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INTERACTION OF INTENSE OPTICAL RADIATION WITH FREE ELECTRONS

(NONRELATIVISTIC CASE)
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P. N. Lebedev Physics Institute, USSR Academy of Sciences

Usp. Fiz. Nauk 107, 559-593 (August, 1972)

A review is presented of the status of problems involving the interaction of matter and optical-band
electromagnetic radiation of intensity such that any medium becomes a fully ionized plasma. The
following are considered within the framework of the single-electron approximation in the case of
nonrelativistic energies: stimulated bremsstrahlung and absorption of an electron in the field of a
strong electromagnetic wave, stimulated two-photon Compton scattering, and scattering of electrons
in the field of an intense standing electromagnetic wave (the Kapitza-Dirac effect). The role played
by these processes in the heating of plasma by laser radiation is analyzed, as is the question of the
possibility of obtaining amplification (negative absorption) of light in transitions in a continuous
spectrum. The bibliography is brought up to date to the middle of 1971.
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1. INTRODUCTION

I N connection with the development of quantum elec-
tronics in the optical band (lasers), it became realist-
ically possible to observe a number of new physical
phenomena due to the interaction of sufficiently intense
electromagnetic radiation with matter. A large class
of such new effects as generation of harmonics of op-
tical radiation, parametric interactions, various types
of stimulated scattering of radiation, self-focusing of
wave beams in a medium, etc. are presently being in-
tensely studied both theoretically and experimentally,
and constitute the scope of nonlinear optics. A charac-
teristic feature of this class of effects is that in final
analysis all are due to nonlinear (in the electromag-
netic field) polarization of the medium. It is customar-
ily assumed that the medium itself does not change its
aggregate state during the course of interaction with
the radiation, and serves only as a nonlinear converter
of the radiation. From this point of view, such proces-
ses as optical breakdown in gases or damage in solids
are usually considered to be secondary phenomena that
lead to the loss of the nonlinear-optical properties of
the medium. The assumption that the state of the
medium remains unchanged determines also the fea-
tures of the theoretical approach to nonlinear-optics
problems and is manifest in the fact that all can be
described within the framework of macroscopic elec-
trodynamics, i.e., with the aid of Maxwell's equations
supplemented by nonlinear material equations.

Closely related to nonlinear optics is a more recent
and much less developed field, also resulting from the
appearance of coherent sources of optical radiation,
namely nonlinear spectroscopy1'. Research in this
field is aimed at studying the absorption spectra of in-

tense optical radiation in gases, liquids, and solids,
when an important role is played by multiphoton and
multistage single-photon absorption mechanisms, and
also the spectroscopic saturation effect and the high-
frequency Stark effect.

As already noted, the phenomena investigated in
nonlinear optics and in nonlinear spectroscopy are
usually considered under conditions when the state of
the medium does not change significantly during the
time of interaction with the radiation. This leads to
definite limitations on the intensity I of the external
electromagnetic wave.

The condition that the aggregate state of the medium
be constant certainly ceases to hold if the amplitude Eo

of the field intensity of the wave becomes comparable
with the intensity of the intraatomic field E a :

Eo~ Eax roV'A8/' (eh)-1,

where Δ is the binding energy of the external electron
in the atom, e and m are the charge and mass of the
electron, and h is Planck's constant. For example, for
the first Bohr orbit of the hydrogen atoms we have Ea
» 5 χ 109 V/cm. The radiation intensity corresponding
to the intensity E a is equal to

/a«c(4ji)-%AWi' (1.1)

(c is the speed of light). At such large radiation
fluxes, any material medium loses its individuality and
is rapidly converted into a fully ionized plasma11"31.
For a typical atom first-ionization energy Δ «* 10 Εν,
the intensity is I a « 5 x 101βW/cm2.

Actually, fast ionization of the atoms can occur also
in fields much weaker than intraatomic, Eo « E a . The
reason is that in the optical band we have ω « Δ/Κ
= a>a· In this case, according to r i a > 2 ] , if the condition2'

term is apparently not yet universally accepted, but it seems
to us to reflect correctly the physical gist of the investigated phenomena.

2 )The physical meaning of condition (1.2) is that the period ω"1 of
the wave is large in comparison with the tunneling time of an electron of
velocity ~(A/m)^ through a potential barrier of width ~(Δ/βΕ0. In this
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(1.2)

is satisfied, the ionization of the atoms is described by
Oppenheimer 's tunnel formula^4 1

exp (-EJE0), (1.3)

where w is the probability of ionization of the atom
per unit t i m e .

Under the typical conditions u)/a a ~ 0.1 and at an
intensity

Eo « (ω/ωα) Εα (1.4)

formula (1.3) leads to a degree of photoionization
~ 1 % within a period α Γ 1 . With increasing radiation
intensity, however, the probability w i n c r e a s e s exceed-
ingly rapidly (the degree of ionization over the period
i n c r e a s e s to 100% when the intensity is increased by
only a factor of 3). Thus, it can be assumed that rapid
ionization of the atoms begins with an intensity I ~ I c ,
where I c corresponds to the field (1.4):

[Ic χ mcia'Mine* χ (ω/ω,,)2 Ια.

For radiation from a neodymium glass l a s e r (λ = 106 μ)
and a ruby l a s e r (λ = 0.69 μ ) at Δ = 15.6 eV (N 2) we
have respectively I c = 8 χ 10 1 3 W/cm 2 and I c = 2
x 10 1 4 W/cm 2 .

At intensit ies higher than cr i t ica l , I > I c , the atoms
of the medium becomes ionized within t imes on the
o r d e r of the period of the wave, and any substance i s
converted into a plasma regard less of i ts initial s ta te .
Consequently, at such high intensit ies the radiation in-
t e r a c t s with a plasma practical ly during the ent ire
pulse duration. Of course , processes analogous to
those considered in nonlinear optics can occur in this
c a s e , e.g. one can have stimulated scat ter ing by differ-
ent types of natura l oscil lations of the plasma, self-
focusing, e tc . In this intensity region, however, great
i n t e r e s t at taches apparently at the present t ime to the
investigation of the mechanism of absorption of power-
ful radiation. In such s t rong fields (when I > I c ) , the
absorption coefficient can become (nonlinearly) depend-
ent on the field intensity. To solve problems of this
type, the phenomenological theory is no longer suffic-
ient, and it i s n e c e s s a r y to use a microscopic approach.
Related to this region a r e a lso a number of problems
involving the scat ter ing of an electron beam in the
presence of an intense electromagnetic field. It is p r e -
cisely to this group of problems that the present review
is devoted. In the main, we shall not deal h e r e with
collective effects that a r i s e in the plasma under the
the influence of a s trong radiation field, and consider
only the interact ion between the field and free e lec-
t r o n s .

At the present s ta te of development of quantum
electronics , it i s quite feasible to obtain in experi-
ments intensit ies on the order of Ic, or even on the
o r d e r of I a . Such intensit ies a r e eas iest to real ize
with picosecond pulses from mode-locked neodymium-
glass o r ruby l a s e r s . Moreover, the use of this l a s e r
regime together with specially developed focusing
sys tems makes it possible to obtain even l a r g e r

case the amplitude of the electron oscillations ~eEo/mcoJ is also much
larger than the width of the barrier, and the amplitude of the oscillation
velocity exceeds the intraatomic velocity of the electron.

o p t i c a l - r a d i a t i o n i n t e n s i t i e s , a n d o n e c a n h o p e t o

r e a l i z e i n e x p e r i m e n t s i n t h e n e a r e s t f u t u r e f l u x e s

( i n t e n s i t i e s ) I ~ 1 0 1 8 - 1 0 2 0 W / c m 2 . S u c h i n t e n s i t i e s w i l l

u n c o v e r n e w e x p e r i m e n t a l p o s s i b i l i t i e s i n t h e s t u d y

o f t h e i n t e r a c t i o n of r a d i a t i o n w i t h m a t t e r . T h e e n e r g y

of t h e e l e c t r o n o s c i l l a t i o n s i n t h e f i e l d of t h e w a v e t h e n

b e c o m e s c o m p a r a b l e w i t h t h e e l e c t r o n r e s t e n e r g y o r ,

e q u i v a l e n t l y , t h e f o l l o w i n g c o n d i t i o n i s s a t i s f i e d

eEJmiuc 3* 1.

T h e c o r r e s p o n d i n g t h r e s h o l d ( r e l a t i v i s t i c ) i n t e n s i t y i s

/«, = mso>V/4ne ! = (meVA) / c .

T h e v a l u e s o f I r e l f o r n e o d y m i u m a n d r u b y l a s e r

emission a r e 2 χ 10 1 8 and 6 χ 10 1 8 W/cm 2 , respectively.
At intensit ies I > Irel> a number of new problems

a r i s e , e.g., the Compton scat ter ing in a s t rong radia-
tion field, and o t h e r s . These questions a r e discussed
in sufficient detail in the r e v i e w [ 5 a i and in the book [ e ] ,
and will not be considered h e r e .

Confining ourselves to intensites I < Irel» w e con-
s ider below the following quest ions: a) stimulated
bremss t rah lung and absorption (linear and non-l inear);
b) st imulated two-photon Compton scat ter ing; c) e lec-
t rons scat tered in the field of an intense standing wave
(the Kapitza-Dirac effect).

Everywhere with the exception of Sec. a of Chap. 3,
the electron translat ional motion i s assumed to be
nonrelat ivis t ic, and the quantum energy i s assumed to
be fiu) « m e 2 .

2. STIMULATED BREMSSTRAHLUNG AND
ABSORPTION

When an electron is scat tered by another part icle
(atom, ion, nucleus) in the presence of an e lectromag-
netic wave of frequency ω, induced emission or absorp-
tion of one or s e v e r a l quanta Κω i s possible besides
the spontaneous emission of a quantum fiu>Sp s e (e is
the e lectron energy p r i o r to scat ter ing) . Such e lectron
transi t ions a r e usually re ferred to as stimulated
bremss t rah lung and absorption (one- or multiquantum).
To shorten the notation, we shall henceforth use also
the t e r m "s t imulated bremss t rah lung effect" (SBE) to
denote the ent i re aggregate of such p r o c e s s e s .

The SBE was considered, of course, even before the
appearance of quantum e lectronics , e.g., in the solution
of the problem of radiation absorption in an electron
plasma as a result of coll isions. Quantum electronics
has introduced two new aspects in the study of the SBE.
F i r s t , the interes t in the SBE i s connected with
s e a r c h e s for the possibility of obtaining negative ab-
sorption in t rans i t ions between s ta tes of a continuous
electron energy spectrum ( " f r e e - f r e e " t rans i t ions) .
An advantage of such sys tems i s the absence of any
limitations whatever on the frequencies of the emitted
photons. In addition, in the case of t ransi t ions in the
continuous spectrum it i s relatively easy to solve the
problem of inverting the population of the energy
s ta tes . For example, a monoenergetic electron beam
is in itself a sys tem with inverted population relat ive
to the ent ire region of the spectrum with lower energy.
The conditions for negative absorption a r e determined
in this case by the c h a r a c t e r of the interaction between
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the electrons and the external field (the electromagnetic
and static fields of the scattering center).

Second, the development of high-power lasers has
made it possible to observe multiphoton SBE, and at
sufficiently high optical-radiation intensities I, the
multiphoton SBE becomes the principal (nonlinear)
mechanism of its absorption in the plasma.

In this chapter we examine the SBE from these two
physical points of view.

a) Negative absorption in free-free transitions. We
shall analyze the conditions of negative absorption of
radiation in SBE as applied to a system of electrons
scattered by heavy particles (atoms, molecules, or
ions). In the general case, such an analysis calls for
knowledge of the cross sections for the single-photon
SBE. If a e ,a are the cross sections of stimulated
emission (absorption) of a quantum fiu> in an electro-
magnetic field of intensity I, occurring when an elec-
tron is scattered by a force center, then the absorption
coefficient a in the system under consideration is
given by

between the coefficients A and Β

α = (NJVha/I) (v (aa - a.) >, (2.1)

where N e and Ν are the average densities of the elec-
trons and of the scattering centers in the system, ν is
the absolute value of the electron velocity, and the
angle brackets denote averaging over the electron
velocity distribution. The cross sections CFQ a depend
both on the absolute value of the electron velocity ν
(prior to scattering) and on its direction relative to the
polarization of the electromagnetic field. It will hence-
forth be assumed throughout that the radiation is
linearly polarized and that the field of the scattering
center has central symmetry. Then the cross sections
depend not only on v, but also on the angle θ between
the radiation polarization vector e and the direction
η = ν/ν of the electron velocity prior to scattering.

In the simplest case of isotropic distribution of
electron velocity, an analysis of the conditions for
negative absorption becomes much simpler. The first
analysis applicable to this case was carried out in [ 7>8 ]

(see also the pertinent papers in t 9 1 ). In this case (2.1)
takes the form

«, (i>) /(t;)

h e r e

π

σβ, u (ν) = (4π)-' f σβ, a {ν, θ) dQ = 0,5 \ σβ, „ (ν, θ) sin θ άθ
ο

a r e the S B E c r o s s s e c t i o n s a v e r a g e d o v e r the ang le

v a r i a b l e s and f ( v ) i s the i s o t r o p i c e l e c t r o n ve loc i ty

d istr ibut ion function, n o r m a l i z e d by the condit ion

4π ( 2 . 2 )

The a v e r a g e c r o s s s e c t i o n s cr e ;a.(v) a r e convenient b e -

c a u s e , on the one hand, they sat i s fy the " i n t e g r a l " d e -

ta i l ed balancing p r i n c i p l e [ i o a ] :

• Γ " ι \ ">~ i ν / Ο Ο \

V Ο a (V) — W* Oe i^/j V^·*'/
ι/>̂  = ι> -f~(27&u)/in)f /Λ Μ \

a n d o n t h e o t h e r h a n d t h e y s a t i s f y t h e E i n s t e i n r e l a t i o n

(ν,ω), (2.5)

where nq = (4Λ2ΐ/Ηα>3ΔωΔΩ) is the average number
of quanta for field oscillator (Δω and ΔΩ are respec-
tively the width of the frequency and angular spectra
of the linearly-polarized radiation with total intensity
I), and asp (v, a>)da> is the cross section for spontane-
ous emission, into a solid angle 4π, of a photon with a
frequency in the interval (ω, ω + du>), upon scattering
of an electron of velocity v.

On the basis of (2.3) and (2.5), formula (2.1) takes
the form

a — — 4ji3ca№iTa J Wi>2asp (w, ω) [/ (w)—f(v)]dv.
ο

F r o m th is e x p r e s s i o n , when account i s taken of (2.4) ,

we see that to satisfy the condition α < 0 it is necessary
to satisfy the inequality df/dv > 0 in a certain finite
interval of the velocities v. Obviously, this velocity
interval has an inverted electron population (a
"negative temperature")3 ', and the physical meaning of
the condition α < 0 reduces to the fact that a velocity
interval with "negative temperature" (df/dv > 0) makes
a larger contribution to the absorption at the frequency
ω than an interval with "positive temperature"
(df/dv < 0).

