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A classification is presented for the processes in quantum electrodynamics at high en-
ergy. The classification is based not on perturbation theory but on the character of the
asymptotic behavior of the amplitudes and cross sections at high energy. A simple pro-
cedure is described for finding the asymptotic forms of the amplitudes of different proc-
esses from the form of the intermediate state in the crossing channel. A review is pre-
sented of the theoretical results for processes with cross sections that do not decrease
with increasing energy. Double-logarithmic asymptotic expressions are obtained for
processes with cross sections that decrease with increasing energy by summing the
principle terms of the perturbation-theory series.
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1. INTRODUCTION

At low energies, all quantum-electrodynamic proces-
ses are usually classified on the basis of perturbation
theory with respect to the number of powers of the fine-
structure constant a = 1/137 used to determine the cross
sections of these processes. The simplest two-particle
processes, such as scattering of electrons by electrons
and positrons, scattering of photons by electrons, and
annihilation of an electron-positron pair into a photon-
and-muon pair, take place in second order of perturba-
tion theory and have a cross section on the order of ro
= <y2/m2 ~ 1(T25 cm2. In multiparticle electrodynamic
processes, each additional emitted particle gives rise to
an extra factor a in the cross section. Therefore proc-
esses with large numbers of final particles are in gen-
eral not considered in low-energy quantum electrody-
namics. The higher-order perturbation theories for the
amplitudes of two-particle processes contain the so-
called radiative corrections. At low energies, it suffices
to calculate only the first radiative correction, which
amounts to no more than 1%.

At high energies greatly exceeding the rest energy of
the electron or muon, the traditional classification of the
quantum-electrodynamics processes in the spirit of per-
turbation theory is not satisfactory. The cross sections
at high energies are determined mainly not by the num-
ber of powers of a, but by the character of the depen-
dence of the amplitudes on the cross sections and on the
energy.

The development of high-energy physics in recent
years has led to the recognition of the fact that the
asymptotic forms of the total cross sections of differ-
ent processes, and also of the differential cross sec-
tions at small angles and at angles close to 180° are
determined by the character of the intermediate states
of the crossing channels of the reaction. In hadron phys-
ics these states are the Regge poles and cuts with com-
plex values of the orbital angular momentum1^1-1. In
electrodynamics, by virtue of the presence of small

coupling constants, the singularities of the crossing
channels are determined by the usual particles—photons,
electrons, and muonst2 '3·1. Reggeization of these states
can occur in higher orders of perturbation theory[3"6-1.

A procedure for determining the asymptotic behavior
of electrodynamic processes can be distinctly formula-
ted. To this end we introduce the usual energy and angu-
lar invariants of the processes

where Pi, P2 and pi, p£ are the 4-momenta of the initial
and final particles of the reaction shown in Fig. la. In
the c.m.s. (Pi = -p 2), the invariants (1) take the form1'

,s = 4£2, t = _s (1 — cos 0)/2, u = — s (1 + cos *)/2, (2)

where Ε and 4 are the energy and scattering angle of
the particles. We shall therefore call the invariant s the
squared energy and the invariants t and u the squared
transferred momenta. The direct channel of the reac-
tion with the initial particles that make up the invariant
s will be called the s-channel. The crossing channels
with initial particles making up the invariants t and u
will be called the t- and u-channels, respectively. In the
case of multiparticle processes, we introduce several
momentum transfers made up of the momenta of the
initial and final particles, ^ = q? (Fig. lb; see also Fig.
3 below) and the partial energies of the process s ^ ,
made up of the momenta of the final particles:

Pi Pi

PI Pi

FIG. 1.
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T h e p r o c e s s e s w h o s e a m p l i t u d e s c a n b e s e p a r a t e d

i n t o t w o p a r t s i n t h e t - c h a n n e l b y i n t e r s e c t i n g o n l y t h e

p h o t o n l i n e s ( F i g . 1 ) h a v e t o t a l c r o s s s e c t i o n s t h a t d o

n o t d e c r e a s e w i t h i n c r e a s i n g e n e r g y ' - 2 ' 3 - 1 . T h e m a i n

c o n t r i b u t i o n t o t h e c r o s s s e c t i o n o f t h e p r o c e s s i s m a d e

b y d i a g r a m s w i t h t h e s m a l l e s t n u m b e r o f p a r a l l e l p h o t o n s

i n t h e t - c h a n n e l 2 ) . D i a g r a m s w i t h a n i n c r e a s i n g n u m b e r

o f p a r a l l e l p h o t o n s h a v e t h e s a m e e n e r g y b e h a v i o r a n d

c o n s t i t u t e , j u s t a s i n t h e c a s e o f l o w e n e r g i e s , s m a l l

r a d i a t i v e c o r r e c t i o n s t o t h e p r i n c i p a l d i a g r a m s . I n a l l

t h e p r o c e s s e s i n c o l l i d i n g b e a m s w h e r e t h e a m p l i t u d e s

c o n t a i n p h o t o n s p l i t t i n g s i n t h e t - c h a n n e l , o n e i n t e r m e d -

i a t e p h o t o n i s p o s s i b l e . H o w e v e r , i n p r o c e s s e s s u c h a s

t h e C o m p t o n e f f e c t a n d s c a t t e r i n g o f l i g h t b y l i g h t ( F i g .

2 ) , t h e n u m b e r o f p h o t o n s i n t h e t - c h a n n e l c a n b e o n l y

e v e n , b y v i r t u e o f C - p a r i t y c o n s e r v a t i o n . W e n o t e t h a t

b o t h d i a g r a m s o f t h e D e l b r u c k t y p e ( s e e F i g s . 2 a a n d 2 b ) ,

w h i c h m a k e t h e p r i n c i p a l c o n t r i b u t i o n t o t h e c o n s t a n t

c r o s s s e c t i o n , a r e r a d i a t i v e c o r r e c t i o n s t o t h e d i a g r a m s

o f F i g s . 2 c a n d 2 d a t l o w e n e r g i e s . W i t h i n c r e a s i n g e n -

e r g y , t h e c o n t r i b u t i o n o f t h e d i a g r a m s o f F i g s . 2 c a n d

2 d , w h i c h h a v e n o p h o t o n s i n t h e i n t e r m e d i a t e s t a t e o f

t h e t - c h a n n e l , d e c r e a s e s r a p i d l y a n d b e c o m e s s m a l l e r

t h a n t h e c o n t r i b u t i o n o f t h e d i a g r a m s o f F i g s . 2 a a n d 2 b

a t s l / 2 ~ 3 G e V C 6 ' 7 ] .

I n a d d i t i o n t o h a v i n g p o w e r - l a w c o n s t a n c y , t h e e l e c -

t r o d y n a m i c c r o s s s e c t i o n s i n F i g . l b c a n a l s o h a v e a

l o g a r i t h m i c g r o w t h o f s o m e d e f i n i t e d e g r e e . T h e d e g r e e

of logarithmic growth is in the general case η — 1, where
η is the number of successive intermediate photons in
the t-channel in Fig. 3 [ 8 ' 9 ] . In addition, if the initial
particle, together with the final particle and the inter-
mediate photon in the t-channel, makes up the very sim-
ple vertex of Fig. 3b, then one more (Weizsacker)
logarithm C10"12] appears for this outermost photon.
Thus, the maximum degree of the logarithm, with allow-
ance for the two possible outermost logarithms, is
(n — 1) + 2. All that drops out from the presented scheme
is the process of elastic scattering of electrons by elec-
trons and positrons (Fig. la), the total cross section of
which is infinite at any energy. It is easy to see that for
each logarithm (excluding the outermost Weizsacker
logarithms) there is at least one factor a1-28'9-1. The
quantity a2ln(s/m2) is small at all the attainable ener-
gies. Therefore the cross sections of the processes
containing t-channel photon splittings (Fig. 3) decrease
with increasing number of final particles, and they can
be classified on the basis of perturbation theory. The
non-decreasing total cross section of the processes in
Figs. 1 and 3 is due to the small scattering angles
& ~ m/s 1 2 , when the momentum transferred to the in-
termediate photon is t ~ m2. The differential cross sec-
tions of any process in large-angle scattering, when all
the momentum transfers tj are nearly equal to s, de-
crease linearly with increasing s. Therefore the region
of large tj ~ s makes no contribution to the total cross
section of the processes in Fig. lb. Processes that do
not decrease with increasing energy are considered in
Chap. 3.

Processes having no photon splittings in the t-channel
decrease linearly with increasing s at all scattering
angles. The total cross sections of these processes also
decrease. However, a new phenomenon appears for
processes of this type1-1 3 '1^. The radiative corrections

ΤΛΛΛ

ιΛΛΛΓ

F I G . 2 . F I G . 3 .

connected with the intermediate photons for these proc-
esses contain, for each power of a, the logarithm raised
to a maximum power of two (see Chap. 2). The resultant
parameter for the perturbation-theory expansion
(»/7r)ln2(s/m2) turns out to be of the order of unity at
energies s l / 2 ~ 10 GeV. The amplitudes of the processes
are now determined by the sum of all the radiative cor-
rections containing the parameter (a/7r)ln2(s/m2), which
differs significantly at high energies from the Born term
(the first-order perturbation-theory approximation).
The total cross sections of the processes with emission
of an additional number of photons also contain the
parameter (a/7r)ln2(s/m2) for each emitted photon. These
processes, which appear in different orders of perturba-
tion theory, therefore have cross sections of the same
order at sufficiently high energies. At very high ener-
gies, when (a/7r)ln2(s/m2) 3> 1, the cross section of the
processes with emission of a specified number of photons
can become larger than the cross sections of the proc-
esses with emission of a smaller number of photons.
Thus, three-photon annihilation of an electron-positron
pair exceeds the two-photon annihilation at energies s 1 2

^ 50 GeV and o> m i n ~ m c i 5 ] .

Double-logarithmic terms come in various types ' - .
In charged-particle scattering through large angles
Λ ~ 1, a double-logarithmic contribution comes from
the real and virtual Bremsstrahlung photons, which are
classical in nature and satisfy a Poisson distribu-
tion Ε 1 4 ' 1 6" 1 8], jn the case of poor energy resolution .
(ΔΕ ~ Ε) or angular resolution (Δ<? ~ ^), when a large
number of real Bremsstrahlung photons of high energy
is emitted, there is no double-logarithmic contribution
from these photons owing to their Poisson distribution.

In scattering through small angles or angles close to
180°, a double-logarithmic contribution that has no
classical analog is made by photons ̂ 3'1*-'. This contri-
bution does not have a Poisson distribution and is con-
nected with the fact that the electron has a half-integer
spin'-3'14-'. Processes with decreasing cross sections
are considered in Chap. 4.

It appears that high electron energies s
~ 1—10 GeV are presently attainable and will be attain-
able in the nearest future only in colliding-beam in-
stallations C19'2O3; since the corresponding energies in
the laboratory system Ejab « s/2m are of the order of
ΙΟ3—105 GeV and are temporarily unattainable with an
accelerator having an immobile target. We shall hence-
forth consider therefore only processes that take place
in colliding-beam accelerators, with an electron-elec-
tron or electron-positron pair as the initial particles.

3 2 3 S o v . P h y s . - U s p . , V o l . 1 6 , N o . 3 , N o v e m b e r - D e c e m b e r 1 9 7 3 V . G . G o r s h k o v 3 2 3



2. KINEMATICS AND DYNAMICS OF HIGH
ENERGIES

In order to explain the character of the behavior of
the cross sections of electrodynamic processes at high
energies relative to changes of the invariants s and t,
we consider in detail the kinematics and dynamics of the
processes in the region s ^ m2.

a) Kinematics. Phase volume. The chief purpose of
the present section is to obtain an expression for the
phase volume (see formulas (17), (21), and (24) below),
and also to acquaint the reader with the Sudakov varia-
bles, which we shall use repeatedly in what follows.

We introduce the usual invariant amplitude for the
production of η final particles, M, normalized by the
condition

5 = 1 + (2n)*i&(Pl + Λ - Σ pi) (2El-2Ei)-i'2 [Π(2ΕΙγ<2]->-Μ", (4)
i i

where p^, Ej and pi, E[ are the momenta and energy of
the initial and final particles. The normalization volume
is set equal to unity. For the cross section for the pro-
duction of η final particles we obtain the expression

dan = r'S ι. (5)

dTn = Π [<Ρρί/(2π)» 2Ε,] (2π)« δ (ρ, + Λ - Σ pi). (6)

The symbol Σ) in (5) denotes summation over the

spin states of the final particles; in addition, averaging
over the polarization of the initial particles is implied
in (5). These operations can be carried out in the ex-
pressions (5) and (6) for the cross section with the aid
of the known formulas

A'= Ρ=ϊμΡμ>

(7)

(8)

where €„ and Up are the polarization functions of a pho-
ton with momentum k and an electron with momentum ρ
(the Dirac bispinor). By virtue of the definition (4), the
electronic functions are normalized by the condition

/μ = «ρΥμ«ρ = 2/>μ, UpUp = 2m. (9 )

T h e c u r r e n t - c o n s e r v a t i o n c o n d i t i o n , a s u s u a l , m a k e s i t

p o s s i b l e t o d i s c a r d t h e l a s t t e r m o f ( 7 ) .

