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A method is considered for consistent analysis of a quantum-mechanical system situated
in a potential that depends periodically on the time, for example, in the field of a strong
classical electromagnetic wave. The emission of such a system is considered, and par-
ticularly the shift of the fundamental frequency ω' and the appearance of satellites
ω' ± ηω.
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1. INTRODUCTION

Interaction of a strong monochromatic electromag-
netic wave with a quantum-mechanical system (atom or
molecule) is of particular interest in connection with
the development of masers and lasers.

Coherent scattering of a monochromatic wave, the
dependence of the scattering cross section and of the
refractive index on the amplitude, coherent generation
of harmonics, incoherent emission at the natural fre-
quencies of the atom, and the variation of these fre-
quencies under the influence of waves—this is but a brief
and incomplete list of the questions raised. These effects
are considered in a large number of papers, of which we
shall cite the most interesting ones [ 1 ] , in which refer-
ences to earlier works are also given. Various methods
were used: perturbation theory (with time-dependent
potential), density-matrix (with allowance for dissipa-
tion), and others. A detailed and rigorous review of
nonstationary perturbation theory was given recently
by Langhoff et al. . Problems involved in the emission
of perturbed states are not considered in'-2-'.

However, the most consistent, systematic, and at the
same time simplest method is the use of quasienergy
and quasienergy states (QES). Therefore by way of per-
fecting the method, and without claiming new results, we
shall describe the quasienergy method. In this method,
the influence of a classical electromagnetic wave on the
atom is taken into account rigorously (at least in princi-
ple), and the spontaneous emission is regarded as a
small dissipative perturbation. This method is exactly
equivalent to the standard theory of the free atom, in
which one first obtains exact solutions of the
Schrodinger equation without taking the spontaneous
emission into account, and a set of energy levels and
natural (stationary) states is obtained. The spontaneous
emission is regarded as a small perturbation of the
system. In principle, when radiation is taken into ac-

count, only the lower state is exactly stationary. It is
remarkable that in the presence of a strong wave, in the
same approximation with allowance for the spontaneous
processes, all the states are qualitatively identical in
the sense that none of the QES is rigorously stationary.
Let us recall the history of the quasienergy concept.

It is universally known that an electron situated in the
spatially periodic field of a crystal lattice possesses a
conserved quasimomentum ρ, φ(χ + a) = e^Pai/)(x),
where a is the lattice constant and we have put h = 1.
Considering an electron (relativistic, obeying the Dirac
equation) in the field of a strong wave, Nikishov and
Ritus1-3·1 introduced the concept of four-dimensional
quasimomentum. Its fourth component was called quasi-
energy.

Two papers C 4 ' 5 ] , published practically simultaneously
in 1966, applied the quasienergy concept to an atomic
system in the field of a wave (see a lso C 6 ' 7 : l ) . Ritus1-4-1

considered a concrete method of obtaining the wave func-
tions of QES. By definition, these functions satisfy the
condition

. ΨΛ(ί4-Τ) = <" iFlV(i)· (1)

Κ we separate the harmonic factor, we can write

(2)

where φ^Λ + T) = <pk(t), so that <pk(t) is a strictly per-
iodic (but not harmonic) function of the time2 ). tp^ and
<pk also depend on x.

The function ip^ can be expanded in a Fourier series:

n=-t», ft=0
(3)

Ritus has constructed equations for the determination of
the coefficient c ^ and of the quasienergy Fj itself.

Zel'dovich [5] also introduced the concept of quasi-
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energy in QES, did not consider the concrete method of
calculating F^ and ip^, but instead considered in detail
the question of the radiation by the system, tt has been
noted, in particular, that Fj is defined in modulo ω, i.e.,
F i = Fĵ  ± ω = FA ± 2ω, so that we cannot say, for exam-
ple, that F2 > Fi, since it is always possible to choose3'
integers (not necessarily positive) m and η such that

We thus have a democracy—all the QES spontaneously
go over into one another and there are no energy hin-
drances, since the strong wave is a reservoir of energy.
All that remain are hindrances of the type of parity. A
transition between two specified states 2 and 1 gives not
a single line, but a series, in accordance with the fact
that the quasienergy is defined in modulo ω. However,
since this modulus is the same for both states, the
series is of the one-parameter type, and the frequency
depends on (n - m) but not on η and m separately.

Obviously, individual terms of the Fourier expansion
give results that do not differ from the standard pertur-
bation theory. The concept of quasienergy is useful but
not essential. Ε would be difficult, however, to consider
strong nonlinear effects and ignore the quasienergy.

