
JANUARY-FEBRUARY, 1973SOVIET PHYSICS USPEKHI VOLUME 15, NUMBER 4

530.145

Methodological Notes

WHY IT IS IMPOSSIBLE TO INTRODUCE HIDDEN PARAMETERS INTO

QUANTUM MECHANICS

A. I. AKHIEZER and R. V. POLOVIN

Physico-technical Institute, Ukrainian Academy of Sciences, Khar'kov

Usp. Fiz. Nauk 107, 463-487 (July, 1972)

CONTENTS

1. The Statistical Character of the Behavior of Microobjects 500
2. The Mathematical Foundations of Quantum Mechanics 501
3. The Measurement Process 502
4. The Hypothesis of "Hidden" Parameters 503
5. Interference of Probabilities and Hidden Parameters 505
6. Von Neumann's Proof of von Neumann's Theorem 507
7. A Proof of von Neumann's Theorem which does not use the Postulate of Additivity of

Incompatible Observables 508
8. Classical and Quantum Logic 509
References 511

1. THE STATISTICAL CHARACTER OF THE
BEHAVIOR OF MICROOBJECTS

. N o physical theory, including the general theory of
relativity, has led to such large gnoseological difficul-
ties as quantum mechanics, since the latter has rejected
the.determinism of classical mechanics, with which
everyone is used, in the description of the behavior of
microobjects.1' To this we were forced by experiment,
which shows that identical microobjects behave differ-
ently under completely identical external conditions.
Thus, if one shines a convergent light beam on an elec-
tron that moves with a definite momentum after the
localization of the electron in a definite region of space
the momentum of the electron will become uncertain.
This means that if one performs a large number of ab-
solutely identical copies of our mental experiment, i.e.,
if one thinks of a large number of electrons which are
strictly in identical states with the same momentum,
and the same number of light beams shining on the elec-
trons, then, in spite of the identity of the set-ups, the
results of the experiments will not be uniform: some
electrons will have one value of the momentum, others
will have different values.

However we do not obtain only a spread of the mo-
mentum. We note the remarkable fact that as the total
number of experiments increases, the ratio of the num-
ber of experiments for which a certain value of the mo-
mentum is observed to the total number of experiments
will tend to a definite value. This means that the ob-
served spread of the momentum values is in fact not
random, but is characterized by a definite statistical or
probability distribution.

It is natural to relate the appearance of a statistical
law of behavior of the electron with an uncontrollable

' Ά clear and detailed discussion of the epistemological problems of
quantum mechanics can be found in the works of Fock [ ' ] .

c h a r a c t e r of the interact ion of the beam of l ight with the
e l e c t r o n , or, in a m o r e g e n e r a l formulation, with the
uncontrol lab le character of the interact ion of the m e a s -
ur ing instrument with the microob ject . However,
although the action of the instrument on the microobject
cannot in pr inc ip le be reduced to z e r o (in d is t inct ion
from what i s a s s u m e d in c l a s s i c a l p h y s i c s ) and the in-
teract ion of the instrument with m i c r o o b j e c t s has an
uncontrol lable c h a r a c t e r , one can n e v e r t h e l e s s not con-
clude with log ica l n e c e s s i t y that a definite s t a t i s t i c a l
distr ibution of the v a l u e s of the e l e c t r o n momentum
should e x i s t . In fact, the momentum d o e s not p lay an
e x c l u s i v e r o l e here : an analogous s ituation, i . e . , the
e x i s t e n c e of a s t a t i s t i c a l distr ibution, holds a l s o for the
determinat ion of other phys ica l quantit ies r e f e r r i n g to
m i c r o o b j e c t s , i . e . , to e l e c t r o n s , a t o m s and m o l e c u l e s .

Indeed, three different t y p e s of behavior of m i c r o -
objects under m e a s u r e m e n t a r e l o g i c a l l y conce ivab le :

1) The m e a s u r e m e n t of a p h y s i c a l quantity l e a d s with
cert i tude to a definite va lue.

2) The r e s u l t of the m e a s u r e m e n t can only be p r e -
dicted s t a t i s t i c a l l y . But the s t a t i s t i c a l character i s such
that if after the f irst m e a s u r e m e n t a s e c o n d one i s per-
formed, the s u c c e e d i n g m e a s u r e m e n t wi l l have a d i s t r i -
bution which i s in no way r e l a t e d to the f irst m e a s u r e -
ment.

3) The r e s u l t of the m e a s u r e m e n t can only be p r e -
dicted s ta t i s t i ca l l y , but the s u c c e e d i n g m e a s u r e m e n t
y i e l d s a r e s u l t agree ing with that of the f irst m e a s u r e -
ment.

The f i rs t p o s s i b i l i t y c o r r e s p o n d s to c l a s s i c a l phys-
i c s in those c a s e s where one can ach ieve ident ical e x -
p e r i m e n t a l condit ions.

The s e c o n d p o s s i b i l i t y c o r r e s p o n d s to c l a s s i c a l phys-
i c s in the c a s e when the e x p e r i m e n t i s repeated under
nonidentical externa l condit ions. For e x a m p l e , if one
t o s s e s a l a r g e number of c o i n s , on the average, heads
wi l l appear in one half of the c a s e s . However , if one
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s e l e c t s a l l t h o s e c o i n s w h i c h g a v e h e a d s , a s e c o n d t o s s -

ing wi l l not n e c e s s a r i l y l e a d a g a i n t o h e a d s . T h e r e p e a -

t e d t o s s i n g y i e l d s t h e s a m e s t a t i s t i c a l s p r e a d a s t h e

f i r s t t o s s .

T h e t h i r d p o s s i b i l i t y c o r r e s p o n d s t o c l a s s i c a l p h y s -

i c s in t h e c a s e w h e n t h e d i f f e r e n t o u t c o m e s of t h e ex-

p e r i m e n t i s due t o i n t e r n a l c a u s e s . T h u s , t h e r e i s a

d e f i n i t e p r o b a b i l i t y t h a t a p e r s o n i s c o l o r b l ind. But if

one s e l e c t s a l l t h e p e o p l e t h a t t u r n out t o be c o l o r b l ind

in t h e f i r s t t e s t , t h e y w i l l s t i l l t u r n out to be c o l o r b l ind

in a l l s u c c e e d i n g t e s t s .

In q u a n t u m p h y s i c s t h e f i r s t p o s s i b i l i t y i s r e a l i z e d if

t h e w a v e funct ion w h i c h d e s c r i b e s t h e s t a t e of t h e s y s -

t e m i s an e i g e n f u n c t i o n of t h e o p e r a t o r c o r r e s p o n d i n g to

t h e m e a s u r e d q u a n t i t y . But in t h e g e n e r a l c a s e t h e t h i r d

p o s s i b i l i t y i s t h e o n e r e a l i z e d in q u a n t u m p h y s i c s . T h u s ,

if one p a s s e s a n u n p o l a r i z e d b e a m of e l e c t r o n s t h r o u g h

a n i n h o m o g e n e o u s m a g n e t i c f ield d i r e c t e d a l o n g t h e

ζ axis, then on the average half of the electrons will
have a positive spin projection along the ζ axis. If one
now separates the electrons for which the spin projec-
tion along the ζ axis is positive, a repeated measure-
ment of the spin projection along the same direction will
always yield a positive result.

It is interesting to note that at the beginnings of the
development of quantum mechanics Bohr had assumed
that the second possibility is realized (cf. ), but this
assumption was refuted by Compton's experiment

At the present time we can only state that the statis-
tical character in the behavior of microobjects—a sta-
tistical character of a special kind—is a remarkable
experimental fact, i.e., we can assert that the statistical
character lies in the nature of things. But we do not
know the deeper reasons lying at its foundation, or more
precisely, we cannot say what exactly is the relationship
between the statistical character and other deep natural
phenomena.

