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The question of the form of the momentum-energy tensor of the electromagnetic field
(in a medium) remains debatable to this day. The dilemma of whether the photon mo-
mentum in a medium is equal to nhf/c (Minkowski) or hu/nc (Abraham) therefore re-
mains unresolved (n is the refractive index). Simple considerations based on the law
governing the motion of the center of gravity of the "field + medium" system lead, how-
ever, to a unique choice of Abraham's tensor. The Jones-Richards experiments do not
contradict this, although they do not lead to a solution of the problem. In principle, meas-
urements of the Jones-Richards type (of the pressure of light in media) in the pulsed
regime would yield the solution of the problem. Considerable space is allotted to an
analysis of the question of the "rejection" of Abraham's tensor, a question advanced by
Laue and supported by many authors. It is shown that the use of the Laue criterion is
based on an error in the very formulation of the question. The arguments advanced in
this connection are illustrated by using as an example analogous relations in the case of
the motion of a simple static system, namely a charged capacitor. The conservations
laws applied to a static electromagnetic field having angular momentum also lead to
Abraham's expression for the field momentum density.
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INTRODUCTION ments follow (according to his assumption) from the

The question of the momentum-energy (m-e) tensor1' f o l l o w i n g considerations.
of an electromagnetic field in an electrically polarizable Imagine a light pulse propagating in the form of a
medium should long ago have been relegated to the wave packet and moving yi a medium with velocity c/n
archives of classical physics. (n is the refractive index) relative to an observer who

_ . . , , , , . . , is immobile in this medium. Moving together with this
During the last decade or two, however, many papers , , , , ,. . . . / v . * • ^- 4. u- u

, & . . . . . . . . . ., ,, ' ,,, ., . packet (at the same velocity c/n) is a certain object which
have been published m which the authors returned to this " ., \ . , „ ,. . .: s. , , , i u ,. . t . J
theme. The central point in this literature is occupied 1 S S l t u a t e d a t ** hmes » ^ ^ . f i e l d °f the hfh* ^am, and
by the question of ^ r e l a t i v e estimate of two tensors, consequently remains a.all tunes illuminated by this
those of Abraham and Minkowski, which were proposed beaf1! Obviously, this object will also be seen as ilium-

, , , . . , re mated by another observer moving with an arbitrary
more than hall a century ago. velocity relative to the first observer. In order for this

A paradoxical situation has developed in the history condition to be satisfied it is necessary that the velocity
of the problem, as a result of which problems concern- of the light-wave packet be transformed like the velocity
ing certain basic premises of classical electrodynamics of a material point on going from the reference frame of
have been under discussion to this day. The literature the first observer (in which he is immobile) to the
of the question abounds with contradictions and variants, "second-observer system."
and the result is that concepts which seemingly should . ,. , , , , ,, .
not be debatable still remain unclear. We shall return +fc According to Laue's assumption, he had proved that
.-t the end of the article to these contradictions, which t h e Abraham tensor should be eliminated from consider-
often appear to be based on slipshod treatment of the a t l™ S1

u
nce lt contradicts, as it were, the criterion indi-

physical meaning of various formal constructions. c a t e d a b o v e - Assuming on this basis Minkowski's ten-
sor, Laue drew far-reaching conclusions from this.

A highly adverse influence on the entire subsequent Inasmuch as Laue's arguments (which from our point of
history of the question was exerted by a characteristic view are inconsistent) continue to be constantly referred
episode. In 1950, Laue'-2-1 called attention to certain to, and inasmuch as analogous considerations leading to
limiting requirements that must be satisfied by the rejection of Abraham's tensor were subsequently devel-
transformation properties of the components of the mo- oped also by Moller[3:l, this question will be considered
mentum-energy tensor of a light wave. These require- by us in greater detail.
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This article is not a review of the literature of the
problem. A sufficiently complete list of papers devoted
to the subject can be found in a recent review 1^.

There are a number of papers of formalistic nature,
whose authors approach the solution of the question by
using generalizations, formulated in postulates, as a
basis for subsequent application of a variational method.
In most cases this formal approach seems to lead to a
solution in the form of the Minkowski tensor (see,
e-gvC5"1 )· The authors of another group of papers
(de Groot'-6-1 and co-workers) followed the path of
microscopic consideration of the problem. This method
calls for introduction of an exceedingly cumbersome
computation formalism which is difficult to visualize.

It might seem that the just-indicated group of papers
should have been prefaced by a fully unambiguously es-
tablished scheme of concepts within the framework of the
Maxwell-Hertz electrodynamics2'.

The fact that the alternatives in the choice of the form
of the m—e tensor of the field (the Abraham tensor or
the Minkowski tensor) still remains unresolved leads,
however, to an ambiguity in the construction of this
scheme of basic premises, inasmuch as the question of
the ponderomotive3' forces in the electromagnetic field
and of the momentum of this field remains debatable.

However, analysis of the question on the basis of
simple models leads to the unique conclusion that, within
the framework of the phenomenological picture and when
applied to limiting cases of idealized dielectric media,
the correct solution of the problem was given by
AbrahamC73 in the form of the tensor proposed by him.
This conclusion, under certain conditions and simplifica-
tions, can be drawn on the basis of ideas advanced back
in 1954 by the Hungarian physicists Marx and Gyorgyi^8-1,
and in part also in an earlier paper by B e c k W 4 > .

If we stipulate satisfaction of the conservation laws
in conjunction with the Maxwell-Hertz equation, the re-
sult is, as will be shown, a definite and sufficiently
strong "selection rule" (for the theories).

A different "selection rule" was used by Laue—one
that appeared to follow from his aforementioned criter-
ion—and this has led to erroneous conclusions.

In view of the contradictions in the basic scheme of
the concepts, it is advisable at this stage to disregard
the complications introduced by taking the laws of
thermodynamics into account. We assume for this pur-
pose that the dielectric constant of the medium is a con-
stant that does not depend on the electric field intensity
or on the parameters characterizing the state of the
medium.

The two models considered in detail below satisfy,
for example, a requirement that is necessary in this
connection: the density of the medium, expressed in
terms of the number of particles (dipoles) per unit vol-
ume, remains unchanged (does not depend on the field
intensity).

The use of this abstraction is expedient and seemingly
also permissible just as, for example, it is permissible
and expedient to consider in theoretical mechanics the
laws of motion of an absolutely rigid body, disregarding
the elasticity and plasticity properties.

In the exposition that follows, only elementary and,
inasmuch as possible, illustrative deductions will be
used.

For the sake of simplicity, the medium is assumed
nonmagnetic and the particular case of the electromag-
netic field of a plane wave is considered.

1. PHOTON MOMENTUM AND
CONSERVATION LAWS

In connection with the situation outlined above, no
clear-cut answer has as yet been given to the question
of the value of the photon momentum in a medium, say
an ideal one characterized by a constant refractive index
(that does not depend on any parameters).

The Minkowski and Abraham tensors lead to essen-
tially different expressions for the density (g) of the
field momentum.

Anticipating the results of derivations that will be
given below, we present these expressions here. In vec-
tor form they are given by

gM = (1/4JK) [DB] ( 1 . 1 ) *

according to Minkowski (see, e .g . , ί ύ ) and

gA = (1/4JW) [EH] (1 .2)

according to Abraham (see1-7-1); here E, H, D, and Β are
the vectors of the intensities and inductions of the elec-
tric and magnetic fields.

When speaking of a photon, we imagine a "packet" in
the form of a "train" of plane (plane-polarized) waves,
carrying an energy equal to S = hv. According to
Maxwell's equations, the relation Η = nE holds in the
field of a plane wave. (For simplicity we assume here
and throughout μ = 1.)

At an appropriate orientation of the coordinate axes
we obtain, according to (1.1) and (1.2),

gM = n*EViM = nulc (1.3)

and

gA = nPlim = ulnc (1-4)

(since D = eE and e = n2; u = n2(E2 + Η2)/8ττ); here (and
throughout) u is the light wave energy density.

From this we get the following expressions for the
"photon" momentum (G№ and G^) in the medium:

(1.5)= gn = nullc = nhvlc

according to Minkowski (I is the length of the train,
I = hy/u), and

G* = gA; = hy/nc (1.6)

according to Abraham.

We note first that the question is also unclear from
the experimental point of view. Experiment does not
yield a direct answer to this question, and this will also
be discussed later on.

A unique answer is, however, obtained by turning to
the laws of conservation of the momentum and velocity
of the center of gravity (as applied to the "field + med-
ium" system). This, in any case, is the situation if we
regard as correct the concept of the inertia! character
of the energy in accordance with the Einstein relation
g = me2.

From the simple scheme of the "Gedank experiment,"
which will now be considered, it follows that Minkowski's
assumption contradicts the law of constancy of the veloc-
ity of the center of gravity of the "radiation + material
body" system. This was first indicated intl0-O

382 Sov. Phys.-Usp., Vol. 16, No. 3, November-December 1973 D. V. Skobel'tsyn 382



For the proof, we consider the "packet of light waves
+ medium [a transparent plate (rectangular parallele-
piped) whose faces are parallel to the coordinate plane]
system." Let us compare the displacements of the cen-
ter of gravity of this entire system along the χ axis
(direction of beam propagation) in two cases:

a) The "packet" is outside the medium moving
towards its (left-hand) boundary, passes through the
medium, and then, at the instant of time chosen by us,
is in a position that is symmetrical to its initial position
relative to the medium (Fig. 1).

b) The initial and final positions of the packet rela-
tive to the medium are also symmetrical. But the packet
has bypassed the medium in moving from the first posi-
tion to the second. (The fact that the packet now moves
as a result along a trajectory parallel to the χ axis but
not coinciding with it is obviously of no importance for
the derivation.) If the medium were immobile during the
time of passage of the light packet through it, then the
displacement of the entire system ("light + medium")
as a whole along the χ axis would be the same in the two
indicated cases. However, in the former case the time
required to displace the light over the length of the light-
conducting plate is larger in the first case, since the
speed of light c/n is less in the medium than in vacuum
outside the medium (we assume that η > 1). Since the
velocity of the displacement of the center of gravity of
the system is the same in both cases, the displacement
of the center of gravity along the χ axis from its initial
to the final position should be larger in the former case.
This means that the light-conducting medium will not
remain immobile and should be displaced in the light-
propagation direction. In other words, this means that
when the light enters the medium it transfers to it a mo-
mentum in the beam direction, in contradiction to
Minkowski's assumption (the momentum of the light
ni/c in the medium is larger than the momentum E/c in
vacuum).

Thus, simple qualitative considerations would seem-
ingly be sufficient to exclude Minkowski's hypothesis.
On the other hand, if we write down the equations for the
conservation of the momentum and the constancy of the
velocity of motion of the center of gravity, then we can
also obtain a quantitative result.

We denote by Xc the coordinate of the center of grav-
ity of the system, by Μ the mass of the plate, by μ the
mass equivalent to the light energy, and by G the mo-
mentum of the wave packet in the medium. From the
definition of the center of gravity of the system we ob-
tain, by differentiation, the following equation:

dXJdt = [M (dxjdt) + μ (dxJdt)]/(M + μ); (1.7)

here Xi and X2 are the coordinates of the center of grav-
ity of the plate and of the light packet, respectively5'.

Let (dXc /dt)x be the velocity dXc /dt prior to the entry
of the light into the medium:

(dXJdt), = μο/(Μ + μ). (1.8)

We denote further by (dX,, /dt)2 the value of the velocity
for the time interval during which the light passes
through the medium. The momentum-conservation
equation yields

Μ dxJdt = (g/c) - G. (1.9)

Here dx2/dt = c/n, and consequently, according to (1.7)

_ FIG. 1

But the constancy of the velocity of the center of gravity
of the system calls for the equality

(dXJdt)t = (dXJdt),. (1.11)

Substituting (1.8) and (1.10) in (1.11), we obtain

\>.c = [(tic) - G] + μ (c/n). (1.12)

Hence

G = (β/c) + μ \(cln) — c] = tine, (1-13)
inasmuch as

μ = %lc\

Thus, Abraham's expression (1.6) follows from the
conservation laws for the photon momentum.

In these simple calculations we have, of course,
tacitly assumed that the energy flux is constant over the
entire path of the beam, and consequently that energy
losses due to reflection from the boundary of the med-
ium have been excluded. This means that we have tacitly
assumed that a "nonref lee ting" transition layer with a
smooth transition of the refractive index from the value
of η in the medium to the value 1 outside the medium is
coated on the boundaries of the medium at the points
where the beam enters and leaves. Such "nonreflecting"
faces of the medium are presently widely used in laser
technology. In the theoretical limit (and to some degree
also in practice) it is possible to realize conditions
under which the reflection losses are reduced to an arbi-
trarily small value.

