1,45 0,7 0,8 -	$\begin{array}{c} 40\\ 28\\ 20\\ 24\\ 16\\ 12\\ 8\\ -\end{array}$	$\begin{array}{r} 110 - 120 \\ 75 - 100 \\ 55 \\ 145 \\ 130 \\ 24 \\ 20 \\ 40 \end{array}$	$ \begin{array}{c c} 110\\ 160\\ 330\\ 80\\ 145\\ 32\\ 48\\ 40\\ \end{array} $

ные значения $S_{\omega e}$ для наиболее употребительных материалов ³⁹. В табл. II указаны также измеренные значения полного коэффициента переключения ³⁵.

Реальная кривая перемагничивания несколько отличается от (19), и точные значения перемагничивающего поля должны находиться по экспериментальным характеристикам ^{40,41}. Нелинейный вид характеристики перемагничивания усложняет аналитическое рассмотрение процессов в индукционной системе. Эквивалентная схема элемента индукционной

Рис. 7. Эквивалентная схема индуктора.

системы (индуктора) показана на рис. 7³⁴. Схема содержит генератор тока намагничивания *i*_м

$$i_{\rm M}(t) = \pi D_{\rm cp} H(t).$$
 (20)

Влияние распределенной емкости между индукторами, т. е. фактически между первичной и вторичной обмотками, и между сердечником и первичной обмоткой учитывается введением в

схему эквивалентной емкости C_{9} . Наличие потока рассеяния между обмотками учитывается введением в схему индуктивности рассеяния L_{p} . Влиянием активного сопротивления обмоток в ЛИУ, как правило, можно пренебречь, и в схеме оно не учитывается. Ток пучка заряженных частиц может быть представлен генератором тока I_{n} , величина которого в общем случае постоянна только на плоской части импульса и меняется на фронте и спаде. Для ориентировочных расчетов при длительности импульса $\tau_{n} \ge 0.5$ мксек возможно использование метода построения эквивалентной схемы, принятого для импульсных трансформаторов ^{42,43}.

Потери энергии в сердечнике определяются

$$W_{\rm M} = \int_0^t u i_{\rm M} \, dt. \tag{21}$$

Из (21) с учетом (14) и (20) получаем

$$W_{\rm M} = VH_0\Delta B + (2VB_s/\tau_{\rm M}) (S_{\omega 0}\lambda^2 + S_{\omega e}\lambda^3).$$

Величина

$$W_{\rm M, 0} = V H_0 \Delta B$$

пропорциональна накапливаемой в сердечнике энергии, которая, вообще говоря, может быть использована вторично, но в ЛИУ это пока не делается. Здесь V — объем сердечника; предполагается, что материал с ППГ и $B_{r} \approx B_{s}$.

Второе слагаемое

$$W_{\rm M, \ \pi} = (2VB_s/\tau_{\rm H}) \left(S_{\omega 0}\lambda^2 + S_{\omega c}\lambda^3\right)$$

представляет динамические потери на вихревые токи и вязкость. При $\tau_{\rm u} < 0.3$ мксек для обычно используемых в ЛИУ материалов величиной $W_{\rm M, 0}$ можно пренебречь по сравнению с $W_{\rm M, q}$.

Величина $W_{\rm M, \ I}$ всегда пропорциональна объему сердечника и обратно пропорциональна времени его перемагничивания. Зависимость от перепада индукции ΔB носит более сложный характер и определяется соотношением между $S_{\omega 0}$ и $S_{\omega e}$. Величина $S_{\omega 0}$ является характеристикой самого материала и не зависит от толщины проката. Величина же $S_{\omega e}$ пропорциональна квадрату толщины ленты. При малой толщине ленты <5 мкм ($S_{\omega e} \ll S_{\omega 0}$), а также для ферритов величина $W_{\rm M, \ I}$ пропорциональна ΔB^2 . Если же преобладают потери на вихревые токи ($S_{\omega e} \gg S_{\omega 0}$), то энергияпотерь пропорциональна ΔB^3 .

РЕФЕРАТЫ ПУБЛИКУЕМЫХ СТАТЕЙ

535.343

Двухфотонное поглощение и спектроскопия. Бредихин В.И., Галаиин М. Д., Генкин В. Н. «Успехи физических наук», 1973 г., т. 110, вып. 1, 3-43.

Обзор посвящен теоретическим и экспериментальным исследованиям двухфотонного поглощения в различных средах и его роли в спектроскопии молекул, молекулярных кристаллов и полупроводников. В гл. 2 проведен общий анализ приближенного описания (при учете двух или нескольких уровней или зон) двухквантовых переходов. Показано, что при рассмотрении двухквантового поглощения удобнее пользовать-ся энергией взаимодействия с полем Е в виде (dE), где d — дипольный момент. В гл. 3 описана экспериментальная методика, применяемая при измерениях величины и спектров двухфотонного поглощения, и проанализпрованы особенности эксперимента по двухфотонному поглощению в разных средах. В гл. 4 обсуждается характер двухфотонных спектров молекул и молекулярных кристаллов. Показано, что двухквантовые переходы имеют электропно-колебательную природу. Проведено детальное сравнение излагаемой теории с имеющимся в литературе экспериментом. В последней главе обсуждается двухфотонное поглощение в полупроводниковых и понных кристаллах. Проводится срависние теории с экспериментом. Показано на основе эксперимен-тальных данных, что двухфотонное поглощение в полупроводниках A_{II}B_{VI}. A_{III}B_V и АнуВну может быть в основных чертах описано единым образом в двухзонной модели. Таблица 1, пллюстраций 14, библиографических ссылок 182 (195 пазв.).

539.12.01

Электродинамические процессы во встречных пучках частиц высоких энергий.