Under these conditions, what kind of problems does
quantum mechanics pose? Without attempting to clarify
the nature of its statistical character (and remaining in
this sense a phenomenological theory) quantum mechan-
ics poses the problem of giving a method of determining
the probability distributions for various physical quan-
tities for different states of the microobjects. This
problem is closely related with another problem of
primary importance: the problem of determination of
the spectra of possible values for different physical
quantities.

2. THE MATHEMATICAL FOUNDATIONS OF QUANTUM
MECHANICS

For the solution of these problems quantum mechan-
ics introduces the concepts of states and observables.
It distinguishes pure states form mixtures (or mixed
states) and associates to the pure states a function,
called the wave function ip, or the state vector, belong-
ing to a Hilbert space2 ', and to mixtures an operator

2 )A Hilbert space consists of a set of elements called vectors: φ , φ, . . .
for which there are defined the operations of addition, multiplication by
complex numbers and scalar (inner) product (φ, ψ). A set of vectors ψ,,
ψ 2, . . . is called a base of the Hilbert space if any vector ψ of that space
can be represented as a superposition ψ = Scji//j. There are infinitely
many linearly independent vectors in Hilbert space. In the sequel, in the

called the density matrix, or statistical operator U.
To each observable R quantum mechanics associates

a hermitian linear operator R acting on the Hilbert
space. The action of the operator R associates to each
vector tp another vector ψ' = Rip.

If tp' = rip, where r is a complex number, the vector
is called an eigenvector of the operator R, and the num-
ber r is called an eigenvalue. The eigenvalues of a
Hermitian operator are real, and the set of its eigen-
vectors !px, ip2, 03, ... can be selected to form a basis in
the Hilbert space (if there are enough of them—Transl.
Note). The transition from one basis to another is im-
plemented by a unitary operator (or transformation).

The eigenvalues of the operators are interpreted in
quantum mechanics as the set of possible values of the
corresponding observables. This means that the meas-
uring of some quantity by means of a suitable measuring
device (called the instrument) will yield one of the
eigenvalues of the operator corresponding to the ob-
servable under discussion.

As a rule we will obtain different values in different
experiments, and what is at stake is the determination
of the probability of observing certain eigenvalues of
the observable (in the state of the microobject under
consideration). It is simplest to find this distribution
when the state of the microobject is a pure state. In
this case the state vector will evolve in time up to the
observation time according to a strictly determined law,
governed by the Schrbdinger differential equation

where Η is the Hamiltonian operator of the object (R is
Planck's constant divided by 2ir). In order to find the
required probability distribution one needs to know the
wave function ψ of the object at the instant just pre-
ceeding the measurement of the observable R, and ex-
pand this wave function in terms of the eigenfunctions
φ η of the operator R, corresponding to the observable
R:

Then the superposition coefficients c n of this expansion
will play the role of probability amplitudes and the
probabilities of finding the values r n of the observable
will be given by the absolute squares | c n | 2 of these co-
efficients.

The expectation value (average) of R in the state ψ
will be

Wl — Zl I c" I fn

(the vector φ is assumed to be normalized).
After the first stage of the measurement, consisting

in the interaction of the microobject with the measuring
instrument, the initial pure state φ is "destroyed" and
replaced by a mixture, described not by a wave function
but by a statistical operator

ύ — V i » i i i , , Μ \
U — Zl\Cn\ ^[<Pn]' (I)

discussion of spin states, we shall also consider finite-dimensional spaces,
i.e., Euclidean spaces. Rigorously speaking, we are dealing with unitary
spaces, or inner-product spaces, where the number of linearly indepen-
dent vectors can either be infinite (Hilbert space), or finite (Euclidean
space).
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where $[φ] is the projection operator on the vector φ in
Hilbert space. This operator is defined by

h*\ Ψ = (φ. Ψ) φ.

it is Hermitian and idempotent (i.e., equal to its square):

The expectation value of any Hermitian operator in
the mixed state (1) is

i

where wj = | q | z is the probability of finding the system
in the state <pi and <R)j is the expectation value of R in
the i-th state:

We note that had we considered in place of the mix-
ture a superposition of pure states ip = Σ Cj(pj, where

i Λ

lcil = w i > t n e n t n e expectation value of the operator R
in the state tp would be

-- (ψ, Λψ) = Σ cUi {ft,
ίφί

(3)

The formula (2) corresponds to classical probability
theory, whereas Eq. (3) contains additional interference
terms. The presence of the latter describes the
phenomenon of interference of probabilities, which is
absent in classical mechanics.

If interference of probabilities would occur for class-
ical objects, paradoxical situations would arise. An ex-
ample of such a situation is the so-called "Schrodinger
cat." It consists of the following: a box contains a cat,
a Geiger counter and a hammer, which, when the coun-
ter responds, smashes a vial of prussic acid. Near the
counter there is a quantity of radioactive material such
that the probability of one radioactive decay in one hour
equals %. If probability interference were possible for
classical objects, after one hour the box would contain
a superposition with equal weights of a live and dead
cat, i.e., we would be dealing with a cat which is half-
alive and half dead, which is clearly absurd.

During the second stage of the measurement process
the measuring device is capable of separating the mix-
ture into pure states described by the eigenf unctions ψη

of the measured quantity R. If one now measures again
the quantity R in one of these states cpn we no longer
find a dispersion of its values, but obtain a definite
value: the eigenvalue r n of the observable, correspond-
ing to the state <pn under consideration.

3. THE MEASURING PROCESS

Mutually commuting operators have joint eigenfunc-
tions, therefore the corresponding observables (which
we will call compatible) can be simultaneously deter-
mined with arbitrarily good accuracy. If the operators
do not commute, the exact knowledge of one of the quan-
tities (i.e., considering a state with a definite value of
that quantity) implies that for the second quantity we do
not obtain a definite value, but only a statistical distri-
bution which does not depend at all on the measuring
device; it is only necessary that the measuring instru-
ment be capable of measuring the quantity in which we

are interested and that it be a classical device. The
last condition means that it is assumed that the meas-
uring instrument is subject to the laws of classical
physics (more precisely, it suffices to assume that the
instrument admits a quasiclassical description).

This does not mean that one must necessarily use
macroscopic bodies as measuring devices, and that
microobjects are excluded. On the contrary, one may
use microobjects as measuring devices if under the
conditions under discussion they admit of a quasiclass-
ical description. If they are not quasiclassical, the ac-
curacy which can be attained by means of such instru-
ments cannot, in principle, be large; the accuracy will
be lower the more "quantal" the measuring object, i.e.,
the more the measuring device deviates in its proper-
ties from a classical object.

In the determination of the various statistical distri-
butions refering to different noncommuting observables
one has to keep in mind that for this it is not sufficient
to consider only one ensemble of mutually noninteracting
microobjects. Such an ensemble is, of course, neces-
sary (for the definition of probability concepts), but it
must be equipped with the appropriate measuring
"tr immings" which are different for different observa-
bles. Therefore we are dealing not with one, but with
several ensembles for different observables, and since
these "tr immings" are mutually incompatible for non-
commuting observables, the ensembles cannot be unified
into a single larger ensemble.

We have said above that the measurement process is
divided into two stages: the interaction of the quantum
object with the measuring instrument, which has as a
result the transformation of the pure state into a mix-
ture, and the act of recording the result, which separ-
ates a pure state from the mixture. In order to clarify
these stages let us consider, following Heisenberg [ 4 : i,
a beam of excited atoms moving in a strongly inhomo-
geneous magnetic field Η (the Stern-Gerlach experi-
ment, cf. Fig. 1). If the magnetic moment of the atom
in the n-th state is μ η , the interaction energy of the
atom with the field is E n = μ η Η γ (ν), and the force acting
on the atom i s ^ n ( d H y / d y ) . Since different states of
the atom have different values of the magnetic moment,
the beam will be split by the magnetic field. The de-
flection angle will b e o n = (dEn/dy)T/px, where Τ is the
transit time in the apparatus and p x is the projection of
the momentum of the atoms on the direction of the inci-
dent beam.