Near resonance, i.e., at E2 - Ei - ηω <§[ ω, the QES
differ strongly from the stationary eigenstates of the
unperturbed atom even at the relatively weak electro-
magnetic field of a maser or laser wave. It is precisely
in this situation that the departure from the framework
of perturbation theory, realized with the aid of the QES
theory, is particularly fruitful. In a number of cases,
the energy differences within a definite group of levels
(two levels or more, but not a continuum!) are small,
and the mixing of these levels with one another by a
relatively weak field is of importance; remote levels
and the ionization continuum are unaffected.

To the contrary, in the case of optical transitions in
an atom far from resonance, there appears, simultan-
eously with nonlinear effects, a strong ionization of the
atom, and the observation of nonlinear effects becomes
difficult. In this case the quasienergy spectrum turns
out to be continuous, and the discrete states have a com-
plex quasienergy the imaginary part of which charac-
terizes the probability of ionization of the atom in a
given state by the wave. Among the cases in which one
can hope for a useful application of quasienergy are
nearby levels of atoms with molecules resulting from
spin-orbit or hyperfine splitting; the system of degen-
erate levels of the hydrogen atom and the almost degen-
erate hydrogenlike high levels of atoms and ions; rota-
tional levels of dipolar molecules, particularly those
split by the magnetic field; level pairs produced in the
presence of two equivalent states with low probability of
spontaneous transition between them4'. Some of the
foregoing examples are considered in greater detail at
the end of the article.

2. EVOLUTION OF SYSTEM

We consider in greater detail the analogy between the
stationary states of an unperturbed system and the QES
of a system in a periodic field, and the application of
these concepts to the problem of the evolution of a sys-
tem.

In both cases, the Schrodinger equation holds:

idW/dt = $£"¥, (4)

and in the unperturbed case Si = <H?0(x, a/ax) does not de-
pend on the time. Thus, we have before us a linear
partial differential equation. No one, however, even in
possession of a superpowerful electronic computer, will
start to solve this equation numerically5', by a differ-
ence method, by finding the increments

Ψ (χ, t + Δ/) = Ψ {χ, t) - Ι3ΐ<№ (χ, t) Δί. (5)

Instead, the solution is broken up into several stages:

1) we find the eigenstates, i.e., particular solutions
of the type

Ψ* = φ»(ΐ)β-*Ε*'; (6)

2) We represent the arbitrary initial state Ψ(χ, t0) as
a superposition of eigenstates, i.e., we find c k in the ex-
pression

3) The solution of the evolution problem, i.e., of cal-
culating the value of Ψ(χ, t) at an arbitrary instant of
time, is then written out immediately:

Ψ (χ, t) = S ct<fh (x) e~ (8)

This procedure is universally known, tt is presented
here only to demonstrate the complete analogy with
quasienergy theory. Let se = M(x, a/ax, t) contain the
time t in explicit form. Then there are no solutions of
the type (6). However, in the case of a periodic depen-
dence ip(t + Τ) = ψ(Τ) we can find QES, i.e., solutions
that reproduce themselves periodically. Thus, in the
case of a periodic if (t), the first stage consists of finding
solutions of the type

— φ * {χ, t) e (9)

where <pk are not constant but depend on the time
periodically. The second stage consists of expanding an
arbitrary function Φ(χ, t0), specified at the instant of
time t0:

Ψ <*, <o) = Σ wp» (χ, t0) e-iF"'". (10)

Obtaining the coefficient c k , we construct a solution that
satisfies both the Schrodinger equation and the initial
condition at the instant to:

Ψ (x, t) = 2 ck<fk (x, t) e
h

-iF"' = (11)

The analogy is thus complete. The coefficients of the
various ψ. are strictly constant and the general charac-
ter of the solution is directly evident.

A feature common to the solution with the time-inde-
pendent Hamiltonian 3£0 and with the periodic Hamiltonian
Si{t) is that the spontaneous emission (transitions from
one state to another) are disregarded for the time being.
The principal basis in the case oiSi0 is the existence of
a complete orthonormal set of functions <pk(x), which
have a solution of the eigenvalue equation

<2*0<Pft ( 4 = E,,<ph (x).

In the case of a periodic potential, the mathematical
formulation of the problem of finding the QES functions
φ^(χ, t) is at first glance entirely different, and it cannot
be reduced to the problem with time eliminated. It turns
out, however, that the QES also form a complete ortho-
normal system.