In addition, it should be noted that we have identified
the group velocity of the light with the phase velocity,
something that can also be realized with any desired ac-
curacy if the wavelength band is chosen such that the
anomalous-dispersion bands are situated somewhere in
a remote region of the spectrum and exert no influence
(the refractive index does not depend on the wavelength
in this band).

The choice of an expression for the momentum den-
sity of the field leads uniquely to a definite conclusion
concerning the density of the forces exerted by the wave
field on the medium.

2. MAXWELL'S THEOREM, PONDEROMOTIVE
FORCES, AND ELECTROMAGNETIC
MOMENTUM

We recall the initial data on the ponderomotive forces
to which Maxwell's equations lead, and primarily the
theorem of the Maxwell stresses, which makes it possi-
ble to simplify the derivations presented below and to
clarify them to a certain degree.

For the case with static fields, this theorem states
that the resultant Κ of forces applied to bodies situated
within a certain closed surface S is expressed by the
integral over the surface (S) of the Maxwell stresses

= j f dQ = K, (2.1)

(dXJdt), = l(M/c) - G + μ (cln)\l(M + μ). (1.10)
where d Ω is the volume element and f is the force den-
sity.
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Since we shall subsequently have frequent reference
to Eq. (2.1), and since the very concept of the stress
tensor follows from this equation, we recall some per-
tinent relations and definitions.

The vector T(n) introduced under the integral sign in
the left-hand side of the equation is the tension force
acting on a surface element dS, the outer normal to which
is directed along a specified unit vector n. The compon-
ent Tx(n) of the vector T(n) is defined by the relation

Tx (n) = txx cos (n, x) + txy cos (n, y) + txz cos (re, z). (2.2)

Analogous relations hold for the components T y and T z .

The nine quantities (ίχχ, t x y , t ^ ) plus the six others
entering in the analogous expressions for Ty and T z

form a three-dimensional symmetrical ("relative")
stress tensor.

The four-dimensional m—e tensor (the spatial com-
ponents of which make up the so-called "absolute" stress
tensor6') is obtained by generalizing the three-dimen-
sional tensor T j m , which will be discussed later on.

Returning to our interrupted exposition, we refer first
to the following calculation result. IE in the particular
case of the electrostatic problem we deal with a field in
the absence of true electric charges in an "ideal" dielec-
tric with a dielectric constant e, then, as shown by cal-
culation, Maxwell's theorem leads to the following ex-
pression for the density of the ponderomotive force f
acting on the dielectric ( t ? a- !, pp. 150—154):

f = - ( £ 2 / 8 π ) grad ε. (2.3)

It can easily be shown, taking Maxwell's equations into
account, that (2.3) is the equivalent of

where

f = (P-grad) Ε — grad (PE/2), (2.4)

(P-grad) = Px (dldx) + Pv (dldy) + Pz (dldz); (2.5)

Ρ is the polarization of the dielectric. Formulas (2.3)
and (2.4) will be needed by us later on. Both terms in
(2.4) have a simple physical meaning, to which we shall
return.

By introducing the concept of electromagnetic mo-
mentum, Abraham generalized Maxwell's theorem to the
case of alternating and high-frequency fields.

Assume that we are considering electric charges on
conducting bodies situated inside a closed surface S in
vacuum. In the case of the electrodynamic problem,
transformation of the integral of the Maxwell tensions
over the surface S leads to the equation

\ Τ (re) dS — Κ = Γ (l/4jie) (d [EUVdt) ι (2.6)

where Ε and Η are the electric and magnetic field in-
tensities.

As postulated by Abraham, the right-hand side of
(2.6) now contains the derivative dG/dt, where G = JgdSl
is the electromagnetic momentum of the field in the en-
tire volume inside the surface S and, accordingly, g is
the density of this momentum.

If there are no true charges inside the surface S, and
consequently Κ = 0, then Eq. (2.6) in the case of a field
in vacuum takes the form

f Τ (η) dS = (1/4π«) f (d [EH]/di) dQ = j (dgldt) dQ. (2.7)

Therefore g (in vacuum) is given by

g = (1/4π<0 [EH]. (2.8)

However, if the space inside the surface S is filled
with a homogeneous medium and there are no true
charges in this space, as before, then the appropriate
transformation of the surface integral into a volume in-
tegral yields

f Τ (ri) dS = (dldt) f (εμ/4π<!) [EH] dfi, (2.9)

where e and μ are respectively the dielectric constant
of the medium and its magnetic permeability. In this
case one cannot introduce a priori and in a unique man-
ner an expression for the electromagnetic momentum
density in the medium.

If it is assumed that no forces act, even in an alter-
nating electromagnetic field, on a homogeneous elec-
trically uncharged transparent medium (and in the ab-
sence of constant magnetic moments), and if it is as-
sumed at the same time that Abraham's interpretation
of the expression in the left-hand side of (2.9) remains
in force, then, in accord with the meaning of this equa-
tion, the integral in the right-hand side yields the mo-
mentum of the field. According to Minkowski it is
necessary to assume that the density of the ponderomo-
tive forces is zero under the conditions indicated above.
This leads to the conclusion that the radiation-momen-
tum density is

gM = (βμ/4πε) [EH] (2.10)

(or, if we assume conversely that the density gM is given
by (2.10), we arrive at the conclusion that there are no
ponderomotive forces).

On the other hand, according to Abraham, expression
(2.8) for the momentum density remains in force also in
the case of a field in a material medium:

gA = (l/4nc) [EH]. (2.11)

This means that if the right-hand side of (2.9) is re-
written in the form

(llinc) Γ f (d (EH]/di) dQ + \ (didt) (εμ — 1) [EH] do] ,

and consequently

f Τ (re) AS = (dQMdt) + K

= (dG*/di) + \ (dldt) [(εμ — l)/4nc] [EH] dQ

(a natural assumption), then we have the density of the
ponderomotive force in the integrand of the second term
of the second equation of (2.12).

The forces exerted by a light wave on a transparent
dielectric (or magnetoelectric) were introduced by
Abraham "hypothetically." These "Abraham forces,"
however, have a simple physical meaning. The question
is considered in detail in1-8-1. We advance here in this
connection only the following considerations:

Let us return to expression (2.3) for the density of
the force f in an electrostatic field. This expression
(and the equivalent (2.4)) is valid only if the total
(internal) energy can be identified with the "free" en-
ergy. Stipulating that we are dealing with an "ideal"
dielectric, we assume that this condition is satisfied.
The models which will be considered below satisfy the
indicated requirements.
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We shall henceforth consider the field of a plane elec-
tromagnetic wave. The first term of the expression (2.4)
does not play any role in this field. In the second term
we have the gradient of the quantity Ρ · E/2, where Ρ is
the polarization and Ε is the electric field intensity.

If, for concreteness, we visualize, the dielectric in
the form of an assembly of dipoles with an alternating
dipole moment of the electric charges, which are kept
together by quasielastic forces, Ρ · Ε/2 is the polariza-
tion energy (per unit volume) stored in the given field
at the given instant of time in the form of the energy of
these quasielastic forces.

The mechanical (ponderomotive) forces known from
electrostatics and determined by the gradient of an en-
ergy density equal to7 ) Ρ · E/2, also appear in the field of
an electromagnetic wave, but added to them is also the
Lorentz force exerted by the magnetic field on the polar-
ization current.

Considering further, for simplicity, a plane wave with
a normal directed along the χ axis, we can put

grad = dldx.

In addition, we bear in mind that from the plane-wave
equation, as can readily be verified, it follows that

didx = —(nic) d/at, (2.13)

where η is the refractive index of the medium and c is
the speed of light in vacuum. The Lorentz-force density
is

fL = (l/c) {(dVldt) H]. (2.14)

Under the conditions indicated by us we have

'ft = (Uc) (dP/at) H. (2.15)

The total density of the ponderomotive force is

/ = / t + /,. (2.16)

where

fp = —(dldx) (PE/2) = (d/dt) (n/c) (PE/2). (2.17)

If we take into account Maxwell's equations and the rela-
tion

Η = nE (2.18)

(n is the refractive index), which follows from these
equations for the field of a plane wave, then, by simple
manipulations we can easily verify that

/ = [(e _ l)/4jid 3 (EH)iat. (2.19)

Taking (2.18) into account, expression (2.19) (again for a
plane-wave field) can be rewritten in the form

f = [(n2 _ I)/en] du(t)/dt, (2.20)

If we assume (as will be done from now on) that the
medium is a body with a very large elasticity coefficient,
and in the limit an ideally rigid body, and in addition
that the wave-packet boundaries are located inside the
medium, then the pressure at any instant of time and in
any cross section is balanced by the elastic stress of
the medium:

\Tmed\=[(n*--i)/n*]u(t, x). (2.23)

The derivative au/at when averaged over the time (or
the derivative 9u/8x when averaged over space) in the
field of a plane sinusoidal wave is equal to zero. Conse-
quently, the density of the ponderomotive force (2.21) is
also equal to zero on the average.

On the other hand, the pressure of light and (under
the boundary conditions indicated above) the elastic
stress of the medium, which is equal and opposite to the
light pressure, have the absolute value

Further, according to (2.13), we have

/ = -l(n2 — l)/n2] du (t, x)ldx. (2.21)

Relation (2.21) can be interpreted as follows: The den-
sity of the ponderomotive force is given numerically by
the gradient (with minus sign) of the pressure (of the
light on the medium), equal to

l)/n2] u, (2.24)

where u is the time-averaged energy density.

By way of illustration, and bearing in mind the con-
clusions that will be needed later on, we apply the
Maxwell-Abraham theorem in the three situations shown
in Fig. 2. We consider the cylinder CD. It is easy to
verify that its lateral surface makes no contribution to
the integral J"T(n)dS. Of the two end surfaces (whose
area is assumed equal to unity) such a contribution is
made only by one, the shaded base of the cylinder CD.
In this case, consequently, the left-hand side of (2.12)
contains the quantity J"T(n)dS = u, since8'

Τ (η) =-Τχ = ~txx = u (t, x).

The right-hand side of the first of the two equations
of (2.12) contains the sum of two terms, F m e ( j
+ (dGA/dt), where F m e d (K in (2.12)) is the force acting
on the medium in the volume of the cylinder, and dGA/dt
is the increment of the electromagnetic momentum per
unit time in the same volume. The quantity dGA/dt can
be expressed as the product of the momentum density by
the speed of light c/n:

dGA/dt = gc/n = lu (t, x)lcn] c/n = u/n1 (2.25)

where u(t) is the energy density. We have assumed that
μ = 1 and n2 = e. Formula (2.20) is valid also in the more
general case (μ / 1) at η2 = εμ. The derivation of (2.20)
in this more general form is given in Appendix 1 at the
end of the article.

(according to Abraham's postulate, since
gA(l/4irc)|E χ H| = nE2/47rc = u/nc). Consequently, (see
the first equation of (2.12))

" = fmed+ (»/«2>. •fmed- W - W i « (<, *)· • (2.26)

The force F m e c j is equal to the light-wave pressure re-
ferred to above.

The same considerations, when applied to the cylinder
AB, result in an oppositely directed (with magnitude
•Fmed) light-pressure force on the trailing edge of the

pit = - 1)/«2J u (t, x). (2.22)
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wave. In (2.26), u(t, x) is the instantaneous value of the
field-energy density at the given cross section (x).

Finally, considering the cylinder (ab) of Fig. 2, we
obtain the average value of the force F t r acting on the
transition layer, in the form of the difference between
the average Maxwellian stresses (pressures) on the
shaded end surfaces of the cylinder ab:

| F t r 1 = u - uv = [(n - l)/n\u, (2.27)

where u and u^ are the energy densities in the medium
and in vacuum, respectively. (By assumption, Uy = u/n:
the energy flux uc/n to the medium is equal to the energy
flux nvc in the vacuum.) The force F^r draws the transi-
tion layer towards the vacuum in a direction opposite to
that of the light beam. The electromagnetic momentum
in the volume of the cylinder ab remains, on the average,
unchanged. Consequently, the result of the calculation
of the force Fj.r does not depend on any assumption con-
cerning the value of the momentum density, so that this
result is reached equally by both hypotheses,
Minkowski's and Abraham's. It is easy to calculate F^r
also by using relation (2.3) (see Appendix 2).

One more remark concerning the terminology. Above,
in connection with Eq. (2.25), we set above the momen-
tum flux equal to gc/n, i.e., equal to the product of the
momentum density by the speed of light (or by the mo-
mentum transport speed). The flux was calculated as the
flow of a liquid with density g. However, the momentum
transmitted by the field through a unit cross-sectional
area is, generally speaking, larger than the value calcu-
lated by the method indicated above. Namely, in this
case, if ponderomotive forces of the field are present,
then a mechanical momentum equal to the radiation
pressure on the medium is also transferred through a
unit cross-section area. The total momentum transmit-
ted per unit time through a unit surface (equal to the
sum of the two indicated terms) is equal to the Maxwell-
ian pressure (or to the tension with negative sign). In
1908, Planck^11^1 proposed to interpret the Maxwellian
pressure as the density of the total flux of the electro-
magnetic momentum of the field. Using ensuing term-
inology, we can state that the total momentum flux is
defined in the same manner after Abraham and Minkow-
ski (see (2.9), (2.10), and (2.12)). We shall return to this
remark at the end of the article.