Making use of the uncertainty relation one can deter-
mine the natural spread of the beam directions

FIG. 1



H I D D E N P A R A M E T E R S 503

Δα ~ XId = hlpxd,

w h e r e d i s the width of the beam. In o r d e r to be able to

detect a deviat ion of the beam it i s n e c e s s a r y that

a n > · Δ α , or

(dEJdy) Td > h.

On the other hand, the phase of the wave function φ
of the atom in the n-th excited state is

q>n = - (2nEJh) t.

Therefore the uncertainty of the phase in the beam
Δ<ρη = (d<pn/dy)d will be

Δφη ~ (2nlh) Τ (dEJdy) d,

i .e. , Δ(^ η 3> 2π.
Thus, as a resul t of the m e a s u r e m e n t the phase be-

comes completely undetermined, in other words, the
phase re la t ions between the atoms a r e destroyed. This
i s the "uncontrol lable in te rac t ion" between the meas-
uring instrument and the m e a s u r e d object.

If this interaction i s not taken into account one ar-
r ives at paradoxes . Let us consider, for instance1-4 -1,
a beam of excited atoms passing through two inhomo-
geneous magnetic fields H! and H 2 (Fig. 2). Assume that
before entering the field Hx the beam contains only
atoms which a r e in the s tate n. Let us denote by A j ^ j j j
the transi t ion amplitude of the atom from the state η
into the state m under the influence of the field Hi. Then
the probability of finding the atom in the state m after it
has passed through the field Η χ i s | A ^ 1 ^ r n J2. Let fur-
ther A^ 1 , denote the transit ion amplitude from the
state m into the s ta te I under the influence of the field
H 2 . Then the probability of finding the atom in the state
I after passing through the field H 2, with the condition
that before entering the field it was in the state m, will
be |A m ' _2 | 2 . Therefore the probability that the atom i s
in the s tate I after passing through both fields Hi and H2

i s

•Pn-,!= 2MnUm| 2 | ^mUi |2. (4)

On the other hand, if one c o n s i d e r s the f ie lds Hi and

H2 a s a s i n g l e f ield Hi 2 , the amplitude d e s c r i b i n g the

t ransi t ion from the s tate η into the s tate I after passing
through the field H i 2 will be determined by

and therefore the probability of finding the atom in the
state I after it has passed the field H 1 2 must be

\A$»,\»=\'%A^mA'»^,\2. (5)
m

But this quantity i s not equal to P n _ ^ . The apparent
contradiction d i sappears if we rea l ize that the r e s u l t s
(4) and (5) re fer in fact to different exper iments . The
express ion (4) i s c o r r e c t if between the fields Hi and H2

one c a r r i e s out a measurement allowing one to deter-
mine the stationary state in which the atom i s . If such a
measurement i s performed it i s inevitable that the
phase of the Schrodinger wave belonging to the m-th
state is changed by an undetermined amount, and there-
fore each t e r m A ^ l , m A ^ _ ; in the sum (5) has to be
multiplied by the phase factor exp(± i x m ) with an un-
known phase x m , over which the whole expression has
to be averaged. As a resu l t of this averaging Eq. (5)
goes over into the expression (4). If the intermediate
experiment determining the state of the atom between
the fields Hi and H2 i s not performed, the resul t of the
final experiment is given by Eq. (5). In this case Eq. (4)
is not valid, since it is meaningless to say that the atom
was in a definite s tate m between the fields Hi and H 2 .

Thus one has to distinguish str ict ly three experi-
ments :

F i r s t experiment. Between the fields Hi and H2 the
atoms a r e not subjected to any perturbation. The proba-
bility of finding the atom in the state I after it p a s s e s
through the field H 2 will be

I V Aa> A'" I2

m

Second experiment. Between Hi and H2 there is an
action on the a toms which allows one to determine their
stat ionary s ta te , but the resul t of this measurement i s
not recorded. In this case there appears a " m i x t u r e , "
and the probability of finding the atom in the state I after
passing through the field H2 will be

FIG. 2

Third experiment. Between Hi and H 2 the atoms are
subject to an interaction which allows one to determine
their stationary s ta tes , but the resu l t of the m e a s u r e -
ment is recorded. The probability of finding the atom
in the state I after it p a s s e s through the field H2 will
then be

The difference between the second and the third ex-
p e r i m e n t s is a l ready familiar in c lass ical theor ies . The
fundamental difference between the first and second
cases , or its suitable general izations, forms the central
point of quantum theory.

In the words of Heisenberg, " t h e measurement proc-
e s s is divided into two s tr ict ly distinct acts . The first
act of measurement consis ts in subjecting the system to
an external , physically r e a l , interaction which changes
the way things a r e , e.g., one shines a beam of light on
the object, or switches on a field. This interaction has
the effect that the observed system goes over into a
" m i x t u r e " of s ta tes , in general , of infinitely many. The
second act of m e a s u r e m e n t se lects from the infinite
number of s ta tes in the mixture a certain definite one,
which is in fact real ized. This second step is a p r o c e s s
which does not itself change the way things a r e , but only
changes our knowledge of r e a l r e l a t i o n s h i p s ^ ^ .

4. THE HYPOTHESIS OF "HIDDEN" PARAMETERS

But did quantum mechanics indeed overturn Laplace ' s
determinism? There a r e s tat is t ical laws even in class-
ical physics, i .e., in the presence of complete determin-
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ism. It suffices to indicate the regularities in the fluc-
tuations of various quantities which refer to macro-
scopic bodies. Moreover, Boltzmann and Gibbs have
shown that the whole of thermodynamics can be consid-
ered as part of statistical mechanics, and that starting
from the laws of mechanics and taking into account the
atomic structure of macroscopic bodies, one can aver-
age various quantities referring to these bodies with
respect to unobservable "hidden" parameters (the co-
ordinates and momenta of the atoms) and obtain all the
thermodynamic properties of the macroscopic bodies.

In quantum mechanics the situation is somewhat dif-
ferent. Here the microsystems, as far as we can tell,
do not consist of a large number of smaller objects.
But maybe there are nevertheless some "hidden" var-
iables or parameters, which are analogous to the coor-
dinates and momenta of the individual atoms in kinetic
theory, parameters which are responsible for the ob-
served statistical behavior of individual microobjects?
In order to answer this question at the present time,
when there is no other self-consistent and noncontradic-
tory theory but quantum mechanics, one has to investi-
gate whether there is room for "hidden" parameters in
present-day quantum mechanics.

For the first time the question of "hidden" param-
eters was raised by J. von Neumann and also solved by
him. The answer given by von Neumann is that quantum
mechanics is a logically closed theory, which does not
have room for "hidden" parameters (von Neumann's
theorem). In other words, in order to introduce
"hidden" parameters a fundamental break with quantum
mechanics becomes necessary3 '.

In recent years there has been a revival of interest
in the epistemological foundations of quantum mechan-
ics, and particularly in von Neumann's theorem. This
interest is explained, possibly, by the fact that in spite
of all efforts, so far it was impossible to construct a
theory of subnuclear matter and of the fundamental in-
teractions to which it is subject. Since this central
problem of contemporary physics does not yield to
attempts at solving it, it seems natural to try to re-
analyze the foundations of the existing theory of the
microworld. As a result of these analyses a tremendous
amount of literature on the von Neumann theorem has
appeared. Below we review this literature and give the
simplest and clearest proofs of this fundamental
theorem. But before this we describe here the two best-
known models of hidden parameters: the hydrodynamic
model and the Wiener-Siegel model, and explain the in-
consistencies of these models.

The hydrodynamic m o d e l [ e a ' c > 7 ] starts out from the
analogy between the Schrodinger equation

and the equation of motion of an ideal fluid. In order to
establish this analogy we set

Ψ (r, 0 = [ρ (r, t)W>eis <Γ· <>/\

We then obtain the s y s t e m of equat ions

where ν = vS/m. These equations describe in an obvious
way the motion of a fluid of density p(r, t) and velocity
v(r, t), where in addition to the external field V(r, t) the
fluid is subject to a specific "quantum-mechanical" po-
tential

U (r, i) = — (fta/2m) Δ [ρ (r, i)]"/i/p ( r , t).

