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The article reviews the theory of a number of phenomena occurring in a plasma situated
in a strong high-frequency field. The analysis is based on a relatively simply hydrody-
namic collisionless plasma model. Principal attention is paid to the stability of the plasma
in the strong high-frequency field. A single dispersion equation is used to consider differ-
ent modifications of parametric instabilities (decay instabilities, parametric resonance,
transparent-plasma instability of the stimulated scattering type). Also discussed are a
number of problems in the equilibrium and dynamics of a plasma in a strong high-fre-
quency field, particularly nonlinear penetration and reflection of electromagnetic waves
from a plasma, stationary nonlinear waves, and spreading and contraction of a plasma
layer under the influence of the pressure of a high-frequency field.
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I. INTRODUCTION hf velocity of the electrons) with slowly varying density.
. , , . These equations are particular cases of the equations

It is necessary in a number of experimental investi- , ... ,, .. , . . .. . , .
, , „ . . , , i. j , MU , i. describing the motion of a transparent liquid when ac-

g a t i o n s of a fully ion ized p l a s m a t o d e a l with e l e c t r o - , . 7~, . . . ,Γ., , . . , , κ ι , . ,
B , . . , . , . . . ± . Μ , c o u n t i s t a k e n o f t h e p r e s s u r e o f t h e h f f i e l d L 1 , w h i c h

m a g n e t i c f i e l d s w h o s e p r e s s u r e e x c e e d s t h e t h e r m a l . . . , , , . . . . . , t , ,

& , , , . . , _ . , , , , , , , . a r e u s u a l l y f o r m u l a t e d w i t h i n t h e f r a m e w o r k o f m a c r o - ^

p r e s s u r e o f t h e p a r t i c l e s . F i e l d s t h a t a r e s o s t r o n g ( i n . , , , , , r 3 _ 5 1 > , -

f . . * 1 X i U u ^ c . . . , s c o p i c e l e c t r o d y n a m i c s ( s e e , f o r e x a m p l e / J ) a n d a r e

t h i s s e n s e ) c a n r e s u l t , o n t h e o n e h a n d , f r o m t h e d e v e l - · , . . . ,

. ' . . . . . . . . , , ' u s e d i n o n e f o r m o r a n o t h e r i n m a n y p a p e r s o n n o n -

o p m e n t of i n s t a b i l i t i e s , and c a n b e p r o d u c e d on t h e o t h e r .. ,. r6-8i „ · u • ι
u j u ι. ι • tu c ι l i n e a r o p t i c s 1 '. H o w e v e r , i n a s m u c h a s in a p l a s m a ,
hand by e x t e r n a l s o u r c e s , a s i s t h e c a s e , for e x a m p l e , ,., ,. . , ,. , .' . , ,. . , ,, '.
. ,, ,. L. .. . , , , ' ,. τη ; . ' un l ike a l iquid o r a s o l i d , i t i s r e l a t i v e l y e a s y t o a t t a i n
i n the r a d i a t i v e m e t h o d of p l a s m a a c c e l e r a t i o n 1 J . It i s , , .. , , ^ ., , ' , ., . . . ,J. , ,

, . ,, , . . . . ., , , , ., hf-field p r e s s u r e s t h a t e x c e e d t h e i n t e r n a l ( t h e r m a l )
obvious t h a t i n t h i s c a s e the c h a r a c t e r of the p r o c e s s e s , . ., . , . ;, ,
. . . . .. , , , ,. ,. r .. p r e s s u r e , and s i n c e t h e e n s u i n g c h a n g e s i n t h e p l a s m a
t h a t o c c u r i n t h e p l a s m a d e p e n d s e s s e n t i a l l y on t h e j - i . t r n t u u c u f

