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In analyzing processes of emission and absorption of
electromagnetic waves in a medium, people currently
make widespread use of the laws of conservation of
energy and momentum for ‘‘photons in the medium,” or
energy quanta of excitations that propagate in the medium
(in different cases, such ‘‘photons in 2 medium’’ have
been termed also photons, real excitons, excitons, polar -
itons, plasmons, etc.). For example, if we are dealing
with emission of one ‘‘photon in a medium’’ as the
emitting system (the latter can also be a single moving
charged particle) goes from a state of energy E, and
momentum P, to a state of energy E, and momentum p,,
then the conservation laws have the form

Ey = E, + ho,

(1)
)

P1 = p, + 7k,

Here fw is the energy, and £k is the momentum of the
‘‘photon in the medium’’ (w is the frequency and k is the
wave vector of the radiation). Here, for example, in an
isotropic medium

k= (ole) n{w),

(3

where n(w) is the refractive index at the frequency w.
By using the conservation laws (1) and (2) and the re-
lationship (3), or the latter generalized to the case of an
anisotropic medium, we can derive the condition for
Cerenkov radiation and the formula for the Doppler
effect in the medium, and get some information on the
nature of the transition (see™ and below). If, in addition,
the energy hw and the momentum hK are small in com-
parison with E, and p, (and hence also small in compar-
ison with E, and p,), then to a good approximation, quan-
tization of the excitation energy plays no role, and nat-
urally, the result does not depend on the quantum
constant . Of course, under such conditions quantum
language is not obligatory, although it is convenient. In
classical terms, the corresponding expressions that
don’t depend on h can be derived under the assumption
that the emitted energy & is related to the emitted
momentum G by

(@)

In the given context, this relationship is equivalent to the
dispersion equation (3). However, if the dispersion equa-
tion (3) arises directly from the field equations and is
generally known, then one cannot in any way make such

a statement about the relationship between the energy &
and the momentum G lost in the emission of electromag-
netic waves. One can consistently solve the problem of
the relation between G and € only by using the expressions
for the energy-momentum tensor in macroscopic
electrodynamics. Moreover, the problem of the energy-
momentum tensor in macroscopic electrodynamics has
been discussed for more than sixty years, even up to the
very present (see 231 and the literature cited there; to
supplement this literature, we refer to the articles®™),
indeed, we can now consider the situation that no ob-

G = (&n (0)/c) kik.
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jections can be made against the energy-momentum ten-
sor of the electromagnetic field in the form proposed by
Abraham to be well enough established, and it is pre-
cisely the correct tensor in the general case. However,
the relationship (4) is not derived directly by using the
tensor of Abraham, but the energy-momentum tensor in
the form proposed by Minkowski, What the problem here
essentially is has been elucidated, in particular, in the
articles®™ ##»® | However, it seems to us pertinent to
remark further on this topic. Moreover, we must ex-
plain why in the quantum approach to the problem, one
can get a correct result, concretely, the conservation
laws in the form of Egs. (1)—(3), with no use at all of any
expressions for the energy-momentum tensor of the
electromagnetic field.

1. We shall be interested only in the fundamental side
of the problem, rather than in deriving the most general
expressions. Hence, we shall treat the quantization of
the electromagnetic field in a medium® a5 applied to
an isotropic, nonmagnetic, dispersionless medium (with
dielectric constant € = n’), in the presence of only one
non-relativistic charge (an electron). We note immed-
iately that in essence these restrictions are completely
inconsequential. Under these conditions, the Hamilton-
ian function for the field and the particle has the form

S = (112m) [p — (e/c) A (R)I® + (1/8n) S (eE? + HY) dr, (5)

Here p is the momentum and R is the radius vector of
the particle of mass m and charge e, and E and H are

the electric and magnetic field intensities (the letter E
below also denotes the energy, but this should not lead
to confusion).

In treating only one particle in the absence of an ex-
ternal field, we can without losing generality consider
the scalar potential to be zero, and hence we get

E=— (/) 9A/0t, H =rot A, divA =0. (6)

We can consider the field to be periodic for a cube of
edge L = 1, and use the expansion

A . 21 0 () Awi (1), A,y = (8m)'% (c/n) e, cos (k;T),

Ay :(Sn)uz(c/n) e, sin (kyr), ey=1, (eyk,)=0, n=§‘/2. (D
There are actually two polarization vectors e, , but this
has not been expressed in explicit form for the sake of
simplicity. If we substitute (7) into the expression for
the energy of the transverse field, with account taken of
the relationships in (6), we have

o= (1187) | B+ H?) dr = (112) 3} (phi+olah),
A

(8)

Pri =dqy/dt = ‘}Ai, o} = ¥} /n? = c*h}/e.