3. EXPERIMENTS AIMED AT MEASURING
THE PRESSURE OF LIGHT

Before we proceed to consider the forms of the m—e
tensor, we shall discuss briefly the experimental veri-
fication of the hypotheses of Minkowski and Abraham.

In connection with these questions, the results of
Jones and Richards' ^ measurements of the light pres-
sure on a mirror placed in different refractive media
have been the subject of a debate. Jones and Richards
found that at a given energy flux having the same value
for different media, the light pressure on the mirror is
proportional to the refractive index of the medium.

If the wave packet referred to above is regarded as
a model of the photon, in accord with Minkowski, and
a momentum nhiVc is assigned to this photon, then the
experimental result of Jones and Richards ^ is ob-
tained directly. Reflection imparts to the mirror a mo-
mentum equal to double the photon momentum. Since at
a given light intensity (in different media) the number of
photons per unit surface and per unit time in a unit solid

angle is the same for all media, the momentum trans-
ferred to the mirror per unit time (in other words, the
pressure on the mirror) is proportional to the momen-
tum of an individual photon in the given medium. If
Minkowski's expression is assumed, it follows that this
momentum is proportional to the refractive index, as is
indeed obtained in the experiment ^ a^.

However, regardless of any assumptions concerning
the radiation-momentum density in the medium, it fol-
lows directly from the theorem on the integral of the
Maxwell tensions that the light pressure on the mirror
in a certain medium is proportional to the radiation den-
sity at the surface of the mirror. And the radiation den-
sity is proportional at the same time to the refractive
index, if the light intensity is given and remains con-
stant (uc/n = const, hence u °c n).

Whereas Minkowski's assumption concerning the
radiation momentum can lead to the correct conclusion
that the light pressure in a medium depends on its r e -
fractive index, the inverse conclusion, that Minkowski's
expression is correct, can be deduced from the experi-
mental data only if it is assumed beforehand, in arbitrary
fashion, that the ponderomotive forces due to the propa-
gation of light in a transparent medium are equal to
zero.

The fact that no unique conclusion concerning the
momentum density of light in a medium can be drawn
from observations of stationary fluxes can be seen from
the following scheme. The radiation flux from the source
Si, after reflection from mirror R, closes on itself in
receiver S2 (both are in vacuum). We assume that the
losses on the boundaries of the medium have been elim-
inated. The forces exerted by the light pressure on the
mirror, on the source, and on the receiver, and also in
the boundary layer, are shown in Fig. 3. They do not de-
pend on the assumption concerning the momentum den-
sity. The momentum balance conditions are satisfied.

The situation would be different, however, if it were
possible to measure, in an experiment with a single light
pulse, both the pressure on the mirror upon reflection of
a "train" of waves and, simultaneously, the "recoil"
acquired by the medium.

For simplicity we consider (not quite rigorously9')
the reflection at a certain sufficiently small angle to the
normal to the mirror, as shown in Fig. 4. Owing to the
pressure applied to the dielectric by the leading and
trailing fronts of the waves (reflected and incident), as
shown in Fig. 4, the medium acquires a momentum i

FIG. 3 FIG. 4
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equal to the product of the indicated pressure by the re-
flection time τ.

If the energy of the wave train is <? (per unit cross
section area), then the reflection time is τ = (<?/uc)n,
and we obtain for the momentum

i = 2 [(n2 - l)/n] %lc.

The momentum ΐ/τ imparted to the mirror per unit
time is equal to 2u, and over the entire reflection time
its value is I = 2UT = 2<in/c (per unit surface). The mo-
mentum balance conditions are satisfied if we assume,
after Abraham, that g = u/cn. In fact, let G denote the
photon momentum as before. The momentum balance
equation then yields

2G = 2g %lu = I — i = 2g nlc - (2g Ic) [(re2 - l)/n] = 2 g/rec;

here <?/u is the length of the wave "train."

Measurement of I and i would make it possible to de-
termine g. As shown by the foregoing calculations, the
recoil forces can be of the same order of magnitude as
the pressure on the mirror. Since light pressure can be
measured, the Abraham force can also be measured in
principle. Consequently, although the references usually
made in textbooks and monographs to the effect that these
forces are negligibly small cannot be regarded as cor-
rect, the possibility of realizing the described experi-
ment in a pulsed regime is nevertheless doubtful. How-
ever, the considerations presented above, which appear
to be perfectly "lucid" and resort only to conservation
laws, would seem to enable us to predict the results of
such a Gedank experiment. If this is so, the radiation
momentum, which in principle could be obtained experi-
mentally, is equal to <f/nc.

At the same time, as we have seen, if we introduce
after Minkowski a certain auxiliary quantity <?n/c as the
"effective" value of the radiation momentum (excluding
by the same token the interaction of the light with the
transparent medium), then the results obtained by Jones
and Richards t^-1 become directly explicable.

In the quantum theory of the Cerenkov radiation,
Ginzburgt13^ based his argument on Minkowski's ex-
pression nhiVc. Here, too, this expression gives the
correct value of the "effective" momentum. It is some-
what more difficult to employ simple model concepts to
reconcile the indicated "effective" value with the true
value of the momentum in the case of the quantum effect.
We shall return to this question at the end of the article.

4. THE FIELD MOMENTUM-ENERGY
TENSOR

We have frequently referred to the theorem of the
transformation of the integral of the fictitious Maxwell
stresses.

If relation (2.6), which follows from this theorem, and
the definitions of the relative stress tensor are applied
to a unit volume (a rectangular parallelepiped dx dy dz),
then we obtain

l(dtxjdx) + (dt,yldy) + (dtjdz)} dx dy dz = [fx + (dgjdt)] dx dy dz;

on the left side here we have the sum of the x-compon-
ents of the tensions along the six faces of the parallele-
piped surface, and on the right the product of the corre-
sponding densities by the parallelepiped volume.

Equation (2.6) can therefore be rewritten in differen-
tial form:

(dtxjdx) (dgjdt). (4.1)

Analogous equations can also be written for the two other
components of f and g.

Introducing the notation

su = leg, and S,m = —tlm
(4.2)

(where I, m = 1, 2, 3 and xx = x, x2 = y, x3 = ζ and
x4 = ict) and transferring the term as^/axi = 9gi/9t of
Eq. (4.1) to its left-hand side, we rewrite (4.1) in the
form

-dSlmldxm = Λ (4.3)

or, in general,
-dS,Jdxm = /,; (4.4)

here, as below, summation is implied over repeated in-
dices (in this case, m).

In (4.4), which can also be written in the form

-Div S,m =/„ (4.5)

we have m = 1, 2, 3, 4 and I = 1, 2, 3. The symbol Div
denotes the four-dimensional divergence. The compon-
ents indicated above are also supplemented by

Sim = (He) O m (m = 1, 2, 3) t * · 6 )

and
su = -u, (4.7)

where Φ is the energy flux density and u is the energy
density.

If the medium is at rest, then the field forces perform
no work. In this case the energy conservation law is ex-
pressed by the flux-density continuity equation, in the
form:

astjdxm = o. (4.8)

It is postulated that the aggregate of the quantities indi-
cated above (at I and m = 1, 2, 3, 4) forms a four-dimen-
sional tensor—a "world tensor" (Welttensor).

The components of the four-dimensional vector de-
termined by the divergences of the tensor S j m for the
static reference frame (the frame in which the medium
is at rest), have been indicated above and can be repre-
sented by the following scheme:

(/., A, /3, 0). (4.9)

Here the fm are, as we have seen, components of the
ponderomotive-force density.

If the four-vector components are specified in some
single admissible reference frame, then they can also
be defined in any other inertial system. As is well
known (and as can be verified directly by performing
the Lorentz transformations in the given particular
case), the fourth (temporal) component of the four-vec-
tor of the force density is equal to i/c times the power
density dissipated by the field forces and transmitted by
the field to the medium flux:

/4 = —dSlm/dxm = (lie) fw. (4.10)

where f is the density of the ponderomotive force and w
is the velocity of the medium.

As already noted, two expressions have been pro-
posed for the density g of the electromagnetic momen-
tum:

gA = (iliac) [EH] and accordingly s,*- = (U'm) [EH], (4.11)

according to Abraham and

g« = (l/4ne) [DBJ and Sfk = (Ilia) [DB], (4.12)
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according to Minkowski. For simplicity, and essentially
only to abbreviate the notation, we shall assume μ = 1
and Β = Η.

If the components S A and S?^ are different, then the
fc 4 Li

components s £ and S ^ , as well as the remaining nine
components S j m of the two tensors, are identical (in the
case of a medium at rest).

The Minkowski tensor is asymmetrical, sfl £ S^i,
whereas the Abraham tensor is symmetrical. It can be
shown in general form1-9·110) that this asymmetry of the
tensor contradicts the law of motion (velocity conserva-
tion) of the center of gravity of the "radiation plus med-
ium" system (if the principle that the energy is inertial
is valid). We have already verified this with the simple
example considered above. Thus, Minkowski's tensor
fails to satisfy one of the "selection rules" referred to
at the beginning of the article.

On the other hand, following Laue, the opinion is still
being expressed in the literature that the Abraham ten-
sor, which satisfies the criterion just mentioned, seem-
ingly does not agree with another requirement: i.e., it
does not satisfy the Laue criterion, which was also dis-
cussed earlier (see the Introduction). From this Laue
drew the following conclusions:

First, of the two tensors (Abraham's and
Minkowski's), one should accept Minkowski's tensor.

Second, as a result, inasmuch as the mixed (space-
time) components of the tensor sMj are antisymmetrical
(ST4 £ sM )> Planck" s postulate must be recognized to be
in error (and by the same token, also Einstein's relation
g = me2).

By Planck's postulate, Laue meant the relation

g = Φ/c", (4.13)

where Φ is the energy flux density. In connection with
the discussion that follows, we shall dwell on this in
greater detail.

In the case of the Abraham tensor, s £ (just as in
im

Minkowski's case), Φ is the flux density of the electro-
magnetic energy and is determined by the Poynting vec-
tor

Φ = (din) [EH]. (4.14)
Inasmuch as (4.6) yields SAj = (ί/ο)Φζ, and (4.2) yields

si = leg, and St = si = (lie) Φ, = icgt,

relation (4.13) follows directly from Abraham's tensor.
At the same time, the asymmetry of Minkowski's tensor
(S4 i t Sj4) is incompatible with relation (4.13)11'.

The formulas become much simpler if, in the general
case of the moving medium, one introduces as a param-
eter in the expressions for the tensor components, the
energy density uo in the reference frame in which the
medium is at rest. (Here and below, uo denotes the en-
ergy density in the medium.) This reference frame will
be designated as the "zeroth" (or "unprimed").

Confining the analysis to the case of a plane and
plane-polarized wave and to the "special"1 2 ' Lorentz
transformation, we assume that the normal to the plane
of the wave is parallel to the χ axis.

In this case, as will be shown below, we can confine
ourselves in essence, without loss of generality, to two

dimensions: x and t (the spatial coordinates y and ζ are
eliminated; the tensor components corresponding to
them are equal to zero).

The general scheme of the tensors is therefore given
by the table

/ V V \

(4.17)

The formulas for the transformation of the components
Xi m (I, m = 1, 4) take the form

(k, I, m, s = 1, 4; x, = x, xt = ict). ( 4 · 1 8 )
The coefficients alm can be found from the following
table:

a,.

Then, according to (4.2), (4.6), and (4.7), the Abraham
tensor in the zeroth system is expressed in the indicated
notation by

The scheme of the components of the asymmetrical
Minkowski tensor is

(4.21)

Here η = (εμ) is the refractive index of the medium.

Transformations in accordance with (4.18) and table
(4.19) yield the following results:

SA>

12)-2β i(l — 2βη + Ρ
(4.22)

y

(«-β) (1-ιφ

In addition to the m—e tensor of the electromagnetic
field, we shall consider later on also the corresponding
mechanical tensors of the medium and the total tensor
of the "quasiclosed" system (field + medium).

The spatial components of the mechanical tensor
("absolute stresses") will be represented as sums of
two terms

Plm + glWm, (4.24)

where the p j m are the components of the "relative" ten-
sor of the elastic stresses, while gj and w m are the
momentum-density and medium-velocity components.

5. TWO MODELS OF AN IDEALIZED
DIELECTRIC MEDIUM

We consider two models corresponding to two possi-
ble limiting cases, namely: a) in the "zeroth" system
(see above), Eq. (4.24) reduces to the one first term—
this is the case of an "ideally rigid" body;

b) in the same "zeroth" system, only the second term
of the sum (4.24) differs from zero—this is the case of
the so-called "dust-like matter."