, . ,. ," , , , . . . . , ,, d e n s i t y a r e far f r o m s m a l l , t h e n u m b e r of p r o b l e m s
e l e c t r o m a g n e t i c f ie lds , which in t u r n v a r y when t h e * b e c o n s i d e r e d i t h ' t h e a i d o f t h e s e e q u a t i o n s
s t a t e of t h e p l a s m a i s a l t e r e d . T h e t r a d i t i o n a l a p p r o a c h b e c o m e s m u c h ^ I n ^ ^ ^ , i t i s p o s s i b l e to
to t h e d e s c r i p t i o n of a p l a s m a , i n which t h e inf luence of g o l v e h y d r o d y n a m i c p r o b l e m s i n which t h e hf p r e s s u r e
t h e f ie lds on i t s s t a t e i s a s s u m e d t o b e weak and i s i g Q f d e c i s i v e s i m c a n c e f o r t h e p T O c e s s e s o c c u r r i n g
t a k e n into a c c o u n t by p e r t u r b a t i o n t h e o r y , t u r n s out to i n t h e l a a n d t h e t h e r m a l m o t i o n o f t h e t i c l e s

b e i n a p p l i c a b l e i n t h i s c a s e . It b e c o m e s n e c e s s a r y to c a n ^ e n e K i e c t e d

c o n s i d e r s i m u l t a n e o u s l y t h e c h a n g e of the s t a t e of t h e
p l a s m a and of t h e e l e c t r o m a g n e t i c f ields i n t h e p l a s m a . T h e p u r p o s e of the p r e s e n t r e v i e w i s t o a c q u a i n t t h e

r e a d e r with the e q u a t i o n s of p l a s m a h y d r o d y n a m i c s i n
In m a n y c a s e s t h e r e i s one i m p o r t a n t c i r c u m s t a n c e a s t r o n g hf field and with a s o l u t i o n obta ined with t h e

t h a t p e r m i t s a p p r e c i a b l e s i m p l i f i c a t i o n of t h e a n a l y s i s a i d o f t h e s e e q u a t i o n s for a n u m b e r of d i f ferent p r o b -
of t h e p r o c e s s e s o c c u r r i n g in a p l a s m a s i t u a t e d i n l e m S ; m o s t o f w h i c h w e r e c o n s i d e r e d i n t h e D i v i s i o n of
s t r o n g e l e c t r o m a g n e t i c f i e l d s . N a m e l y , a t a suff ic ient ly t h e T h e o r y o f P l a s m a P h e n o m e n a of t h e P h y s i c s I n s t i -
high f r e q u e n c y of v a r i a t i o n of t h e f ie lds one c a n a s s u m e t u t e o f t h e U S S R A c a d e m y of S c i e n c e s ,
t h a t i t i s only e l e c t r o n s t h a t e x e c u t e r a p i d l y - a l t e r n a t i n g
m o t i o n , and t h a t t h i s o c c u r s m a i n l y u n d e r t h e in f luence A c c o r d i n g l y , t h e r e v i e w i s d iv ided in to four p a r t s ,
of t h e e l e c t r i c f ie ld. T h e m o t i o n of the i o n s , on the I n C h a P · Π w e o b t a i n t h e f u n d a m e n t a l e q u a t i o n s of t h e
o t h e r hand, and c o n s e q u e n t l y a l s o the c h a n g e of t h e h y d r o d y n a m i c s of a p l a s m a i n a n hf field and c o n s i d e r

p l a s m a d e n s i t y , i s af fected only by t h e t i m e - a v e r a g e d a n u m b e r o i c a s e s w h e n t h e s e « ^ « 0 η 8 c a n b e s i m p l -
p r e s s u r e of t h i s h i g h - f r e q u e n c y (hf) f ie ld. T h e r e f o r e f i e d · T h e P r o p e r t i e s of s m a l l p e r t u r b a t i o n s i n a p l a s m a
t h e a m p l i t u d e of t h e f ield, which d e p e n d s on t h e p l a s m a t h r o u g h which a s t r o n g e l e c t r o m a g n e t i c wave of s p e c i -
d e n s i t y , v a r i e s m u c h m o r e s lowly t h a n i t s p h a s e . f i e d a m p l i t u d e (pump wave) p a s s e s , and i n p a r t i c u l a r

t h e i n v e s t i g a t i o n of p a r a m e t r i c r e s o n a n c e and d e c a y
T h i s s u b d i v i s i o n of m o t i o n s in to r a p i d l y - a l t e r n a t i n g i n s t a b i l i t y , a r e t h e s u b j e c t s of C h a p . I l l of t h e r e v i e w ,