The introduced variables p,j, i, as well as p and R
are canonical, i.e.,

Gt = 0K 19psi = Prts Pri= — 0K 10

— Wi

+ (e/e) [p— (e/e) A (R)] Ay (R),
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R=v=as/op= (i) (p—cA®), p=—0o/R.

9
m
We get from this equation of motion for the particle and
the equations for the qy;:

g+ odigui = (£) (vAu (R). (10)
Of course, these equations can also be derived directly
from the equation for the potential (the charge is consi-

dered to be a point charge, and 6 is the delta function):

(11)
Using the field equations in the form of (10) (this approach
is usually called the Hamiltonian method) is convenient in
a number of cases, even within the framework

of the classical theory. This is especially true of the
case of an anisotropic medium,u” but now we shall re-
strict ourselves to the example of Cerenkov radiation in
an isotropic medium,. Here the following expressions

take part on the right-hand side of Egs. (10):

AA — (e/cr) A = — (4n/e) § = — (4n/c) evd (r — R ().

(82 (e/n) (ve,) cos (kyv) ¢, (8m)Y? (e/n) (ve,) sin (kiv) &

R = vt is the trajectory of the uniformly moving charge
(v = const.). The condition for steady-state emission
amounts to resonance between the frequency of the acting
“force’’ on the right-hand side of Egs. (10) and the in-
trinsic frequency of the field oscillators wy = cky/n. For
Cerenkov radiation, we can directly derive therefrom

the condition ky v = wy = ck)/n, which is identical with

the usual condition
cos 8y = c/nv,

where 6, is the angle between the wave vector k and the
velocity v of the charge. One can also easily derive the
Tamm-Frank formula for the power of Cerenkov radia-
tion by an elementary integration of Egs. (10) and sub-
sequent calculation of the energy of the field 3Cy,.

While the use of the Hamiltonian method in classical
electrodynamics is a particular method that has some
advantages and defects as compared with other methods
of solving the field equations, we can say that use of the
Hamiltonian formalism is of fundamental significance
upon quantization. Whatever refined methods of quantiza-
tion have yet been applied, they are based on reducing
the problem of quantizing a field (in particular, an elec-
tromagnetic field) to quantizing a mechanical system. In
the Hamiltonian method, this side of the problem stands
out especially prominently and directly. In fact, after
one has introduced the canonical variables pyj and q,j,
the Hamiltonian function of (5) takes on the same form
as for a set of an infinite number of oscillators inter-
acting with a mechanical subsystem characterized by the
canonical variables p and R. Quantization of this mech-
anical subsystem, i.e., going from classical to quantum
mechanics, involves treating the quantities p and R as
operators that satisfy the commutation conditions
ijk '—Rkpj =—‘iﬁ5jk(j, k=1,2,3; 0gx = 1, 5]" kK#j= 0).
Quite analogously, quantization of the electromagnetic
field in a medium involves using the commutation re-

lationships

Drir — QuaPrg = —ih8iudjn (G, k=1, 2. (13)

When there are no charges, or when we neglect inter-
action of the field with charges, the Hamiltonian function
for the field has the form (8), and as is well-known from
guantum mechanics, the eigenvalues of the corresponding
Hamiltonian operator 3¢y, are"’

HeoV (qr) = Ee¥Y (qui), Eqe= Zj'n“hmh (m:=0,1, 2,3, ...). (14)

Thus we have introduced energy quanta that are equal to
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(12) .

Awy. Emission or absorption of one such quantum
amounts to a transition of the field to a state distinguished
by an increase or decrease by unity of one of the numbers
nyi. When one uses the standard quantum-mechanical
perturbation theory,[m the probability of emission and
absorption processes is determined by the matrix ele-
ments of the energy of interaction. In this case, the
latter are given by the following (see (5); the term in the
interaction energy proportional to A? gives rise to two-
quantum transitions, in which we shall not be interested):
Sk’ = —(e/mc) pA (R)

= —1(21)"* efm) X, ((pes)/n] [(g2 — iha) €* ¥ + (qns =+ igna) €7,

»

