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The review is devoted to an analysis of the influence of typical factors present in a real
experiment (impurities, phonons, domain structure, etc.) on the behavior of thermody-
namic quantities near a second-order phase transition point. Chapter II discusses
equilibrium thermodynamic perturbations. Perturbations that differ in nature are con-
sidered from a unified point of view in which the idea of isomorphism is used. In the
first stage, in each concrete case, thermodynamic variables called "isomorphic" are
introduced, in which the ordinary second-order phase transition takes place. It is fre-
quently difficult or impossible, however, to carry out an experiment in which the
"isomorphic" variables remain constant. The second stage therefore consists of a
transition from "isomorphic" variables to "experimental" variables, which can be
conveniently maintained constant in the experiment. In terms of the "experimental"
variables, the picture of the phase transition can differ strongly from the usual picture
of a second-order phase transition. Thus, in the case of impurities, if the measure-
ments are carried out at constant concentration, a third-order phase transition takes
place, and if the ordering parameter interacts with longitudinal or transverse phonons
(at constant pressure), the phase transition is of first order. Chapter III discusses the
influence of nonequilibrium perturbations (mainly immobile impurities and inhomo-
geneities) on the thermodynamics of the phase transitions. In this case there may
exist several (at least two) points that are nonanalytic in the temperature and have weak
singularities of the thermodynamic quantities. A temperature interval of the "smear-
ing" of the transition is indicated for each type of perturbation. The theory is com-
pared with experiment.
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I. INTRODUCTION

The phase-transition picture in ideal systems has
recently been under very intensive study. By ideal sys-
tem we mean here an incompressible ferromagnet with
spins rigidly fixed at the sites that make up a regular
lattice. Such a ferromagnet can be described by the
well-known models of Heisenberg or Ising. The lattice-
gas model, which describes the liquid-vapor transition
near the critical point, turns out to be the equivalent of
the Ising model for a ferromagnet placed in an external
magnetic field, and can also serve as an example of a
phase transition in an ideal system.

The exact solution of the two-dimensional Ising
model, first obtained by Onsager [ 1 ], and also computer
calculations, have shown that at the phase-transition
point the free energy of such systems is a nonanalytic
function of the temperature and of the magnetic field.
Computer calculations have now yielded a fairly accu-
rate quantitative description of the behavior of all the
thermodynamic quantities near the Curie point in the
two-dimensional and three-dimensional models of Ising
and Heisenberg.

In real experiments, however, the picture of the
phase transition is strongly distorted (in comparison
with the corresponding picture in ideal systems) by a

large number of extraneous factors, which are very
difficult or impossible to get rid of. Thus, in solids
there are always lattice vibrations (phonons), which are
not taken into account in calculations performed within
the framework of ideal models.

The present review is devoted to an analysis of the
influence of typical factors present in a real experiment
on the behavior of thermodynamic quantities near a
second-order phase transition point.

The following classification of the possible perturba-
tions is proposed:

1) Perturbations in which the measurement is per-
formed slowly enough to enable the system to arrive at
the state of thermodynamic equilibrium with respect to
all the variables of the system (this case is considered
in Chap. II).

2) Perturbations in which the measurement process
is so carried out that there is not enough time for
equilibrium to be established with respect to the vari-
able characterizing the perturbation (Chap. III).

If we consider the influence of impurities on the
thermodynamics of a phase transition, then both the
first and the second cases can be realized, depending
on the rate at which the experiment is performed.
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TABLE I. Definitions of the critical exponents (h = ̂ B H/kT c is the dimen-
sionless magnetic field, where μρ is the Bohr magneton)

Specific heat C

τ-α y ^

/ / Ι * Γ Β

Susceptibility χ

y^ Ι*Γλ

Magnetization m

(-if y/

Correlation
radius r c

Correla
tion

function
(HP»

The difficulty of solving the problems formulated
above lies in the absence of a small parameter even in
the case when the perturbation (of the order of ?) is
small in comparison with kT c, where k = 1 is Boltz-
mann's constant and T c is the phase-transition tem-
perature. In fact, if we are close to the singular point
T C ) then the parameter of the expansion of the partition
function or of the free energy in a Taylor series is not
I, but" e/r^, where c is a constant.

In the temperature range τ S. 7l/c" about the critical
point, small perturbations can lead to large changes of
the thermodynamic quantities. The "smearing" inter-
val τ ~ 7Vc" is an important characteristic of the in-
fluence of the perturbation on the picture of the phase
transition.

We shall make extensive use of the scaling-theory
method formulated by Widom, Patashinskii, Pokrovskii,
and Kadanoff[2'5]. Scaling theory approximates the
singularities of thermodynamic quantities by power-law
functions. The definitions of the critical exponents are
given in Table I. It is assumed that the only length
parameter is the correlation radius of the ordering
parameter, which tends to infinity when the temperature
approaches the phase-transition point. This assumption
enables us to express all the exponents listed in Table I
in terms of two independent parameters χ and y (Table
Π).

In cases when it is impossible to obtain exact solu-
tions, we shall use the method of self-consistent fields
in the most general form, as given by Landau1·61.

The present review deals with classical systems
(magnets, ferroelectrics, and the liquid-gas and liquid-
liquid critical points); the numerous results obtained
for quantum systems (liquid helium and superconduc-
tors) are not considered here.

To facilitate the reading, long mathematical deriva-
tions are relegated to appendixes; the conclusions are
presented at the end of each section. Those who wish to
become rapidly acquainted with the problems touched
upon here can confine themselves to reading the intro-
duction, the deductions, and the conclusion.

II. THERMODYNAMIC EQUILIBRIUM
PERTURBATIONS

In this chapter we consider systems that are in
thermodynamic equilibrium with respect to all the
thermodynamic variables. The solution of problems
considered in the present chapter breaks up into two
stages. In the first stage, the thermodynamic potential
of the perturbed system reduces to the potential of an
ideal system. This reduction is obtained by a success-
ful choice of the thermodynamic variables. If the choice
of variables makes it possible to reduce the thermody-
namic potential of a perturbed system to the corre-
sponding potential of an ideal system, then we shall talk
of isomorphism of the phase transition of the perturbed

TABLE II. Expressions for the critical exponents in terms of two in-
dependent parameters χ and y.

α

2 "
y

β

d — x

y

V

2x — d

y

9

X

d — x
α ν

λ μ

1

y

ν

2 (<*-*)

and unperturbed systems, and call the variables
isomorphic [ 7 '8 ]. Variables that determine the conditions
of thermodynamic equilibrium can also be isomorphic.
Thus, in the case of mixtures, the isomorphic variables
are the temperature and the chemical potential, since
the constancy of these variables over the sample deter-
mines the thermodynamic-equilibrium conditions. In
the presence of a domain structure, when the external
field is directed along the easy magnetization axis in a
uniaxial crystal, the isomorphic variables are the tem-
perature and the internal magnetic field, which are
constant along the sample. It is frequently difficult or
impossible, however, to perform an experiment and
maintain the isomorphic variables constant. For exam-
ple, in solutions it is very difficult to measure thermo-
dynamic quantities at a constant chemical potential; the
measurements are carried out at constant concentra-
tion. The second stage will therefore consist of chang-
ing over from isomorphic variables to "experimental"
variables, in which it is convenient to perform the ex-
periment. The isomorphic variables are distinguished
by the fact that they determine the thermodynamic
equilibrium conditions, while the "experimental" vari-
ables are accidental. Therefore, whereas the thermo-
dynamic potential expressed in isomorphic variables
has the same form for different types of perturbations,
in the "experimental" variables we have different types
of singularities for different perturbations.

As will be shown below, a solution at constant con-
centration has a phase transition of third order in the
temperature, whereas the interaction of phonons with
the ordering parameter at constant pressure leads to a
first-order phase transition.

1. Mixtures in thermodynamic equilibrium. We
divide the calculation of the thermodynamic quantities
in a system with impurities into three stages. In the
first stage we calculate the thermodynamic potential of
a system with the chemical potential as a variable,
within the framework of the so-called decorated model.
An important result of this stage is the proof of the
phase-transition isomorphism of a system with impuri-
ties and an ideal system. In the second stage we find
the dependence of the chemical potential on the concen-
tration and on the temperature, and in the last stage we
calculate the specific heat of the system at constant
concentration. In the conclusion of this section we dis-
cuss certain assumptions that enable us to obtain an
expression for the thermodynamic potential without
using any models.

362 Sov. Phys.-Usp., Vol. 16, No. 3, November-December 1973 V. A. MikulinskiT 362



ο e, ±1

FIG. 1. The decorated Syozi model.

Ο

Using the thermodynamic inequality (8g/ac)T > 0, it
is easy to prove that the specific heat at constant chem-
ical potential Cj? exceeds the specific heat at constant
concentration Cc (Cg > Cc). (This inequality is ana-
logous to the relation Cp > Cy in Sec. 16 of the book[9].)
By representing the specific heat near the critical point

in the form Cg ~ τ~α% and Cc ~ τ ° c , we obtain
d g > a c . As will be shown below, ctg=a and ac

= -«/(I - a) (a is the specific-heat exponent of the
pure substance), and the inequality cited above holds
true.

a) We consider first the "decorated" model of a
ferromagnet with impurities19"111, shown in Fig. 1. The
light circles show the atoms of the main substance with
spin σ̂  (i is the number of the site), which takes on two
values, ± 1. The dots show the sites in which magnetic
impurities can be located. The state of this site is
characterized by the variable μ ,̂ which takes on three
values: the state μι = 0 corresponds to the absence of
the impurity, and μj = ±1 denotes that there is an im-
purity atom with appropriate spin at the given site.

The energy of such a system is expressed in the
form

Ε = - (Λ/2) Σ (σ, + σ;-) μ, - (/2/2) (Δ//2) Σ (1.1)

The first term describes the interaction of impurity
atoms with atoms of the main substance (i, i' are the
numbers of the nearest-neighbor sites of the main sub-
stance). The second term describes the interaction of
the atoms of the main substance, and the third term
characterizes the change in the direct interaction of the
atoms of the main substance if an impurity falls between
them.

This model is a generalization of the models con-
sidered in[9~11]. In the particular case I2 = ΔΙ = 0 we
obtain the Syozi model1·91, and at Ii = 0 we obtain the
case considered by Lushnikov1·101 and Shapoval£ll].

The partition function Ζ with the temperature, mag-
netic field, and chemical potential g as variables is
given by (g = g/T)

Z(T,H,g) = Σ βχρ[θ1

where θι = Ji/2T and θ = AJ/2T. Summing expression
(1.2) over μj at small impurity concentrations (c « 1),
we obtain near an arbitrary point go on the critical
curve (see Appendix 1)

Ω/Τ = -4<* - Α2τ (g) + Φο [τ (g)] + Ο (e%, τ2 (g), et% (g)), (1.3)

where <£0[T(g)] = -AT(g)^"a is the thermodynamic
potential of the unperturbed system, A > 0 and Aj are
constants on the order of unity,

τ (g) = χ ~ (1/7Ό) (dT-Jdg) Ag, τ = (Τ - Π (g))/70,

Ag = g - go, and O(e2S, T2(g), eg-r(g)) is an aggregate
of quantities of order e^g, r2(g), and eS-r(g).

Thus, Ω can be represented in the form of the sum
of a part that is regular in r(g) (first term) and a
singular part (second term). An important property of
this model is the isomorphism of the singular parts,Of
the thermodynamic potential of the mixture (in terms of
the variable g) and of the thermodynamic potential of
the ideal system.

b) The connection between the concentration and the
chemical potential is given by the equation

€=~Ύ\-^)τ (1.4)

Using the formula (l/T 0)dT c/dg = A 4e g, which follows
from (A1.7), we obtain in the zeroth approximation

c = Ahe\ Ab=Ai~A2Ai, (1.5)

from which we obtain the dependence of the chemical
potential on the concentration in the principal approxi-
mation

g = In c, (1.6)

which coincides with the analogous formula for weak
solutions far from the critical point. Using the last
formula, we obtain

(1/ΪΌ) dTJdg = (c/ΤΌ) dTJdc. (l .7)

From (1.4), (1.5), and (1.7) we obtain in the next ap-
proximation the equation

Ag = A {2 -a) sign τ (g) | τ (g) ^"«(l/TO) dTJdc. (1.8)

At very small τ and Ag we have r(g) α » Ag, so
that in first approximation r(g) = 0, whence

Ag«) = τ l(c/T0) dTJdc]-1. (1.9)

In the second approximation we have the equation

I c dTc\-i . ,„ w . , . . 1 dTc I c iTc . ,,, |l-a (1 10)

This equation has a solution if the sign of τ coincides
with the sign of r(g), whence

sign τ (g) = —sign [(1/7Ό) dTJdc] sign Ag<2' = sign τ

and

sign Ag<2> = —sign τ-sign [(1/7Ό) dTJdc].