The indicated condition for negative absorption is,
generally speaking, only necessary but not sufficient,
and it is possible to find one more independent neces-
sary condition for α < 0. The latter is easiest to find
in the classical limit of low frequencies, when Bu> « e,
a condition that can usually be regarded as satisfied in
the optical band, and all the more in the radio band.
In this case a universal connection exists between the
spontaneous emission cross section asp(v, u>) and the
transport cross section atr(v) of elastic scattering of
an electron [ l o b l (see also [ 1 1 ] , Chap. V, Sec. 2a)

σ 8 ρ (ν, ω) = (4A2/3nficoc3) a*ati (ν) Ιω2 + ν 2 (ν)]-\ (2.6)

where v(v) = N v a t r ( v ) i s the frequency of the e l a s t i c

c o l l i s i o n s of the e l e c t r o n s with s c a t t e r i n g c e n t e r s .

After subst i tut ing (2.6) in (2.7) we obtain, a c c u r a t e to

f i rs t o r d e r in fia)/e, the known k inet ic- theory e x p r e s -

s i o n for the absorpt ion coef f ic ient of a p l a s m a with an

i s o t r o p i c e l e c t r o n distr ibut ion ( s e e e . g . , [ 1 2 ] )

oo

α = - (16jiV/3mc) j [ω» + ν2 (»)]"> ν (ι>) ν3 (df/dv) do. (2.7)
ο

The a l ready ment ioned s e c o n d n e c e s s a r y condition

a < 0 i s obtained when (2.7) i s in tegrated by par t s . It

r e d u c e s obvious ly to the requ i rement that the in-

equal i ty 1 '

πί*τ%»]<° (2-8)
be satisfied in a certain finite velocity interval. Satis-
faction of this condition is determined completely by
the character of the elastic scattering of the electron.

3)When df/dv > 0, the electron energy distribution function increases
more rapidly than e%.

4)It is assumed here, naturally, that the function f(v)w3/o2 + v2)
vanishes at ν = 0 and v = <*>.
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For the case of a strongly ionized plasma, when e lec-
tron-ion collisions a r e decisive (see, e .g. , [ 1 2 ] ), we have

ν (v) = Nvau (u) = L (v), (2.9)

where L ( v ) i s the Coulomb logar i thm, which i s a
monotonica l ly i n c r e a s i n g function of v. 5 ) We s e e t h e r e -
fore that condit ion (2.8) cannot be sat is f ied 6 *. A c c o r d -
ingly, negat ive absorpt ion of the radiation i s i m p o s s i b l e
in a s t rong ly ion ized p l a s m a with an arb i trary i s o t r o p i c
e l e c t r o n ve loc i ty distribution'-7^.

In the c a s e of a weakly ion ized p l a s m a , when the
c o l l i s i o n s be tween the e l e c t r o n s and the neutra l part i-
c l e s a r e d e c i s i v e , it i s i m p o s s i b l e to obtain a s i m i l a r
u n i v e r s a l a n s w e r . It can only be s tated that at high
radiation frequencies ω » v(v) the negative absorption
is apparently likewise imposs ib le . Indeed, in this case
we have νν"/(ω2 + ν2) ~ atr( v)v 4, and this function has
no negative slope for al l the gases investigated to date.
Violation of this property of the c r o s s sections i s
physically unlikely.

To the contrary, at sufficiently low frequencies,
when ω « v(v), we have νν3/(ω2 + ν2) ~ v 2 /a t r (v) ,
and for gases that exhibit a s t rong Ramsauer effect the
condition (2.8) may turn out to be satisfied in a certa in
finite velocity interval . Consequently, in such gases,
at definite e lectron distributions f(v), negative absorp-
tion of sufficiently low-frequency radiation i s possible
a s a resul t of the bremss t rah lung effect [ 8 ] . This phe-
nomenon was apparently observed experimentally i n [ 1 3 ] ,
where a " d e c r e a s i n g s e c t i o n " was reg i s tered in the
current-voltage c h a r a c t e r i s t i c s of gas-discharge
tubes filled with heavy noble gases exposed to u l t r a -
violet radiation. Observation of an appreciable gain due
to this effect at a frequency 60 MHz in a xenon gas-
discharge plasma was reported i n t l 4 ] .

The r a t h e r limited possibil it ies of obtaining nega-
tive absorption in a p lasma with an isotropic e lectron
velocity distribution have the physical explanation, of
c o u r s e , that the s tate of such a plasma is already suf-
ficiently close to equil ibrium, since in such a plasma
there is no directed electron motion relative to the
radiation polarization. In the presence of such a mo-
tion, the situation can be appreciably changed. Let us
consider f irst the case of the s implest non-isotropic
distribution, when f(v) = N e 6 ( v - v0), i .e . , the case of
scat ter ing of a monoenergetic beam of e lectrons of
velocity ν and density Ne- Then (2.1) takes the form

(2.10)

where

voat (v0, Θ),

σ, (ν, θ) = σ α (ν, θ) - σ β {ν, θ)

i s t h e t o t a l c r o s s s e c t i o n o f t h e b r e m s s t r a h l u n g p h o t o n
a b s o r p t i o n . A n a n a l y s i s of t h e c o n d i t i o n s of n e g a t i v e

5 ) T h e Coulomb logarithm L(v) is defined by the formula [ n ] L(v) =
In [ 1 + ( 2 p m a x / P m i n ) 2 ] V l = In [ 1 + c o t 2 ( 0 m j n / 2 ) * , where p m a x and
Pmin a r e respectively the m a x i m u m and minimum impact parameters,
and flrnin is the minimum electron scattering angle. Only the parameter
Pmin = m a x {2Ze 2 /mv 2 , h/mv} depends on the velocity. The parameter
Pmax can be regarded equal to {νχ/ωρ, ν τ / ω } , where vT = (3Te/m)1/2 is
the average thermal velocity of the plasma electrons and ω ρ = (4πε2Ν6/
m)1/2 is the Langmuir (plasma) frequency.

6)When ω > ν and ω < ν, this is immediately evident from the fact
that in this case we have ΐ>ν3(ω2 + ν1)'1 ~ L(v) or ~v6/L(v) respectively.

absorption is determined in this case by the sign of the
c r o s s section a t (v , θ) as a function of the angle θ and
the velocity v0- This question in such a formulation
was first investigated i n [ 1 5 1 , where the c r o s s sections
of single photon SBE were calculated for scat ter ing of
a nonrelativistic electron by fewer Coulomb and
screened Coulomb c e n t e r s .

We confine ourselves to the scatter ing of e lectrons
by a pure Coulomb center in the Born approximation,
i .e . , under the c o n d i t i o n [ i o a ]

ZeVfivo<ti. (2.11)

In the bremsstrahlung-effect problem, this condition
should be satisfied for both values of the electron
velocity, before and after the scat ter ing. To calculate
the emiss ion c r o s s sections ae, this condition must
therefore be supplemented by the condition

2ξ=ηω/Ο,5ιπκ3< 1. (2 .12)

The sought c r o s s s e c t i o n ae,a a r e ca lcu lated in
s e c o n d o r d e r of perturbation theory (in f i rs t o r d e r in
the radiat ion field and in f irst o r d e r in the Coulomb
potent ia l ) , and the in i t ia l and final wave functions of
the e l e c t r o n must be chosen to be the wave functions of
the f ree e l e c t r o n , i . e . , plane w a v e s . The s u m m a t i o n
o v e r the i n t e r m e d i a t e s t a t e s can be e a s i l y r e a l i z e d be-
c a u s e the momentum conservat ion law ho lds . As a r e -
sul t we obtain the fol lowing e x p r e s s i o n for the differen-
t ia l c r o s s s e c t i o n s of the S B E [ 1 5 ]

daa,e!dQ = 2nZieeI{l ± 2 | ) 1 / 2 [ n e — (1 ± 2Q1 / 2 n'e]2 (£ 13)

X {cm} (δω)2 ί^ω2 [1 ± I — (1 ± 2ξ)1 / 2 ηη']2}"1;

h e r e η and n' a re unit vectors in the directions of the
velocities of the incident and scat tered e lectrons,
e = E o / E o i s the unit vector of the polarization of rad i-
ation with intensity I = CEO/8JT, and dii is a solid-
angle element in the direction of the vector n ' .

For the emission c r o s s section d a e , formula (2.13),
s tr ict ly speaking, i s valid only if condition (2.12) is
satisfied. This , however, is precisely the region (of
sufficiently soft quanta and high electron energies
e 0 = mvo/2) where the emiss ion and absorption c ross
sections can be comparable in magnitude, and conse-
quently, one can r a i s e the question of negative absorp-
tion. We shall therefore assume ξ « 1 from now on.

On the bas is of (2.13), in the scat ter ing of an e lec-
tron beam by Coulomb centers with density Nj, expres-
sion (2.10) for the absorption coefficient α takes the
form

a = {ZnZVNiNe/cmV^l) f dQ [(1 + 2ξ)1/2

X {|ne —(1 + 2 ξ ) " 2 n'c] [1 + 1 —(1 +2l·,)"2 n'np 1} 2

-(1-2ξ)1/2{[ηβ-(1-2ξ)1/2η'β][1-ξ-(1-2ξ)1/2ηη'Γ1}2]-

I n t e g r a t i n g o v e r t h e s o l i d a n g l e s dS2 a n d u s i n g t h e n t h e
smal lness of ξ, we obtain ultimately

a = (N,NeTuav0II) σ, (υ0, Θ) (2 .14)
= (iQn?ZVNiNJcm3a'-vl) [2 cos2 θ - (3 cos2 θ - 1 ) In (2/ξ)].

We s e e there fore that negat ive absorpt ion i s p o s s i -
ble for the c o n s i d e r e d s i m p l e s t non- isotrop ic e l e c t r o n
ve loc i ty d istr ibut ion (a m o n o e n e r g e t i c beam) if

cos θ > {In (2/ξ) 13 In (2/ξ) — 2]-1}1* 1//3, (2.15)
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i.e., if the electron velocity vector ν lies inside a
cone whose axis coincides with the polarization direc-
tion e of the electric field, and whose generatrices
are inclined to the axis at an angle

θ 0 = arc cos {In (2/ξ/31η (2/ξ) - 2J-1>V» « arccos (1//3) « 55°.

At a specified velocity v0, the quantity - α ( ν 0 , θ) is
maximal at θ = 0, i.e., when the velocity of the scat-
tered electrons is parallel to the polarization of the
electric field of the radiation. The maximum gain, ac-
cording to (2.14)7), is

- ο» = (32^ZVN,Ne/cm:>vlo>2) [In (2/1) - 1 ] (2 .16)

= (8n2ZWN,j/cme№) [In(2/1)-I],

where j = N e v o e i s the dens i ty of the current in the

b e a m , and e 0 = m v § / 2 .

Thus, in the p r e s e n c e of d i r e c t e d mot ion of the

e l e c t r o n s re la t i ve to the radiation polar izat ion, n e g a -

t i ve absorpt ion in the SBE i s p o s s i b l e a l s o for Coulomb

c o l l i s i o n s . N u m e r i c a l e s t i m a t e s show, however , that

the gain attained in th i s c a s e i s quite s m a l l in the

opt ica l band. Only for the far infrared and the m i c r o -

wave bands can one hope to obtain an apprec iab le gain.

Thus, at ω « 1013 sec"1 (wavelength λ » 2 χ 10"2 cm),
an electron velocity v 0 « 108 cm/sec, a solid-state ion
density Ni = 1022 cm"3, N e = 108 cm"3, and Ζ = 1 an
estimate in accordance with (2.21) yields \ao\ « 1 cm"1.
In such an estimate it is borne in mind that the elec-
tron beam interacts with ions of the solid or the liquid,
and the absorption of the electromagnetic field at the
frequency ω is assumed to be sufficiently weak.

The latter condition is usually not satisfied in inter-
actions between an electron beam and a plasma. If the
electron concentration of the plasma greatly exceeds
the concentration of the particles in the beam, then
bremsstrahlung absorption by the plasma electrons
prevails over the amplification by the beam electrons.
One can therefore speak of a possible negative absorp-
tion due to the SBE in a plasma only if a large number
of electrons take part in the directional motion. In this
connection, certain interest attaches t o [ i e l , where the
possibility of negative absorption due to the SBE in a
plasma with electron drift is predicted. The electron
velocity distribution function is in this case

/ (v) = Jf, {μ/η)3'2 exp [ - β (ν - »„)"], ( 2 . 1 7 )

where vd i s the drift ve loc i ty . It i s a s s u m e d that i t s

d i r e c t i o n c o i n c i d e s with the d i rec t ion of the p o l a r i z a -

t ion v e c t o r e . The e l e c t r o n drift can be produced by

p lac ing the p l a s m a in an e x t e r n a l constant e l e c t r i c

f ield p a r a l l e l t o the v e c t o r e . 8 )

On the b a s i s of the foregoing a n a l y s e s one should

e x p e c t n e g a t i v e a b s o r p t i o n i n a p l a s m a w i t h d i s t r i b u -

t i o n ( 2 . 1 7 ) a t vd £ ( T e / m ) 1 / 2 a n d a t f r e q u e n c i e s

ω «mv^/fi, for in this case, obviously, condition (2.15)
with the parameter ξ « 1 is satisfied for most plasma
electrons. It is further evident that when Vd increases
the gain should tend to zero like vd

3 in accordance with
(2.16) (v0 = vd), and consequently, the negative absorp-
tion should have a maximum at a definite ratio vd/ντ·
A rigorous kinetic analysis of this question, carried
out in [ i e ] , confirms these qualitative deductions. In the
cited reference, an expression is derived for the ab-
sorption coefficient of a plasma with electron distribu-
tion (2.17), which can be represented in the form

a = α ο τ Υ (vd, ve, Te), (2.18)

where α0Τ is the absorption coefficient of an equili-
brium isotropic plasma t l 2 ],

Y(vd, vc, Γ,) = ( βΐρ(-<!)Λ,

" Ι + η ( 2 . 1 9 )

and χ = /31/2vd and η =/3^2vc are parameters. The
physical meaning of the velocity v c is that at electron
velocities ν > vc the frequency of the electron-ion
collisions is t/(v) « ω(ν(ν) is given by (2.9)). The
results (2.18) and (2.19) pertain to the case when v c

< vp, i.e., when the condition ν « ω is satisfied for
most plasma electrons. Figure 1 shows a family of
plots of the function Y(vd, Vc, T e ) against the ratio
vd/ντ at different values of the parameter v c /vx.
We see that at Vd > 0.8 νχ the function Y, and conse-
quently also the absorption coefficient a, becomes
negative, and the behavior of these two quantities as
functions of the ratio vd/ντ depends little on VC/VT.
The maximum of the negative absorption sets in at
vd « 1.3ντ (x ra 1.8), with a gain ( - a m a x ) » O.laT.
With further increase of vd, the coefficient a tends to
zero (like vd

3 at χ » 1)β>.