In practice, as a rule, a periodic potential consists of
a time-independent HamiltonianSt0 and a periodic part
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Si'(t), Si = St0 +ser. The problem, however, is to deter-
mine the exact solutions of the Schrodinger equation for
3£(t), unlike in perturbation theory, in which Si' would be
regarded as small. Nonetheless, we can trace the corre-
spondence between the solutions for S£o and the solutions
for^(t). We introduce formally for this purpose a
parameter a, define Si=S£0 + aS(, and trace the varia-
tion of the solutions when a varies from 0 to 1. Each
eigenfunction Sio turns out to be set in correspondence
to one quasienergy solution. Η we consider a closed
group of states&e0, which are "intermixed" with one
another by the "perturbation" aSi1, then it is clear that
the number of QES does not differ from the initial num-
ber of states S£o.

In this case we can also indicate an explicit algorithm
for finding the wave functions of the QES and the values
of the quasienergy. We shall consider below concretely
the simplest example of a group consisting of two states.

We proceed from the mathematical problem of states
that depend on the parameter a in the Hamiltonian
Si =S£o + aSi'(t) to the physical problem of smoothly
turning on a periodic potential. Let a = a{t) increase
slowly (during a time much longer than the period T,
which is assumed constant) from 0 to 1. It the system is
in a specified k-th state of Sio at the initial instant of
time and at a = 0, then when a grows slowly the system
goes over into a pure k-th QES state6 '.

Thus, the QES have a clear-cut physical meaning, that
of states obtained when a periodic perturbation Si' is
turned on smoothly. Moreover, we have obtained a non-
obvious theorem: from an eigenstate of *owe obtain, by
smoothly turning on Si', a state that has a periodicity
property with period Τ equal to the period of SB' (see the
review1-2-1). If we use this property, we can obtain the
desired solution of the Hamiltonian Si = Sio+S£' even
without considering the process of turning οηό^.

These statements are undoubtedly correct in the case
of a finite group of states and under the additional con-
dition that there be no exact resonance: F — F, f mw,
where m is an integer. When the continuum plays a role,
an additional investigation is necessary. Exact reson-
ance exists apparently only for noninteracting levels,
just as terms of like symmetry do not intersect in the
stationary theory.

3. RADIATION OF THE EIGENSTATES OF Jf(t)

In the preceding section we have emphasized the
similarity of the QES to the ordinary eigenstates of Sio,
and in particular the complete analogy in the solution of
the problem of the evolution of an arbitrary initial state.
One should see, however, not only the similarity but also
the difference between the QES and stationary states.
This difference is most strikingly pronounced when one
considers the radiation of the system itself, radiation
not included in the Hamiltonians SSo and<5K'.

In the case of stationary states, radiation takes place
only on going from an upper state to a lower one. Yet a
QES radiates by itself (a given n-th QES, without tran-
sition to others, η ± 1, η ± 2, . . .). The quantity J*ip*x^ndV
is not constant, but varies in time with the same period
as the wave. From the condition of periodicity of ψη(χ, t)
it follows that an electromagnetic wave is radiated and
has the same period as the exciting wave. The radiated
wave, however, is not harmonic! Its Fourier expansion
contains a principal component with frequency ω and

F +ω

F'-ω-
F''-ω

small harmonic components with frequencies ηω that
are multiples of ω.

Obviously, this radiation must be classified as coher-
ent scattering; the radiation of a given QES (without
transition to another!) contributes to the real part of the
refractive index of a medium filled with the considered
atoms. We can calculate the nonlinear polarizability of
the medium and the change in the waveform of the wave
as a result of the harmonics.

Transitions between different QES are similar to
transitions from an excited stationary state to the ground
state (or from one excited state to another). Such tran-
sitions occur in accordance with the laws of probability
and are accompanied by emission of photons with a fre-
quency characteristic of the atom, i.e., different from
the wave frequency.

We have already noted in Sec. 1 (Introduction) that in
the presence of two QES ψη and φ^ it is impossible to
say which of them has the larger and which the smaller
quasienergy (see the figure). Spontaneous transitions go
in both directions: ψη — fy. with emission ω' = F n — F^
+ ρω, and ip^ —• φ η with emission ω" = F^ — F n + qw,
where ρ and q are integers" such that ω > 0 and
ω" > 0. In its aggregate, the transition η — k — η is
accompanied by emission of two quanta, such that ω'
+ ω" = (ρ + q)a>, so that the energy taken from the field
of the strong wave (from Si' (t)) is equal to an integer
multiple of the frequency ω of the strong wave, as ex-
pected.

