SOVIET PHYSICS USPEKHI

VOLUME 15, NUMBER 4 JANUARY-FEBRUARY 1973

INTERACTION OF INTENSE OPTICAL RADIATION WITH FREE ELECTRONS
(NONRELATIVISTIC CASE)

F. B. BUNKIN, A, E. KAZAKOV, and M, V. FEDOROV
P. N. Lebedev Physics Institute, USSR Academy of Sciences
Usp. Fiz. Nauk 107, 559-593 (August, 1972)

A review is presented of the status of problems involving the interaction of matter and optical-band
electromagnetic radiation of intensity such that any medium becomes a fully ionized plasma. The
following are considered within the framework of the single-electron approximation in the case of
nonrelativistic energies: stimulated bremsstrahlung and absorption of an electron in the field of a
strong electromagnetic wave, stimulated two-photon Compton scattering, and scattering of electrons
in the field of an intense standing electromagnetic wave (the Kapitza-Dirac effect). The role played
by these processes in the heating of plasma by laser radiation is analyzed, as is the question of the

possibility of obtaining amplification (negative absorption) of light in transitions in a continuous
spectrum. The bibliography is brought up to date to the middle of 1971.
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1. INTRODUCTION

IN connection with the development of quantum elec-
tronics in the optical band (lasers), it became realist-
ically possible to observe a number of new physical
phenomena due to the interaction of sufficiently intense
electromagnetic radiation with matter. A large class
of such new effects as generation of harmonics of op-
tical radiation, parametric interactions, various types
of stimulated scattering of radiation, self-focusing of
wave beams in a2 medium, etc. are presently being in-
tensely studied both theoretically and experimentally,
and constitute the scope of nonlinear optics. A charac-
teristic feature of this class of effects is that in final
analysis all are due to nonlinear (in the electromag-
netic field) polarization of the medium. It is customar-
ily assumed that the medium itself does not change its
aggregate state during the course of interaction with
the radiation, and serves only as a nonlinear converter
of the radiation. From this point of view, such proces-
ses as optical breakdown in gases or damage in solids
are usually considered to be secondary phenomena that
lead to the loss of the nonlinear-optical properties of
the medium. The assumption that the state of the
medium remains unchanged determines also the fea-
tures of the theoretical approach to nonlinear-optics
problems and is manifest in the fact that all can be
described within the framework of macroscopic elec-
trodynamics, i.e., with the aid of Maxwell’s equations
supplemented by nonlinear material equations.

Closely related to nonlinear optics is a more recent
and much less developed field, also resulting from the
appearance of coherent sources of optical radiation,
namely nonlinear spectroscopy’. Research in this
field is aimed at studying the absorption spectra of in-

DThis term is apparently not yet universally accepted, but it seems
to us to reflect correctly the physical gist of the investigated phenomena.

tense optical radiation in gases, liquids, and solids,
when an important role is played by multiphoton and
multistage single-photon absorption mechanisms, and
also the spectroscopic saturation effect and the high-
frequency Stark effect.

As already noted, the phenomena investigated in
nonlinear optics and in nonlinear spectroscopy are
usually considered under conditions when the state of
the medium does not change significantly during the
time of interaction with the radiation. This leads to
definite limitations on the intensity I of the external
electromagnetic wave,

The condition that the aggregate state of the medium
be constant certainly ceases to hold if the amplitude E,
of the field intensity of the wave becomes comparable
with the intensity of the intraatomic field Eg:

Ey ~ E, =~ m'2A3? (eh)~T,
where A is the binding energy of the external electron
in the atom, e and m are the charge and mass of the
electron, and h is Planck’s constant. For example, for
the first Bohr orbit of the hydrogen atoms we have Eg
~5x 10° V/cm. The radiation intensity corresponding
to the intensity Ej is equal to

I, =~ ¢ (4n)~1mA3/e2h2

(c is the speed of light). At such large radiation
fluxes, any material medium loses its individuality and
is rapidly converted into a fully ionized plasmal**!
For a typical atom first-ionization energy A ~ 10 Ev,
the intensity is I ~ 5 x 10" W/cm®.

Actually, fast ionization of the atoms can occur also
in fields much weaker than intraatomic, E, «< E5. The
reason is that in the optical band we have @ « A/h
= wjy. In this case, according to!®®»?!, if the condition®

(1.1)

DThe physical meaning of condition (1.2) is that the period w™ of
the wave is large in comparison with the tunneling time of an electron of
velocity ~(A/m)% through a potential barrier of width ~(A/eE,. In this
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By > (0/0)E, & o (mA)/ie-T (1.2)

is satisfied, the ionization of the atoms is described by
Oppenheimer’s tunnel formula(*!

(1.3)

where w is the probability of ionization of the atom
per unit time.

Under the typical conditions w/ag ~ 0.1 and at an
intensity

w o~ g (Eu/EO)I/2 exp (—Ea/Eo)v

E, = (0/0,) E, (1.4)

formula (1.3) leads to a degree of photoionization

~19% within a period w™'. With increasing radiation
intensity, however, the probability w increases exceed-
ingly rapidly (the degree of ionization over the period
increases to 100% when the intensity is increased by
only a factor of 3). Thus, it can be assumed that rapid
ionization of the atoms begins with an intensity I ~ Ig¢,
where Ic corresponds to the field (1.4):

e ~ meo?Aldnet ~ (w/wg)? I,.

For radiation from a neodymium glass laser (x = 106 ;1)
and a ruby laser (x» =0.69 u)at A =15.6 eV (N;) we
have respectively Ic = 8 x 102 W/cm? and I¢ = 2

x 10" W/cm?>.

At intensities higher than critical, I > I, the atoms
of the medium becomes ionized within times on the
order of the period of the wave, and any substance is
converted into a plasma regardless of its initial state.
Consequently, at such high intensities the radiation in-
teracts with a plasma practically during the entire
pulse duration. Of course, processes analogous to
those considered in nonlinear optics can occur in this
case, e.g. one can have stimulated scattering by differ-
ent types of natural oscillations of the plasma, seif-
focusing, etc. In this intensity region, however, great
interest attaches apparently at the present time to the
investigation of the mechanism of absorption of power-
ful radiation. In such strong fields (when I > I¢), the
absorption coefficient can become (nonlinearly) depend-
ent on the field intensity. To solve problems of this
type, the phenomenological theory is no longer suffic-
ient, and it is necessary to use a microscopic approach.
Related to this region are also a number of problems
involving the scattering of an electron beam in the
presence of an intense electromagnetic field. It is pre-
cisely to this group of problems that the present review
is devoted. In the main, we shall not deal here with
collective effects that arise in the plasma under the
the influence of a strong radiation field, and consider
only the interaction between the field and free elec-
trons.

At the present state of development of quantum
electronics, it is quite feasible to obtain in experi-
ments intensities on the order of I, or even on the
order of Iz. Such intensities are easiest to realize
with picosecond pulses from mode-locked neodymium-
glass or ruby lasers. Moreover, the use of this laser
regime together with specially developed focusing
systems makes it possible to obtain even larger

case the amplitude of the electron oscillations ~eEy/mcw? is also much
larger than the width of the barrier, and the amplitude of the oscillation
velocity exceeds the intraatomic velocity of the electron.
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optical-radiation intensities, and one can hope to
realize in experiments in the nearest future fluxes
(intensities) I~ 10*—10°® W/cm®. Such intensities will
uncover new experimental possibilities in the study

of the interaction of radiation with matter. The energy
of the electron oscillations in the field of the wave then
becomes comparable with the electron rest energy or,
equivalently, the following condition is satisfied

eEymoc > 1.
The corresponding threshold (relativistic) intensity is
Iy = mPoicdf4ne? = (mc?/A) L.

The values of Irel for neodymium and ruby laser
emission are 2 x 10'® and 6 x 10'® W/cm?, respectively.

At intensities I > Ipe], 2 number of new problems
arise, e.g., the Compton scattering in a strong radia-
tion field, and others. These questions are discussed
in sufficient detail in the review®) and in the book!®,
and will not be considered here.

Confining ourselves to intensites I < Iyg], we con-
sider below the following questions: a) stimulated
bremsstrahlung and absorption (linear and non-linear);
b) stimulated two-photon Compton scattering; c) elec-
trons scattered in the field of an intense standing wave
(the Kapitza-Dirac effect).

Everywhere with the exception of Sec. a of Chap. 3,
the electron translational motion is assumed to be
nonrelativistic, and the quantum energy is assumed to
be fiw <« mc?,

2. STIMULATED BREMSSTRAHLUNG AND
ABSORPTION

When an electron is scattered by another particle
(atom, ion, nucleus) in the presence of an electromag-
netic wave of frequency w, induced emission or absorp-
tion of one or several quanta Hw is possible besides
the spontaneous emission of a quantum hwgp = € (e is
the electron energy prior to scattering). Such electron
transitions are usually referred to as stimulated
bremsstrahlung and absorption (one- or multiquantum).
To shorten the notation, we shall henceforth use also
the term ‘‘stimulated bremsstrahlung effect’’ (SBE) to
denote the entire aggregate of such processes.

The SBE was considered, of course, even before the
appearance of quantum electronics, e.g., in the solution
of the problem of radiation absorption in an electron
plasma as a result of collisions. Quantum electronics
has introduced two new aspects in the study of the SBE.
First, the interest in the SBE is connected with
searches for the possibility of obtaining negative ab-
sorption in transitions between states of a continuous
electron energy spectrum (‘“free-free’’ transitions).
An advantage of such systems is the absence of any
limitations whatever on the frequencies of the emitted
photons. In addition, in the case of transitions in the
continuous spectrum it is relatively easy to solve the
problem of inverting the population of the energy
states. For example, a monoenergetic electron beam
is in itself a system with inverted population relative
to the entire region of the spectrum with lower energy.
The conditions for negative absorption are determined
in this case by the character of the interaction between
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the electrons and the external field (the electromagnetic
and static fields of the scattering center).

Second, the development of high-power lasers has
made it possible to observe multiphoton SBE, and at
sufficiently high optical-radiation intensities I, the
multiphoton SBE becomes the principal (nonlinear)
mechanism of its absorption in the plasma.

In this chapter we examine the SBE from these two
physical points of view.

a) Negative absorption in free-free transitions. We
shall analyze the conditions of negative absorption of
radiation in SBE as applied to a system of electrons
scattered by heavy particles (atoms, molecules, or
ions). In the general case, such an analysis calls for
knowledge of the cross sections for the single-photon
SBE. If Oe,a are the cross sections of stimulated
emission (absorption) of a quantum Hw in an electro-
magnetic field of intensity I, occurring when an elec-
tron is scattered by a force center, then the absorption
coefficient o in the system under consideration is
given by

a = (N NBoll) v (a, — 0.)), (2.1)

where Ng and N are the average densities of the elec-
trons and of the scattering centers in the system, v is
the absolute value of the electron velocity, and the
angle brackets denote averaging over the electron
velocity distribution. The cross sections ¢ 5 depend
both on the absolute value of the electron velocity v
{prior to scattering) and on its direction relative to the
polarization of the electromagnetic field. It will hence-~
forth be assumed throughout that the radiation is
linearly polarized and that the field of the scattering
center has central symmetry. Then the cross sections
depend not only on v, but also on the angle 6 between
the radiation polarization vector e and the direction

n = v/v of the electron velocity prior to scattering.

In the simplest case of isotropic distribution of
electron velocity, an analysis of the conditions for
negative absorption becomes much simpler. The first
analysis applicable to this case was carried out inl%®
(see also the pertinent papers in!®}). In this case (2.1)
takes the form

a=4aNnol | j Vg, (v) f (v) dv— 5
4 (2ha/m)i/2

v, o)/ @) dv |3
here
Dy a (0) == ()™ 5 O, o (v, 0)dR=0,5 S Ge, o (v» 6) sin 8 d6

T
0

are the SBE cross sections averaged over the angle

variables and f(v) is the isotropic electron velocity

distribution function, normalized by the condition
4n Sv’f(v) dv = N,. 2.2)

0

The average cross sections ;e,a( v) are convenient be-

cause, on the one hand, they satisfy the ‘‘integral’’ de-

tailed balancing principle!'*1;

2.3)
(2.4)

and on the other hand they satisfy the Einstein relation

v30% (v) = w5, (W),
wt =2 4 (2ho/m),
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between the coefficients A and B
(2.5)

where ng = (47°c’I/hw’AwAQ) is the average number
of quanta for field oscillator (Aw and AQ are respec-
tively the width of the frequency and angular spectra
of the linearly-polarized radiation with total intensity
1), and ogp (v, w)dw is the cross section for spontane-
ous emission, into a solid angle 4n, of a photon with a
frequency in the interval (w, w + dw), upon scattering
of an electron of velocity v.