For radiation with wavelength λ = 100 μ and for a
plasma with temperature T e = 1 eV and density Ni
= N e = 1017 cm"3 (Ζ =1), the maximum gain is ap-
proximately 1 cm"1. This estimate shows that the con-
sidered system makes it possible, in principle, to ob-
tain appreciable gains in the far IR, but the problem of

he Born-approximation condition (2.11) is not satisfied, then
according to [15] the expression for-a0 differs from (2.16) in that unity
in the brackets is replaced by the term xe" x /(l-e" x ), where χ = 2irZe2/
hv0.

8 ) I t is known [1 7 a] that the electron drift cannot be stationary in this
case, since generally speaking the velocity vj and the electron temperature
T e = m/2/3 increase with time. In a weak electric field, however, this
growth may not be noticeable in practice; in a strong field, the growth
of the drift velocity ("electron whistler") can be compensated for by
adding to the plasma a neutral gas with sufficiently high atom ionization
energy. This difficulty is eliminated to a considerable degree under pulsed
operation.

-HZ-

FIG. I. Absorption coefficient referred to the absorption coefficient
of the equilibrium plasma, ατ/αοτ = Y(v,j, vc, T e ) vs the ratio of the
drift and thermal velocities vj/vr-

9 )If the electron drift is due to a constant electric field, then accord-
ing to [1 7 a] the conditon χ > I can be reached only when the field in-
tensity exceeds the critical value E c = ναβ^ i>ei/e = 27rZ2e3NjL/Te. In a
fully ionized plasma, the bulk of the electrons is then subject to the "elec-
tron whistler" process (see the preceding footnote).
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pract ical real ization of such s y s t e m s encounters c e r -
tain difficulties connected with the production of rapid
electron drift (see the last two footnotes). In addition,
the foregoing analysis ignores completely the possible
onset of plasma instability, which in pract ice can
greatly hinder the pract ical realization of the model in
question.

At the same t i m e , the analysis presented in this
section shows that it i s possible in principle to use the
SBE to develop media with negative absorption of rad i-
ation. It i s obvious that the resu l t s obtained above p e r -
tain, with certain st ipulations, also to the scat ter ing of
e lectrons by impur i t ies in a solid, and by the s a m e
token point to the possibility of obtaining a negative
absorption by free c a r r i e r s in s e m i c o n d u c t o r s [ 1 5 > 1 6 ] .
Insofar as we know, these possibil it ies have not yet
been real ized in the laboratory, although it is not ex-
cluded that they play a definite role under cosmic con-
ditions .

We note in conclusion that SBE in scat ter ing of
relat ivist ic e lectrons was investigated i n t l 8 a > C ] , where
the conditions for negative absorption were analyzed
for the case of scat ter ing by isolated ions (in a plasma),
and also by the crys ta l latt ice points in an ionic crys ta l .

b) Bremss t rah lung and absorption in a s trong e lec-
tromagnet ic field. The resu l t s descr ibed in the preced-
ing section pertain to the case when the radiation field
intensity I is low enough. In the language of quantum
theory, this condition means that in a single act of
electron scatter ing by a scat ter ing center an important
role is played only by single-photon SBE: the c r o s s
sections a g n

a of multiphoton p r o c e s s e s , when two,
t h r e e , e tc . p'hotons a r e absorbed or emitted in a single
act , a r e smal l in comparison with the c r o s s section
a (

e

n

a given by (2.13). In c la s s ica l theory, weakness of
the radiation field in SBE p r o c e s s e s means that the
amplitude of the e lectron vibrational velocity VE in the
wave field, is smal l in comparison with i ts t ranslat ional
velocity v, i .e . , that

vE = eEJma, < v. (2.20)

As applied to p r o c e s s e s in a plasma, the velocity ν
should be taken to mean the average t h e r m a l velocity
of the electron ν τ = ( 3 T e / m ) 1 / 2 ; the quantity e E 0 / m w
has then the meaning of the vibrational velocity of the
electron, naturally only if the radiation frequency ω is
large in comparison with the effective frequency of the
coll is ions between the e lectrons and the plasma p a r t i -
c l e s . Since we a r e dealing with the optical band, we
shal l a s s u m e the last condition to be satisfied in a l l
c a s e s .

If (2.20) i s not satisfied, then the relative velocity of
the scat tered electron and of the scat ter ing center , and
consequently a lso the effective frequency of the i r col-
lisions in the plasma, begin to depend on the wave am-
plitude E o . This in turn causes the coefficient a of
plasma absorption due to the SBE to become dependent
on the radiation intensity I, i .e . , the absorption be-
comes nonlinear. This nonlinearity should become
particularly pronounced in the case of a strongly ion-
ized plasma, owing to the s t rong dependence of the
Coulomb-collision c r o s s section on the relat ive p a r t i -
cle velocity. The foregoing considerations enable us
to predict directly in this case that the absorption coef-

ficient a will depend on the intensity I in the limit of
large I, when VE > ? ν χ . Indeed, according to (2.9),
one should expect j/eff, and consequently also a, to be
proportional in this case to vg ~ Εό3 ~ Γ 3 / 2 . Thus, the
absorption of the radiation in a strongly ionized plasma,
due to the SBE, should decrease with increasing in-
tensity. This conclusion is important, in particular,
for the problem of high-temperature heating of plasma
by laser radiation.

The condition (2.20) is certainly not satisfied in a
plasma produced when the medium is irradiated with
light of intensity I > I c , for in this case (in accordance
with the definition of I c , see Chap. 1) we have eEo/mco
> (A/m)1/2 ~ νψ, where v(°' is the average velocity of
the plasma electrons during the initial stage of irradi-
ation (at a time on the order of ω"1 after the start of
the irradiation). It must be emphasized that the condi-
tion "at the initial stage of the irradiation" is a partic-
ular manifestation of the general condition that the
plasma irradiation regime be nonstationary, which is
the only case when the condition (2.20) can be violated.
In the stationary irradiation regime, owing to the
plasma heating, we have (see [ 1 2 1 and the review [ 1 8 ])

ντ (£„) = (3Te (E0)lm)ll- > eEJmmSW > vE

(δ is the average relative fraction of the energy t r a n s -
ferred in the collisions between the electron and the
heavy scat ter ing par t ic le ; δ = 2m/M « 1 in Coulomb
coll is ions). If (eE 0 /mw) Ζ δν2νψ, where νψ
is the t h e r m a l velocity of the electrons in the absence
of external radiation, then the plasma can also exhibit
nonlinear proper t ie s , but they a r e due only to i ts heat-
ing (to the dependence of the e lectron t e m p e r a t u r e T e

on E o ) , and not to the nonlinear bremss t rahlung ab-
sorption considered by u s .

The nonlinear SBE can be observed and can play an
important role only during t imes much s h o r t e r than the
t ime necessary to establish the steady s t a t e . Indeed,
if the field is s t rong during the initial instant of the
i r radiat ion, vE ~ νψ, then this condition can be s a t i s -
fied only during t ime intervals on the o r d e r of the
thermalizat ion t ime of the e lectron vibrational motion.
The electronic components of the plasma become
heated within a t ime t ~ V£Q, after which the e lec t ro-
magnetic field becomes weak (the condition (2.20) is
satisfied) and the absorption follows the usual l inear
laws. If νψ <•< VE , then the effective collision frequency
i s veii ~ \νψ/VE)3T~ei> w n e r e T e i i s the t ime of the
electron-ion collisions in the plasma in the absence of
a field. Thus, to observe the nonlinear SBE by m e a s u r -
ing the absorbed energy, the pulse duration τ should be
bounded by the inequality τ < ( ν Ε / ν ί ρ ' ) 3 τ β ΐ .

This condition together with the requirement VE
» νψ, as applied to l a s e r exper iments , is sat is factor-
ily fulfilled in the case of picosecond pulses (τ = 10"12

sec) . For example, at an ion concentration N^ = 10 1 9

cm" 3 , a frequency ω = 3 χ 10 1 5 sec" 1 , and a radiation
field intensity I = 10 1 6 W/cm 2 we have v^ « 1O' U sec

» τ. In o r d e r for a field of such intensity to be con-
s idered as s trong, it i s necessary that the initial e lec-
t r o n t e m p e r a t u r e not exceed ~10 8 o K.

We present below the c las s ica l and quantum-mechan-
ical t reatment of the influence of intense radiation on
the SBE p r o c e s s e s .
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1) Classical treatment. The classical solution of
the problem of absorption of strong radiation in a fully
ionized plasma was first obtained i n [ 2 o a ] on the basis
of the kinetic theory.

A strong radiation field can influence the SBE in a
plasma, generally speaking, in two ways. First, the
cross sections for emission and absorption in the ele-
mentary scattering act can change (in comparison with
the case of a weak field). Second, the electron distribu-
tion function can also change. These two nonlinearity
mechanisms can not be separated in the general case.
It is precisely such a common approach which is de-
veloped in C 2 o a ] . An elementary attempt was made in [ 2 1 ]

to take into account the nonlinearity connected only
with the change of the electron distribution function,
but the results are apparently in error . We present
below a simplified classical analysis that takes into
account only the influence of a strong radiation field
on the elementary scattering act, and compare the re-
sults of such an approach with the rigorous theory.

Assume that at a certain instand of time t 0 an elec-
tron having a translational velocity ν is scattered by
a force center with a centrally-symmetrical potential.
We assume that the scattering time is Δ τ ~ (a/v)
« 1/ω (a is the effective radius of the potential)101,
i.e., the scattering act can be regarded as instantaneous,
and therefore the scattering is elastic. We orient the
axes of a rectangular coordinate system in such a way
that the ζ axis coincides with the direction e = E o /E o

of the radiation polarization, and the velocity vector ν
lies in the plane (x, z) at an angle θ to the vector e.
Then the vector u = u(t 0) of the total electron velocity
in the alternating electric field Ε = Eocos a>t prior to
scattering has the coordinates

ux = vsine, uy = 0, uz = ν cos θ + vB sin ψ (2.21)

and i t s abso lute value i s

u = ν [1 + 2 ζ cos θ sin ψ + ζ2 sin2 (2.22)

where φ = wt0, £ = V E / V , and V E i s g iven by (20).
I m m e d i a t e l y after the e l a s t i c s c a t t e r i n g of the e l e c -

tron through an angle ·>, the c o o r d i n a t e s of i t s tota l
ve loc i ty u ' ( t 0 )

wxcos Φ + uz sin Ο cos φ , u'y = u sin ft sin <p,

u'z = uz cos # — ux sin Φ cos φ ,
(2.23)

where φ is the azimuthal scattering angle with polar
axis along the vector u(t 0). When t > t 0 , the electron
is acted upon only by the wave field, and therefore

(2.24)
t

u'z (t) = u't (<„) + j vE cos at dt = u'z (ta) + vE (sin tot — sin ψ).

P r i o r to s c a t t e r i n g , the e l e c t r o n has an a v e r a g e tota l
energy

ε0 = 0.5m (i>2 + 0 0.5my2 (1 + 0.5ζ2).

The s c a t t e r i n g in the f ield of the wave changes the
a v e r a g e e n e r g y of the e l e c t r o n by an amount

Δε = (#, φ ; ψ) = -|- <u'2 «)) - ε0,

w h e r e the b r a c k e t s ( . . . ) denote averag ing o v e r the

t i m e t. On the b a s i s of (2.21)—(2.24) we obtain for

Δε = την2 ζ sin ψ [(1 - cos β) (cos θ + ζ sin ψ) + sin θ sin # cos φ ] .

If d a ( u , <>) i s the di f ferential c r o s s s e c t i o n for e l a s t i c
s c a t t e r i n g of the e l e c t r o n and Ni i s the dens i ty of the
s c a t t e r i n g c e n t e r s , then the rate of change of the e l e c -
t ron energy i s

de/dt = TV, j UAE (0, φ) da (it, 0) = „ ^

= N,att (ιι)πΜν*ζ sin ψ (cos θ + ζ sin ψ),

where a t r ( u ) = J ( l - c o s i?) da i s the t ransport c r o s s

s e c t i o n .

The e x p r e s s i o n for the p l a s m a absorpt ion coe f f i c-

ient a i s obtained from the e x p r e s s i o n for the rate

de/dt by a v e r a g i n g the la t ter o v e r the phase and o v e r

the e l e c t r o n v e l o c i t i e s v:

(2.26)

We confine o u r s e l v e s henceforth to Coulomb c o l l i s i o n s ,
for which the c r o s s s e c t i o n atr i s g iven by (2.9). We
then obtain for de/dt on the b a s i s of (2.25)

de/dt = (4jiZVJVyim;)

Χ ζ sin ψ (cos θ + ζ sin ψ) L[(i + 2ζ cos θ sin ψ + ζ2 sin2 ψ)3/2]-1

L = In [1 + ( 2 / W / / W F 2 . (2 .27)
Pmai = ra'n (u/ίύρ, u/ω), pmin = max (2Ze3/mu2, K/mu).

W e c o n s i d e r f i r s t t h e c a s e o f s c a t t e r i n g o f a n e l e c -

t r o n b e a m , w h e n f ( v ) = N e 5 ( v - v 0 ) . In a w e a k f i e l d ,

w h e n v E « v 0 , w e h a v e 1 1 1

it = ν (1 + ζ cos θ sin ψ + . . . ) , L = In (2/|) + 2ζ cos θ sin ψ,

(2.28)
and on the b a s i s of ( 2 . 2 6 ) - ( 2 . 2 7 ) we obtain for the ab-
sorpt ion coef f ic ient a, a c c u r a t e t o t e r m ~ £ 2 , a formula
that c o i n c i d e s exact ly with the quantum-mechanica l
formula (2.14) .

The case of arbitrary values of ζ will be considered
for an electron-beam orientation parallel to the polari-
zation of the electric field of the wave ( θ =0). Then
u = v01 1 + £ sin φ | , and

de/dt = (ii.Zh'Ni/nWo) ζ sin ψΖ, (ψ)/(1 + ζ sin ψ)2, ( 2 . 2 9 )

f In [1 + (*iViZe2)2(l + ζ sin ψ)·]·/«, | 1 + ζ sin ψ | < 2ZeVhv<,,

U n [1 + (2/ξ)2 (1 + ζ sin
1 0 ) F o r Coulomb collisions, this condition is not satisfied precisely in

the frequency region at which the field penetrates in the plasma, i.e., at
ω ί ϊ ω ρ ( ω ρ is the plasma frequency). It is known, however, [ 1 2 ] , that
in the case of a weak external field the transition from the case ω < ω ρ
to the case ω < ω ρ changes only the logarithmic factor in the expression
for the effective collision frequency. One can therefore hope that in a
strong field the relation between the frequencies ω and ωρ will not
greatly influence the main relations of the SBE. This assumption is partly
justified by numerical calculations for the case ω > ωρ in [2Oa] and by
the results of the following section.

| 1 + ζ sin ψ | > 2ZeVhve.