Let us determine the forms of the tensors in the first
of the just-indicated cases. On the leading and trailing
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fronts of the wave packet, the medium experiences the
pressure of light with a force, as we have seen, equal to
[(n2 - l)/n2]u0. (We now have in mind the zeroth refer-
ence frame.)

Since the processes are stationary at any point of the
field under these conditions, the pressure of the electro-
magnetic field (under the indicated boundary conditions)
is balanced by the elastic stress of the medium.

We consider the problem as one-dimensional (in the
spatial coordinate). The total mechanical m—e transfer
in the zeroth system can be written under these condi-
tions in the form

— «ο Ι

\ Ο — μ_

where μ 0 is the mass density of the medium.

The component X« should, generally speaking, con-
tain as a term the density of the elastic energy. We have
assumed this term to be equal to zero, since we are
considering the limiting case of an ideally rigid body,
i.e., the case of an arbitrarily large elastic force at an
arbitrarily small deformation energy (proportional to the
square of the deformation itself).

The mechanical tensor of the medium in the absence
of the field reduces in the zeroth system to a single
component and takes the form

/ο ο
[θ - μ / 1 (5.2)

This tensor should be subtracted from the tensor (5.1),
since it is expedient to consider only that part P j m of the
tensor (5.1) which is connected with the electromagnetic
field and the reaction of the medium to the field-pressure
forces.

The field-dependent component of the mechanical
tensor of the medium therefore takes the form

Po
1 ON

0 0,/

(5.3)

Transformation to the primed system leads to the
following expression for the tensor:

- φ - β 2 ) :

(5.4)

here po is the pressure of the medium and is negative
under the conditions of this example: po = — [(n2 — l)/n2]u<>,

To clarify the physical meaning of the components
Pi , it is advantageous to take into account the consid-
erations advanced in Appendix 3.

According to (4.22) and (5.4), we obtain

r; == sA' + />;„,

stresses coincide with the product gjwm. In this case
we are dealing with a model in which the dielectric med-
ium takes the form of "dustlike matter." The particles
of this matter can be assumed to be arbitrarily massive.
(In the limit, we shall set the mass density of the matter
μο = °°.) At the same time, the density determined by the
number of particles per unit volume will be assumed to
be sufficiently small1 3 ' and the interaction between the
particles to be negligibly small1 4 '. The small particle
concentration does not mean that the dielectric constant
is small, since the dipole moments of the particles of
this artificial medium can be assumed to be arbitrarily
large. We neglect the dispersion, as before. We can
imagine this rarefied medium to be contained in a cylin-
drical shell. For convenience, we can assume that the
entire system is in a weightless state. The entrance
opening of the cylindrical vessel containing the refrac-
tive medium is covered with a window that ensures loss-
less entry of the light beam.

It follows from the foregoing calculations (2.27) that
after the light beam is admitted, the cylindrical shell of
the medium moves uniformly in the direction towards
the light source, having a mechanical momentum equal to

—β) (i —p»)

—β) (Ι —

We shall soon return to the expression obtained by us
for the tensor Ti.

We consider first, however, another idealized model
of a medium and the already-mentioned opposite limiting
case, in which the elasticity forces are equal to zero
and the components of the tensor of the "absolute"

(n - I) We, (5.6)

where δ is the total energy of the light field.

The "conservation" equations (1.7), (1.9), and (1.11)
can be applied to any autonomous system. These equa-
tions make it possible to determine in general form the
two unknowns—the momentum (Mv) of the material com-
ponent of the system and the momentum of the radiation.

For the quantity Mv we obtain from the indicated
equations, in general form, the expression

Mv = (glc) (n - 1)1 n. (5.7)

In this example, Mv is the difference between two quan-
tities, the momentum of the medium (i) and the momen-
tum of the shell of the "container." Consequently, ac-
cording to (5.6) and (5.7),

(We) (n - 1) η = i - (We) (n - 1),

i = (We) {[(n - l)/n] + η - 1} = [(«2 - I) In] We.
(5.8)

We shall verify later on (see formula (5.13) below) that i
is indeed equal to the momentum of the Abraham forces.

Inasmuch as expression (5.6) does not depend on the
assumptions concerning the density of the momentum,
and the Minkowski tensor as well as the Abraham tensor
lead equally well to expression (5.6), this example shows
directly that the Abraham forces are obtained as a con-
sequence of the fundamental conservation laws.

We note that the sum of the material momentum
coupled with the light wave (i) and the field momentum
(G) is equal to

G + i = η We. (5.9)

The total momentum i + G agrees in this case with
the field momentum as given by Minkowski.

If the equation of the beam in the zone of a sinusoidal
wave is expressed in the form

Ε = Eo sin {ω It — (xnle)]} a n d // = nEa sin {ω [t - (xnie)\) (5.10)

and if the simplifications stipulated above are taken into
consideration, then we can verify by simple calcula-
tions1 5 ' that the light pressure imparts to the medium a
motion having the following character. At the instant of
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time t = (kTr/ω) + (xn/c) (where k is an integer at a speci-
fied χ = const) the particle velocity at the point χ is equal
to zero. In the time interval Qtir/ω) + (xn/c) < t
< (k + 1)(π/ω) + (xn/c), the velocity of motion changes
from zero to a certain maximum value and then again to
zero. On the average, consequently, the velocity of the
translational motion of the particle differs from zero
and is positive.

The pressure of the light causes "drift" of the dust-
like matter in the direction towards the beam. The drift
velocity under our conditions is negligibly small. As we
shall see (see (5.21) below), this velocity, henceforth
designated βοθ, is equal to

PoC = [(n2 — 1)/ημοί] "ο = I(«2 — 1) ηΙΑπμύο) Ε'ο sin2 {ω [ί — [xn/c))}.

This particle "drift" is also the reason why a certain
condensation of the medium takes place within the limits
of the illuminated region, as will be shown subsequently,
and the density of the mass either fluctuates or oscil-
lates, becoming dependent on the time 1 6 ).

The foregoing follows from the following simple cal-
culation. We have seen (see (2.19)) that force density in
a "nonzeroth" system is given by:

/ = [(n* _ l)Hnc] d (EH)ldt. (5.11)

It follows directly from this that the momentum density
is

/ dt = [(n* - l)/4nc] (EH) (5.12)

(the integration constant is equal to zero, since we can
put Ε = Η = 0 at t = 0).

Since Maxwell's equations for a plane wave yield
Η = nE and an energy density u0 = nEH/4jr, formula (5.12)
can be rewritten in the form

= [(«' - l)/nc] u0 (0; (5.13)

here uo(t) is the energy density of the field at a given
instant of time, and g» is the material momentum den-
sity.

If the mass density in the absence of the field is
designated μ 0 and the density at each instant of time is
designated

μ (<) = μο + Δμο, (5.14)

then Eq. (5.13) for the "drift" velocity (j30c) becomes

poc = (n2 - 1) Uo/nc [μ0 + Δμ» (<)]. (5.15)

Simple calculation yields17'

Δμ0 = [(η2 - l)/c2] u0 (t) *). (5.16)

Going to the limit μ 0 = °°, we can in the assumed ap-
proximation neglect the quantity Δμο in the denominator
of (5.15). Consequently

βομο^2 = [(η2 — l)/n] u0. (5.21)

The product /3ομοϋ2 remains finite on going to the indi-
cated limit, and the product βομοο2 tends to zero. We
shall therefore neglect terms of order

Taking (5.16) into consideration, we now rewrite
(5.14) in the form

μ (() = μ0 + [ „«_._ l)/c«] u0 (t). (5.22)

We write down the components Xrm of the mechanical
("kinetic") tensor of "dustlike" matter in the field of an
electromagnetic wave. The spatial components in this
case are the components of the momentum flux, equal to
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The abbreviated scheme of the tensor Xj m is

(5.23)

(5.24)

An expression for the term X« follows from (5.22).

Subtracting also in this case the tensor kim of the
"dustlike" matter in the absence of the field,

0 -

(5.25)

from the tensor Xjm, we obtain the "dustlike" part Kj
of the kinetic (mechanical) tensor. Kj m is connected
with the electromagnetic field by

» — Λίγη '

. Π 2 —1
MO

i~«.(i) -(«s -1)MO/

The "dustlike" kinetic tensor contained an additional en-
ergy density (n2 - 1) uo(t). This energy density is con-
nected with the "drift" of the matter and with the con-
densation of the medium due to this drift.

We note that according to (5.24) and (5.21) the mo-
mentary density of the medium is given by

(n2 — \)lnc] ! i 0 = (5.27)

Thus, this is the momentum density of "dustlike" matter
(of density μ0) moving with a very small drift velocity
(|3oC).

It is interesting that the same momentum density
(5.27) can be expressed in an entirely different fashion,
namely, as the product of the density of a supplementary
mass (Δμ0) by the velocity (c/h) of "motion" of this
mass, transported together with the light-wave field.
Indeed, according to (5.20)

Δμο<;/η = [(η2 — i)lcn] u 0 ,

which coincides with (5.27). Κ now, given the value uo(t),
we go to the limit μ 0 = <*>, then the tensor Kj m can be
represented in the form18'

Kim (5.28)

After transforming to the "primed system" we obtain the
following formula:

·-»» -<»-2» λ
(5.29)

Just as in the case of the previously considered ex-
ample, the total tensor is obtained as the sum of the
tensors S ^ and K,m:

«oY

r; = sA ' + κ'
(«β-1)2 ί(Β-β)(1-ηβ)

(η-β)(1-ηβ) -(«-β) ) •

(5.30)

Returning to the preceding example and comparing ex-
pressions (5.5) and (5.30) for the tensors ΤΊ and T2, we
verify that in these two opposite cases of limiting condi-
tions, the tensors that were formed as indicated differ
only by a factor l/n2. A table of the components of the
tensor Ta is obtained from (5.30) by putting β = 0 in
(5.30).
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The model of the "dustlike" matter is convenient for
comparison of the Abraham and Minkowski tensors. We
shall return to their comparison at the end of the article.
Now we call attention to the following. Since the compon-
ents T44 and T41 are given, we can determine the velocity
of the energy flux c* by dividing the energy flux density
(c/i)T4i by the density of the energy itself, T«.

Both tables (both in (5.5) and in (5.30)) give one and
the same value for the indicated velocity, which can also
be defined as the ratio icTn/Tl*:

c*=: -(cl^rjT^icrjT'^cV-nftKn-P). (5.31)

Inasmuch as in the zeroth system c* = c/n, formula
(5.31) means that the velocity c* transforms like the
velocity of a material point. This suggests the conclu-
sion that in order to obtain the correct value of the
transport velocity of the light energy, it is necessary to
consider, as was done above, the tensor of the total
energy (and the corresponding momentum), including in
this tensor also the mechanical forms of energy and mo-
mentum co-moving with the light field. Incidentally, this
thought was already advanced in passing by one author
(see'-15-', page 91) and soon refuted by another ('-4a-1,
page 40).

We shall show in the next chapter that the assumption
just stated can be corroborated. Inasmuch as for a long
time this question remained (and still remains) debata-
ble, we shall dwell in greater detail on the analysis of
the conclusions usually cited in this connection, although
the arguments that will be developed are in essence quite
trivial.

6. ENERGY FLUX AND PROPAGATION
VELOCITY OF THE ENERGY OF A
LIGHT WAVE

The question (or paradox) referred to above is re-
solved by recognizing that when a light wave propagates
in a medium the fluxes of the electromagnetic energy
and momentum, on the one hand, and the fluxes of the
co-moving mechanical (in particular, elastic) energy and
momentum, on the other hand, are interrelated.

It is possible that the calculations pertaining to the
propagation of light, which will be presented below, will
turn out to be more convincing if the gist of the question
is first explained by using a simple example, that of a
moving "electrostatic" system. We have in mind the fol-
lowing example. A charged capacitor moves uniformly
perpendicular to the direction of the force lines (we have
in mind the direction of the field in its central part).
The rate of energy transport in this case is specified
beforehand. It is equal to the rate of motion of the capa-
citor. This velocity can be comparable with the ratio of
the energy flux density and the density of the energy
itself. On the forward face of the moving capacitor, as
shown in Fig. 5, the electromagnetic forces perform
work against the elastic forces of the dielectric plate.
On the rear face of the capacitor, this energy is re-
turned to the field as a result of the work of the elastic
forces against the electric forces. It is therefore clear
that the flux of the electromagnetic energy through an
immobile transverse cross section plane (defined by the
component W41 of the m—e tensor of the field) is not
equal to the product of the density of the energy of the
field by the velocity of the capacitor, but is larger than
this product. Consequently, the quotient of the electro-
magnetic-energy flux divided by the density of this en-

FIG. 5

ergy is not equal to the velocity of motion of the capaci-
tor (the energy transport velocity) but is larger.