From (1.10) we obtain an expression for Ag(2):

Ag<2>= -Ag<» sign τ sign [(l/T^dTJdc]^1-^ (1.11)

where

τ = τ/τ, "τ = [(2 — α) Ac (1/Γ 0 ) 2 (dTJdc)*]1"*.

The condition for the applicability of perturbation
theory, Ag(2)/AgU) « 1, takes the form

*«* · _ (1.12)

We consider now Eq. (1.8) in the region \τ\ » τ" that is
the inverse of (1.12). As will be shown below, in this
region the specific heat behaves as in the pure sub-
stance, so that in first approximation we can let the
concentration tend to zero, whence

Ag'1' = A (2 - a) sign τ (g) | τ | »"« (UT0) dTJdc. (1.13)

In the second approximation we have

Ag<2> = — Ag'1' (1 — a) | τ Γ». (1.14)

c) We now calculate the specific heat of a constant
concentration. The entropy is calculated from the
formula
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4(2—a) (signτ) | τ (g) I 1 " "-cg 0 -cAg (1.15)

In the derivation of the final formula we used Eq. (1.8),
neglected the term cg0, which leads to the regular part
of the specific heat, and assumed that (c/T 0)dT c/dc
« 1 in dilute solutions.

Substituting (1.9) and (1.11) in (1.15), we obtain an

expression for the specific heat in the region τ « τ

sits = 1 — (1—α) τ , (l.lo^

and in the region τ » 7

^/Β = (1-α) |ΪΡ[1-(1-2α)τ- α ],

τ = [(1 -α)" 1 Coc (1/7Ό)2 (dTddcf]^, ' '

where

(in the pure substance C s = C o | τ \~α).

The quantity 7, which characterizes the tempera-
ture interval over which the phase transition is
"smeared" by the impurities, was calculated by
Anisimov, Voronel', and Gorodetskii [ 8 ].

We can assume that in the entire region

CJB = / (τ), 1 (τ) = (1 +Ϊ»)"1, (1.18)

where f(τ) is a function of one variable and is universal
for all mixtures. At small a, the interpolation formula
for f(τ) correctly conveys both asymptotic expressions
(1.16) and (1.17).

So far we have calculated the singular part of the
specific heat C s . For a numerical comparison of the
theory with experiment, it is necessary to know also
the regular part of the specific heat. Without perform-
ing the calculations, we shall show that the regular part
can be described by different constants Uo and Ci
(which do not depend on the temperature and concentra-
tion) in regions τ » τ and τ « 7, respectively. To
explain the reason why the constants are different in
the two regions, let us consider the previously discarded
term r(g) in the entropy. In the region τ » 7 we have
τ (g) = τ, and this term yields a constant contribution
to the specific heat. In the region τ « 7 , however, this .
term does not lead to a constant, but results in a small
correction (in terms of the parameter
c( l/T 0 ) z (dT c /dc) 2 ) to the second term of (1.16).

Starting from the foregoing, we can qualitatively de-
scribe the regular part of the specific heat by a very
simple interpolation formula of the type

The constant Uo should agree approximately with the
corresponding constant that describes the regular part
of the pure substance. Ci is the parameter that must
be determined from experiment. Using (1.18), we write
down the complete expression for the specific heat

(1.19)

Thus, in the region | τ | » τ the behavior of the
specific heat is close to the behavior in an ideal sys-
tem. The role of impurities reduces to small incre-
ments . In the region | τ | « 7 , the impurities exert an
appreciable influence on the specific heat. At a con-

stant impurity concentration and when the temperature
tends to the critical value, the specific heat tends to a
finite limit. Using the general expression for the parti-
tion function of a system in a magnetic field (A1.2), we
can obtain the behavior of the magnetic moment, the
susceptibility, etc. as functions of all the variables. We
present the final results obtained by Essam and
Garelick [ 1 2 ]. At Η = 0 and at a fixed concentration we
have

ΠΙ ~ χΡΑΙ—α) γ τ-ι?/(1—α) /•* n n \

and a fixed temperature Τ = T c(co), when the concen-
tration c tends to c0, we have

m ~ AcW-"», χ ~ AC*-«>, Ac = c — c0. (1.21)

d) We now consider the assumptions that have led to
expression (1.3) for the thermodynamic potential, with-
out using the model presented above.

Fisher has proposed1·71 that if the calculations are
carried out at a fixed value of a conjugate "generalized
force," the singularities of the thermodynamic quanti-
ties remain the same as in an ideal system when a per-
turbation described by a "generalized coordinate" is
turned on. In the example considered above, the
"generalized coordinate" is the impurity concentration,
and the "generalized force" is the chemical potential.
This assumption is equivalent to the isomorphism hy-
pothesis. From Fisher's hypothesis we obtain directly
the singular part of the thermodynamic potential in
terms of the variables Τ and g:

Ω. ~ ι r (g) r·..
Adding to this expression the regular part expanded

in a Taylor series in T(g), we obtain expression (1.3).
Repeating the derivations given above, we arrive at
expressions (1.18), (1.19), and (1.20).

In [ 8 ' 1 3 ] we considered the thermodynamic quantities
near the liquid-vapor and liquid-liquid critical points of
two-component mixtures. In such systems it is neces-
sary to take into account the fact that not only the criti-
cal temperature, but also the critical volume are func-
tions of the chemical potential. At constant volume
equal to the critical value and at constant concentration,
the specific heat is given by (1.18) and (1.19). The re-
sults of calculations of other quantities, which will not
be presented here, are detailed in [ 8 > 1 3 ] . We note only
that (8c/ag )p χ is described by the same formulas as
the susceptibility, namely (1.20) and (1.21), respec-
tively. In most mixtures, we have τ < ΙΟ"6—10"8, and
therefore experiments performed with presentday ac-
curacy should not reveal a "smearing" of the specific
heat by the equilibrium impurities. In liquid helium, in
view of the low value of To which enters in the expres-
sion for 7, the "smearing" region is large enough to
be observed.

Gasparini and Moldover[14] investigated the behavior
of the specific heat Cp ;C (p is the pressure) in an
He4—He3 mixture. In the presence of impurities, the
specific heat becomes finite. At the same time, the ex-
perimentally determined'·141 a / ( l - a) turned out to be
equal to approximately 0.2 (a « 0 in a pure substance),
so that no quantitative agreement between theory and
experiment was observed there.

In [ 1 5 1 they investigated the influence of a water im-
purity on the behavior of Cp (at constant concentration
of all components) of a mixture of methanol and cyclo-
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hexane near the stratification point. Their experimental
value of 7 agrees satisfactorily with the theoretically
calculated one.

It is convenient to reduce the measured values of the
specific heat at constant concentration, in accordance
with formula (1.18), in terms of the coordinates C/B
and τ/l, inasmuch as if the isomorphism hypothesis
holds the connection between these coordinates is given
by a universal relation for all substances at all concen-
trations. Voronel', Shmakov, and Gorbunova[16] have
investigated the behavior of the specific heat of an
ethane-heptane mixture at 3 and 1% heptane. This mix-
ture has the anomalously large value dT c/dt ~ 600
deg/mole, so that the region of "smearing" of the
specific heat is easily observed. The measurement re-
sults were reudced in terms of the coordinates C/B
and τ/τ. According to (1.19), the two curves corre-
sponding to 3 and 1% heptane should coincide. Experi-
ments, however, revealed a difference on the order of

ι between the two curves.

Thus, study of the influence of impurities on the
behavior of the specific heat reveals qualitative agree-
ment between theory and experiment. At the same time,
there is a noticeable quantitative discrepancy. Figure 2
shows plots of the specific heat of an ethane-heptane
mixture, taken from[161.

Conclusions. 1) Certain exactly-solvable models of
system with thermodynamic-equilibrium impurities
show that the singularity of the thermodynamic potential
Ω as a function of the chemical potential is the same as
in an ideal system.

2) The specific heat of a system with impurities can
be described by formula (1.19). At a finite concentra-
tion and when the temperature tends to the critical
value, the specific heat tends to a finite limit (whereas
in an ideal system the specific heat tends to infinity).

3) The magnetic moment and the susceptibility (or
9c/3g)p τ, as a function of the temperature (or the
concentration), is described near T c by formulas (1.20)
and (1.21).

4) There is qualitative agreement between theory
and experiment.

5) The temperature interval of the "smearing" of
the specific heat by the impurities is given by the ex-
pression F = [(l - a r ' C o c i l / T o ^ d T c / d c ) 2 ] 1 / 0 .

6) To verify the isomorphism hypothesis, the results
of the measurements of the specific heat are best re-

duced in coordinates τ/τ, since the specific heat is
expressed, according to (1.19), in terms of a function
that is universal for all substances and depends on
f = τ/τ.

2. Inlfuence of acoustic phonons . Rice[17] was the
first to call attention to an instability, connected with
the lattice compressibility, near the phase-transition
point. He proposed that the singular part of the free
energy can be written in isomorphic form

F = Fr (V) - A (T - To (F))2-«. (2.1)

From the condition that the heat capacity is constant,
we have A > 0; the transition point T c depends on the
volume of the systems. From (2.1) we obtain the princi-
pal term in the expression for (ap/aV)x near the
transition point:

(dpldV)T = A (2 - a) (1 - a) (T - Tc (V))-<* (dT IdV)2 > 0,

which contradicts the condition of thermodynamic sta-
bility.

However, Rice's assumption, which leads to formula
(2.1), is incorrect since in addition to the homogeneous
compressibility it is necessary to take into account the
inhomogeneous oscillations of the lattice (phonons). The
volume of the system does not determine the conditions
of thermodynamic instability and cannot be an isomor-
phic variable.

a) The most consistent classical theory of the in-
fluence of acoustic phonons on the behavior of thermo-
dynamic quantities near a second-order phase transi-
tion point was developed by Larkin and Pikin [18]. In ac-
cordance with the general procedure, we expressed in
the first stage the thermodynamic potential of the per-
turbed system in terms of the corresponding potential
of the ideal system. In the second stage, we change
over from the isomorphic to the "experimental" vari-
ables, namely the temperature and pressure. When both
the transverse and longitudinal branches of the phonon
spectrum are taken into account, we obtain a first-order
transition. If the transverse branch is disregarded, a
second-order transition is obtained.

Following^181, we separate in each crystal cell a
generalized coordinate TJI. For example, in ferroelec-
trics, the parameter ηι is proportional to the distance
between the central atom and the center of the unit cell.
Disregarding the phonons and assuming zero deforma-
tion, the energy of the system is

£„= 2 (-αη? + (1/2) 6η») + Σ V,t (ηί- (2.2)

FIG. 2. Specific heat of a mixture in thermodynamic equilibrium^6 ].
Solid line—specific heat of pure ethane; dash-dot curve—specific heat of a
mixture of ethane and heptane at a heptane concentration 0.94%, dashed
line-at 3.16%.

here a, b, and Vy are constants, and at a = b » Τ the
essential values of ηι are close to ±1 and the energy
(2.2) goes over to the Hamiltonian of the Ising model.

It is proposed below that the system described by the
Hamiltonian (2.2) has a second-order transition point
To with infinite specific heat.

Near To, the singular part of the thermodynamic
potential is given by

Φο (α, b) = ΛΤ,,Φο (τ0), Φο (τ) = -A \ τ Γ", τ0 = (Τ - Τ0)!Τα,

(2.3)

where A > 0 is a constant on the order of unity.