On the basis of (2.3) and (2.5), formula (2.1) takes
the form

0, (V)= rcOsp v, ©) (AR/hn) Aw = (n2c¥/he?) Tog, (v, @),

a= —4n3cINo™? j vias, (0, ©) [f (w)—f ()] dv.
0

From this expression, when account is taken of (2.4),
we see that to satisfy the condition a < 0 it is necessary
to satisfy the inequality df/dv > 0 in a certain finite
interval of the velocities v. Obviously, this velocity
interval has an inverted electron population (a
‘“negative temperature’’)”, and the physical meaning of
the condition a < 0 reduces to the fact that a velocity
interval with ‘‘negative temperature’’ (df/dv > 0) makes
a larger contribution to the absorption at the frequency
w than an interval with ‘‘positive temperature’’

(df/dv < 0).

The indicated condition for negative absorption is,

generally speaking, only necessary but not sufficient,
and it is possible to find one more independent neces-
sary condition for a < 0. The latter is easiest to find
in the classical limit of low frequencies, when hw <« ¢,
a condition that can usually be regarded as satisfied in
the optical band, and all the more in the radio band.
In this case a universal connection exists between the
spontaneous emission cross section osp(v, w) and the
transport crogs section otr(v) of elastic scattering of
an electron!*) (see also!*!}, Chap. V, Sec. 2a)

Ogp (v, ©) = (4e¥*3nkhoc®) w0y (V) [0® + v? )17, (2.6)

where v(v) = Nvogp(v) is the frequency of the elastic
collisions of the electrons with scattering centers.
After substituting (2.6) in (2.7) we obtain, accurate to
first order in fiw/e, the known kinetic-theory expres-
sion for the absorption coefficient of a plasma with an
isotropic electron distribution (see e.g.,[**])

a = — (16n2¢*/3mc) 5 [0 4 v2 ()] 2 v (v) 3 (df /dv) dv.
°

2.7)

The already mentioned second necessary condition

a < 0 is obtained when (2.7) is integrated by parts. It
reduces obviously to the requirement that the in-
equality?

a v (v) 3

> 0,,—-—+v.(v)]<0 (2.8)

be satisfied in a certain finite velocity interval. Satis-
faction of this condition is determined completely by
the character of the elastic scattering of the electron.

DWhen df/dv > 0, the electron energy distribution function increases
more rapidly than e*,

41t is assumed here, naturally, that the function f(vov3/w? +v?)
vanishes at v=0and v = oo,
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For the case of a strongly ionized plasma, when elec-
tron-ion collisions are decisive (see, e.g.,!'?)), we have

v (v) = Nuvgy (v) = [4nZ2'N /(m*?)] L (v), (2.9)

where L(v) is the Coulomb logarithm, which is a
monotonically increasing function of v.”) We see there-
fore that condition (2.8) cannot be satisfied®. Accord-
ingly, negative absorption of the radiation is impossible
in a strongly ionized plasma with an arbitrary isotropic
electron velocity distribution(™,

In the case of a weakly ionized plasma, when the
collisions between the electrons and the neutral parti-
cles are decisive, it is impossible to obtain a similar
universal answer. It can only be stated that at high
radiation frequencies w > v(v) the negative absorption
is apparently likewise impossible. Indeed, in this case
we have »v%/{w® + v?) ~ otr(v)v®, and this function has
no negative slope for all the gases investigated to date.
Violation of this property of the cross sections is
physically unlikely.

To the contrary, at sufficiently low frequencies,
when @ « v(v), we have vv¥/(w® + v%) ~ v¥/otr(v),
and for gases that exhibit a strong Ramsauer effect the
condition (2.8) may turn out to be satisfied in a certain
finite velocity interval. Consequently, in such gases,
at definite electron distributions f(v), negative absorp-
tion of sufficiently low-frequency radiation is possible
as a result of the bremsstrahlung effect!®). This phe-
nomenon was apparently observed experimentally int**]
where a ‘‘decreasing section’’ was registered in the
current-voltage characteristics of gas-discharge
tubes filled with heavy noble gases exposed to ultra-
violet radiation. Observation of an appreciable gain due
to this effect at a frequency 60 MHz in a xenon gas-
discharge plasma was reported in!*],

The rather limited possibilities of obtaining nega-
tive absorption in a plasma with an isotropic electron
velocity distribution have the physical explanation, of
course, that the state of such a plasma is already suf-
ficiently close to equilibrium, since in such a plasma
there is no directed electron motion relative to the
radiation polarization. In the presence of such a mo-
tion, the situation can be appreciably changed. Let us
consider first the case of the simplest non-isotropic
distribution, when f(v) = Negb6(V ~ vy), i.e., the case of
scattering of a monoenergetic beam of electrons of
velocity v and density Ne. Then (2.1) takes the form

o = (N Nhw!l) v,01 (vo. 0), (2.10)

where
o (v, 8) =0, (v, ) — o, (v, )

is the total cross section of the bremsstrahlung photon
absorption, An analysis of the conditions of negative

5 The Coulomb logarithm L(v) is defined by the formula [ 2] L(v) =
In [1+ (2pmax/Pmin)*1% = In {1 + cot? (8 in/2)*%, where ppay and
Pmin are respectively the maximum and minimum impact parameters,
and O min is the minimum electron scattering angle. Only the parameter
Pmin = max {2Ze?/mv?, h/mv} depends on the velocity. The parameter
Pmax can be regarded equal to {v[/wp, vy /w}, where vy = (3Te/m)* is
the average thermal velocity of the plasma electrons and wp = (4me®Ng/
m)” is the Langmuir (plasma) frequency.

9When w > v and w < p, this is immediately evident from the fact

that in this case we have »w3(w? + »?)! ~ L(v) or ~v®/L(v) respectively.
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absorption is determined in this case by the sign of the
cross section ot(v, 6) as a function of the angle 4 and
the velocity v,. This question in such a formulation
was first investigated in[”], where the cross sections
of single photon SBE were calculated for scattering of
a nonrelativistic electron by fewer Coulomb and
screened Coulomb centers.

We confine ourselves to the scattering of electrons
by a pure Coulomb center in the Born approximation,
i.e., under the condition!*®]

Ze'/hog K 1. (2.11)

In the bremsstrahlung-effect problem, this condition
should be satisfied for both values of the electron
velocity, before and after the scattering. To calculate
the emission cross sections o¢e, this condition must
therefore be supplemented by the condition

(2.12)

The sought cross section ge a are calculated in
second order of perturbation theory (in first order in
the radiation field and in first order in the Coulomb
potential), and the initial and final wave functions of
the electron must be chosen to be the wave functions of
the free electron, i.e., plane waves. The summation
over the intermediate states can be easily realized be-
cause the momentum conservation law holds. As a re-
sult we obtain the following expression for the differen-
tial cross sections of the SBE['Y

2t = hw/0,5mv} < 1.

A0, o/dQ = 21221 (1 = 28)"/% [ne — (1 4 28)1/2 n'e)? (2.13)
X {em?® (he)? o[l +E—(1 & 2?;)”Z nn'|?)L;

here n and n’ are unit vectors in the directions of the

velocities of the incident and scattered electrons,

e = Ey/E, is the unit vector of the polarization of radi-

ation with intensity I = cE3/8w, and d© is a solid-

angle element in the direction of the vector n’,

For the emission cross section dog, formula (2.13),
strictly speaking, is valid only if condition (2.12) is
satisfied. This, however, is precisely the region (of
sufficiently soft quanta and high electron energies
€y = mv€/2) where the emission and absorption cross
sections can be comparable in magnitude, and conse-
quently, one can raise the question of negative absorp-
tion. We shall therefore assume £ <« 1 from now on.

On the basis of (2.13), in the scattering of an elec-
tron beam by Coulomb centers with density Nj, expres-
sion (2.10) for the absorption coefficient o takes the
form

o= (2nZZe"NiNe/cm3vgm2§)g dQ (1 + 28)1*
X {ne—(14-28)"* n'e] [1 +E— (1 +28)"* n'n]"1)2
—(1—28)" {[ne—(1—25)"* n'e] [1 —E— (1 —25)"" nn'J2p2).

Integrating over the solid angles d and using then the
smallness of £, we obtain ultimately
o = (N;Nehovy/I) o: (vg, 0) (2,14)
= (168222 V; N o femP0™?) [2 cos? 0 — (3 c0s? 0 — 1) In (2/)].
We see therefore that negative absorption is possi-
ble for the considered simplest non-isotropic electron
velocity distribution (a monoenergetic beam) if

cos 8 = {In (2/8) [31n (2/8) — 21"z = 1/V/3, (2.15)
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i.e., if the electron velocity vector v lies inside a
cone whose axis coincides with the polarization direc-
tion e of the electric field, and whose generatrices
are inclined to the axis at an angle

8, = arc cos {In (2/E]3In (2/8) — 2]-1312 v arceos (1/}3) =~ 55°

At a specified velocity v,, the quantity —a{v,, ) is
maximal at ¢ =0, i.e., when the velocity of the scat-
tered electrons is parallel to the polarization of the
electric field of the radiation. The maximum gain, ac-
cording to (2.14)", is

— g = (320222 N N o/emPvjo?) [In (2/8) — 4] 2 .16)

= (872225 N j/cmew?) [In (2/8) — 1],
where j = Nevoe is the density of the current in the
beam, and €, = mv3/2.

Thus, in the presence of directed motion of the
electrons relative to the radiation polarization, nega-
tive absorption in the SBE is possible also for Coulomb
collisions. Numerical estimates show, however, that
the gain attained in this case is quite small in the
optical band. Only for the far infrared and the micro-
wave bands can one hope to obtain an appreciable gain.
Thus, at o =~ 10" sec”™! (wavelength A » 2 x 107 c¢m),
an electron velocity v, ~ 108 em/ sec, a solid-state ion
density Nj =10% cm™, Ne =10°cm™, and Z =1 an
estimate in accordance with (2.21) yields |ao| =1 cm™.
In such an estimate it is borne in mind that the elec-
tron beam interacts with ions of the solid or the liquid,
and the absorption of the electromagnetic field at the
frequency  is assumed to be sufficiently weak.

The latter condition is usually not satisfied in inter-
actions between an electron beam and a plasma. If the
electron concentration of the plasma greatly exceeds
the concentration of the particles in the beam, then
bremsstrahlung absorption by the plasma electrons
prevails over the amplification by the beam electrons.
One can therefore speak of a possible negative absorp-
tion due to the SBE in a plasma only if a large number
of electrons take part in the directional motion. In this
connection, certain interest attaches to“‘”, where the
possibility of negative absorption due to the SBE in a
plasma with electron drift is predicted. The electron
velocity distribution function is in this case

1 @) = N (/m)2 exp [—B (v — va?l, 2.17)

where vq is the drift velocity. It is assumed that its
direction coincides with the direction of the polariza-
tion vector e. The electron drift can be produced by
placing the plasma in an external constant electric
field parallel to the vector e.”

On the basis of the foregoing analyses one should

Mf the Born-approximation condition (2.11) is not satisfied, then
according to ['%] the expression for—a, differs from (2.16) in that unity
in the brackets is replaced by the term xe™/(1—eX), where x = 2nZe?/
hvg.

81t is known [17?] that the electron drift cannot be stationary in this
case, since generally speaking the velocity v4 and the electron temperature
Te = m/28 increase with time. In a weak electric field, however, this
growth may not be noticeable in practice; in a strong field, the growth
of the drift velocity (“electron whistler””) can be compensated for by
adding to the plasma a neutral gas with sufficiently high atom ionization
energy. This difficulty is eliminated to a considerable degree under pulsed
operation.
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expect negative absorption in a plasma with distribu-~
tion (2.17) at vq 2 (Te/m)*? and at frequencies

w <« mvj/h, for in this case, obviously, condition (2.15)
with the parameter £ <« 1 is satisfied for most plasma
electrons. It is further evident that when vy increases
the gain should tend to zero like vy’ in accordance with
(2.16) (v, = vg), and consequently, the negative absorp-
tion should have a maximum at a definite ratio vq/vT.
A rigorous kinetic analysis of this question, carried
out in''®), confirms these qualitative deductions. In the
cited reference, an expression is derived for the ab-
sorption coefficient of a plasma with electron distribu-
tion (2.17), which can be represented in the form

a = oo Y {vg, Uy Te)

(2.18)

where aoT is the absorption coefficient of an equili-

brium isotropic plasma'®}, .
x

Y (vay ve, Te)=(am)~1 (14272) exp [~ (224 02)] sh (2zn) — 23 5 oxp (~— %) dt,
R (2419)
and x = 8¥%vq and 5 = 8¥*v, are parameters. The
physical meaning of the velocity v, is that at electron
velocities v = v¢ the frequency of the electron-ion
collisions is v(v) « w{v(v) is given by (2.9)). The
results (2.18) and (2.19) pertain to the case when v¢
< vr, i.e., when the condition v « @ is satisfied for
most plasma electrons. Figure 1 shows a family of
plots of the function Y(vq, vc, Te) against the ratio
vd/vT at different values of the parameter v¢/vT.
We see that at vq > 0.8 vT the function Y, and conse-
quently also the absorption coefficient a, becomes
negative, and the behavior of these two quantities as
functions of the ratio v4/vT depends little on v¢ /vT.
The maximum of the negative absorption sets in at
vq ~ 1.3vy (x ~1.8), with a gain (-amax)~ 0.1aT.
With further increase of vd, the coefficient « tends to
zero (like vas at x » 1)*,

For radiation with wavelength A =100 . and for a
plasma with temperature Te = 1 eV and density Nj
=Ne = 10" em™ (Z = 1), the maximum gain is ap-
proximately 1 cm™, This estimate shows that the con-
sidered system makes it possible, in principle, to ob-
tain appreciable gains in the far IR, but the problem of

1/2

T T T O T T l
g7k —— fn =57
=== v/t =51
~ — vy =i
W
h:' 4
N
N
_[_/,— =
_JZ_ -

24/ %
FIG. 1. Absorption coefficient referred to the absorption coefficient
of the equilibrium plasma, ag JoagT = Y (vg, v, Te) vs the ratio of the
drift and thermal velocities vg/vy.