It i s s e e n from (2.16) that when the ve loc i ty v 0 of the
s c a t t e r e d e l e c t r o n s d e c r e a s e s , the negat ive-absorpt ion
coeff ic ient in a weak field i n c r e a s e s sharp ly a ) and
tends to z e r o l ike v 0

3 with i n c r e a s i n g v0. We can
t h e r e f o r e e x p e c t in the n o w - c o n s i d e r e d s trong-f ie ld

u ) We assume that p m m = ft/mu, which in this case (J < 1) corre-
sponds to the condition (2.11).

1 2 )See footnote 7.
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case the negative-absorption coefficient ( - a ) to in-
c r e a s e sharply a ζ —- 1 and tend to zero like E" 3

~ Γ 3 / 2 as £ — « . Calculation of α on the bas is of (2.26)
and (2.29) confirms this prediction fully; it i s imposs i-
ble, however, to obtain a single elementary formula for
a r b i t r a r y values of ζ, and we present below t h r e e
formulas for α at ζ « 1, ζ = 1, and ζ » 1:

( 2 .30)

n (16Δ3φφ/λφ)/1η

ζ > 1: α α (αο/3ΐτξ2) (2(.ι?0/ξ2Ζ^)1/3 [1η (16Δ3Μι/Λω)/1ΐι (2/1)] [1+(2ζ2)->+ ..

= — (64π2/3) (ZVNiNe/XEl) (2/ξ) ()>!V2;Ze2)1/3ln (16Δ3ΦΦ/Βω)

[1+(2ζ 2 )-»+.. .) ; (2.31)

h e r e α 0 i s the negative-absorption coefficient at θ = 0
in a weak radiation field, as given by (2.16); Aeff
= (Z 2e 4m/2fi 2) is the effective ionization potential of
the scat ter ing ion, and λ = 2πο/ω. The approximate
equality signs in (2.30) and (2.31) denote that the calcu-
lations a r e performed with logarithmic accuracy.

F r o m (2.30) we see that \a | i n c r e a s e s rapidly as
ζ •— 1 in comparison with the case of a weak field, in-
asmuch as the p a r a m e t e r (2/ξ)Κν ο /2Ζβ 2 = mvo/Ze 2w
is numerical ly large . Thus, at v 0 = 2 χ 10 8 cm/sec and
Ζ = 1, for radiation of wavelength λ = 0.1 cm, this
p a r a m e t e r is approximately equal to 2 χ 104; with th i s ,

α ( ζ = ι ) «s Sa0, and the radiation intensity correspond-
ing to the condition ζ = 1 is approximately 6 x 107 W/cm2.

Thus, in the case of non-isotropic distribution of the
electron velocities, negative absorption in the SBE for
Coulomb collisions i s possible also for a strong radia-
tion field, and the negative-absorption coefficient de-
pends in this case on the radiation intensity and has a
maximum point. In the limiting part icular case of a
distribution such that the electron beam i s directed
along the radiation polarization, this maximum is
reached at the point ζ = eE 0 /ma)v 0 = 1, where the
value of \a | greatly exceeds | a o | ; at £ » 1, the ab-
sorption, while remaining negative, becomes s m a l l
(Ι α | ~ Γ * ~ Γ 3 / 2 ) . A plot of | a/a01 against ζ for this
par t icular type of non-isotropic distribution i s shown
in Fig. 2a.

An entirely different dependence of the absorption
coefficient a on the radiation intensity i s obtained in
the case of isotropic electron velocity distribution. We
have seen in Sec. a of Chap. 2 that in a weak radiation
field an isotropic distribution always leads to a posi-
tive absorption (a > 0). On going to a strong field, the
absorption coefficient, remaining positive, tends mono-
tonically to z e r o . This follows directly from the gen-
era l formulas (2.26) and (2.27). In this case (2.26)
takes the form

α = Ζ"1 f v*f {v) dv sin θ (άε/dt) dd, (2.32)

w h e r e t h e d i s t r i b u t i o n f u n c t i o n f ( v ) i s n o r m a l i z e d b y

the condition (2.2). The calculation of α thus reduces
pr imari ly (according to (2.27)) to the calculation of the
function B( ζ), defined by the integral

2 π

= ζ\ *|>sini|) f cZO sin θ (cos θ + ζ sin φ) (2.33)

When ζ « 1 we can use the expansions (2.28), and we

obtain for B(£)

Β (ζ) = (4π/3)ζ2 + . . . (2.34)

When £ £ 1, we can discard the t e r m 2£ cos θ sin φ in
the denominator under the integral sign in (2.33) 1 3 ),
and we can write accordingly for the Coulomb logarithm

L » In (2ζ2/ξ) = In (2/ξΕ),

where ξ Ε =fiw/mv|;.

The integration can be readily performed in this

case , and we get for Β(ζ)

Β (ζ) « 18ζ2/(1 + ζ2)3'2© (ζ/(1 + ζ2)"2) 1η (2/|Ε), ( 2 .35)

where D(k) = k " 2 ( K ( k ) - Ε (k)) i s a complete elliptic
integra l .

Since B(g) > 0 for al l values of ζ, the absorption
coefficient a defined by (2.32) is also positive at all
values of the radiation field intensity. We perform the
final calculation of a for a Maxwellian distribution
f(v). In this case we obtain on the basis of (2.32),
(2.27), and (2.33)

<xT = (4/π1
\-* dx, (2.36)

where ζ χ = εΕ0/31 / 2/ΐηω and β = m / 2 T e . A weak r a d i -
ation field corresponds in this case to the condition
£T « 1. On the bas is of (2.36) we obtain the well known
expression for the absorption coefficient aoT of a
Maxwellian plasma (see, e .g ./ 1 2 1 ) . To car ry out the
integration of (2.36) at £τ << 1, the integration interval
is broken up into two: from 0 to £χ and from £χ to » .
In a second interval, we can use for the function B( £)
the expansion (2.34), and in the first interval we can
use the representat ion (2.35).

We turn now to the case of a strong field, when
£τ ~ 1· We can use in this case in the ent ire integra-
tion interval the representat ion (2.35) for the function
B(£), and this yields

1 + ζξ)-3Ι2Β,(ζτ), (2.37)

where ε χ = 1.5T e, and

FIG. 2. Coefficient of negative absorption of an electron beam (par-
allel to the polarization of the electric field of the wave), referred to its
value in a weak field, as a function of the field quantity f = v£/v(a), and
absorption coefficient of isotropic Maxwellian plasma, referred to its
value in a weak field, as a function of the field quantity fT = vg'/3%,
β = m/2Te (b).

13)When ζ > 1, the validity of such an operation is obvious. When
f ~ 1, it follows from the fact that the main contribution to the integral
with resepct to θ is made by the vicinity of the point π/2, where |2f cos
θ sin φ | < 1.
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At £χ » 1 we have

ΐΧζτ/(1 + ζϊ)'/: ί) « In [4£T] - 1 = 0,5 In (4,3εΕ/Γ«),

and we therefore obtain on the bas is of (2.37)

Z'^h In (4εΕ/»ω) In (4,3eE/Te)

l In (4εΕ/ίω) In (4,

" 2 ) Λ — dx

(1>£ζτ<οο).

where e g = 0.5mv|..

The approximation of the function Βι(£χ) b v t n e

elliptic integral ϋ ( £ χ / ( 1 + £χ) 1 / 2) makes it possible
to write down an expression for the absorption coef-
ficient αχ of a Maxwellian plasma at arbitrary values

When ζτ « 1, this formula coincides exactly with the
known expression for the linear absorption coefficient
Q 0 T f i e ] . When £χ ^ 1, this formula leads to (2.37)),
accurate to the approximation (2.38) and a numerical
factor 4/3 V 3. A plot of αχ/αοΤ against £χ is shown
in Fig. 2b.

Let us compare our results with the conclusions of
the rigorous theory of nonlinear bremsstrahlung ab-
sorption in a plasma [ 2 o a i . In that reference, an expres-
sion was obtained for the effective frequency of the
electron-ion collisions in a strong field of a mono-
chromatic electromagnetic wave. The general formulas
are quite complicated, but they become much simpler
if the initial electron distribution (prior to the interac-
tion with the field) is Maxwellian, and the field fre-
quency ω is much lower than the plasma frequency,
ω « ωρ. The latter condition is equivalent to the in-
stantaneous-scattering assumption used above (see
footnote 10). In this case the absorption coefficient α
can be written, in accordance withC 2 o a ], in the form

α = (32 (2π)3 / 2 N,NeZ*eVm.Scviω*) (vTlvEf Q (vE/2vT) In (k^/k^),

Q (r) = f dz z*e-* [/„ (z2) -It'(z*)];] ( 2 · 4 0 )
0

h e r e I n ( z 2 ) i s a B e s s e l function of i m a g i n a r y argument,
and kmax and kmin a r e cutoff f a c t o r s . A s usua l ,
kmin = T'D « ( ω ρ / ν χ ) . The quantity k m a x i s d e t e r -
mined from the condition of the applicability of p e r t u r -
bation theory o r the c las s ica l approach, but according
t0t2oa] i t i s necessary to use for the electron energy in
this case the sum of the energy of the translat ional
motion ΐ η ν χ / 2 and of the oscillation energy in the
external field m v | / ! . Therefore, if vg « ν χ , it i s
necessary to use for k m a x the s m a l l e r of the quanti-
t ies m v T / Z e 2 and ΐηνχ/ ϊ ϊ , and if vg » ν χ , then
kmax = m i n { m v E / Z e 2 , mv E /fi} .

In this case of a weak field, VE « ν χ , we obtain
from (20) the usual expression for the weak-field ab-
sorption coefficient' 1 2 1 . On the other hand, if VE » ν χ ,
then calculation of the asymptotic form of the function
Q ( r ) at r » 1 yields

a sw (32NiNeZ*e»(o/cEZ) In (eEjZmav,) In (SX/Zmai'B,,).

This result is valid if ZeVnvE > 1, but if the inverse

inequality holds, then the express ion under the sign of
the second logarithm is replaced by mvEvx/ηωρ.

Thus, in the asymptotic case of a very strong field,
VE » νχ, the simplified approach (see (2.39) and the
rigorous kinetic theory lead to identical results, ac-
curate to a slow logarithmic dependence. We note in
conclusion that the influence of a strong monochromatic
field of frequency ω0 on the SBE at an arbitrary fre-
quency ω * ωό was considered i n t l 8 d ] for an isotropic
Maxwellian plasma. It was shown that this case has
certain distinguishing features, and under certain con-
ditions the influence of a strong field on the correspond-
ing absorption coefficient can be observed in principle
in experiments on the interaction of laser radiation
with a plasma at the presently available source powers.

We proceed now to the quantum mechanical treat-
ment of the problem of the SBE in a strong radiation
field.

2) Quantum-mechanical treatment. The quantum
theory of the SBE has the advantage that it enables us
to calculate the differential cross sections da^n

a of
electron scattering in the presence of an external
monochromatic field (with frequency ω), accompanied
by emission or absorption of a definite (n) number of
quanta Κω (η = 1, 2, 3 , . . . ) . In the case of a suffic-
iently weak radiation field, the cross sections for the
multiquantum SBE can be obtained in principle with the
aid of perturbation theory in terms of the interaction of
the electron with this field. To describe the processes
of emission or absorption of η photons, the perturba-
tion-theory calculations must be carried out to order
n. This fact determines the dependence of the cross
sections d a e

n

a on the radiation-field intensity Ι, σ'η>

The first attempts at calculations of this type were
made in' 2 2 1, but the calculations were not rigorously
performed even within the framework of perturbation
theory. This caused the small perturbation-theory
parameter γ2 = l/l0 to be incorrectly determined,
namely, the characteristic intensity Io was underesti-
mated by a factor (c/v)2 (see below).

Stimulated bremsstrahlung absorption in a strong
radiation field was considered in' 2 3 1 by a quantum-
mechanical approach. The method used there, however,
was quite cumbersome. In addition, only the asymp-
totic total absorption cross section was obtained in
finished form for a very strong field in the case of
scattering by ions, which is in essence equivalent to
the results of the classical results. The differential
cross sections dffe

n

a for the SBE in a strong radiation
field were not obtained in t 2 3 ] .

A quantum theory of the SBE in a strong radiation
field, not restricted to perturbation theory, was de-
veloped in [ 2 4 ] (nonrelativistic electrons) and' 2 5 1

(relativistic electrons). The main features of the case
of the strong field are, first, the multiphoton processes
become generally speaking just as probable as the
single-photon processes ( a e

n

a ~ ^a)' a n d > second,
the role of processes of emission and absorption
virtual photons increases. The latter circumstance
causes the general result σ^η

α ~ I n of perturbation
theory to become incorrect. We confine ourselves
below to the nonrelativistic case.
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To calculate the c r o s s sections a e

n ^ of interes t to
us , for a s trong radiation field, we can use a s e m i -
c lass ica l approach in which the electron motion is de-
scribed quantum-mechanically and the electromagnetic
field is considered class ical ly . The Hamiltonian of a
nonrelativist ic electron situated in the field of a plane
monochromatic wave i s

&S = I—iSV — (etc) Al>/2m,

where A = A o cos wt = -(cE 0 /o>)cos u>t is the vector
potential, which can be regarded as independent of the
spatial coordinates . The exact wave functions of the
electron, corresponding to such a Hamiltonian, a r e
well known:

t
) [pr-f [p-(

tt

(2.41)

where ρ is the e lectron momentum. The electron
energy in the state (2.41) is an oscillating function of
the t ime

with a mean value

ε = TJtj = (p2/2m) + («2E5/4mco«).

W h e n t h e e l e c t r o n i s s c a t t e r e d by a s t a t i c p o t e n t i a l ,

t rans i t ions between the s tates (2.41) take place: ψρ0

-— ψρ; in this c a s e , a s will be shown below, the average
electron energy can change only by an amount Δε = (p 2

- po)/2m, which is a multiple of the photon energy Κω,
that i s , Δε = ±ηΚω, where η = 1, 2, 3 , . . . We shall cal-
culate the probability of such a t ransi t ion, taking the
interaction of the electron with the scat ter ing center
into account in the first Born approximation. Thus, in
scat ter ing by a Coulomb center , t h e r e should be s a t i s -
fied the condition (2.1) supplemented, when applied to
the emiss ion c r o s s section σ^η >, by a condition ana-
logous to (2.12):

2/ιξ<1, ξ=£ω/πιν{.