N o t i n g t h a t

d3pl{2n)3 2E = [dV(2ji)*] ·2πδ (ρ' - m2) l ^ o , (10)

we can rewr i te the phase volume (6) in the form

= Π {ldip/(2n)']-2n6(p)-m*)}21iS(pl-m*).
1

(11)

Taking (11), (7), and (8) into account, we note that
MnMn+drn is the amplitude of the diagram of
Fig. 4C14'213. The left-hand side of Fig. 4 is the ampli-
tude Mn, and the right-hand side is the complex-conju-
gate amplitude Mn+, in which the directions of all the
charged lines are reversed3'. All the intermediate lines
of the amplitudes Mn and Mn+ correspond, as before, to
electron or photon propagators, and all final particles
correspond to intermediate crossed lines joining the
amplitudes Mn with Mn+-the factors 2TTAJ6(P· - m·).
These factors differ from the propagators in that the
pole (p2 - m2 + ie)"1 is replaced by double its imaginary
(absorption) part 2ΐ7δ(ρ2 — m 2 ). Generally speaking, the
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d iagram of Fig. 4 c o m p r i s e s , after integration over al l
the invariants contained in (11), an incomplete doubled
imaginary (absorption) part of the amplitude of the for-
ward elastic scattering, J in^t 0 ) 1 " 2 * ' · The total im-
aginary part appears after summation over all the possi-
ble number of the final particles, Im Meia = Σ Im η

It is connected with the total c ros s section by the optical
theorem σ = Im M e l a(0)/s.

We transform the phase volume, separating those
variables the integration with respect to which can lead
to large logarithms*' ln(s/m2). These variables are ob-
viously the energies of the final particles and the mo-
mentum transfers, which depend on the angles ,» between
the momenta of the emitted particles and the beam
directions. The angle variables in the plane perpendicu-
lar to the beam do not depend on the energy in perturba-
tion theory. Thus, for each of the final particles except
two we obtain, generally speaking, not more than two
large logarithms. The remaining two particles can give
rise to only one logarithm each. In a two-particle reac-
tion, this logarithm arises upon integration with respect
to the single transferred momentum. Altogether, conse-
quently, we can obtain at most 2n — 3 large logarithms
after integrating over the phase volume of η final parti-
c l e s ^ .

Integration over the final particles is conveniently
carried out by changing over from the variables pj to

the momentum transfers —q. = p2 — Σ) pi (see Fig. 4).

We resolve q̂ , following Sudakov1-13·1, into invariant

longitudinal and transverse parts:

= Pa 91 =

d"q = (s/2) da df> d\L = it (s/2) da. df, dt (d<f/2n).

(12)

(13)

(14)

In the c.m.s., the component q is a spatial vector
perpendicular to the line of motion of the beams, and
therefore q2

± < 0. The quantities s(3k(sak) have a simple
physical meaning. They coincide asymptotically with the
energy invariants S J ^ S J ^ ) of parts of the amplitude in
Fig. 4 with the momenta of the limiting particles p2 and
q k (pi and q k ). Indeed,

th,
(15)

The quantity s/2m (1) is the energy of a particle with
momentum pi in the rest system of a particle with mo-
mentum p2 = 0. Analogously, the quantities s/3k/2m
(sa k/2m) are the energies of particles with momentum

V. G. Gorshkov 324



q k in the r e s t system of a part icle with momentum p 2

= 0 ( P l = 0).

From the condition that the energies of the final p a r -
t icles be positive, we obtain

l > βη-, > βη_2 > . . . > β2 > β, > 0, (16a)

1 > α, > <χ2 > . . . > αη_2 > οη., > 0. (16b)

The condit ions (16) a r e obvious f rom the point of v iew
of the just per formed interpretation of s/3 and s o .
Indeed, in the r e s t s y s t e m of the par t ic le 1, p i = 0 (the
r e s t s y s t e m of the part ic le 2, p 2 = 0), the e n e r g i e s of the
intermediate p a r t i c l e s should i n c r e a s e (decrease) on
going from part ic le 2 to part ic le 1 in F ig . 4 .

In the reg ion of the m a x i m a l logarithmic behavior,
none of the v a r i a b l e s can be of the o r d e r of another,
for otherwise we l o s e the logar i thms with r e s p e c t to one
of t h e s e var iab les . This condition great ly s impl i f i es the
manipulation. All the inequal i t ies in (16) must thus be
understood in the enhanced sense. In all the δ functions
of (11), it suffices to retain only the product of the l a r -
gest « j by the largest a^ In the case of the ladder a m -
plitude in Fig. 4 (which depends on the momentum t r a n s -
fe r s tj) we can replace άφ/2π in (14) by unity. Integrat-
ing the δ functions in (11) with respect to daj, we obtain

2

j=n-l ' ' '
The limitations on the variables s& are determined

by the inequalities (16a). The limitations on the var ia-
bles tj follow from the vanishing of the arguments of the
δ functions (11) after their integration with respect to
da: and from the definition (13), which by virtue of q^
< 0 and sa/3 > 0 should take the form of the inequality

t > sa$ Or t ~^> sa&. (IS)

The resultant limitations on the variables t· can be ex-

pressed in the form of a chain of i n e q u a l i t i e s t l 3 ]

1 = ij/sp, > <2/ίβ2 > . . . > ίη_,/«βη-ι > m2/s. (19 )

T h u s , t h e f i n a l l i m i t s o f v a r i a t i o n o f t h e p h a s e - v o l u m e
v a r i a b l e s ( 1 7 ) a r e b o u n d e d b y t h e c o n d i t i o n s ( 1 6 a ) a n d
( 1 9 ) .

T h e e x p r e s s i o n f o r t h e p h a s e v o l u m e ( 1 7 ) h a s a s i m -
p l e i n t e r p r e t a t i o n . T h e t w o - p a r t i c l e p h a s e v o l u m e i s
e q u a l t o

dr2 = 2π dt/(4n)h. (20)

The mult ipart ic le phase vo lume (17) i s obtained in
the fol lowing manner. F i r s t we calculate with formula
(20) the two-part ic le phase volume of the block of the
c r o s s s e c t i o n bounded by p a r t i c l e s with momenta p 2 and
q2 with the energy invariant s ^ = s f t . Formula (20) i s
then used to ca lcu late the two-part ic le phase volume of
the block of the s e c t i o n bounded by the p a r t i c l e s with
momenta p 2 and q 3 with energy invariant s 1 3 = s/33, with
the final p a r t i c l e s 1' and 2 ' playing the ro le of one par-
t i c l e with an effective m a s s equal to s ^ = s/32, with
r e s p e c t to which it i s n e c e s s a r y to integrate within the
obvious l i m i t s s/33 3> s 0 2 » m 2 ( s e e (16a)), e t c . The
l a s t differential takes the form of a two-part ic le phase
volume for the ent i re c r o s s sect ion, in which the role of
the f i rst part ic le i s a s s u m e d by the ent i re block of the
c r o s s section with η - 1 final part ic les and effective
m a s s sfia_lt with respect to which the integration i s
car r ied out up to the total energy s. The presented in-
terpretat ion of the phase volume can be expressed
mathematically in the form of the recurrence relation

dTn (s, t) = [dt','(Aa)h] ds'drn-t (s1, t'), (21)

« > « ' , t/s<t'/s', dVi (s, t) = 2πδ (s - t), (22)

dTn = dTn (s, TO2). (23)

The e x p r e s s i o n for the s ing le-part ic le phase vo lume
(22) i s val id at t ^ m 2; at t -C m2, the z e r o value of the
argument of the δ function (22) corresponds to equality
(15).

On the bas is of the foregoing interpretation of the
phase volume, we can rewri te the expression for (21) in
one more manner. We choose some cell in Fig. 4 with
number k, and break up the diagram for the c ross sec-
tion in Fig. 4 into two blocks—left-hand and right-hand
relative to the cell k. Then the phase volume of the en-
t i r e process can be expressed in t e r m s of the phase vol-
umes of these blocks in the form

dl\ = (2η)"1 dl\,_4_, (s 1 4 , i4) dsl s] dshndTh (skn, tk)

(«1ft, «An <€«)·
(24)

T h i s e x p r e s s i o n h a s t h e f o r m of a t w o - p a r t i c l e p h a s e
v o l u m e , w h e r e t h e l e f t - h a n d b l o c k w i t h e f f e c t i v e m a s s
s j j j a s s u m e s t h e r o l e o f t h e f i r s t p a r t i c l e , a n d t h e r i g h t -
h a n d b l o c k w i t h e f f e c t i v e m a s s S j ^ t h e r o l e o f t h e s e c o n d
par t ic le . Formula (24) can be obtained directly by inte-
grating the δ function with respect to άβ from above to
the k-th cell and with respect to do downward starting
with the k-th cell .

b) Dynamics. Power-law asymptotic forms of the
amplitudes and the c r o s s sections. The purpose of this
section i s to obtain formulas for the asymptotic ampli-
tudes (28), (29), and (30). Let us examine the dynamics
connected with the behavior of the amplitudes Μ at high
energy. In the case when all the momentum transfers t^
a r e large, t± ~ s, the dimensionless quantity |M| 2 dF
[Eq. (6)] should be of the order of unity, since Μ i s des-
cribed in the Born approximation by a set of simple poles
with respect to different invariants 5 ' , ft follows from
this that a l l the c r o s s sections (5) for the large-angle
scattering and production of part ic les a r e of the o r d e r
of l/s, i.e., they decrease with increasing energy.

This is not the case if the momentum transfers q\ = t^
a r e small, tj ^ m 2 . In this case the behavior of the
amplitude depends on the spin of the part icles with mo-
mentum q i ; exchange of which takes place in the t-chan-
nel. Let us explain the power-law (in s) dependence of
the amplitude on the spin of the intermediate part ic les
in the t-channel, disregarding the possible logarithms
for the t ime being.

We consider the simplest Feynman pole diagram
Fig. la, with the photon in the intermediate state of the
t-channel. At small t ^ m 2, the momenta of the initial
and scattered part icles can be regarded as equal,
Pi ~ Pi ; P2 ~ P2· The current s of the transit ions of p a r -
t icles 1 and 2 in Fig. l a take the form (9)

u'viyuuvl = 2ρ 1 μ , «ρ-Υμ«Μ = 2 ρ 2 μ .

T h e a m p l i t u d e i n F i g . l a , t a k i n g (1) i n t o a c c o u n t , i s
t h e r e f o r e

Μ, = 4πα·2ί/ί. (25)

F r o m t h e p o i n t o f v i e w o f t h e t - c h a n n e l , w h e r e t i s t h e
energy, the dimensionless amplitude Μ (see Fig. la) with
one photon in the intermediate state consists of one p a r -
t ia l wave with / = 1 and should be of the form'-1-'6 '

Mi = /, (<) P, (z) = /, if) -2slt. (26)

It follows from (25) that fi(t) = 4τ7» at t ~ m 2 . In the
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c a s e o f e x c h a n g e o f a s c a l a r p a r t i c l e , t h e a m p l i t u d e

w o u l d c o n s i s t o f a z e r o p a r t i a l w a v e a n d w o u l d b e p r o -

p o r t i o n a l t o a c o n s t a n t ( t h e c o n s t a n t a i n ( 2 5 ) h a s f o r

s c a l a r p a r t i c l e s t h e d i m e n s i o n a l i t y m 2 a n d t h e r e i s n o s

i n t h e n u m e r a t o r ) .

W e c o n s i d e r n o w e x c h a n g e o f a s p i n o r p a r t i c l e ( F i g .

2 c ) . A t t ~ m 2 , t h e p r o p a g a t o r o f t h e s p i n o r p a r t i c l e , b y

v i r t u e o f t h e p r e s e n c e o f t h e n u m e r a t o r ( 8 ) , i s p r o p o r -

t i o n a l t o t 1 2 . T h e s p i n o r s u _ o f t w o e l e c t r o n s i n t h e

c m . s . are proportional to ρ 1 2 ~ s 1 *. For the entire
amplitude (Fig, 2c) we obtain a value of the order of

Ms/z ~ i ' /w. (27)

Thus, the amplitudes containing the exchange of one
particle in the t-channel behave at t ~ m2 like

Μ, ~ <», (28)

where σ is the spin of the intermediate particle'-1 '2 '2 7-1.

In the case of the exchange of two particles in the
t-channel with spins σ ι and σ 2 (wavy lines in Fig. 5), each
of the amplitudes containing the wavy line behaves in ac-
cordance with (28). However, by virtue of the smallness
of t ~ m2, the phase volume of the integration over the
closed loop is small, dn ~ wdt'/s ~ m2/s.7) The general
behavior of the amplitude (Fig. 5a) at small t is there-
fore given b y [ 4 ' 2 7 ' 2 8 ]

Af~ «"·+"«-1. (29)

It is easy to generalize our analysis to include ex-
change of an arbitrary number of particles in the t-chan-
nel. The exchange of each particle will give a factor
(22), and integration of each closed loop with respect to
the phase volume will give a small quantity of order
m2/s. Therefore the general behavior of the amplitude
following exchange of η particles with spins σι, σ2, ..., σ η

is given by C 4 ) 2 7 ) 2 8 ]

M~Sn' „ (30)'

An amplitude behavior similar to (30) can also be ob-
tained by substituting in Fig. 5 the entire amplitude (29)
for one of the virtual particles in the t-channel, and
using the same reasoning as in the derivation of formula
(29).