Let us examine in detail the circulation of the energy
and momentum fluxes that exist in the moving capacitor.

Just as in the case of the light-wave field, the direc-
tions of the magnetic and electric fields are mutually
perpendicular and perpendicular to the direction of mo-
tion, which is the direction of the energy transport.

The parallel-plate capacitor is made up of a dielec-
tric plate onto the faces of which (parallel to the plane
Χ0Υ0) a metal has been evaporated. The charged capa-
citor moves in the direction of the negative x' axis with
constant velocity (equal to w = —/3c) relative to the
primed system (x', y', z') in Fig. 5. We shall henceforth
(up to formula (6.15))omit the factor c. The capacitor is
at standstill in the zeroth system.

The schemes of the m—e tensor W can be represen-
ted (in this case, equally well for the Abraham and
Minkowski tensors) in the case of the two reference
frames indicated above in the following respective forms:

(6.1)

(6.2)

We consider the capacitor cross section plane y'z',
which is at standstill in the primed reference frame.
(The plane is at standstill and the capacitor moves rela-
tive to it.)

The flux of electromagnetic energy through this plane
at a given instant of time t', determined by the compon-
ent W'n of the m—e tensor W', is equal to

-(2βε£§/8π)γ"- (6.3)

(according to (6.2); the cross-section area of the capa-
citor is assumed equal to unity). The energy flux den-
sity Φ' in this example is also equal to (ΐ/4π)Ε' χ Η'.

Dividing the energy flux density by the energy density,
we obtain the velocity

= _2β/(1 + β»). (6.4)

The velocity w* is not equal to the velocity -β of the
capacitor motion, |w*| > β.

We shall speak arbitrarily of an energy "flux front."
We have in mind aa arbitrary field boundary, a certain
plane yozo outside the capacitor, moving in the (x', y', z')
system together with the capacitor. The question is:
what is the velocity dxo/dt' of motion of the "flux front"
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as seen by an observer who is at standstill in the
(x', y', z') system?

In the energy balance equation it is necessary to take
into account the work L of the ponderomotive force F'
acting on the front edge of the dielectric of the capacitor.
In the zeroth reference frame, the force Fo, determined
by the Maxwell tensions (in this case, by the pressure)
is numerically equal to the energy density u 0. As is well
known, the longitudinal component of the force remains
unchanged on going to the moving system:

p- = F. = ... (6.5)

Hence
ν = uop. (6.6)

(The cross-section area of the capacitor is assumed
equal to unity.)

The energy balance equation should therefore be writ-
ten in the form

where u' is the energy density in the primed system,
u' = -W«, and consequently, according to (6.2), we have

u' = u0 (1 + β2) Ϋ = "ο (1 + β2)/(1 - β2). ( 6 . 8 )

At the same time, the component W41 (6.2) yields

Substituting (6.8) and (6.9) in (6.7), we obtain

I dxjdt· | = {[2puo/(l - P2)l - UoP} (1 - β2)/[«ο (1 + β2)1 = β, ( 6 . 1 0 )

a s we should.

The electromagnetic-energy flux i s part ly offset by
the counterflow of the elast ic energy. According to the^
scheme (5.4) given above, we obtain for the density p M '
of the velocity-dependent component of the elast ic en-
ergy, recognizing t h a t 1 9 ' p ' = p 0 = - u 0 ,

ρΜ- = _ β ! ΐ ί ο γ 2 (6.11)

Hence, according to (6.8) and (6.11), the density of the
total energy i s

p· = „' + pM ' = uoy* (1 + p> _ pa) = UOY*. (6.12)

The flux densi ty 2 0 > of the e las t ic e n e r g y is, according to
(5.4),

—ροβν2=uoY2P· ( 6 · 1 3 )

The direction of this flux is opposite to the direction of
motion of the medium.

Finally, in accord with (6.2) and (6.13), the flux den-
sity of the total energy is

αογ
2 (_2β + β) = - P

The velocity of the "front" of the flux of the total en-
ergy, obtained as a result of the dividing the total flux
(6.14) by the density of the total energy (6.12), is

dxjdt' = -

as should be the case.

(6.15)

In a more general form, the same considerations
were developed essentially by Laue'-za-' in connection
with a discussion of the classical experiment by Trouton
and Noble, who proposed to observe the effect of orien-
tation of a freely suspended parallel-plate capacitor
perpendicular to the motion of the earth.

The balance equations determining the relation be-
tween the flux density and the energy density in the plane

wave are perfectly analogous to those just considered by
us, with the moving capacitor as an example. We recall
that

dS-iJdx'm=i!cLim, (6.16)

where S4i are the "mixed" components of the m—e ten-
sor and Lgm is the power dissipated in a unit volume of
the field.

Under the conditions of the reference frames consid-
ered by us and the special Lorentz transformation, the
energy balance equation (6.16) can be rewritten in the
form

-Wtl/dx' = (du'ldt') + L-aB, (6.17)

where Φ« is the energy flux density and u' is the energy
density;

LL=u>f'=-ficr>y, (6.18)

where f' and f ° are the densities of the force in the
primed and in the zeroth coordinates, respectively, and
w = —/3c is the velocity of motion of the medium in the
primed system.

In the case of a plane wave in a moving medium, the
following relation holds:

dldt' = — c* d/dx', (6.19)

where c* is the phase velocity, which by assumption
coincides in our case with the group velocity. As is well
known21(

c» = c(l-pB)/(n-P). (6.20)

Substituting (6.19) in (6.17) we obtain

-(<Wz')№m-cV) = Z4m. (6.21)

We take into consideration the following relations.
According to (6.18) we have

-1)Μ·](βΐίο/3ΐ)(, (6.22)

since

But

I duQ\ I Buo\ I dx

(6.23)

dt \ _ I dua \ T(n-P)

Formula (6.24) can easily be obtained on the basis of the
formulas of the Lorentz transformation (x, t) — (x', t')
and by taking (2.13) also into consideration.

The substitution of (9uo/ax)t from (6.24) in (6.22)
yields

L;m=p<:[(n

2-l)M(n-P)i(too/^').' (6.25)

and according to (6.21) we have

-(d/dx') {Oem-CV + Pc [(n«- l)/n (re-β)) uo> = 0. (6.26)

Integrating from x' to x' = °°, we obtain

j -(3/δχ'){Φ^τα-α*αί + οΐΡ(ηΐ-1)/η(η-^]η0}=0, (6.27)

or

<I>;m- c*u' + [φ (na - l)/n (η - β)] ua = 0. (6.28)

Equation (6.28) can be verified directly by substituting
in (6.28) the expressions for Φ' and u', which are given
by Table (4.22) of the Abraham tensor SA ', namely

(6.29)) —2P
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and c* in accordance with (6.20). The quantities <£em

and u' pertain to the cross section x'.

As seen from the derivation, the last term in the left-
hand side of (6.28) gives the work, with sign reversed
(negative if β > 0 ) of the electromagnetic forces per
unit time in the region of the field from the chosen sec-
tion x' to the front of the wave. It is also seen from the
derivation that if we have the mean values in mind, then
a nonzero contribution to the integral (6.27) is made
only by a narrow interval near the wave front, namely
the derivative —9uo/9x' can be regarded arbitrarily as a
δ function (multiplied by u0), if the front of the wave
packet is steep enough. On the other hand, the mean
value (over the time and over the space) of the density
of the force (of the derivative 8uo/sx) in the zone of a
sinusoidal wave is equal to zero.

Thus, -Cj3[(n2 - l)/n(n - /3)]u0 yields the power (per
unit cross section) lost by the field on the front of the
wave.

Denoting by c** the velocity of the wave front, we ex-
press the energy balance equation in integral form

«>-1)/η(η-β)1«0 = 0; (6.30)

where Φ ^ is the flux of the electromagnetic energy
through some cross section in the zone of the sinusoidal
wave. A comparison of Eqs. (6.30) and (6.28) shows the
following.

First, by dividing the electromagnetic-energy flux by
the energy density, we obtain a velocity which is not
equal to the velocity of the energy flux (to the velocity
c** of the wave front).

Second,

c** = c*, (6.31)

i.e., the velocity of the wave front (the energy transport
velocity) under the conditions considered by us is equal
to the phase velocity and is consequently transformed
like the velocity of a material point.

Analogous equations can be written for the relation
between the flux ΦΜ' of the energy of the medium, the
density pM of the energy of the medium, and the work of
the reaction forces of the medium L ^ (elastic forces,
inertia forces):

ΦΜ'_<;·ρΜ'-£Μ' = θ. (6.32)

The reaction forces of the medium are equal and op-
posite to the forces exerted on the medium by the field:

i M = -Lemr (6.33)

Therefore

'_ c »pM'_ p ( . [(„*_ l (6.34)

In the cases of examples (5.4) and (5.29) given above,
we have in accordance with (5.4):

ΦΜ ' = c [ ( » 2 - DVJ ip/(l - β 2 ) ] «„,

ρΜ· = _ [ ( n a _ !)/„*] [β2 / ( 1 _ β2)| Uo

whereas according to (5.29) we have

(6.35)

(6.36)

(6.37)

(6.38)

that (6.34) is satisfied in both cases. Finally, adding
(6.30) and (6.34) and assuming

ΦέητΙ Φ™ =Φ', (6.39)

u ' + p M =p', (6.40)

we verify that the equation

Φ' — c*p = 0

is valid if Φ' and p ' are taken to mean the corresponding
densities pertaining to the total energy.

The quotient &ela/u obtained by dividing the electro-
magnetic energy flux by its density in a moving medium
yields the propagation velocity only if there are no
ponderomotive forces of the light wave. This in turn,
takes place only in the case of the Minkowski tensor and
is not applicable to any other form of the m—e tensor of
the field in general.

Therefore, as is indeed noted in the literature, the
treatment of the problem in Moller's book 1^ is incor-
rect. In this splendid book the author writes: "This con-
dition (he has in mind c* = * e m / u -D.S.) is satisfied by
the Minkowski tensor and not by the Abraham tensor,
and this is the strongest argument in favor of
Minkowski's theory" ( [ 3 : l, page 207).

In the next chapter, on the basis of the proof given by
Moller himself, we shall be able to generalize the deri-
vation just considered.

7. THE MOLLER CRITERION

In the cited book1-3-1, Moller presented a general
formal criterion that must be satisfied by any m—e ten-
sor T^m in order that the velocity, defined as

4 = -Wi)r«/!'«, (7Ί)

will transform like the velocity of a material point.

The reasoning developed in detail in the preceding
chapter, suggests that the vanishing of all four divergen-
ces T j m can serve as such a criterion.

Indeed, it can be shown for a plane wave in the general
case that the condition

Div Tlm = 0 (7.2)

and the aforementioned Moller condition are equivalent.
We bear in mind here that the tensor T^m is symmetri-
cal. Moller's condition is written in the following form
(C 3 ], page 165):

«ik = Τ ik + (TimU^Utlc"-) -— 0;

here the components U ^ are defined as

u*n = up—-j . ( m =i, 2,3) and uj= —

(7.3)

If we substitute in (6.34) in one case (6.35) and (6.36),
and in the other case (6.37) and (6.38), we can verify

where the u m are defined by formula (7.1) and

It is assumed that the velocity u*, defined in accordance
with (7.1), is less than the velocity of light.

According to Moller, (7.3) is the condition necessary
and sufficient for the components U* to define a four-
vector. At the same time, this is the condition necessary
and sufficient for the velocity u* to transform like the
velocity of a material point. Moller has shown that if
the equation (7.3) is satisfied in some definite admissi-
ble reference frame, then it is also satisfied in any other
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inertia! system. This means that if it is satisfied in one
definite reference frame, then U* is a four-vector and
Rj^ is a tensor.

Therefore, without affecting the general character of
the derivation, we can compare equations (7.2) and (7.3),
assuming that the χ axis is parallel to the light beam and
that, consequently, the tensor Ty is represented by a
2 x 2 pattern, in this reference frame, the sum in ex-
pression (7.3) reduces to three terms and the condition
(7.3) reduces to two equations (at i = 1 and i = 4). Let us
write out these equations:

_ O

—

+ 7-f _
(7.4)

At the same time, the two equations obtained from the
condition

dTkmldxm = 0,

for a symmetrical tensor yield

(7.5)

(7.6)

where c* is the same as in (6.20), and where account is
taken of (6.19). In the considered case of the special
Lorentz transformation, Eqs. (7.6) show directly that
the velocity u* coincides with the phase velocity c* and
is transformed like the velocity of a material point.

Both systems (7.4) and (7.6) lead in the same fashion
to the relations

and consequently, in the given reference frame, Moller's
conditions (7.3) and condition (7.2) are equivalent. But if
(7.3) is satisfied in one defined system, then it is valid
also in any other system (x, t). In the same manner, if
all four divergences of the tensor are equal to zero in
one system, then they are also equal to zero in any other
reference system. Consequently, the conditions (7.2)
and (7.3) are equivalent in any coordinate system.