In the hydrodynamic model the velocity ν (or the mo-
mentum mv) is interpreted as a "hidden" parameter,
and it is assumed that the momentum of the particle
after the measurement of ρ differs from the "genuine"
value mv. As regards the particle coordinate, it is as-
sumed that, its value after the measurement agrees with
the genuine value of the coordinate r. One can show[ ]

that in this approach we obtain a correct momentum
distribution of the particle after the measurement, i.e.,
a distribution which corresponds to quantum mechan-
ics 4 ' . However, this approach gives a preferential role
to the coordinate as a dynamical variable, whereas the
laws of quantum mechanics should be invariant with
respect to the selection of a basis in Hilbert space.
The hydrodynamic model t x a ' 4 b ) 6 C ' e a - 1 of quantum mech-
anics does not satisfy this fundamental requirement of
quantum mechanics5'.

In the Wiener-Siegel model^11-1 the state of a quan-
tum-mechanical system is described by two wave func-
tions: the usual wave function φ and a "hidden" wave
function ξ. The latter is introduced in order that one be
able to say exactly which of the eigenvalues of the ob-
servable will be obtained when it is measured. More
precisely, it is assumed that if one considers a quantity
R to which one associates a set of eigenvectors {φι} ,
then ψ is to be expanded in terms of this basis:

whereas ξ is to be expanded in terms of the adjoint
(conjugate) basis

{ψ* is the vector which is Hermitian conjugate, or ad-
joint, to the vector φ). After this one has to find the
maximal value of the ratio 14>̂\/\ ξ^. If this maximum
is attained for i = k, the measurement of R yields the
eigenvalue rjj.

Since in quantum mechanics the probability of ob-
taining the value r k equals |ψκ|2, the distribution of the
hidden parameters {ξ^} has to be defined in such a
manner that this requirement of quantum mechanics be
satisfied in this model also. This is achieved by means
of the assumption that the quantities {|ξ}|} have the
distribution lawC n b > 1 2 : )

/(|ξ< I) = exp(- | i , |V2) | ξ, |.

The prob lem now r e d u c e s to the determinat ion of the

probability that the maximal value of the ratio | ψ | | / | ξ | |
be attained for i = k. This probability is obviously equal
to

3)A detailed discussion can be found in the book [5a ].

4)The Schrodinger equation can also be obtained classically as the
equation of motion of a particle subjected to random forces [6 d·8]. But
the fundamental difficulty, which, as we shall see, cannot be circum-
vented, consists in the impossibility of constructing a classical model for
quantum-mechanical measurements.

5)For other objections to the hydrodynamic model, cf., e.g., [5a·10].
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/>»= ί - - - j Π 1 ^ I exp (— | ξί Ρ/2) d | ξ,· |,

where the integration region J\ is determined by the
inequalities

I Si l> Iti I It* I"11 S* I-

Therefore

£; = 1. cos θ - i 2 s i n 6 , |2cos9,

whence, as required,

= Ι

However, the Wiener-Siegel model, as well a s the
hydrodynamic model, turns out to be noninvariant with
respect to a change of bas i s in the Hilbert s p a c e 1 1 " 3 and
therefore is to be re jected 8 ' . In o r d e r to verify this , we
consider in a three-dimensional Hilbert space the p r o -
jection operator P 3 onto the 3-axis. If one chooses as a
basis the eigenvectors of this operator

«Pi

ΓΠ [01 Γ0-Ι
= 0 .<&= 1 ,<p,= 0 , Ρ3φ, =λ,φ,, λ , = λ 2 = 0, λ3 = 1,

then the operator has the diagonal form

[0 0 O
0 0 0
ο ο l

We note that the projection operators Pi, P2, P3 have
physical meaning, since they are simply related to the
projections of the operator of angular momentum one.
In the representation in which the z-projection of the
angular momentum is diagonal, these operators have
the form

, fo 1 ol .
y2|_0 I oj V 2

0
ί
0

—i
0
i

0

0

Γι 0 0 I
Λ= ο ο ο .

LO 0 - l j
If one obtains the x, y, ζ coordinate system from the
1, 2, 3 coordinate system by means of a rotation by an
angle of 45° around the 2 axis (perpendicular to the
plane of the figures) which is coincident with the ζ axis
(Fig. 3), it is easy to see that

p, = l— 1 - /;, p3 = 1 - /'.

According to the general scheme of Wiener-Siegel,
the measurement of P 3 leads to the value Ak if among
the ratios

(6)

the ratio Ιψ^Ι/Ιξ^Ι w i l 1 b e largest. Since \L = λ2, a
rotation of the coordinate axes by an angle θ around the
3-axis (Fig. 4):

Ψι -»• ti = ψι cos θ -f- ψ2 sin θ, ψ2 -> ψί = —ψι sin θ + ψ2 cos θ,

ψ3 -*- 1>i = ts.

6)We note that in connection with a proposed modification [I4a] of
the Wiener-Siegel model (a modification which is also not invariant with
respect to a change of base in Hilbert space) which should have led to an
observable discrepancy with quantum mechanics in the region of short
time intervals, an experiment has been carried out [1 S], which has con-
firmed the validity of quantum mechanics [16] up to time intervals of
the order of 10'15 sec. In [17] it was asserted that interference phenom-
ena dissappear at low photon densities. However, this assertion was
based on an experimental error.

wi l l not change the form of the operator P 3 . T h e r e f o r e

if P 3 is measured the value λ^ is obtained if the ratio
Ι^νΙ/Ι^ίςΙ is maximal among the ratios

M i M i Ιψί1 (7)
ISil ' lEil ' T¥T

However, it is easy to see that if in the sequence (6) the
maximal ratio was ΙΨ^Ι/Ιί^Ι it does not at all follow
that in the sequence (7) the maximal ratio will be
ΙΨ^Ι/ΙίύΙ· It suffices to assume that, e.g., ψι = 5, tp2

= - 1 , φ3 = 2, ξ 1 = 3, ξ 2 = - 1 , ξ3 = 1, θ =45°. Then the
sequence (6) takes the form 5/3; 1; 2. Since among these
numbers the third is the largest, we shall obtain the
third eigenvalue when P 3 is measured, i.e., (Ρ3)ξ = 1. On
the other hand, for θ = 45°, the sequence (7) has the form
1; 3; 2. In this case the second number is the largest,
and a measurement of P3 yields the second eigenvalue,
i.e. (Ρ3)ξ' = 0.

Thus, the Wiener-Siegel model of hidden parameters
is self-contradictory.

5. INTERFERENCE OF PROBABILITIES AND HIDDEN
PARAMETERS

We now start our discussion of proofs of von
Neumann's theorem on the impossibility of introducing
hidden parameters into quantum mechanics without a
radical change of its fundamental principles. The idea
of the proof consists in establishing a contradiction be-
tween the assumption that hidden parameters exist and
the postulates of quantum mechanics.

Thus, assume there are hidden parameters which we
denote by ξ (ξ denotes one or several quantities). This
means that if one measures an observable R and the
result of a single measurement is r, it is asserted that
the observed value r is a unique function %(ξ) of the
hidden parameters ξ:

r = (Λ) ξ = / Λ ( | ) .

We shal l a s s u m e that such functions % ( £ ) , fQ(4)> · · ·

e x i s t s i m u l t a n e o u s l y for al l o b s e r v a b l e s R, Q, . . . , not

depending on whether the operators R, <§, ... corre-
sponding to these observables commute or not. Obvi-
ously, for noncommuting operators R and Q it is im-
possible to obtain (R)t = ί^(ξ) and Qt in the same ex-
periment, since different measuring instruments are
needed for this. When we speak of simultaneous exis-
tence of the quantities (R)| and (Ο.)ξ we have in mind
only a potential possibility: the knowledge of the hidden
parameters ξ allows only to predict the results of an
arbitrary single experiment.