and s low m a k e s it p o s s i b l e t o f o r m u l a t e a r e l a t i v e l y C h a p t e r IV d e a l s with c e r t a i n p r o b l e m s of t h e e q u i l i -
s i m p l e s y s t e m of s e l f - c o n s i s t e n t e q u a t i o n s for t h e hy- b r i u m o f a p i a s m a i n a n hf f ie ld. F i n a l l y , q u e s t i o n s of

d r o d y n a m i c s of a c o l l i s i o n l e s s p l a s m a in a n hf f ie ld. If p l a s m a d y n a m i c s in hf f ie lds a r e d i s c u s s e d i n C h a p . V.
t h e s l o w m o t i o n i s q u a s i n e u t r a l , t h i s s y s t e m r e d u c e s t o
t h r e e e q u a t i o n s : t h e cont inui ty e q u a t i o n , t h e e q u a t i o n of II. F U N D A M E N T A L E Q U A T I O N S
m o t i o n for a p l a s m a with a l l o w a n c e for t h e h i g h - f r e - In t h i s p a r t we f o r m u l a t e t h e f u n d a m e n t a l e q u a t i o n s

q u e n c y p r e s s u r e , and t h e e q u a t i o n for a field (or for the of h y d r o d y n a m i c t h e o r y of a p l a s m a in a s t r o n g hf field
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(Sec. 1) and consider two cases when these equations
can be greatly simplified (Sees. 2 and 3).

A procedure analogous to that used by us to derive
the equations was considered in [ 9 ] in connection with an
investigation of the drift instability of a plasma in a
microwave discharge, and also in [ 1 0 1 in a determination
of the stationary fields and currents in a plasma situ-
ated in an hf field. Another method of deriving the equa-
tions, based on considering the motion of individual
particles, was discussed in [ 1 1 ] .

It should be noted that in deriving the equations of
the hydrodynamics of a plasma in an hf field we assume
that all the quantities that characterize the state of the
plasma and of the fields vary little in space over a dis-
tance on the order of the average displacement of the
electrons in the hf field. This condition imposes con-
straints, on the one hand, on the characteristic scales
of the variation of all the quantities and, on the other
hand, on the amplitude and frequency of the hf fields,
and is satisfied better the higher the frequency of the
hf field.

1. Equations of hydrodynamics of a plasma in a high-
frequency field. As a point of departure for the deriva-
tion of the equations of the hydrodynamics of a plasma
in an hf electromagnetic field, we shall use a system of
hydrodynamic equations for electrons and ions and the
system of Maxwell's equations for the fields:

dvjdt + (ve V) ve = (elm) Ε + (elmc) [veB] - (TJm) V In n., (1.1)*

dnjdt + div (neve) = 0, (1.2)

dvtldt + (Vl V) V j = (eilm,) Ε + (β-Μ,ή [ViBl — (Τ,Inn) V In nt, (1.3)

dnjdt + div («(Vi) = 0, (1.4)

rot Ε = -e-'dB/di, (1.5)

rot Β = c^dEldt + (inlc) (enev, + β(Β,ν,), (1.6)

w h e r e v P i , I U \, and T» ; a r e r e s p e c t i v e l y t h e v e l o c i -
t i e s , c o n c e n t r a t i o n s , and t e m p e r a t u r e s of t h e e l e c t r o n s
a n d i o n s , e^ a n d m^ a r e t h e c h a r g e and m a s s of t h e
ions, e and m are the charge and mass of the elec-
t rons , and Ε and Β a r e the vectors of the electric and
magnetic field intensit ies.

We assume that the electric and magnetic fields, and
also the concentration and velocity of the electrons, in
addition to having a slow dependence on the t ime, con-
tain also a rapid dependence, so that these quantities
can be represented in the form

E={E) + E, B = (B) + 8, ve = (ve) + v«, ns — (ne) + ne, (1.7)

where the angle brackets denote averaging over the
t i m e :

i+'o
o(i) = (l/t0) \ a(t')dt'. (1.8)

ί

T h e t i m e i n t e r v a l t 0 i s l a r g e i n c o m p a r i s o n w i t h t h e

character is t ic time τ of the fast variations and is small
in comparison with the character is t ic t ime t s l of var i-
ation of the slow variables.