We write down the energy of an elastic and isotropic
solid, with allowance for the interaction η± with the
long-wave phonons described by the vector field U a (r):
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(2.4)

where Ko and μ are the nonsingular parts of the hydro-
static-compression and shear moduli; the coupling con-
stant q will henceforth be expressed in terms of an
experimentally measured quantity, namely the deriva-
tive of the transition temperature with respect to pres-
sure .

b) The thermodynamic potential is defined by the
formula

Φ = - 7 Ί η f exp [-(1/7) (E - σαβ £ dUJdrt)\ A), dUa (r); (2.5)

here σαα is the stress tensor, and the sign of the
product with respect to i, a, and β has been left out.

For the strain tensor we have the expression

where Vao is the homogeneous part of the tensor and Ν
is the number of particles in the system. After calcula-
tions described in Appendix 2, we obtain an expression
for Φ:

φ = ΦΓ + Φο [τ (ν)] + (Γ072λ) (τα — cp - τ (ν))2, δΦΙδτ (υ) = 0,
(2.7)

where ΦΓ is the regular part of the thermodynamic
potential and does not depend on v,

x(v) = T0-(q!T0K<))(dTc/da)(v-p), λ^ΑμΚ^Τ,/βΚ^ + ίμ).

It will be shown below that the constant c" is equal to
the derivative of the temperature with respect to pres-
sure (c = ( l / T 0 ) d T c / d p ) .

We have reduced the thermodynamic potential to iso-
morphic form. Expanding the second equation of (2.7)
and using expression (2.3) for Φο, we obtain the con-
nection between ν and the experimental variables ρ and
T :

(q/T0K0) (dTJda) (u - p) - cp = -ΪΑ (2 — α) | τ (ν) I1 "«sign τ (ν).

At ρ = 0, this equation differs from the corresponding
equation (1.8) by the sign in front of the expression in
the right-hand side, which leads to a qualitatively dif-
ferent solution of the last equation.

c) If we introduce T(V) = χ, then expressions (2.7)
can be rewritten in the form

Φ/ϊ'0 = (ΦΓ/7'0) + Φ()(5') + Γλ/2)Φ;2(̂ ). το-ερ = ϊ+λΦ;(ί). (2.8)

If the specific heat of the system without allowance
for the phonons tends to infinity, i.e., -Φό'(χ) increases
without limit at small x, then it follows from the sec-
ond equation of (2.8) that Τ is a nonmonotonic function
of x. Thus χ and Φ are nonunique functions of T.
Plots of χ and Φ against τ = (T - T o - cp)/T0 are
shown in Figs. 3 and 4. The singular point Φ, which
corresponds to χ = 0, lies in the region of absolute in-
stability. The functions χ and Φ are multiple-valued
in the regions - x m m < χ < x m i n , where x m i n ~ λ1'®
is determined from the equation

λΦ;(ί»ιπ)=-1. (2.9)

The maximum value of the temperature hysteresis is
equal to -To < τ < τ ο, where

ϊπ 1 Ι Ι 1)|~λ1 Α ΐ. (2.10)

φ-φα

FIG. 3 FIG. 4

FIG. 3. Plots of χ against r.
FIG. 4. Temperature dependence of the thermodynamic potential.

The temperature of the first-order transition is ob-
tained as the point of intersection of the two branches
of the thermodynamic potential shown in Fig. 4 by the
solid lines, and is determined from the system of
equations

Since x\. and x. do not depend on p, the constant c in
(2.7) is equal to the derivative of the transition tem-
perature with respect to the pressure, i.e.,

7C = To + cp.

If we put μ = "λ = 0, then, as can be seen from (2.9)
and (2.10) there is no hysteresis region and a second-
order phase transition takes place, just as in the un-
perturbed system.

d) The specific heat in j u a r t z , KH2PO4, and NH4C1
is close to logarithmic, Αλ <=» 1/5, and the temperature
hysteresis is δΐ ~ 0.ΓΚ, in agreement with the experi-
mental data. The changes of the adiabatic moduli in
these substances are of the order of the moduli them-
selves. In triglycine sulfate and in certain magnetic
materials, we have Αχ « 1, so that, at the present
measurement accuracy, the specific heat behaves just
as in a second-order phase transition, and the anomal-
ous increments to the elastic moduli are small.

In this section we consider the case of an isotropic
model, and a small anisotropy leads to small correc-
tions to the obtained formulas. It can be assumed that
in the case of large anisotropy the fundamental results
will not be qualitatively altered.

The influence of the compressibility of the lattice on
the behavior of the thermodynamic quantities near the
Curie point was also considered in [ 1 9 " 2 1 1 . However, the
shear forces were not taken into account in [ 1 9 ] , so that
the singularities of the thermodynamic quantities did
not change at a fixed pressure, as would follow from
(2.8) if μ = λ = 0. At constant volume it is possible to
obtain, by the same method as in Sec. 1, the singular
part of the thermodynamic quantities

where α, β, and r are the corresponding exponents of
the ideal system.

In'·2 0 1, only the homogeneous part of the shear forces
was taken into account. (The inhomogeneous part, un-
like the above-described treatment of1-18^ w a s not taken
into account.) The homogeneous part of the shear forces
reduces to boundary conditions and in the case of in-
finite samples does not change the answer obtained
i n [ l e l . Figure 5 shows a plot of the specific heat as a
function of the temperature for NH4Br, where an
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FIG. 5. Specific heat in the case of a first-order transition close to a
second order transition (in NH4Br, as measured by G. A. MiPner).

orientational first-order transition close to a second-
order transition is realized.

Conclusions. 1) Allowance for the interaction of the
phonons (longitudinal and transverse) with the ordering
parameters responsible for the second-order phase
transition leads to the onset of a first-order transition.

2) The region of "smearing" of the phase transitiontioi
la.by phonons is determined by formula (2.10): τ ~~Χ

where λ = 4μΚο(8Τ(;/8ρ)2/3Κο + 4μ)Τ0.

3. Effect of domain structure. Obviously, the domain
structure (DS) can greatly alter the behavior of the
magnetic susceptibility of a sample. In fact, in a single-
domain sample, the increase of the magnetic moment
following application of an external magnetic field Η is
due only to the ordering of the spins in the external
field. On the other hand, in the presence of a DS, the
principal contribution to the magnetization is due to the
motion of the domain walls or to rotation of the mag-
netic-moment vector (without a change in the absolute
magnitude of this vector).

The influence of the DS on the behavior of thermo-
dynamic quantities near the Curie point was investi-
gated in [ 2 2 ] .

a) We consider an ideal uniaxial ferromagnetic (or
ferroelectric) single crystal of ellipsoidal shape, with
the easiest magnetization axis coinciding with one of
the axes of the ellipsoid. We direct the external field
along this axis.

The energy can be expressed in the form of a sum
of the exchange, anisotropy, and dipole-dipole energies.
The anisotropy energy differs from zero in our case
only inside the domain walls, so that this energy can be
neglected accurate to terms of order g/t (where δ̂  is
the thickness of the domain wall and t is the domain
dimension). With the same accuracy, we neglect the
energy of the emergence of the domains to the surface.
The dipole-dipole energy can be represented by a sum
of two parts: the first part is accounted for by the de-
magnetizing factor, and the second is added to the ex-
change energy (we denote this sum by Eo).

Taking the foregoing into account, we can express
the energy S in the form

« = £ 0 -μ Β /ί3σ ί + (α/2]ν)μί

Β(2σί)
2, (3.1)

where σϊ is the ζ component of the spin at the site i,
a = 4ττη, and Ν is the number of atoms in the system.

For the partition function we obtain the expression

Ζ = 2 exp [ - (Eo/T) + (ΗμΒίΤ) 2 σ, - (a/2NT) (μ B 2 σ,)*]. (3.2 )
(σ) i

Calculations detailed in Appendix 3 give the following
expression for the thermodynamic potential per parti-
cle:

Ο = ΦΟ(Γ, Η,) —[(Η — Η,)2/2α]. (3.3)

Thus, we have obtained the thermodynamic potential in
a form that is isomorphic to the ideal system. As will
be shown below, the isomorphic variable H s has the
physical meaning of the internal magnetic field, and
this field does not change on going from one domain to
another.

The connection between the isomorphic variable H s

and the "experimental" variable Η is given by the
equation

where m0 is the magnetic moment of the ideal system,

b) From (3.3) we have

m(T, //)= — ΘΦ(Τ, H)ldH = (H — Hs)/a = m0{T, Hs). (3.5)

The last equation in (3.5) follows from (3.4). We re-
write Eq. (3.5) in the form

H = H, + am{T, H) = Hs + innm. (3.6)

Comparing this expression, which represents the con-
nection between the internal field Hs, the magnetic
moment m inside the ellipsoid, and the external field
H, we arrive at the conclusion that H s does indeed
have the physical meaning of the internal field.

In a uniaxial crystal, the domains are parallel to the
easy-magnetization axis. Since the external field is also
directed along this axis, and the internal field is paral-
lel to the domain wall, the internal field is constant
along the sample, by virtue of the continuity of the
tangential component on going through the domain wall.

From (3.5) we obtain an expression for the magnetic
susceptibility

χ = dm/dH= (I/a) (1 -dHJdfl). (3.7)

Obviously, Eq. (3.4) has no solution at Η < α | m o (T,
ITS = 0 ) | , since m0 and H s should be of the same sign.
In the region Η ^ Q | m o (T, 0) | , differentiating (3.4)
with respect to H s , we obtain

dffjdH = 1/(1 + αχ») = 1/(1 +4πηχο),

where χ0 = 8m o/9H s. Substituting this expression in
(3.7), we obtain the susceptibility in the region
H 2 : 5 | m o ( T , 0 ) | :

Η,)). (3.8)

If Η = 0 and Τ > T c , then it follows from (3.4) that H s

= 0, and from (3.8) we obtain an expression for χι:

Χι = Xo (T, 0)/(l + 4πηχ0 (Τ, 0)). (3.9)

Representing χο(Τ, 0) in the form χο(Τ, 0)
= χο\ τ \~γ (χο is a constant), we obtain from (3.9) the
characteristic interval of the "smearing" of the sus-
ceptibility by the domain structure T:

τ ~ (4πηχο)
1'ν. (3.10)

In the region Η < a\ m o (T, 0) |, Eq. (3.4) has no
solutions. If we recognize that Φο is a function even in
H g and has at H~s = 0 a singularity connected with the
discontinuity of mo at this point, then we can easily
see that the principal contribution to the partition func-
tion is made by the point ffs = 0. From (3.6) we have in
this region

i» = /f/; = Η/4πη, Xa = 1/S = Wnn. (3.11)
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Let us calculate the discontinuity of the susceptibil-
ity on the line H_= a | m o (T, 0) | . On this line, the solu-
tion of (3.4) is H s = 0, and near this line expression
(3.8) goes over to (3.9). The jump of the susceptibility
is equal to

Δχ = xa
= ilinn (1 + 4πηχ0 (Γ, 0)).

At Τ — T c we have ΔΧ — 0 and the susceptibility is
continuous but has a kink.

Let us calculate the specific heat of the system

• w > " ar*
dT

aS,
ar

= C 0 (r,f f a )r ar all, ST<

where Co is the specific heat of the ideal system. In the
region Η > α | m o (T, 0) | we obtain aH s/8T by differ-
entiating (3.4) with respect to T:

dH./dT = - o (dmJdT) (1 + αχο (Τ, Η,))'1.

Recognizing that 92Φ0/9ΤθΗ8 = -8mo/9T, we obtain

d = C0(r, Η,)-Γ(β/ηο(?',5.)/β7')Μ4ΐιη/(1+4πηχ1)(7', Η.))].

In the region

Η < ά I m0 (T, 0) |, H, = 0 and c2 = c 0 (Γ, 0).

The discontinuity of the specific heat on the line
Η = a | m o ( T , 0 ) | is equal to

AC = C2 — C, = Τ (dm0 (Γ, 0)ldT)2 4nn/(l + 4πηχ0 (Γ, 0)).