We assume that the transition probability is small
and we disregard the natural widths of the quasienergy
levels. However, the probability ratio of the transitions
^n ~~ ^k a n <* ^k -*• ^n * s significant, since it governs the
stationary number of atoms in different states8', and
consequently also the characteristics of the radiation
and the refractive index, averaged over the ensemble of
the atoms.

Of particular interest is the question of inversion. In
a static field (g%0) it is possible to choose an inverted
initial state, i.e., to specify initial concentrations Njj
> Nn at Ej£ > E n . By creating a resonator tuned to the
frequency ω ^ = E k - En, we obtain a coherent ("laser")
pulse. In the absence of the resonator, we obtain a spon-
taneous emission of frequency ω ^ . In the course of
time, however, all the atoms go over by radiation to the
lower energy state. Ίη the field Si0 without energy pump-
ing, the excited states, and particularly the inverted
state of an aggregate of atoms exist only for a limited
time.

An entirely different case is that of a system situated
in a periodic field S£(t) in the quasienergy situation. It
was noted above that in such a system there are, in prin-
ciple, spontaneous transitions for all states into all
states. As t — oo, a definite distribution of the atoms
with respect to the QES is established and is character-
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ized by a set of numbers N ,̂ where k is the number of
the QES. All these numbers differ from zero at t — «>.

However, if there are spontaneous optical transitions
between each pair of levels in both directions, k = n,
and furthermore with different frequencies ω' and ω",
the situation is reversed for one of these transitions,
say for k — η, ω" = F k - F + qa> (see above), if N k > Nn.
Let us recall the meaning of inversion. We have consid-
ered so far only spontaneous emission at the frequency
ω". However, if there is spontaneous emission, then
there also exists a proportional induced emission, and
there is also absorption of the radiation in the inverse
transition. The concentration relation Nĵ  > N n causes
the induced emission to be stronger than the absorption.
Thus, although the spontaneous emission at the fre-
quency ω" may turn out to be weaker than the spontane-
ous emission of the other lines, say ω', nevertheless the
emission at ω" can be enhanced to the level of a laser
pulse by means of a suitable resonator. In practice one
should nevertheless expect the lowest QES to be the
most populated in the stationary state. More accurately
speaking, in accordance with all the rules of the game,
this QES should be given the expanded title "QES ob-
tained adiabatically from the lower level of the time-
independent SB a ·"

If Si'(t) is small, then the high-frequency components
in this state (remote satellites with large p) are corre-
spondingly small, the probability of spontaneous transi-
tion of the "former lower" state into one of the "former
upper" states is small, and consequently high and diffi-
cult requirements are imposed on the Q of the resonator
at the frequency ω" that ensures generation.

We have not considered here a large number of ques-
tions of importance in the practical calculation of the
generation (for example, the Doppler line broadening,
the kinetics of accumulation of the inverted population,
etc.). Within the framework of a theoretical article on
quantum-mechanical systems in a periodic field, we
must confine ourselves to the indication that generation
of coherent radiation at a frequency different from the
pump frequency is possible in principle.

The greater part of the general considerations given
above has been advanced earlier1·1 '5·1.

4. TWO-LEVEL SYSTEM

Let us show, following'-4-1, how quasienergy consid-
erations are realized in the simplest case of a two-level
system. We disregard spontaneous emission in this
section. The wave function and the evolution of this sys-
tem are determined completely by two amplitudes, a(t)
andb(t):

Ψ (χ, t)=a (t) <p(x) + b (t) χ (χ), (12)

where φ and χ are the spatial parts of the stationary
states of the unperturbed system with energies A and B.
Thus, for an unperturbed system we have

Ψ ο = ' φ (x) + V " i B i X (x). (13)

We assume that φ and χ have different parity; in the
dipole approximation, the interaction with the total en-
ergy Ε is given by the matrix element

Μ = eE j φ (χ) χ χ {χ) dv, (14)

by virtue of which, the final Schrodinger equation in the
presence of a field is

ida/dt = Aa + 2Fcos at-b,
idbldt = 2Fcos at-a + Bb;

(15)

we have put here ii = 1, V is proportional to the ampli-
tude of the wave and to the matrix element, the number 2
has been separated for convenience, and ω is the wave
frequency.

We write down directly the solution with quasienergy
F in the form of Fourier series, i.e.,

a (t) = aae-iFt + a2f.-
i<w»>< + a._&-*V->«·* + . . . ,

b (I) = β , β - Κ ' + ω ) ! + ρ _ ι β - 1 ( Ρ - ω ) Ι _|_ β ^ - Κ Γ + ί ω ) ! _ ( _ _ _ _

Obviously, these series satisfy identically the condition
a(t + T) = e~ i F T a(t) , and analogously for b, since
Τ = 2ττ/ω. It is convenient to write 2 cos wt = e i a ) t

+ β~*ω*, and this makes obvious the rules of parity of
the numbers for the Fourier series for a and b.