Горшков В. Г. «Успехи физических наук». 1973 г., т. 110, вын. 1, 45—75. В статье дана классификация процессов квантовой электродинамики при высокой энергии. Классификация основана не на теории возмущений, а на характере асимптотического поведения амплитуд и сечений при высокой энергии. Описан простой рецепт для нахождения асимптотики амплитуд различных процессов по виду промежуточных состояний в перекрестном канале. Приведен обзор теоретических результатов для процессов с сечениями, не падающими с ростом энергии. Путем суммирования главных членов рядов теории возмущений получены дважды логарифмические асимптотики процессов с сечениями, падающими с ростом энергии.

Таблиц 2, иллюстраций 15, библиографических ссылок 57 (72 назв.).

[539.125/128.004 + 517.391] (023)

Применение тяжелых заряженных частиц высокой энергии в медицине. Голь-дин Л. Л., Джелепов В. П., Ломанов М. Ф., Савченко О. В., Хо-рошков В. С. «Успехи физических наук», 1973 г., т. 110, выш. 1, 77—99.

В статье рассматривается биологическое действие излучения, методы и техника облучения тяжелыми заряженными частицами, преимущества, которые могут быть получены при использовании тяжелых заряженных частиц в лучевой терапии и радионейрохирургии Обсуждаются особенности дозного распределения и биологического действия различных излучений. Приводятся оценки перспектив использования тяжелых частиц в медицине и сводка мировых данных по выполненным исследованиям.

Таблиц 4, иллюстраций 15, библиографических ссылок 48.

621.384.62

Линейные индукционные ускорители — новые генераторы мощных пучков релятивистских электронов. В ахрушин Ю. П., Матора И. М. «Успехи физи-ческих наук», 1973 г., т. 110, вып. 1, 117—137.

Эксплуатация первых действующих линейных индукционных ускорителей (ЛИУ) в США и СССР показала, что метод, на котором основывается работа этих ускорптелей, позволяет при к. п. д. в десятки процептов получать релятивистские пучки электронов в сотни и тысячи ампер при хорошей надежности и повторяемости результатов. В ряде лабораторий ведутся интенсивные разработки ускорителей этого типа, развивается их теория, методы расчета, происходит совершенствование конструкции. В данном обзоре систематизируются и обобщаются результаты опубликованных работ в этой области. Рассматривается теория ЛИУ, форма ускоряющего поля, удержание попе-речных размеров сильноточного пучка. Приводятся параметры действующих и ссоружаемых ускорителей и кратко описывается конструкция основных уздов.

Таблиц 3, иллюстраций 12, библиографических ссылок 67.

539.184

Рассеяние и излучение квантовой системы в сильной электромагнитной волне. Зельдович Я.Б. «Успехи физических наук», 1973 г., т. 110, вып. 1, 139-151. Рассмотрен способ последовательного рассмотрения квантовомеханической системы, находящейся в периодически зависящем от времени потенциале, например в поле сильной классической электромагнитной волны. Рассмотрено излучение такой системы, в частности смещение основной частоты ω' и появление сателлитов $\omega' \pm h \omega$. Иллюстрация 1, библиографических ссылок 18 (28 пазв.).

ВНИМАНИЮ ЧИТАТЕЛЕЙ!

В июльском номере «Успехов физических наук» (том 110, вып. 3) будут опубликованы статьи:

Монографические обзоры

А. В. Тимофеев, Циклотронные колебания плазмы в неоднородном магнитном поле.

Б. Л. И о ф ф е, Слабые взаимодействия на малых расстояниях.

Физика наших дней

Дж. Никс, Сверхтяжелые ядра. Д. Киф, Ускорители коллективного действия.

В августовском номере УФН (том 110, вып. 4) предполагается опубликовать статьи:

Монографические обзоры

Д. И. Блохинцев, Геометрия и физика.

- В. И. Кляцкин, В. И. Татарский, Приближение диффузионного случайного процесса в некоторых нестационарных статистических задачах физики.
- Ю. Л. Климонтович, Кинетические уравнения для неидеального газа и неидеальной плазмы.
- Г. Б. Ж данов, Поиски трансурановых элементов (Методы, результаты и перспективы).

Физика наших дней

Г. Шноппер, Ж. Делвай, Рентгеновское небо.

Новые приборы и методы измерений

А. Е. Лукьянов, Г. В. Спивак, Р. С. Гвоздовер, Зеркальная электронная микроскопия.

Июльский (августовский) выпуск журнала УФН можно приобрести, подписавшись на него до 1 июня (соответственно до 1 июля) в любом отделении связи или оставив лично заказ до 20 июня (до 20 июля) в магазинах «Академкнига» по адресу: Москва, № 1 — ул. Горького, 8, № 2 ул. Вавилова, 55/7; Ленинград, Литейный просп., 57; Новосибирск, Красный просп., 51; Киев, ул. Ленина, 42; Баку, ул. Джапаридзе, 13; Алма - Ата, ул. Фурманова, 91/97. Ввиду того, что потери в сердечнике пропорциональны его объему, а сообщаемое частицам ускорение — площади его поперечного сечения, при необходимости получить большой к. п. д. ускорителя при малом весе выгодно снижать до минимума диаметр сердечников, а их осевой размер соответственно увеличивать ²⁴.

Величина $\dot{W}_{\rm m}/(W_{\rm m} + W_{\rm M, 0} + W_{\rm M, d})$, представляющая собой отношение энергии, передаваемой пучку, к полной энергии, затрачиваемой на перемагничивание сердечников, является основной составляющей общего к. п. д. ускорителя. Полученные экспериментальные данные ^{40,41} позволяют оценить эту величину. Она имеет значения 0,12; 0,6 и 0,95 при длительности импульса 500 *нсек* и токах пучка 100, 1000 и 10 000 *а* соответственно и при использовании ленты из сплава 50НП толщиной 0,01 *мм*. При длительности импульса 50 *нсек* и тех же значениях тока пучка величина отношения составляет 0,02; 0,15 и 0,6.

К. п. д. ЛИУ растет с увеличением длительности импульса и увеличением тока ускоряемого пучка. Последнее обстоятельство позволяет сохранять высокий к. п. д. даже при малых значениях длительности импульса.