DIf the electron drift is due to a constant electric field, then accord-
ing to [17#] the conditon x > 1 can be reached only when the field in-
tensity exceeds the critical value E¢ = mB™ vej/e = 20Z2e>N;L/Tc. In a
fully ionized plasma, the bulk of the electrons is then subject to the “elec-
tron whistler” process (see the preceding footnote).
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practical realization of such systems encounters cer-
tain difficulties connected with the production of rapid
electron drift (see the last two footnotes). In addition,
the foregoing analysis ignores completely the possible
onset of plasma instability, which in practice can
greatly hinder the practical realization of the model in
question.

At the same time, the analysis presented in this
section shows that it is possible in principle to use the
SBE to develop media with negative absorption of radi-
ation. It is obvious that the results obtained above per-
tain, with certain stipulations, also to the scattering of
electrons by impurities in a solid, and by the same
token point to the possibility of obtaining a negative
absorption by free carriers in semiconductors***%,
Insofar as we know, these possibilities have not yet
been realized in the laboratory, although it is not ex-
cluded that they play a definite role under cosmic con-
ditions.

We note in conclusion that SBE in scattering of
relativistic electrons was investigated in[“’a’c], where
the conditions for negative absorption were analyzed
for the case of scattering by isolated ions (in a plasma),
and also by the crystal lattice points in an ionic crystal.

b) Bremsstrahlung and absorption in a strong elec-
tromagnetic field. The results described in the preced-
ing section pertain to the case when the radiation field
intensity I is low enough. In the language of quantum
theory, this condition means that in a single act of
electron scattering by a scattering center an important
role is played only by single-photon SBE: the cross
sections ¢4’} of multiphoton processes, when two,
three, etc. p’hotons are absorbed or emitted in a single
act, are small in comparison with the cross section
o) given by (2.13). In classical theory, weakness of
thé radiation field in SBE processes means that the
amplitude of the electron vibrational velocity vE in the
wave field, is small in comparison with its translational
velocity v, i.e., that

vg = eE/mo L v.

(2.20)

As applied to processes in a plasma, the velocity v
should be taken to mean the average thermal velocity
of the electron vT = (3Te/m)Y?; the quantity eE,/mw
has then the meaning of the vibrational velocity of the
electron, naturally only if the radiation frequency w is
large in comparison with the effective frequency of the
collisions between the electrons and the plasma parti-
cles. Since we are dealing with the optical band, we
shall assume the last condition to be satisfied in all
cases.

If (2.20) is not satisfied, then the relative velocity of
the scattered electron and of the scattering center, and
consequently also the effective frequency of their col-
lisions in the plasma, begin to depend on the wave am-
plitude E,. This in turn causes the coefficient o of
plasma absorption due to the SBE to become dependent
on the radiation intensity I, i.e., the absorption be~
comes nonlinear. This nonlinearity should become
particularly pronounced in the case of a strongly ion-
ized plasma, owing to the strong dependence of the
Coulomb-collision cross section on the relative parti-
cle velocity. The foregoing considerations enable us
to predict directly in this case that the absorption coef-
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ficient a will depend on the intensity I in the limit of
large I, when vE > vT. Indeed, according to (2.9),

one should expect veff, and consequently also a, to be
proportional in this case to vi ~ Eg ~ ">, Thus, the
absorption of the radiation in a strongly ionized plasma,
due to the SBE, should decrease with increasing in-
tensity. This conclusion is important, in particular,

for the problem of high-temperature heating of plasma
by laser radiation.

The condition (2.20) is certainly not satisfied in a
plasma produced when the medium is irradiated with
light of intensity I > I, for in this case {in accordance
with the definition of I, see Chap. 1) we have eE,/mw
> (A/m)Y2~ vflﬂ”, where v.? is the average velocity of
the plasma electrons during the initial stage of irradi-
ation (at a time on the order of w™! after the start of
the irradiation). It must be emphasized that the condi-
tion ‘‘at the initial stage of the irradiation’’ is a partic~
ular manifestation of the general condition that the
plasma irradiation regime be nonstationary, which is
the only case when the condition (2.20) can be violated.
In the stationary irradiation regime, owing to the
plasma heating, we have (see'*! and the review!'™)

vr (Eg) = (3T, (Eg)im)'* 5 eEy/mod? > vy

(5 is the average relative fraction of the energy trans-
ferred in the collisions between the electron and the
heavy scattering particle; § = 2m/M <« 1 in Coulomb
collisions). If (eE,/mw) 2 6Y%*v?, where v9

is the thermal velocity of the electrons in the absence
of external radiation, then the plasma can also exhibit
nonlinear properties, but they are due only to its heat-
ing {to the dependence of the electron temperature Teg
on E;), and not to the nonlinear bremsstrahlung ab-
sorption considered by us.

The nonlinear SBE can be observed and can play an
important role only during times much shorter than the
time necessary to establish the steady state. Indeed,
if the field is strong during the initial instant of the
irradiation, vE 2 VSI?’, then this condition can be satis-
fied only during time intervals on the order of the
thermalization time of the electron vibrational motion.
The electronic components of the plasma become
heated within a time t ~ v };, after which the electro-
magnetic field becomes weak (the condition (2.20) is
satisfied) and the absorption follows the usual linear
laws. If vi® « vE, then the effective collision frequency
is veff ~ (Vip'/VE)’7¢j, where 7¢j is the time of the
electron-ion collisions in the plasma in the absence of
a field. Thus, to observe the nonlinear SBE by measur-
ing the absorbed energy, the pulse duration 7 should be
bounded by the inequality 7 < (VE /viP)’7ej.

This condition together with the requirement vg
> vSI?’, as applied to laser experiments, is satisfactor-
ily fulfilled in the case of picosecond pulses (7 = 107%
sec). For example, at an ion concentration Nj = 10"
em™, a frequency w = 8 x 10%° sec”?, and a radiation
field intensity I =10'°W/cm® we have v =~ 107" sec
>> 7, In order for a field of such intensity to be con-
sidered as strong, it is necessary that the initial elec~
tron temperature not exceed ~10°°K.

We present below the classical and quantum-mechan-
ical treatment of the influence of intense radiation on
the SBE processes.
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1) Classical treatment. The classical solution of
the problem of absorption of strong radiation in a fully
ionized plasma was first obtained in[*@] on the basis
of the kinetic theory.

A strong radiation field can influence the SBE in a
plasma, generally speaking, in two ways. First, the
cross sections for emission and absorption in the ele-
mentary scattering act can change (in comparison with
the case of a weak field). Second, the electron distribu-
tion function can also change. These two nonlinearity
mechanisms can not be separated in the general case.
It is precisely such a common approach which is de-
veloped in*®), An elementary attempt was made in[?))
to take into account the nonlinearity connected only
with the change of the electron distribution function,
but the results are apparently in error. We present
below a simplified classical analysis that takes into
account only the influence of a strong radiation field
on the elementary scattering act, and compare the re-
sults of such an approach with the rigorous theory.

Assume that at a certain instand of time t; an elec-
tron having a translational velocity v is scattered by
a force center with a centrally-symmetrical potential.
We assume that the scattering time is A7 ~ (a/v)

« 1/w (a is the effective radius of the potential)'®,

i.e., the scattering act can be regarded as instantaneous,
and therefore the scattering is elastic. We orient the
axes of a rectangular coordinate system in such a way
that the z axis coincides with the direction e = E,/E,

of the radiation polarization, and the velocity vector v
lies in the plane (x, z) at an angle 6 to the vector e.
Then the vector u =u(t,) of the total electron velocity
in the alternating electric field E = E,cos wt prior to
scattering has the coordinates

up =vsin®, u, =0, u,=vcosh+uvzsiny (2.21)
and its absolute value is
u =v[1 -+ 2% cos 8sin P + {2 sin? p]¥2, (2.22)

where ¥ = wty, £ = VE/v, and VE is given by (20).

Immediately after the elastic scattering of the elec~
tron through an angle ¢, the coordinates of its total
velocity u'(to)

Ul == Uy €08 &+ u,sin & cos @, uy=usindsing,

u; = U c0s & — u, sin & cos @,

(2.23)

where ¢ is the azimuthal scattering angle with polar
axis along the vector u(t,). When t > to, the electron

is acted upon only by the wave field, and therefore
(2.24)

ug (t) = ui (to), uy (t) =uy (ty),
'

ug () =u; (t) + j U €08 Wt df = u; (ty) - vg (sin ot — sin ).
‘o

10} For Coulomb collisions, this condition is not satisfied precisely in
the frequency region at which the field penetrates in the plasma, i.e., at
w2 wp(wp is the plasma frequency). It is known, however, [12], that
in the case of a weak external field the transition from the case w € wp
to the case w < wp changes only the logarithmic factor in the expression
for the effective collision frequency. One can therefore hope thatina
strong field the relation between the frequencies w and wp will not
greatly influence the main relations of the SBE. This assumption is partly
justified by numerical calculations for the case w > wp in [2®*] and by
the results of the following section.

L(¢)={
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Prior to scattering, the electron has an average total
energy

gg=0.5m (2 0.5vF) = 0.5mv® (1 + 0.5%3).

The scattering in the field of the wave changes the
average energy of the electron by an amount

Be = (8, 95 9) = F (W2 () — &,

where the brackets ¢ ...) denote averaging over the
time t. On the basis of (2.21)—(2.24) we obtain for
Ae(s, @;9):

Ae = mv*{ sin [(1 — cos 9) (cos © + ¢ sin ) + sin 6 sin § cos ¢).

If do(u, ¢) is the differential cross section for elastic
scattering of the electron and Nj is the density of the

scattering centers, then the rate of change of the elec-
tron energy is

deldt = N, j' ule (8, ¢) do (u, 9) = (2.25)
= N0y (W)mur?y sin ¢ (cos 8 + ¢ sin V),

where gip(u) = j(1 — cos¢)do is the transport cross
section.

The expression for the plasma absorption coeffic~
ient o is obtained from the expression for the rate
de/dt by averaging the latter over the phase and over
the electron velocities v:

2n
a=(2n1)-lf F(v)dv 5 (de/dt) dyp. (2.26)
0
We confine ourselves henceforth to Coulomb collisions,
for which the cross section gtr is given by (2.9). We
then obtain for de/dt on the basis of (2.25)
de/dt = (4nZ%*N/mv)
X & sin (cos 0 + §siny) L[(1 + 2§ cos 0 sin P - £2 sin? )3/2]}-1
L =In{1 + (2Pmax/Pmin) V% (2.27)

Pmax = min /0y, u/@), pmig = max (2Ze¥/mu?, h/mu).

We consider first the case of scattering of an elec-
tron beam, when f(v) = Ned (v — v,). In a weak field,
when VvE <« v, we have

u=v{l +CcosBsiny+...), L=1In(2/8 + 2{ cos O siny,

(2.28)
and on the basis of (2.26)—(2.27) we obtain for the ab-
sorption coefficient @, accurate to term ~¢%, a formula
that coincides exactly with the quantum-mechanical
formula (2.14).

The case of arbitrary values of { will be considered
for an electron-beam orientation parallel to the polari-
zation of the electric field of the wave (6 =0). Then
u=ve|1l+¢sing|, and

de/dt = (40.Z%*N ;/mvy) § sin YL (P)/(1 + § sin ¢)?, (2.29)
In 1 + (hoo/8Ze’P(1 + Csin 9)°1V2, | 4 + § sin g | << 2Ze%hv,,

Inl1 + @B (1 + Lsin )3 |14 {siny | > 2Ze*/hv,.