(15)
We note that we must assume that n = n(wx) upon taking
account of dispersion. In the very simple case under
discussion of Eq. (5), the Hamiltonian of the unperturbed
system has the form 3¢, = (p?/2m) + %y, and its eigen-
functions are (see also (14)):

Y (R, gu;) = PR W, (q). (16)

The matrix elements [¥}5¢'¥, dR dq,; for the perturba-
tion of (15) and for the wave functions of (16) differ from
zero only for one-quantum transitions (e.g.,

T = 0i¥ny = 199 = @/2w )'%®), even when one of
the equations p, — p, + hky = 0 is satisfied. However,
these equations are precisely the law of conservation of
momentum, respectively, for emission (minus sign) or
absorption (plus sign) of one quantum of energy Hwy .

Thus, the law of conservation of momentum (2) for
emission of a ‘‘photon in 2 medium’’ can be derived
without any additional assumptions, and without elucidat-
ing the problem of the form of the momentum operator
for the field. The law of conservation of energy (1) also
automatically follows upon applying the non-steady per-
turbation theory, which permits one to calculate the in-
tensity of emission. An evident generalization of the
Hamiltonian for a particle in a field to the relativistic
case using the Kelin-Gordon equation (spin zero), the
Dirac equation (spin 1/2), or equations for particles of
larger spins, permits us to calculate the intensity of
Cerenkov radiation for a particle of any velocity, and if
we take account of the spin, with any spin also (see™
and the literature cited there).

The conservation laws (1) and (2) with the relation-
ship (3) taken into account and with

2.0 0 2 12 ) o
Eqy={(m* pio)’",  po- mVx/“—(U?r’/‘Z)]l'

give the condition for emission

€05 0, == {c/nwg) {1 -+ (hw;/2me?) (n* — 1) [1 — (02/e?)] 4, (1
where 6, is the angle between k) and v,. Evidently, if
(hon/2me®) (r* — 1) [1— (W/e3] > < 1, (18)

then Eq. (17) is reduced to the classical Cerenkov con-
dition (12) with v = v, = v,.

If we neglect recoil (i.e., under the condition (18)),
we can write directly

AE = E, — E, = (0E/0p) Ap = (c*p/E) Ap = vAp, Ap = p, — P~

If we assume here, in agreement with (1)—(3), that

AE = hw and Ap = hk = (iwn/c)k/k, we get directly the
condition (12) for the angle 6, between k and v. Of course,
the absence in this condition of the quantum constant X

is not fortuitous. The point is that we get the same result
if we assume that AE = & and Ap = (8n/c)k/k, that is,
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we use the relationship (4) between the emitted energy

& and the momentum G, with the values of & and G
themselves not quantized (being classical quantities).
Use of the conservation laws (1)—(3) as applied to
emitters having internal degrees of freedom leads to the
formulas for the Doppler effect in a medium.” ¥ Here,
one can show, even from the conservation laws alone,
that in the normal Doppler effect (for 8 > 8,) an emitter
goes with emission of a photon from the upper to the
lower level. However, in the anomalous Doppler effect

(for 6 < 6,) emission occurs with excitation of the emitter,

which goes from the lower to the upper level of internal
motion (the energy of the photon here is taken from the
energy of translational motion). In this regard, the con-
servation laws give more than the classical interference
condition, which also leads to Eq. (12) and to the Doppler
formula. However, this is a different topic (see®™ and the
literature cited there).

Here we have wanted to demonstrate that the quantum
theory of emission in a medium directly leads to the
conservation laws (1) and (2) using the relationship (3).
Of course, this is true not only for the most elementary
(but in essence quite exact) form of the theory developed
in® and above, but also when one uses covariant formu-
lations.” ™" The fact that the results do not depend on
any assumptions about the form of the expressions for
the momentum of the field should not arouse any special
wonder here. In fact, we have used above both the field
equations (in particular, they specifically lead to the re-
lation (3) between the frequency w and the wave vector k
of the radiation) and an expression for the Hamiltonian
function (5). Moreover, the electrodynamic conservation
laws are implied directly by the field equations (in par-
ticular, see below), while the expression for the Hamil-
tonian function determines the form of the Hamiltonian,