Expressions (29) and (30) are also valid in the gen-
eral case when the horizontal solid lines in Figs. 5a and
5b are replaced by the arbitrary amplitudes A and Β of
Figs. 5c and 5d, which contain right-hand and left-hand
cuts with respect to their partial energies i 2 s^. The
asymptotic form of the entire amplitude of Fig. 5c or 5d
will be determined by the maximum value of j n (30) from
among all the sets of the intermediate particles in the

• Pi P!

F I G . 5 .

t-channel, contained in the amplitude of Fig. 5c or 5d.
Thus, we see from (30) that only exchange of photons
(whose number is furthermore arbitrary) in the t-chan-
nel leads to an amplitude that increases linearly with
increasing s, and consequently (see (5)) to a constant
cross section. The total cross section is in this case
also constant and is determined by the small t ~ m2,
corresponding to preferred emission of the reaction
particles at very small angles ^ ~ m/s 1 2 . On the other
hand, the process cross sections determined by dia-
grams with one spinor particle in the t-channel will de-
crease with increasing energy. In the latter case of ex-
change of two spinor particles, small t ~ m2 are not
singled out, and the total cross section is determined by
the region that leads to the maximum number of large
logarithms.

All the foregoing has pertained to the asymptotic
form of the Feynman diagrams for the amplitudes of
the processes. Formulas (29) and (30), with (5) taken
into account, also describe correctly the asymptotics of
the cross-section diagrams in Fig. 4 if the intermediate
particles in the t-channel are taken to be only virtual
particles that do not belong to the final reaction products;
in other words, if in the t-channel one takes into account
only the particles for the'horizontal splitting of the dia-
gram of Fig. 4, and not for oblique splitting, when the
final real particles intersect.

The diagrams for the cross sections are more eco-
nomical than the diagrams for the amplitudes. Κ the
final particles are arranged in the form of horizontal
parallel lines, we can investigate the horizontal splitting
of the virtual particles in the t-channel and determine
the asymptotic form of the cross section by means of
formulas (29), (30), and (5). This immediately reveals
amplitudes whose interference is small (see Fig. 9b be-
low). Henceforth, whenever we refer to splitting in the
t-channel or intermediate states in the diagrams for the
cross sections, we shall have in mind only horizontal
splittings and intermediate states connected with virtual
particles.

3. PROCESSES WITH CROSS SECTIONS THAT
DO NOT DECREASE WITH INCREASING ENERGY

a) The Weizsacker-Williams formula. We have seen
that all the amplitudes containing exchanges of arbitrary
numbers of parallel photons in the t-channel lead to a
constant cross section. However, with each additional
parallel photon, the amplitude is multiplied by a small
quantity a. This does not give rise to any logar-
i t h m s [ 2 ' 8 ] 8 ) .

Thus, the principal contribution to the cross section
is made by diagrams containing the smallest number of
parallel photons in the t-channel. For processes in
colliding beams with constant cross section, exchange
of one photon in the t-channel is always possible.

Let us consider the general form of the diagram for
the cross section of the process containing exchange of
one photon in the t-channel (Fig. 6). Using (24), we can
express the cross section of Fig. 6 in the form

where f ̂ ^ are the squares of the moduli of the ampli-
tudes of the upper and lower blocks, which are separated
by the photon lines. The functions Ιίμν satisfy the gauge-
invariance condition

?μ/ίμν = ϊν/ίμν = 0 , t = ?2. ( 3 2 )
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FIG. 6.

At t = 0 the functions f̂  a r e connected with the
photoproduction-process c ros s section, determined by
the lower o r upper block of the diagram of Fig. 6:

(2ί / Γ 1 ε μ ε ν <ίΓ ί / ί μ ν ( ί ί , Ο) = ι/σι(ϊ,), ( 3 3 )

w h e r e t h e a v e r a g i n g o v e r t h e p o l a r i z a t i o n s o f t h e p h o t o n

c a n b e c a r r i e d o u t w i t h t h e a i d o f f o r m u l a ( 7 ) .

C o n d i t i o n s (32) a n d ( 3 3 ) e n a b l e u s t o w r i t e f o r fj ,

a c c u r a t e t o t e r m s o f o r d e r t/q 2, t h e e x p r e s s i o n

su t) =

= 2dOi (si) si) — 2 (ρ ί μς

«i = 2Piq.

ν?μ) + δ^-Sj]
(δμν?

2 - ? μ ? ν ) , (34)
(35)

When (34) is substituted in (31), only the t e r m s con-
taining ΡΐμΡίι, in fj^j, lead to the formation of the prod-
uct [2(pip 2)] 2 = s2, which is necessary to cancel out s 2 in
the denominator of (31) and to obtain a constant c r o s s
section. The second and third t e r m s in the square
brackets of (34), as well a s the quantity b, can therefore
be discarded. We call attention to the appearance of the
factor t/si in the first principal t e r m of (34). This factor
leads to cancellation of one photon propagator in (31)
and improves the convergence of the integral with r e s -
pect to s^. There is no factor t/sj if the block in Fig. 6
contains one electron o r positron a s the final part icle.
In this case, (33) is proportional to the δ function (22);
as a result we have t » Sj and the principal t e r m of (34)
is transformed into a product of two elementary currents
(vertex parts) (9):

. 2πδ (s2 -f t, β—2m2a. (36)

We have w r i t t e n out in (36) t h e e x a c t e x p r e s s i o n f o r t h e

argument of the δ function (p 2 + q)2 - m 2 (15), which is
valid for small t <C m 2, since both formulas (34) and (36)
have been derived accurate to t e r m s of o r d e r t/m 2 .

Substitution of formula (36) in both blocks of Fig. 6
yields the elast ic-scattering c r o s s section at small t
(the Rutherford formula):

da = 4πα 2 dt/t*, m2 > t > 0. (37)

If o n l y o n e o f t h e b l o c k s , e . g . , t h e s e c o n d , c o n t a i n s a

s i n g l e f i n a l p a r t i c l e , t h e n a c o m b i n a t i o n of ( 3 4 ) a n d (36)

y i e l d s f o r t h e c r o s s s e c t i o n ( 3 1 ) a n e x p r e s s i o n o f t h e

da = (α/π) (dt/t) (dst/s,) da, (s,), (38)

Tnz >̂ t Z5s wj2s2/s2 ^39^

The lower bound (39) on t follows from the δ function
(36), the definition (15) and (35), and the condition
t > sa/3 (—q^ > 0) (18). As a result of cancellation of
one photon propagator by the factor t/s x in (34), the c r o s s
section (38), in contrast to the elastic-scattering c ross
section (37), contains only a logarithmic differential with
respect to t, which is called the Weizsacker-Williams
logarithm. The principal contribution to the logarithmic
integral with respect to t i s given by the region (39),

which thus determines the total c ros s section (38) with
logarithmic accuracy.

In the case when both blocks of Fig. 6 a re described
by formula (34), the cross section (31) takes the

^ 2 8 3

da = (4jt3)"1 at da, («i) (ds2/s2) da2 (s2), t < m2. (40)

In c o n t r a s t t o f o r m u l a ( 3 8 ) , f o r m u l a ( 4 0 ) c o n t a i n s n o

l o g a r i t h m i c d i f f e r e n t i a l w i t h r e s p e c t t o t, s i n c e b o t h

p h o t o n p o l e s a r e c a n c e l l e d o u t b y t h e f a c t o r s t/s j i n ( 3 4 ) .

T h e t o t a l c r o s s s e c t i o n , o w i n g t o t h e a b s e n c e o f t h e

W e i z s a c k e r - W i l l i a m s l o g a r i t h m , i s d e t e r m i n e d b y t h e

r e g i o n t ~ m z a n d c a n n o t b e o b t a i n e d f r o m ( 4 0 ) , w h i c h

g i v e s o n l y i t s o r d e r of m a g n i t u d e .

F o r m u l a s (38) a n d ( 4 0 ) h a v e i m p o r t a n t f e a t u r e s . If

t h e c r o s s s e c t i o n (31) h a s o n l y o n e p h o t o n s p l i t t i n g i n t h e

t c h a n n e l ( F i g . 6), t h e n t h e u p p e r a n d l o w e r b l o c k s , w h i c h

c o n t a i n no p h o t o n l i n e s , h a v e d e c r e a s i n g c r o s s s e c t i o n s .

T h e r e f o r e t h e p r i n c i p a l c o n t r i b u t i o n t o t h e c a l c u l a t e d

t o t a l c r o s s s e c t i o n s w i l l b e m a d e b y t h e r e g i o n o f s m a l l

p a r t i a l e n e r g i e s s } / 2 , s 2

/ 2 ^ m , i n a s m u c h a s t h e i n t e g r a l s

w i t h r e s p e c t t o t h e s e v a r i a b l e s c o n v e r g e r a p i d l y w i t h

i n c r e a s i n g S i a n d s 2 , b y v i r t u e o f t h e d e c r e a s e of t h e

c r o s s sections άσχ and d a 2 .

Thus, if the c r o s s section contains one photon split-
ting in the t-channel, then only one Weizsacker-Williams
logarithm can a r i s e .

Now let the c r o s s section dal in (31) be itself deter-
mined by a diagram with photon splittings. In this case
the c r o s s section dtfi does not decrease with increasing
energy s} . Integration with respect to s x now leads to
an additional logarithm. It is easily seen that the num-
ber of the logarithms that result in this case is η — 1,
where η is the number of photon splittings in the t-chan-
nel plus one o r two outermost Weizsacker-Williams
logarithms, which a r i s e in the case when one or both
initial part ic les a r e coupled with the intermediate pho-
tons in the t-channel via the vertex par t s (see Figs. 5a
and 3b). The amplitude of the process is determined by
the diagrams of Fig. 3, and the energy invariants Sj of
all the blocks containing no photon splittings in the
t-channel turn out, just as in Fig. 6, to be of the order
of m2, i.e., these blocks a re not under the asymptotic
conditions.

b) Elastic scattering. We consider now all the proc-
esses that have c r o s s sections that do not decrease with
energy. The simplest such process is e+e" o r e"e" scat-
tering. The e+e" scattering amplitude is described by the
diagrams of Fig. 7a and 7b. In e~e~ scattering, diagram
7b is impossible. Instead, it is necessary to add to dia-
gram 7a, in which the direction of the line with momen-
tum p 2 should be reversed, the analogous diagram 7a'
with interchanged final lines ρί and p 2 . In e~e~ scat ter-
ing, both diagrams have photons in the t-channel,
whereas in e+e" scattering, this property is possessed
only by the diagram of Fig. 7a. The diagram of 7b is
asymptotically small and can be discarded when small-
angle scattering i s taken into account. The c r o s s sec-
tion of these processes is represented by one diagram
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Fig. 5a with split horizontal lines and momenta p t = pi
and P2 = p 2.

The total cross section of these processes diverges
because of the presence in the physical region of a pho-
ton pole corresponding to Coulomb long-range action. In
colliding-beam experiments one therefore usually meas-
ures e+e~ and e"e" scattering at large angles close to
90° i 2 9 j. The advantage of photon exchange is then lost,
since the processes in scattering through finite angles
(̂  ~ 1) decrease with increasing energy. The two dia-
grams 7a and 7b make equal contributions in the case of
large-angle e+e" scattering. The e+e~ scattering cross
section is given by^30-1

,_ , j it Γ S * + ! i 2 ΐΛ + Ρ U 2 Ι ,Λ1\
d a e + e . = 4 n a s

1 5 - [ - i _ + - i - + _ J , ( 4 1 )

where s, t, and u are determined by formula (1). At
small t, Eq. (41) goes over into the Rutherford formula
(37).

We note that the process e"e" or e"e+ is the only scat-
tering process with a nondecreasing cross section, the
amplitude of which is described by the simplest pole
diagrams of Fig. 7, and the cross section is accordingly
proportional to a2. All other processes with cross sec-
tion proprotional to a2, namely the e"e* — μ~μ+ annihila-
tion (Fig. 7b) with muons at the end, the e"e+ -» 2 γ
annihilation (Fig. 2c), and also the production of ρ, ω,
and φ resonances and single hadrons (Fig. 7b) are des-
cribed by pole diagrams which have no photons in the
intermediate state of the t-channel. The cross section
of these processes decreases with increasing energy.
The nondecreasing cross sections of all the remaining
processes are proportional to higher powers of a.

c) Bremsstrahlung of one photon. Bremsstrahlung at
high energies in e+e" scattering is described by the dia-
grams of Fig. 8. The amplitude of this process has an
additional e, and consequently the cross section has an
additional a = 1/137 in comparison with e+e" scattering.
To describe bremsstrahlung in e~e~ scattering, it is
necessary only to reverse the directions of the arrows
in the lower electron line of Fig. 8, and to add diagrams
with interchanged final electrons.