The postulate of simultaneous existence of the quan-
tities (R)|, (Q)|, ... for all operators R, Q, ..., including
noncommutative ones, is essential but far from self-

FIG. 3 FIG. 4
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evident. Indeed, a logically conceivable possibility is
that the quantities (R)|, (<3)ξ, ... are defined only in the
set of mutually commuting operators'?·1 8^. The follow-
ing "Gedankenexperiment" of Einstein, Podolsky and
Rosen [ 1 9 ] speaks in favor of the postulate of simultane-
ous existence of all the quantities (R) | , (Q)t, ... for all
operators, including noncommuting ones. Let a system
of two electrons which are in singlet state (i.e., has
total angular momentum equal to zero) decay into two
electrons7 ' . Then the projections of their spins on any
axis will have opposite signs8'. Therefore, if there
would exist hidden parameters, they would determine
the spin projections on any axis, in spite of the fact that
projections of the spin operator on different axes do not
commute.

Thus, we may assume that it is meaningful to intro-
duce simultaneously the functions %(ξ) = (R)£ , ίη(ξ) ···
for all operators R, Q, ..., including noncommuting

9 'ones
The quantities (R)| cannot differ from the eigen-

values r4 of the operators R1 0 '. Therefore the meaning
of the introduction of the functions %(ξ) consists in the
existence of a one-to-one correspondence between the
values of the hidden parameters ξ and the eigenvalues
r ^ qj, ... of the operators R, Q, ... . A more precise
formulation consists in the following: the space of the
hidden parameters can be split into regions ( Δ ξ ) Γ . ^ . ...
to which correspond definite eigenvalues r^, qj, of the
operators R, Q, ... . The measure of the region
(Δξ)Γ. ~.... (i.e., a well defined weight attached to the
volume of the region (Δξ)Γ. „....) should determine the

probability w(rj, qj, ...) (w > 0) of finding the value rj
in a measurement of the quantity R, ρί finding the value
qj in a measurement of the quantity Q, etc. It is not as-
sumed that the quantities R, Q, ... are determined in the
same experiment, which would, in general, be impossi-
ble, since the operators R, Q, ... may not be mutually
commuting. What is most important here is the exis-
tence of a joint probability function w(rj, qj, ...) depend-
ing on the eigenvalues r j , qj, ... of the operators R, Q,...
and determining the outcome of all measurements. In
particular, the probability that the measurement of the
quantity R yields the value rj independently of all the
other quantities is

">(η) = Σ « ' ( η , qj)-

j

We s t r e s s that the e x i s t e n c e of such a function i s a

d i r e c t consequence of the a s s u m p t i o n that hidden param-

7 )Such a situation could be realized if a neutron knocks out the
nucleus from a helium atom which is in the sunglet state.

^The paradoxical character of such a correlation, which should
occur for arbitrary distances between the particles, has prompted the
desire to verify the existence of such a correlation experimentally. The
experiment was carried out for photons by Wu and Schachnow (cf. [2 0])
and has confirmed the presence of correlations (cf. [2 1 a] in this con-
nection).

"Some authors have constructed hidden parameter models which
forgo this postulate (cf. [ 2 1 b ] ) . However, this leads to a contradiction
with the conclusions of quantum mechanics, and consequently such
models cannot be used to explain quantum mechanics in a classical
framework. Strictly speaking, one should not even call them models of
hidden parameters, for this reason.

10)We give a rigorous proof of this assertion in Sec. 6.

e t e r s e x i s t ( i . e . , a consequence of the e x i s t e n c e of the

functional r e l a t i o n s h i p s (R)t = % ( £ ) ) .

We now show that the e x i s t e n c e of a nonnegative

function w(rj, qj, ...) contradicts the r e s u l t s of quantum

m e c h a n i c s , and in the f i r s t p lace the i n t e r f e r e n c e of

probab i l i t i es 1 1 ' .

We shal l m e a s u r e the spin pro ject ions of the e l e c -

tron on different a x e s . We denote by (SjV the r e s u l t of

the m e a s u r e m e n t of the project ion of the e l e c t r o n spin

onto the direction i, corresponding to a certain value ξ
of the hidden parameter. This quantity should coincide
with one of the eigenvalues of the operator sj, i.e.,
should equal either % or - %. If hidden parameters
exist, there should exist a unique function w(Si, s2, S3)
(Sj = ±lA; i = 1, 2, 3) of the eigenvalues of the spin-
projection operators of the electron onto the axes
1, 2, 3, situated arbitrarily with respect to one another,
and this function should enable us to predict the results
of all measurements of the electron spin.

As is well known from quantum mechanics, if the
projection of the electron spin onto the axis i is %, the
probability of finding that the spin projection on another
axis j is also Vz equals cosz(^jj/2) where ^y is the
angle between the directions i and j .

Let us now assume that an unpolarized electron beam
passes through an analyzer which separates the elec-
trons with spin oriented in the direction of the axis 1.
Then the probability that an electron passes through the
analyzer, i.e., has s, = l/2, will be equal to %. Let us
further pass these electrons through a second analyzer,
which selects those electrons which have s2 = - y2. Then
the probability that after passing through the second
analyzer the electron has s2 = — V2 is

W (», = 1/2, s2 = -1/2) = 0.5 cos2 [(π - Φ12)/2] = 0.5 sin2 (θ,2/2).

(8)
If hidden p a r a m e t e r s e x i s t and their v a l u e s do not

change a s a r e s u l t of the s u c c e s s i v e m e a s u r e m e n t s ,

then the probabi l i ty we have obtained can be der ived

from the joint probabi l i ty d istr ibut ion w(Sx, s 2 , s 3 ) by

summing o v e r the p o s s i b l e v a l u e s of s 3 :

W (Si = 1/2, s2 = -1/2) = w (1/2, -1/2, 1/2) + w (1/2, —1/2, -1/2),

or

0.5 sin2 (d12/2) = w (1/2, -1/2, 1/2) + w (1/2, -1/2, -1/2). (9)

S imi lar ly , the fol lowing r e l a t i o n s should hold

0.5 sin2 (O13/2) = w (1/2, 1/2, -1/2) + w (1/2, -1/2, -1/2),

0.5 sina (dJS/2) = w (1/2, —1/2, 1/2) + w (—1/2, —1/2, 1/2).

and s i n c e w > 0, w e have in addition

w (1/2, -1/2, -1/2) < 0,5 sin2 (dls/2),

w (1/2, -1/2, 1/2) < 0,5 sin2 (O32/2).

Substituting t h e s e inequal i t ies into (9) we obtain

sin2 (*12/2) < sin2 (*u/2) + sin2 (ftJ2). (10)

T h i s inequality m u s t be true for any three a x e s 1, 2, 3,

which i s i m p o s s i b l e . Indeed, let the a x e s 1, 2 and 3 be

s i tuated in the s a m e plane, and a s s u m e the a x i s 3 bi-

s e c t s the angle between a x e s 1 and 2. Then <>12 = 2t>i3,

<*s2 = i>i3 and the inequal ity (10) t a k e s the form

U ) This assertion was proved independently by Blokhintsev [5b] and
by Wigner [ 2 2 b ] . We follow [ 2 2 b ] .
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sin2d13 < 2 sin2 (θ13/2)

or 2 cos 2 (tiu/2) < 1, which is impossible if ^ u < π/2.
Thus, the existence of hidden p a r a m e t e r s contradicts

Eq. (8), which was derived from the superposition prin-
ciple. In other words, the existence of hidden p a r a m -
e t e r s i s in contradiction with the interference of proba-
bil i t ies.

The above proof of the nonexistence of hidden p a r a m -
e t e r s has implicitly assumed that the hidden p a r a m -
e t e r s do not undergo any change a s a r e s u l t of repeated
m e a s u r e m e n t s . This r a t h e r rigid requirement can be
removed, as we shall show la ter .