We can see clearly from the following fact alone how
much ‘‘mathematics is smarter than man’’ in other re-
gards, and concretely, how inessential the relation is
between the wave functions used and the eigenfunctions
of the field momentum operator. If we expand the field
in terms of standing waves (see (7)) in states that cor-
respond to the eigenvalues of the energy operator (see
(14)), the mean value of the momentum of the field is
zero, while the eigenfunctions of the energy are not
eigenfunctions of the momentum operator. The above
is directly evident, since the flux of energy in a standing
wave is zero. We can convince ourselves of the same
formally as well for a vacaum, since in this case the
expression for the momentum of the field is well known,
and is equal to G = (1/4nc) [ E x Hdr. If we try from the
onset to work with photons of energy iw and momentum
hk, then we must expand the field (the potential) in terms
of running waves, as is usually done (see, e.g.™), We
have not proceeded in this way so as to emphasize the
independence of the results from the ‘“form’’ of quantiza-
tion, and also because an expansion into standing waves
leads more directly to canonical variables 01y, Inde-
pendently of the problem of choosing the expression for
the momentum of the field G in a medium, the abovesaid
also applies to the case of a field in a medium because
the expressions of Minkowski and of Abraham for the
momentum of the field are both proportional to
(1/4wc) [ E x Hdr, and they differ only in a coefficient
(in Abraham’s case, this coefficient is unity, but in
Minkowski’s case it is € = n°, see below).

As we see it, these remarks leave no doubt on the
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correctness of the results of the quantum theory of
emission in a medium, and in particular, on the correct-
ness of the conclusions involving the use of relationships
(1)—(3). However, all these results and conclusions must,
of course, be also derivable by a correct application of
the expressions for the energy-momentum tensor of the
field in a medium. This will be demonstrated below.

2. Preliminarily, however, we shall present some
relationships and expressions involving derivation and
use of the energy-momentum tensor in macrescopic
electrodynamics (for more details, see™),

For the very simple case discussed above (a non-
magnetic, dispersionless medium at rest), the field
equations have the form

rot H = (4n/c) j + (elc) 9E/a, (19)
rot E = — (1/c) aH/at, (20)
div (eE) = 4np, (21)

divH = 0. (22)

Let us find the scalar product of Eq. (19) with E, and that
of Eq. (20) with H. If we subtract the expressions ob-
tained from one another, and use the identity E . curl
H-H .curl E = —div (E x H), we get

(1/87) (3 (E* + HY/oYl +jE = —divS, S = (c/4n) [EH]. (23)

This theorem by Poynting corresponds to the law of con-
servation of energy, and it is given in any textbook. The
derivation from the field equations of the law of conser-
vation of momentum is somewhat less popular. In order
to derive it, we shall find the vector product of Eq. (19)
by H, and that of Eq. (20) by E. By adding the obtained
expressions, we get

1
7 {(HLrot Bl + [Erot Bl = — 2 jH] — 71 2 (EH) — £ 1

OE
s H]
Now let us add to the right and left-hand sides of this
relationship the expression—pE — [(e — 1)/4nc]
x (8H/8t). On the left-hand side, we shall transform
this additive term with the aid of (20) and (21) to the
form—E div (€E) + [(¢ —1)/47] E x curl E. Consequently
we get
= {{H rot H] 4-& [Erot E] — E div éE} - 7 - —- [EH] =

— — {oB+= [H + - (EH} .

(24)

The terms taking part on the right-hand side here are
the density of the Lorentz force fls = pE + (1/¢) § X H,
and the density of the volume force

fA = [(e — 1)/4ncl 6 [EH]/d¢, (25)

which is sometimes called the Abraham force. The
minus sign on the right-hand side of (24) involves the
fact that fl + £A is a force acting on the medium, while
Eq. (24) defines the balance of forces and the momentum
as referred to the field, with

gt = (1/4nc) [EH] = S/e® (26)

as the momentum density of the field (it is precisely this
expression, which is the same both in a vacuum and in a
medium, that corresponds to the choice of the energy-
momentum tensor in the form of Abraham).