We have already assumed that the tensor Τ is sym-
metrical. By definition, and taking (7.7) into considera-
tion, we have

„ . - ( " / ' ) Γ41/Γ14 icT., icT..
s-. (7-8)

(7.9)

As shown by (7.8) and (7.9), T4 1 + T u > 0. We put

Tu+Ttl=*. (7.10)

The quantity Σ in (7.10) is the sum of the diagonal terms
(the trace of the tensor T, which is invariant). The fact
that the invariant Σ of the tensor Τ is larger than zero
is a consequence of the two assumptions made by us:
1) the tensor satisfies the Moller criterion, 2) the tensor
is symmetrical. We note here that the vanishing of all
of the divergences is a characteristic feature of the
Minkowski tensor. At the same time, Σ vanishes both in
the case of the Minkowski tensor and in the case of the
Abraham tensor.

It follows from the foregoing derivation that if the
sum of the diagonal terms is equal to zero, then we are
faced with two alternatives: either the tensor satisfies
the Moller criterion and is inevitably asymmetrical (the
Minkowski case), or else, if the tensor is symmetrical

and the sum of its diagonal terms is equal to zero, then
it cannot satisfy the Moller criterion (the Abraham case).

For the given particular case where the axes are
arranged in accordance with (7.8) and (7.9), we have

Urn ==IC* 4m/* 44 ^ • \ · /

Since we know that under the assumptions indicated
above the components U*j define a four-vector, relation
(7.11) should also hold for any orientation of the coor-
dinate axes. From this we can see that the tensor Τ can
be represented as the following product of two four-vec-
tors:

τ ι τι ΐ\ TT*f7* P? 19\
1 lm — {—^!c)^l^m· \ · /

To verify that the relation (7.12) is satisfied at any
orientation of the coordinate axes, it suffices to verify,
by substituting (7.8) and (7.9) in (7.12), that it is valid in
the particular case considered above.

By substituting (7.12) in (7.3), we can check directly
that a tensor such as (7.12) satisfies Eq. (7.3). To this
end it suffices to note that U*U* = - c 2 . Relation (7.12)

is easy to verify also with the tensors (5.5) and (5.30) as
an example.

It is easy to verify that the tensor (7.12) has the fol-
lowing structure:

Tim = TuTim/Tu-

Noting that in accordance with (7.1) we have

iW44=—(</e)«m, and r i l=iegi,

where gj is the momentum density of the component
along the axis labeled I and u ^ is the velocity component
along the axis with index m, and that thus T j m = g;Um,
we see that T7 m is the flux density, in the direction of
the m axis, of the Ζ-component of the field momentum.

The tensor T j m is the field tensor of a current that
has no "sources" or "sinks". Only in the case of a ten-
sor with such a structure is the velocity of the energy
flux equal to the quotient of the energy flux density divi-
ded by the energy density itself.

Equations (7.5) are the flux continuity equations of
the components of the momentum and of the energy flux
of such a field. These equations should hold true if T j m

is the tensor of the total energy of a closed system. It
is in general incorrect to require that the m—e tensor
satisfy the Moller criterion.

8. THE ANGULAR MOMENTUM OF
A STATIC FIELD

If we are dealing with a superposition of electric and
magnetic static fields the vectors of which are mutually
perpendicular, then such a field can carry angular mo-
mentum. Apparently, Poincare was the first to call
attention to this2 3 ' .

Ε a dielectric medium is placed in the field, then the
values of the total angular momentum of the field as a
whole, which can be obtained by calculating them in one
case after Abraham, and in another after Minkowski, are
different. The law of angular momentum conservation
therefore makes it possible to choose also in the present
situation between the two expressions (2.10) and (2.11).

We imagine a cylindrical charged capacitor (of suffi-
cient length) situated inside a solenoid that produces a
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longitudinal (relative to the capacitor axis) homogeneous
magnetic field that closes on itself at some large d i s-
tance away from the capacitor. We assume first that the
space inside the capacitor and inside the solenoid is a
vacuum. According to (2.10) and also (2.11) the e lectro-
magnetic angular momentum relative to the capacitor
axis in a layer r + dr — r (per unit length of this axis) is
equal to

dkm = (1ΕΗ]/4π<;)·2πΓ2 dr. (8.1)

If the capacitor charge is Q, then Ε = 2Q/r and the total
angular momentum per unit length is

R

j c, (8.2)

where R is radius of the outer electrode of the capacitor.

When the current that produces the field Η is turned
off, a force is exerted on the charge Q (by the induced
solenoidal field), and its integrated angular momentum is

(8.3)

(8.4)

(8.5)

ΔΦ is the change of the magnetic-induction flux:

ΔΦ = Φ = HnR2.

Substitution of (8.4) in (8.3) yields

/mech= hm = HQRV2C.

If the outer electrode of the capacitor can rotate
freely and the mechanical system is autonomous, then
turning off the current causes the cylindrical electrode
of the capacitor to rotate24' with a mechanical torque
equal to the vanished electromagnetic angular momen-
tum of the field.

We assume now that a cylindrical layer of dielectric
(say, solid) is placed inside the capacitor and fills
almost the entire volume of the capacitor (the gap be-
tween the surface of the dielectric and the outer elec-
trode is negligibly small).

The outer electrode of the capacitor and the dielectric
cylinder can rotate about a common axis freely and in-
dependently.

When speaking of the mechanical torque of the solen-
oidal electromotive force, we must now bear in mind the
torque produced both by the true charges Q of the capa-
citor, and by the free charges q^ of the dielectric. Per
unit length (along the capacitor axis) we have

? d = -2JIPR; (8.6)

here Ρ is the polarization of the dielectric,

Ρ = (D — £)/4JI, D = εΕ, (8.7)

where e is the dielectric constant. According to (8.6)
and (8.7)

gd = -(DRI2) + (ERI2) = «? (1 - e)/e, (8.8)

since D = 2Q/R. AS follows from the foregoing, when the
current of the solenoid is opened, the electrodes of the
capacitor and the dielectric are acted upon by torques

and Ιφ in opposite directions:

/ c a p = QA<t>12nc, (8.9)

7d = qdA($l2jic, (8.10)

or, taking (8.8) into account,

/„ = <? 1(1 - e)/e] ΔΦ/2πε. (8.11)

Adding (8.9) and (8.10) and substituting Δ Φ = Ητ/R2, we
obtain

Ii*l2c. (8.12)

Specifying some expression for the momentum density
of the electromagnetic field, we can determine the total
torque lgm of the entire volume of the field.

Conservation of the angular momentum calls for
satisfaction of the equation

Taf+ Ia = /em. (8.13)

If we assume for the momentum density Abraham's ex-
pression

gA = EH line, (8.14)

where

Ε = 2Qltr, (8.15)

then we obtain for I e m

/em= f (2QH/e
{

(8.16)

and, as seen from comparison with (8.12), the balance
of the angular momentum is satisfied. At the same time,
we verify that Minkowski's hypothesis g M = £EH/4;rc is
not satisfied.

We thus arrive again at the same conclusion, that
Minkowski's tensor contradicts the conservation laws.

9. COMPARISON OF THE ABRAHAM
AND MINKOWSKI TENSORS AND
CONCLUDING REMARKS

Likewise on the basis of the conservation laws, but
with an erroneous formulation of the problem, Costa de
Beauregard'"16a-1 reached the opposite conclusion. Quite
recently, however, [ι6*5] (page 164) examining the pres-
sure from the point of view of the laws of motion of the
center of gravity, he himself reached the conclusion that
Abraham's expression is correct. The considerations
on which he bases his note [ 1 ^ agree with those devel-
oped in that part of the present article (in its beginning)
which had already been written before the author be-
came acquainted with Beauregard's note25'. But the fact
that the Minkowski tensor is incompatible with the law of
constancy of the velocity of the center of gravity was
noted long ago.

De Beauregard' s note was followed by a number of
others^16 c ""> 1 7 3. we shall return to the conclusions of
one of them.

After deriving Abraham's expression for the "photon"
momentum, the author ofΓι6-1 advances the hypothesis
that this quantity has a dual value, "macroscopic" ac-
cording to Abraham and "quantum" according to
Minkowski.

The literature of this question is characterized by the
tendency to accept (in spite of the facts) the correctness
of Minkowski's tensor as "canonically" established. The
authors of the review and original articles tend to ignore
arguments that appear to lead unambiguously to the con-
clusion that Minkowski's postulate is not acceptable.
This tendency prevails, for example, in a review by
Brevik11^ recently published in a respectable scientific
journal. The author's main thesis and the tenor of his
lengthy paper is the statement that "if properly interpre-
ted" the tensors of Abraham and Minkowski are
"adequate and equivalent" in most considered simple
physical situations ( [ 4 b : i , page 5). The correct interpre-
tation is formulated as follows: "The Abraham force ex-
cites dipoles contained in the material and produces a
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mechanical momentum that is transported together with
the field. IE this mechanical momentum, together with
the Abraham momentum, is regarded as the momentum
of the field, then we obtain Minkowski's tensor" (̂  •',
page 7). And on page 7 of I-4a-' we read: "The components
of the stresses and of the momentum, defined above,
lead to a force that can excite a small mechanical mo-
mentum of the component particles (dipoles)." "... Com-
paring with the experiments of Jones and Richards, we
find that the suggestion is indeed confirmed."

If we turn to the models considered above, we can
verify immediately that such an "interpretation" cannot
hold water. Our model of dustlike matter, to be sure,
corresponds in part to a situation described by the just-
cited quotation (although the corresponding total tensor
does not coincide at all with the Minkowski tensor). In a
solid dielectric, however, the dipoles are secured and
there can be no thought of a resultant momentum (apart
from the translational momentum of the medium as a
whole).

On page 26 of the review'-* •', the author explains the
results of a paper by Balazs^1 0 1. Citing two equations—
the equation of conservation of the momentum and the
equation of the conservation of the velocity of the center
of gravity (which, apart from notation, coincides with
(1.10)) the author of the review makes the bare statement
that "he cannot agree with his (Balazs') conclusion that
the Abraham expression is correct,".since the first of
the just-indicated equations (which coincides with our
equation (1.9)) is seemingly incorrect, being "incom-
plete." Brevik does not explain just how this equation
should be completed, leaving the reader to guess at it.

Yet we are dealing with an equation that cannot be
written in different manners, depending on the various
hypotheses, and the question is essentially not debatable,
provided we do not dispense with such basic premises of
mechanics as, for example, the fact that the total mo-
mentum of a system of particles is equal to the sum of
the mass of these particles multiplied by the velocity of
their center of gravity.

In his n o t e c i e c : i (page 1119), Costa de Beauregard ap-
proaches this problem differently: how to reconcile
Abraham's expression for the momentum (hu/nc) with
Minkowski's "canonical, quantum" expression (nhi>/c).
Insofar as can be understood, he bases himself on the
fact that when a photon is emitted the source of the light
(which is located in the medium) imparts to the medium
an additional mechanical momentum equal to

[(n s-l)/n] hv,'c (9.1)

(that this is indeed the case will be made clear later on).
Adding the two momenta hp/hc (of the photon) and
[(n2 - l)/n]hiVc (of the medium), the author obtains

— l)/n] + (1/ra)} We = nhv/c (9.2)

which is Minkowski's expression. It is clear, however,
that the two terms of (9.2) cannot be interpreted as com-
ponents of the photon momentum. The second term
corresponds to the momentum density u/nc, which has a
perfectly defined meaning of the momentum density of
the electromagnetic field (photon). On the other hand, it
is quite meaningless to speak of a momentum density
corresponding to the first term of (9.2). H, for example,
the medium is a solid and firmly secured body, then the
momentum (9.1) is transmitted to the earth and the
density of this momentum is equal to zero.

At zero momentum density, the momentum flux is not
equal to zero. The density of this flux is equal to the
pressure ρ of the light on the dielectric:

Ρ = [(„! _ ΐ)/Λ»] „, ( 9 . 3 )

where u is the energy density of the field.

The momentum flux density (but not the density of the
momentum itself) has in this case a definite physical
meaning.

During the time that the light is emitted, the medium
acquires a momentum equal to

[(*· - 1)1 n'] ux = \{n* ~ l)lrf\ ugnluc = \(rf - l)/n] glc, (9.4)

i.e., a momentum equal to (9.1) (τ = Λι/uc is the time
of radiation and u is the radiation energy density).

We have dwelt in detail on these relations, since they
lead to a clear-cut answer to the question of the simil-
arity and of the difference between the Minkowski and
Abraham tensors.

At the end of Chap. 2 we mentioned Planck's sugges-
tion that the Maxwellian pressure be interpreted as the
density of the total flux of the field momentum. In this
interpretation (after Planck), the two expressions for
the momentum flux, Minkowski's and Abraham's (in a
static reference frame) come to coincide.