In conclusion of this section we reca l l yet another
" c l a s s i c a l " model of quantum mechanics, which is
however equivalent to the usual quantum mechanics .
In this m o d e l [ 2 2 a : l (cf. a l s o [ 5 C > 9 b > 2 3 : l ) a joint probability
distribution is introduced for the coordinate χ and the
momentum ρ

f(x, ρ) = ( (11)

where ψ (κ) is the wave function in the coordinate repre-
sentation. The function f(x, p) yields the probability
dwx(x) of finding the particle in the interval (χ, χ + dx):

as well as the probability dwp(p) that the momentum of
the particle be in the interval (ρ, ρ + dp):

dwp(p) = dp j f(x,p)dx.

However, the expression (11) does not signify that
the particle can simultaneously have a definite value of
the coordinate and of the momentum, since the function
f(x, p) can take on negative values1 2 '.

We also note that Feynman has proposed a "third
formulation" of quantum mechanics'-25-1 (the first and
second formulations are respectively the Schrodinger
equation and Heisenberg's matrix algebra), in which
each particle has a stochastic path and the transition
probability amplitude is a function- space integral over
all possible paths. This formulation, which is equivalent
to the Schrodinger and Heisenberg formulations, is not
a model for hidden parameters, since in it the ampli-
tudes are added, and not the probabilities.

6. VON NEUMANN'S PROOF OF VON NEUMANN'S
THEOREM

The results of the preceding section are based on the
very rigid requirement that the hidden parameters do
not undergo changes in successive measurements of dif-
ferent quantities. In the proof of von Neumann's theorem
which is due to von Neumann himself'-28-' this require-
ment is removed. We repeat this proof here.

We start with the fundamental formula (R)t = ίβ(ξ)
which relates the values of the hidden parameters ξ to
the observed value (R)| of the quantity R. Let the dis-
tribution of the hidden parameters be given by the
probability distribution w(£). The function w( |) must be

determined by the state of the system, in other words,
to each pure state ψ, or to each mixture described by a
density matrix U, corresponds its own function w(£).
(Therefore the function w( ξ) should be equipped with the
index ψ or U.)

It is clear that the expectation value (R) of the
quantity R obtained as a result of a series of independent
measurements effected on a system which is in the
state ψ will be determined by

This expression must coincide with the expectation
value computed according to the rules of quantum mech-
anics. In other words, if the system is in the state ψ
the following relation must hold

<i?> = (ψ, Λψ).

If the system^ i s in a mixed state described by the den-
sity m a t r i x U, the following relation will hold

(R) = Sp(UR).

The quantum-mechanical expectation values satisfy
the relat ion

Therefore a model with hidden p a r a m e t e r s must satisfy
the relat ion

Since to different dens i ty m a t r i c e s U correspond differ-

ent probabi l i ty d is tr ibut ions WJJ, it i s natural to requ i re

that the fol lowing re la t ion hold

(R + Q)i = (Λ)ξ + (<?h (13)

for any observables R and Q corresponding to ei ther
commuting or noncommuting opera tors R and Q. To
this relat ion one must add

(«2) s = (Λ)|, (14)

which e x p r e s s e s the dispers ion-free character of that
quantity, and also the obvious expression

(aR)i=a(R)l, (15)

where a is an a r b i t r a r y complex number.
We now show that these re lat ions cannot hold simul-

taneously. It i s completely i r re levant what exactly the
parenthes i s (R)^ = (R)^ mean, where R is a Hermit ian
operator . In other words, the system of re lat ions
(13)—(15) is self-contradictory in formally algebraic
sense . In order to prove this asser t ion we select a
basis ψι, Ψ2, ... in the Hilbert space, and compute the
matrix elements of the operator R in this basis:

The quantities (R)t are functions of the collection
of these matrix elements

It follows from (13) that

φ ({Rmn + Qmn}) = Φ + <P ({Qmn})-
12)We note that such a "quasi-probability" is widely used in quan-

tum kinetic theory [24].
Differentiating this relation with respect to
tain

we ob-
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n4 Qmn))

which implies that the quantities

do not depend on R m n , i.e., are constants. Since ac-
cording to postulate (15)

φ ({0}) = ο,

it follows from (16) that

(17)

It is obvious that the quantities U^ can be represented
in the form

where TJ is a Hermitian operator. With the help of this
operator one can write (R)t, according to (17), in the
form

In particular, Tr U = 1.
We now show that the existence of the density matrix

U is in contradiction with the dispersion-free character
of all Hermitian operators. For this it suffices to select
as R a (one-dimensional) projection operator P. In that
case

On the other hand, according to (14)

whence

i.e.,

(φ, U(f) = (φ,

and consequently, the quantity (φ, Vcp) is either equal to
zero or to one.

It is easy to see that the value of (φ, Όφ) must be
the same for all vectors φ of the Hilbert space, since
any two vectors ψι and ψ2 can be continuously trans-
formed into one another, and the transition from zero
to one is a discontinuous jump. Zero is obviously ex-
cluded. If, on the other hand, (φ, ίΐφ) = 1 for all φ , then

Ν
1 = Σ (φη, ΰί/>η) = Ν, where N is the dimension of the

n = l
unitary space, which is impossible.

Thus, we have uncovered a contradiction in the sys-
tem of postulates (13)—(15) on the example of one-
dimensional projection operators, have proved the con-
tradictory character of these postulates, and conse-
quently, the impossibility of introducing hidden param-
eters.

The meaning of the established contradiction is very
simple: As we shall show immediately, the quantities
(R)t cannot be anything but the eigenvalues of the
operator R^27-1. But the eigenvalues of a sum of non-
commuting operators are not equal to the sum of eigen-
values of the respective operators, as would be the
case if postulate (13) would be valid.

In order to prove that (R)t is one of the eigenvalues
of R we first show that for commuting operators R and
Q the following is true

(18)

2 (RQ)i + (Q2k

Indeed

((R + Q)2)i = (R2 + 2RQ

On the other hand

((it + QY)i = (R + Q)l

Comparing the two expressions we arrive at (18).
We further show that (R)t equals one of the eigen-

values r^ of the operator R. We first assume the con-
trary: (R)e £ r.. Then the operator R - (R)t will have
an inverse Q:

Therefore

0)5 = 1.

Since any operator commutes with its own inverse, we
have, making use of (18)

(A-(A)Ot($)e-l- (19)

On the other hand, it follows from the postulates
(13)-(15) that

and therefore (19) takes on the form 0 = 1, which is ab-
surd. (Note that in our proof the postulate (13) has been
used only for mutually commuting operators R and Q.)

7. A PROOF OF VON NEUMANN'S THEOREM WHICH
DOES NOT USE THE POSTULATE OF ADDITIVITY
OF INCOMPATIBLE OBSERVABLES

The preceding proof of von Neumann's theorem is
based on the postulates (13)—(15) for the model of hid-
den parameters. Since the first of these postulates (the
postulate of additivity of incompatible observables) is a
very strong requirement^" a ' 2 8 : i , there arises the ques-
tion whether one can prove von Neumann's theorem
without using this postulate, the more so, that the rela-
tion (13) does not follow directly from (12), particularly
if one takes into account the fact that, in principle, it is
possible that the probability density w(£) depends not
only on the state U, but also on the form of the operator
R.

On the other hand if R and <§ commute, the validity of
the relation (13) seems quite natural. Following Kochen
and Specker1'27-', we now show that von Neumann's
theorem remains valid even in the case when the postu-
late (13) is valid only for mutually commuting operators
R and Q1 3 >. The idea of the proof is to consider the
totality of projection operators Pf^.l (i = 1> 2, ..., s)
and by means of the postulates (13)—(15) (the postulate
(13) is assumed valid only for mutually commuting
operators) one establishes the following properties of
these operators:

13)Misra [29] proved von Neumann's theorem without using the
postulate (13) by assuming that if R-S = Q2, then (R)| > (S)j.
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for (q>i, <PJ)=O,

(20)

where {ψη} is a complete orthonormal system of vec-
t o r s , Ν is the dimension of the Euclidean space (for a
Hilbert space Ν = ») . F u r t h e r , we show on a concrete
example that these p r o p e r t i e s contradict each other.
We shall not give h e r e the full proof, but only i l lus t rate
the flow of ideas on a s imple example.