At Τ — T c we have

AC (τ = (Γ - Tc)/Tc).

c) To elucidate the physical meaning of the results,
we present calculations in the self-consistent-field
approximation. The density of the thermodynamic po-
tential (without allowance for terms of order e/t) is
equal to

φ = (1 - d,) (- a,tro; + β,/nj - Hmt) + d, ( - a,tm; + ptmj + Hm2)

where di is the fraction of the domains directed oppo-
site to the field, the subscripts 1 and 2 pertain respec-
tively to domains directed parallel and antiparallel to
the field, and αϊ and βι are constants.

Minimizing Φ with respect to mi, m2, and di, we
obtain'two regions of the solutions:

1) At Η < 47rnm0 - multidomain case: mi = m2 = m0

= (αιτ/20!)1'2, d! = [1 - (H/47rnmo)]/2;

2) At Η 2 4 nm0 - single-domain case (mi = -m 2 ) .
The results for χ and C coincide with those obtained
earlier.

In [ 2 2 ] we also considered the behavior of Ζ and t as
functions of the temperature and of the magnetic field.

d) A number of experiments C23~2S] have shown that at
Τ < T c the susceptibility remains constant. This be-
havior of susceptibility can be attributed to the presence
of a domain structure.

Miyatanit23] measured the temperature dependence of
the magnetization of a spherical single crystal of
CdCr2Se4 (l/4im = 3/4π = 0.24) in different fields from
6 to 90 Oe. In all the fields, there was a clearly pro-
nounced horizontal section in accordance with formula
(3.11), i.e., a temperature region in which the magneti-
zation is independent of the temperature. The ratio

of the magnetization to the field on the horizontal sec-
tions is constant for all fields at 0.23 - 0.25, i.e., m/H
= am/aH = χ = 0.23 - 0.35, which is in good agreement
with the theoretical value calculated from formula
(3.11).

Analogous conclusions were obtained in [ 2 4 j for
nickel. Boyarskii and Starikov1·251 investigated the tem-
perature dependence of the magnetic susceptibility of
gadolinium near T c . At Τ < T c , the susceptibility
turned out to be independent of the temperature and
amounted to 1/11 to 1/4 for different samples. The
samples were nearly cylindrical in form, with a
length/diameter ratio 1.3 to 2.5. The demagnetizing
factors for samples of this shape [ 2 6 ] range from 0.09 to
0.2. Consequently, the expression l/4im overestimates
the susceptibility. This is apparently due to the impuri-
ties that interfere with free motion of the domain walls
and decrease the susceptibility. A plot of the suscepti-
bility of a gadolinium sample against the temperature in
weak magnetic fields, taken from1·251, is shown in Fig. 6.
We see that below the Curie point the magnetic suscep-
tibility is constant in accordance with (3.11). At
Τ > T c the susceptibility is described by expression
(3.9).

e) The arguments presented above pertain to a sam-
ple situated in an infinite free space. The electrical
properties of ferroelectrics are, as a rule, investigated
in parallel-plate capacitors. In this case, the "demag-
netizing" field is concentrated in the gap between the
sample and the electrodes of the capacitor. The energy
of this field is small to the extent that the gap volume
is small. Elementary calculations, which will not be
presented here, yield for the demagnetizing factor η a
value

η = gjg. (3.12)

where gi is the gap thickness and g is the distance be-
tween the capacitor electrodes.

Substituting (3.12) in the formulas presented above
we obtain the behavior of all the thermodynamic quanti-
ties . The susceptibility measured in this manner is of
the order of 100-1000.

Conclusions. 1) The saturating field H s a t at which
a multidomain structure becomes single-domain is HSat
= 4πηηΊ0.

2) The magnetic susceptibility of a sample is equal
to l/4jm in the multidomain region and is constant both
as a function of the field and as a function of the tem-
perature .

3) In the region of uniform magnetization at Η = 0
the magnetic susceptibility is described by formula (3.9).

4) The "smearing" interval 7 in the region of uni-
form magnetization is given by (3.10).

On the H s a t (T) line, χ experiences a discontinuity
that equals zero at the Curie point and increases with
decreasing temperature.

FIG. 6. Temperature dependence
of the susceptibility of a Gd sample in
the presence of a domain structure[2S ] .

ilOO
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6) The susceptibility is finite everywhere, including
at the nonanalytic points.

7) At zero magnetic field, neglecting the wall thick-
ness in comparison with the domain dimension, the
specific heat is the same as in an ideal system. In a
nonzero field, the specific heat is discontinuous on the

line.

-h = «-Ρ [/ (ρ/τ») - / (p0 (τ)/τ»)]; (4.4)

8) Ferroelectrics placed between capacitor elec-
trodes have a demanetizing factor equal to η = gi/g,
where gi is the thickness of the gap between the sample
and the electrodes and g is the distance between the
capacitor electrodes.

4. Effect of gravitational field. Let us examine the
influence of the gravitational field on the behavior of
the thermodynamic functions near the critical liquid-
vapor point. The gravitational field leads to a depend-
ence of the density on the height, so that the density &
can be equal to # c ( t n e critical value) only at a certain
definite height (inside the meniscus), and not through
the entire volume of the vessel. Therefore the part of
the free energy proportional to the volume should be
an analytic function of the temperature and of the
density. The nonanalytic part of the free energy, which
is connected with the meniscus, is proportional to the
surface area and will henceforth not be considered. In-
clusion of the external field U(r) leads to a change in
the chemical potential g (g = go(P, T) + U(r), where
go is the chemical potential of the unperturbed system
(see [ e ], Sec. 25)). Therefore, if g is chosen as the
variable, then the thermodynamic potential of the per-
turbed system should be expressed in the isomorphic
form Ω = Ωο(Τ, g). The transition from the isomorphic
variable g to the "experimental" variables Ρ and Τ
is accomplished with the aid of the equation g = go(P, T)
+ U(r) = const. Subsequently, however, instead of using
these equations, we shall employ a more lucid method.

[5]The equation of states of the unperturbed system is

Ρ = τ2--?/ (ρ/τ») + /, (τ), (4.1)

where ρ = , ρ = P/P c , & and Ρ are the
density and the pressure, respectively, i? c and P c are
the critical values of the density and of the pressure,
and f and fr are unknown functions (fr is analytic).

Equation (4.1) can be used in the case of a sufficiently
homogeneous system, when r c « h0 ( r c is the correla-
tion radius and h0 is the characteristic inhomogeneity
length). As will be seen below, this inequality is satis-
fied for all the experimentally attainable values of T.

Directing the ζ axis upward (against the force of
gravity), we have the differential relation

—dP = 3>gdH = &cg ΊΗ + {3> - &>c) g dH; (4.2)

Here g is the acceleration due to gravity and Η is the
height reckoned from the center of the vessel along the
ζ axis. (In the preceding sections, the letters Η and h
denoted the magnetic field; we do not deal with the mag-
netic field in this section, so that our notation should
lead to no confusion). Changing over to dimensionless
variables and bearing in mind the inequality ρ « 1, we
rewrite (4.2) in the form

—dp = dh,

where h = ^ c g H / P c .

Combining (4.3) and (4.1), we obtain

(4.3)

Here ρο(τ) is the dimensionless density at the midpoint
of the vessel. The function f has the following asymp-
totic values [ 5 ]:

(4.5)
ιχ for I < 1 ,

ιχ6 for z > l ,

where Pi and P 2 a re constants.

a) We consider first the case r > 0 and ρ « τ*3

over the entire height of the vessel. Using (4.4) and the
scaling-theory relation α + 2 β + ? = 2 , we obtain an
equation for the density as a function of the height

-h = [ρ - Po (τ)],

whence

= po (τ) - (hiΡ,) τ-ν.

(4.6)

(4.7)

Averaging the density p over the height of the vessel in

accordance with the formula p~ = (l/h) J p(h)dh,
-h/2

where h is the height of the vessel, we obtain ρο(τ)
= p. The conditions for the applicability of (4.6) are
given by the two inequalities

ρ<τ», h < Ρ,τΡ+ν = hm. (4.8)

We can ultimately rewrite (4.6) in the form

Ρ = p~[l - (hlhm) (τ»/ρ)]. (4.9)

b) We consider now the case ρ » τ Ρ over the entire
height of the vessel. Using the lower expression of (4.5),
we obtain from (4.4) an equation for p :

-fc = iMp«-p»), (4.10)

with a solution

I P I = I I Po I8 - (h/P2) I'/». (4.11)

In the case p 0 » ( h / P 2 ) 1 ^ we get from (4.11)

with the applicability condition

p>x», Λ<Ρ 2 ρ δ = /!02. (4.13)

In the case p 0 « ( h / P 2 ) 1 / 5 we get from (4.11)

ρ = sign ft | hlP2 |t/e, (4.14)

if h » hO2.

We now calculate the specific heat. It would be in-
correct to average Cp over the height, for when the
temperature varies the substance can flow from one
part of the vessel to the other and the density at each
height is not constant. The average specific heat at con-
stant volume is proportional to the derivative of the
entropy S(p(h, r), T) with respect to temperature:

r — I as \ —C ( ds \ ( dp \ __r Pc I dp \ Ι Φ \ ( 4 . 1 5 )

The average of any quantity over the height of the
vessel will be designated by a superior bar.

In the case specified by the inequalities (4.8), Cp
can be expressed as a function of the temperature and
of the density in the form

)]; (4.16)

here Co and C2 are constants. Substituting into this
formula p(h) from (4.9) and averaging the specific heat
over the height of the vessel, we obtain
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p = C C T-« [1 - C 2 (pVt2P + AV12&;,)]. (4.17)

The expression that enters in (4.15) for (8ρ/9τ)ρ can
be obtained from (4.1), (4.5), and (4.9):

(dpldx),, =so+ s.tv-'p = s 0 + Sixv-V [1 - (A/AM) (χβ/ρ)]. ( 4 . 1 8 )

Sj are constants. Furthermore,

0, (4.19)

since the experiment is carried out under the condition
p" = const.

Using (4.18), (4.19), and (4.9), we obtain

(dp/dx), (dp/dT)h = - (slV/12) (AVAJ.) τ—. (4.20)

Substituting (4.17) and (4.20) in (4.15), we ultimately
obtain an expression for the specific heat

where

Cv = COT-°- [1 - (

C 3 =

- (C.AVA;,)],

\. 7cCo).

(4.21)

We note once more that this expression is valid in
the region specified by the inequalities (4.8), so that the
last two terms of (4.21) are much smaller than unity.
The rapid growth of the specific heat stops at those
values of F at which the corrections C{pz/j^$ and
C3h"z/hoi begin to approach unity. The "smearing" τ
of the specific heat by the gravitational field can be
estimated from the formula

i-maxKC^) 1^, (ACj'V,)1/(1rt"W] (4-22)

and from (4.22) we can estimate the maximum attain-
able value of the specific heat:

Cvmax-minlCoCi^p-^, <70(Α£:!/2/ΛΓα/<|1+ν)]. (4.23)

In the presence of a gravitational effect, the critical
temperature of an ideal system can be determined from
measurements of the specific heat only accurate to the
quantity 7.

In the case specified by the inequalities (4.13), the
specific heat behaves like

and in view of the analytic behavior in the gravitational
field, it tends to the maximum values given by (4.23).

If we put ρ = 0 in the final formulas and use the
classical values of the critical exponents, we obtain the
expressions derived in [ 2 7 ) 2 8 ] .