The circles in the diagrams of Fig. 8 denote that the
amplitudes A and Β include also diagrams with emis-
sion of a photon by the final electron in A and a final
positron in B. Only the sum of these diagrams satisfies
the gauge-invariance condition (32).

The diagrams for the bremsstrahlung cross section
take the form of Fig. 9a and of the diagram symmetrical
to it with respect to replacement of ρ ι by p2 (up by down).
These diagrams correspond to the squares of each of
the amplitudes—Fig. 8. The cross sections correspond-
ing to the diagrams for the interference of the ampli-
tudes in Fig. 9b decrease with increasing energy, since
they have in the t-channel no horizontal photon splittings
connected with scattering of virtual particles only. With
respect to both pair energies Si and S2, one of the ampli-
tudes in Fig. 9b contains a photon in the t-channel and is
increasing, while the second, which contains no photon
in the t-channel, is constant9'. Diagram 9b for the cross
section should therefore be discarded. Let us consider
some well-known characteristic features of this proc-
ess1-30"35·1, which we shall find useful for the understand-
ing of the physics of other processes.

The process in Fig. 9 has three particles in the final
state. The encircled block that has no photon in the in-

F I G . 8.

FIG. 9 .

t e r m e d i a t e s t a t e o f t h e t - c h a n n e l s h o u l d n o t b e i n t h e

a s y m p t o t i c r e g i m e i n t h i s c a s e , i . e . , a l l t h e q u a n t i t i e s o n

w h i c h i t d e p e n d s ( t h e e n e r g y a n d t h e t r a n s f e r r e d m o -

m e n t a ) a r e o f t h e o r d e r o f t h e e l e c t r o n m a s s m . I n t h e

c . m . s . , a l l t h e p a r t i c l e s p r o d u c e d i n s u c h a b l o c k t r a v e l

i n t h e s a m e d i r e c t i o n , f o r m i n g a n g l e s ,» ~ m / s w i t h

o n e a n o t h e r . I n o u r c a s e t h i s m e a n s t h a t t h e p r o d u c e d

p h o t o n w i l l t r a v e l i n t h e d i r e c t i o n o f t r a v e l o f t h e e l e c -

t r o n o r t h e p o s i t r o n ( i . e . , f o r w a r d o r b a c k w a r d t i ! 9 - 1 ) .

T o o b t a i n t h e d e g r e e o f s i n t h e a m p l i t u d e , t h e i n t e r -

m e d i a t e p h o t o n s h o u l d h a v e a s m a l l m o m e n t u m t = q 2

~ m2, i.e., the electrons and positrons should be deflec-
ted through angles ύ- ~ m/s 1 in the scattering.

In the square of the amplitude Β of Fig. 9a, after
adding the two diagrams, there appears a factor t/s2 (34),
the numerator of which cancels out one of the photon
propagators in Fig. 9a. As a result, the bremsstrahlung
cross section acquires the form (38), where dai is the
Compton scattering cross section determined by the
amplitude Β in Fig. 9a. For the Compton scattering,
the minimum value of s2 as t — 0 in (39) is

«2 mm = 2ft? = 2p'Jc = 2ω (£ 2 —p 2 cos d)m l n = 2ω ( £ 2 — f t ) ~ « ' / s ' " . (42)

The range of var iat ion of t in which formula (38) i s val id

therefore takes the following form in the c a s e of b r e m s -

strahlung:

nt'coVs" <ζ t < m*. (43)

Integration over this region leads to the Weizsacker-
Williams logarithm. We emphasize that the Weizsacker-
Williams logarithm is a consequence of the zero photon
mass. Thus, the main contribution to the bremsstrah-
lung is made by very small scattering angles of the

3 / 2 / 1 ' 2g
/s

ang
1 ' 2 . If we select

g y y

c h a r g e d p a r t i c l e s , m 3 a>/s 2

s p e c i a l l y t h e s c a t t e r i n g a n g l e s $ ~ m / s , t h e n w e l o s e

t h e W e i z s a c k e r - W i l l i a m s l o g a r i t h m l n ( s / m 2 ) . F i n a l l y , if

w e s t u d y s c a t t e r i n g t h r o u g h f i n i t e a n g l e s $ ~ 1, t h e n w e

l o s e o n e p o w e r : t h e c r o s s s e c t i o n b e g i n s t o d e c r e a s e

w i t h i n c r e a s i n g e n e r g y 1 - 2 9 - 1 .

T h e c r o s s s e c t i o n o f t h e p r o c e s s r e m a i n s c o n s t a n t i n

the case of emission of photons with ω "£> s 1 2 /2. If pho-
tons with s l /2/2 - ω ~ m are emitted, the cross section
is no longer constant and begins to decrease with in-
creasing energyC 3 6 ]. Photons with ω -C s 1 /2 corre-
spond in the rest system of the radiating electron
(Pi = 0) to infrared photons with energy w ' « m . In
this region, which is of greatest interest from the ex-
perimental point of view, the Compton scattering cross
section (41) coincides with the classical Thomson limit
σ0 as ω — 0. Replacing the variable s2 (42) by ω and
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t a k i n g into a c c o u n t t h e two d i a g r a m s of F i g . 9a c o r r e -

s p o n d i n g t o t h e e m i s s i o n of a n e l e c t r o n a n d p o s i t r o n

(Fig . 8), w e o b t a i n the following e x p r e s s i o n f o r t h e

b r e m s s t r a h l u n g c r o s s s e c t i o n :

da = 2σ<°> (α/π) (dt/t) dat/ω, a"» = (8n/3)/J, ro = (44)

Integrating with respect to dt between the l imits of (46),
we obtain

da = 16r*a [In (s/ro2) + (2/3) In (m/ω)] άω/ω. ( 4 5 )

Formula (45) is accurate to a constant t e r m . The gen-
e r a l asymptotic form of the bremsstrahlung c r o s s s e c -
tion, which is valid for arb i t rary ω, is described, ac-
curate to t e r m s of o r d e r m2/s, by the formula [ 3 3 ' 3 4 ]

0 ω ε \ e —ω Ί ε 3 / L ω 2 J ' I
( 4 6 )

Integration of the c r o s s section with respect to ω
gives r i s e to a logarithmic divergence at smal l ω. The
reason for this divergence is that all the processes with
charged part ic les a r e accompanied by emission of not
one but of an infinite number of very soft c lass ical pho-
tons, for which perturbation theory (expansion in a) does
not hold. The lower limit for the frequency of a single
photon that can be registered in experiment is deter-
mined by the energy resolution of the instrument, which
in principle cannot be infinitesimally small . In colliding-
beam experiments w m i n ~ 1—10 MeV. Formula (46) is
meaningful if ω > w

T h e e m i s s i o n of t h e c l a s s i c a l p h o t o n i s i n d e p e n d e n t

of the fundamental process in our case of elastic scat-
tering, since its frequency ω is much smaller than all
the variables of the main process . Therefore at
ω -C t/s (p t k <C t) the bremsstrahlung c ross section
can be expressed in the form of the product of the e las-
tic-scattering c ross section (41) and the probability da
of emission of a classical photon. The expression for da
is determined by the square of the classical current,
which is equal to the sum of the Feynman diagrams for
the radiation emitted by the initial and final part ic les :

da = | Μ | ! d3k/(2n)3 2ω, Μ = (4πα)ν« εμ/μ, (47)

(48)

Summation over the photon polarizations £μ leads to the
well-known formula for the classical photon emission
probability

= (a/2n2) {doi/ω) l(ptll/Pin) — [pippin)}'dQk, ( 4 9 )

where η μ = k /ω. The last factor depends only on the
electron m a s s m and on the momentum transfer t '
= (Pi ~ P i ) 2 . and vanishes as t ' — 01 O ).

Formula (49) indicates directly the cause of the oc-
currence of the logarithmic integral with respect to άω
in (44). We see from (48) that in the case of bremss t rah-
lung of photons with ω <S8 the polarizations of the
latter have components that a re paral lel to the momenta
Pi and pi. Photons with ω «C s , having polarization
perpendicular to the momenta p i and p i , a re not emitted.

The bremsstrahlung mechanism may also govern the
production of C-odd vector mesons ρ, ω and φ[37-1, and
also of single h a d r o n s t 3 8 : l . The diagrams for the c r o s s
sections of these processes a re of the form shown in
Fig. 9a, in which the produced bremsstrahlung photon i s
transformed into a vector meson or a group of hadrons.
The c ross section for the production of vector mesons
in accordance with the mechanism of Fig. 9a is of the

o r d e r of 10 3 4 cm 2, and, in analogy with the b r e m s s t r a h -
lung photon, the produced vector meson travels predom-
inantly in the direction of motion of the beams, at angles
* ~ m p / s l / 2 .

The c r o s s section for scattering with emission of two
photons in one direction can be obtained by substituting
an additional photon in the lower block of Fig. 9a. This
c r o s s section is smal ler than the c r o s s section for sin-
gle bremsstrahlung (44) by a factor a·

d) Double bremsstrahlung. Double bremsstrahlung
with the photons moving apart in opposite directions'
makes it possible to regis ter both protons by the coin-
cidence method. This process is of great interest for
experiments with colliding beams, since it is used a s a
monitor for registration of the collision of beams and
for normalization of the c r o s s sections of the investiga-
ted p r o c e s s e s 1 1 3 5 ' 3 9 3 . The cross section of the process
is determined by the diagram of Fig. 10, where, as in
Fig. 9, the encircled blocks a re taken to mean sums of
diagrams with a photon emitted by the initial and final
electron (positron). At small t < m 2, the c r o s s section
of the process is described by formula (40). Just as in
the case of single bremsstrahlung, the encircled blocks
containing no photons in the t-channel a re not under
asymptotic conditions. Consequently, the photons travel
at small angles $ ~ m / s to the part icles that emit
them, which, by virtue of the smallness of t = q2 ~ m 2,
a r e deflected in turn through small angles j ~ m / s 1 2 .
There is no Weizsacker-Williams logarithm for this
process, since the square of each block is proportional
to t at smal l values of t, thus cancelling both poles of
the photon propagators of Fig. 10. Photons with energies
ω <C s l / 2 /2 correspond, just as in the case of single
bremsstrahlung, to infrared classical p h o t o n s t 3 5 ] . Two
such photons a re emitted independently of each other.
There is a correlation between the emission of two hard
photons with energy ω ~ s l / 2 ((s l / 2/2) - ω ~ s l / 2 ) , but it
is numerically small ( < 1 % ) . The cross section can
therefore be represented approximately as a product of
factors, each of which depends on one photon [35>36^

da = (8ί·;αζ/π) R (ω,) (dBj/ω,) Β (ω2) ^ωζ/ω2,

R (ω) = η)/2 [1 - (ω/Ε)] + η* / ζ (» 2 /£ a ) ,

ΤΗ = (5/4) + (7/8) ζ (3), η 3 = (7/8) ζ (3) = 1.052.

(50)

( 5 1 )

( 5 2 )

T h i s m u l t i p l i c a t i v e p r o p e r t y w a s o b s e r v e d e x p e r i m e n -

t a l l y C 2 9 ] .

T h e d o u b l e b r e m s s t r a h l u n g m e c h a n i s m c a n a l s o g o v -

e r n t h e p r o d u c t i o n o f o n e o r t w o C - o d d v e c t o r m e s o n s

ρ, ω, and φ . In this case, one or both bremsstrahlung
photons of Fig. 10 a r e transformed into vector mesons.
The c r o s s section for the production of a vector meson
and a photon emitted in opposite directions along the
direction of beam motion should be of the order of
ΙΟ- 3 *-ΙΟ" 3 6 cm 2 .

e) Scattering with production of charged p a i r s . The
next process is the process of production of the pair e+e~
or μ ' μ " [ 1 2 ] . The cross section of this process is des-
cribed by the diagram of Fig. 11. The c irc le around the
central block 3 denotes, as before, that it i s necessary
to take a sum of diagrams with interchanged photon
lines.

A power-law constancy of the c r o s s section of this
process is obtained if the central block 3 with electrons
in the intermediate state in the t channel is not in the
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FIG. 10. FIG. 11.

asymptotic region s3 ~ m2. The cross section diagram
in Fig. 11 has two successive photon splittings in the
t-channel, which leads to the appearance of one large
logarithm ln(s/m2). In addition, the amplitude of Fig. 11
has two Weizsacker-Williams logarithms, one for each
of the intermediate amplitude photons, since the square
of the block 3 is proportional to the product tit2 as t 1 ; t2

— 0. These logarithms, as already explained, are due
to very small scattering angles j <C m/s of the beam
particles. They vanish if the scattering angles are
$ is m/s . Thus, the total cross section for e+e~ pair
production is proportional to In3(s/m2) in the principal
logarithmic approximation. The general expression for
the total cross section, accurate to terms ~m2/s,

σί, = (28α2/27π)Γ0

2[ρ3—6.35ρ2 — 11.35ρ+ 100], ρ = In (s/mj). (53)

The las t two t e r m s in the square brackets are due
both to the d iagrams of Fig. 11 and to d iagrams in which
one of the outermost (upper or lower) b locks with pho-
tons in the intermediate state of the t-channel, together
with the e l e c t r o n block 3 (virtual Compton effect), i s
rep laced by c r o s s - s e c t i o n d iagrams in which one or
both amplitudes do not contain photons in the t-channel.
The contribution of the l a s t three t e r m s in the square
brackets of (53) ranges from 40 to 20% at e n e r g i e s s l / 2

from 1 to 1000 GeV.