If we assume a homogeneous medium for the sake of
simplicity (with € = const),?’ then it is especially easy to

V. L. Ginzburg 436




transform Eq. (24) to the standard form

00 ap/ 0T — 0ot = foy Ta=fa+ 15 (2, p=1,2,3), 27

where %ap is the Maxwell tensor of the field intensities

Oup = (1/4m) [eEoEp + HoHp — (1/2) (eE2 + H?) 8,p). 28)

Thus, the law of conservation of momentum (27)
follows from the field equations without additional as-
sumptions. If we combine this law and the law of con-
servation of energy (23) into one four-dimensional re-
lationship, the law of conservation of energy-momentum
we also arrive at an expression for the energy-mo-
mentum tensor Tijk:

Oap  —icgh E% 4 H2
(i k=1,2,3,4 o, =1, 2,3; x,=ict),

OTA/0zn =11, fu=fa—+1a, fa=(ilc) (GE). (30)

The tensor (29) is the Abraham tensor for a medium at
rest; for a medium in motion, this tensor looks some-
what more complicated (see®#™),

The Minkowski tensor under the same assumptions
as were made in (29) and (30) has the form

Ogp -—icg
T?,E:(_fs W ) 8= [EH] =eg?, (31)
oTM/omn =11, fi=pBa+t(1/c)[[Hla, [f=fi=—(E). (32)

It is quite evident that the conservation laws (30) and (32)
are identical, at least from the formal standpoint: they
differ only in the separation of the same sum into terms.
Concretely, if we transfer the Abraham force of (25)
from the right to the left-hand side of the equation, and
combine it with aTﬁ(/axk, then we get directly the ex-

pression BT%\{[{/axk, and we can treat the Minkowski tensor

as the energy-momentum tensor. Such an ambiguity in
the choice of expression for the energy-momentum ten-
sor is not so surprising, being very general in nature,
and it appears even in the theory of a field in a vacuum
(see, e.g.,"®, Sec. 32). Moreover, a field in a medium
is an open system; the only closed system is the one
consisting of the field and the medium, the latter being
characterized by its own energy-momentum tensor Timk'
The overall tensor T = T{ﬁ + TiEI:{M’ where TiEl:<M is

the tensor for the field {e.g., the tensor of (29)), obeys
the conservation law aTik/Bxk = 0. However, neither
the tensor Tik, nor a fortiori its components TI? and
TE{M, is defined unequivocally in its general form. A

completely different matter is the force density, which is
an unequivocal and measurable quantity, at least in prin-
ciple. In this regard, even the outcome of the ‘‘dispute”’
over the Abraham and Minkowski tensors is finally
solved by choosing the expression for the force. The
Abraham force of (25) is genetically related to the force
of the magnetic field acting on the displacement current,
We cannot doubt the reality of this force, in spite of the
fact that it has not yet been directly measured.”” This
solves the problem unequivocally ‘‘in favor”’ of the
Abraham tensor. It has also been shown in detail in
that the various objections found in the literature against
choosing the Abraham tensor are ill-grounded. The fact
that one can advance no substantial arguments against
choosing the tensor TE{M in the Abraham form is also

[5]

emphasized in®™ . We shall restrict ourselves here to
recalling one of the arguments in favor of choosing the
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Minkowski, rather than the Abraham tensor. Namely,
when one chooses the Minkowski tensor for a quasimono-
chromatic wave packet in any system of reference,™

the energy flux S = Wvgr, where Vgr is the group
velocity. Analogously, it holds specifically for the

Minkowski tensor that O,g=" glc\y/lv (see™™,

p. 114, and the literature cited there).’ Such relations do
not hold when one chooses the Abraham tensor, and for
some reason this is deemed to be some sort of defect or
difficulty. In fact, as has been shown in especial detail
in® , the entire matter again involves the presence of the
volume force fA when one uses the Abraham tensor. In

a moving medium, this force performs work on the med-
ium, and hence the relationship S = Wvy, cannot and
should not hold. The situation here is fully analogous to
that which occurs in a medium at rest," where the re-
lationship 8 = Wy, breaks down in the presence of ab-
sorption, and in general, of any sources of sinks of
energy in the medium. As applied to the flux of momentum
density gaVgr, B» the above now refers to the case of a
transparent medium at rest, since the relationship

OgB = “8aVgr, g can hold only in the absence of a volume

force. The latter requirement is precisely satisfied by
the Minkowski tensor (we consider charges and currents
to be absent), for which BT%\f(/axk =0,

All of the aforesaid lets us consider the Abraham
tensor to be ‘‘correct.”’ However, as it seems to us, one
can declare the Minkowski tensor to be ‘‘incorrect’’ only
by approaching the problem somewhat formally. In fact,
in most situations the results obtained by using the
Abraham and Minkowski tensors are quite identical.
This makes it possible in suitable cases not only to use
the Minkowski tensor, but it even makes this quite ex-
pedient, if any simplifications are attained thus. Hence,
we shoud hardly declare the Minkowski tensor T to be
« vy Sy s X o ik

erroneous.’”’ Rather, it is a certain auxiliary concept
that (like, e.g., pseudotensors) can be used fully. This
inflicts no harm at all on the ‘“‘prestige’’ of the more
fundamental, and if we wish, genuine energy-momentum
tensor of an electromagnetic field in a medium Teﬁ*{.