Следует обратить внимание на то, что средняя мощность в пучке ЛИУ достигает сотен киловатт и для сохранения высокого к. п. д., обеспечиваемого индукционной системой, необходимо стремиться к полной передаче энергии, запасенной в накопителе, в индукционную систему. Исключение составляют лабораторные установки ²³. С целью оптимальной передачи энергии в импульсной системе используют либо неоднородные искусственные линии ^{13,44}, теория которых разработана ⁴⁵, либо однородные линии в совокупности с системой коррекции ⁴⁶. Надежность этих систем в значительной степени определяется качеством входящих в систему конденсаторов. Хорошо зарекомендовали себя бумаго-пленочные импульсные конденсаторы, обладающие высокой надежностью при работе в формирующих линиях.

В качестве коммутаторов используют разрядники 15,22 и импульсные водородные тиратроны ^{13,44,46}. Основным недостатком разрядника является его ограниченный срок службы. Обычно разрядники теряют работоспособность после 10⁴—10⁶ рабочих циклов. Систему с разрядником можно использовать в лабораторных установках, работающих в режиме одиночных посылок. Импульсные водородные тиратроны являются надежным, долговечным прибором, обладают высокой стабильностью параметров, позволяют коммутировать токи 10-15 ка при высокой частоте посылок. Они предпочтительны в ускорителях с длительностью импульса больше 100 нсек. При длительности импульса в десятки наносекунд следует иметь В ВИДУ, ЧТО, КАК ПОКАЗАЛИ ЭКСПЕРИМЕНТЫ, ВРЕМЯ КОММУТАЦИИ ВОЛОРОДНЫХ тиратронов составляет 30-50 нсек и в импульсной системе необходимо предусматривать элементы для обострения импульса. Одно из возможных решений основано на использовании свойств ударных электромагнитных волн ^{23,47}. Ударные волны возникают при распространении электромагнитных волн в среде, магнитные свойства которой и, в частности, магнитная проницаемость зависят от напряженности поля Н распространяющейся волны. Подходящей для этого средой является феррит, в котором магнитная проницаемость убывает с ростом Н и, следовательно, вершина импульса распространяется с большей скоростью, чем основание. Таким способом фронт импульса может быть сделан меньшим 10⁻⁹ сек, но такие короткие фронты трудно реализовать, так как наличие паразитных L_{p} и C_{a} в индукционной системе не позволяет сделать их короче 5—10 нсек ³⁴.

Как указывалось выше, с помощью системы размагничивания сердечники переводятся в состояние отрицательного насыщения. Для материалов с ППГ размагничивающее поле после перевода сердечника в состояние насыщения может быть уменьшено до нуля. Этому случаю соответствует использование для размагничивания импульсов тока обратной полярности ⁴.

В частности, это может быть и полуволна синусоиды ⁵. При использовании материалов с малой прямоугольностью, например ферритов никель-цинковой группы, перед подачей рабочего импульса сердечник должен находиться под действием размагничивающего поля, чтобы иметь наибольшее приращение индукции.

5. УДЕРЖАНИЕ ПОПЕРЕЧНЫХ РАЗМЕРОВ ПУЧКА

Без эффективного решения проблемы удержания радиального размера пучка надежная работа ЛИУ, особенно при частоте следования импульсов в несколько герц и выше, невозможна.

Так, в ЛИУ-30¹³ энергия пучка каждого импульса будет составлять 4 кдж, и естественно, что при частоте 50 ги потери пучка даже в несколько

Рис. 8. Соотношение между током и начальной энергией пучка электронов, при которых пучок увеличивает свой диаметр в 1,5 раза на длине 100 см.

 $r_{\rm H} = 1.5$ см; 1 — ускоряющего поля нет, 2 — ускоряющее поле равно 10 кв/см. процентов не только способны вызвать разрушение прилежащих к пучку узлов ускорителя, но и будут вызывать недопустимо интенсивное их активирование (энергия электронов на выходе—30 *Мэв*).

Основная трудность удержания состоит в сильном кулоновском расталкивании интенсивного пучка электронов. На рис. 8 показано соотношение между током пучка и его начальной энергией, при которых пучок диаметром 3 см увеличивает свой размер в 1,5 раза на длине 100 см ⁴⁸.

Помимо сил пространственного заряда на пучок оказывают воздействие поля рассеяния земли, которые имеют место в промежутках между элементами индукционной системы ⁴⁹, и поля рассеяния.

В ускорителе для «Астрона» задача удержания размеров и положения пучка решается применением коротких магнитных соленоидов, размещенных между ускорительными секциями и имеющих срав-

нительно большую апертуру (от 150 до 500 мм) в сочетании с системой корректирующих катушек ⁵⁰. В этой системе наилучшее прохождение пучка составляло 90%, а хорошим считалось 75%.

При реконструкции ускорителя с целью доведения тока ускоряемого пучка до 1000 *а* предусмотрено сокращение длины ускорительных секций вдвое, т. е. до 50 см, и установка вдоль тракта пучка 29 фокусирующих соленоидов и 9 корректирующих магнитов. Установлены также датчики положения и тока пучка. Место установки соленоидов и корректирующих магнитов определялось путем расчета на вычислительной машине. При расчете было принято, что вдоль тракта ускорения существует магнитное поле с индукцией $0.45 \cdot 10^{-4} m \Lambda^{51}$. Однако при запуске этого ускорителя выяснилось, что ток пучка не может быть получен бо́льшим 500 *а* из-за возникающей нестабильности ¹⁷. В этой связи рассмотрена возможность появления нестабильностей, обусловленных генерацией высокочастотного электромагнитного поля и взаимодействием пучка с зарядами и токами изображения. В работе ⁵² показывается, что интенсивные электронные пучки возбуждают электромагнитное поле, которое имеет поперечную

линейные индукционные ускорители

E 1 1 1

к оси составляющую магнитного поля. Под его действием пучок отклоняется от оси ускорителя и попадает на стенки камеры. В работе ⁵³ развивается теория взаимодействия сильноточного электронного пучка с зарядами и токами изображения. Сила изображения имеет вид

$$F_{\mu 3} = q \left(2I_{\rm n}/\beta^2 a \right) r,$$

где, $q = [1 - (a/a_*)^2\beta^2]$, a — внутренний радиус электродов трубки, a_* — внутренний радиус сердечника индуктора.