Assuming typical values of the critical parameters
( P c = 50 atm, &z = 0.5 g/cm3), we get

h « 10"5.ff, 105τΜ-ν, τ0

where H, HOi, and r c are measured in centimeters. It
is easy to see that the inequality HOi » r c holds for all
τ ~ 10'β, i.e., we can use formula (4.1), which is valid
for a homogeneous substance. It can be assumed that
the meniscus is produced at temperatures such that the
correlation radius becomes comparable with the in-
homogeneity parameter HOi. This occurs in the interval
τ ~ 10"β. Therefore, the critical temperature of an
ideal system can be determined with relative accuracy
10"eby observing the vanishing (or appearance) of the
meniscus. At τ i, 10"4 we have Ho l ~ 10"1 cm, i.e., to
make the influence of the gravitational effect relatively
small it is necessary to choose a vessel (calorimeter)
height less than 1 mm. In other words, it follows from

FIG. 7. Influence of gravita-
tional effect on specific heat of
xenon at cylindrical-vessel heights
10, 1 and 0.3 cm [^ j .
critical temperature.
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(4.22) that at a vessel height 1 mm - 1 cm the specific-
heat "smearing" interval is 10~4 - 1O"3. Thus, the
critical temperature of an ideal system can be deter-
mined much more accurately from the vanishing (ap-
pearance) of the meniscus than from data on the speci-
fic heat. (This circumstance was pointed out to the
author by S. P. Malyshenko.)

The gravitational effect can be used in the study of
the equation of state of an ideal system. It is possible
to investigate the dependence of the density on the tem-
perature at different heights of the vessel, since the
pressure difference is proportional to the height differ-
ence, as seen from (4.3). Alekhin and Krupskii [ 2 9 ] in-
vestigated the equation of state of cyclopentane near the
critical point in this manner.

Let us mention some numerical calculations of the
influence of the gravitational effect on the thermody-
namics of the critical point. Schmidt1-301 carried out the
calculations using in place of the equation of state (4.1)
the empirical formula proposed in [ 3 1 ] :

Δ? (ρ, τ) = g (θ\ τ) — g (^c, τ) = sign ρ | ρ |8 h (x),

where
h (x) = Et [(* • *„)/*„] {1 + E2 l(x

χ = τ Ι ρ | ' ^, and g is the chemical potential of the
system; the numerical values of the constants Ei and
E2 are given in [ 3 0 > 3 1 ] . Figure 7 shows calculations of
the heat capacity of xenon with allowance for the gravi-
tational force. We see that the larger the vessel height,
the larger are the deviations from the behavior of the
heat capacity of an ideal system. At a vessel height on
the order of 1 cm, the deviations begin at temperatures
τ ~ 10"3 - 10"4, which agrees with calculations in ac-
cord with (4.22).

Let us also point out certain effects which are not
considered in detail in the present review. In [ 2 S 1 we in-
vestigated the motion of the meniscus inside a vessel
with changing temperature and average density. In1-32'
it was found that the maximum of the specific heat and
the "jump" resulting from the transition through the
coexistence curve occur at different temperature, ow-
ing to the presence of the gravitational field.

Conclusions. 1) Allowance for the gravitational
force leads to analytic behavior of the thermodynamic
quantities.

2) In the case when ρ« τ@ and h « P i T ^ + y = hOi.
the distribution of the density over the height of the
vessel is given by ρ = p[l - (h/hOi)(T^/p)].

3) In the case ~p » τ$ and h •< P 2 we have ρ~δ = hO2,
Ρ = p[l ~ (η/Ρϊδρ*)], and in the case ρ » τ*3 and
h » ho2 we have ρ = sign h | h / P 2 | 1/δ.

3) In the case ρ «τ$ and h « hOi, the average heat
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capacity at constant total volume of the vessel is given
by

and its maximum value can be estimated from the ex-
pression

5) The interval in which the heat capacity is
"smeared out" by the gravitational field near the
critical point is given by (4.22).

5. Effect of small perturbations on the shift of the
critical point. Isomorphism of phase transitions. In this
section, using scaling-theory methods, we derive gen-
eral formulas for the shift of the critical point under
the influence of small perturbations [ 3 3 > 3 4 ], obtained in-
dependently by Abe and by the author. It turns out that
in all cases when the perturbation leads to a complica-
tion of the unit cell, regardless of the dimensionality of
the space, the shift of the critical point T c is linear in
the small perturbation. We consider also an example
when the shift of T c is not analytic in the small per-
turbation. In this case the perturbed system is not
isomorphic to the local system.

a) We choose for concreteness an Ising model in
which the energy Ε of the system consists of two parts:

£ = £o + £i. (5.1)

where Eo = - Ι ^ α № , I is the exchange energy of the
ideal lattice, σ\ = ±1 is the spin variable, i is the num-
ber of the lattice site at which the given spin is located,
Ει = - Ι ^ σ ΐ ^ . -·σίη = - e Z ) E j i s t n e perturbation

superimposed on the system, 7 is a small parameter
(7 « I), and Ej = σ{1.. .ffj ; the index j includes the

aggregate of coordinates u , . . . , i n . The characteristic,
distances between the spins that enter in Ej are the
interatomic distances.

The partition function corresponding to the energy
(5.1) is given by

(5.2)

The summation in (5.2) is carried out over all the
spin configurations. It is easy to verify the identity

(5.3)

which we shall use to rewrite (5.2) in the form

Ζ = ch™ (ε/Τ) Σ e-E«'T Π ( H - XE})

= ch

_ (5.4)
W f t (β/Γ)Ζ 2 ο * " Σ (EhEJ2 . .. Ejp);

here h is a constant that depends on the rules for the
summation in Ei,
Za = Σ exp (- EJT), (Eh . .. Eip) = 2 £;, . . . E,p exp (- £0/Γ)/Ζ0

is the correlator of ρ energies (5.1), each of which is
a product of η spins. Formula (5.4) contains the cor-
relators of the unperturbed system.

Using the method of Patashinskii and Pokrovskii [3],
we introduce the irreducible correlators Q in accord-
ance with the formulas

Q (/) = (E,\ Q (/„ h) = {EhEQ-Q (/,) Q(h),

QUu h, h) = (EhEjEh)-Q(jl)Q(j2, j3) (5.5)

- Q (h) Q (;..h) - Q (h) Q (/., h) - Q (;.) Q (k) Q (j,).

The correlators Q vanish if any distances between
the spins contained in Q exceed the correlation radius
~r c o of the unperturbed system.

Substituting (5.5) in (5.4) and using the theorem from
the book[35] (Sec. 15), which makes it possible to ex-
press the free energy only in terms of irreducible cor-
relators, we obtain

Φ = Φ Γ + Φ 0 _ Γ Σ
p = l

(5.6)

where ΦΓ is the regular part of the free energy and Φο

is the free energy of the unperturbed system.

Formula (5.6) can also be obtained by direct expan-
sion of the expression Φ = -T In Tr expfT'^Eo + E J ]
in a Taylor series in E,.

Estimating the correlators that enter in (5.6) by the
scaling-theory method, we obtain the dimensional esti-
mate (see Appendix 4)

Γρ = Σ <?(/„ ·. ., /·„) ~ N4rU/r% ~ Ni'r-z^"-*"", (5.7)

where d is the dimensionality of space and a is the
exponent in the Kadanoff transformation of the quantity
E L

Substituting (5.7) in (5.6), we rewrite the expression
for the singular part of the free energy Φ8 in the form

Σ (5.8)

where b p are
f

constants, ξ =Χ/τ^~Λψ°, and £( ξ) is
unknown'function. The series (5.8) should converge at
ξ « 1 (το —· °°, Τ — °°), since the thermodynamic
potential has no singular points at Τ — ».

The function ί(ξ) has a singularity at the phase-
transition point, i.e., there exists a point ξ0 at which
the function ί(ξ) is not analytic. We do not have at our
disposal parameters from which to make up small (or
large) numbers, and therefore ξ0 ~ 1.

From (5.8) follows an equation for the transition
temperature T c of the considered system

£ V lr*№ ~ a)/f/0 _. (τ φ \ IT / K f ^

From (5.9) we have the sought formula for the de-
pendence of T c on X:

Tc = r 0 [1 + (X/io) »»/("-<·>], (5.10)

i.e., the shift of the transition temperature following ap-
plication of the perturbation is proportional to

7yo/(d-a)

Let us consider a number of examples. As the zeroth
approximation we take the Ising model with nearest-
neighbor interaction. For Ei we introduce the interac-
tion along the diagonal. Then Ej is transformed like
the energy, a = d - y0, and from (5.10) we get TQC ~ 7.
This result agrees with the exact formulas obtained by
Vaks, Larkin, and Ovchinnikov[36]. We emphasize that
this result does not depend on the dimensionality of
space.

By way of a more complicated example we consider
a system consisting of two interacting planes arranged
one over the other. The energy of such a system is
given by

— ^ 0 — ε ΖΑ σΛΜσΑ/2Ϊ
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here Eo is the energy of the interaction inside the Ising
planes, e is the interaction constant of spins located in
different planes, and the subscript i = 1, 2 numbers the
planes.

In this case the partition function breaks up in the
zeroth approximation into the product of partition func-
tions pertaining to the first and second planes, and the
spins belonging to different planes are averaged inde-
pendently in formula (5.6). Therefore Ej is transformed
like the square of the magnetic moment, i.e., Ei

d^E!, whence a = 2(d - x0). Substituting this
value of a in (5.10), we obtain the sought formula

Te = 7Ό [1 + (ί/ίο)4"], (5.11)

i.e., the temperature of the transition shifts in propor-
tion to i 4 / 7 .

It is shown in [ 3 4 ] that the result (5.11) remains in
force (accurate to the value ξ 0 ) if there are L inter-
acting planes, provided that L « roc·

A similar situation also holds in the two-dimensional
Ising model in the case when the interaction Ii along
the diagonals is much larger than the interaction Io of
the nearest neighbors. In the zeroth approximation in
Io we have two noninteracting lattices. Reasoning ana-
logous to that used in the case of two weakly interacting
Ising planes leads to formula (5.11) for the shift of the
critical temperature. (The role of 7 is assumed by the
quantity Io.)

In [ 3 4 ] they obtained the e-dependence of the coef-
ficients of the powers of τ in the specific heat, in the
magnetic moment, and in the susceptibility.

Assume that in the region τ « X these
quantities are described by the formulas

C ~ εαιτ~α, τη ~ ε^χΡ, χ ~ εν£τ~ν·

We can then express αϊ, βι, and 7Ί in terms of the
Kadanoff transformation exponents of the temperature
and magnetic field in the perturbed (y, x) and unper-
turbed (y0, Xo) systems:

a, = - y(d-a) y(d-a)

b) We shall prove that if the shift of the critical
point is not analytic in the perturbation, then the phase
transition in the perturbed system is not isomorphic to
the transition in the ideal system [ 3 7 ]. Let us assume
the opposite, that isomorphism exists. Then the singu-
lar part F s of the free energy can be written in the
form

F, = C {Τ,~ε) τ2""1·, (5.12)

where C(T, 7) is an analytic function of Τ and i ,
while «ο is the critical exponent in the unperturbed
system.

Let the shift of the critical temperature be equal to

(Tc — Γο)/Γο = Ji", (5.13)

where A ~ 1 is a constant and κ, by assumption, is a
noninteger number. Substituting (5.13) in (5.12), we
obtain the following expression for F s :

Fa = C(T, εχτο-^?*)2"010. (5.14)

However, the expression (5.14) with noninteger κ can-
not be represented in the form of a series (5.8) in inte-
ger powers of 7 at small 7. We arrive at a contradic-

tion, thus proving that it is impossible to represent the
singular part of the free energy in the form (5.12).

Thus, an Ising model consisting of several weakly-
interacting planes cannot have a free energy in the
form F s = C(T, 7 ) T 2 In T, where C(T, 7) is an analy-
tic function in Τ and 7. These questions are treated in
greater detail in1-33'371. In particular, it is indicated in [ 3 7 ]

that the isomorphic form (1.3) of the thermodynamic
potential of a system with impurities may be violated
when account is taken of the direct interaction between
the impurities in the Syozi model.

Conclusions. 1) The shift of the critical point follow-
ing application of a small perturbation can be calculated
from formula (5.10).

A nonlinear shift of the transition point is possible.
In the model of two weakly interacting Ising planes, the
shift of the transition point is proportional to 7 4 / 7 .

2) If the shift of the critical point is not analytic in
the perturbation, then the phase transition in the per-
turbed system will not be isomorphic to the transition
in the ideal system.