Let us assume that in addition to the re lat ions (20)

the projection o p e r a t o r s satisfy the additional condition:

for any noncommuting projection o p e r a t o r s Pf^. l and

P[<p.] there exist as a value of the hidden p a r a m e t e r ξ ,

such that

(Αφ;ί){ = (^(Φ])ζ = 1· (21)

( T h i s c o n d i t i o n i s c a l l e d t h e s e p a r a t i o n p o s t u l a t e . ) W e

s h o w t h a t if t h e p o s t u l a t e s ( 2 0 ) a n d ( 2 1 ) a r e s a t i s f i e d

o n e c a n c h o o s e e i g h t v e c t o r s i n a t h r e e - d i m e n s i o n a l

s p a c e f o r w h i c h t h e s e r e l a t i o n s a r e n o t s a t i s f i e d .

We shall r e p r e s e n t each vector φ^ by a point in the
plane and the orthogonality relat ion between the vectors
φ^ and φ- by a line which joins the appropriate points

<Pj and φι. Thus, in the graph in Fig. 5 the vectors φ χ

and <p2 a r e orthogonal and the vectors φ 2 and φ 3 a r e not

orthogonal. According to (20), if the two points φ^ and

φ\ a r e joined by a line, then at least one of the two

T?a (a = i, j) i s z e r o ( Ρ α = Φ[φα])ξ); if the three

points φ·ν φ - , φ ^ a r e pairwise joined by l ines (i .e.,

form a tr iangle), then one of the quantities P o

(a = 1, 2, 3) is one and the other two a r e zero .
It i s easy to see that for the set of vectors r e p r e s e n -

ted in Fig. 5 these conditions a r e not satisfied if one
a s s u m e s P x = P 8 = 1. Indeed, if P x = 1, then P 2 = P 3 = 0.
Similarly, we have that P 6 = P 7 = 0. F u r t h e r , if P 2 = P 6

= 0, it follows that P 4 = 1. Similarly we find that P 5 = 1;
therefore P 4 = P 5 = 1, which is impossible, since the
vectors <p4 and <p5 a r e orthogonal.

Thus, for no choice of the hidden p a r a m e t e r ξ i s it
possible to rea l ize the equality P x = P 8 = 1, i.e., the
separat ion postulate i s not satisfied.

In this proof we have tacitly assumed that the con-
figuration represented in Fig. 5 i s rea l izable . That this
i s indeed so can be shown on the following example

«Pi = ( i - j + k)//3, Φ2= (j + k)/^2, φ , = (i + j)/l'A2, φ 4 = i,

(p5 = k, <p0 = (j — k)/|/"2, φ , = (ϊ — j)/(/~2, <p8=(i

w h e r e i, j , k a r e t h r e e orthogonal unit v e c t o r s .

We have thus proved the s e l f - c o n t r a d i c t o r y nature

of the postulate (21) and the relat ion (20). Kochen and
Specker1-27-1 have shown that if one omits the postulate
(21) the re lat ions (20) a r e still not satisfied, but in
order to show this , one must consider a system of
117 vectors in three-dimensional Euclidean space, r a -
ther than only 8 vectors .

We note that the simultaneous measurement of quan-

ti t ies corresponding to the projections P[e>.]> %»·]>

Pi φ ] for mutually orthogonal vectors <pj, φι, φ ^ can

be rea l ized by investigating the shift of energy levels of

an atom with unit angular momentum (J = 1) in a crys-

tal with octahedral symmetry. [30]

8. CLASSICAL AND QUANTUM LOGIC

The two proofs of impossibility of introducing hidden
p a r a m e t e r s into quantum mechanics were based on
contradictions between the postulates of quantum mech-
anics and the model of hidden p a r a m e t e r s . We now
show that this impossibility, which is deep-seated, is
re lated to the differences between c lass ica l and quan-
tum logic—two theories which cannot be reduced to one
another. By a logic we mean h e r e the interre lat ions
between proposit ions, i .e. a so-called propositional
calculus. In class ical logic to each proposition A one
can associate a set Ω ^ of points in a phase space
formed by generalized coordinates and momenta of a
dynamical system. This set Ω ^ i s called the support of
the proposition A.

For example, if the system is character ized by the
Hamiltonian Η = (p2 + q2)/2 then to the proposition A:
" t h e energy of the part ic le is equal to o n e " corresponds
the set of points Ω A in phase space which are situated
on the circle p 2 + q2 = 2, and to the proposition B: " t h e
par t ic le moves along the positive direction of the
q - a x i s " corresponds the set Ω β in phase space given
by the half-plane ρ > 0.

The different proposit ions A, B, C, ... a r e subject to
the operations of addition and mult ipl icat ion 1 4 ' .

Given two proposit ions A and Β and the proposition
C consists in as ser t ing that at least one of the proposi-
tions A or Β is t rue, then C is called the sum of A and
B, and this relat ion between proposit ions is written as :*

C = A + B.

It is c lear that the sum is commutative

A + Β = Β + A

and associat ive

(A + B) + C = A + (B + C).

(22)

(23)

Given two proposit ions A and Β and the proposition
C consists in as ser t ing that both proposit ions A and Β

FIG. 5

14)We introduce here only those concepts necessary for the proof
of the impossibility of introducing hidden parameters into quantum
mechanics. A more detailed exposition of classical logic can be found,
e.g., in the books [3 1].

*Translator's note: In the English-language literature on the subject
the sum and product are denoted respectively by V and Λ and called
"join" and "meet", respectively; the corresponding set-theoretic union
and intersection are denoted, of course, by U and n. Cf, e.g., the books
by Varadargian and Jauch cited in [ 3 3 > M ] .
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are simultaneously true, then C is called the product of
A and Β and this relation is written in the form

C = AB.

As for addition, multiplication is commutative and as-
sociative

AB = Β A, (AB) C = A (BC). (24)

The operat ions of addition and mult ip l icat ion of
c l a s s i c a l log ic can be r e p r e s e n t e d by taking the inter-
s e c t i o n s and unions of the s e t s which a r e the supports
of the appropriate propos i t ions

Ω Α Β = ΩΑΩΒ, ΩΑ+Β = ΩΑ + ΩΒ.

These operations are easily represented graphically. In
Fig. 6 the circles A and Β are the supports of the propo-
sitions A and Β (in this case the phase space is the plane
of the paper). The proposition AB is represented by the
cross-hatched intersection and the proposition A + Β is
the region which is shaded at least once.

In classical logic the distributive law holds:

(A + B) C = AC + BC. (25)

T h i s law i s i l l us t ra ted by F i g s . 7 and 8. In F ig . 7 the
set representing A + Β is shaded horizontally and the
set corresponding to the proposition C is shaded vertic-
ally. Therefore the proposition (A + B)C is represented
by the doubly shaded (crosshatched) set. In Fig. 8 the
proposition AC is represented by horizontal shading and
the proposition BC is represented by the set with verti-
cal shading. Therefore the proposition AC + BC is
represented by the region shaded at least once. We see
that the cross-hatched region in Fig. 7 is identical to
the region shaded at least once in Fig. 8, as required by
distributivity of classical logic.

Among some pairs of propositions one can establish
an order relation

A < £ ,
meaning that if proposition A is true Β is also true, or
that Β is a consequence of A.

The relation A < B means that the support Ω Α of A
is a subset of the support Ωβ of B:

Ω Α Ξ Ω Β .

Thus, the proposition Β " ρ > 0" is a consequence of

the proposition C " p > 1":

c < β

O n t h e c o n t r a r y , b e t w e e n t h e p r o p o s i t i o n s A : " p 2 + q 2

= 2 a n d B : " p > 0 " o n e c a n n o t e s t a b l i s h a n o r d e r r e l a -
t i o n , s i n c e n e i t h e r o f t h e t w o i s a c o n s e q u e n c e o f t h e
o t h e r .