Учет силы изображения при расчете динамики сильноточного пучка приводит к дополнительным условиям, накладываемым на расстояние между линзами, соотношение между размерами пучка и индукционной системы. В частности, в работе ⁵³ указывается, что апертура трубки должна в 4—8 раз превышать размеры пучка.

Задача удержания размеров пучка облегчается при использовании непрерывного осесимметричного магнитного поля ⁵⁴. Действительно, под действием магнитного поля, перпендикулярного оси, пучок отклоняется на величину Δr_1 , определяемую выражением ²⁹

$$\Delta r_1 = B \mathcal{L}^2 / m_0 c \gamma, \tag{22}$$

где \mathscr{L} — расстояние, на котором определяется отклонение пучка, $\gamma = (1 - \beta^2)^{-1/2}$. В случае же прохождения пучка в непрерывном продольном магнитном поле наличие перпендикулярной оси составляющей поля приводит к наклону оси и отклонение пучка от оси ускорителя будет определяться выражением

$$\Delta r_2 = B\mathcal{L}/B\varphi,\tag{23}$$

где B_{Φ} — поле, необходимое для фокусировки пучка ⁵⁴:

$$B_{\Phi} = (m_0/r_{\pi}) \; (2I_{\pi}/\pi\epsilon_0 ep)^{1/2}; \tag{24}$$

здесь *р* — импульс электронов пучка, *r*_п — равновесный радиус пучка. Из (22) — (24) получаем

$$\Delta r_{2} / \Delta r_{i} = 46 \left(r_{\pi} / \mathcal{L} \right) \gamma^{3/2} / I_{\pi}^{1/2}.$$
⁽²⁵⁾

Анализ (25) показывает, что в начальной части ускорения, наиболее тяжелой с точки зрения удержания размеров пучка, предельный ток в системе с непрерывным полем в 5—10 раз больше, чем при использовании коротких соленоидов. Оценки показывают также, что в случае продольного магнитного поля уменьшается отклонение пучка под действием заряда и тока изображения.

Уравнение, определяющее форму ускоряемого осесимметричного пучка в продольном магнитном поле во время следования рабочей части импульса, имеет вид ⁵⁴

$$p\left(m_{0}^{2}c^{2}+p^{2}\right)\frac{d^{2}r}{dp^{2}}+p^{2}\frac{dr}{dp}+\frac{1}{2}r\left(\frac{Bc}{E}\right)^{2}p=\frac{I_{\Pi}m_{0}^{2}c^{2}}{2\pi\varepsilon_{0}eE^{2}}\frac{1}{r}.$$
(26)

При выводе этого уравнения предполагается, что потенциал, обусловленный пространственным зарядом пучка, не влияет на продольное движение частиц, ускоряющее поле имеет лишь продольную составляющую, магнитное поле на катоде равно нулю (поток Бриллюэна), пучок ламинарен, выполняются условия параксиальности, а эффекты, имеющие место на фронте и спаде импульса, игнорируются. Если поле на катоде не равно нулю, то в (26) входит член, обусловленный начальным замагничиванием пучка ⁵⁵. В ЛИУ обычно магнитное поле на катоде равно нулю. Поскольку в этом случае величина его наименьшая, в дальнейшем будем пользоваться уравнением в форме (26). Член в правой части (26) соответствует расталкивающей силе, а последний член в левой части — силе, стягивающей пучок к оси. Поскольку сила, вызывающая расплывание пучка, обратно пропорциональна, а сила, стягивающая пучок, прямо пропорциональна радиусу, для каждого p(z) должно существовать равновесное значение $r = r_1(p)$, при котором сила, действующая на периферийную частицу пучка, равна нулю. Из (26) имеем следуюшее уравнение этой равновесной траектории:

$$r_1(p) = (m_0/B_{\phi}) (2I_{\pi}/\pi\epsilon_0 ep)^{1/2}$$
.

Если периферийный электрон находится на равновесной траектории, то радиус его монотонно убывает обратно пропорционально корню квадратному из *p*. При небольших отклонениях начальных условий от равновесных пучок испытывает пульсации, период которых увеличивается по мере роста энергии. Для того чтобы величина пульсаций оставалась малой, необходимо выполнение условия

$2 (Bc/E)^2 \gg 1.$

Так как расталкивающая сила пространственного заряда убывает как $1/\gamma^2$, при энергии пучка 3-5~M эв можно отказаться от использования непрерывного магнитного поля и удержание радиальных размеров пучка возможно с помощью коротких магнитных соленоидов, расположенных между секциями индукционной системы ⁵⁶. Местоположение соленоидов определяется путем численного решения уравнения (26) на участках между двумя соседними соленоидами при различных значениях сходимости пучка. С помощью такого расчета выбирается траектория с отношением $r_{\rm max}/r_{\rm min}$, соответствующим устойчивому движению пучка по отношению к отклонениям его начальных параметров от равновесных ⁵⁷. Анализ поведения пучка при отклонениях параметров фокусирующей системы от номинальных показывает, что допуски на отклонение параметров не являются жесткими ⁵⁶.

Как отмечалось выше, в перечисленных работах анализ динамики пучка ведется в предположении ламинарности электронного потока и выполнения условий параксиальности. Это предположение в достаточной степени справедливо при равномерном распределении плотности заряда по сечению пучка. Экспериментальное исследование параметров электронного пучка, ускоряемого в ЛИУ, показывает, что распределение плотности заряда по сечению может быть неравномерным ⁵⁸. Сила кулоновского расталкивания и суммарная сила, действующие на электроны, в этом случае существенно нелинейны. Эта нелинейность приводит к пересечению траекторий и к образованию неламинарной (многоскоростной) структуры потока электронов. Анализ неламинарного электронного потока показывает, что распределение плотности заряда по сечению пучка не остается постоянным в различных сечениях и максимальная плотность заряда может иметь место на границе пучка ⁵⁹.