The maximum value of the c r o s s sect ion (~ In3(s/m2))
i s obtained when the produced pair t r a v e l s in the d i rec-
t ion of the b e a m s with large v e l o c i t i e s and s m a l l re la t i ve
ang les . The production of such a pair i s v e r y difficult
to r e g i s t e r . In exper iments one usual ly r e g i s t e r s
charged p a i r s with high energy, travel ing at large
ang les re lat ive to the b e a m s and re lat ive to each
other'-29-1. The energy invariant s 3 of block 3 i s in th i s
c a s e large, s 3 ~ s, and the dependence on the m a s s m
drops out in this block. With such a k inemat ics, the
c r o s s sect ion no longer h a s power-law constancy, but
d e c r e a s e s l ike l / s 3 . The reg ions of integration with
r e s p e c t to the Weizsacker-Wi l l iams var iab les t x and t 2

(39) a r e transformed into

m · * t i « » . ~ « , (54)

and integration over t h e s e reg ions l eads a s before to
two large logar i thms ( ln^Ss/m 2 ) ) 1 1 4 0 ' 4 2 1 1 . The third e n -
e r g y logarithm i s transformed into ln(s/s 3 ) and b e c o m e s
of the o r d e r of unity. The condition (54) corresponds to
the following angle between the scat tered p a r t i c l e s

< *i < 1. (55)

A value ~10"31 cm2 was registered in Novosibirsk Ε2"3

for the cross section of pair production in the indicated
kinematics.

In addition to an electron pair, a muon pair can also
be produced. The cross section for the production of
this pair is given by (53), in which r 0 = e/me should be
substituted by ro = e/m^, where m^ is the muon mass.
The first two terms in the square brackets of (53),

which contain p 3 and p2, coincide with the case of elec-
tron-pair production. The last two terms, however, be-
come -290p + 2000 [ 4 0 ' 4 1 ] . Such large values of these
terms significantly alter the contribution of the first two
terms. At an energy s l / 2 ~ 10 GeV, the summary con-
tribution of the square brackets is one-fourth of the
contribution of the first two terms. At energies s l / z

~ 1 GeV, the muon-pair production cross section calcu-
lated from formula (53) is negative i i o 1 and this formula
cannot be used (the terms ~m2/s should cancel out this
negative quantity).

The electron-positron pair in Fig. 11 can be pro-
duced in the bound state, positronium. The cross section
for positronium production also contains three logar-
ithms, but the phase volume of block 3 is smaller by a
factor a3 than the phase volume of the free pair, since
the average relative momentum of the particles and of
the positronium is equal to p ^ g = ma, and consequently
ρ? /ρ3 ~ m3a3/m3 ~ a3. This cross section is of the
order of 10"33 cm2 at s l / z = 7 GeVC43].

All the listed processes described by Fig. 11 can be
accompanied by simultaneous emission of one or several
bremsstrahlung photons. The cross section with emis-
sion of one photon is obtained when a real photon is sub-
stituted in block 3 (the upper and lower electron lines)
in Fig. 11 and contains three (two) logarithms. The
cross section for pair production with emission of two
photons in opposite directions along the beams is deter-
mined by diagrams of the type of Fig. 11 with two pho-
tons substituted in the two outermost electron lines,
and contains only one logarithm.

The diagram of Fig. 11 can be generalized to the case
of production of two or more charged particle pairs
(Fig. 12) t 4 4 > 4 5 ] . The diagram for the production of two
pairs contains three blocks in the asymptotic regime
with photons in the t-channel, which yields two energy
logarithms. Together with the two Weizsacker-Williams
logarithms (for each pair of outermost photons), this
cross section thus contains In4(s/m2). At s = 7 GeV,
the total cross section for the production of two e+e"
pairs turns out to be of the order of 10'31 c m 2 [ 1 4 ) 4 S ] .

In the diagrams of the type of Fig. 12, each produced
pair gives rise to a small quantity of the order of
a2ln(s/m2). It is possible to sum the sequence in Fig. 12
with an arbitrary number of produced p a i r s [ 8 ' 9 ] . Since
each n-th term of the sequence is positive and has a
logarithmic growth of the power [a2ln(s/m2)]n t 1, the
sum has at fantastically high energies a power-law
growth with an exponent equal to (ll/32)a2.1-8'9-1

The mechanism of Fig. 11 can result in the produc-
tion of individual C-odd hadrons t 4 6 ] , resonances'14^ and
hadron groups E42 >48^. The cross section for the produc-
tion of individual hadrons or resonances contains three
logarithms, like the positronium production cross sec-

FIG. 12.
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tion, and is of the order of 10"33-10~34 cm2 at s l / 2

~ 7 GeV. The cross section for the production of the
group of hadrons is obtained by replacing the block 3 of
Fig. 11 with a hadron block, ff it is assumed that the
production of a group of hadrons by two photons (block 3)
has a constant cross section, then block 3 must be taken
in the asymptotic regime at s3 3> m2. A constant cross
section can be obtained by assuming that block 3 has a
unity-spin particle (vacuum pole) in the intermediate
state of the t-channel (at small t). In this case all the
blocks of Fig. 11 are in the asymptotic regime. Taking
into account two Weizsacker-Williams logarithms, we
find that the cross section for the production of a group
of hadrons, like the production cross section of two pairs
in Fig. 12, is proportional to In4(s/m2) (two of these
logarithms, which appear after integration with respect
to the energy variables (see (17)) contain the ratio of s
to the hadron masses). In the case of hadron production,
ro = «2/m| in (53) is replaced by α3/τα\. Since
a ~ mg/nijj approximately, the cross sections for the
production of two electron-positron pairs and a group of
hadrons turn out to be of the same order. Detailed esti-
mates'-18-1 for the total hadron-production cross section
yield σ ~ 10"32 cm2 at s l / 2 ~ 7 GeV.

4. PROCESSES WITH CROSS SECTIONS THAT
DECREASE WITH INCREASING ENERGY

a) Doubly logarithmic asymptotic expressions. We
have seen that all the large-angle scattering processes
have cross sections that decrease with increasing en-
ergy. Decreasing cross sections are possessed also by
small-angle scattering processes that have no photons
in intermediate states of the t-channel, and also proces-
ses of scattering through angles close to 180° (u ~ m2).

For all these processes, the radiative corrections
connected with the emission of both virtual and real
photons, which are small in the case of processes with
constant cross section, contain a maximum possible
number of logarithms of s. For each photon line, i.e.,
for each power of a, we obtain In2(s/m2). The parameter
of the perturbation-theory series becomes (a/7r)ln2(s/m2)
and is not small ((a/7r)ln2(s/m2) ~ 1 at s l / 2 ~ 10 GeV). It
thus becomes necessary to sum all perturbation-theory
terms containing this parameter, which are called
doubly logarithmic (DL) terms. At (a/j7)ln2(s/m2) ^ 1
and (aA)ln(s/m2) <C 1, summation of the sequence of DL
terms gives for the entire amplitude a correct asymp-
totic formula that holds true up to very high energies
((»/7r)ln(s/m2) ~ 1 at s l / 2 ~ 1O100 GeV). The radiative
correction, which contains singly-logarithmic terms,
can be taken into account by using perturbation theory.

An important feature of the DL approximation is that
any complicated Feynman diagram makes a DL contri-
bution only if any arbitrary internal block of this dia-
gram is in the asymptotic regime and contains a DL con-
tribution with respect to its external variables. If this
is not the case and some block is not contained in the
asymptotic expression or has no DL contribution, then
it contains a definite number of powers of the small
parameter a, which is not cancellable by the squares of
the large logarithms. It is therefore sufficient to seek
the simplest Feynman diagrams containing DL contribu-
tions. In particular, one can immediately discard all the
diagrams that include closed charged loops, since the
latter contain no DL contributions.

To find the DL Feynman diagrams, we divide all pho-

t o n s i n t o t w o g r o u p s , d e p e n d i n g o n t h e i r p o l a r i z a t i o n

w i t h r e s p e c t t o t h e i n i t i a l - p a r t i c l e m o m e n t a p i a n d p 2

m a k i n g up t h e l a r g e v a r i a b l e s ( 1 ) . W e r e s o l v e t h e

p o l a r i z a t i o n s of a l l t h e r e a l a n d v i r t u a l p h o t o n s i n t o

l o n g i t u d i n a l a n d t r a n s v e r s e p a r t s c 1 3 ' " ^ :

T h e p h o t o n s h a v i n g p a r a l l e l p o l a r i z a t i o n w i l l b e c a l l e d

" b r e m s s t r a h l u n g p h o t o n s " a n d d e s i g n a t e d b y d a s h e d

l i n e s ( F i g . 1 3 ) . It i s p r e c i s e l y t h e s e p h o t o n s w h i c h c o n -

t r i b u t e t o t h e a m p l i t u d e of t h e a c c o m p a n y i n g b r e m s s t r a h -

l u n g ( 4 9 ) . P h o t o n s w i t h p e r p e n d i c u l a r p o l a r i z a t i o n w i l l

b e c a l l e d " l a d d e r " p h o t o n s a n d d e n o t e d b y w a v y l i n e s

( s e e F i g . 1 3 ) .

T h e c o n v e n i e n c e of d i v i s i o n i n t o b r e m s s t r a h l u n g and

l a d d e r p h o t o n s l i e s i n t h e f a c t t h a t t h e s e t w o t y p e s o f

p h o t o n s g i v e D L c o n t r i b u t i o n s i n o p p o s i t e s i t u a t i o n s , in

t h a t a v i r t u a l o r r e a l b r e m s s t r a h l u n g p h o t o n m a k e s a

D L c o n t r i b u t i o n o n l y i f i t j o i n s c h a r g e d l i n e s o f t h e

a m p l i t u d e d i a g r a m o r c r o s s s e c t i o n s w i t h l a r g e m o m e n -

t u m t r a n s f e r . L a d d e r p h o t o n s , t o t h e c o n t r a r y , m a k e a

D L c o n t r i b u t i o n o n l y i f t h e y j o i n c h a r g e d l i n e s w i t h

s m a l l m o m e n t u m t r a n s f e r .

L e t u s c o n s i d e r , f o r e x a m p l e , d i a g r a m s of t w o - p a r t i -

c l e p r o c e s s e s ( F i g . 13) , u n d e r t h e c o n d i t i o n t h a t ( s e e (1) )

s^> m2, ί < s , u ~ s. (57)

It i s e a s y t o s e e t h a t u n d e r c o n d i t i o n (57), only one of

t h e d i a g r a m s 13a a n d 13b, in w h i c h o n e photon j o i n s

e l e c t r o n l i n e s wi th s m a l l m o m e n t u m t r a n s f e r t, s u r -

v i v e s , n a m e l y the d i a g r a m (a) w i th the l a d d e r p h o t o n .

Indeed, in the c.m.s., for example, the parallel compon-
ents of the bremsstrahlung-photon polarization γjj can
be expressed in the form

Vo = (Pi + P2)/«1/2. Ϊ3 = ( p f - Ρ Ϊ ) / « 1 / 2 · (58)

T h e c h a r g e d s p i n o r e n d s o f t h e d i a g r a m s of F i g . 1 3

c o r r e s p o n d t o t h e D i r a c b i s p i n o r s Up ( 9 ) . T a k i n g t h e

D i r a c e q u a t i o n p u = m u _ i n t o a c c o u n t , w e f ind t h a t

d i a g r a m 1 3 b w i t h t h e b r e m s s t r a h l u n g p h o t o n i s o f t h e

o r d e r m 2 / s r e l a t i v e t o t h e d i a g r a m 1 3 a w i t h t h e l a d d e r

photon, which contains the polarizations γ^ (yxand γ2

in the c.m.s.)1 1 '.

Principal among the diagrams 13c—13f will be dia-
grams (c) and (d), in which the bremsstrahlung photons
join lines with large momentum transfer. Transferring
the momenta p x and P2 in the spinor numerators of these
diagrams towards the corresponding free ends, we ob-
tain from the commutation of pi and P2 with γ^ the value
4pip2 = 2s for diagrams 13c and 13d, and a value on the
order of the correction m2 for the diagrams 13e and 13f.
Thus, in the presence of a large momentum transfer,
the emission of a bremsstrahlung photon is always fav-
ored rather than that of a ladder photon. In the diagrams
13g and 13h, the bremsstrahlung photon makes a smaller
contribution than the ladder photon, for the same reason

Pi\

'Ρε

FIG. 13.
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as in diagrams 13a and 13b. In diagrams 13g with two
parallel ladder photons, the DL contribution is the con-
sequence of cancellation of one spinor denominator by
two spinor numerators [ 3 ' "-1.