III. NONEQUILIBRIUM IMPURITIES AND

INHOMOGENEITIES

In the preceding chapter we considered systems that
are in thermodynamic equilibrium in terms of all the
thermodynamic variables. In this chapter we consider
the case when the experiment is carried out so rapidly
that the impurities and inhomogeneities of the sample
cannot "follow" the changes of the temperature, and no
thermodynamic equilibrium is established. We shall
call this case the model of frozen-in impurities (MFI).
The influence of such impurities on the phase transition
reduces to the appearance of regions with different im-
purity concentrations in different regions, i.e., to the
appearance of inhomogeneities. Since no exact and com-
plete solutions have been obtained to date in the MFI,
we consider the influence of the sample inhomogeneities
on a second-order phase transition by the self-consistent-
field method, assuming a characteristic inhomogeneity
length / large in comparison with the direct-interaction
radius ro.1·381 It turns out that under certain conditions
such systems can have at least two nonanalytic points.
The point with the higher temperature is connected with
the onset of regions of unlimited dimension with a
stable ordering parameter η. The value of η averaged
over the entire sample, however, is equal to zero. The
second point is connected with the onset of a nonzero
ordering parameter in the entire sample.

Using the LeChatelier principle (see [ e ], Sec. 22) it is
easy to show that, other conditions being equal, the heat
capacity is maximal under conditions of equilibrium in
terms of all the variables. Therefore the heat capacity
in the MFI is smaller than the heat capacity C c in the
model of equilibrium impurities, if the impurity con-
centrations are the same. As seen in Sec. 1, the value
of Cc is finite everywhere, including the phase-transi-
tion point, and therefore the heat capacity in the MFI
should also be a finite quantity at all temperatures.

6. Thermodynamic potential of inhomogeneous media.
We write down the Landau expansion of the free energy
Φ in terms of the ordering parameter η and its deriva-
tives, thereby describing the inhomogeneity by the de-
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pendence of the expansion coefficients on the coordi-
nates .

Φ [η] = f [ά (r, Τ) (Τ - rc(r)) η2 + f)(r, Τ) η4 + y (r, T)(Vi\)'l dV;
(6.1)

here Τ is the temperature and V is the volume of the
sample over which the integration is carried out. It is
assumed in this expansion that the volume element,
which is small in comparison with the inhomogeneity
dimension, remains isotropic and consequently there
are no linear or cubic terms in η, and the only scalar
that depends on the derivatives of η is (VTJ)2.

We assume that the expansion-coefficient increments
connected with the inhomogeneities are much smaller
than the coefficients themselves. In this approximation
we can regard a, /3, and Ύ as constants, and take the
inhomogeneity of the medium into account only in
T c ( r ) = To + Ti(r), where To is the average value of
the function T c ( r ) and Ti « To. It is not assumed that
Tj is small in comparison with Τ - To.

It is meaningful to take into account the influence of
the inhomogeneity in the self-consistent field approxi-
mation only in the case when the "temperature smear-
ing" connected with the temperature inhomogeneities is
much larger than the "smearing" connected with the
fluctuations of the ordering parameter. In the self-
consistent-field theory it is shown that the temperature
region in which the fluctuations are significant is of the
order of ru8,1·3 9"4^ and we shall therefore require satis-
faction of the inequality ΤΊ/Το » ro e (r 0 » 1). We take
the interatomic distance as the unit length. The region
of applicability of the considered theory is ultimately
given by the inequalities 1 » Ti/T 0 » τ'ο

β and / » r 0.

The ordering parameter η is obtained from the con-
dition that the functional (6.1) be a minimum, and the
corresponding equation is

γΔη ~'a(T- 2βη 3 . (6.2)

In superconductivity theory this equation is called the
Ginzburg-Landau equation[42]. In the considered theory,
η varies over macroscopic distances, and η and η' can
be regarded as continuous.

We shall prove that T c ( r ) is an analytic function (as
will be assumed from now on), then the ordering
parameter either vanishes identically or never vanishes.
For simplicity we consider the case of a one-dimen-
sional distribution of the inhomogeneities (the proof can
be generalized in trivial fashion to the three-dimen-
sional case).

Let η vanish at the point x0. If TJ'(XO) = 0 at the
same point, then we can show by differentiating (6.2)
that a derivative of η with respect to χ of any order
also vanishes at the point x0, i.e., that η = 0. If
η'(χο) * 0, then we can construct a function η"(χ), which
is continuous and has a continuous first derivative, such
that Φ \rf\ < Φ[η ] and η never vanishes. We introduce
ffi = \η\. It is seen from (6.1) that Φ[η ] = Φ[ηΊ]. In a
small vicinity of x0 (x<> - €, x0 + e ), we write down
η(χ) = T)'(xo) (x - Xo). We define η" in such a way that
η = η ι everywhere except in the vicinity of x0, and we
put in that vicinity

η = (η' (*ο)/2) Β + (η ' (*0)/2ε) (χ - χα)\

It is easy to verify that η and η' are continuous and the
equality Φ[η ] = Φ[η] is satisfied in the integration over
the entire space, with the exception of the vicinity of

x0. The values of the functionals (6.1) in the integration
over the vicinity of x0 are respectively

Φ [η] = 2γη ' 2 (*„) e, Φ [η] = (2/3) ·?η'2(*ο) ε,

i.e., Φ[η]<Φ[η], Q.E.D.

7. Long-wave inhomogeneities. In this section we
consider the case when the characteristic length of the
inhomogeneities is much larger than the correlation
radius in the region τ ~ Ti (/ » r c ( T j ( ί / ό τ / 8

a) Ordered phase. In the spatial region τ > 0 (f
= T c ( r ) - T) we have the estimate ?Δτ) ~ Ύη/l2. In the
temperature region τ ~ Τ! we obtain ΎΔη/ατη
~ Ψΐΐ*αΎχ ~ i"c(Ti)/^2 = δ. In the zeroth approximation

η?ο,=άΐ/2β.

In the first approximation in δ we obtain

(7.1)

(7.2)

If τ £ Τι, we get

= δ < 1,

i.e., formulas (7.1) and (7.2) hold. These expressions
however, do not hold near the points Fo at which
T(FO) = 0. If ro is not an extremum point of τ
(VT(FO) * 0), then the limits of applicability of (7.1) and
(7.2) are given by the inequality

Writing down τ in the vicinity of Fo in the form

τ = ν?1, (ίο) ( r - ίο).

we obtain an upper bound on the spatial region of appli-
cability of these formulas;

| r — 70 |VZa > 6. (7.3)

b) Disordered phase. We consider now the space
region f < 0. If we neglect the correlation of the order-
ing parameter of the regions with τ < 0 and τ > 0, then,
taking into account the fact that the integrand in (6.1) is
not negative, we obtain η = 0 . It is therefore natural to
assume that the ordering parameter is small, to neglect
the last term in (6.2), and to solve the simplified equa-
tion in the quasiclassical approximation. As a result
we obtain in the case of a one-dimensional distribution
of the inhomogeneities

{± (7.4)

where D is a constant. The sign in (7.4) should be
chosen such that the solution attenuates in the interior
of the region f < 0. Inasmuch as

while the characteristic length of penetration of the
ordering parameter into the disordered phase is of the
order of TQ3I1/3 and is much smaller than the inhomo-
geneity dimension I, the quasiclassical case is applica-
ble. The spatial limit of applicability of formula (7.4),
just as for (7.1) and (7.2), is given by the inequality
(7.3).

8. Mean values of the ordering parameter and of the
heat capacity. Let us calculate the mean values of the
ordering parameter and the heat capacity η and c",
neglecting the exponentially small contribution of the
regions with τ < 0, using the formulas
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η= j (ά/2β)ι/2τ1/2<ίΡ, C= -Τα. j (dr\VdT)dV={Ta*/ty) j dV.

(8.1)
The integration in (8.1) is carried out only over the
regions where Ψ > 0.

We introduce the function p(Ti)dT 1 ( which describes
the distribution of the probabilities of Ίι in the tem-
perature interval dTj on a segment of length ~z (for
the sake of simplicity, we neglect the dispersion of the
inhomogeneity length), with a normalization condition

If we use this function, then we can rewrite (8.1) in the
form

η = (ά/2β)1 / 2

We consider the case when Tx has an upper bound
the region of temperatures close to To

, p(Ti) can be represented in the form

(8.2)

ρ (Γ,) (Γ, - r l m a i)».
This case takes place when the inhomogeneities are
produced by the "frozen-in" impurities. If the impuri-
ties are nonmagnetic, then T c ( r ) is bounded from
above by the critical temperature of the pure substance.
In the temperature interval T m a x / T ? » % ( r m a x = Τ
- T c (xmax)), the correlation radius r£ ~ ϊ/α (Τ ο

+ T i m a x - T) is much smaller than the average length
of the region with positive τ in the vicinity of the point
x max where the maximum value of T c is reached; we
have

η = (ά/2β)ι/2[ρ<«)(7'1ηι1Ι)/η!] j (Γ0 + Γ1-Ι·)1/2(Γ1-Τ1ΙΜΙ)Μ7'1
T-T0

= [ 2 " « / ( 2 B + 3 ) ! I I («/2ft1'2 | p<»> (7\m a i) | T£+

C = (i»r/2p) [ | p<»> ( Z W ) |/(» +1)11 τ££.

In the second limiting case r m a x / T f < δ, the principal
contributions to η and C are made by the regions with
f > 0 and length l on the order of the correlation radius,
which is much larger than the average length of such
regions (fluctuations in the distribution of Ti over the
specimen have low probability). In regions that are
small in comparison with the correlation radius, the
value of η is exponentially small, just as in the dis-
ordered phase. From the condition T~ rc(Tmax)
~ (>•/<* Tmax) 1 / 2. the_probability of having a region with
τ > 0 and of volume l3, consisting of {l/lf ~ (vc/l)3

regions of average dimensions, is estimated from the
formula

(8.3)

Hence
.̂ 1+1/2 γ

The point T, which is nonanalytic in the temperature,
coincides with the maximum value of T c , i.e.,

Τ = 7*o "Η ^lmaxf

at which the heat capacity and all its derivatives are
continuous. An account of the fluctuations, which will
be given below, leads to a second nonanalytic point.

Calculations of the ordering parameter and of the
specific heat in the case when p(Ti) has the form of a
Gaussian distribution are given in.C351

9. Short-wave inhomogeneities. In Sees. 7 and 8 we
considered the case δ < 1 ( r c ( T i ) « l). We now cons-
sider the opposite limiting case 3 » 1 ( r c ( T i ) » l).
We represent η in the form

η(Γ) = ηο + η,(Γ), ηο = η(Γ). (9·1)

The quantity τ)ι is always smaller than ηο, for other-
wise η(τ) can vanish, in contradiction to the results of
Sec. 6. In the zeroth approximation, the inhomogeneities
average out over large regions with dimension ~ r c , and
it can be assumed that η » η 0 . In this approximation, in
a rough analysis, η(τ) can be replaced by its mean
value, and this leads to the same expressions for η and
C as in the case of a homogeneous sample. In first-
order approximation we take into account rji(r) (ηι
« ηο). Averaging expression (6.2), rewritten in the
form

γΔη, = ά (Γ - Γο - Ζ7, (Γ)) η0 + α (Τ - Το) η, - "αΓ,η,

+ 2&(η; + 3η;η1 + 3η0η; + η?) ( '

over the entire volume of the sample, we obtain

= 0. (9.3)5 (Γ - ΖΌ) ηο - a

Subtracting (9.3) from (9.2), we have
γ Δη, = - i r , (r) η,,+ά (Ζ1 - ΪΌ) η, - α (Γ, (r) η, (r) - Γ, (r) η, (r))

· (

Using the condition TJI « ηο, we obtain from (9.3) and
(9.4) in the zeroth approximation

ά (Τ - Γο) η0 - aTt (r) η, (r) + 2 ^ = 0, (9.5a)

, = - άΓ, (r) η0 + ά ( Γ - Γο) % + 6βτ,;η,. (9.5b)

The solution of (9.5) leads to the following results (see
Appendix 5)

j G (ft) dk, tj = <

, G(0)=limG(|r,-r,|).
ri-*ri

We present asymptotic expressions for η?:

^m\' w h e n τ.-

(9.6)
We now calculate the heat capacity below the transition
point, using the formula

C = — T&drf/dT, η5 = τβ + ίβ. (9.7)

The quantity η? is calculated from (A5.2);

Using this formula and (9.6), we obtain an expression
for the heat capacity from (9.7):

c

Thus, the expressions for the ordering parameter and
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for the heat capacity coincide, apart from small cor-
rections, with the corresponding expressions in an ideal
sample in the entire range of temperatures.