Substituting the series into the equation, we obtain an
infinite system of coupled equations for the coefficients.
Equating the determinant to zero, we obtain two eigen-
values F' and F", and then the coefficients at'n, β'η, α η ,
and β£ corresponding to these two solutions. We write
down this system, or more accurately its first two equa-
tions:

Fa0 = Aa0 + V(P, + β.,), (.F + ω) β, = Ββ, + V (α0 + α2). (17)

Let

Β>Α, ι»-(Β-Α) = δ (δ<ω); V<B—A.

Then a reasonable iteration yields F = A + e (e < ω),

ea0 = FPi, (δ + ε) β! = Va0, ε (δ + ε) = Vs,
e', e" = — (δ/2) ± [(δ·/4) + V2]1/». (18)

When the wave is adiabatically turned on (by increas-
ing V from V = 0 at ω = const), the first state, corre-
sponding to the solution e' (+) is obtained from the lower
state:

, aj = l — (W26·), β', = -(19)

The second state e" also pertains to the upper unper-
turbed state:

- 0, F" = A — δ —

α;=—ν/δ, ρ; =
= Β — ω — (20)

At first glance it seems strange that the quasienergy
does not tend to the energy of the unperturbed upper
state Β as V — 0. But we see here precisely a manifes-
tation of the fact that F is defined in modulo ω. In the
second solution, the principal term at V — 0 is

" = βί 'β-
principal term at V

_ χ β ΐΒί ; a s expected.φ" =
At V ~ δ, the coefficients a0 and /3i are of the same

order; in particular, at V > 6 we have

F' = A + V, ψ' = <r<(A+V)< ( φ -). ε-ίωΐ χ

F" = A — V, ψ" = e-'(B- v>' (φβ' ω ( — χ).
(21)

In a typical "resonant" case, the ratio of V and δ can be
arbitrary, V ̂ δ, but both V and δ are small in com-
parison with Β - Α. Ε is then easy to verify that the dis-
carded terms of the series («± 2 i 4 , /3_1;±3...) constitute
an expansion in powers of the perturbation, for example,

-A)\ a'±t -A)' etc.

At fixed ν/δ, we can also speak of expansion in powers
of the "degree of resonance" δ/ω. The denominators of
the expressions for the higher-order terms will contain
Β — A + ω, Β — A + 2ω, ... .
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The iteration and the entire quasienergy approach are
good in the case when the natural width of the upper
stationary state γ0 is small (the probability of the spon-
taneous transition Β — A is small): γο = W B ^ ^ Β - A;
then there is a region

Even the first approximation described above (with a0

and 0i retained) contains nontrivial results. Each of the
two states F' and F" has a variable dipole moment pro-
portional to αΌβΊ and α'ίβ'ί, respectively, varying with
time at the frequency ω. When V < 6, the coherent
radiation is proportional to V2/6Z, corresponding to a
scattering cross section that does not depend on the am-
plitude and depends in Lorentz fashion on the difference
δ = ω — (Β — Α) = ω ~ ωο· When V > δ, saturation sets
in: the radiation tends to a constant limit, by virtue of
which the cross section decreases like V"2. Thus, V
plays the role of the width in the shape of the scattering
resonance; the stronger the wave, the larger the fre-
quency interval in which the cross section has a plateau.

Let us dwell briefly on the history of the problem. By
the method of adiabatic perturbation theory, without ex-
plicitly using the concepts of quasienergy and QES, the
two-level system was considered in a paper by
Popular'-9-1. In terms of the quasienergy, the question
was considered in1-10-1, where both scattering and har-
monics were considered. For an account of the quan-
tized character of the electromagnetic field in this case,

t 3

5. SPONTANEOUS TRANSITIONS

We turn now to spontaneous transitions. The proba-
bility of the transition F" — F' is proportional to
\α'οβ'ί\2. As V - 0 we obtain the maximum probability,
equal to γ0 = Wg^, of the unperturbed system. The
probability of the inverse "unnatural" transition F' — F"
is proportional to \βΊα'ό\2 ~ ν 7 δ 4 when V < δ. The
radiated frequencies are

ω'<" ^ r — + ω^Β — Α — (2FV6) = ω - δ - (2FV6),

= 2ω - (Β+Α) + (2F2/6) = ω + δ + (2VV6).
(22)

The complete cycle F' — F" — F7 reduces to the radia-
tion of ω1'" and w">' with selection of two quanta of en-
ergy 2ω from the classical field of the wave. We note
that the width of the spectral line of the spontaneous
transitions does not become larger than y0 for any value
of V, regardless of the broadening of the coherent-
scattering resonance. When it comes to spontaneous
emission, it is the line shift and not the line width that
depends on the wave amplitude (on V).