Возможным путем уменьшения действия пространственного заряда ускоряемого в ЛИУ пучка является его компенсация ионами остаточного газа. При давлении остаточного газа меньше 10⁻³ тор время компенсации больше длительности импульса ускоряющего напряжения, что ведет к необходимости предварительной ионизации остаточного газа, например, электронным пучком ²⁸ или высокочастотным полем ¹⁹.

Последние исследования плазменного бетатрона ⁶⁰ показывают, что при ускорении возникают пучково-плазменные взаимодействия, которые приводят к потере трети энергии пучка и расширению энергетического спектра ускоренных электронов. Однако привлекательно то, что величина тока даже при небольшой энергии 40 кэв достигает 1000 а. Использование плазмы со спадом ее плотности по длине ускорителя приводит к резкому уменьшению эффективности пучково-плазменного взаимодействия. Потери пучка уменьшаются, а спектр энергий электронов становится уже.

линейные индукционные ускорители

6. ПАРАМЕТРЫ УСКОРИТЕЛЕЙ. КОНСТРУКЦИЯ ОСНОВНЫХ СИСТЕМ

Основные параметры действующих или сооружаемых ЛИУ приведены в табл. III. В скобках указаны значения параметров, при которых

Таблица III

Наименование ускорителя	Место сооружения	Энер- гия пучка, <i>Мэв</i>	Ток пучка, а	Длительность плоской части импульса, нсек	Частота посылок, имп/сек	Раз- брос по энер- гии, %	Эмит- танс л, см · мрад
Инжектор «Астро- на» (до рекон- струкции) 4, 17	Ливермор, США	3,7	350	300	0—60 (5)	<3	50
ЛИУ-3000 5	Дубна, СССР	3 (1,8)	200	350	0-25 (<1)	-	—
Инжектор «Аст- рона» (после реконструк- ции) 17, 51	Ливермор, США	4,2	800	300	0—60 (5)	<2	25
ЛИУ-30/250 (соору- жается) 12, 13	Дубна, СССР	30	250	500	0-50	<3	-
Инжектор ERA 14, 15, 61	Беркли, США	4,25	500	45	<1	<0,5	<70
СИЛУНД (соору- жается) ²³	Дубна, СССР	3	2000	20	0 50	< 2	
Плазменный бета- трон 19, 20, 60	Харьков, СССР	0,05— 0,1	500— 1000		Одиночные	Широ- кий	
Безжелезный ЛИУ ²²	Москва, СССР	2	2000	70 (полу- синусоиды)	»		-

Параметры	линейных	инлукционных	ускорителей
TTO DOTATO T DATE	AT THE CASE TO THE	TI - Charles of the second sec	

обычно работает ускоритель. Кроме этих, несколько установок находится в стадии проектирования. Все установки, за исключением плазменного бетатрона, служат инжекторами, и качество пучка для них имеет первостепенное значение. Плазменный бетатрон является исследовательской лабораторной установкой, предназначенной для изучения ускорения электронного пучка в плазме. Все установки, перечисленные в табл. III, характеризуются импульсным током пучка, на 2—3 порядка превышающим ток в линейных электронных ускорителях на бегущей волне ⁶². При существующем уровне техники можно полагать, что ускоренный ток в ЛИУ может быть доведен до десятков килоампер. Большинство существующих ЛИУ предназначено для изучения нового коллективного метода ускорения, их энергия определяется этой задачей.

Однако вполне реальны ускорители на значительно бо́льшие энергии. Так, находится в стадии сооружения ускоритель на 30 Мэв¹³. Рассматривается проект ЛИУ для ускорения до энергии 1,6 Гэв электронного кольца. Средняя напряженность ускоряющего поля 5 Мэв/м, а длина 320 м¹⁵. Максимальная частота посылок импульсов пока невелика. Она определяется качеством проведения пучка вдоль ускорителя и характеристиками коммутирующих элементов в импульсной системе питания. При использовании современных импульсных водородных тиратронов, в принципе, можно достигать 1000 имп/сек.

Достоинством ЛИУ является возможность получения пучков с хорошим качеством. Разброс по энергии может быть сделан менее 0,5%, что обусловлено видеоимпульсным режимом работы ускорителя. При этом пучок имеет малый эмиттанс. Высокий к. п. д. в сочетании с простотой эксплуатации, надежностью в широком дианазоне изменений параметров внешней среды делает весьма перспективным использование этих ускорителей также в промышленности и геологии.

В индукционной системе, как правило, используются сердечники из ферромагнитного материала, что позволяет значительно уменышить ток в первичной обмотке индукторов по сравнению с так называемым «безжелезным» вариантом ускорителя. Так, например, для сердечников, выполненных из ленты сплава 50НП толщиной 20 и 10 мкм, среднее значение $\mu = \Delta B/\mu_0 H$ составляет соответственно 2000 и 4000 при длительности импульса $\tau_{0.95} = 0.5$ мксек⁶³. Это в свою очередь дает возможность довести к. п. д. ускорителя до столь высоких значений, указанных выше.

Рис. 9. Конструкция индуктора ЛИУ-3000 (размеры — в мм). 1 — сердечник, 2 — изоляционные шайбы, 3 — первичная обмотка, 4 — фокусирующая катушка.

Индукционная система выполняется из секций, размеры которых определяются требованиями к фокусирующей системе, вакуумной системе и чисто конструктивными соображениями. В интервалах между секциями устанавливаются фокусирующие линзы, патрубки для подсоединения вакуумных насосов и размещения диагностической аппаратуры.