3. Analysis of the problem of the laws of conserva-
tion of energy and momentum in emission of electro-
magnetic waves (photons) in a medium confirms and
illustrates the latter remark. In fact, let us see what
the momentum of a wave packet in a medium is by using
the Abraham and Minkowski tensors, and then we shall
apply the conservation laws in the two cases.

Let us consider a plane wave propagating in a
medium:
E = (1/2) (Eqe~ike-ot) | Ee-itkr—at)

H=(1/2) (Hyeitkr-ot 4 Hie-itkr-ob), (33)

If the wave is quasimonochromatic, then E; and H; are
slowly-varying functions of the time t (as compared with
the period 27/w). However, for simplicity we shall ne-
glect dispersion, and hence we shall consider the am-
plitudes E, and H, to be constant, but shall consider the
wave packet to have a cross-section of area unity and
length L (for an account of didpersion, see, e.g., the
book™™, Sec. 3). If we substitute (33) into the field equa-
tions (19) and (20) with real € = const.”’ and for j = 0,

we have

E; = —(c/e0) [kH,l, H, = (c/o) [kE,. (34)

As the condition for existence of a nontrivial solution,
we get from this the dispersion equation (3) with n® = ¢,
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Further, we get the following for the time averages
(averaged over the high frequency) (see (29) and (31)):

W = (eE2 + H?)/8n = (1/167) (eE.E} + HHS) = (n%/8n) (EE§),
S = (¢/4n) [EH] = (¢/16m) {[ESH,) + [EHE})) =
= (cn/8n) (BB k/k, gh=Sjc?, gh—n2gh,

(35)

or
GA=gAL — (WL/en) k/k = (&/cn) k/k, (36)
GM = g™ [, = (W Ln/e) k/k = (&njc) k/k, 37

where GA; M and & = §A = g§M are, respectively, the
momenta and the energy of the wave packet.

The relationship (37) coincides with (4), and it leads
to the correct expressions in using the laws of conser-
vation of energy and momentum. It is hence now clear,
and of course, this has been confirmed by calculations
(they have been performed, e.g., in™) that one must use
the energy-momentum tensor in the Minkowski form in
obtaining quanta (photons in a medium) of energy Aw and
momentum wn/c) k/k with the standard quantization,
However, if we use the Abraham tensor, then, as we
know, one gets a false result, both in the classical case
(see (36), and when one quantizes and accounts for only
the momentum GA. Actually, however, as we should
expect, using the Abraham tensor gives the right result,
but we must also take into account the action of the Abra-
ham force on the medium that occurs in the process of
emission of radiation (the same is true of the absorption
process). It is actually necessary to do this, since the
force fA (see (25)) differs from zero when a wave train
is emitted (or, e.g., it enters a medium). Here we are
interested not in the force itself, but in the impulse of
of the force

— 2 _1q .
FA =520 { o (EH]dt dr =3 (IEGHE) -+ (ESHo) L
2—1 k 2—1)8 k
— o By L= TS 1 (39)

Here we have dropped the oscillating terms, and thus are
dealing with the time-average quantity.’’ We note that
we can treat a more or less arbitrary wave packet from
the very onset and calculate, and then compare the inte-
gral quantities & = [ Wdtdr, GA» M = [ gA, Mgt dr, and
FA. The relations between these quantities remain the
same as in (36)—(38) for a train with sharp boundaries.
Evidently, in the light of (36)—(38),
GA |+ FA = GM = (gnr/c) kik. (39)