We neglect the rapid motion of the ions, and confine
ourselves for simplicity to a plasma in which there a re
no slow (in particular, constant) magnetic fields (( Β )
= Ο)1 '. In addition, assuming that the collision frequency
is smal l in comparison with t g j , we assume that the
temperature of the plasma components is constant. Al-
lowance for collisions calls in the general case for
considering the variation of the temperatures of the
plasma components. The nonlinear effects due to heat-

ing of the plasma in an hf field have been considered in
a number of papers (e.g., [ 1 3 * 2 0 ] ).

We substitute relations (1.7) in (1.2), average the
latter with respect to t ime, and subtract the resul ts
from the initial equation. If the slow and rapid quanti-
ties vary sufficiently smoothly in space (we denote the
character is t ic distances over which these quantities
vary by L and λ, respectively), so that the following
inequalities a r e satisfied

λ/τ, L/τ » | (ve) |, |v e | , (1.9)

we obta in t h e cont inui ty e q u a t i o n for t h e r a p i d l y v a r y i n g

e l e c t r o n c o n c e n t r a t i o n :

d/Γ,,/δί + div ((ne) ve) = 0. (1.10)

It follows f r o m (1.10) t h a t if i n e q u a l i t y (1.9) i s s a t i s -
fied, t h e r a p i d l y a l t e r n a t i n g c h a n g e s of t h e e l e c t r o n c o n -
c e n t r a t i o n a r e a l w a y s s m a l l in c o m p a r i s o n with t h e
slowly v a r y i n g c o n c e n t r a t i o n ( | n e | « ( n e ) ) . U s i n g t h i s
fact , and a l s o a s s u m i n g t h a t d u r i n g t h e t i m e of v a r i a t i o n
of t h e r a p i d q u a n t i t i e s t h e t h e r m a l m o t i o n c a u s e s t h e
e l e c t r o n t o b e d i s p l a c e d t h r o u g h a d i s t a n c e t h a t i s s m a l l
in comparison with L or λ,

λ/τ, Llx > (ΤΜ)1'* = vTe, (1.9')

we obtain from (1.1), (1.5) and (1.6), with the aid of (1.7),
a system of equations for the rapidly alternating quanti-
t i e s :

dve/dt = (elm)E, (1.11)

rotE = — c^dB/dt, (1.12)

From (1.11) and (1.12) it follows that

B=-(cm/e)rotve. (1.14)

Eliminating the fields in (1.13) with the aid of (1.11) and
(1.14), we obtain for the electron oscillation velocity

rot rot ve + c'2 d*yjdt*- + (ine%/mc2) (ne) \e = 0. (1.15)

T h u s , by d e t e r m i n i n g v e f r o m (1.15) we c a n obta in
t h e r e m a i n i n g r a p i d l y o s c i l l a t i n g q u a n t i t i e s with the a id
of (1.10), (1.11), and (1.14). T h e only s low quant i ty c o n -
t a i n e d i n t h e s e e q u a t i o n s i s t h e e l e c t r o n c o n c e n t r a t i o n .

T h e e q u a t i o n s for t h e s low q u a n t i t i e s a r e o b t a i n e d by
a v e r a g i n g t h e i n i t i a l s y s t e m of e q u a t i o n s (1.1)—(1,6)
with r e s p e c t to t i m e . When c o n d i t i o n (1.9) i s s a t i s f i e d ,
t h e s e e q u a t i o n s t a k e t h e f o r m

d (ve)!dt + ((ve> V) (ve> = - (elm) V(p - (1/2) V (vl) - (TJm) V In (ne),
(1.16)

d (ne)ldt + div ((n«) <vP> + <neV«» = 0, (1.17)