T h e o r d e r r e l a t i o n i s c o n n e c t e d w i t h t h e o p e r a t i o n s
of a d d i t i o n a n d m u l t i p l i c a t i o n o f p r o p o s i t i o n s b y t h e
o r d e r i n g l a w s :

A+B^-A, ABtZA ( 2 6 )

a n d t h e a b s o r p t i o n r u l e

if A < s , then A + Β = Β and AB = A . (27)

In quantum logic, for which the basic pr inciples
were formulated by Birkhoff and von Neumann'·3 2-1

(cf. also'-3 3-'), to each proposition corresponds a closed
subspace L ^ of a Hilbert space. For example, to the
proposition A " t h e energy of an atom i s E n " , in the ab-
sence of degeneracy, corresponds some unnormalized
vector ψ of Hilbert space, i.e., the support of the
proposition is the one-dimensional subspace L^:
ip = Cipn ((ψη, ψη) = 1) of Hilbert space. For twofold
degeneracy the support is a two-dimensional subspace
(plane) L^ in Hilbert space:

ψ = CH), + C2i|)j, (ψ,, ψ,) = 1, (ife, ψ2) = 1,

w h e r e Ci and C 2 a r e arb i t rary n u m b e r s .
A s in c l a s s i c a l l o g i c one can construct a propos i-

t ional c a l c u l u s in quantum l o g i c , based on the operat ions
of addition, mult ip l icat ion and impl icat ion. The opera-
tion of mult ip l icat ion induces the operat ion of i n t e r s e c -
tion on the supports (denoted again a s mult ip l icat ion)
L A B = L A L B ! t n e order re lat ion i s again r e p r e s e n t e d
by inc lus ion:

if A < B, then LA s LB,

in the s a m e manner a s in c l a s s i c a l log ic . The operat ion
of addition i s no longer r e p r e s e n t e d by the s e t - t h e o r e t i c
union of the s u b s p a c e s , but the (orthogonal) d i rect sum
L A + L B o f t n e l i n e a r s u b s p a c e s 1 5 ' :

LA+ Β = ^ A © LB Φ LA + LB.

Let, e .g. , the propos i t ion A c o n s i s t in the s ta tement that
the magnetic moment μ of an atom i s directed along the
χ axis and the proposition Β that this vector points in
the y-direction. Then the proposition AB a s s e r t s that
the vector μ points both in the χ and the y direct ions,
which i s impossible. Such a proposition which i s obvi-
ously false will be called the absurd proposition and de-
noted by ®. Thus, in the case discussed above, AB = ®.

The proposition A + Β a s s e r t s that the vector μ has
the form μ = ϋ ι μ ι + Ο2βΐ where μ ι and \k% a r e vectors
respectively along the χ and y axes. In other words, the
proposition A + Β says that the vector μ is in the plane
spanned by the χ and y axes (in c lass ica l logic A + Β

FIG. 7 FIG. 8

15'The direct sum of the spaces LA and LB is defined as the set of
all possible sums of vectors χ + y, with χ € LA> y e Lg- Thus, if L A and
L B denote respectively the χ and y axes, the set-theoretical union L A +
L B consists of all vectors directed either along the χ axis or along the y
axis. Their direct sum L A ® L B consists of all vectors lying in the x, y
plane.
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FIG. 9

would mean that μ is either along χ or along y). In the
case of a two-dimensional space the proposition A + Β
is always t rue . Such an obviously t rue proposition is
called tr iv ia l and denoted by I.

It i s obvious that both in c lass ical and in quantum
logic the following re lat ions a r e t rue

ΘΑ = θ , θ + A = A, IA = A, A=I, /,

where A is an a r b i t r a r y proposition.
The commutative and associative laws (22), (23),

(24), the order re lat ion (26) and the absorption law (27)
a r e also valid in quantum logic. However, the distr ibu-
tive law (25) is in general not valid in quantum logic.
To see this we consider three vectors A, B, C in a two-
dimensional Euclidean space (Fig. 9) and the three
proposit ions as ser t ing that the vector μ is directed
along the respect ive vector. We have A + Β = I, (A + Β
(A + B)C = C. On the other hand, AC = ®, BC = ©.
Therefore AC + BC = ®. We see that distributivity is
not valid in this case :

(A + B) C φ AC + BC.

We now give a simple proof of the impossibility of
introducing hidden p a r a m e t e r s into quantum mechanics,
on the basis of quantum logic (this proof i s due to
Turner C l 3 ] 1 6 ) ) .

If hidden p a r a m e t e r s would exist, forming a phase
space Ω , there would be a mapping Ω ^ —> L^ of the
supports of each proposition A. In other words, one
could consider that the state vectors ψ complemented by
some hidden parameters ξ form a phase space Ω .

On the other hand, the mapping Ω ^ —« L^ must con-
serve the relations of inclusion (the isotony postulate):
Ω ^ Q J2g is equivalent to L^ c Lg. Therefore, in order
to prove the impossibility of introducing hidden param-
eters it suffices to prove that the isotony postulate is
violated.

For this purpose we consider four directions 1, 2,
1', 2' all in the same plane (cf. Fig. 2) of a unitary
space. Let the four state vectors ψ1 ; ψ2, φν, φ*ι corre-
spond to these directions. We further introduce the
superpositions of states

Since the four directions 1, 2, 1', 2' are coplanar, we
have φ ΐΐ= φι'2.1. In the language of quantum logic this

16)The first proof of the impossibility of introducing hidden para-
meters into quantum mechanics on the basis of quantum logic was given
by Jauch and Piron I34]. However, their proof made use of the so-called
"axiom 4" : if propositions A and Β are true, so is the proposition AB,
axiom which is far from obvious in the case of quantum logic [14t> ] .
Proofs based on quantum logic which do not rely on axiom 4 were
given by Gudder [ 1 8 b] and by Zierler and Schlessinger [ 3 5 ] . However,
these proofs are too complicated and we do not reproduce them here.

means the equality of the direct sums
£, © £2 = Lv © Lr, (28)

where Li, L2, LX', L2' denote the subspaces spanned
respectively by the four vectors 1, 2, 1', 2'.

It follows from Eq. (28) that

Assume now that there a r e hidden p a r a m e t e r s ξ.
Then the state vector φι and the p a r a m e t e r ξ give r i s e
to a phase subspace Ωι, {ψι, ξ} e Ωι, and s imilar ly
{ψ2, ξ} e Ω 2 , {φν, ξ} € η ι', {ψ2>, ξ} ^ Ω 2 , . We now
take the superposition of s ta tes ψ 1 2 = Cii/Ί + Ο 2ψ 2. Then
the following relat ion should be t r u e : {φιζ, ξ} ^ Ωι + Ω 2 .
This relation contains not the direct sum, but the set-
theoretic union, since the r a i s o n - d ' e t r e of hidden
p a r a m e t e r s is that they be subject to class ical logic.

Since the proposit ions Ωι + Ω 2 and Ω ι ( + Ω 2 ; a r e not
equivalent: Ω χ + Ω 2 ^ Ωι> + Ω 2 / w e have

Ω,· <= Ω, + Ω2,

and consequently the isotony requirement is not satis-
fied.

Thus, we have shown that the structure of quantum
logic cannot be isomorphic to the structure of classical
logic.

The tremendous successes of quantum mechanics
and the fact that it explains a wide variety of physical
phenomena have somehow generated a pragmatic ap-
proach to quantum mechanics, where the main emphasis
is on the recipes and prescriptions of quantum mech-
anics, rather than on its foundations and principles.

The importance of von Neumann's theorem is that it
convinces us of the logical closedness and self-consis-
tency of quantum mechanics and that no attempts to
"correct" it by means of an eclectic mixture of separ-
ate elements of the quantum-mechanical formalism and
the hypothesis of hidden parameters are possible.
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