Секции в свою очередь состоят из ряда одинаковых элементов (индукторов). На рис. 9 показана конструкция индуктора ускорителя ЛИУ-3000⁵. Сердечник индуктора наматывается на специальном станке, причем одновременно с намоткой методом катофореза наносится изоляция из окиси магния. После намотки сердечник отжигается в вакуумной печи и затем помещается в изоляционные шайбы, выполненные из слюдотерма. Изоляционные шайбы и слой каучука обеспечивают необходимую электрическую изоляцию сердечника, а также предохраняют его от механических и тепловых напряжений, что способствует сохранению магнитных характеристик в процессе изготовления, транспортировки и эксплуатации индуктора.

Возбуждающая обмотка выполнена в виде тора прямоугольного сечения (по форме сердечника). Все детали индуктора скреплены эпоксидным компаундом, состав которого специально подобран. Конструкция индукторов дает возможность осуществить вариант ускорителя без вакуумной трубки ⁶⁴. Несколько отличную конструкцию индуктора предполагается применить в ускорителе ЛИУ-30/250. Фотография этого индуктора приведена на рис. 10¹³. Этот индуктор должен работать в условиях сильной нейтронной радиации, и он выполняется без применения эпоксидного компаунда, а используется только слюдотерм, обладающий высокой радиационной стойкостью. Кроме того, сердечник выполнен из двух половин, размещенных в изоляционных шайбах из слюдотерма. Обе половинки поджимаются к охлаждаемому водой корпусу. Этим

достигается уменьшение напряжения между витками первичной обмотки и сердечником до половины первичного напряжения, что, очевидно, ослабляет требования к изоляции, и тепловой поток от сердечника направляется прямо к корпусу, минуя изоляцию, что также облегчает условия ее работы.

На рис. 11 показано поперечное сечение секции инжектора «Астрона» после реконструкции ¹⁷. Она представляет собой набор сердечников, охватываемых первичными и вторичными витками. Внутри секции монтируется секционированная ускорительная трубка, между электродами которой существует ускоряющее электрическое поле, и во внутренней ее полости поддерживается необходимый для существования пучка вакуум, обычно 10⁻⁶—10⁻⁵ mop.

В связи с относительно короткой длительностью импульса ускоряющего напряжения в ускорителе

Рис. 10. Фотография макета индуктора ЛИУ-30/250.

СИЛУНД нашли возможным использовать для сердечников феррит типа 300HH²³. В этом случае секция также набирается из индукторов но, поскольку феррит является диэлектриком, отпадает необходимость в специальной изоляции витков от сердечника.

С использованием специально подобранных ферритов выполнены также секции инжектора ERA, но конструкция этих секций существенно отличается ⁶¹. Поперечное сечение этой секции показано на рис. 12. По существу, секция в этом случае представляет собой один индуктор с напряжением на ускоряющем зазоре 250 кэв. Внутренняя полость его заполнена ферритом и трансформаторным маслом, с помощью которого обеспечивается необходимая электрическая прочность. Непосредственно с секцией стыкуется формирующая линия. При такой конструкции отпадает необходимость в специальной ускорительной трубке и существенно повышается значение импеданса системы, что облегчает формирование импульса.

Однако возрастают трудности, обусловленные повышенным нашряжением, и, естественно, снижается надежность работы индукционной системы. Кроме того, в качестве коммутирующего элемента в импульсной системе не может быть применен импульсный водородный тиратрон, ибо у разработанных тиратронов анодное напряжение не превышает 80 кв и приходится использовать разрядник и, следовательно, ограничиваться одиночными посылками импульсов. Импульсная система представляет собой двойную формирующую линию типа «Блюмляйн» с воздушным разрядником в качестве коммутирующего элемента. Внутренняя полость формирующей линии заполнена трансформаторным маслом. Проходные изоляторы между воздушным разрядником (давление 10 *атм*) и масляной формирующей линией выполнены из эпоксидного компаунда. Заряд формирующей линии осуществляется от генератора Маркса на время 330 *нсек*. Причем напряжение линии близко к пробойному для разрядника, и если разрядник не поджигается специально, то спустя 100 *нсек* он пробивается самопроизвольно. Такой режим работы разрядника обес-

Рис. 11. Поперечное сечение секции инжектора «Астрона» (размеры — в мм) и — сердечник, 2 — ускорительная трубка.

В другом наносекундном ускорителе типа СИЛУНД в качестве наконителя использованы пленочные импульсные конденсаторы и водородные тиратроны типа ТГИ-1-3000/50 в качестве коммутаторов. Практика показывает, что импульсные водородные тиратроны при длительностях импульса менее 1 *мксек* могут коммутировать токи, в несколько раз превышающие паспортные значения, ^{46,65}. Однако время коммутации составляет несколько десятков наносекунд. Для уменьшения длительности фронта между накопителем и индуктором в этом ускорителе установлена обостряющая система, которая представляет собой коаксиальную линию с ферритом. Коррекция плоской части импульса осуществляется подбором величины и знака начальной намагниченности ферритов в корректирующей линии. В описанной системе удается получить длительность фронта импульса 5 нсек при длительности плоской части 20 нсек.

В ускорителях ЛИУ-3000 и ЛИУ-30/250 длительность импульса составляет 350 и 500 нсек соответственно и использование импульсных водородных тиратронов не требует применения обострителя фронта. Для формирования плоской части импульса используется неоднородная формирующая линия с сосредоточенными параметрами ⁴⁴, закон изменения импеданса которой должным образом согласован с законом изменения импеданса индукционной системы.

При использовании для удержания размеров пучка продольного магнитного поля по внутреннему диаметру индукторов закрепляются катушки, концы от которых проходят с одной стороны индуктора.

Помимо рассмотренных, важным узлом ускорителя является электронная пушка. Конструкцией ее во многом определяется величина тока, качество пучка, надежность работы ускорителя. В источниках высоковольтного питания пушек в ЛИУ, как правило, используются импульсные трансформаторы, выполненные из тех же элементов, что и индукционная система, т. е. из индукторов.