In the stationary state, the ratio of the number of
atoms in F" to the number of F' is the inverse of the
ratio of the probabilities. At V < δ we have n"/n'
~ νΥδ4. When V > δ, however, n' and n" become com-
parable. These two states makes contributions of oppo-
site sign to the real part of the forward scattering
amplitude, i.e., to the refractive index. Therefore with
increasing V the refractive index decreases like V"4,
i.e., more rapidly than the scattering cross section.

An examination of the next terms of the expansion
a±2,u> P-i ±3' ··· makes it possible to calculate the co-
herent emission of the harmonics by each of the states.
It is easy to verify here that only odd harmonics, 3ω
and 5ω, proportional to V6 and V10 at small V are pro-
duced. In addition, it is possible to find the probability

of the spontaneous emission ± ( F " — F') + ηω with large
η in transitions from one QES to another.

The system of equations written out above can also
be used to determine the probability of overtone excita-
tion. Let us specify, for example, 3ω = Β — A — δ with
δ <iC ω; we then obtain a resonant solution with large a0,
βι, «2, and j33, and with a resonance condition δ ~ V3/a>2.

It is probable that the method developed above will
also be useful for multilevel atomic-molecular systems.
If the unperturbed system has a continuous spectrum
(in addition to a discrete one), the quasienergy becomes
complex, and this describes multiphoton ionization.
Finally, in addition to spontaneous emission at frequen-
cies different from ω, we can also consider the induced
process, i.e., generation at frequencies ω' and ω" such
that ω' + ω" = ηω.

6. QUASIENERGY AND LINEAR STARK EFFECT

Kovarskii and Perel'man^1 0 ] applied the quasienergy
concept to a consideration of excited states of hydrogen.
The "random" degeneracy, for example of 2S and 2P
levels, makes the excited states of the hydrogen atom
with η > 2 particularly sensitive to the action of an elec-
tric field9'. As is well known, it is precisely in such
atoms that the linear Stark effect takes place. From the
levels 2S and 2P with m = 0 we can construct linear
combination with definite values of the dipole moment
φ + = (2S + 2P)/V2~and φ . = (2S - 2P)/V2~. In this basis,
the electric field yields diagonal matrix elements; in
other words, the field does not cause transitions from
<p+ to φ . or from φ - to φ+. The QES wave functions are
therefore particularly simple in this case:

ψ+ [x, t) =

ψ. (x, t) = (\lV~2) e-'

2P),

_ 2P).
(23)

The expansion of the function βχρ(ϊμ cos o>t) in a Fourier
series is universally known, namely, the coefficient of
cos (ncot) is the Bessel function 3η(μ). We consider now
the absorption spectrum of a normal hydrogen atom
near the line Ly a, i.e., the transition IS — (2S, 2P). If
the atoms are in the field of a strong wave, the Ly a line
splits and satellites ω η = ω0 ± ηω appear, where ω0 is
the frequency of the unperturbed Ly a line. The ampli-
tude of the satellite depends on the amplitude of the
wave in which the atoms are situated, like <Ιη(μ), where
μ = eEao * 73/ω, Ε is the field of the wave, and ea0 · V3~
is the dipole moment of the hydrogen atom in the state
2S ± 2P. It is curious, therefore, that the amplitude of
the satellite depends periodically on the amplitude of
the wave. The higher the number η of the satellite, the
larger the field necessary to obtain the maximum ampli-
tude of the given satellite (the functions J n behave in
this manner).

This example demonstrates not only the strength but
also the difficulty of the quasienergy approach. The
point is that two QES are degenerate here for precisely
the same reason that made it so much easier to find
these states. Therefore an exact analysis of the absorp-
tion probability in the vicinity of LyQ as a function of the
angle, of the polarization, and of the satellite number
calls for allowance for the phase relations between two
QES. This analysis is beyond the scope of the present
article.