According to Minkowski, there is no pressure force
on the medium and the density of the momentum flux for
the case of a two-dimensional (two-by-two) tensor
scheme is equal to

fa^gcln = (nulc)c/n=,u = Sfl. (9.5)

According to Abraham, we have

φ Α = g (c/n) + p = (u/nc) (c/n) + [(κ2 - I)/»2] u = u = 5*, (9.6)

where ρ is the pressure of the light on the medium:

5A=S«. (9.7)

Consequently, the total momentum flux (in the sense in-
dicated above) is the same according to Abraham as ac-
cording to Minkowski. However, whereas φ№ is the
product of the density (of the momentum) by the velocity,
according to Abraham the total flux of the momentum
consists of two components, one of which, the "current
component," is equal to gc/n, while the other is equal to
the pressure of the light ρ = [(n2 - l)/n2]u.26)

Let us consider, from the point of view of two com-
ponents, the mechanism of transport of the total momen-
tum (of the matter and of the field) by a light wave
propagating in dustlike matter. The "current" component
of the transport of the mechanical momentum of the
medium is negligibly small in the zeroth system; the
tensor component is K?i« β2 MoC2 (see (5.26)). The sum
of the "current" components (the momentum flux of the
field and the medium) is therefore equal in this case to
the "current" component of the electromagnetic momen-
tum:

(ulcn) c/n = u/n?. (9.8)

In the wave field, however, the medium experiences a
light pressure equal to [(n2 - l)/n2]. The resultant27'
F of the light-pressure forces near the front of the wave
is a source of mechanical momentum (the momentum
connected with the "drift" of the medium).

In a space bounded by a certain cross section plane
(say the plane S2; Fig. 6), the total momentum trans -
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ferred in a unit time S in the sinusoidal zone of the wave
is

(u/n') + [(n2 - l)/re2] u = u = (nulc) c/n, (9.9)

where [(n2 - l)/n2]u is the increment per unit time of the
mechanical momentum in the indicated space. The in-
crement of the mechanical momentum in this space is
equal to the light pressure acting on the medium on the
boundary surface S2 (see Fig. 6).

On the trailing front of the wave, the pressure direc-
ted in the opposite direction produces a resultant force
(—F) which serves as a "sink," absorbing the same
amount of mechanical momentum. The "drift" motion of
the matter is quenched here.

The total momentum is transferred together with the
light wave and consequently with velocity c/n, and can
be expressed as shown in the right-hand side of (9.9).

We consider in addition, and on the basis of the same
representations, the balance of the angular momentum in
a different situation—in the case of passage of a station-
ary light flux, without losses, through a refractive solid
medium.

We consider the spaces S2S3 (bounded by the planes S2
and S3) and S1S2 (the boundaries of which are the planes
Si and S2) (see Fig. 6). The radiation density in the med-
ium is equal to u. The direction from S2 to S3 is as-
sumed positive. The flux through the plane S2 consists
of the pressure on the medium, equal to [(n2 — l)/n2]u,
and the flux ("current") of the radiation momentum
(u/n2).

The total flux entering into the space S2S3 through the
plane S2 is

• »'-ΐ)'»Ί+(ΐ'» !Ι} = «· (9.10)

In the "sink" F 2 (F2 = [(n — l)/n]u), the amount of momen-
tum lost per unit time is [(n — l)/n]u, and u/n goes off
through the external boundary of the space, namely the
plane S3.

The increment of the momentum in the space between
the planes S2 and S3 is consequently

u {1 — [(« — l)/n] — (1/B)} = 0. ( 9 . 1 1 )

The momentum balance is thus complete.

We write down the corresponding equation for S1S2,
assuming now the direction from S2 to Si to be positive.
Then the increment (per unit time) of the momentum in
the space S1S2, in accordance with the same considera-
tions, is expressed by a similar sum of value zero:

u {[(n2 - l)/na] + (1/n2) - [(n - 1)/B] - (1/B)} = 0.

When writing down the balance equation, we have
taken into account only the electromagnetic component
of the momentum flux. In a solid medium, however, there
is a counterilow of elastic momentum; in a medium in
the form of "dustlike" matter, there is no such counter -
flow.

In the boundary conditions considered above, it was
assumed that the radiation is bounded by a region of
space situated entirely inside the solid medium. Under
these conditions, the "counterilow" of the elastic mo-
mentum compensates for the component of the electro-
magnetic momentum transferred as a result of the light
pressure. In other words, the light pressure on the
medium is balanced by the tension of the medium.

In the situation just considered, the component of the
electromagnetic momentum flux transferred by the light
pressure to the medium [(n2 — l)/n2]u exceeds the oppos-
ing flux of the elastic momentum [(n — l)/n]u. The excess

{[(if - i)!rf] - [(B - !)/«]} u = [(B - !)/«"] u (9.12)

together with the "current" component of the electro-
magnetic momentum u/n2 yields as a sum the momentum
flux density u/n transferred through the plane S3 to the
outside.

It is clear that if we assume Minkowski's expression
for the momentum-energy densities of the field, then the
momentum balance conditions in the stationary flux will
also be satisfied, since the total momentum flux is de-
termined in the same manner by both tensors.

If it were possible to formulate the theory of the
Cerenkov effect in terms of the momentum flux, then it
would likewise be immaterial for the theory, in this
variation, which of the two tensors, Minkowski's or
Abraham's, is taken as the basis.

We turn in this connection again to the tendency in
Brevik's reviewt4-1 to play down the differences between
the two compared tensors. In the cited review, as in
other papers, it is usually remarked that the resolution
of the total tensor of the (field + medium) system into
two components is conditional and arbitrary. Of course,
it is possible to break up a tensor arbitrarily into two
components—subsystem tensors. Within the limits of the
scheme considered here (of idealized media), however,
the resolution into two components (the m—e tensor of
the field and the tensor of the medium) is unique if one
adheres to the requirement (or definition) according to
which the field tensor S/m should satisfy the condition

-dS,Jdxm
(9.13)

(The existence of such a tensor is postulated as a prem-
ise). This, in any case, is the situation in the case of the
field of the plane wave. This is particularly clearly seen
if the tensor scheme is reduced, by choosing the refer-
ence frame, to a two-by-two matrix, which, of course,
involves no loss of generality.

Indeed, we have verified that within the limits of the
indicated approximate scheme the expression for the
momentum density (and consequently also the density of
the ponderomotive forces) follows from the conservation
laws. But if this expression is specified, then the com-
ponent S u of the tensor S;m is determined by the same
token. In addition, there can hardly be any disagreement
in the choice of the expression for the term S«, which
is equal to the electromagnetic energy density taken
with a minus sign. (We are dealing here with the values
of the components of the tensor in the reference frame
in which the medium is at standstill. The expressions
for S& and sJi, those of Abraham and Minkowski, coin-
cide.) Further, S41 is obtained from the condition

dSimldxm = 0. (9.14)

Relation (9.14) is a consequence of the fact that the med-
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ium is immobile: namely, the work of the field forces,
determined by the left side of (9.14), is equal to zero.
Equation (9.14) is in this case an expression for the con-
tinuity of the energy flux. It follows therefore that S*i is
the Poynting vector (with the factor i/c). Since Sj4

= icgj = (i/47r)[ExHj], we get Sw = S14, so that the ten-
sor S j m is symmetrical.

Finally, Su is determined (for a plane wave, directly)
from the condition (9.13), which yields for the given
scheme

of these two components (for the particular case of the
coordinate axes chosen by us), takes the following form:

-dSlm/dxm = = l; 4).

(We recall that the density of the force "f " is given if
the expression is given for the momentum density.)

Su can be determined also from another condition:
the sum of the diagonal terms (the trace) is equal to
zero.

The assumption Σ = 0 is natural by analogy with the
m—e tensor of the field produced by the charges in
vacuum, and by analogy with the material particle-flux
tensor. In the latter case

2 = -μ<Λ

where μ ο is the density of the rest mass of the particles
(equal to zero for a photon field)28'.

Inasmuch as the chain of reasoning followed by us
now, which leads to the construction of the tensor S,
yields as a result a symmetrical (Abraham) tensor, and
since the m—e tensor of the total system (field + med-
ium) should be symmetrical, it follows that the mechan-
ical tensor Uj m of the material component of the system
(medium) is symmetrical, which is natural.

On the other hand, the asymmetry of the Minkowski
tensor implies asymmetry of the mechanical tensor
Uj m of a material medium.

Summarizing the exposition in this article, we can
formulate a few premises, primarily of negative charac-
ter.

a) The rejection by Laue, Moller, et al. of the
Abraham tensor as not satisfying the Laue criterion
cannot be regarded as convincing. The proofs of these
authors fail if account is taken of the condition for the
balance of the two components of the energy flux, elec-
tromagnetic and mechanical.

b) Minkowski's tensor is unacceptable as contradict-
ing the principal conservation laws, as well as the funda-
mental concepts of the interaction of the electromagnetic
field with matter (with the exception of the Lorentz
forces that act on the polarization currents).

c) Generalizing the conclusions based on the simple
model considered above, we can apparently state that the
Abraham tensor is the adequate form of the field tensor
and satisfies the requirements listed above. As pro-
posed by the Hungarian theoreticians'- , it is expedient
to separate from the Abraham tensor a "current" com-
ponent (S c r ) 2 9 ) satisfying the condition

Div5" = 0. (9.15)

The other component S*s satisfies the requirement

(«Ρ—Ι)2 ί(η-β)(1-β«)
ί(«-β)(1-βη) -(«-β) 2

„*_! t 11 - ί β

(9.16)

The Abraham tensor, represented in the form of a sum

(9.17)

Only the first of these two components, S ' c r , should be
taken into consideration when the light-propagation
velocity is defined as the quotient of the energy flux
density [c(u/n2)y2(n - /3)(1 -n)] by the electromagnetic
energy density [(u/na)y4(n - β)2].

The tensor Τ of the total energy of the system "field
+ medium", in the considered limiting cases, is repre-
sented by the sum Τ = S A + U m e c n , if the medium is an
ideal dielectric.

In the case considered by Marx and Gyorgyi'-8-' of an
ideal solid (the first of our two models) we have

tWh= -s». (9.18)

Γ Λ = s<*. (9.19)

In the given particular case, consequently, the "current"
component of the Abraham tensor coincides with the
total tensor T A of the entire "field + medium" system as
a whole.

In other media, the sum S*s + U m e c n ^ 0 and Τ / S c r .
The tensor T, generally speaking, depends on the
properties of the medium. In our first model, the field
forces are balanced by the elastic forces, and in the
case of the second model they are balanced by the iner-
tia forces of the medium30'.

d) If we adhere to the phenomenological approach and
to the approximation of ideal media, then the problem
can be reduced to two questions: 1) the existence of the
field m—e tensor, and 2) the ponderomotive forces in the
field of the wave propagating in an immobile medium.

If we postulate the existence of the aforementioned
tensor and assume expression (2.12), which defines the
ponderomotive forces, or expression (2.11) for the mo-
mentum density, then there is no room for discussion,
since the tensor for a medium at rest is by the same
token defined, and its relativistic generalization follows
from the general rules for the transformation of the
components of four-dimensional tensors.

Incidentally, from the historical point of view it is of
interest to note that Abraham31' constructed his tensor
in the general case (for a moving medium) without using
relativity theory in explicit form. He followed the way
of extrapolation from the relations for a medium at
standstill, on the basis of rather arbitrary assumptions
and extremely scanty experimental data. The derivation
of this tensor is given in his book Ε7 3 (page 360).

If we consider the question of the approximation of
ideal media (perhaps in a form more general than ours),
then it would be possible to define uniquely a number of
general premises—a certain "alphabet," which could and
has to be used (without any disagreements) in the treat-
ment of more complicated questions connected with this
problem. Unfortunately, historically the situation has
developed paradoxically in such a way that so far no
order has been introduced into this very "alphabet." The
necessary basic premises that could be used have not
been established and continue to remain a subject of dis-
cussion.
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APPENDIX I

The expression for the Abraham forces in general
form (μ / 1) is obtained if, in addition to the forces con-
sidered in the main text, one takes into account also the
following terms. First, -(l/2)a(MH)/ax (where Μ is the
magnetic polarization and Η is the magnetic field inten-
sity), and second, the forces fg of Einstein and Laub

/E=(l/c) Ε dMldt = [(\i— 1)/4ΐκ] Ε dH/dt. ( A l . 1)

The forces (Al.l) were introduced in1-18-' from symmetry
(or "duality") considerations as the analog of (2.14).