10. Account of the ordering-parameter fluctuations.
The fluctuation length can have two scales, / and r c .
We estimate first the role of fluctuations with a charac-
teristic length r c in the case S « 1 . According to [3S~41],
these fluctuations (in first-order approximation in the
parameter ro3T~1/2Td/2), accurate to an inessential
numerical factor, give the following correction to the
specific heat:

d~ (ia_r?/2/M) \ ( Γ - Γ Ο - 7 Ί ) - 1 / 2 Ρ ( Ϊ Ί ) d T t .

In the case of a Gaussian function p( Ti), this contribu-
tion is significant at Τ - To » t and Τ > To (the funda-
mental term is small), and is given by

The case 8 » 1 in the zeroth approximation can be
regarded as homogeneous, so that the corrections that
must be introduced in the theory as a result of the fluc-
tuations of the ordering parameter and the region of
applicability of the theory are of the same order of
magnitude as in homogeneous samples.

We now estimate, in the case 8 « 1 (Z » r t ) the
probability that the ordering parameter will reverse
sign in one spatial region with τ > 0. We use the
formula w ~ exp (-R m i n /T) (see [6], Sec. 144), where
Rmin is the minimal work necessary to realize the
given fluctuation. It is easily seen that the work will
be minimal if the change in the sign and in the value of
rj occur in a spatial region Τ > T c (r) of thickness r c ,
in a region where η is minimal in absolute magnitude.
In the remaining region, where the fluctuation took
place, η reverses sign, but its absolute value does not
change. The order of Rmin can be estimated from the
formula

(10.1)V j (VI)2 dV ~ γ (Thnln/rc)* V,

where Vi is the volume of the region in which η changes
in absolute magnitude, and Tjmin is the lower bound of
η in this region.

If the temperature is close to T i m a x (T^ < T i m a x ) ,
then according to (7.4) the order of Tjmin is exponen-
tially small, and therefore Rmin <<: Τ and the probabil-
ity of reversal of the sign in one of the regions with
r > 0 is of the order of unity. The coupling between the
different spatial regions with J > 0 is exponentially
small and the fluctuations upset the formation of the
order parameter (which differs from zero in the entire
volume of the sample in the absence of fluctuations) at
the point Τ = To + T j m a x . When the temperature is
lowered from the point T, the share of the regions with
f > 0 increases. These regions begin to approach one
another, and Rmin increases. The ordering of the
regions begins at an average distance of the order of
the correlation radius between regions. At a certain
point ΤΊ < Τ, a nonzero ordering parameter averaged
over the sample sets in.

The process of ordering regions can be described
very roughly by the energy

Ε = -Bmln (T) 2 "ι<Ί,

where R m i n i s determined by (10.1) and σι = ± 1 , de-
pending on the sign of the ordering parameter in the

region. Estimates obtained in [ 3 8 ] by the self-consistent-
field method show that at the point Tj at which R m in( T )
becomes of the order of To the heat capacity experi-
ences a small "jump." The main reason why the
"jump" is small is that the heat capacity of the entire
sample is proportional to the number of regions N/~3

in which f > 0, i.e., is smaller by a factor l'3 than the
heat capacity of the ideal sample.

11. Application of the Ising model to the problem of

"frozen-in" impurities. Comparison with experiment.
In the preceding sections of this chapter we considered
the influence of "frozen-in" impurities and inhomo-
geneities on the thermodynamics of the phase transition
by the self-consistent-field method. In this section we
describe very briefly the results of calculations by
methods more accurate than the self-consistent field
method.

a) In1-431, the author analyzed the influence of non-
magnetic impurities on the thermodynamics of the
phase transition within the framework of the two-
dimensional Ising model. The estimates have shown
that the heat capacity ceases to be an analytic function
at a temperature equal to the Curie temperature To of
the pure substance. Near this point, at Τ > To and
c « 1 (c is the concentration of the nonmagnetic im-
purities), the heat capacity is given by

C = cr + C., (11.1)
where

C.= Σ

x = tanh (I/T) and I is the exchange integral of the un-
perturbed lattice. From the expression for C s we see
that the point of transition of the pure substance, deter-
mined from the equation xc = tanh(l/T0) = 42 - 1, is a
point that is nonanalytic in the temperature. The heat
capacity and all its derivatives with respect to the tem-
perature are finite at this point. The point To is an
essential singularity. The behavior of the singular part
of the heat capacity, described by formula (11.1), coin-
cides qualitatively with the expression (8.3) obtained
by the self-consistent-field method, for as Τ — Τ we
also have an essential singularity with a similar behav-
ior of the heat capacity and of all its derivatives.

The nonanalyticities in the "frozen-in" impurity
model are quite weak. If we are interested only in the
analytic (smooth) part of the heat capacity, then we can
use formula (8.2) and the expression for the heat
capacity of an ideal system, C± = A± | τ | " Q . Such cal-
culations were carried out in [ < 4 > 4 5 ]. These calculations
have shown that the heat capacity of inhomogeneous
samples is finite. The maximum of the heat capacity
decreases with increasing contamination of the sample.
The maximum point and the inflection point occur at
different temperatures, and this separation can be in-
terpreted as the experimentally observed "jump".

b) Griffiths I-461 has proved the following theorem. In
the Ising model of "frozen-in" impurities, the magnetic
moment ceases to be an analytic function of the mag-
netic field and of the temperature at Η = 0 and at the
temperature T, with Τ higher than the temperature Ti
at which a nonzero ordering parameter is produced in
the entire sample. According to Griffiths' estimates, if
the impurities are nonmagnetic, then Τ coincides with
the transition temperature of the pure substance. This
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theorem agrees with the results presented above. The
physical meaning of the temperatures Τ and ΊΊ is the
same in this theorem as in Sees. 8 and 10.

c) In solids, the impurity relaxation time is on the
order of days, whereas the experimental times are of
the order of several hours, so that the impurities can
be regarded as "frozen in." The heat capacities of
contaminated magnet samples were measured in a num-
ber of investigations. Voronel' et al. [ 4 7 1 measured the
heat capacity of Gd samples of different purities. It can
be concluded from their results that the maximum of
the heat capacity is smaller in more contaminated sam-
ples, and the heat-capacity curve is more smeared out,
in agreement with formula (8.3) and with the calcula-
tions of[43"45]. Similar results were obtained in meas-
urements of the heat capacity of Fe3O4 samples1 4 4 1.
Two characteristic points are singled out on the experi-
mental curves: the maximum point and the kink point,
which the experimenters called a "jump." With increas-
ing contamination of the sample, the temperature inter-
val between the maximum point and the "jump" point
increases.

Starting from the foregoing, we emphasize once more
the difference between the effects of equilibrium and
"frozen-in" impurities: 1) if the impurities are in
equilibrium, then the derivative of the heat capacity with
respect to the temperature becomes infinite at the
maximum point, and this point is the phase-transition
temperature. In the model of "frozen-in" impurities,
there can be no singularities at all at the maximum
point. 2) In this model, the heat-capacity curves have
a kink point, which the experimentors call a "jump."
There is no such point in the model of equilibrium im-
purities .

Figure 8 shows the dependence of the heat capacity of
air (a mixture of nitrogen and oxygen) on the tempera-
ture, taken from the paper of Voronel', Shmakov, and
Gorbunova[16]. The speed at which this curve was meas-
ured was insufficient to establish equilibrium with re-
spect to the impurity concentration. The authors be-
lieve that during the course of the measurements the
impurities can be regarded as "frozen-in." The figure
shows that the point of the maximum and the kink point
occur at different temperatures.

Conclusions. 1) The thermodynamic functions of a
system with non-equilibrium "frozen-in" impurities
have at least two nonanalytic temperature points at zero
external field. The point with higher temperature is
connected with the onset of infinite-dimension regions
with a stable ordering parameter η. The average value
of η over the entire volume is equal to zero. The
second point is connected with the onset of a nonzero
ordering parameter in the entire sample.

2) In systems with "frozen-in" impurities and in-
homogeneities, the heat-capacity curve develops a
"kink," interpreted by the experimenters as a "jump,"

150

?
ι wo

>
so

FIG. 8. Heat capacity of a mix-
ture in the case of "frozen-in" impuri-
ties-dependence of the heat capacity
of air on the temperature [ I 6 ] . Two
characteristic points, the maximum
point and the kink point, are seen.

139 131 133 135
Τ,'Κ

and the temperature interval between the maximum and
the kink increases with contamination of the sample.

3) In the case of long-wave inhomogeneities (length
of the inhomogeneities much larger than the character-
istic correlation radius), a significant change takes
place in the behavior of the thermodynamic quantities
near the phase-transition point, in comparison with the
behavior in an ideal crystal.

4) Short-wave inhomogeneities (apart from small
corrections) do not lead to a change in the behavior of
thermodynamic quantities in comparison with the cor-
responding behavior in the ideal crystal.

5) There is qualitative agreement between theory
and experiment.

IV. CONCLUSION

Starting from the foregoing, let us briefly review the
results, which can be useful in the organization and re-
duction of experiments.

1) Let us first analyze which perturbations are the
most significant for different substances. At a liquid-
liquid critical point (phase transition of the stratifica-
tion type) or at a liquid-vapor critical point, the main
factors distorting the transition are the gravitational
effect and the impurities. The influence of the gravita-
tional effect can be eliminated by choosing as the object
of investigation a liquid-liquid system with components
of nearly equal atomic weight. In such systems, on the
one hand, the compressibility is low and the density is
constant over the height of the vessel with sufficient
accuracy. On the other hand, owing to the small differ-
ence between the atomic weights of the components,
there is no large drop in the concentrations of the com-
ponents over height. Thus, a liquid-liquid system
thoroughly rid of impurities should simulate more
readily the behavior of ideal systems.

Depending on the speed of measurements of the
thermodynamic quantities near the liquid-vapor critical
point, the impurities can be either "frozen-in" or in
equilibrium. Voronel', Shmakov, and Gorbunova1·161,
measuring the heat capacity of a solution of CO2 in
ethane, reached the conclusion that when the tempera-
ture is measured at a rate of ~10"2 deg/hr, the impuri-
ties behave as "frozen-in", and at rates of 10"3 deg/hr
they have time to reach equilibrium.

In solids, the ideal phase-transition picture can be
distorted by "frozen-in" impurities, inhomogeneities,
the interaction between the ordering parameter and the
phonons, and the domain structure. The interaction with
phonons is quite strong in ferroelectrics, while in mag-
nets this interaction is quite weak and can be neglected.
The domain structure influences the behavior of the
magnetic moments and the susceptibility, but does not
affect the behavior of the heat capacity at Η = 0. To
exclude the influence of the domain structure, the sus-
ceptibility measurements can be carried out in fields
stronger than the saturation field but much weaker than
the exchange fields at the given temperature, and the
measurement results can be then extrapolated to zero
magnetic field.

The main cause of the distortion of the behavior of
the thermodynamic quantities at the transition point in
solids is the nonideal character of the crystals.

2) In real experiments, analysis of the results is
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TABLE III. Interval of "smearing" of the phase transition by differ-
ent disturbances.