Summarizing the foregoing, we can state that all the
DL diagrams take the form of ladder diagrams with
ladder photons as the rungs, in which bremsstrahlung
photons are inserted in arbitrary manner in such a way
that the latter join charged lines with large momentum
transfer (diagram 13i).

b) Poisson distribution of bremsstrahlung. In the
diagrams containing bremsstrahlung photons (Fig. 13c,
d, i) it is convenient to choose as the integration varia-
bles the bremsstrahlung-photon momenta k rather than
the variables q (Fig. 14). For a real bremsstrahlung
photon it is necessary to replace the bremsstrahlung-
photon propagator by 6(k2 - λ2). The photon mass λ has
been introduced to eliminate the infrared divergence.
The square of the logarithm in the bremsstrahlung is
seen directly from formula (49). At large t ~ s, the
integration of the latter factor over the angles yields
ln(t/m2). The second logarithm stems from the integra-
tion with respect to άω.

It is convenient to calculate the integral (47) over the
phase volume in terms of the invariant variables (12):

fl, 2p[k = φ + 2m2a.

(59)

(60)

Eliminating 6(1^ - λ2) (10) by integrating with respect
to d2kx (14) and separating only the DL contribution, we
obtain for (47)

a = (α/π) j^ia)"1 dta j (ίβ)"> άφ = (α/π) ^ <2ξ j dr\ (61)

under the condition

t > <α

or

where

roaa,

ρ > ξ > η — ρ,

ρ > η > \ - ρ, , + η - ρ = ζ > - ί , .

s), η = In (ίβ/m2), p = ln(

(62)

(63)

Calculation of the integral (61) within the l i m i t s (62)
i s b e s t c a r r i e d out g r a p h i c a l l y t l 4 > 1 9 ] ( s e e Fig. 14). In
t e r m s of the logarithmic var iab les, the integral (61) i s
equal to the a r e a of the c i r c u m s c r i b e d figure, o r p L
+ (p 2 /2) . This contribution i s produced if the e m i s s i o n
of bremsstrah lung photons i s not l imi ted experimental ly;
it co inc ides with the contribution of the v irtual b r e m s -
strahlung photons 1 2 ' . The D L contribution of the b r e m s -
strahlung photon van ishes at lower momentum transfer

between the electron lines with momenta Pi and pi
(t ~ m2).

1) As seen from Fig. 14, the DL contribution stems
both from large - k x » m2 (ζ > 0) and from small -k*x

<C m2(£ < 0). The contribution from the small k x is
connected with the zero photon mass and vanishes at
λ2 ~ m2 (L = 0). In spite of so close a connection with
the infrared divergences, the DL contribution from small
k x of the bremsstrahlung photons is contained not only in
diagrams with infrared divergence (see, e.g., Fig. 13i).
However, the summary DL contribution of all diagrams
has the classical property of Poisson distribution, just
as the contribution of the infrared photons^5 0 '5 1 3, namely,
the DL contribution connected with small -k 2 <C m2 of
real and virtual photons is separated in the form of a
Poisson factor for arbitrary processes, including proc-
esses with participation of hadrons accompanied by large
momentum transfer between two charged particles:

don = da"·' (an/ni) e-a, (64)

a = (α/π) pL. (65)

where a n /n! i s the contribution of n rea l photons and
e~a i s the contribution of the v irtual photons. The
probabil ity of e m i s s i o n of a bremsstrah lung photon a

^ 2

with m2 is equal to the area of the circumscribed
0

^ q
figure to the left of the line ζ = 0 on Fig. 14; da ' 0 ' is
the cross section of the main process and contains no
DL contribution from virtual bremsstrahlung photons
with - k x 4C m2; da(C> contains, generally speaking, a
contribution from bremsstrahlung photons with - k x

> m 2 .

It is seen directly from (64) that as λ — 0 the cross
section with production of a finite number of photons
with k x <C m2 vanishes, and consequently such processes
cannot be registered. If an infinite number of brems-
strahlung photons with —kx -C m2 is emitted, the Poisson
factor becomes equal to unity and the cross section co-
incides with d a 0 . We shall assume below that all the
processes are accompanied by emission of an infinite
number of bremsstrahlung photons bounded by the con-
dition —kx <SC m2 (f < 0), and investigate only the con-
tribution of bremsstrahlung photons13' with -k2

x

3> m2(£ > 0), which do not depend on the photon mass λ.

In the case when the investigated real bremsstrahlung
photons with small - k x <C m2 are experimentally limi-
ted by additional conditions, the cross section of the
process must be additionally multiplied by an exponen-
tial whose argument is equal to the difference between
the contributions of the real and virtual bremsstrahlung
photons. If the experimental limitations are specified,
this argument can easily be obtained from Fig. 14.
Particular cases of such a situation will be considered
below. We now proceed to consider concrete processes
containing DL contributions.

2) Bremsstrahlung in large-angle scattering, when
the direction of travel of the charges changes radically,
is doubly logarithmic. In this case there is a large mo-
mentum transfer between all the charged lines, and there
are no ladder-photon contributions. Bremsstrahlung
photons, on the other hand, contribute when any pair of
charged lines is joined. Thus, at large energies and
scattering angles (when s ~ |t | ~ |u| ^> m2) the depen-
dence on the electron mass m drops out, and the brems-
strahlung photons can be regarded as classical (infra-
red) and exerting no influence on the main process, if
the condition ω « s or pik, p2k < s i s satisfied (in
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place of the condition ω < m, pjk, p2k <C m z at finite
energies). Since all the logarithms come from precisely
these regions (the regions pjk ~ s and kj_ ~ s produce
no logarithm), the entire DL contribution of the b r e m s -
strahlung comes from class ical photons [ 1 6 ~ 1 8 ] . Classical
bremsstrahlung photons a re radiated independently of
one another and of the main process . The sum of their
contribution is determined by the Poisson factor (64),
where d a 1 0 ' does not contain a contribution of b r e m s -
strahlung photons and describes the c r o s s section of the
main process in the Born approximation 1 4 ' . The quantity
a in (64) is equal to the total a r e a of the circumscribed
figure in Fig. 14, multiplied by the number r of the
charged lines of the p r o c e s s :

a = r (α/2π) (ρ2 + 2pL), L = -In (A2/m2), ρ = In (s/m*); (66)

r = 1 for the p r o c e s s e s e V — 2y, 3y and r = 2 for e V
— e+e" and e+e" •— μ+μ .15)

If the emission of rea l photons is not registered ex-
perimentally, then the sum over η in (64) gives unity and
the c r o s s section coincides with da < 0 ) . In the case when
an infinite number of rea l photons with —k^ <C m 2 is
emitted and emission of η photons with -k*_ > m 2 i s
registered, it is necessary to subtract from a (66) the
contribution of the photons with —k^ <C m 2 ; the c r o s s
section of such a process is described by formula (64)
with the quantity a determined by formula (66) at L = 0.

In most experiments, however, one fixes the e m i s -
sion of the photons with ω > w m i n · An elastic event
i s assumed to be an event in the absence of photon
emission with ω > w m i n . to this case it is necessary
to subtract from a (66) the contribution of photons with
ω < ω ^η, which can easily be obtained with the aid of
Fig. 14. At ω ^ ^lajn we have

ω = k0 = ρ 1 0 β — />20α = (s*/s/2) (β — α) ^ <amin < s1/2,

or ξ < (p/2) +1, η < (p/2) +1,1= l n ( 2 w m i n / m ) < p/2.
As a result we get

A=a—α ω<-ω = r (α/2π) (ρ2—2lo). (67)
min * '

Thus, the c r o s s s e c t i o n of the p r o c e s s in which a
fixed number η of photons with ω 2: w m j n i s emitted
is given by formula (64) in which a is replaced by Δ (67)
(L is replaced by — V). Since we have discarded the
single-logarithm t e r m s , expression (67) is valid under
the condition (p/2) -I > 1. At w m i n ~ s l / 2 /2, there i s
no DL contribution of the bremsstrahlung.

We note that the same formula is also valid for a
fixed energy e lost by the electron to radiation. It i s
mere ly necessary to replace <^m^n by e. However, no
measurements of the final-electron energies have a s yet
been made in colliding-beam experiments.

Another way of limiting rea l bremsstrahlung is to
impose limitations on the noncollinearity angle of the
elastic process . The expression (67) for Δ can in this
case likewise be easily obtained with the aid of the dia-
gram of Fig. 14. The DL contribution of the b r e m s s t r a h -
lung is significant only if the noncollinearity angle is
small, 1 2> Δ^ ^ m / s 1 2 . In modern colliding beams we
have AJ ~ 1°, and then the DL contribution of the
bremsstrahlung photons is almost entirely cancelled
and becomes comparable with the singly-logarithmic
contribution1-29-1.

c) Multiphoton annihilation. 1) We now consider the
p r o c e s s of multiquantum annihilation of an e+e~ pair'-5 3-'.

This process is described by a diagram of the type
shown in Fig. 15 at t = 0 ( p x = p i , p 2 = p2) with replace-
ment of all the propagators of both the bremsstrahlung
and the ladder photon lines joining two electron lines by
δ functions (10) with positive energy. In the presence of
ladder photons, the dL contribution of the b r e m s s t r a h -
lung photons with —k^ 3> m 2 depends on the ladder var-
iables at the points of emission and absorption of the
bremsstrahlung photon. If the emission and absorption
points a r e fixed, however, the bremsstrahlung photons
a r e emitted independently of one another and have a
Poisson distribution^ 4- 1. When calculating the total
c r o s s section for the annihilation into an arbi t rary num-
b e r of photons, i.e., in the absence of limitations on the
bremsstrahlung photons, the contributions of the rea l and
virtual bremsstrahlung photons cancel each other, just
as in the case of (64). In diagram language this is ex-
pressed in the fact that at fixed photon emission and ab-
sorption points each group of virtual photons joining one
and the same charged line corresponds to a group of
rea l photons joining different charged lines, with each
photon making a contribution of opposite sign.

As a result, the contribution of the bremsstrahlung
photons cancels out and the total c r o s s section of multi-
quantum annihilation i s determined only by the sequence
of the ladder diagrams of Fig. 15 for the c ross section.

To calculate the contribution of the ladder diagrams
of Fig. 15, we use the Sudakov variables and the ready-
made expression (21) for the phase volume. The two
amplitudes forming the ladder of Fig. 15 depend only on
the electron propagators (q^ + m)/(qf - m 2), the square of
which at large tj

O> i, = 9f» m\ (68)

i s proportional to l/t^.

The spinor structure of the numerators of the ladder
can easily be obtained under the condition (68). Let us
examine the first diagram of the ladder type in Fig. 13g,
corresponding to annihilation into two ladder photons
and into an arb i t rary number of bremsstrahlung photons.

Under condition (68), the spin s tructure of the numer-
ators can be expressed in the form

y-Lqyl- .-y-• Qy-^ , q = Υμ?μ· ^69^

In (69) , t h e D i r a c s p i n o r s Up. h a v e b e e n o m i t t e d , a n d t h e

c e n t e r d o t s e p a r a t e s t h e n u m e r a t o r s o f t w o s p i n o r l i n e s .

T h e p a r a l l e l c o m p o n e n t o f t h e v e c t o r q, w h i c h i s e q u a l

t o pi/3 — p 2 a , y i e l d s a f t e r c o m m u t a t i o n w i t h y ^ a n d

a p p l i c a t i o n o f t h e D i r a c e q u a t i o n PjUp. = mUp. , a s m a l l

quantity of the order of α, β < 1 (16) (which is equiva-
lent to the loss of two logarithms). The remaining p e r -
pendicular components of the vector q should be taken
with equal projections in both electron lines (69), in
order that the resultant squares of the components q |

ν/\Λ)<(Λ/ν

-Pi

F I G . 15.
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can cancel out one spinor denominator. Averaging over
the angle φ in the perpendicular plane and using the
equality

9? = ϊ ί <=os2 φ = q\ = q\ sin2 φ = q\/2,

w e obtain the following e x p r e s s i o n for the numerator
(69):

(70)

(71)

where all the indices of the γ matrices run through only
two values, 1 and 2, corresponding to the perpendicular
plane in the c.m.s. Thus, we see that the spinor struc-
ture of the square in Fig. 13g leads to the spinor struc-
ture of the simplest pole diagram. By adding one more
rung to Fig. 13g and performing similar transformations
with the numerator, we obtain

(72)ϊ μ ,

e t c . If, f u r t h e r m o r e , w e t a k e ( 1 8 ) a n d ( 6 8 ) i n t o a c c o u n t ,

w e c a n e x p r e s s t h e p r o d u c t o f t h e l a d d e r a m p l i t u d e s

contained in the diagram for the cross section with η
rungs in Fig. 15 in the form

n-l (73)

Substituting (73) and (17) in (5), using the recurrence
relations (21), (22), and (23), and integrating over all the
invariants, we find that the contribution to the cross sec-
tion of the ladder diagram with η rungs σ η

= (2s)"1 |Mn |2drn satisfies the recurrence relation

ση = ση (s, m2), (74)

cn (Sp, t) = («β)"1 (a/2n) j (i')"1 df j ώβ'σ»., («β', ('), (75)

ί'/ίβ' > t/iP, sp » sP', f > m2, (76)

σ, (sp, i) = π/οδ («ρ - t), (77)

(78)

where f 0 in (78) i s the contribution of the pole diagram
13a, and the bar o v e r f0, i .e., f0 in (78) and (77), denotes
averaging o v e r the initial po lar izat ions of the e l e c t r o n s
and pos i t rons .