The problem of the excitation of the atom was con-
sidered earlierC l '1 3-1 without the use of the quasienergy
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concept. It is of interest to consider also the rotational
levels of a dipolar molecule of the HC1 type or an atomic
system with nonzero angular momentum, but without
random degeneracy. At I t 0 there are 21 + 1 sublevels.
From this we can make up linear combinations with a
definite quadrupole moment that interacts with the grad-
ient of the electric field of the strong wave. On the
other hand, in I — V transitions with different parity,
there is a dipole matrix element, and when the strong-
wave frequency is close to resonance, the sublevels of
two systems, I and /'; are mixed in the QES. The rules
for mixing (selection) depend on the polarization of the
strong wave, for example m' = m ± 1 for plane polariza-
tion and m' = m + 1 for circular polarization10'.

In the case of a diatomic amplitude with constant mo-
ment of inertia, there are whole-number relations be-
tween the energies of the successive levels, and the
resonance for one transition (0 — 1) coincides with the
resonance of the higher orders for the next transitions,
accurate to within the centrifugal deformation of the
molecule.

The situation with a magnetic dipole in a magnetic
field, where the equidistance and the final number of
levels combine, was considered in detail in the theory
of magnetic resonance. Even this short list demon-
strates the large size of the class of phenomena to which
the quasienergy theory can be applied.

7. NUMERICAL ESTIMATES

At what value of the field and at what power of the
laser beam do the characteristic phenomena described
above become manifest? Phenomena in weak fields can
be described with the aid of quasienergy, but they are
also successfully described by stationary perturbation
theory—a circumstance noted on the very first page of
this review. The advantages of the quasienergy approach
appear in fields such that the first nonvanishing approxi-
mation of perturbation theory is adequate. Let us esti-
mate the required field.

We start with the simplest case (see Sec. 6 above
and [ l o : l ), of the system of (2S - 2P) levels of the hydro-
gen atom. In this case a) the unperturbed Hamiltonian
<$£0 is degenerate, b) the perturbation is factorized,
3t' = V(x)coswt, c) it is possible to select the eigen-
states of<%Oand V(x) simultaneously, d) the QES are
also factorized as a result, i.e., they take the form
<p(x)f(t) where, however, f(t) is not a harmonic function:

/ ~ exp (—ίγω f cos ωί dt). (24)

Obviously, the condition that the result be nontrivial is
y > 1. The dimensionless criterion γ is equal in this
case to

: M
2 s 2P = ]f3 eaoElhu), (25)

where Μ is the matrix element of the transition in the
field E, and a 0 is the Bohr radius (a0 = h2/me2).

The condition γ = 1 gives the field amplitude
Ε = mew/hVT. Let us find the corresponding power of
an ideally focused laser beam. We specify the focal-spot
area λ2, where λ is the wavelength; we obtain

W = £2λ2<:/8π = (π/6) me2 (mcVh) eVhc = 2-10laerg/seC = 2-105W.

This value can be regarded as rather modest in com-
parison with the presently attainable powers. It should
be borne in mind, however, that it pertains to a focused

beam. Spectroscopic experiments call for a field that
fills a sufficient volume. However, consideration of ex-
perimental devices is not the task of the present article.

If we are dealing with electron spin flip, then the ma-
trix element of the interaction is equal to Μ = μΗ; it is
smaller than in the preceding case by a factor (fic/e2)·/?
« 240. Accordingly, the required power is 6 χ 104 times
larger, ~1010W. Realization of experiments with this
power is a difficult task.

Finally, a typical task is the excitation of a nonde-
generate state by radiation close to resonance. In this
case we cannot confine ourselves to the first term of
the perturbation-theory series, when

y' ~ Mlh | ω - ω0 I ~ l. (26)

For an allowed transition we have Μ ~ eaoE, and the
condition γ' = 1 gives for a beam with cross-section
area S a power value

Ws = 6 ·106 (5/λ2) | (ω - ωο)/ω |a W- (27)

8. CONCLUDING REMARKS

It must be emphasized that the majority of the results
were obtained earlier by other methods. We note below
the corresponding investigations and the results. The
quasienergy method developed above, however, seems to
be the most adequate and economical even where the
results are known. New ways of obtaining these results
will be of methodological interest.

The task of the present methodological article is to
demonstrate, with a very simple example, the method of
operating with quasienergy and the benefits of this con-
cept, especially in the simplest resonant case. The des-
cribed simple methods can be useful in problems con-
nected with astrophysical maser radiation, and in the
theory of light transmission through rarefied media (see
the note in^15-1). The author did not intend to review fully
the entire literature. Concerning more complicated
problems, we confine ourselves to indicating the refer-
ences [ 1 0 ' 1 3 ) 1 6 ' 1 7 ] . We shall discuss briefly only the
principal question, namely, do states with definite real
quasienergy always exist for a system situated in a
periodic field?