It is seen from (2.16) that when the velocity v, of the
scattered electrons decreases, the negative-absorption
coefficient in a weak field increases sharply'* and
tends to zero like v;® with increasing v,. We can
therefore expect in the now-considered strong-field

1D we assume that Pmin = /mu, which in this case ({ < 1) corre-
sponds to the condition (2.11).
12 See footnote 7.
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case the negative-absorption coefficient (-a) to in-
crease sharply a ¢ — 1 and tend to zero like E™*

~ %% 35 ¢ - ». Calculation of o on the basis of (2.26)
and {2.29) confirms this prediction fully; it is impossi-
ble, however, to obtain a single elementary formula for
arbitrary values of ¢, and we present below three
formulas for a at ¢ <1,z =1,and { > 1:

Lt a=a(+1450 .. (2.30)
C=1:a = o () 2/9n) (hvo/EZe?)'/2 [In (16A.49/ho)/In (2/E));

T 15 o (00/3L2) (206/82Ze2) ° [In (16Agpg/hw)/In (2/8)] [1+(222) 1. . ]

=—(B451/3) (Z2e3N;: No/MES) (2/8) (hvo/2Z¢2) ! P 1n (164 ,0p/A0)

(M4 .. 1 (2.31)
here o, is the negative-absorption coefficient at ¢ =0
in a weak radiation field, as given by (2.16); Aeff
= (Z%"'m/2h%) is the effective ionization potential of
the scattering ion, and x = 27¢/w. The approximate
equality signs in (2.30) and (2.31) denote that the calcu-
lations are performed with logarithmic accuracy.

From (2.30) we see that |« | increases rapidly as
¢ — 1 in comparison with the case of a weak field, in~
asmuch as the parameter (2/t)fivy/2Ze’ = mvy/Ze’w
is numerically large. Thus, at vy = 2 X 10® ¢cm/sec and
Z =1, for radiation of wavelength A = 0.1 cm, this
parameter is approximately equal to 2 X 104; with this,
a(¢ =1) = 8ay, and the radiation intensity correspond-
ing to the condition ¢ =1 is approximately 6 % 107 W/cmz.

Thus, in the case of non-isotropic distribution of the
electron velocities, negative absorption in the SBE for
Coulomb collisions is possible also for a strong radia-
tion field, and the negative-absorption coefficient de-
pends in this case on the radiation intensity and has a
maximum point. In the limiting particular case of a
distribution such that the electron beam is directed
along the radiation polarization, this maximum is
reached at the point ¢ = eEy/mwv, = 1, where the
value of |a | greatly exceeds |agl; at ¢ > 1, the ab-
sorption, while remaining negative, becomes small
(Ja |~ ~T*%). Aplot of |a/ao| against ¢ for this
particular type of non-isotropic distribution is shown
in Fig. 2a.

An entirely different dependence of the absorption
coefficient o on the radiation intensity is obtained in
the case of isotropic electron velocity distribution. We
have seen in Sec. a of Chap. 2 that in a weak radiation
field an isotropic distribution always leads to a posi-
tive absorption (o > 0). On going to a strong field, the
absorption coefficient, remaining positive, tends mono-
tonically to zero. This follows directly from the gen-
eral formulas (2.26) and {2.27). In this case (2.26)
takes the form

o 2r T
a=1-15u2f(u) du5 dp Ssine(ds/dt) do, (2.32)
0 0 0

where the distribution function f(v) is normalized by
the condition (2.2). The calculation of a thus reduces
primarily (according to {(2.27)) to the calculation of the
function B( ¢), defined by the integral

27 F 1
Bo=t] dlpsimpSd(jsine(cose+§sin1p) (2.33)
0 0

X L (1+ 2L cos O sin -+ £2 sin? ) ~3/2.

423

When ¢ < 1 we can use the expansions (2.28), and we
obtain for B(¢)

(2.34)

When ¢ 21, we can discard the term 2¢cos 6sin § in

the denominator under the integral sign in (2.33)'®,

and we can write accordingly for the Coulomb logarithm
L ~ ln (22¥%) = In (2/€p),

where ¢g = hw/mvi:. .
The integration can be readily performed in this
case, and we get for B({)

B (0) ~ 8L/ + CPPID (L + 8P In 2/5),  (2.35)

where D(k) = k?(K (k) — E(k)) is a complete elliptic
integral.

Since B(¢) > 0 for all values of g, the absorption
coefficient o defined by (2.32) is also positive at all
values of the radiation field intensity. We perform the
final calculation of o for a Maxwellian distribution
f(v). In this case we obtain on the basis of (2.32),
(2.27), and (2.33)

B () = 4n/3)g* + . ..

e (/") (NNl B | 2B (/) ez, (2.36)

¢

where {T = eEopY?/mw and 8 = m/2Te. A weak radi-
ation field corresponds in this case to the condition
¢T << 1. On the basis of (2.36) we obtain the well known
expression for the absorption coefficient a,T of a
Maxwellian plasma (see, e.g.,“z]). To carry out the
integration of (2.36) at {T <« 1, the integration interval
is broken up into two: from 0 to gT and from {7 to «,
In a second interval, we can use for the function B(¢)
the expansion (2.34), and in the first interval we can
use the representation (2.35).

We turn now to the case of a strong field, when
T 2 1. We can use in this case in the entire integra-
tion interval the representation (2.35) for the function
B(¢), and this yields

=245 V'3 (22NN oJem*20%3®) In (2/8x) (1+50) " By (%), (2.37)

where eT = 1.5T¢, and

N WA o w SR
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FIG. 2. Coefficient of negative absorption of an electron beam (par-
allel to the polarization of the electric field of the wave), referred to its
value in a weak field, as a function of the field quantity ¢ = vg/v(a), and
absorption coefficient of isotropic Maxwellian plasma, referred to its
value in a weak field, as a function of the field quantity {3 = vg8%,
B=m/2T, (b).

13 When ¢ > 1, the validity of such an operation is obvious. When

§ ~ 1, it follows from the fact that the main contribution to the integral
with resepct to 0 is made by the vicinity of the point /2, where 12¢ cos
Gsingpl<<1.
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0

By (&) = (W/Vm) [ (4G + Y DGl @+ 1)) e+ do

~ DL+ (1< b << 00).

At ¢T > 1 we have (2.38)
D (G/(1+82)"7) = In [44;] — 1= 0,5 In (4,3ex/Te).
and we therefore obtain on the basis of (2.37)
(Z2e°N N Jom320%a2t3) In (4eg/he) In (4,3e/T)
(2.39)

= 32n (223NN 0/cE}) In (4ep/ho) In (4,3ex/T.),

where €g = 0.5mv.

The approximation of the function B,(¢T) by the
elliptic integral D(¢p/(1 + gZT)‘/ *) makes it possible
to write down an expression for the absorption coef-
ficient aT of a Maxwellian plasma at arbitrary values

of {T: Gr = 320 (225N N oJem¥20%3%) D (£,/(1 +22)13

X (1+22)"*2 In [(To/ho) (14-82)).

When ¢T <« 1, this formula coincides exactly with the
known expression for the linear absorption coeffficient
aoT 1'%, When ¢T < 1, this formula leads to (2.37)),
accurate to the approximation (2.38) and a numerical
factor 4/3V3. A plot of aT /a,T against ¢T is shown
in Fig. 2b.

Let us compare our results with the conclusions of
the rigorous theory of nonlinear bremsstrahlung ab-
sorption in a plasma'®®], In that reference, an expres-
sion was obtained for the effective frequency of the
electron-ion collisions in a strong field of a mono-
chromatic electromagnetic wave. The general formulas
are quite complicated, but they become much simpler
if the initial electron distribution (prior to the interac-
tion with the field) is Maxwellian, and the field fre-
quency w is much lower than the plasma frequency,

w <« wp. The latter condition is equivalent to the in-
stantaneous-scattering assumption used above (see
footnote 10). In this case the absorption coefficient o
can be written, in accordance with!*®] in the form

o = (32 (2)*/% N V.23 Im3cvd ©®) (0/05)® Q (v/205) I (kmax/Kmtn),

Q)= [ da e 11y &~ 1w (2.40)
here I (2%) is a Bessel function of imaginary argument,
and kmax and kmin are cutoff factors. As usual,
Kmin = rp ~ (wp/vT). The quantity kmyay is deter-
mined from the condition of the applicability of pertur-
bation theory or the classical approach, but according
tol2®] it js necessary to use for the electron energy in
this case the sum of the energy of the translational
motion mvf /2 and of the oscillation energy in the
external field mvy®. Therefore, if Vg <« vT, itis
necessary to use for kmgx the smaller of the quanti-
ties mv%y/Ze® and mvyp/h, and if Vg > vT, then
Kmax = min{mv} /Ze? mvg /f}.

In this case of a weak field, vgp <« v, we obtain
from (20) the usual expression for the weak-field ab-
sorption coefficient!**]. On the other hand, if vg » vr,
then calculation of the asymptotic form of the function
Q(r) at r » 1 yields

a =2 (32NN 2% 0/cE}) In (eEy/ 2mwv,) ln (Elvy/ Zmeto,).
This result is valid if Ze®/hvg > 1, but if the inverse
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inequality holds, then the expression under the sign of
the second logarithm is replaced by mvgvT /hwp.

Thus, in the asymptotic case of a very strong field,
VE » vT, the simplified approach (see (2.39) and the
rigorous kinetic theory lead to identical results, ac-
curate to a slow logarithmic dependence. We note in
conclusion that the influence of a strong monochromatic
field of frequency wo on the SBE at an arbitrary fre-
quency w * w, was considered inf'™! for an isotropic
Maxwellian plasma. It was shown that this case has
certain distinguishing features, and under certain con-
ditions the influence of a strong field on the correspond-
ing absorption coefficient can be observed in principle
in experiments on the interaction of laser radiation
with a plasma at the presently available source powers.

We proceed now to the quantum mechanical treat-
ment of the problem of the SBE in a strong radiation
field.

2) Quantum-mechanical treatment. The quantum
theory of the SBE has the advantage that it enables us
to calculate the differential cross sections d"g:ﬁ of
electron scattering in the presence of an external
monochromatic field (with frequency w), accompanied
by emission or absorption of a definite (n) number of
quanta fiw (n=1,2,3,...). In the case of a suffic-
iently weak radiation field, the cross sections for the
multiquantum SBE can be obtained in principle with the
aid of perturbation theory in terms of the interaction of
the electron with this field. To describe the processes
of emission or absorption of n photons, the perturba-
tion-theory calculations must be carried out to order
n. This fact determines the dependence of the cross
sections dog’) on the radiation-field intensity I, o{")
~ 1" ’ ’

The first attempts at calculations of this type were
made in!??), but the calculations were not rigorously
performed even within the framework of perturbation
theory. This caused the small perturbation-theory
parameter y” = I/I, to be incorrectly determined,
namely, the characteristic intensity I, was underesti-
mated by a factor (c¢/v)* (see below).

Stimulated bremsstrahlung absorption in a strong
radiation field was considered in'®*! by a quantum-
mechanical approach. The method used there, however,
was quite cumbersome. In addition, only the asymp-
totic total absorption cross section was obtained in
finished form for a very strong field in the case of
scattering by ions, which is in essence equivalent to
the results of the classical results. The differential
cross sections dog"} for the SBE in a strong radiation
field were not obtained inf*),

A quantum theory of the SBE in a strong radiation
field, not restricted to perturbation theory, was de-
veloped in'®! (nonrelativistic electrons) and(%®!
(relativistic electrons). The main features of the case
of the strong field are, first, the multiphoton processes
become generally speaking just as probable as the
single-photon processes (o{), ~ 0gy), and, second,
the role of processes of emission and absorption
virtual photons increases. The latter circumstance
causes the general result o} ~ " of perturbation
theory to become incorrect. e confine ourselves
below to the nonrelativistic case.
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To calculate the cross sections oéngl of interest to
us, for a strong radiation field, we can use a semi-
classwal approach in which the electron motion is de-
scribed quantum-mechanically and the electromagnetic
field is considered classically. The Hamiltonian of a
nonrelativistic electron situated in the field of a plane
monochromatic wave is

F = [—ihV - (efc) Al/2m,

where A = Ajcos wt = —(cEo/w)cos wt is the vector
potential, which can be regarded as independent of the
spatial coordinates. The exact wave functions of the
electron, corresponding to such a Hamiltonian, are
well known:
t
wp=wn 32 e Lim [pr—{p—o A @pemrac]},  (2.41)
¢
where p is the electron momentum. The electron

energy in the state (2.41) is an oscillating function of
. the time

£ (0 =y} | 8 | ) =(2m) "1 (p—(e/e) A (1))3

with 2 mean value

e (ty={(p2/2m) + (2E}/4mw?),

When the electron is scattered by a static potential,
transitions between the states (2.41) take place: zppo
— yp; in this case, as will be shown below, the average
electron energy can change only by an amount A€ = (p®
- p3)/2m, which is a multiple of the photon energy hw,
that is, Ae = +nhw, wheren =1, 2, 3,... We shall cal-
culate the probability of such a transition, taking the
interaction of the electron with the scattering center
into account in the first Born approximation. Thus, in
scattering by a Coulomb center, there should be satis-
fied the condition (2.1) supplemented, when applied to
the emission cross section O'gl), by a condition ana-
logous to (2.12):

2nE < 1, E=ho/mvd.