The expression for σι in (77) is the imaginary p a r t of
the pole diagram of Fig. 13a, and vanishes at s/3 = s and
t = m2, meaning that an electron-positron pair cannot be
converted into a rea l photon. The total c r o s s section is
equal to the sum of the t e r m s (74) from η = 2 to infinity.
However, by virtue of the vanishing of (77) for rea l p a r -
ticles, the summation can be carr ied out from η = 1.
Summing both sides of (75) over η from η = 1, we obtain

?„,,= 2 on = o(s^m2), (79)

σ (sp, t) = σ, (sp, t) + (sp)-> (α/2π) j (t')"1 df j dsQ'o («β', <'), (80)

where σχ i s defined in (77) and the conditions (76) a r e
satisfied. To solve Eq. (80) i t i s convenient to change
over to the logarithmic variables

ρ = In (s/m1), ξ = In (</sp) + ρ, η = ρ - In «β, (81)

( ί β = ί , < = !»·)->. (S = η =·0). (82)

Multiplying (80) by sfr recognizing that

ίβδ (ί - ίβ) = δ (ρ - ξ),

and introducing the new function

φα («β, ί) = π/", (d/δρ) Φ (ρ-ξ) Α (ρ; ξ, η), (83)

we obtain for Α(ρ; ξ, η) an equation of the type

; ξ,, η,). (84)Α (ρ; ξ, η) = 1 + (ο/2π) j <2ξ,
5 η

Solution of this equation 1 1 3 3 1 6 ) yields

A (p, 0, 0) = (21 χ) Ι, (χ), χ1 = (2α/π) p*, (85)

where Ii(x) i s a B e s s e l function of imaginary argument.

With the aid of (85), (83), and (79) we obtain

σ»,, = «"Τοπ (d/dp) (21 x) /, (x). (8 6)

after calculating the derivative in (86) we obtain ult i-
mate ly C S 3 ]

σ», = σ' ν [(8/z2)/2 (x)\; ζ 2 = (2α/π) ρ2, ρ = In (s/m2), (87)

σ?ν

) = (2πα2/5)ρ, (8/x2) /2 (*) =
= 1 + (z8/12) + ... + [xmln\ (2 4-re)! 22""1],

(88)

where ak0> i s the c r o s s sect ion of two-quantum annihila-
t ion in the Born approximation. The n-th power of the
expansion (88) h a s the meaning of the c r o s s s e c t i o n for
annihilation into n + 2 ladder quanta, accompanied by
e m i s s i o n of an arbitrary number of bremsstrahlung pho-
tons.

With logarithmic accuracy, w e can wri te for the func-
t ion that depends only on In s,

Im F (p) = (2J)-1 IF (In (s/m2)) - F (In (-s/m2))] = π (d/dp) F (p), (89)

Therefore

= s"1 Im F (p, 0), F (p, 0) = /„ (21 x) /, (x). (90)

Equation (90) is the optical-theorem expression, where
the amplitude F( p, 0) is the amplitude of the ladder dia-
gram of Fig. 15, in which all δ functions of the photon
lines are replaced by ordinary photon propagators.
Since trM)/ (86) is the total cross section for annihilation
into an arbitrary number of photons without allowance
for the production of electron-positron pairs at the end,
it follows that F(p, 0) does not coincide with the elastic-
scattering amplitude. The main contribution to the elas-
tic-scattering amplitude is made by the diagrams of
Figs. 9—12, which contain photons in the intermediate
state of the t-channel, and are s times larger than the
amplitude (90), which has no photons in the t-channel.
The imaginary parts of the diagrams in Figs. 9—12 in
the t-channel correspond to cross sections with electron-
positron pairs in the final state.

If we add the cross sections with different numbers
of bremsstrahlung and ladder photons at a fixed total
number of photons, we can obtain the cross section for
annihilation into a specified number of unpolarized pho-
tons. The Born approximation of two-quantum annihila-
tion coincides in the DL approximation with the cross
section for annihilation into two ladder quanta, accom-
panied by emission of an infinite number of bremsstrah-
lung photons. The cross section of the true two-quantum
annihilation with emission of two ladder photons and
without emission of bremsstrahlung photons with -k^
> m2 is described by the s-channel imaginary part of
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t h e d i a g r a m of F i g . 13g, wi th a n a r b i t r a r y n u m b e r of
v i r t u a l b r e m s s t r a h l u n g p h o t o n s jo in ing p a r t s of o n e and
thi» c a m o AiA/»fi»r»n iin<a i7) a n d t a k e s t h e form^ 3 - 1

(91)

t h e s a m e e l e c t r o n l i n e

σ 2 ν = a2

0

v> exp ( — α ρ 2 / 2 π ) f exp (<M/2/2JI) dy,

ο

σ 2γ — 2na2p/s

W e p r e s e n t a l s o t h e c r o s s s e c t i o n f o r a n n i h i l a t i o n

i n t o t h r e e u n p o l a r i z e d p h o t o n s , o n e o f w h i c h c a n b e a

b r e m s s t r a h l u n g p h o t o n w i t h - k \ 3 > m 2 [ 5 3 : l :

oi°T

)=-Vp». (92)

Formula (91), as well as (92), is valid in the case
when an infinite number of bremsstrahlung photons with
-kj_ < m2 is emitted18'.

All the DL terms in the considered formula come
from the region of large ti satisfying the inequality (68).
Such values of t^ correspond to the following photon
scattering angles j:

1 > ft > m/sll\ (93)

If we fix the photon-scattering angles near the upper or
lower limit of (93), then the DL terms vanish and the
cross section for multiquantum annihilation coincides
in the DL approximation with the two-quantum cross
section. Two-quantum annihilation at large angles
•» ~ π/2 has been measured thus far in colliding
b e a m s . i m

Thus, to measure the DL c r o s s section of multiquan-
tum annihilation it is absolutely necessary to cover the
angle range (93). This r a i s e s serious difficulties in
colliding-beam measurements, owing to the need for
distinguishing between multiquantum annihilation (MA)
and processes of the double bremsstrahlung (DB) type
(see Fig. 10), which contain an electron-positron pair in
the final s tate. These processes have nondecreasing
c r o s s sections and occur mainly at scattering angles
# ~ m / s l / 2 (2). The total c ros s section (50) exceeds (87)
at energies s l / 2 ~ 1 GeV (Table I ) . Without loss to the
DL contribution in MA, it is possible to cut out small
angles & ~ m / s and measure the production of two
photons at angles (93). This will resul t in the loss of one
power in the DB cross section. For estimating purposes
it can be assumed that the DB c r o s s section at photon
emission angles (93) is of the order of the total c r o s s
section multiplied by m/s l / 2 . ]h this case, a s seen from
Table I, the DB c r o s s section begins to exceed the MA

c r o s s section at energies s1/2 3 GeV. At high ener-

TABLE

°tot' c m l

In (s/mi)
e+<n>, omin ~ m
e*e-2y, comln ~ ,„

c+e-μ+μ-
-?
3T
μ*μ-
e*e~, da;dQ, s~

if Ι κ I— 1 l — 1 " 1

e^e~, μ + μ", do/du,
u ~ ,,,2

I. C r o s s s e c t i o n s o f e l e c t r o m a g n e t i c p r o c e s s e s

1

15.2
10-25
10-27

3-10-2'

3-10-3»
ΙΟ"3»
10-31
10"31

10-37

,1/

3

17.4
10-25
10-27

3-10-2'
10-32

3-10-31
10-31
10-32
10-32

10-3»

2 = 2E, GeV

10

2J.0
2-10"25

ΙΟ"2 '

6-10-"
7-10-32
4-10-32
2-10-32

10-33
10-33

io-«

iOO

24.4
2-10-21·

10-27

ΙΟ"2 1

10-31
r>- io-3i
3-10-34

10-35
10-35

1(1-15

1000

29.0
3-10-25

ίο-"
2-10-2»
2-10'31

6-10-3»
6· i<r3"
10-37
10-3'
10-19

Formula for
cross section

(46)
(50)
(53)
(53)

(88), (91)
(92)
(94)
(41)
(96)

,1/2

g i e s , i t i s n e c e s s a r y t o m e a s u r e t h e s c a t t e r e d e l e c t r o n -

p o s i t r o n p a i r a t a n g l e s # ~ m / s t o d i s t i n g u i s h t h e M A

f r o m t h e D B .

I t i s a l s o p o s s i b l e t o i n c r e a s e , a t a f i x e d e n e r g y , t h e

n u m b e r o f r e g i s t e r e d p h o t o n s . T h e n t h e b r e m s s t r a h l u n g

c r o s s s e c t i o n w i l l d e c r e a s e w i t h e a c h n e w p h o t o n b y a

f a c t o r a, a n d i n t h e M A e a c h a w i l l b e c a n c e l l e d b y a

d o u b l e l o g a r i t h m . A t a n y s p e c i f i e d e n e r g y i t i s p o s s i b l e

t o o b t a i n t h e n u m b e r o f r e g i s t e r e d p h o t o n s a t w h i c h t h e

M A c r o s s s e c t i o n e x c e e d s t h e D B c r o s s s e c t i o n .

A n o t h e r m e t h o d o f s e p a r a t i n g t h e M A a n d D B c r o s s

s e c t i o n s i s t o m e a s u r e t h e p h o t o n p o l a r i z a t i o n s . T h e

c r o s s s e c t i o n f o r M A w i t h e m i s s i o n o f t w o p h o t o n s

w h o s e p o l a r i z a t i o n i s p e r p e n d i c u l a r t o t h e ( P i , k ) p l a n e

a n d a n i n d e t e r m i n a t e n u m b e r o f o t h e r p h o t o n s i s e q u a l /

to one-quarter of expression (88). At energies ω <C s 1

of the photons making the principal contribution to (50),
the bremsstrahlung photons in the DB have a polariza-
tion (49) which is longitudinal relative to the momenta p i
and p 2 .

In addition to the DB, production of several photons
with nondecreasing c ross section can also occur via the
mechanism of the diagram of Fig. 11, with production of
π 0 mesons and subsequent decay of the lat ter into pho-
tons. However, the c ross section of this process be-
comes equal to the MA c r o s s section at energies s
<: 100 GeV. Apparently the only way of distinguishing
these processes from the process of Fig. 11 i s to regis-
t e r the final electrons and positrons down to exceedingly
small angles, corresponding to t ~ mVs, which, as we
have seen, make the main contribution to the c r o s s sec-
tion of the process in Fig. I I . 1 9 '

2) In analogy with multiquantum annihilation, we can
obtain the DL asymptotic c r o s s sections for annihilation
into a muon pair with emission of an arbi t rary number
of photons. Diagrams for the c r o s s section of this proc-
e s s a re of the same form as in Fig. 13i, with a truncated
muon loop with δ functions inserted in one of the ladder
o r bremsstrahlung photon (joining different electron
lines) in place of the muon propagators. Each of the dia-
g r a m s 13i must be summed over all possible positions
of this loop. The contribution of the bremsstrahlung
photons emitted not only by the electrons but also by the
muons is cancelled out, just as in the case of multipho-
ton annihilation, as a result of the emission of an infinite
number of rea l bremsstrahlung quanta. We present only
the expression for this process with production of a
muon pair only by a ladder quantum 1- 5 5 ' 5 6- 1 2 0 ' :

σέμ, =ov = a^cho;, χ •= (2α/π) In (slml) In (slml),

<$i = (4πα2/3) ί/s, da^l/dt--- (ina'/s') (t2-',-u2)/2.