Taking into consideration (2.13) and the relation

Η = (η/μ)£\ (Α1.2)

which follows for a plane wave from Maxwell's equations,
we rewrite the expression -(ΐ/2)θ (ΡΕ)/θχ in the form

ί η d 1 η ε— 1 dE% η ε—1 dE (A\ 3̂
2 c dt 2 c 4n dt c 4JI dt

and then, according to (A1.2) and (A1.3),

Further, according to (A2.4)

1 9 ,PE)- "Z=lJL ~3F
εμ—u _ dH

By analogy, using the same procedure, we obtain

— (1/2) d (ΜΗ)/ΰχ=[(ε\ί — ε)/4πε] Η dE/dt.

Finally, assuming the Lorentz forces

fL =(l/c) φΡΙδί) Η = [(e— 1)/4IK] (dE/dt) Η

and taking (Al.l) into account, we have

/ L + / E = [ ( 8 - l)/4ra] {dE/dt) Η+1(μ — 1)/4JK] Ε dH/dt.

Adding (A1.4), (A1.5), and (A1.7), we obtain

(A1.5)

(A1.6)

(A1.7)

εμ-μ + μ-1 „„„,*, , εμ-ε + ε-1
4ΗΪ Ε dH/dt + Wc

6E εμ-Ιβ(ΕΗ)

The arguments that show that the Lorentz force should
be set equal to (l/c)(9P/9t)H in the given situation (and
not (l/c)(9P/8t)B) are developed i n [ 8 ) 1 8 : i .

APPENDIX 2

Relation (2.3) yields32'

f=-(l/8n)£2 grade (A2.1)

under the assumption μ = 1. In the general case (μ f 1)
the expression for the force density includes also an
analogous magnetostatic term (-H2 grad μ), and in place
of (A2.1) it is necessary in this case to put (omitting
henceforth the factor l/8ir)

f = — £ 2 grad ε — Η 2 grad μ. (A2.2)

According to Maxwell's equations for a plane wave, we
have here the relation

H = (n/l>.)E. (A2.3)

The continuity condition for the energy flux yields

where Ε ο and Ho are the values of the field variables
outside the medium (in vacuum), and Ε and Η are the
variables in the medium.

399 Sov. Phys.-Usp., Vol. 16, No. 3, November-December 1973

2 = (μ/ε) 1 ' 2 ΕΙ

π = ( 6 μ) < / 2 ,

(A2.5)

The force F^, acting on the unit surface of the boundary
transition layer is calculated, according to (A2.2), from
the formula

:= - j (εμ)'/25 Ι8εμ/0*£5ώ= - | 2 (εμ)1/2 | ? μ ' / 2 = " £ 2 = - 2 (n-1) £}.

Reconstructing the omitted factor ΐ/8π, we obtain

FtI= - ( n - 1 ) EJ/4n= —[(n— l)/n] u,

Since Eo/47r = u0 = u/n, where u0 and u are the density of
the electromagnetic energy outside the medium and in
the medium, respectively.

APPENDIX 3

In accordance with the meaning of the tensor P^ m we
have P44 = —h, where h is the energy density. Conse-
quently, according to (5.4),

ft'=vsi°fi! (A3.1)

is the relativistic term in the expression for the energy
density, and depends on the velocity w; under the as-
sumptions made by us, h° = 0 if w = 0.

Let us consider the component P ' u of the tensor P j ' m .
According to (4.24), this component is equal to

i>ii=rti+<fii«'; (A3.2)

here p ' u is the component of the relative-stress tensor

i»=-pt. (A3.3)

According to the meaning of the "absolute stress tensor"
(P/m), it follows from (5.4) that the momentum density
g' is equal to

(A3.4)

From this we obtain according to (A3.2) and (A3.3)

On the other hand, according to (5.4) we have

Equating (A3.5) and (A3.6), we obtain

(A3.5)

(A3.6)

( Α 3 · 7 )

as shown by (A3.7), the "longitudinal" (directed along the
χ axis) component of the relative stresses—in this case
the tension of the medium—remains unchanged under
the special Lorentz transformation.

Further, according to (4.15), the energy flux is

<D'=A'U> + K,/I'. (A3.8)

Taking (A3.1) into account for the quantity h', and also
the fact that p ' = p 0 , we obtain

Λν=[ί*β2/(ΐ-32)]ί-βο) = -ί.°β3<;/(ΐ-β2), (Α3.9)

Wp· =>-№«. (A3.10)

Substitution of (A3.9) and (A3.10) in (A3.8) yields

<»'=—W7(i—P2>i-fci>°=—PCP°Y2, (A3.11)

(i/e) <!>'=.(>;!=-'ί>°β·Λ ( A 3 . 1 2 )

in accordance with (5.4).

According to Planck's postulate we have

D. V. Skobel'tsyn 399



8-=Φ7^=-βΡο(1/<:>Υ2

and

likewise in accordance with (5.4).

APPENDIX 4

The expressions for the components of the Abraham
tensor as functions of the field variables, in the case of
a medium moving in the direction of the χ axis with
velocity w = /3c, can be represented in the form of the
following symmetrical scheme (see^ 7" 3, formulas (199a),
(201), and (201a), as well a s t l 3 , formula (35), page 666):

S,,= —irJ2iSi

(A4.1)

S,4 = Stl = (1/4*) [1/(1 - β»)] ([E'H'b, -β» [D'B'],),

The Lorentz transformation formulas yield E'
= y(E - /3B) (β is the velocity of the origin of the coor-
dinate system (x', y', z') relative to x, y, z). Next (in the
case of a plane plane-polarized wave in a nonmagnetic
medium),

' = nE\ B' =

where η is the refractive index. If this is taken into con-
sideration, then it is easy to verify that (4.22) corre-
sponds to the expression given above for the components
S | m , where, however, β must be replaced by —β.

*[DB] =D XB.

"We regard it as possible to adhere to this term (in place of the customary
"energy-momentum tensor") since it was used by Pauli in his classical

paper!1]·
2 ) T o these two names, which mark an epoch in the history of classical

physics, we should also add in connection wi :h this problem the name of
Abraham, who introduced the fundamental concept of electromagnetic
momentum into the science.

3)We shall use this term, which was coined in the classical papers but seems

to be obsolescent. In the latest literature one usually reads of "volume

forces"
4 ) Whose conclusions, however, are incorrect.
s ' At first glance it might seem that the reference to the law of motion of

the center of gravity and to the derivation given here is superfluous, since
the relation G = μ(ο/η) = <? /en (see (1.5) below) can be regarded as
valid a priori. In this case it would also be necessary to exclude a priori
the Minkowski tensor, which contradicts this relation, and the problem
to which the present article is devoted would have to be regarded as in-
essential and the literature devoted to this question as the result of mis-
understanding. However, in the simple example considered in Chap. 6
below, ( a charged capacitor moving uniformly with velocity β), we en-
counter the following situation: the momentum G of the electromag-
netic field is not equal to μβο (here the electromagnetic mass μ is equal
to <?'/c2, where of is the field energy). We see from expression (6.2) for
the m-e tensor of the field (W) that in this case we have (according to
Minkowski as well as according to Abraham)

G = 2f!<s7c (1 + β!) Φ μβί.
6 )This tensor is designated in the same manner as the momentum flux

density tensor.
•"Reference is made in this connection, in particular, to Quinke's experi-

ments on the drawing of a liquid dielectric into the field of a capacitor.

"Here Τ χ χ is the (Maxwellian) tension.
9 ) A more accurate and yet simple calculation could be cited.
i0)Assuming that the mechanical m-e tensor of the medium is symmet-

rical.
" 'Both form the historical point of view and in connection with later dis-

cussions, let us explain that Planck ["] was the first to point out that
relation (4.13) should hold for the flux of energy of any form. In par-
ticular, when light propagates in a moving medium an energy wpjj (where
w is the velocity of the medium) is transmitted through a unit cross
section area in a unit time, in the form of the work of the light pressure
(pjt). Therefore the "convective" term (hw, where h is the energy den-
sity) in the expression (Φ) for the energy flux should be supplemented
with the product wp:

Φ = hw + wp. (4.15)

In accordance with Planck's postulate, the expression for the momen-
tum density (g) can consequently be written in the form

g = (fcttVc2) + (ωρ/c'). (4.16)

The components of the vector wp are defined as follows: (wp) m = w/p t a.
12)We are referring to a transformation (without rotation of the axis) to a

system of coordinates whose origin moves parallel to the χ axis.
1 3 ' ln the "zeroth" system, this density and with it the refractive index can

be regarded as independent of the field intensity, since the particle mass
is arbitrarily large.

14)We have in mind here a mechanical interaction- the constraints impos-
ed by the elastic forces, or exchange of mechanical momentum (upon
collision between the particles).

l s ) To this end we can assume that the front of the wave packet is describ-
ed by the equations: £ = £ 0 ain {ω [t—(zn/c)]}—£„ (ω/ω,,) sin )ω0 [ι—(xnlc)]}

e-a[(-(xn/C)] w i t ) , H =ne at x < ct/n and Ε = Η = 0 at χ > ct/n, where ω is
the frequency of the light, ω 0 is the natural frequency of the molec-
ular dipoles, a » 1, and ωο/ω » 1. The variables Ε and Η satisfy Max-
well's equations. Ε and Η and their first derivatives are continuous at
χ = ct/n.

16)We cite in this connection a paper by Tang and Meixner[14] who
considered in a certain approximation the question of the m-e tensor
of light in a real liquid with the viscosity of this medium taken into ac-
count. According to the results obtained by them, the oscillatory
motion of the medium must be taken into account when propagation of
light in a real liquid is considered. A liquid that is perfectly transparent
optically turns out to absorb light to a certain (albeit extremely weak)
degree, owing to internal friction. According to the calculations in [ 1 4 ],
under the assumptions made by them (for a definite example), a light
beam is attenuated because of this effect to half its intensity over a
length on the order of several thousand kilometers.

i7'We write down the mass-density continuity equation:

id/at) (μ, + Λμ0) + (β/βχ) e Ι(μ0 + Δμ0 (()) β0 (1)1 = 0. (5.17)

We recognize that
a/ax = -(n/c) a/at. (5 .18)

According to (5.15) and (5.17) we obtain

(dlat) [μ0 + Δμο (1)1 = 3Δμο/δ1 = (0/Si) <[(Β· - 1)/<:!] u0 (1)}. (5.19)

Hence, integrating, we obtain
Δμ 0 (ί) = [(„• - l)/c«] •»„ (ί) ( 5 . 2 0 )

(since u 0 = 0 and Δμ0 = 0 at t = 0).
1 8 )In (5.24) we have already neglected a term of order νι2μ0

 m the
expression for the component X4°4.

19)See Appendix 3. The values of p 0 are not the same here and in (5.4).
The fact that, unlike (5.4), the transverse components of the pressure
(Pyy = Pyy and P z z = P z z ) are not equal to zero does not play any
role.

2 0 )The flux density is not equal to the product of the energy density by
the velocity of the medium.

21'We recall that (6.20) is a consequence of the invariance of the phase
(aee [ 3 ], page 57).

2 2 )The medium moves in a direction opposite to the field pressure.
2 3 ) CitedbyLaue[ 2 b ] .
M ) 'mech i s t ' l e t o r ( l u e °f e m f · ^ w e assume that the outer electrode of the

capacitor is a very good conductor (almost a superconductor), then at
the initial instant of time \mec\l is the torque of the carriers, and the
apparent motion of the electrode accelerates to the value (8.5) gradually,
with attenuating current. At first, it was regarded as obvious that when
the current is turned off in some circuit (which does not carry in itself
electric charges) the vanishing self-field does not cause this circuit to ro-
tate (and also that the short circuiting of the circuit will not cause a
torque to be applied to the circuit).

25)These arguments were reported to the Science Council of the Physics
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Institute of the USSR Academy of Sciences, and are included in the
stenographic report of the session of this council of November 24,
1969. The communication referred to was made in connection with
the discussion of one study by the Oscillations Laboratory of the
Physics Institute of the USSR Academy of Sciences.

2 6 )The momentum (9.1) transferred to the medium during the time τ
when the light is emitted from its source is equal to the product ρτ =
[ ( η 2 - l)/nj(f/c.

27) "?

F = J (—δρ/dx) dx = [(n" — i)ln'} u, where χ is arbitrarily close to x 0

* *s

(x 0 is in the coordinate of the "wave front"), and \ (—dp/dx) dx = 0

at χ, < xoand x 2 > x0. *'
2"However, if we ascribe to the photon an energy equal to the total

energy (—T44) of formulas (5.5) and (5.30), then the rest mass of such
a "photon" is finite (see [']).

29'This component (separated from Minkowski's tensor) was considered
long ago by Beck [ 9 ], who called it the "current component" (Stromung-
santeil).

" ' i n Brevik's review [4] the tensor coinciding with S c r is designated Sra£j
and is regarded as one of the variants of the field tensor; this, as fol-
lows from (9.17), is incorrect.

31'See Appendix 4.
32*This relation, derived for a static field, is applicable here, since the

"Abraham forces" vanish on the average.
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