The probability amplitude for the transition of an
electron situated in a state Ypo at t = 0 to the state
Yp is determined by the expression

t )
Como (0=(— i) § at' exp {(my [ (32— ) @1t e (p—po) (m1 [ & et | }
0 0
% S V (1) exp [ — (i/k) (p— po) ri dr,

(2.42)

where V(r) is the energy of the interaction of the
electron with the scattering center. The quantity under
the integral with respect to t’ contains a periodic func-
tion of the time, which can be expanded in a Fourier
series. As a result, the amplitude Cpp, is represented
in the form

Copy (= — 2 {exp [(i/k) (Ae 4 nhw) t]—1} (Ae + nhw)~t Jp [(eEg/mhw?) (pg- -P)]

x{ v @espi(—im @ —pomar, (2.43)

where Ae = (p® - p3)/2m, J, is a Bessel function, and
n takes on all positive and negative integer values. In
the calculation of the transition probability per unit
time wpp, = tnn:o (1 Cpp,(t)°/t) Eq. (2.43) leads to a
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double sum over n and n’, It is easily seen, however,
that in the limit as t — = the crossing term of this
sum (n = n’) make no contribution, and the diagonal
terms (n =n’) lead to energy 5-functions

“+oo

Wppo = > w;{;; 8 (Az - nho).

The presence of §-functions, which determine the
energy conservation law, makes it possible to interpret
individual terms of this sum as the probabilities of
emission {at n > 0) or absorption (at n < 0) of | n| pho-
tons. The transition probabilities wpp, should be
summed over the final state of the electron. The in-
tegration with respect to the modulus | p| of the mo-
mentum can be easily carried out because of the §-

functions. Changing over from the probabilities w‘pIB

to the differential cross sections og” for the emis-
sion or absorption of n photons folldwing the scatter-
ing of an electron having a velocity v, = po/m into a

solid angle df2, we obtain on the basis of (2.43)*!
JE0;dQ = Ba, J2 [ve (Rg—By. .m)] do, (ng—Ba, £n)/dQ, (2 44)

where y = eEqVo/liw”, Ba e = (1 * 2n¢ )%, e = Eq/E,,
No = Vo/Vo, N is a umt vector in the direction of the
electron scattering, and

dag (ny — n)Y/dQ = (m/2nk?)?

{ v @ exp16m po oy —wyx)ar I

is the differential cross section for elastic scattering
of the electron in the Born approximation,!'®] For a
centrally symmetrical potential V{(r) we have

dog (ng ~— Pn)/dQ = (2m/h2) S V(r) g sin (grjr 2r 2,

where g% = (po/B)*(1 + 8% = 28n,-n).

In the case of the emission cross section there is a
limitation on n (following from the condition that ge
be real, and expression the energy conservation law),
namely n < 1/2¢. For Coulomb scattering, (2.44) deter-
mines da‘m strictly speaking, only if this inequality is
strongly fulfllled, i.e., under the condition (2.42). We
emphasize that the dependence of the cross sections
dog:é on the intensity I and the polarization e of the

radiation field enters only via the argument of the
Bessel function. Obviously, when n = 0, Eq. (2.44) de-
termines the cross section for elastic scattering of the
electron in a strong radiation field:

do© (dQ=J {v (eAn)] do,/dg, (2.45)

where dog/dQ is the cross section for elastic scatter-
ing without allowance for the influence of the radiation
field, and An =n, - n; thus, (2.45) can be regarded as
a generalization of the classical Born formula for
elastic scattering.

It is seen from (2.44) that the applicability of per-
turbation theory to the analysis of SBE (and conse-
quently also the validity of the power-law relations

(Nn) ~ (1 5y (D)
Oae I" and of the inequalities oy e Oae

> of®, > ...) is determined by the ’condition?
»

2= (eBovo/ho?)2 =11, < 1, (2.46)

Iy = ch?wi/8riey,

" The condition (2.46) is sufficient for the applicability of pertur-
bation theory to the calculation of the cross sections 0a, e(n) at arbitrary
n=0,1,2,... The applicability of perturbation theory to the calculation
of 04, e(n) for a specified value of n is determined, generally speaking, by
a less stringent condition that follows from the power-law expansion of
the Bessel functions J; (x): ¥y2 <2 (n+ 1).
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The general behavior of the cross section o) with
‘increasing parameter y can be established on the basis
of {2.44) from the following asymptotic representations
of the cylindrical functions

To (@) = a2 — 232 K (12 (0 — DV3212), np 4, n>a,

where Kp(z) is the Macdonald function, for which we
have in turn, at |z| > 1, the representation

Kp (@) = (n/22)Y/2 o2,
These representations show that it is possible to intro-
duce the concept of the maximum degree of the multi-
quantum character of the SBE, ny,5%, wWhich depends on
the parameters y and ¢ and on the orientation of the
unit vectors ng, 1, and e. At given values of these
parameters, the value of nyax is such that for all
n £ nmax the cross sections og:é, generally speaking,
are of the same order of magnitude, whereas at
n » npy.. the cross sections og’é are exponentially
small. It is clear that for the emission processes the
value of nmax cannot exceed the integer part of 1/2¢.

In the case of a weak field y « 1 we have npax =1,
i.e., the multiquantum processes have little probability
in comparison with the emission and absorption of a
single photon. If y£ <« 1 but the parameter y is not
small (this is possible, since £ « 1 for optical fre-
quencies), then nmax ~ ¥ at |e-no - Be-n| ~ 1. The
latter condition is satisfied in a wide range of angles
determining the orientation of the vector n. On the
other hand, if n i no, then we have again npax ~ 1.

Thus, the condition y ~ 1 determines the critical
value of the intensity I of the radiation field, starting
with which the results of perturbation theory no longer
hold for the differential cross sections do‘n’ A change
takes place in this case both in the dependences of the
cross sections da‘ngl on the intensity and the number
of photons emitted ére absorbed when the electrons are
scattered by the potential V(r). The latter circum-
stance, i.e., the change of nmax, can be observed in
principle by investigating the energy distributions of
the scattered electrons.

However, when calculating the integral quantities,
e.g., the absorption coefficient, the nonlinear correc-
tions may cancel each other to a considerable degree
and the effective nonlinearity parameter may decrease.
According to the classical results (see the discussion
in Sec. b of Chap. 2), the nonlinearity parameter deter-
mining the absorption coefficient is the quantity
¢ =VvE/vV = y£ « 1. The quantum-mechanical approach
leads apparently to an analogous result: accurate to
small quantum corrections (~¢), the absorption coef-
ficient is determined by the same classical parameter
v£. There is no rigorous proof of this statement at
present. However, the calculation of the first nonlinear
correction to the absorption coefficient shows that its
relative value is determined by the parameter (75)2.
In addition, the calculation of the absorption coefficient
in the asymptotic strong-field limit leads to a result
similar to (2.39) precisely under the condition y£ » 1.

In the general case the absorption coefficient @ can

be expressed as follows in terms of the cross section

{11)
O¢,a

@ — (NNRoT) veOe, 0= n (o — o).

n

(2.47)

Let us examine this expression for scattering by a
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Coulomb potential V(r) = -~Ze*/r, assuming the field
of wave to be sufficiently weak so that it is meaningful
to expand the absorption coefficient in powers of the
intensity., Let us find the first correction to the ab-
sorption coefficient, 5o ~ E3. Using (2.44), (2.40), and
the series expansion of the Bessel functions, we obtain
in the lowest order in the field intensity E, the already
known results (2.14) of perturbation theory. The next
(first nonvanishing) order of the expansion yields the
sought corrections:

O & (w2264 [2mBA (e Bqv/ 2% {142 (nge)? — [(noe)4/3)
F 6 (1 —nge)? &= 83 [3—42 (ne)? +47 (noe)*} In £71},
0P =0 — oD ~ (2112264/m2ud) (evEy/2h02)4 (ho/my?)

X { —3 (1 —nge) -+ 452 [3— 42 (moe)? -+ 47 (moe)4] In §-1}. (2.48)

Similar formulas can be obtained also for the nonlinear

corrections to the first-order cross sections oé"a it

It follows from these formulas that the cross sectlon

o'® . and the nonlinear corrections to ¢l . are de-
a,t e,a,t

tex"nr;ined by the parameter y. However, in the calcula-
tion of the total cross section gt, as already mentioned,

the principal terms in formula (2.48) cancel each other
80¢ = (3mZ3EY /am3iwivt) [3— 42 (moe)?,+ 47 (noe)?] Ln (mu2/ho);

here 8ot is the correction of second order in y? to the
total cross section ¢gt. From this we obtain with the
aid of (2.47) the first correction to the absorption coef-
ficient:

8o = — (InE2SEIN (N ./ mbwivic) [3—42 (noe)2 +47 (nge)?] In (mu?/he). (2.49)

Comparison with (2.14) shows that 6a/a ~ (vg/v)?
= (y£)

In the case of a plasma with an isotropic distribu-
tion, Eq. (2.49) should be averaged over the directions
of the vector n,; this yields

8a = (24n2Z28EIN ;N o/ 5mdwtube) In (mo?/hiw).

Formulas (2.44) and (2.47) enable us also to estimate
the asymptotic behavior of the absorption coefficient in
the case of a very strong field & » 11*), Using the
asymptotic representation of the Bessel functions at
large values of the arguments, averaging the rapidly
oscillating factors, and integrating, we obtain

@ = (32122630 N ;N o/cES) In (eEo/mwv) 1n (evEg/hw?).

This result differs from the classical formula (2.39)
only in the form of the second logarithm, a difference
that can apparently be attributed to the approximate
character of the calculations.

In'?®] by a method similar to that described in the
present section, they considered the multiquantum SBE
in scattering by a screened Coulomb potential V(r)
= exp (-r/R)/r. We note, however, that allowance for
the screening must be made only in the case of a suf-
ficiently small screening radius R < v/nw. For a
plasma at R = Rp this yields w < wp/n, i.e., in the
case w > wp of interest it is not necessary to take the
screening into account.

As already mentioned earlier, the nonlinear SBE
can be appreciable only for sufficiently short pulses,
since in the case of long durations the plasma has time
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to become heated and the subsequent dissipation of the
field energy is determined by the usual linear brems-
strahlung absorption. Actually, there is one more
limitation of the same type on the pulse duration.

To study the SBE by measuring the light energy ab-
sorbed in the plasma, it is necessary that the pair col-
lisions of the electrons and ions be the principal mech-
anism responsible for the absorption of the light. This
requirement may not be satisfied if the action of the
strong radiation field on the plasma leads to develop-
ment of instabilities. It is known'®?>*"**] that in the
case when vg > vt the thresholds of many instabili-
ties are strongly exceeded. One can, however, use
pulses so short that the buildup of the growing oscilla-
tions in the plasma is small during the pulse time 7.
This leads to the condition y7 £ 1, where y is the
maximum instability increment. The strongest insta-
bilities arise in the case when the frequency w of the
external field is close to the plasma frequency wp[m.
The limitation on the pulse duration then turns out to
be too stringent, so that even for picosecond pulses it
is impossible to guarantee that the absorption will be
determined exclusively by pair collisions.

In the case w » wy, the situation is much more
favorable. A plasma ?requency lower than that of the
light leads to an appreciable increase of the thresholds
of the possible instabilities and to a decrease of the
increments'****!, The best conditions for the observa-
tion of the SBE can apparently be produced by using an
isothermal plasma, in which the initial electron and
ion temperatures are equal’®!, Estimates show that in
this case the condition y7 <« 1 can be satisfied for
picosecond pulses up to very appreciable laser-radia-
tion powers (I £ 10" W/cm® at Nj < 10" em™).