T h e p r o b a b i l i t y a m p l i t u d e f o r t h e t r a n s i t i o n o f a n

electron situated in a s tate ψρ0 at t = 0 to the s tate
ψρ i s determined by the express ion

double sum over η and n ' . It is easily seen, however,
that in the limit as t — °° the cross ing t e r m of this
sum (n * n') make no contribution, and the diagonal
t e r m s (n = n') lead to energy 6-functions

X I F (r) exp [-(i/k) (p-p0) r] A-,

(2.42)

where V ( r ) i s the energy of the in teract ion of the
e l e c t r o n with the s c a t t e r i n g c e n t e r . The quantity under
the in tegra l with r e s p e c t to t ' contains a per iodic func-
tion of the t i m e , which can be expanded in a F o u r i e r
s e r i e s . As a resu l t , the amplitude Cpp 0 i s r e p r e s e n t e d
in the form

1 — 1} (Δε +ηΚω)-ί Jn \(eE0/mhu>"-) (P c r -p)l

r
Χ\

where Δε = ( ρ 2 - po)/2m, J n i s a Besse l function, and
η takes on all positive and negative integer values. In
the calculation of the transi t ion probability per unit
t ime w p P o = lim ( | C p p ( t ) | 2 / t ) Eq. (2.43) leads to a

t— <χ>

ν
"PPO ~ Z.

df exp {(;,«) [(p»-f!) (2m)-it'-e (p —po) (mc)-i j Α \τ) <ίτ j }
0

The presence of δ-functions, which determine the
energy conservation law, makes it possible to interpret
individual t e r m s of this sum as the probabilities of
emission (at η > 0) or absorption (at η < 0) of | n | pho-
tons . The transi t ion probabilities WpPo should be
summed over the final s tate of the e lectron. The in-
tegration with respect to the modulus | ρ | of the mo-
mentum can be easily c a r r i e d out because of the 6-
functions. Changing over from the probabilities w ' i 1

to the differential c r o s s sections a (

e

n

a for the emis-
sion o r absorption of η photons following the s c a t t e r -
ing of an electron having a velocity v 0 = Po/m into a
solid angle dfi, we obtain on the bas is of (2.43) [ 2 4 1

l'JZ\.idQ = 6a, el\ [ye ( n o - f e . «n)] da, ( η ο - β β , en)/dSJ, (2 . 4 4 )

where γ = eE0Vo/fiu>2, βΆ>β = ( 1 ± 2ηξ) 1 / 2 , e = E o / E o ,
n 0 = vo/vo, η is a unit vector in the direction of the
electron scatter ing, and

da, (n0 — n)/dQ = (m/2nS2)2 I f V (r) exp [(i/S) Po (n0 - n) r] it

is the differential c r o s s section for elastic scat ter ing
of the e lectron in the Born a p p r o x i m a t i o n . [ l o a i . For a
central ly symmetr ica l potential V(r) we have

da, (n0 — βη)/ίίΩ = (2mft2)2 I f V (r) 5-i sin (qr)r dr ',

where q 2 = ( p o / f i ) 2 ( l + β2 - 2/^ηο·η).
In the case of the emiss ion c r o s s section there is a

limitation on η (following from the condition that β ε

be r e a l , and expression the energy conservation law),
namely η < 1/2ξ. For Coulomb scatter ing, (2.44) d e t e r -
mines dagn >, s t r ict ly speaking, only if this inequality i s
strongly fulfilled, i .e . , under the condition (2.42). We
emphasize that the dependence of the c r o s s sections
d a a

n

e on the intensity I and the polarization e of the

radiation field enters only via the argument of the
Besse l function. Obviously, when η = 0, Eq. (2.44) de-
t e r m i n e s the c r o s s section for elastic scat ter ing of the
electron in a s trong radiation field:

*J<o>/,j£2 = /3 [γ (eAn)] dajda, ( 2 . 4 5 )

w h e r e d a s / d i 2 i s t h e c r o s s s e c t i o n f o r e l a s t i c s c a t t e r -

i n g w i t h o u t a l l o w a n c e f o r t h e i n f l u e n c e o f t h e r a d i a t i o n

field, and Δη = n 0 - n; thus, (2.45) can be regarded a s
a generalization of the c lass ica l Born formula for
elastic scat ter ing.

It is seen from (2.44) that the applicability of per-
turbation theory to the analysis of SBE (and conse-
quently also the validity of the power-law relations

J a , e
I and of the inequalities σ*1' » σ.

a,e
J a,e

» a a

3 )

e » . . . ) is determined by the condition 1 4 '

(2.46)

1 4 ) The condition (2.46) is sufficient for the applicability of pertur-
bation theory to the calculation of the cross sections σ 3 ΐ e (n) at arbitrary
η = 0, 1, 2, . . . The applicability of perturbation theory to the calculation
of σ 3 ; e(n) for a specified value of η is determined, generally speaking, by
a less stringent condition that follows from the power-law expansion of
the Bessel functions J n (x) : y2 < 2 (n + 1).
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The general behavior of the cross section σ ! η !
a,e

increasing parameter γ can be established on the basis
of (2.44) from the following asymptotic representations
of the cylindrical functions

/„ (x) « n-i [2 (n - x)/3x]1'2 Km ([2 (n - xftW/ix1/2), η > 1, η > χ,

w h e r e K p ( z ) i s t h e M a c d o n a l d f u n c t i o n , f o r w h i c h w e

have in turn, at | ζ | » 1, the representation
# P W « ( π / 2 * ) " 2 , . - * .

T h e s e r e p r e s e n t a t i o n s s h o w t h a t i t i s p o s s i b l e t o i n t r o -

d u c e t h e c o n c e p t o f t h e m a x i m u m d e g r e e o f t h e m u l t i -

q u a n t u m c h a r a c t e r o f t h e S B E , n m a x , w h i c h d e p e n d s o n

the parameters γ and ξ and on the orientation of the
unit vectors n0, n, and e. At given values of these
parameters, the value of n m a x is such that for all
η £ n m a x the cross sections a a

n

e , generally speaking,
are of the same order of magnitude, whereas at
η » n m a x the cross sections a a

n

e are exponentially
small. It is clear that for the emission processes the
value of n m ax cannot exceed the integer part of 1/2ξ.

In the case of a weak field γ « 1 we have n m a x = 1,
i.e., the multiquantum processes have little probability
in comparison with the emission and absorption of a
single photon. If y£ « 1 but the parameter γ is not
small (this is possible, since ξ « 1 for optical fre-
quencies), then n m a x ~ y at | e -n0 - j3e ·η | ~ 1. The
latter condition is satisfied in a wide range of angles
determining the orientation of the vector n. On the
other hand, if η 11 n 0 ) then we have again n m a x ~ 1.

Thus, the condition γ ~ 1 determines the critical
value of the intensity I of the radiation field, starting
with which the results of perturbation theory no longer
hold for the differential cross sections da^1^. A change
takes place in this case both in the dependences of the
cross sections da e

n ^ on the intensity and the number
of photons emitted are absorbed when the electrons are
scattered by the potential V(r). The latter circum-
stance, i.e., the change of n m ax, can be observed in
principle by investigating the energy distributions of
the scattered electrons.

However, when calculating the integral quantities,
e.g., the absorption coefficient, the nonlinear correc-
tions may cancel each other to a considerable degree
and the effective nonlinearity parameter may decrease.
According to the classical results (see the discussion
in Sec. b of Chap. 2), the nonlinearity parameter deter-
mining the absorption coefficient is the quantity
ζ = vg/v = γ ξ « 1. The quantum-mechanical approach
leads apparently to an analogous result: accurate to
small quantum corrections (~ | ) , the absorption coef-
ficient is determined by the same classical parameter
y%. There is no rigorous proof of this statement at
present. However, the calculation of the first nonlinear
correction to the absorption coefficient shows that its
relative value is determined by the parameter (γξ)2.
In addition, the calculation of the absorption coefficient
in the asymptotic strong-field limit leads to a result
similar to (2.39) precisely under the condition γξ » 1.

In the general case the absorption coefficient α can
be expressed as follows in terms of the cross section

n
ae,a.

σ, = ] η (σ<™-σ (2.47)

Coulomb potential V(r) = -ZeVr, assuming the field
of wave to be sufficiently weak so that it is meaningful
to expand the absorption coefficient in powers of the
intensity. Let us find the first correction to the ab-
sorption coefficient, δα ~ E2,. Using (2.44), (2.40), and
the series expansion of the Bessel functions, we obtain
in the lowest order in the field intensity E o the already
known results (2.14) of perturbation theory. The next
(first nonvanishing) order of the expansion yields the
sought corrections:

(n0e)2 - [
=F 6ξ (1 -n0e)2 ± 8g> [3-42 (n0e)2 + 47 (η,,β)*] In ξ-ΐ

(2.48)

Similar formulas can be obtained also for the nonUnear
corrections to the first-order cross sections σ!.1' t .

e,a,i
It follows from these formulas that the cross section
σ<2' + and the nonlinear corrections to σό1'., * are de-

e,a,i α!Λ>1

termined by the parameter γ. However, in the calcula-
tion of the total cross section v\, as already mentioned,
the principal terms in formula (2.48) cancel each other

_42 (n0e)2,+ ] In (

here δσί is the correction of second order in γ2 to the
total cross section at· From this we obtain with the
aid of (2.47) the first correction to the absorption coef-
ficient:

δα= -(toflZse*E{NtNe/m*<i>Wc) [3-42 (n0e)2+47 (noe)'] In (mv'/Λω). ( 2 . 4 9 )

Comparison with (2.14) shows that δα/α ~ ( V E / V ) 2

f

Let us examine this expression for scattering by a

In the case of a plasma with an isotropic distribu-
tion, Eq. (2.49) should be averaged over the directions
of the vector n0; this yields

35 = (24π2Ζ2ί«£5ΛΓ

ίΛί!,/5/η5ω4Λ) In (mo»/to).

F o r m u l a s ( 2 . 4 4 ) a n d ( 2 . 4 7 ) e n a b l e u s a l s o t o e s t i m a t e

t h e a s y m p t o t i c b e h a v i o r o f t h e a b s o r p t i o n c o e f f i c i e n t i n

t h e c a s e of a v e r y s t r o n g f i e l d y% » 1 [ 2 4 ] . U s i n g t h e

a s y m p t o t i c r e p r e s e n t a t i o n o f t h e B e s s e l f u n c t i o n s a t

l a r g e v a l u e s o f t h e a r g u m e n t s , a v e r a g i n g t h e r a p i d l y

o s c i l l a t i n g f a c t o r s , a n d i n t e g r a t i n g , w e o b t a i n

α » (32nZ^esaNiNe/cEi) In (eE0/muiv) In (evEolhtifl).

T h i s r e s u l t d i f f e r s f r o m t h e c l a s s i c a l f o r m u l a ( 2 . 3 9 )

o n l y i n t h e f o r m o f t h e s e c o n d l o g a r i t h m , a d i f f e r e n c e

t h a t c a n a p p a r e n t l y b e a t t r i b u t e d t o t h e a p p r o x i m a t e

c h a r a c t e r of t h e c a l c u l a t i o n s .

I n f 2 e l , b y a m e t h o d s i m i l a r t o t h a t d e s c r i b e d i n t h e

p r e s e n t s e c t i o n , t h e y c o n s i d e r e d t h e m u l t i q u a n t u m S B E

i n s c a t t e r i n g b y a s c r e e n e d C o u l o m b p o t e n t i a l V ( r )

= e x p ( - r / R ) / r . W e n o t e , h o w e v e r , t h a t a l l o w a n c e f o r

the screening must be made only in the case of a suf-
ficiently small screening radius R < ν/ηω. For a
plasma at R = R D this yields ω < ωρ/η, i.e., in the
case ω > ωρ of interest it is not necessary to take the
screening into account.

As already mentioned earlier, the nonlinear SBE
can be appreciable only for sufficiently short pulses,
since in the case of long durations the plasma has time
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to b e c o m e heated and the subsequent d i s s ipat ion of the
field energy i s d e t e r m i n e d by the usual l i n e a r b r e m s -
strahlung absorpt ion. Actual ly, there i s one m o r e
l imi tat ion of the s a m e type on the pu lse duration.

T o study the SBE by m e a s u r i n g the light energy ab-
s o r b e d in the p l a s m a , i t i s n e c e s s a r y that the pair c o l -
l i s i o n s of the e l e c t r o n s and i o n s be the pr incipal m e c h -
a n i s m r e s p o n s i b l e for the absorpt ion of the l ight. T h i s
requ i rement may not be s a t i s f i e d if the act ion of the
s t r o n g radiat ion field on the p l a s m a leads to deve lop-
ment of i n s t a b i l i t i e s . It i s k n o w n [ 2 o b ) 2 7 " 2 9 ] that in the
case when VE » ν χ the thresholds of many instabil i-
t ies a r e strongly exceeded. One can, however, use
pulses so short that the buildup of the growing osci l la-
tions in the plasma i s s m a l l during the pulse t ime τ.
This leads to the condition γ τ < 1, where γ i s the
maximum instability increment . The strongest insta-
bilit ies a r i s e in the case when the frequency ω of the
external field is close to the plasma frequency α>ρΓ 2 7 ].
The limitation on the pulse duration then t u r n s out to
be too str ingent, so that even for picosecond pulses it
is impossible to guarantee that the absorption will be
determined exclusively by pair coll is ions.

In the case ω » ωρ, the situation is much more
favorable. A plasma frequency lower than that of the
light leads to an appreciable increase of the thresholds
of the possible instabi l i t ies and to a decrease of the
i n c r e m e n t s 1 2 8 ' 2 9 1 . The best conditions for the observa-
tion of the SBE can apparently be produced by using an
i sothermal plasma, in which the initial electron and
ion t e m p e r a t u r e s a r e equal^ 2 9 ] . Es t imates show that in
this case the condition γ τ « 1 can be satisfied for
picosecond pulses up to very appreciable l a s e r - r a d i a -
tion powers (I < 10 1 7 W/cm 2 at Ni ~ 10 1 8 cm" 3 ).

3. STIMULATED COMPTON SCATTERING

P r i o r to the appearance of powerful optical-radiation
s o u r c e s , the Compton effect was not considered as a
possible mechanism for absorption of optical radiation.
The reason was that in the usual (spontaneous) Compton
scat ter ing the effective wave absorption coefficient i s
given by

α ~ ΛΓ

εσ0ΔεΜω, /3 ι \

where σ 0 = (8ir/3)r 0 « 6.6 χ 10~25 cm" 2 i s the Thompson
c r o s s section, N e i s the e lectron density, Κω is the
quantum energy, and Δ£ is the average energy t r a n s -
ferred to the electron in a single scat ter ing act . This
energy is positive and amounts to Δε ~ (Ru)/mc2)fio>,
if ϋω » k T e , and i s negative with absolute value
| Δε | ~ ( k T e / m c 2 ) f i w , if fiw « k T e (see Sec. b of the
present chapter below; T e i s the electron t e m p e r a t u r e ) .
In the second case , the e lectrons become cooled—this
i s the so-called inverse Compton effect. In both c a s e s ,
however, even at electron densit ies N e ~ 10 2 1 cm" 3,
the corresponding absorption (incoherent amplification)
coefficients a a r e quite s m a l l according to (3.1) (of
the o r d e r of 10" 9 -10" 6 cm" 1 ) .

The effectiveness of the Compton absorption mech-
anism can be greatly increased if the scat ter ing be-
comes st imulated. F r o m now on, except for Sec. c of
the present chapter, we shall consider only the two-
quantum stimulated Compton effect, wherein only one

photon i s absorbed and the emiss ion of another photon
is st imulated simultaneously in a single scat ter ing
a c t . 1 5 ' The effectiveness of the mechanism of s t imu-
lated Compton scat ter ing i n c r e a s e s with increas ing
radiation intensity. As a resul t , in part icular, the
main mechanism of i ts absorption becomes the s t imu-
lated Compton effect if the optical radiation interact ing
with the medium has sufficiently high intensity.