Usually only two factors are essential in the system of

applying the law of conservation of energy and momentum:

first, the energy and momentum lost upon emission (or
gained upon absorption) by the emitting particle or ‘‘sys-
tem’’; second, we must know, of course, what field
energy is emitted in a given direction. However, the
problem of how the momentum of the radiation is dis-
tributed or redistributed is not important from this
standpoint. In the case being treated, the particle loses
the momentum—GM, while the field in the medium gains
the momentum GA, and the medium receives the im-
pulse of force FA = GM — GA, For a medium of partic-
ular material acted on by the force fA, the particles of
the medium are accelerated, and FA = G js the mo-
mentum of the medium. However, in the general case,
the state of the medium is determined by the corre-
sponding equations of motion, e.g., equations of the
theory of elasticity or hydrodynamic equations, in which
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the density of the volume force is fA, while in principle
it can also contain certain other terms. Of course, we
must not think here that FA = G = gL, where g is
the momentum density of the medium (precisely this
fact is correctly emphasized in®).” Likewise, we must
in general also not state that the density of the Minkowski
momentum gM = gA + gM, However, as we have seen
with regard to the integral quantities (the momenta and
the impulse of force FA), the result (39) does not depend
at all on the properties of the medium, and it remains
valid even under the assumption (which is generally false)
that gM = gA + gm, Thus it is actually justified to use
the Minkowski tensor in this case, since it not only
furnishes a correct result, but also it leads to the goal
more directly without treating the action of the volume
force. Indeed, it is very simple to account for the action
of this force within the framework of the classical ap-
proach (see above), but it would apparently seem to be
quantum-mechanically a rather cumbersome matter.

To our knowledge, such a quantum treatment has not yet
been carried out in any way. In non-steady-state prob-
lems for whose solution the Abraham tensor is advan-
tageous or even necessary, a corresponding quantum
analysis would be justified (although, of course, not
necessary as long as the problem is classical, as is
probably true with any actual posing of the problem of
measuring the Abraham force; in this regard, see B4y,
As for the above-discussed application of the laws of
conservation of energy and momentum in emission of
‘‘photons in a medium,’’ it seems to us that the problem
can be considered to be quite clear in the light of the
presented remarks. Moreover, these remarks are not
new, but as it seemed to us, it was still expedient to
present and compare them here, in order to supplement
somewhat in this regard the analysis of the problem of
the choice of the energy-momentum tensor in macro-
scopic electrodynamics as contained in® and also in%?

*(EH] =E X H.

DIn order to eliminate the zero-point energy, the operator ¥ ¢p is written
in the form o, =(1/2) 3} (pa; — iwagns) (paj + iagas), wWhich in the classi-
"

cal region is equivalent to Eq. (8).

21n an inhomogenoues medium, a force also arises, having a density f€ =
- (E?/8m)ve, while another force arises if we account for compressibility
of the medium (see ['°], Secs. 15 and 56; we must emphasize in general
that a conservation law like (27) is still insufficient for deriving an un-
equivocal expression for the force density). In going from (24) to (27),
it is convenient to use the identitya x curl a = (1/2)va? - (a, V)a.

3Such possibilities are discussed in the articles {31 (p. 31) and []. Un-
doubtedly, measuring the Abraham force is quite justified, if only for
the sake of “peace of mind,” and, moreover, it is hard to doubt that
such measurements can be made at the current level of technique.

1n this case, the volume force acting on the medium does no work, since
this work is proportional to the product of the force and the velocity
of the medium.

$)To be exact, we must add that the medium is not only considered to be
non-absorbing (real €), but also tranéparent (the condition € > Q).

8The force acts only while the wave (train) enters the medium or is be-
ing emitted. However, while a train of a given length is being propagated
in a homogeneous medium, the impulse of the force FA is zero.

" An analogous situation occurs for phonons. The distribution of sound
in a solid is not accompanied by displacement of mass, and in this re-
gard the momentum of sound waves is zero (this does not take account
of the relativistic effect: the fact that a packet of sound waves of energy
£ has a mass £/c?, and hence has a momentum (¢/c?)s, where s is the velo-
city of sound). Hence, we find upon quantizing that sound quanta, or
phonons, have an energy h«w and zero momentum (neglecting the momen-
tum (hw/c?) s). However, the statement that the momentum of a phonon
(say, when emitted by an electron) is hk = (hw/s) k/k actually means
that, in the emission of a phonon, the lattice as a whole acquires the
momentum hk (we neglect transfer processes here). From the standpoint
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of applying the conservation laws during emission, absorption, and scat-
tering of sound, however, nothing is changed if we assume, as is usually
done, that the phonons themselves have an energy hew and momentumhk =
(hw/s) k/k (the author is indepted to L. V. Keldysh for this remark).
Moreover, the Abraham momentum of the field GA = £/cn = (£/¢?) ¢/n
(see (36)). That is, it has the same meaning as the *‘true’> momentum of
the phonon (%/c?) s, since the velocity of an electromagnetic pulse is

¢/n (neglecting dispersion).
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