3. STIMULATED COMPTON SCATTERING

Prior to the appearance of powerful optical-radiation
sources, the Compton effect was not considered as a
possible mechanism for absorption of optical radiation.
The reason was that in the usual (spontaneous) Compton
scattering the effective wave absorption coefficient is
given by

o ~ N o,Aelkho, (3.1)

where g = (81/3)r5~6.6 x 10% cm™ is the Thompson
cross section, Ne is the electron density, hw is the
quantum energy, and Ac¢ is the average energy trans-
ferred to the electron in a single scattering act. This
energy is positive and amounts to A€ ~ (hw/mc?)hw,
if Rw > kTe, and is negative with absolute value

lae| ~ (kTe/mc*)hyw, if iw <« kTe (see Sec. b of the
present chapter below; Ty is the electron temperature).
In the second case, the electrons become cooled—this
is the so-called inverse Compton effect. In both cases,
however, even at electron densities Ng ~ 107 cm™,

the corresponding absorption (incoherent amplification)
coefficients o are quite small according to {3.1) {of

the order of 107°—107% cm™).

The effectiveness of the Compton absorption mech-
anism can be greatly increased if the scattering be-
comes stimulated. From now on, except for Sec. ¢ of
the present chapter, we shall consider only the two-
quantum stimulated Compton effect, wherein only one
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photon is absorbed and the emission of another photon
is stimulated simultaneously in a single scattering
act.' The effectiveness of the mechanism of stimu-
lated Compton scattering increases with increasing
radiation intensity. As a result, in particular, the
main mechanism of its absorption becomes the stimu-
lated Compton effect if the optical radiation interacting
with the medium has sufficiently high intensity.

The study of this effect is of interest not only from
the point of view of the mechanism of electron heating
by intense optical radiation, but also from the point of
view of obtaining a negative absorption, i.e., develop-
ing a ‘‘Compton laser.’”’ The development of such a
laser, using photons scattered backward from a rela-
tivistic electron beam, was suggested by Pantell and
co-workers!¥],

For two-quantum Compton scattering, the number
of photons is conserved, and the energy-momentum
conservation law leads to the well known relation be-
tween the frequencies w; and w: of the incident and
scattered photon!**]

0y = oy [1 — (vic) cos B;) 11 — (v/c) cos By + (Rws/e) (1 — cos 6)1-1(3.2)

where v and € are the velocity and energy of the
initial electron, 6, and #: are the angles between v
and the wave vectors k, and k. of the initial and scat-
tered photons, and @ is the angle between ki and K.

The cross section for spontaneous Compton scatter-
ing is determined by the Klein-Nishina-Tamm formula,
which takes the following form in the laboratory
framel**);

dosp = F dQs, (3.3)

where
F = [2r] (hwp)?/(mc?)® ud] uy,
ug=4 (et %) — 4 (3 %5") — (yxg ! + wanY),
%1 =2(pk)/(me?) 2,  wy= —2(prky)/(mcP)?,
Pokp=c2hpokp—eohog,

ro = e/me? = 2.8 x 107 em is the classical radius of
the electron.

In the case of stimulated scattering, the frequency
w2 and the wave vector k. of the emitted photon should
be regarded as fixed, and the scattering cross section
itself increases to a value

do = (1 + ny,) docy, (3 .4)
where ng, is the number of photons per field oscillator
with wave vector ka:

me = 4w (0, DRo® = 4 ([@ePN (o, @fo®.  (3.5)
In this formula, J(w, q) is the spectral density of the
energy flux of the unpolarized radiation in a unit solid
angle whose axis is directed along q = k/k, and
N(w, q) = J(w, q)/chw is the spectral (and volume)
density of the photons propagating in the same unit
solid angle. If Iis the total (integral) intensity of a
light beam with uniform energy distribution over the
frequency and angle spectra, having respectively a
width Aw and a solid angle AQ « 1, then J(w, q)
=1/ AwAQ.®

19 The multiquantum Compton effect is treated in [*3°%] (see also
the review [52}, where a detailed bibliography is given); its role in the
heating of the electronic component of a plasma was considered in {3'].

191n the general case, the connection between I and J(w, q) is of the
form I = fI ,dw, 1, = fJ(w, q) cos ¥ d§2, where cos & = q*n; n is the
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We note that in the presence of one radiation beam,
the finite character of the width of its frequency
(Aw) and angular (AQ) spectra is a necessary condi-
tion for stimulated Compton scattering with energy
transferred to the electrons (A€ = 0). Indeed, for one
monochromatic wave we always have (A€ = fi{w, —w2) = 0,
for one plane wave we always have 6 =0 and 6, =6, and
consequently, according to (3.2), we always have
w; = wz and A€ =0. In the presence of several wave
beams, the condition that Aw and AQ be finite is in
general not necessary.

In this chapter of the article we consider the follow-
ing question: One of the possibilities of obtaining nega-
tive absorption via the stimulated Compton effect, ab-
sorption of intense optical radiation by the electronic
component of a plasma, and elastic scattering of elec-
trons by plane standing electromagnetic waves—the
Kapitza-Dirac effect.

a) Negative absorption in stimulated Compton
scattering. The most interesting possibility of obtain-
ing negative absorption in the stimulated Compton ef-
fect is connected with the use of a relativistic electron
beam and backward scattering{®!. This is precisely the
case which we consider below.

We assume that the eleciron energy in the beam is
€ >» mc®, and then we have for backward scattering
(6=a, 6, =7, 8, =0), according to (3.2)

(3.8)

Wy, = 4wy (e/mc¥)?,

Thus, in this case it becomes possible to produce a
‘““Compton laser’’ with a very large frequency conver-
sion coefficient, 4(e/mc?)?, Inasmuch as the energy ¢
of the electron beam can change in this case in a wide
range, the generation frequency of this laser can be
tuned in a considerable range.

Let’s calculate the gain @z at the frequency w: at a
specified radiation intensity I, at the pump frequency
w;. Let gg be the total scattering cross section at
which the quantum hw, is absorbed and stimulated
emission of the quantum hw: takes place, g5 is the
total cross section of the inverse process, in which the
quantum hw, is absorbed and stimulated emission of
the quantum hw,; takes place. Then, according to the
definition of the coefficient az, we have

ay = 6N, (0g/w1) T/, (3.7)

where ot = 0¢ — 0g. In the calculation of the cross
sections og 5 we assume (following!™J) that the elec-
tron beam has a certain energy distribution f(e), and
the width A€ of this distribution is large enough so that

Aeley > Aoi/oy, Awy/ 0 (38)

(€0 is the average energy of the electrons in the beam).
When this condition is satisfied, the cross sections
Oe,a are obtained by averaging the cross section (3.4)
over the electron energies, and the conservation laws
determine the energy of the electrons participating in
this process as a function of the frequencies and wave
vectors of the emitted and absorbed photons'”. As a
result we get

normal to the surface with respect to which the radiation intensity is con-
sidered (I, is the spectral intensity).

ID1n this case (e > mc?) we have in (3.3) Ky =—K,and Uy = 2.
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Oe & (%/4) 1} (m8ctOl ,/hw00led) | (e),
0, A (13/4) 1} (mic?®L/ hogwied) f (e — hay);

(3.9)

here € is that value of the electron energy which satis-
fies relation (3.6) for given w; and w; (the function
f(€) is assumed normalized by the condition | f(€)de
=1). If A€ » Hws, then f(e - fiw,) can be expanded in
powers of hw:z, and we obtain for the gain a; on the
basis of (3.7) and (3.9)

0= 1%rg (m3N %] Jule) df/de,

Negative absorption (amplification) at the frequency w.
corresponds to the condition df/de > 0, i.e., in the
distribution f(e) the energy € should fall in an interval
corresponding to the inverted population (with condi-
tion (3.8) satisfied). This condition can always be satis-
fied by choosing the frequencies w; and w,. For a
Gaussian distribution

7 (&) = 122/ Ael-t exp [— (2 — £0)*/2 (Ae)?]

the maximum of df/de is reached at the point €, = ¢,
- Ae with a value (df/de)max = (2a€)?. In this case

02 max = (0%/4) r3N (mictT /ole (Ae)?).

If €5 =10 MeV, (A€/€o) ~ 107, Ng = 10° cm™>, w,
=10 sec™’, and I, = 3 x 10° W/cm®, then amplifica-
tion takes place at the frequency w;~ 1.6 x 10" sec”
(x2 = 120p) with a coefficient @2 max =~ 0.3 cm™.

We note that when condition (3.8) is satisfied, nega-
tive absorption can be obtained also for a nonrelativis-
tic electron beam. In this case, however, the frequency
conversion coefficient turns out to be, according to
(3.2), of the order of unity.

b) Absorption of optical radiation in a plasma as a
result of stimulated Compton scattering. The Compton
mechanism of interaction of radiation with plasma
electrons can be investigated consistently on the basis
of the kinetic theory. The collision integral for this
case was first obtained in!*"®»**), but no investigations
were made there of the distinguishing features of the
stimulated Compton effect. This was done in a series
of papers by Peyraud!*!, who analyzed in detail the
kinetic equations obtained inf?»**] for the case when
the intensity of the radiation is high enough and it is
necessary to take stimulated scattering into account.

In particular, he obtained results concerning the rate
of heating of the electrons by the radiation, and also
the ensuing shift into the ‘‘red’’ side of the frequency
spectrum of the radiation transmitted through the
plasma (see also'®®), which deals with plasma heating
by the stimulated Compton effect in two opposing light
beams, and'*"), devoted to a study of the Compton
mechanism of heating of relativistic electrons). These
questions are of greatest interest, and we analyze them
below on the basis of a more elementary approach
(than in®*7),

Just as elsewhere, we consider the case of nonrela-
tivistic electrons (v <« c) and soft photons (hiw « mc?),
and the small quantities (v/c)® and hw/mc® are as-
sumed to be quantities of the same order.

From (3.2) we obtain in this case for the frequency
of the scattered photon
{(v/c) (cos 8, — cos B5) + (v/c)® cos B, (cos B; — cos 83)

+ (hoy/me?) (1 — cos 8). (3.10)

1

(0 — @2)/oy =
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It was already noted above that in the presence of only
one light beam the process of stimulated Compton
scattering with energy transfer to the electrons is
possible only if the frequency and angular spectral
widths Aw and AQ are finite. Formula (3.10) makes
it possible to formulate this condition more rigorously.
It is seen from it that in a light beam with nonmono-
chromaticity (Aw/w), stimulated scattering through an
angle ¢ is possible only if the following condition is
satisfied

Aol > | (v/e) (cos B — cos 8;) | = 2 (1 /e) sin (8/2),

where v, is the component of the velocity of the scat-
tering electron in the direction of the vector (k. — k).
The maximum stimulated scattering angle in a light
beam with divergence angle 26, (and accordingly with
a solid angle AQ = 47 sin®(§,/2)) is equal to 26,.
Consequently, in order for all the photons of the beam
in question to be able to take part in the process of
stimulated scattering by electrons with maximum
velocity v, it suffices to satisfy the condition

(3.11)

If the electrons have a Maxwellian velocity distribution
with temperature Tg, then the condition under which
almost all the electrons and almost all the beam pho-
tons can take part in the stimulated scattering takes
the form'®

Awlo > 2 (vle) sin (0,/2) = (AQ/m) /¢,

Ao/ > (kT Jme?) AQNe, (3.12)

From the conditions (3.11) and (8.12) we see, in partic-
ular, that the smaller the angular divergence of the
beam, the smaller the required nonmonochromaticity.
However, as will be shown later, when the beam diverg-
ence is decreased, its absorption coefficient due to the
effect under consideration also decreases (since the
energy transferred to the electron and the stimulated
scattering decreases).

We now calculate the absorption coefficient a¢ of a
light beam in an electron gas, assuming that condition
(3.11) is satisfied for an overwhelming majority of the
electrons. The rate of change of the energy of such
electrons, due to Compton scattering, is determined
by the general formula

defds = 5 do, 5 c1--(v/c) cos O] N (65, q) d
| 7 @i— ) FUU+4 (e ¥ (0. @) 037 a2,

where F and N(w, q) are determined by formula (3.3)—
(3.5). To explain the structure of (3.13), we note that
the integral with respect to dQ, contains an expression
for the photon flux density relative to the moving elec-
tron, We consider first the contribution made to de/dt
by the induced processes, corresponding to the second
term in the curly brackets of the integral with respect
to dQ.. The calculations are greatly facilitated by the

(3.13)

18) For laser radiation with Aw/w ~ 103 and angular divergence AQ ~
107% sr, the analysis presented here is suitable, according to (3.12), up to
temperatures T ~ 106—107 deg. After this paper was sent to press, there
appeared other papers [ 3] also dealing with a case that is significant for
A 21 (when condition (3.12) is not satisfied). In the same reference,
an attempt was made to take into account the influence of the collective
interactions in the plasma (the so called dynamic polarization), which are
important in a dense plasma, i.e., at w ~ wp-
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nonrelativistic character of the motion of electrons and
by the satisfaction of condition (3.11). The first makes
it possible to write, in analogy with (3.10)

Flot= (/205 {1+ 0520 — 2 (v/c) [cos B (1 — cos B) (cosB; +cos D)

— (4 +cos?0) cos Oy - . ..} (8.14)

On the other hand, on the basis of (3.11), assuming
AQ « 1, we have

N (0 @) N (0, @) = (AQ) [N3,— 0,5 (0, — 0y) dN3,/doy)), (3.15)
where

N, = Ip/cho = S dQN (0, q) cos & ~ AQN (w0, q)

is the spectral (and volume) density of the photons in
the beam (see footnote 16). Substitution of (3.14) and
(3.15) in (3.13) yields

de/dt = 2n3r2hict (AQ)™2 S do (N3/w) S dQ, d, {(ha/mc?) (1 — cos 6)

X (1 4-cos? 8) + (v/c) (cos 8; — cos 0,) (1 + cos? 6)
+ (v2/c?) (c0s? 05— c05® 0,) [1 4-€0s? 0 — cos 0 (1 — cos 9)]},

where the integration with respect to df2, and dQ, ex-
tends over the width of the solid angle of the light beam.
Obviously, upon integration with respect to these
variables the terms ~v/c and (v/c)’ vanish, and the
first term (~Hw/mc?) yields

5 dQ, dQ, (1 — cos 8) (1 + cos? 8) ~ (AQ)/n.