The study of this effect i s of in teres t not only from
the point of view of the mechanism of electron heating
by intense optical radiation, but a lso from the point of
view of obtaining a negative absorption, i .e . , develop-
ing a "Compton l a s e r . " The development of such a
l a s e r , using photons scat tered backward from a re la-
tivistic electron beam, was suggested by Pantel l and
c o - w o r k e r s [ 3 2 1 .

For two-quantum Compton scatter ing, the number
of photons is conserved, and the energy-momentum
conservation law leads to the well known relation be-
tween the frequencies ω ι and ω 2 of the incident and
scat tered photon [ 3 3 ]

ω2 = ω, [1 - (vie) cos 9,J 11 - {vie) cos θ2 + (βω,/ε) (1 - cos Θ)]-Ι(3.2)

where ν and e a r e the velocity and energy of the
init ial e lectron, θι and θ2 a r e the angles between ν
and the wave vectors ki and k 2 of the initial and scat-
tered photons, and θ i s the angle between ki and k2.

The c r o s s section for spontaneous Compton s c a t t e r -
ing i s determined by the Klein-Nishina-Tamm formula,
which takes the following form in the laboratory
f r a m e ^ :

(3.3)
where

- 1 ) * - 4 (κ-*

r 0 = e 2 / m c 2 = 2.8 χ 1(Γ 1 3 cm i s the c las s ica l radius of
the electron.

In the case of stimulated scat ter ing, the frequency
ω 2 and the wave vector k 2 of the emitted photon should
be regarded as fixed, and the scat ter ing c r o s s section
itself increases to a value

da = (1 + nkt) daQn, (3.4)

where n^ i s the number of photons per field osci l lator
with wave vector k2:

nk = 4 n W (ω, q)/fco3 = 4 (nc)3N (ω, q)/u,\ (3.5)

In th i s formula, J ( w , q) i s the s p e c t r a l dens i ty of the
energy flux of the unpolar ized radiation in a unit so l id
angle whose a x i s i s d i rected a long q = k/k, and
Ν (ω, q) = <Ι(ω, q)/cfiw i s the s p e c t r a l (and volume)
density of the photons propagating in the same unit
solid angle. If I is the total (integral) intensity of a
light beam with uniform energy distribution over the
frequency and angle spect ra , having respectively a
width Δω and a solid angle ΔΩ « 1, then J (w, q)
= ΐ / Δ ω Δ Ω . 1 6 )

1 5 )The multiquantum Compton effect is treated in [6>3 0 a] (see also
the review [ 5 a l , where a detailed bibliography is given); its role in the
heating of the electronic component of a plasma was considered in [ 3 1 ] .

1 6 ) In the general case, the connection between I and J(CJ, q) is of the
form I = / Ι ω ύ ω , Ι ω = /J(w, q) cos ϋ dCl, where cos # = q-n; η is the
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We note that in the presence of one radiation beam,
the finite character of the width of its frequency
(Δω) and angular (Δβ) spectra is a necessary condi-
tion for stimulated Compton scattering with energy
transferred to the electrons (Δε * 0). Indeed, for one
monochromatic wave we always have (Δ€ =» h(u>i -ω 2) = 0,
for one plane wave we always have θ =0 and θι = θ 2, and
consequently, according to (3.2), we always have
ωι = α>2 and Δε = 0. In the presence of several wave
beams, the condition that Δω and ΔΩ be finite is in
general not necessary.

In this chapter of the article we consider the follow-
ing question: One of the possibilities of obtaining nega-
tive absorption via the stimulated Compton effect, ab-
sorption of intense optical radiation by the electronic
component of a plasma, and elastic scattering of elec-
trons by plane standing electromagnetic waves—the
Kapitza-Dirac effect.

a) Negative absorption in stimulated Compton
scattering. The most interesting possibility of obtain-
ing negative absorption in the stimulated Compton ef-
fect is connected with the use of a relativistic electron
beam and backward scattering [ 3 2 ]. This is precisely the
case which we consider below.

We assume that the electron energy in the beam is
e » me2, and then we have for backward scattering
( θ = it, θι = π, 02 = 0), according to (3.2)

/A A\
ω2 = 4ci)i (e/mc!)'. I » · 0 /

Thus, in th is c a s e it b e c o m e s p o s s i b l e to produce a

"Compton l a s e r " with a very l a r g e frequency c o n v e r -

s i o n coef f ic ient , 4 ( e / m c 2 ) 2 . Inasmuch a s the energy e

of the e l e c t r o n b e a m can change in th i s c a s e in a wide

r a n g e , the generat ion frequency of th is l a s e r can be

tuned in a c o n s i d e r a b l e range.

Let's calculate the gain «2 at the frequency ω2 at a
specified radiation intensity Ii at the pump frequency
ω ι. Let ae be the total scattering cross section at
which the quantum Κωα is absorbed and stimulated
emission of the quantum Κω2 takes place, σ& is the
total cross section of the inverse process, in which the
quantum ηω2 is absorbed and stimulated emission of
the quantum Κωι takes place. Then, according to the
definition of the coefficient a2, we have

3) / (ε),

3 ) / (e -
( 3 . 9 )

ot2 = (JtNe
( 3 . 7 )

w h e r e a t = a e - tfa· ^ t n e c a l c u l a t i o n o f t h e c r o s s

s e c t i o n s a e a w e a s s u m e ( f o l l o w i n g [ 3 2 ] ) t h a t t h e e l e c -

t r o n b e a m h a s a c e r t a i n e n e r g y d i s t r i b u t i o n f ( e ) , a n d

the width Δ€ of this distribution is large enough so that
Δε/ε0 > Δω,/ω,, Δω2/ω2 ^ g^

( e 0 i s the a v e r a g e energy of the e l e c t r o n s in the beam) .

When th is condit ion i s s a t i s f i e d , the c r o s s s e c t i o n s

ae a a r e obtained by a v e r a g i n g the c r o s s s e c t i o n (3.4)

o v e r the e l e c t r o n e n e r g i e s , and the c o n s e r v a t i o n laws

d e t e r m i n e the energy of the e l e c t r o n s part ic ipat ing in

t h i s p r o c e s s a s a function of the f requenc ies and wave

v e c t o r s of the emi t ted and absorbed photons 1 7 ' . As a

r e s u l t we ge t

normal to the surface with respect to which the radiation intensity is con-
sidered ( Ι ω is the spectral intensity).

1 7 ) In this case (e > me2) we have in (3.3) κ, = -κ2 and U o = 2.

here e is that value of the electron energy which satis-
fies relation (3.6) for given u>i and ω2 (the function
f(e) is assumed normalized by the condition Jf(e)de
= 1). If Δ€ » fiu>2, then f(e - βω2) can be expanded in
powers of Βω2, and we obtain for the gain a 2 on the
basis of (3.7) and (3.9)

a2 = jt'rj ( j i ' V / , / ι ψ ) df/de.

Negative absorption (amplification) at the frequency ω2

corresponds to the condition df/d£ > 0, i.e., in the
distribution f(e) the energy e should fall in an interval
corresponding to the inverted population (with condi-
tion (3.8) satisfied). This condition can always be satis-
fied by choosing the frequencies ωι and ω2. For a
Gaussian distribution

/ (e) = [(2ηΙ/νΔε1-1 exp [ - (ε - εο)
2/2 (Δε)2]

the m a x i m u m of df/de i s reached at the point 6 i = e 0

- Δε with a value ( d f / d e ) m a x « (2Δε)"2. In this case

) r\Ne
o ^ (Δε)»).

If e 0 = 10 MeV, (A€/e0) « 10"4, Ne = 10s cm"3, α»ι
= 1010 sec"1, and ^ = 3 χ 10e W/cm2, then amplifica-
tion takes place at the frequency ω ι » 1 . 6 χ 10 sec"1

(λ2 « 120μ) with a coefficient a 2 m a x * 0.3 cm"1.
We note that when condition (3.8) is satisfied, nega-

tive absorption can be obtained also for a nonrelativis-
tic electron beam. In this case, however, the frequency
conversion coefficient turns out to be, according to
(3.2), of the order of unity.

b) Absorption of optical radiation in a plasma as a
result of stimulated Compton scattering. The Compton
mechanism of interaction of radiation with plasma
electrons can be investigated consistently on the basis
of the kinetic theory. The collision integral for this
case was first obtained in [ 1 >341, but no investigations
were made there of the distinguishing features of the
stimulated Compton effect. This was done in a series
of papers by Peyraud [ 3 5 ], who analyzed in detail the
kinetic equations obtained i n r i 7 b ' 3 4 1 for the case when
the intensity of the radiation is high enough and it is
necessary to take stimulated scattering into account.
In particular, he obtained results concerning the rate
of heating of the electrons by the radiation, and also
the ensuing shift into the " r e d " side of the frequency
spectrum of the radiation transmitted through the
plasma (see also t s e ] , which deals with plasma heating
by the stimulated Compton effect in two opposing light
beams, and [ 3 7 ], devoted to a study of the Compton
mechanism of heating of relativistic electrons). These
questions are of greatest interest, and we analyze them
below on the basis of a more elementary approach
(than in r s 5 ] ) .

Just as elsewhere, we consider the case of nonrela-
tivistic electrons (v « c) and soft photons (Κω « me2),
and the small quantities (v/c)2 and Κω/mc2 are as-
sumed to be quantities of the same order.

From (3.2) we obtain in this case for the frequency
of the scattered photon
(ω, — ω2)/ω( = (vie) (cos θ( — cos θ2) + (vie)2 cos θ2 (cos θι — cos θ2)

2) (1 - cos Θ). (3.10)
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It was already noted above that in the presence of only

one light beam the process of st imulated Compton

scatter ing with energy t rans fer to the electrons i s

possible only if the frequency and angular spect ra l

widths Δω and ΔΩ a r e finite. Formula (3.10) makes

it possible to formulate this condition more r igorously.

It is seen from it that in a light beam with nonmono-

chromaticity (Δω/ω), st imulated scat ter ing through an

angle θ i s possible only if the following condition i s

satisfied

Δω/ω > | (vie) (cos Θ, — cos θ2) | = 2 (vylc) sin (Θ/2),

where V|t i s the component of the ve loc i ty of the s c a t -

t e r i n g e l e c t r o n i n the d i r e c t i o n of the v e c t o r ( k i - k 2 ) .

The m a x i m u m st imulated s c a t t e r i n g angle in a light

b e a m with d i v e r g e n c e angle 2 0 o (and accord ing ly with

a solid angle Δ β = 4π sin 2 ( θ ο / 2 ) ) is equal to 2 6»o.

Consequently, in o r d e r for al l the photons of the beam

in question to be able to take part in the process of

stimulated scat ter ing by e lectrons with maximum

velocity v, it suffices to satisfy the condition

Δω/ω > 2 (vie) sin (θο/2) = (3.11)

If the e l e c t r o n s have a Maxwel l ian ve loc i ty distr ibut ion

with t e m p e r a t u r e T e , then the condit ion under which

a l m o s t a l l the e l e c t r o n s and a l m o s t a l l the b e a m pho-

tons can take part in the s t imulated s c a t t e r i n g takes

the form 1 8 1

Δω/ω > [(kTJmc2) ΔΩ]1'2.

)

nonre la t i v i s t i c c h a r a c t e r of the motion of e l e c t r o n s and

by the s a t i s f a c t i o n of condition (3.11) . The f irst m a k e s

it p o s s i b l e to wr i te, in analogy with (3.10)

F/u>\ = (r2

0/2<o2) {1 + cos2 θ — 2 (v/c) [cos θ (1 - cos Θ) (cos Θ, + cos Θ,)

_ ( l + c o s 2 e ) c o s 0 , ] + . . . } . *

On the other hand, on the b a s i s of (3.11), a s s u m i n g

Δ Ω « 1, we have

Ν fa, qt)Nfa, q2) » (ΔΩ)-2 [ΝΙ>ί-0,5(ωί-ω2) dN^lda,)], (3.15)

where

Na = IJchw = | dQN (ω, q) cos (ω, q0)

i s the spect ra l (and volume) density of the photons in

the beam (see footnote 16). Substitution of (3.14) and

(3.15) in (3.13) yields

dB/dt = 2n 3 r^c 4 (ΔΩ)"2 f de> (Nl/ω) j dQ, dQ2 {(ίω/mc2) (I - COP Θ)

X (1 + cos2 Θ) + (v/c) (cos Θ, — cos 02) (1 + cos2 Θ)

•f (y2 /c2) (cos2 Θ, — cos2 θ2) [ 1 + cos2 θ — cos θ (1 - cos 0)]},

where the integrat ion with r e s p e c t to dfix and df22 e x -

tends o v e r the width of the so l id angle of the light b e a m .

Obviously, upon integrat ion with r e s p e c t to t h e s e

v a r i a b l e s the t e r m s ~ v / c and ( v / c ) 2 vanish, and the

f irst t e r m (~Ku>/mc2) y i e l d s

j dQ, <*Ω2 (1 - cos Θ) (1 + cos2 θ) χ (ΔΩ)3/ΐχ.

(3 12) Thus, we get finally (first der ived i n [ 3 5 ] )

F r o m the condit ions (3.11) and (3.12) we s e e , in par t ic-

u lar , that the s m a l l e r the angular d i v e r g e n c e of the

b e a m , the s m a l l e r the required nonmonochromat ic i ty .

H o w e v e r , a s wi l l be shown l a t e r , when the b e a m d i v e r g -

e n c e i s d e c r e a s e d , i t s absorpt ion coef f ic ient due t o the

effect under c o n s i d e r a t i o n a l s o d e c r e a s e s (s ince the

energy t r a n s f e r r e d to the e l e c t r o n and the s t imulated

s c a t t e r i n g d e c r e a s e s ) .

We now ca lcu late the absorpt ion coeff ic ient a c of a

light b e a m in an e l e c t r o n g a s , a s s u m i n g that condit ion

(3.11) i s sa t i s f i ed for an o v e r w h e l m i n g majority of the

e l e c t r o n s . The r a t e of change of the e n e r g y of s u c h

e l e c t r o n s , due to Compton s c a t t e r i n g , i s d e t e r m i n e d

by the g e n e r a l formula

duldt =^da,jc [1 -- (v/c) cos θ,] Ν fa, q,) dQ,

\hfa-<H)F{l + 4(nc)*Nfa, q2)a>-"}dQ2, ^ Λ 3 '

where F and Ν ( ω , q) a r e determined by formula (3.3)—

(3.5). To explain the s t r u c t u r e of (3.13), we note that

the integral with respect to dfli contains an expression

for the photon flux density relat ive to the moving e lec-

t r o n . We consider first the contribution made to de/dt

by the induced p r o c e s s e s , corresponding to the second

t e r m in the curly brackets of the integral with respect

to άΩ,ζ. The calculations a r e greatly facilitated by the

1 8 ) For laser radiation with Δω/ω = 10'3 and angular divergence ΔΩ *
10" sr, the analysis presented here is suitable, according to (3.12), up to
temperatures T e ~ 10 6 -10 7 deg. After this paper was sent to press, there
appeared other papers [38] also dealing with a case that is significant for
ΔΩ > 1 (when condition (3.12) is not satisfied). In the same reference,
an attempt was made to take into account the influence of the collective
interactions in the plasma (the so called dynamic polarization), which are
important in a dense plasma, i.e., at ω ~ tjp.

da/at = 2πν;ΔΩ/2Μω3Δω, (3.16)

where I ~ οΚωΝ ω Δω is the total intensity of the light

beam and ω is the centra l frequency of i t s spectrum.