В инжекторе «Астрона» импульсный трансформатор представляет собой секцию, аналогичную по конструкции основной, но несколько большего диаметра ^{4,17}. В центре секции располагаются электроды пушки, с помощью которых создается не только продольная, но и радиальная составляющие электрического поля. Таким образом достигается компенсация расталкивающего действия сил пространственного заряда. Требуемое распределение градиента достигается путем подбора расстояния между электродами и числа сердечников между следующими друг за другом электродами. Пушка ускорителя после реконструкции имеет оксидный катод в форме плоского диска диаметром 17,8 см. Анодное отверстие закрыто сеткой для устранения провала электрического поля.

Вся конструкция устанавливается в бак, через который прокачивается фреон при давлении 2 *атм*. Этим уменьшается корона и отводится тепло от секции. Пушка дает ток 1200 *а* при напряжении 550 *кв*. Это соответствует микропервеансу 2,9.

В ускорителе ЛИУ-30/250 в качестве импульсного трансформатора будет использована секция основного ускорителя, по оси которой проходит металлический стержень, а полость между стержнем и корпусом индукторов заполнена трансформаторным маслом ^{13,66}. Напряжение 300 кв выводится через проходной изолятор и подается на катод электронной пушки. В пушке использован специальный катод с высоким значением удельной эмиссии диаметром 50 мм ⁶⁷. Ток пушки >250 a.

В инжекторе ERA в качестве импульсного трансформатора использованы пять ускорительных секций, состыкованных вместе ⁶¹. По оси секций проходит металлический стержень, заканчивающийся сферическим наконечником. Стержень служит ножкой. На наконечнике располагается автоэмиссионный катод, выполненный из танталовой ленты толщиной 0,012 мм, свернутой в спираль с внешним диаметром 10 мм. Анодное отверстие закрыто сеткой из вольфрамовой проволоки диаметром 0,075 мми со стороной ячейки 3 мм. При напряжении около 1 Me из пушки «вытягивается» ток 1200 *а*. Катод в состоянии выдержать $(3-5)\cdot10^5$ импульсов без разрушения. Другие узлы и системы ЛИУ не отличаются от аналогичных узлов в других ускорителях и специального описания не требуют.

7. ЗАКЛЮЧЕНИЕ

В течение 60-х годов был разработан и создан ряд ЛИУ, предназначенных для проведения исследований в области новых методов ускорения и контролируемого термоядерного синтеза. Опубликовано значительное количество работ по физике и технике ускорителей этого типа. Показано, что в ЛИУ могут быть ускорены пучки с током в сотни и тысячи ампер при малом энергетическом разбросе и хорошем эмиттансе, что делает их весьма привлекательными для физиков-исследователей.

Наряду с этим ЛИУ надежны и просты в эксплуатации, не требуют особых условий внешней среды, обладают высоким к.п.д. Это дает основание надеяться, что наряду со все расширяющимся применением ЛИУ в научных исследованиях они будут использоваться и в промышленности. Например, на базе ЛИУ могут быть созданы легкоподвижные, дешевые и несложные в эксплуатации установки для рентгено-структурного анализа, гамма-каротажа, дефектоскопии, способные работать в полевых или заводских условиях.

Научно-исследовательский институт электрофизической аппаратуры им. Д. В. Ефремова, Ленинград Объединенный институт ядерных исследований, Дубна

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- N. Christofilos, Nucl. Fusion Suppl., pt. 1, 159 (1962).
 В. И. Векслер, АЭ 2, 427 (1957).
 W. A. S. Lamb, IRE Trans. Nucl. Sci. NS-9, 53 (1962).
 N. C. Christofilos et al., Rev. Sci. Instr. 35, 886 (1964) (см. перевод: Приб. науч. иссл. 35 (7),150 (1964)).
 А. И. Альчий, и. Б. 24, 439 (4966).

- Б. А. И. А нацкий и др., АЭ 21, 439 (1966).
 6. А. Воwersy, Elektrische Hochspannungen, В., 1939.
 7. J. W. Beal et al., Plasma Physics and Controlled Nuclear Fusion Research. Conference Proceedings (Novosibirsk, August 1-7, 1968), v. 1, Vienna, IAEA, 1969.

- 1969.
 В. И. Векслер идр., АЭ 24, 317 (1968).
 В. П. Саранцев, Вестн. АН СССР, № 12, 54 (1968).
 V. I. Veksler et al., Proc. of the 6th Intern. Conference on High Energy Accelerators, Cambridge, CEAL-2000, 1967, р. 289.
 В. П. Саранцев идр., Препринт ОИЯИ Р9-5558, Дубна, 1971.
 В. Д. Ананьев идр., Препринт ОИЯИ 13-4392, Дубна, 1969.
 А. I. Апаtsky et al., IEEE Trans. Nucl. Sci. NS-18, 625 (1971).
 D. Кееfe, Part. Accel. 1, 1 (1970).
 Дж. М. Петерсон идр., Труды 2-го Всесоюзного совещания по ускорителям заряженных частиц (Москва, 11—18 ноября 1970 г.), т. 1, М., «Наука», 1972.
 В. К. Гришин, ПТЭ, № 1, 35 (1970).
 J. W. Веаl et al., IEEE Trans. Nucl. Sci. NS-16, 294 (1969).
 В. К. Гришин, В. Г. Сухаревский, Вестн. МГУ, сер. III (Физика. Астрономия) 11, 591 (1970).
- Астрономия) 11, 591 (1970).
- 19. Е. И. Луценко и др., ЖТФ 35, 635 (1965). 20. Н. С. Педенко и др., сборник «Взаимодействие пучков заряженных частиц
- с плазмой», Киев, «Наукова думка», 1965. 21. В. К. Гришин, В. Г. Сухаревский, Вестн. МГУ, сер. III (Физика. Астрономия) 11, 570 (1970).