Thus, we get finally (first derived in[**!)
(3.16)

where I~ chwN ,Aw is the total intensity of the light
beam and w is the central frequency of its spectrum.

The contribution made to de/dt by spontaneous
scattering, corresponding to the first term in the curly
brackets of (3.13), is calculated analogously, and we
obtain

de/dt = 2nr3AQI /mwrAw,

(defdt)sp ~ (8/3) rgl {(Rw/mc?) — 2 (v¥/c¥)]. (3.17)

We note that the condition (3.11) is not used in the
derivation of this formula, so that the latter is valid
for all nonrelativistic electrons. For the change in the
average energy { € ) of the plasma electrons we get on
the basis of (3.17)

(@ (e)/dtysp = (8/3) rif (hwjme?) [1 — 4 ((e)/hw)].

We see therefore that heating of the electrons by the
spontaneous Compton effect occurs only if Fw > 4(€ ).
When the inverse condition is satisfied, the electrons
are cooled, and this is sometimes called the inverse
Compton effect. The reason for such cooling is ob-
viously that in spontaneous scattering by fast electrons
the scattered quanta turned out to be harder than the
incident ones.

We now return to formula (3.16), which determines
the rate of change of the electron energy in stimulated
scattering. At sufficiently large values of the intensity
1, the contribution made to de/dt by this process will
prevail over the contribution from spontaneous scat-
tering'®. It is very important that when only the condi-

19 The condition for this, obviously, takes the following form (it is
assumed that hw > 4 $€)): 1 > (4/31?) hw? Aw/c2ARQ. For radiation with
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tion (3.11) is satisfied, the rate of change of the energy
de/dt, as seen from (3.16), does not depend on the
energy itself and is always positive. This means, in
particular, that the stimulated Compton effect leads to
equal heating of all (nonrelativistic) electrons satisfy-
ing the condition (3.11)°®, The effective coefficient of
(Compton) absorption ac, due to the considered effect,
in a plasma with arbitrary electron velocity distribu-~
tion, subject only to the condition (3.11) {or (3.12)) (in
particular, in an electron beam) is given by

tc = (N/I) de/dt = 2n3 (Nr30QmarAa) I. (3.18)

It is of interest to compare the contributions made
to the heating of the plasma electrons by the brems-
strahlung effect and by the stimulated Compton effect.
As follows from the analysis in the preceding chapter,
the bremsstrahlung absorption coefficient is aT ~ N3,
and is mdependent of the intensity I when
I « (kTe/mc?)Iye), decreasing like I'¥? when
I> (kTe/mc?)Ipe]. It is seen in turn from (3.18) that
the coefficient ¢ ~ Ng and it increases linearly with
I at I « Ipg]. This means that in a sufficiently rarefied
plasma a light beam with sufficiently high intensity is
absorbed principally as a result of stimulated Compton-
effect processes. This question was investigated in
greater detail in[*?), It was shown that the Compton
absorption mechanism prevails over the bremsstrah-
lung mechanism at I > I, where

I, ~ [(0p/0)* (Ae 0-YAQ) ro/ A1 g ;

A is the wavelength of the radiation, and w

= (47e®Ng/m)"? is the plasma frequency At wp/w
~ 107! (Aw/wAQ)N 1 and x = 1, the threshold
1nten51ty is Ip ~ 10 Irel.

In two-photon Compton scattermg, the only one
which we are now considering, the number of photons is
conserved, and consequently the absorption of the light
beam by electrons, due to stimulated Compton effect,
should always be accompanied by a ‘‘red’’ shift of the
spectral distribution of the beam. The presence of such
a shift can serve as the basis for an experimental pro-
cedure of observing stimulated Compton scattering.
The magnitude of the shift can be easily estimated by
assuming, as before, that the angular width of the
beam is AQ « 1 and that condition (3.11) is fulfilled
for almost all the electrons. When such a beam passes
through a plasma layer of thickness L, each of its
spectral components shifts (without changmg intensity)
by an amount (see!%))

80 = 211N cRAQLm N, (L),

where the spectral {(and volume) density of the photons
N, (L) pertains to the radiation emerging from the
plasma layer. From the expression for §w we see
that the largest shift is experienced by the spectral
components having maximum intensity. This should
cause the shape of the spectrum to become sharper on
the ‘“‘red’’ side and flatter on the ‘‘blue’’ side. In the

wavelength A = 1y and divergence A2 =2 X 10™ sr and (Aw/w) = 1074
we obtain the condition I > 2.5 X 10° W/cm?.

201n [38] it is shown for the case of isotropic radiation (AQ = 4r) that
for a hot plasma, i.e., when a condition inverse to (3.12) is satisfied, de/dt

decreases like T™3/2,
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case of small absorption of the radiation in the layer,
the total width Aw of the spectrum can be assumed
unchanged, and we obtain for the shift of its central
frequency

Sao/0 = (203N LAQ/mo?Aw) I = acL.

This formula is convenient for the interpretation of the
experimental data. The first observations of such a
spectral shift were reported in'®

We have considered above the heating of the elec-
tronic component of a plasma by absorption of one
light beam that has a sufficiently narrow but finite
width of the angular spectrum. A special interest at-
taches also to the case of heating of electrons by two
opposing light beams, in which mutual transfer of the
photons from one beam to another takes place (i.e.,
absorption of a photon from one beam and stimulated
emission in the other beam). In this case the angular
widths of the beams do not play a fundamental role, and
we can assume for simplicity that the heating is pro-
duced by two opposing flat quasimonochromatic waves.
The rate of heating can be calculated in this case from
the general formula (3.13), in which we must put
N(w, q) = N{»®5(q + qo), where the superscripts (1, 2)
and the + sign pertain respectively to the two beams.?"
Upon satisfaction of condition (3.11), which in this case
takes the form Aw/w > 2v/c ~ (kTe/mec?)Y? and is ,
quite stringent for laser radiation, calculation yields
(first obtained in'*®]

defdt ~ 1673r311 I3/ mwtAw,

where I, and I, are the total intensities of the beams,
whose spectral widths are assumed to be the same.

It is of interest to consider the change in the spec-
tral composition of the opposing beams, due to stimu-
lated scattering. Inasmuch as photons are transferred
in this case from one beam to the other, but their total
number is conserved, there should be intensification
(in terms of the photon density) of one beam at the ex-
pense of the other. If we use the stationary kinetic
equations obtained in'®*), we can in turn obtain the
following system of equations for the spectral densi-
ties Nyy(z) and Nzy(z) of beams propagating opposite
to each other along the z axis (the direction of which
coincides with the direction of the first beam):

Ny _ 165Nt o N
az m o “5e *
Wop __$O0ANGh | Oy
3z 3w

As above, it is assumed here that the condition (3.11)
is satisfied, i.e., Aw/w > 2v/c.

It is easy to find for this system a solution that de-
scribes the passage of the beams through a plasma
layer of thickness L, in the case of a sufficiently small
absorption of the beams, when py,, « 1, where

B, 2=0gs, l0/A0, ANA G4y, 21 =1603r3],, (N /mo2A0

is the absorption coefficient of the first (second) beam
in the presence of the opposing second (first) beam. In
this case we can use perturbation theory and represent

M Formula (3.13) must of course, be symmetrized in this case with
respect to the superscripts (1, 2).
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the solution in the form
Nig(h=N @ +¥ D @+NE @+
Nao (=N D)+ N @ +-NE @)+ ...

It is assumed that the plasma occupies a layer 0 < z
= L{N{® and N§2} are the spectral densities of the
first and second beams as they enter the layer, re-
spectively). The first-order corrections take the form

N @) =ps {cho (M) 17N (@N{D)/do) 5/ L,

N () = pacho (Ao I35 1NED @N{D) 1d0) (L —2)/L. (3.19)

The functions Ni$(z) and NiJ)(z) satisfy the obvious
relation

¥R wa==f ¥R @, (3.20)
which means that the change (in first order) of the total
photon density of the first beam on leaving the layer is
equal to the analogous change in the second beam, but
with opposite sign. This in turn is a reflection of the
circumstance that the total number of photons in the
system should be conserved (in all orders in ul,z).
Consequently, generally speaking, amplification (in
terms of the photon density) of one of the light beams
at the expense of the other takes place already in first
order. If, however, the spectral compositions of both
beams are the same when they enter the layer, i.e., if

(3.21)

then, as seen from (3.19), the photon density in each
beam is conserved in first order (the integrals (3.20)
vanish). Changes of the photon density in the individual
beams occur only in the second order in 2. It is
easy to show that these changes take the form

S N Ly o= | N3 ©0) a0

NQ=ANL) = Ap (@), A=const,

==0,254 (1 — A) pap, [ch © (Aw)2|2 (1,7,) -1 S @ () (dp/dw)? do.

We see therefore that the sign of the change of the pho-
ton density in the individual beam depends on the ratio
of the total intensities of the beams I, and I, =1,/A:
the beam that is amplified (in terms of the photon
density) is always the weaker one (in terms of the
intensity) (see the experimental data of{*"}),

We have emphasized above that the amplification of
one beam at the expense of the other is only in terms
of the photon density, and not in terms of the total
intensity. It is clear already from the first-order
formulas (3.19) that the intensities of both beams
should be less when they leave the layer. Indeed, at
identical spectral distributions (satisfaction of (3.31))
we have in the first order in p,»

LW —1O=5L0)~1. @

=4 (up) 2 cho (dop ;z)-mj chop (0) (d¢/de) do < 0,

An increase of the photon density of a light beam with
simultaneous decrease of its total intensity is possible
obviously only in the presence of a ‘‘red’’ shift in its
spectrum. Such a shift does indeed take place. For
identical spectral distributions, in first order in p ..,
the ‘‘red’’ shift is (6wh,2 = u1 24w ~ Iz,1, i.e., the
weaker beam (in terms of intensity) experiences a
larger ‘‘red’’ shift.

¢) Scattering of electrons in a field of an intense
standing wave. The scattering of electrons in a field of
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standing electromagnetic wave, known as the Kapitza-
Dirac effect, is a particular case of stimulated Comp-
ton scattering. In the first nonvanishing order in the
interaction of the electrons with the field, the scatter-
ing by the standing wave is accompanied by simultane-
ous absorption of a photon with momentum fik|k|

= w/c) and stimulated emission of a photon with mo-
mentum -fik. In higher orders, scattering with partici-
pation of a larger number of photons becomes possible,
The energy and momentum conservation laws make the
scattering possible only at certain definite angles be-
tween the directions of the electron and photon mo-
menta p and fik. In the nonrelativistic approximation,
the only kinematically allowed processes are those
conserving the electron energy, i.e., process in which
an equal number of photons of the type k and -k take
part.

Kapitza and Dirac!*!! considered two-photon scat-
tering and showed that such a process can be inter-
preted as diffraction of electrons by a periodic
“grating’’ formed by the standing wave. The proba-
bility of the electron reflection increases sharply when
the Bragg condition is satisfied. From this point of
view, the diffraction maximum of order n corresponds
to scattering with absorption of n photons propagating
in one direction and emission of n photons in the op-
posite direction of the momentum. Multiple reflection
correspond to processes with absorption and emission
of virtual photons with momenta +ik.

The experimental observation of the Kapitza-Dirac
effect became possible only relatively recently**)
thanks to the use of powerful laser sources. In this
connection, attention was called again to this phenom-
enon in a number of theoretical papers!™®:*®) and dif-
ferent assumptions were made with respect to the pos-
sibilities of observing the Kapitza-Dirac effect and its
utilization. A brief review of several aspects of this
phenomenon, based on the presently available litera-
ture, is given in'*"). To avoid repetition, the emphasis
in the present review is on other features of the
Kapitza-Dirac effect; in particular, we consider in
greater detail the specific features of strong and very
strong radiation fields.