F o r m u l a (94) i s v a l i d a t l e a s t a c c u r a t e t o t e r m s of
o r d e r [ a I n 2 ( m 2 / m | ) ] 2 . T h e f i r s t B o r n t e r m i n t h e e x -
p a n s i o n of (94) i n a c o r r e s p o n d s t o t h e a b s e n c e of l a d d e r
p h o t o n s , t h e s e c o n d to t h e e m i s s i o n of o n e s u c h photon,
t h e t h i r d t o e m i s s i o n of two l a d d e r p h o t o n s , e t c . Since
t h e d i f f e r e n t i a l c r o s s s e c t i o n of m e s i c a n n i h i l a t i o n in
t h e B o r n a p p r o x i m a t i o n i s d a ^ ~ dt/s 2 (94), t h e p r i n c i -
p a l c o n t r i b u t i o n t o t h e f i r s t t e r m of (94) i s m a d e by
u ~ t ~ s, i . e . , m u o n e m i s s i o n a n g l e s $ ~ 1. At t h e
s a m e t i m e , t h e p r i n c i p a l c o n t r i b u t i o n to t h e second,
t h i r d , e t c . t e r m s of (94) wi th the a d d i t i o n a l p h o t o n s i s
made by the muon-pair energies β μ satisfying the in-
equality

Such values of t u correspond to muon emission angles
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of the type (93). If we measure muon emission angles
1* ~ 1, then all the DL terms vanish (s^ ~ s) and the
muon annihilation cross section coincides with the Born
term σ£,°>. ff we measure the angle region (93), then the

contribution of the Born diagram turns out to be neglig-
ibly small and only the second, third, etc. terms remain
in (94). We can also obtain the cross section for e+e"
annihilation into two or more muon pairs, accompanied
by emission of an arbitrary number of photonsC5^

panie
5 ^

Related to the muon annihilation process are proces-
ses of annihilation into hadrons. Formula (94) can also
be applied to these processes, if the Born cross section
for annihilation into hadrons is proportional to 1/s, in
analogy with σ^0'. If the Born cross section decreases
more rapidly than l/s, as is the case in the production
of ρ, ω, and ψ resonances, then the main contribution is
determined by diagrams with emission of one or several
magnetic photons, in which the hadron loop can be in the
resonant region. The principal terms of such diagrams
were calculated in I-57-1, and the corresponding cross
section for p°-meson production is of the order of
10"34 cm2.

The process of annihilation into a μ+μ~ pair also has
a serious competitor, namely the production of a μ+μ~
pair with the aid of the mechanism of Fig. 11. This last
process, however, is strongly suppressed because of
the presence of the muon mass in the denominator of r?>
The total cross sections of both processes begin to coin-
cide at energies s l / 2 ~ 3 GeV (Table II). Therefore at
energies s ~ 3—5 GeV the cross section of the proc-
esses of annihilation into a μ+μ" pair in the DL region
1 > # ^> m/s l / 2 exceeds the μ+μ" production process.
Simultaneous emission of photons in the annihilation
process greatly extends the energy region in which this
process predominates. In the region of very high ener-
gies, apparently the only method of separating this
process, just as in the cross section of multiquantum
annihilation, is registration of the polarization of the
accompanying γ quanta or the scattered electrons and
positrons.

d) Scattering through small angles and angles close
to 180°. In addition to the cross sections for multiphoton
and muon annihilation, ladder photons contribute also to
processes of scattering through very small angles
4 ~ m/s l / 2 (t ~ m2) and angles close to 180° (u ~ m2).

1) The process e*e" — μ*μ~—annihilation forward,
i.e., through small angles, is described by a sum of
ladder diagrams for the amplitude, of the type of Fig.
15, with the right-hand electron line replaced by a muon
line. By small angles is meant here a region in which
the definite charge in the reaction does not change its
direction: μ" (μ*) moves in the direction of e" (e+). Just
as in the MA case, there is no DL contribution of the
bremsstrahlung in this process, this being a direct

TABLE II. Energy dependence of the doubly logarithmic asympto-
tic cross sections

0/0 ο

(2α/π) l.H(«/m5)

( 2 α / π ) " 2 In m i a

°2μ «ViSi
ito^/do^., u ~ m2

1

1

1.03
1.09
1.19
0.25

i»/2 = 2E,GeV

1.4

0.19

10

2

1.41
1.15
1.48
0.092

100

3

1.68
1.20
1.86
0.040

1000

4

1.98
1.38
2.44
0.0058

Cross section
formula

(87)
(94)
(96)

physical consequence of the rectilinear motion of the
charges in the process of the reaction. The amplitude
of the process for zero angle is given by (90). The cross
section, which is valid at t ^ m2, i s 1 3 1

n b
1-3-1

<2σ«»

ζ2 = (2α/π) In2 (s/2),

= (2jta2/s2) dt.
( 9 5 )

The cross section (95) differs from the Born cross sec-
tion only at t ~ m^ (rf ~ ηιμ/!3 ι /ζ). fa this case dt ~ m^
and da ( 0 ) ~ 47r</m2

1/s2, i.e., it decreases quadratically
with increasing s.

2) Electron-positron backward scattering (u ~ m2)
contains a DL contribution from ladder diagrams with
electron lines directed to one side of Fig. 13i. fa this
case, the two colliding charges reverse their directions
of motion. This causes powerful bremsstrahlung, mani-
fest in the fact that the DL contribution is made by dia-
grams with bremsstrahlung photons that are inserted
in arbitrary fashion in the ladder sequence of Fig. 13i,
and the contributions of photons joining one and the
same or different electron lines in Fig. 13i are additive.
These bremsstrahlung photons are emitted, as before,
independently of one another, and the result is an ex-
ponential form that depends on the variables of the main
process (in this case—the ladder).

Summation of all the diagrams leads to an equation
of the type (84) with an exponential kernel, the solution
of which leads to a cross section in the form t 3 3

a = da«»J*(zu), ζ1 = (2α/π) In2 (s/u), u > ml. ( 9 6 )

> = (4ita2/s2) du,
+ioo
f e"

2 + (35/192) z 4 + . . . , z < l ;

where D-ih(l) i s a parabol ic-cyl inder function.

The function J(x) differs f rom one at l a r g e x u ~ 1,
i.e., at scatter ing a n g l e s tr - ^ < m/s . Formula (96)
is also valid for the process e'e* — μ"μ+—backward
annihilation at u > m^. At very high energies, x u

= (2a/7r)ln2(s/u) > 1, the amplitude (98) takes the form
of rapidly damped oscillations.

As already mentioned, in order for the DL contribu-
tion to (95) and (96) to be significant, it is necessary to
consider very small forward or backward scattering
angles, at which - t ~ m2 or - u ~ m2 (dt ~ du ~ m2).
The Born term in (95) and (96) is equal to 47ra2m2/s2. At
s l / 2 ~ 1 GeV, this quantity is of the order of 10~37 cm2

(see Tables I and II). With the VEPP-2' installation
having transmissions on the order of 1032 sec' 1 cm"2,
processes with such a cross section will occur approxi-
mately once every 3—4 days. The DL contribution in-
creases somewhat the cross section of the process (95)
and decreases the cross section of the process (96) (see
Table II). At s l / 2 ~ 1 GeV, the cross section for e V
backward scattering is one-quarter of the Born term
and occurs in the VEPP-2 apparatus approximately
once every two weeks instead of once every 3—4 days.

3) Formula (96), like all the preceding formulas, is
valid in the case of emission of an arbitrary number of
bremsstrahlung photons with -kj_ <C m2. This corre-
sponds to a scattered-particle noncollinearity angle A#
= k x/s l / 2 ^ m /s l / 2. When bremsstrahlung photons with
large —k̂  ^S> m2 are emitted, there is no cancellation of
the contributions of the virtual and real bremsstrahlung
photons (just as in the total cross section of multiphoton
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annihilation). The reason is that the photons with large
kĵ  are not classical, and the kinematics of the process
changes when they are emitted. We put

In the case of emission of bremsstrahlung photons with
^ 2 £large m2 and ux £ u2, it is possible to obtain the

differential cross section of the process with emission
of a given number η of bremsstrahlung photons, integra-
ted over all u2 at fixed ux ~ m2. This cross section is in
general rather complicated in form '-49-1. In the case of
not too large energies ((o:A)ln2(l/m2 <iC 1) and very high
energies ((a/;r)ln2(s/m2) 3> 1), this cross section takes
the form [ 4 9 : l

( 9 8 )

Summation of formula (98) over n, with allowance for all
(not only the higher-order) logarithms, yields in the case
of ultrahigh energies'-49-1

da/dui = 0.78 da"»/dut, χ2 = (2α/π) In2 (s/u,) > 1. (99)

The rat io of the c r o s s sect ion of the e lectron-pos i t ron
backward scatter ing with e m i s s i o n of bremsstrah lung
photons (98) to the Born t e r m d e c r e a s e s with increas ing
energy (like l/ln(s/uj)), in contrast to the p r o c e s s with-
out photon e m i s s i o n (96) and (97), for which th is rat io
d e c r e a s e s exponential ly. Summation o v e r the number of
bremsstrahlung photons η causes the indicated ratio to
assume the constant value (99).

The author is grateful to V. N. Baier, L F. Ginzburg,
V. N. Gribov, L. N. Lipatov, E. A. Kuraev, V. G. Serbo,
G. V. Frolov, and V. A. Khoze for a number of valuable
remarks and advice.

"All the formulas that follow are valid accurate to terms of order m^s.
2'The terms "parallel" and "series" are analogs of the terms used in

electrical circuits.
3)For simplicity we have shown in Fig. 4 an amplitude Mn consisting of

the simplest pole diagrams that depend on the momentum transfers
in the t-channel [2 2 > 2 3], but our analysis can also be used for an arbi-
trary form of Mn.

4'The possible appearance of only logarithmically large quantities after
integration over the phase volume is a specific feature of electrody-
namic perturbation theory, as will be verfied below.

5*This statement is valid only within the framework of perturbation
theory, when all the amplitudes are described by Born terms, i.e., by
Feynman diagrams with the smallest number of virtual particles. At
very high energies, when the effective parameters of perturbation
theory are large, a In2 (s/m2) » 1 or a ln(s/m2) » 1, the sum-
mation of the perturbation-theory series can change the behavior of
the amplitude appreciably (see Chap. 4).

6'ln the c.m.s. of the t-channel we have ρ ι — Pi = 0, s = — (t/2)( 1 —
cos !>), whence cos ν = (2s/t) + 1 * 2s/t, s » t .

7>In the case of a constant asymptotic amplitude produced upon
exchange of two spinor particles ( ot + o2 = 1), the contribution from
small t' ~ t ~ m2.

8 'For example, the summation of diagrams of type 5b with all possible
permutations of the photon lines leads in the logarithmic approxima-
tion to an additional multiplication of the first diagram with one
photon in the t-channel by the Coulomb phase exp (i a In t/λ2) (λ is
the photon mass), which contains only In t and makes no contribu-
tion to the cross section.

"The Feynman diagram obtained for the elastic-scattering amplitude
from Fig. 9b by replacing the crossed lines by ordinary propagators
has a three-photon splitting and is proportional to s. This is connected
with the presence in this diagram of other imaginary parts correspond-
ing to the processes without photon emission. They are radiative cor-
rections to the elastic scattering of an electron by a positron and
electron.

""Doubling (49) in accordance with the emission of the electron and
positron, expanding the integral with respect to d ω in terms of t',
and multiplying the result by the Rutherford cross section (37) we
arrive at formula (44) [3S ] .

"'if the diagrams of Fig. 13 constitute an internal part of a complica-
ted Feynman diagram with virtual electron line momenta q[, q2

and q',, qj (12), satisfying conditions of the type of (57) as before,
then diagram 13b is of the order of a « 1 or β « 1 relative to
the diagram 13a, which is equivalent only to logarithmic smallness.

1 2 )For the virtual bremsstrahlung photon in Fig. 13c or 13d, a DL con-
tribution is made in different regions of the variables (59) also by
the poles of the electron propagators, but the summary contribution
coincides with the contribution of one photon pole within the
limits of (62).

13)Obviously, photons with - k | ~ m2 (5 = 0) do not lead to a DL con-
tribution (see Fig. 14).

l 4 ) At energie s 1 ' 2 above 550 GeV, the Born term of the processes
e+ e "-* e+ e "and e+ e "-» neutral leptons at s — It I —• I u I will be
determined no longer by electromagnetic but by weak interaction
the amplitudes of which increase with increasing energy like (Gs)2.
G ~ m ^ X 10~5. [S2]

l s 'For the process ee -» μμ it is necessary to replace a by the sum of two
terms with m = m e and m = m μ.

l 6 ) In [3 ] we solved the equation obtained from (84) by substituting
ρ-ξ = η' and ρ-η = £'.

17)The cross section for two quantum annihilation with production of
one ladder photon and one bremsstrahlung photon is determined by
the imaginary part of the diagram 13g. In view of the independence
of the emission (the Poisson character) of the bremsstrahlung photons
in the DL approximation, this cross section is proportional to the
imaginary part of the pole diagram 13a (77), and is equal to zero.

1 8 'ln the case of cutoff of the soft photons, under the condition
c j m i n ~ m ( 6 7 ) , the value of σ<ο

γ'(92) is doubled [ l s ] , as can be
verified easily with the aid of Fig. 14.

"'When ordinary accelerators with immobile target are used, the regis-
tration of the final positrons and their separation from the electrons
of the initial beam are possible at all angles.

2O'The muon pairs produced by the ladder photon have only perpen-
dicular momenta of the initial particles of the muon-current compo-
nent j 1 = u f I + 7 1 u It is a difficult matter to separate them
from muon pairs produced by a bremsstrahlung photon with parallel
component of the current \μ. However, the contribution of the pairs
produced by a bremsstrahlung photon arises when not fewer than
two real ladder photons are emitted simultaneously (in forth-order
perturbation theory), and is numerically small. It should increase the
cross section (94), somewhat since there is no interference between
μ-pair production by bremsstrahlung and ladder photons.
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