Effect

'Smearing'
interval

Equilibrium impurities
(Sec. 1) Phonons (Sec. 2)

L (3#0 + 4μ)Γ J

Domains
(Sec. 3)

(4imXo)" v,
τ>0

Gravitational
field

max(p~1/fi,

A* = (1 +2eg~e ch h)°- [1 + 2ee+e ch (2Θ, —A)) II +2es+B ch № -f/,)],

e

4 i i = [l + 2£«+° ch (2Θ,-Λ)] [l + 2e 8+ e ch (2Θ, +A)]/(1 + 2eS-« ch K)\ ( A l .1

' L

made complicated by the fact that the phase-transition
picture is distorted by several factors simultaneously.
Thus, possible simultaneous disturbances in solids
might be the domain structure, phonons, and inhomo-
geneities of the sample. It is quite difficult to analyze
the experimental data under such conditions. From
among the theoretical investigations of this type we
mention the work by Korotkikh and Nabutovskii [48], who
considered the simultaneous influence of equilibrium
impurities and phonons. As shown in Sec. 2, allowance
for the interaction of the ordering parameter with the
longitudinal and transverse parts of the phonon spec-
trum leads to the appearance of a first-order phase
transition if the heat capacity in the incompressible
crystal tends to infinity. On the other hand, impurities
(see Sec. 1) cause the heat capacity to become finite.
Therefore, if the impurity concentration is high enough
(the heat capacity is small at the critical point), then
the phonons cause no first-order phase transition. To
obtain quantitative criteria, let us compare the tempera-
ture intervals Timp and Tph over which the phase
transition becomes smeared by the impurities and by
the phonons, respectively (Table III). We find that in the
case when [μΚ 0 /(Κ 0 + μ ) Τ 0 ] (3T c /8p) 2

> Coc(dT c /T 0 dc) 2 , the influence of the impurities can
be neglected, and a first-order phase transition is ob-
tained. In the opposite limiting case, the influence of
the phonons can be neglected.

If the phase-transition picture is distorted by sev-
eral factors, then comparison of the "smearing" tem-
perature intervals listed in Table III can identify the
principal cause. For example, if equilibrium impuri-
ties and the gravitational effect compete, then in the
case C o c [ ( l / T o ) d T c / d c ] 2 « t r a 0 3 + > ' ) (if p = o) the
principal influence is exerted by the gravitational ef-
fect. In the other case, the principal influence is ex-
erted by the impurities.

When estimating the experimental errors , it is neces-
sary to take into account not only the errors of the
instrument, but also the effects of the perturbations
listed above. The question can be posed in the following
manner. Let the apparatus ensure a temperature ac-
curacy τ ~ 10"5. What equilibrium-impurity concentra-
tion is permissible in the study of the behavior of the
pure substance if this accuracy is to be maintained?
Using the value of r n from Table III, we get
c < 10-yCo[(l/T0)dT/dc]2.

In conclusion, the author thanks A.M. Anisimov,
A. T. Berestov, E. E. Gorodetskri, V. S. Esipov, V. M.
Zaprudskii, S. P. Malyshenko, V. L. Pokrovskil, E. A.
Shapoval, and N. G. Shmakov for useful discussions.

APPENDIXES

1. We sum expression (1.2) with respect to μ·). It is
easy to verify the identity
2 exp [Θ, (a, + σ;,) μ,· + θσ^,μ? + № ? + Ιιμ,\

<)

Substituting (Al.l) in (1.2), we obtain

J(T, H, g) = AmZ(K + ei, h+2L), (A1.2)

where d is the dimensionality of space, Ν is the num-
ber of sites of the fundamental system, and Z( θ, h) is
the partition function of the ideal system. We have thus
expressed the partition function Ζ of a model of a
ferromagnetic with impurities in terms of the partition
function of an ideal ferromagnet.

We consider the case Η = 0. From (Al.l) we have

(A1.3)

The thermodynamic potential Ω = -In Ζ is given by

where A1 ; A2, and Ω ο are constants, θ0 = (WTo), T O

is the transition temperature of the pure substance; the
second and third terms in (A1.4) are obtained from ex-
pansion of the regular part of Ω in the parameter
Κ + 0 2 - θ0, while the last term in (A1.4) is the singu-
lar part of the free energy of an ideal system.

We consider the case of small impurity concentra-
tions c (c « 1). As will be shown below, in this case
g — - °° and eS — 0. Confining ourselves to terms
linear in eS ; we obtain from (A1.3)

Let us find the dependence of the transition tempera-
ture T c on the chemical potential g from the equation

*+92 = (/2/rc)+/-!).= (*<:-i)=Bo; (A1.6)

The subscript c signifies that the critical value of the
temperature is substituted in the corresponding quanti-
ties. Using the smallness of e^, we easily solve Eq.
(A1.6):

71

c=r0{l+[e' !~ f !c l )(ico-l)/Go]}; (Al 7)

the temperature To is substituted in the quantities
marked by the subscript cO.

We choose an arbitrary point g0 on the critical
curve. Near this point we have

In the derivation of (A1.8) we used expressions (A1.5)
and (A1.7), and also

T=(r-r c (g 0 ))/r 0 , T(g) = T~(i>T0)

Substituting (A1.3) and (A1.8) in (A1.4), we have
expression (1.3) for Ω , accurate to terms linear in

2. Substituting (2.6) in (2.4), we obtain

Όβ - (1/3) &aflUn)* + (ffo/2) Ula - aaf:Uafs}

Ua (k) | » - | kaVa (k) |
aUa (k) |*

(k) e η> + (6/2)

' " (A2.1)

Substituting this expression in (2.5) and integrating over
the shear part of ϋ α β and UQ(k), we obtain

exp {-1
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ΐι: (Α2.2)

here Φρ is an analytic function of the temperature, and
ρ = - σ α α / 3 is the pressure. The second term in (A2.2)
likewise has no singularities and will henceforth be in-
cluded in ΦΓ. The last term in (A2.2) has the same form
as the next to last term, to which we add the expression

— β»/4Λ· [(/C0/2) + (2μ/3)] ( 2 η?)3·

To this end we make in the integral with respect to Vaa

the substitution

after which the expression (A2.3) takes the form

- {-Η4 ·¥)*
+τ (»-Μ£ΪΪ) Σ U + Σ )}

i i.)

The integral with respect to ηι differs from the corre-
sponding integral of the unperturbed problem by a re-
definition of the constants a and b. Integrating with
respect to ν by the saddle-point method, we obtain an
expression for Φ from (A2.4):

(A2.5)

The singular point of the thermodynamic potential Φο

is determined by formula (2.3), with To dependent on ν
via the variable a + [q( ν - p)/K0]. Introducing in place
of ν the new parameter

τ (») = t 0 — ( (ο—ρ) ,

we rewrite Eq. (A2.5) in the form (2.7). The quantity
Np2/2K0 is included in ΦΓ.

3. To calculate Z, we use the technique employed by
Berlin and Kac [ 4 9 ]

(σ)

ents in the unperturbed system; the constant a depends
on the number of spins and on the summation rules in
E L

For estimates it can be assumed that all the dis-
tances between the spins in the correlator are of the
same order R ~ roc· Then

Qp (R, Xo) = Q U1 · · · ip) ~ <£)i • · · El > = i " p o (Eii...Ejp) = L-P"Qp (R/L, x0Z»°).

The general solution satisfying this equation is

Qp(R, τ0) = τΓ""?Ρ(«Το Ι / 1"')·

In the limiting case RT 0 « 1 (or R « rQC) we
have

Using formula (A4.1), we obtain the dimensional esti-
mate (5.7) for Γρ.

5. Changing from the coordinate representation to
the Fourier representation in accordance with the
formulas

Χ [ -̂
i

[4-<-Β.+ΒμΒ2σ')]'1»·

Integrating over all the values of the total magnetic
moment M, we obtain

= (l/2jlir)(2JV77n<z)1/2 f exp {{NIT) [—φο+(1/2α)(Η —

where Φο(Τ, Η) is the thermodynamic potential of an
ideal system (per particle without allowance for the
demagnetizing factor). The integration with respect to
ΪΓ is carried out by the saddle-point method. The
equation for the saddle point H s is (3.4).

4. The correlators that enter in (5.6) are estimated
by scaling theory [ 4 ]. The Kadanoff transformations
from microscopic quantities to cell quantities (with
cell dimension L ) are

where R is the distance between the spins, τ ο = (Τ
- To)/To, and To is the critical point of the unper-
turbed system, while y0 and a are the critical expon-

11 (Γ) = j 1i (k) «"" -pj-jr. 11 (k) = j η! (Γ) e-ilT dt,

we obtain a solution of (9.5b)

where

(A5.1)

(A5.2)

As will be shown below, in the temperature range
Τ - To ~ Τχ we have τ/2 ~ To - T, and in the immediate
vicinity of the Curie point of an inhomogeneous system
we can neglect the quantity τ/ο in the expression for λ2

in comparison with Τ - To; we therefore have in the
entire temperature range

Χ2~α(Γ—ro)/f< rj· (Γ,). (Α5.3)

If we introduce the temperature correlation function in
accordance with the formula

(A5.4)

(in deriving the last equation of (A5.4), we used the
relation Ti(k) = T^-k), which follows from the condi-
tion that Ti(r) be real), we can rewrite the expression
for Ti(r)r)i(r) contained in (9.5a) in the following form:

i(r)r,(k)«ttr/(*« + *')]

(A5.5)
= [άΐο/(2π)·ν] j [G (k)/(t« + *»)] dk.

Using (A5.5), we rewrite (9.5a):

It will be convenient for future use to transform the in-
tegral in the second term of this equation in the follow-
ing manner:

oo oo

j dkG (I k Ι )/(λ» + *«) = in. -[ j G (*) dk - fc j [G (*)/<X« + *»)] dk\ .

ο ο

In the second term on the right-hand side, the charac-
ter ist ic region of integration with respect to k, accord-
ing to (A5.3), is of the order of k ~ λ < r ^ T i ) « Γ \
whereas the characterist ic region of the variation of
G(k) is of the order of f1; therefore

G(k)dk — VHH0) j (5,a + ta)-i«l
ο
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Taking the last relation into account, Eq. (A5.6) in the
ordered phase takes the form

(A5.7)

Putting ηο = 0 in the last equation, we obtain the critical
point T c :

) ( J (Α5.8)

where ΔΤ = T c - To.

Using the estimate

f G (k) dk ~ G (0) Γ 1 , G (0) = f G (r) Λ ~ ΓξΡ
ο

we can easily show that the second term in (A5.8) is
much smaller than the first relative to the parameter
3"1.

Let us examine Eq. (A5.7). In this equation, XG(0)
« J G(k)dk. We seek the solution in the form r)o = T)OO
+ η οι, where ηοί « τ)οο· In the zeroth approximation,
Eq. (A5.7) takes the form

whence

In the first approximation

f G (k) dk.
ο

We now estimate the term S(Ti(r)r)i(r)
- Ti(r)r]i(r)) in Eq. (9.4), which was previously dis-
carded. The Fourier component (at k * 0 ) of this term
takes the form

and the correction T)U due to this term, calculated from
(9.4) by perturbation theory, is equal to

The characteristic region of integration with respect to
k is ~Γι. Using expression (A5.2) for rji and the esti-
mate Τι(Κ) ~ Ία3, we obtain

+ (K.-k)2]} dkη11(Κ)/η1(Κ)~[ά/νΓ,(Κ)] j {71, (k) 2Ί (K-k)/[

Thus, the discarded terms do indeed lead to small cor-
rections.

LIST OF SYMBOLS

I - exchange integral
σι = ± 1 - spin variable

i - number of site

Indices:

0 - as a subscript to a letter, denotes that this letter
pertains to the unperturbed system,

s, r - as subscripts, denote respectively the singular
and regular parts of the corresponding quantities,

c - designates the value of the corresponding quantity
at the critical point.

Thermodynamic Quantities:

Τ - temperature
τ = (Τ - T c )/T c - dimensionless temperature
Ρ - pressure
V - volume
& - density
ρ = (& - ^ " c ) / ^ c - dimensionless density
Ν - number of particles in the system and number of

sites in the lattice
c - impurity concentration
Η - external magnetic field
h - dimensionless magnetic field
Ζ - partition function at a constant number of particles
Ζ - partition function at a fixed chemical potential
Ε - energy
S - entropy
Φ = Ε - TS + PV - thermodynamic potential
Ω = -PV - thermodynamic potential
g - chemical potential (g = g/T)
η - ordering parameter
C - heat capacity
m - magnetic moment
χ - susceptibility
r c - correlation radius
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