- Астрономия) 11, 570 (1970). 22. А. И. Павловский и др., АЭ 28, 432 (1970). 23. В. Д. Гитт и др., Препринт ОИЯИ Р9-5601, Дубна, 1971. 24. И. М. Матора, Препринт ОИЯИ Р9-3184, Дубна, 1967. 25. Ю. П. Вахрушин, О. В. Семенов, ЖТФ 38, 1521 (1968). 26. В. Смайт, Электростатика и электродинамика, М., ИЛ, 1954. 27. Ю. П. Вахрушин и др., Препринт ОИЯИ 9-3287-2, Дубна, 1967. 28. Ю. П. Вахрушин, Канд. диссертация (НИИЭФА, Ленинград, 1967). 29. Ю. П. Вахрушин, В. К. Гаген-Торн, Препринт НИИЭФА А-0123, Ленинград, 1971.

- 30. Р. В. Лукин, Радиотехника 2 (4), 46 (1947).
- 31. Я. С. И ц х о к и, Импульсные трансформаторы, М., «Сов. радио», 1950.
- 32. М. М. А й з и н о в, Переходные процессы в элементах радиоустройств, Л., «Морской транспорт», 1955.
- 33. Э. Ф. Зайцев, Радиотехника 23 (6), 59 (1968).
- 34. Л. А. Меерович и др., Магнитные генераторы импульсов, М., «Сов. радио», 1968.
- 35. А. И. Пирогов, Ю. М. Шамаев, Магнитные сердечники с прямоугольной петлей гистерезиса, М., «Энергия», 1964.
- 36. A. Goral, Bull de l'Ac. Polon. Sci., Ser. des Sci. techn. 8, 297 (1960); Electron. Eng. 32, 116 (1960).
- 37. В. Г. Михалев, Тр. МФТИ, вып. 8, 38 (1962).
 38. В. Л. Дятлов, Научн. докл. высш. школы (Электромеханика и автоматика), № 2, 3 (1959).
- 39. М. Г. Витков, Автоматика и телемех. 23, 1686 (1962).
- 40. Н. П. Барштейн и др., Электрон. тех., сер. 9, № 3, 95 (1971).
- 41. А. И. Анацкий и др., Препринт ОИЯИ Р9-6075, Дубна, 1971. 42. А. И. Анацкий и др., Электрофиз. аппаратура (М., Атомиздат), вып. 8, 134 (1969).
- 43. П. В. Букаев, В. П. Саранцев, Препринт ОИЯИ Р9-5129, Дубна, 1970.
- 44. А. И. А на цкий и др., Труды Всесоюзного совещания по ускорителям заряженных частиц (Москва, 9—16 октября 1968 г.), т. 2, М., Атомиздат, 1970.
 45. О. Н. Литвиненко, В. И. Сошников, Теория неоднородных линий и их применение в радиотехнике, М., «Сов. радио», 1964.
 46. W. A. S. Lamb, IRE Trans. Nucl. Sci. NS-9, 57 (1962).

- 40. W. A. S. Байв Б, ИКЕ Пав. Исс. Sci. Из-5, 01 (1902).
 47. И. Г. Катаев, Ударные электромагнитные волны, М., «Сов. радио», 1963.
 48. И. Н. Мешков, Б. В. Чириков, ЖТФ 35, 2202 (1965).
 49. П. С. Анцупов идр., Препринт ОИЯИ Р9-4498, Дубна, 1969.
 50. W. A. Sherwood, IEEE Trans. Nucl. Sci. NS-14, 928 (1967).
 51. J. W. Beal, Proc. of the 1968 Proton Linear Accelerator Conference (Upton, May 2004) 4068). 20—24, 1968), N.Y., BNL, 1968, р. 713. 52. V. K. Neil, R. K. Соорег, Part. Accel. 1, 111 (1970). 53. С. H. Woods, Rev. Sci. Instr. 41, 959 (1970) (см. перевод: Приб. научн. иссл.
- 41 (7), 53 (1970)). 54. Ю. П. Вахрушин, В. С. Кузнецов, ЖТФ 39, 506 (1969).

- 54. Ю. П. Вахрушин, В. С. Кузнецов, ЖПФ 39, 506 (1969).
 55. И. М. Аатора и др., Препринт ОИЯИ Р9-5268, Дубна, 1970.
 56. Ю. П. Вахрушин и др., Препринт ОИЯИ Р9-5714, Дубна, 1971.
 57. Ю. П. Вахрушин и др., Труды VII Международной конференции по уско-рителям заряженных частиц высоких энергий (Ереван, 1969), т. 1, Ереван, АН Арм. ССР, 1970; Ю. П. Вахрушин и др., АЭ 31, 294 (1971).
 58. R. W. Allison et al., IEEE Trans. Nucl. Sci. NS-16, 1055 (1969).
 50. В. С. Киздон ср. и и пр. НИИАФА П 0444 Доницироват 4070.

- 59. В. С. Кузнецов и др., Препринт НИИЭФА Д-0111, Ленинград, 1970. 60. Е. И. Луценко и др., ЖЭТФ 57, 1575 (1969); Е. И. Луценко и др., ЖТФ 40, 529 (1970).
- 61. R. Avery et al., IEEE Trans. Nucl. Sci. NS-18, 479 (1971).
- 62. Г. И. Жилейко, Высоковольтные электронные пучки, М., «Энергия», 1968.
- 63. П. В. Букаев и др., Препринт НИИЭФА А-0118, Ленинград, 1971.
- 64. Ю. П. Вахрушин и др., Препринт ОИЯИ 9-3288-2, Дубна, 1967. 65. Г. А. Месяц и др., Формирование наносекундных импульсов высокого напряжения, М., «Энергия», 1970.
- 66. О. С. Богданов и др., Препринт НИИЭФА А-0112, Ленинград, 1970.
- 67. В. М. Левин и др., Аннотации докладов, представленных на 2-е Всесоюзное совещание по ускорителям заряженных частиц (11—18 ноября 1970 г.). М., АН СССР — ГК ИАЭ, 1970, стр. 40.