The contribution made to de/dt by spontaneous

scat ter ing, corresponding to the f irst t e r m in the curly

brackets of (3.13), is calculated analogously, and we

obtain

(de/dt)sp~ (8/3)^/[(Λω/τηί:2)-2(ι;2/ε

2)1. (3.Π)

We note that the condit ion (3.11) i s not u s e d in the

der ivat ion of th is formula, s o that the lat ter i s valid

for a l l nonre la t i v i s t i c e l e c t r o n s . F o r the change in the

a v e r a g e energy ( e ) of the p l a s m a e l e c t r o n s we get on

the b a s i s of (3.17)

(d (e)/di)sP = (8/3) r\I (fio/mc2) [I — 4 (<ε)/ίω)].

We s e e there fore that heating of the e l e c t r o n s by the

spontaneous Compton effect occurs only if Κω > 4 ( e ) .

When the inverse condition i s satisfied, the e lectrons

a r e cooled, and this is somet imes called the inverse

Compton effect. The reason for such cooling is ob-

viously that in spontaneous scat ter ing by fast e lectrons

the scat tered quanta turned out to be h a r d e r than the

incident ones.

We now re turn to formula (3.16), which determines

the ra te of change of the electron energy in stimulated

scat ter ing . At sufficiently large values of the intensity

I, the contribution made to de/dt by this process will

prevai l over the contribution from spontaneous scat-

tering 1 9 *. It is very important that when only the condi-

1 9 )The condition for this, obviously, takes the following form (it is
assumed that ho> > 4 (e>): I > (4/3π2) η ω 3 Δω/ΰ2ΔΩ. For radiation with
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tion (3.11) is satisfied, the rate of change of the energy
de/dt, as seen from (3.16), does not depend on the
energy itself and is always positive. This means, in
particular, that the stimulated Compton effect leads to
equal heating of all (nonrelativistic) electrons satisfy-
ing the condition (3.11)2O). The effective coefficient of
(Compton) absorption a c , due to the considered effect,
in a plasma with arbitrary electron velocity distribu-
tion, subject only to the condition (3.11) (or (3.12)) (in
particular, in an electron beam) is given by

«c = (N./I) de/dt = 2π> (Λ^ΔΩΜοΜω) /. (3.18)

It i s of in teres t to compare the contributions made

to the heating of the plasma e lectrons by the b r e m s -

st rahlung effect and by the st imulated Compton effect.

As follows from the analysis in the preceding chapter,

the bremsstrahlung absorption coefficient is αχ ~ N e ,
and is independent of the intensity I when
I « ( k T e / m c 2 ) l r e l , decreasing like I~3/2 when
I > ( k T e / m c 2 ) I r e l . It is seen in turn from (3.18) that
the coefficient aQ ~ N e and it increases linearly with
I at I « Irel· This means that in a sufficiently rarefied
plasma a light beam with sufficiently high intensity is
absorbed principally as a result of stimulated Compton-
effect processes. This question was investigated in
greater detail in^ 3 i a ] . It was shown that the Compton
absorption mechanism prevails over the bremsstrah-
lung mechanism at I > Ic, where

h ~ [(ωρ/ω)2 (Δω ω-'/ΔΩ) Γ0/λ12/5/κ1 ;

λ is the wavelength of the radiation, and ωρ
= (47re2Ne/m)1/2 is the plasma frequency. At ωρ/ω
~ ΙΟ"1, (Δω/ωΔΩ)- 1 and λ « 1, the threshold
intensity is I c ~ 10"4I rel·

In two-photon Compton scattering, the only one
which we are now considering, the number of photons is
conserved, and consequently the absorption of the light
beam by electrons, due to stimulated Compton effect,
should always be accompanied by a " r e d " shift of the
spectral distribution of the beam. The presence of such
a shift can serve as the basis for an experimental pro-
cedure of observing stimulated Compton scattering.
The magnitude of the shift can be easily estimated by
assuming, as before, that the angular width of the
beam is Δ Ω « 1 and that condition (3.11) is fulfilled
for almost all the electrons. When such a beam passes
through a plasma layer of thickness L, each of its
spectral components shifts (without changing intensity)
by an amount (see [ 3 5 ])

δω = 2ji*r\Nec'h££lLm.-iNlil (£),

w h e r e the s p e c t r a l (and v o l u m e ) dens i ty of the photons
N(,,(L) per ta ins to the radiat ion e m e r g i n g from the
plasma layer. From the expression for δω we see
that the largest shift is experienced by the spectral
components having maximum intensity. This should
cause the shape of the spectrum to become sharper on
the " r e d " side and flatter on the "blue" side. In the

wavelength λ = 1μ and divergence ΔΩ = 2 X 10~4 sr and (Δω/ω) = 10"4

we obtain the condition I > 2.5 Χ 105 W/cm2.
^ I n I 3 8] it is shown for the case of isotropic radiation (ΔΩ = 4π) that

for a hot plasma, i.e., when a condition inverse to (3.12) is satisfied, de/dt
decreases like T"3'2.

c a s e of s m a l l absorpt ion of the radiation in the l a y e r ,
the total width Δω of the spectrum can be assumed
unchanged, and we obtain for the shift of its central
frequency

6ωο/ω = = acL.

This formula i s convenient for the interpretat ion of the
e x p e r i m e n t a l data. The f i rs t o b s e r v a t i o n s of such a
s p e c t r a l shift w e r e reported i n [ 3 9 ] .

We have c o n s i d e r e d above the heat ing of the e l e c -
tron ic component of a p l a s m a by absorpt ion of one
light beam that has a suff ic iently narrow but finite
width of the angular s p e c t r u m . A s p e c i a l i n t e r e s t a t -
t a c h e s a l s o to the c a s e of heat ing of e l e c t r o n s by two
opposing light b e a m s , in which mutual t r a n s f e r of the
photons from one beam to another t a k e s p lace ( i . e . ,
absorpt ion of a photon from one beam and s t imulated
e m i s s i o n in the other beam). In th i s c a s e the angular
widths of the b e a m s do not play a fundamental r o l e , and
we can a s s u m e for s i m p l i c i t y that the heat ing i s pro-
duced by two opposing flat quas imonochromat ic w a v e s .
The rate of heating can be ca lcu lated in th i s c a s e from
the genera l formula (3.13), in which we must put
Ν (ω, q) = Njj'^siq ± q0), where the superscripts (1, 2)
and the ± sign pertain respectively to the two beams. 2"
Upon satisfaction of condition (3.11), which in this case
takes the form Δω/ω > 2v/c ~ (kTe/mc 2 )^ 2 and is
quite stringent for laser radiation, calculation yields
(first obtained in [ 3 6 ]

where Ii and I2 are the total intensities of the beams,
whose spectral widths are assumed to be the same.

It is of interest to consider the change in the spec-
tral composition of the opposing beams, due to stimu-
lated scattering. Inasmuch as photons are transferred
in this case from one beam to the other, but their total
number is conserved, there should be intensification
(in terms of the photon density) of one beam at the ex-
pense of the other. If we use the stationary kinetic
equations obtained in [ 3 5 ] , we can in turn obtain the
following system of equations for the spectral densi-
ties Ν ι ω ( ζ ) and Ν 2 ω (ζ) of beams propagating opposite
to each other along the ζ axis (the direction of which
coincides with the direction of the first beam):

As above, it is assumed here that the condition (3.11)
is satisfied, i.e., Δω/ω > 2v/c.

It is easy to find for this system a solution that de-
scribes the passage of the beams through a plasma
layer of thickness L, in the case of a sufficiently small
absorption of the beams, when μ1 ) 2 « 1, where

and osia, n = 16n3rJ/2. i

is the absorption coefficient of the first (second) beam
in the presence of the opposing second (first) beam. In
this case we can use perturbation theory and represent

21'Formula (3.13) must of course, be symmetrized in this case with
respect to the superscripts (1,2).
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the solution in the form

it*. « = &> W+

It i s assumed that the plasma occupies a layer 0 < ζ
s Μ Ν ( $ and N2g} a r e the spect ra l densit ies of the
first and second beams as they enter the layer , r e -
spectively). The f i r s t - o r d e r correct ions take the form

The functions Ν\ΰ(ζ) and Ν (

2 ΰ(ζ) satisfy the obvious
relation

(3.20)

which means that the change (in first order) of the total
photon density of the first beam on leaving the layer is
equal to the analogous change in the second beam, but
with opposite sign. This in turn is a reflection of the
circumstance that the total number of photons in the
system should be conserved (in al l o r d e r s in μ 1 ) 2 ) .
Consequently, generally speaking, amplification (in
t e r m s of the photon density) of one of the light beams
at the expense of the other takes place already in first
o r d e r . If, however, the spect ra l compositions of both
beams a r e the same when they enter the layer, i .e . , if

•"Ιω" 2ω ~ ΦΙω)· —const, \ύ.ύ\.)

t h e n , a s s e e n f r o m ( 3 . 1 9 ) , t h e p h o t o n d e n s i t y i n e a c h

b e a m i s c o n s e r v e d i n f i r s t o r d e r ( t h e i n t e g r a l s ( 3 . 2 0 )

v a n i s h ) . C h a n g e s o f t h e p h o t o n d e n s i t y i n t h e i n d i v i d u a l

beams occur only in the second o r d e r in μ 1 ) 2 . It i s
easy to show that these changes take the form

( M2) (£) du> = — [ Νψ2 (0) dm

= 0,25/1(1—^)μ1μ2[Λω(Δω)2]2(/1/2)-ι f φ (ω) (άφ/άω^άω.

W e s e e t h e r e f o r e t h a t t h e s i g n o f t h e c h a n g e of t h e p h o -

t o n d e n s i t y i n t h e i n d i v i d u a l b e a m d e p e n d s o n t h e r a t i o

of t h e t o t a l i n t e n s i t i e s of t h e b e a m s I i a n d I 2 = I j / A :

t h e b e a m t h a t i s a m p l i f i e d ( in t e r m s of t h e p h o t o n

d e n s i t y ) i s a l w a y s t h e w e a k e r o n e ( i n t e r m s o f t h e

i n t e n s i t y ) ( s e e t h e e x p e r i m e n t a l d a t a o f t 4 0 ] ) .

W e h a v e e m p h a s i z e d a b o v e t h a t t h e a m p l i f i c a t i o n o f

o n e b e a m a t t h e e x p e n s e o f t h e o t h e r i s o n l y i n t e r m s

of t h e p h o t o n d e n s i t y , a n d n o t i n t e r m s o f t h e t o t a l

i n t e n s i t y . It i s c l e a r a l r e a d y f r o m t h e f i r s t - o r d e r

f o r m u l a s ( 3 . 1 9 ) t h a t t h e i n t e n s i t i e s o f b o t h b e a m s

s h o u l d b e l e s s w h e n t h e y l e a v e t h e l a y e r . I n d e e d , a t

i d e n t i c a l s p e c t r a l d i s t r i b u t i o n s ( s a t i s f a c t i o n o f ( 3 . 3 1 ) )

we have in the first order in μ i j 2

/,(£) - / (0) = I2 (0) - 72 (L)

= Α (μ!μ 2) ι / 2 ch<a (Δω)1 (/ i 2 ) - 1 / 2 f cScocp (ω) (dtflda) da < 0,

A n i n c r e a s e o f t h e p h o t o n d e n s i t y o f a l i g h t b e a m w i t h

s i m u l t a n e o u s d e c r e a s e o f i t s t o t a l i n t e n s i t y i s p o s s i b l e

o b v i o u s l y o n l y i n t h e p r e s e n c e o f a " r e d " s h i f t i n i t s

s p e c t r u m . S u c h a s h i f t d o e s i n d e e d t a k e p l a c e . F o r

identical spect ra l distr ibutions, in first o r d e r in μ ι 2,
the " r e d " shift i s (δω)ι, 2 = μ 1 ; 2 Δ ω ~ I 2 ) 1 , i .e . , the
weaker beam (in t e r m s of intensity) experiences a
larger " r e d " shift.

c) Scattering of electrons in a field of an intense
standing wave. The scat ter ing of e lectrons in a field of

s t a n d i n g e l e c t r o m a g n e t i c w a v e , known a s t h e K a p i t z a -

D i r a c e f fect , i s a p a r t i c u l a r c a s e of s t i m u l a t e d C o m p -

t o n s c a t t e r i n g . In t h e f i r s t n o n v a n i s h i n g o r d e r i n t h e

i n t e r a c t i o n of t h e e l e c t r o n s wi th t h e f ie ld, t h e s c a t t e r -

i n g by t h e s t a n d i n g wave i s a c c o m p a n i e d by s i m u l t a n e -

o u s a b s o r p t i o n of a photon wi th m o m e n t u m fik | k |

= ω/c) and stimulated emission of a photon with m o -
mentum -fik. In higher o r d e r s , scat ter ing with par t ic i-
pation of a l a r g e r number of photons becomes possible.
The energy and momentum conservation laws make the
scat ter ing possible only at cer ta in definite angles be-
tween the direct ions of the e lectron and photon mo-
menta ρ and Kk. In the nonrelativist ic approximation,
the only kinematically allowed processes a r e those
conserving the electron energy, i .e . , process in which
an equal number of photons of the type k and - k take
part .

Kapitza and D i r a c [ 4 1 ) considered two-photon scat-
ter ing and showed that such a process can be inter-
preted a s diffraction of e lectrons by a periodic
" g r a t i n g " formed by the standing wave. The proba-
bility of the electron reflection i n c r e a s e s sharply when
the Bragg condition is satisfied. F r o m this point of
view, the diffraction maximum of o r d e r η corresponds
to scat ter ing with absorption of η photons propagating
in one direction and emission of η photons in the op-
posite direction of the momentum. Multiple reflection
correspond to processes with absorption and emission
of virtual photons with momenta ±fik.

The experimental observation of the Kapitza-Dirac
effect became possible only relatively recently^ 4 2 ' 4 5 1 ,
thanks to the use of powerful l a s e r s o u r c e s . In this
connection, attention was called again to this phenom-
enon in a number of theoret ical p a p e r s [ ) 4 6 1 , and dif-
ferent assumptions were made with respect to the pos-
sibil it ies of observing the Kapitza-Dirac effect and i ts
utilization. A brief review of severa l aspects of this
phenomenon, based on the presently available l i te ra-
t u r e , is given in 1 · 4 7 1 . To avoid repetition, the emphasis
in the present review is on other features of the
Kapitza-Dirac effect; in par t icular , we consider in
greater detail the specific features of s trong and very
s t rong radiation fields.