The probability of electron reflection can be easily
obtained in the lowest order of perturbation theory by
using the usual formulas for the differential cross
section of Compton scattering'®®, if account is taken
of the presence of an external field and a transition is
made to the induced processes. The result takes the
form

w = (SnPett/himintcd) 51,,,1ww>dm,

@ = g (e —cp))/(e + cp, + 2hw),

(3.22)

where w is the total probability of scattering of one
electron, t is the interaction time, € is the electron
energy, pgz is the projection of its momentum on the
propagation direction of the absorbed photons (the z
axis), and I is the spectral intensity of each of the
plane waves making up the standing wave (see footnote
16). It is assumed that these waves differ little from
pure monochromatic ones, so that the function I, has

a sharp maximum in the vicinity of a certain frequency.
The connection between @’ and  follows from the
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energy and momentum conservation laws in Compton

scattering (formula (3.2)). At low frequencies iw <« €
and at small momenta |cp| <« €, the w'(w) relation

takes the form

o = o {1 — (ko/e) [1 + (sin 6/sin 8,)]}, (3.23)

where sin 6o =xe/A =hw/c|p|, p is the total momen-
tum, xe =H/|p| is the de Broglie wavelength of the
electron, sin 6 =py /| P|, 0 is the glancing angle, and
A is the wavelength of the light.

Thus, the probability of electron reflection, as ex-
pected, increases sharply when the Bragg condition is
satisfied (8 = - 8,0)*®’. The degree of stringency of this
condition is determined by the spectral width of the
electromagnetic wave. If A ¢ is the deviation of the
glancing angle from —§8,, at which the probability w
decreases substantially, we get in our case

AB/B, ~ (mc¥ho) Av/o L 1.

At very high monochromaticity of the field and not
too long action times, formula (3.22) cannot be used,
and the scattering probability is determined in the
lowest order of perturbation theory by the expression

w =
(4nerct/Rra® 1 - (sinb/sin 04)]-%in?{(hw?/ms*)[14-(sin 6/sin B4)]},
(3.24)
where I = fI,dw is the total intensity of each of the
traveling waves. In this case the reflection probability
w also increases sharply when the Bragg condition is
approached. The degree of stringency of this condition
is determined by the interaction time A6/ 8,
~ mc?/fiw - wt. The probability at the maximum is

wy = 4P IR o'mic, (3.25)

The condition for the applicability of formula (3.22)
is determined by the inequality Aw/w > 1/wt. Formu-
las (3.24) and (3.25) are valid for the inverse relation
between the spectral width and the interaction time,
Aw/w «< 1/wt. We shall henceforth confine ourselves
just to the last case and describe the electromagnetic
field of a standing wave, neglecting both the angular and
the frequency spreads.

In both cases (formulas (3.22)—(3.25)), the region of
applicability of the lowest order of perturbation theory
is limited by the condition that the intensity I and that
the duration t of the interaction be small. This follows
from the fact that at sufficiently large I and t the
probability w becomes larger than unity, indicating
that the employed approach is incorrect. An attempt
was made in'**°1 to get rid of these limitations for the
case of nonrelativistic electron energies.

The nonrelativistic character of the electron motion
allows us to make certain assumptions that simplify
the problem greatly. The time required for a nonrela-
tivistic electron to traverse a distance on the order of
the wavelength of light, ~A/v, is much larger than the
period of the field oscillations {~a/c). This allows us
to assume that a satisfactory description of the slow
motion of the electron (averaged over the fast oscilla-

2DIn the paper of Kapitza and Dirac [*], formula (3.22) was derived
only if the Bragg condition is strictly satisfied, 8 = —8,, w' = w, fI(’d dw =
12/Acw, so that wy = 8m3e*t12/h’m*wc? Aw.
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tions) can be obtained by using a time-averaged Hamil-
tonian of the electron in the external field. Such a
procedure is analogous to the method of gauge poten-
tials, used in the classical description of the motion of
an eleclgron in an inhomogeneous rapidly alternating
field®**¥] This approximation was used in{*] to
make a rather full investigation of the dependence of
the scattering probability w in the lowest order of
perturbation theory on different physical characteris-
tics of the electromagnetic field and of the electron
beam.

The averaged Hamiltonian of the electron, after
changing to dimensionless variables, takes the form

P2 (3.26)

# =m(—%+2qcos2z),
where q = (4re’c/h’w?)1, x = (w/c)z, and z is the
spatial coordinate along the wave vector of the absorbed
photons.

Owing to the spatial periodicity of the Hamiltonian
(3.26), the time-dependent wave function of an electron
situated at the initial instant in a state with a definite
momentum value |p) can be written in the form

4o

b= 3 (=)™ Fa(z, p)e | p)

(3.27)

Here 7 = (Hw?/2mc?)t is the dimensionless time, p is
the projection of the initial electron momentum on the
z axis in dimensionless coordinates (referred to the
value of the photon momentum hw/c), and Fp(7, p)
are the scattering probability amplitudes and satisfy
the equations

3Fp
av

= i¥nFn+ ¢ (Fry— Fay), (3.28)
where yn = —4n(n + p), with initial conditions Fp(0, p)
= Bn,o-

From the representation of the wave function #(7)
in the form {3.27) it follows that the electron scatter-
ing takes place with a momentum change Ap = ~2n,

n =0, £1, +2,... The probability amplitudes of scat-
tering and the direction of the n-th diffraction maxi-
mum are determined by the functions Fp(r, p). The
condition Ap = —2n at small glancing angle of the inci-
dent { 6) and scattered (6’) electrons coincides with
the Laue condition

(3.29)

At low field intensity, the parameter q is small, and
the system (3.28) can be solved by the iteration method.
This is equivalent to the employed perturbation theory,
and leads in first order to formula (3.24). The condi-
tion for the applicability of this result is of the form
qr «< 1.

In real experimental situations, this condition may
not be satisfied. For optical frequencies, the parame-
ter value q =1 corresponds to an electromagnetic
radiation intensity I~ 10 MW/cm?®. At a laser-beam
width d =1 cm and at an electron energy mv®/2
~ 9 keV, the interaction time is such that 7 =
7 = (hw/2mc?)d/v ~ 1. One can attempt to lift the
limitation on the interaction time 7, retaining the
weak-field condition q « 1.

A(B — 0)/2 = nh,.
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In this approximation, the amplitude F, is not small
if the direction of the initial momentum is close to the
direction determined by the first~order Bragg condi-
tion. The system (3.28) reduces in this case to a sys-
tem of two equations for the two quantities Fo, and F,.
This system can be easily solved and leads to the
following equation for the scattering probability in the
direction of the first diffraction maximum:

w = g sin? 1-(g% + E)Ya (¢ + £3)°L, & = 2 {1 + (sin 6/sin Oy)]. (3.30)

Formula (3.30) describes the saturation of the elec-
tron scattering probability at a large interaction dura-
tion g7 * 1. Under real conditions, the electron reflec~
tion probability averages out because, say, of the
spread of the electron velocities, Under strong satura-
tion conditions g7 » 1 we have W =1/2, i.e., near the
Bragg angle approximately half of the electrons are
scattered.

Similar results can be obtained also for the proba-
bilities of scattering in the direction of the diffraction
maxima of higher orders as the direction of the mo-
mentum p approaches the direction determined by the
Bragg condition of the corresponding order,

Formula (3.30) can be obtained also by expanding
the exact solution in terms of the eigenfunctiong of the
Hamiltonian (3.26), i.e., in Mathieu functions!**®J,

Under the same assumptions, the stationary problem
with an adiabatically slow decrease of the potential at
infinity was considered in'*}, A solution by perturba-
tion theory again led to formulas (3.22) and (3.24),
while the use of the quasiclassical approximation led
to formulas of the type (3.30).

Expression (3.30) for the scattering probability w
shows that at q7 > 1 the degree of stringency of the
Bragg condition is determined by the value of the field
AB/6o~ q, and A @ increases with increasing field,
i.e., the dependence of the scattering probability on the
direction of the initial momentum becomes smoother.

The system (3.28) enables us to analyze in part the
asymptotic behavior in a very strong field q > 1. In
this case the system (3.28) reduces to a system of re-
currence relations for the Bessel functions, so that we
have ultimately for the functions Fp(7, p)

Fo (x, p) ~ I (—2q0). (3.31)

A more rigorous analysis'*®®) shows that the necessary
condition for the applicability of this result is of the
form qr% <« 1, i.e., formula (3.31) is valid at not too
large interaction times.

Thus, with increasing field the degree of stringency
of the Bragg condition decreases, and the intensity of
the diffraction maxima of higher orders increases. In
the limit of a very strong field, the distribution of the
scattering probabilities does not depend on the direc-
tion of the initial momentum and is determined by
(3.31). As a result of the interaction with a field, the
initial beam breaks up into a “‘fan’’ that is symmetrical
with respect to the initial direction, and the directions
of the scattered beams are determined by the Laue
conditions (3.29). The first reports of experimental
observation of the Kapitza-Dirac effect were published
by two groups of workers in 1965 [**%:%*) These first
investigations, however, turned out to be contradictory,
and it was doubted whether the scattering of electrons
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by a standing wave was observed!*®), The two groups
later improved their initial experiments!®?>*), Finally,
a new report of experimental observation of the
Kapitza-Dirac effect appeared in 196801,

It can apparently be stated on the basis of these in-
vestigations that scattering of electrons by a standing
wave has indeed been observed. The reflection angle
was close to the Bragg angle, but the fraction of the
scattered electrons was quite small.

The results of(*?°+**4%] do not contradict the predic-
tions of the theory. In all these investigations, the
parameters characterizing the electromagnetic field
and the electron beam were such that the case q7 « 1
was realized, i.e., the conditions for applicability of
perturbation theory were satisfied. It would be of great
interest to perform an experiment in which the theo-
retical results could be verified for a strong field. At
the present time, however, we do not have any data of
this kind.

4. CONCLUSION

In this review we touched upon only two effects of
the interaction of optical radiation with electrons—the
bremsstrahlung effect and two-photon Compton effect.
These, of course, do not exhaust all the features of the
interaction between intense radiation and electrons.
As already mentioned in Chap. 1, when I > Ie) the
Compton scattering acquires essentially a multiphoton
character, i.e., several photons are absorbed in one
single scattering act, and several photons are emitted
simultaneously. So far, the only theory developed for
the spontaneous multiphoton Compton effect (see the
review®) and the book!®!) is for the case when s pho-
tons are absorbed simultaneously with spontaneous
emission of one photon. The theory of stimulated
Compton scattering at radiation intensities I > Iye) has
not been developed at all to date. Yet at such high radi-
ation intensities it is precisely the stimulated scatter-
ing processes which should determine the main fea-
tures of the phenomenon.

In our analysis we made no mention at all of one
very interesting aspect of the interaction between in-
tense optical radiation and electrons. We have in mind
the possible production of electron-positron pairs in a
laser experiment, This question is discussed in part
(but quite inadequately)in the literature (see!®!C,%1-%%]),
The most realistic possibility of observing such an ef-
fect is connected with scattering of electrons having in
the wave field a total energy € > 3 mc® by nucleit*C»3€1;
This thereshold condition imposed on the energy can
be obtained in a laser experiment, in which there is
realized a radiation intensity I several times larger
than the intensity Ire) (the question of “‘how many
time’’ is determined not only by the threshold condi-
tion of the reaction € > 3mc®, but also by the polariza-
tion of the irradiation itself, since the electron energy
¢ depends on the polarization; see'P) Sec. 47),

The possibility of ‘“drawing out’’ electron positron
pairs from vacuum by optical radiation was discussed
inl’€»%!) (see also!*®!). Estimates show that this prob-
lem still remains far from practical realization, since
observation of the effect in this case calls for radiation
intensities on the order of 10*°~10%" W/cm?.
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Without mentioning other possible effects of interac-
tion of intense laser radiation with electrons (and other
charged particles), we can state with assurance that
the development of laser physics has proceeded to a
degree that it has already become an experimental
basis for the observation of many new effects of quan-
tum electrodynamics. The first effects in this region
will undoubtedly be observed when radiation intensities
1> Iye] are realized.

Note added in proof. A number of new papers were published re-
cently. A classical analysis of bremsstrahlung in a strong field, analogous
to Chap. 2b, is given in [5%]. An attempt to calculate the bremsstrahlung
absorption coefficient averaged over a Maxwellian distribution, for arbi-
trary intensity is made in [**] (quantum approach). The experimental
investigation of induced Compton scattering, started in [3°], is con-
tinued in [%¢]. Induced Compton interaction of Maxwellian electrons
with spectrally narrow radiation is considered in [%7].
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