Any action on the quantum mechanical system can be
regarded as a unitary operator. We consider the action
during one period. The quasienergy is the result of
diagonalization of the operator of single-period action.
In a finite-dimensional system (for example, in a two-
level system), diagonalization is always possible. The
unitarity of the operator ensures reality of the quasi-
energy. In an infinite-dimensional system, however,
diagonalization is not always possible. Perelomov and
Popov (see1-17-1) have constructed an interesting example
by considering a harmonic oscillator with frequency ω0

and a perturbation of the type Vx2 cos a>t. At values of ω
close to parametric resonance (ω « 2ω0), the energy of
the oscillator increases without limit from any initial
state, meaning that there are no QES that repeat with a
period 2ν/ω.

Thus, the very existence of quasienergies is not triv-
ial. In real systems, the quasienergy concept is approxi-
mate; it exists to the extent to which one can neglect
multiphoton ionization. But one need not fear the ap-
proximateness once the character of the approximation
is understood. It is appropriate to refer here to the re-
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markable article by Fock^183 concerning approximate
solutions in physics.

LIST OF SYMBOLS

4ι = 1—Planck's constant;
mo—time -independent Hamiltonian;
ae(t)—Hamiltonian that depends periodically on time;
<a?'(t)— time-dependent part of *?'(t), ee(t) = ae0 +^?'(t);
a—parameter describing the turning-on of the per-

turbation, ~se = 3e0 + age', 0 < a < 1;
T—period, ne(t + T) = <№(t);
ω—circular frequency of &e(t) andae'(t), so that ω

= 2π/Τ;
Ejj—energy of the k-th eigenvalue of se0;
φ^(χ}— corresponding eigenfunction, δϋοψ^ = Ek<Pk
(pk(x)exp(-iEkt)—solution of Schrodinger equation

for se0;
F^—quasienergy of k-th quasienergy state of se(t);
^jj(x, t) = φ^(χ, t)exp(—iF]jt)—solution of the

Schrodinger equation for <s>?,(t);
ί, t)— the corresponding eigenfunction, <ρ̂ (χ, t + Τ)

+ ρω—satellites of the quasienergy of the

kk-th state, ρ is an integer (positive, negative, or
zero);
= wjmj. = Fjjp - F™—frequency of transition from
k-th to n-th state of the quasienergy as a result of
the satellites kp and nq, ρ — q = r;
= F^ — F n + νω > 0—condition of spontaneous
radiation, ω' > 0;

j—concentration of particles in the k -th state, cm"3;
> Nn—inversion condition at the frequencies
ω' = w k n r for all r such that ω' > 0.

"Reported at Conference on strong electromagnetic waves (Balaton,
Hungary, September 1972).'

8 We call attention to the fact that F^T is a number in the exponential
of (1) but is a linear function of the time in the exponential of (2).

3 ) However, such a change in the definition of F; simultaneously changes
the corresponding function ψ-ν which nevertheless remains periodic.
On the other hand, we shall note below the possibility of obtaining
QES by a smooth transition from a rigorous stationary state for a time-
independent Hamiltonian 3C0. In the latter case, the energy of the k-th
state Ε]ς is uniquely defined. During the course of a smooth transition
one can see which of the values F^ + ηω goes over into E^; this value
of F^ can naturally be called the principal value, and the remaining,
which differ by an integer multiple of ω, can be called satellites.

4)We note also the application of quasienergy in the analysis of an elec-
tron acted upon by two fields, a constant magnetic field and a wave
field [ 8 ] ,

5*The discussion that follows pertains to a situation in which the princi-
pal role is played by discrete states. In a continuous spectrum, particu-
larly for a free electron, direct methods can be effective.

6 ' ln the case of instantaneous switching (a = 0, t < t ] , a = 1, t > t,) we
would have to expand ^ ( x ) in terms of sf>n(x, t ,), and then the coeffi-

cients cnk with η Φ k are not equal to zero in principle.
7 )Not necessarily positive. It is also possible for one of them to vanish.
8 ) Without taking the spontaneous transitions into account, this quantity

will depend on the initial conditions and on the manner in which the
wave is turned on.

"The influence of random degeneracy in the problem of multiphoton
ionization of the atom was considered by Keldysh [ 1 2 ] .

10)The case of an arbitrary number of degenerate states was considered
by Kovarskri and Perel'man [ 1 4 ] .
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