The probability of electron reflection can be easily
obtained in the lowest o r d e r of perturbation theory by
using the usual formulas for the differential c ros s
section of Compton sca t te r ing 1 3 3 ] , if account is taken
of the presence of an external field and a transi t ion i s
made to the induced p r o c e s s e s . The result takes the
form

ω' = ε (ε — cpz)/(g, + cpz + 2ίω), (3.22)

where w i s the total probability of scat ter ing of one
electron, t i s the interaction t ime, e is the electron
energy, p z is the projection of i ts momentum on the
propagation direction of the absorbed photons (the ζ
axis), and Ι ω i s the spect ra l intensity of each of the
plane waves making up the standing wave (see footnote
16). It is assumed that these waves differ little from
pure monochromatic ones, so that the function Ι ω has
a sharp maximum in the vicinity of a certa in frequency.
The connection between ω' and ω follows from the
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energy and momentum conservation laws in Compton
scattering (formula (3.2)). At low frequencies Κω « e
and at small momenta | cp | « e, the ω'(ω) relation
takes the form

ω ' = ω {1 _ (δω/ε) [1 + (sin θ/sin θ0)]}, (3.23)

where sin θ ο =λ β /λ = η ω Λ | ρ | , ρ is the total momen-
tum, x e =fi/l ΡI is the de Broglie wavelength of the
electron, sin θ = p z / | PI, θ is the glancing angle, and
λ is the wavelength of the light.

Thus, the probability of electron reflection, as ex-
pected, increases sharply when the Bragg condition is
satisfied ( θ = -θο)

22). The degree of stringency of this
condition is determined by the spectral width of the
electromagnetic wave. If Δ θ is the deviation of the
glancing angle from -θ0, at which the probability w
decreases substantially, we get in our case

Δθ/Θο ~ (mc'/hca) Δω/ω< 1.

At very high monochromat ic i ty of the f ield and not

too long act ion t i m e s , formula (3.22) cannot be used,

and the s c a t t e r i n g probabil ity i s de termined in the

l o w e s t order of perturbation theory by the e x p r e s s i o n

w =

(4nVcVft'Q9)/2[l + (sine/sin θο)]-33Ϊη2{(δω2ί/^52)[1+(3Ϊη θ/sin θ0)]},

(3.24)

w h e r e I = J Iwdo> i s the tota l in tens i ty of each of the

t r a v e l i n g w a v e s . In th i s c a s e the re f lect ion probabil ity

w a l s o i n c r e a s e s sharp ly when the B r a g g condit ion i s

approached. The d e g r e e of s t r i n g e n c y of t h i s condit ion

is determined by the interaction time Δ θ/ θο
~ mc2/fia> · ωί. The probability at the maximum is

w<> = i n W f t ' o W A (3.25)

The condition for the applicability of formula (3.22)
is determined by the inequality Δω/ω » 1/ωί. Formu-
las (3.24) and (3.25) are valid for the inverse relation
between the spectral width and the interaction time,
Δω/ω « l/a>t. We shall henceforth confine ourselves
just to the last case and describe the electromagnetic
field of a standing wave, neglecting both the angular and
the frequency spreads.

In both cases (formulas (3.22)—(3.25)), the region of
applicability of the lowest order of perturbation theory
is limited by the condition that the intensity I and that
the duration t of the interaction be small. This follows
from the, fact that at sufficiently large I and t the
probability w becomes larger than unity, indicating
that the employed approach is incorrect. An attempt
was made in* ' to get rid of these limitations for the
case of nonrelativistic electron energies.

The nonrelativistic character of the electron motion
allows us to make certain assumptions that simplify
the problem greatly. The time required for a nonrela-
tivistic electron to traverse a distance on the order of
the wavelength of light, ~λ/ν, is much larger than the
period of the field oscillations (~x/c). This allows us
to assume that a satisfactory description of the slow
motion of the electron (averaged over the fast oscilla-

tions) can be obtained by using a time-averaged Hamil-
tonian of the electron in the external field. Such a
procedure is analogous to the method of gauge poten-
tials, used in the classical description of the motion of
an electron in an inhomogeneous rapidly alternating
field [ s o b ' 4 8 ]. This approximation was used in [ 4 9 ] to
make a rather full investigation of the dependence of
the scattering probability w in the lowest order of
perturbation theory on different physical characteris-
tics of the electromagnetic field and of the electron
beam.

The averaged Hamiltonian of the electron, after
changing to dimensionless variables, takes the form

SB — (——j + 2? cos 2x), (o.2o)

where q = (4ire2c/K2w4)I, χ = (ω/cjz, and ζ is the
spatial coordinate along the wave vector of the absorbed
photons.

Owing to the spatial periodicity of the Hamiltonian
(3.26), the time-dependent wave function of an electron
situated at the initial instant in a state with a definite
momentum value | ρ) can be written in the form

Σ <-. (3.27)

Here τ = (Ku>2/2mc2)t is the dimensionless time, ρ is
the projection of the initial electron momentum on the
ζ axis in dimensionless coordinates (referred to the
value of the photon momentum Κω/c), and F n(T, p)
are the scattering probability amplitudes and satisfy
the equations

-JVi), (3.28)9F.

where yn = - 4 n ( n + p), with in i t ia l condit ions F n ( 0 , p)

= δη,ο·

From the representation of the wave function ψ(τ)
in the form (3.27) it follows that the electron scatter-
ing takes place with a momentum change Δρ = -2n,
η = 0, ±1, ± 2 , . . . The probability amplitudes of scat-
tering and the direction of the n-th diffraction maxi-
mum are determined by the functions F n ( r , p). The
condition Δρ = -2n at small glancing angle of the inci-
dent ( θ) and scattered (θ') electrons coincides with
the Laue condition

λ (θ - θ')/2 = ηλβ. (3.29)

2 2 )In the paper of Kapitza and Dirac [ 4 1 ] , formula (3.22) was derived
only if the Bragg condition is strictly satisfied, θ =-θ0, ω' = ω, {Ϋω άω *>
Ι2/Δω, so that w0 = 87r3e4tI2/h2m2cj4c2Aco.

At low field intens i ty, the p a r a m e t e r q i s s m a l l , and
the s y s t e m (3.28) can be s o l v e d by the i terat ion method.
T h i s i s equivalent to the employed perturbation theory,
and l e a d s in f irst o r d e r to formula (3.24) . The condi-
t ion for the appl icabi l i ty of th i s resu l t i s of the form
qr « 1.

In r e a l e x p e r i m e n t a l s i tuat ions , th i s condit ion may
not be s a t i s f i e d . For opt ical f r e q u e n c i e s , the p a r a m e -
t e r value q = 1 c o r r e s p o n d s t o an e l e c t r o m a g n e t i c
radiation intensi ty I «s 10 MW/cm 2 . At a l a s e r - b e a m
width d «< 1 c m and at an e l e c t r o n energy mv 2 /2
»* 9 keV, the interact ion t i m e i s such that r =
τ = (fiu>/2mc2)d/v « 1. One can attempt to lift the
limitation on the interaction time τ, retaining the
weak-field condition q « 1.
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In this approximation, the amplitude Fi i s not smal l
if the direction of the init ial momentum is close to the
direction determined by the f i r s t -order Bragg condi-
tion. The system (3.28) reduces in this case to a sys-
tem of two equations for the two quantities F o and F x .
This system can be easily solved and leads to the
following equation for the scat ter ing probability in the
direction of the first diffraction maximum:

w = ϊ 2 sin2 τ -(g2 + ξ2)1/" (q2 + ξ2)-1, ξ = 2 [1 + (sin θ/sin θο)1. (3 .30)

F o r m u l a (3.30) d e s c r i b e s t h e s a t u r a t i o n of t h e e l e c -

t r o n s c a t t e r i n g p r o b a b i l i t y a t a l a r g e i n t e r a c t i o n d u r a -

t i o n q T ^ 1, U n d e r r e a l c o n d i t i o n s , t h e e l e c t r o n r e f l e c -

t i o n p r o b a b i l i t y a v e r a g e s out b e c a u s e , s a y , of t h e

spread of the electron velocit ies. Under strong s a t u r a -
tion conditions qT » 1 we have Ψ = 1/2, i .e . , near the
Bragg angle approximately half of the e lectrons a r e
scat tered .

Similar resu l t s can be obtained also for the proba-
bilities of scat ter ing in the direction of the diffraction
maxima of higher o r d e r s as the direction of the mo-
mentum ρ approaches the direction determined by the
Bragg condition of the corresponding o r d e r .

Formula (3.30) can be obtained also by expanding
the exact solution in t e r m s of the eigenfunctions of the
Hamiltonian (3.26), i .e . , in Mathieu functions t 1 * 1 .

Under the s a m e assumptions, the stationary problem
with an adiabatically slow decrease of the potential at
infinity was considered i n [ 5 0 ] . A solution by per turba-
tion theory again led to formulas (3.22) and (3.24),
while the use of the quas ic lass ical approximation led
to formulas of the type (3.30).

Expression (3.30) for the scatter ing probability w
shows that at qT > 1 the degree of stringency of the
Bragg condition is determined by the value of the field
Δ θ/θ ο ~ q, and Δ θ i n c r e a s e s with increas ing field,
i .e . , the dependence of the scat ter ing probability on the
direction of the initial momentum becomes smoother .

The sys tem (3.28) enables us to analyze in part the
asymptotic behavior in a very s trong field q » 1. In
this case the sys tem (3.28) reduces to a sys tem of r e -
c u r r e n c e relat ions for the Besse l functions, so that we
have ultimately for the functions F n ( r , p)

Fn (τ, ρ) » Jn (-2?τ). (3.31)

A m o r e r igorous analysis^ ] shows that the necessary
condition for the applicability of this result is of the
form q r 2 « 1, i .e . , formula (3.31) i s valid at not too
large interaction t i m e s .

Thus, with increas ing field the degree of stringency
of the Bragg condition d e c r e a s e s , and the intensity of
the diffraction maxima of higher o r d e r s i n c r e a s e s . In
the l imit of a very s t rong field, the distribution of the
scat ter ing probabilities does not depend on the d i r e c -
tion of the init ial momentum and i s determined by
(3.31). As a result of the interaction with a field, the
initial beam breaks up into a " f a n " that is s y m m e t r i c a l
with respect to the initial direction, and the directions
of the scat tered beams a r e determined by the Laue
conditions (3.29). The first r e p o r t s of experimental
observation of the Kapitza-Dirac effect were published
by two groups of workers in 1965 t 4 2 a > 4 9 ] . These first
investigations, however, turned out to be contradictory,
and it was doubted whether the scat ter ing of e lectrons

by a standing wave was o b s e r v e d 1 " 1 . The two groups
la ter improved the i r initial exper iments [ ' 4 3 ] . Finally,
a new report of experimental observation of the
Kapitza-Dirac effect appeared in 1968 [ 4 5 ] .

It can apparently be stated on the bas i s of these in-
vestigations that scat ter ing of e lectrons by a standing
wave has indeed been observed. The reflection angle
was close to the Bragg angle, but the fraction of the
scat tered e lectrons was quite smal l .

The resul ts of[ >4 3 > 4 5 ] do not contradict the predic-
tions of the theory. In all these investigations, the
p a r a m e t e r s character iz ing the electromagnetic field
and the electron beam were such that the case qr « 1
was real ized, i .e. , the conditions for applicability of
perturbation theory were satisfied. It would be of great
interes t to perform an experiment in which the theo-
ret ica l resu l t s could be verified for a s trong field. At
the present t ime, however, we do not have any data of
this kind.

4. CONCLUSION

In this review we touched upon only two effects of
the interaction of optical radiation with electrons—the
bremsst rahlung effect and two-photon Compton effect.
These, of course , do not exhaust al l the features of the
interaction between intense radiation and e lec t rons .
As already mentioned in Chap. 1, when I > I r e i the
Compton scat ter ing acquires essentially a multiphoton
c h a r a c t e r , i .e . , s e v e r a l photons a r e absorbed in one
single scatter ing act, and severa l photons a r e emitted
simultaneously. So far, the only theory developed for
the spontaneous multiphoton Compton effect (see the
r e v i e w t 5 a i and the book r 6 ] ) is for the case when s pho-
tons a r e absorbed simultaneously with spontaneous
emission of one photon. The theory of stimulated
Compton scat ter ing at radiation intensit ies I > I r e i has
not been developed at all to date. Yet at such high radi-
ation intensit ies it i s precisely the st imulated s c a t t e r -
ing p r o c e s s e s which should determine the main fea-
t u r e s of the phenomenon.

In our analysis we made no mention at al l of one
very interest ing aspect of the interaction between in-
tense optical radiation and e lect rons . We have in mind
the possible production of e lectron-positron pairs in a
l a s e r experiment. This question i s discussed in par t
(but quite inadequately) in the l i terature (see [ 3 i c > 5 x ~ 5 3 ] ) .
The most real i s t ic possibility of observing such an ef-
fect is connected with scatter ing of e lectrons having in
the wave field a total energy e > 3 m e 2 by nuclei 1 l C ) 3 1 C ] :
This thereshold condition imposed on the energy can
be obtained in a l a s e r experiment, in which there is
real ized a radiation intensity I s e v e r a l t i m e s l a r g e r
than the intensity I r e j (the question of "how many
t i m e " i s determined not only by the threshold condi-
tion of the reaction e > 3mc 2 , but also by the polar iza-
tion of the i r radiat ion itself, since the electron energy
e depends on the polarization; s e e 1 1 * 1 , Sec. 47).

The possibility of "drawing o u t " electron positron
pai r s from vacuum by optical radiation was discussed

i n [ ic,s i ] ( g e e a l s o [ 5 2 ] ^ Est imates show that this prob-
lem st i l l remains far from pract ica l real izat ion, s ince
observation of the effect in this case calls for radiation
intensit ies on the o r d e r of 1 0 2 6 - 1 0 2 7 W/cm 2 .
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Without mentioning other possible effects of interac-
tion of intense laser radiation with electrons (and other
charged particles), we can state with assurance that
the development of laser physics has proceeded to a
degree that it has already become an experimental
basis for the observation of many new effects of quan-
tum electrodynamics. The first effects in this region
will undoubtedly be observed when radiation intensities
I > I r e i are realized.

Note added in proof. A number of new papers were published re-
cently. A classical analysis of bremsstrahlung in a strong field, analogous
to Chap. 2b, is given in [S4]. An attempt to calculate the bremsstrahlung
absorption coefficient averaged over a Maxwellian distribution, for arbi-
trary intensity is made in [5S] (quantum approach). The experimental
investigation of induced Compton scattering, started in [39], is con-
tinued in [S6]. Induced Compton interaction of Maxwellian electrons
with spectrally narrow radiation is considered in [S7].
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