(d\tldt) + (v; V) V i = —(eilm,) V φ — (Τ,Ιηΐι) V In n,, (1.18)

dnjdt + div (n^t) = 0, (1.19)

Λφ = -4π (e (ne) + e,n,), (1.20) ι

w h e r e < Ε ) = -Vcp, Vj = ( Vj), and ni Ξ { n i ) . T h u s , t h e
inf luence of t h e r a p i d l y v a r y i n g m o t i o n on t h e s low
m o t i o n i s t a k e n into a c c o u n t i n t e r m s of t h e hf p r e s s u r e
i n (1.16) and i n t e r m s of the d r a g flow i n (1.17). T h e
s y s t e m (1.16)—(1.20) i s g iven i n [ 2 1 ] , but with t h e d r a g
flow n e g l e c t e d and u n d e r t h e a s s u m p t i o n t h a t t h e hf
field i s e x t e r n a l and s p e c i f i e d , and a l s o with a l l o w a n c e
for t h e hf m o t i o n of t h e i o n s . The q u e s t i o n of t h e d r a g -
ging of t h e e l e c t r o n s by t h e hf wave h a s b e e n d i s c u s s e d
i n m a n y p a p e r s ( e . g . , [ 2 2 ~ 2 5 ] ) .

We a r e i n t e r e s t e d i n p l a s m a m o t i o n s i n which t h e

q u a s i n e u t r a l i t y c o n d i t i o n
e ("e> + «i«i = 0
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i s satisfied and there is no slow current in the plasma:

e ((»r! (V,,) + ( Β Λ ) ) + CittiV; = 0.

U n d e r t h e s e c o n d i t i o n s , t h e s y s t e m ( 1 . 1 6 ) — ( 1 . 2 0 )

reduces to equations for the average electron concen-
tration ( n e > = Ν and for the ion velocity vj = V,
which form, jointly with Eq. (1.15) for the rapidly-
varying electron velocity v e

 Ξ v, a closed system of
hydrodynamic equations of the plasma in an hf field:

dNIdt + div (JVV) = 0 , (1.21)
d\ldt + (V V) V = — (zm/2mt) V (v") — (Tim,) V In N, (1.22)

rot rot ν + c"> d*v/dt* + (ineVmc2) Nv = 0, (1.23)

where Τ = z T e + Tj and z] e | is the charge of the ion.

It is frequently more expedient to use a system of
equations containing not the rapidly varying electron
velocity v, but the intensity Ε Ξ Ε of the hf electric
field. To this end it i s necessary to establish, with the
aid of (1.11), the connection between ν and E. In the
general case this connection is integral with respect to
t i m e . However, if the hf field is almost monochromatic:

E(r, t) = (1/2) [Eo (r, i) «-"*>'+ EJ(r, t)«"""'].

and if Ε = 0 when t = 0, then we obtain from (1.22) and
(1.23), using (1.11) and neglecting t e r m s of order r / t s i ,

rot rot Eo—K/ca) Eo + (fate*/me*) WE0 = 0. (1.25)

The average specific pressure of the hf field for
particles

IE = — (ze"'/AmmiU>l) V|E 0 | 2 (1.26)

which is contained in the right-hand side of (1.24), can
be derived on the one hand from the more general re la-
tions of iz\ and on the other hand by considering the
motion of individual particles in an inhomogeneous hf
field [ 2 6 ], as was done first i n t 2 7 ] . Therefore the force of
the hf pressure in the plasma is frequently called the
"Mil ler f o r c e . " A detailed bibliography on this ques-
tion, and also a generalization of (1.26) to include a
magnetized plasma, can be found in the review [ 2 8 ] (see
a l s o [ 2 9 ] ) , and also in later p a p e r s [ 3 0 > 3 1 ] . The question of
the hf pressure forces in a plasma with allowance for
particle collisions is discussed in1-11'32*3*3. The pressure
forces of low-frequency ion waves in a plasma layer
have been considered ΐ η [ 3 5 > 3 β ] .

2. High-frequency pressure forces in a transparent
plasma. In this section we consider forces acting on a
plasma placed in an external hf field whose frequency
is much higher than the Langmuir frequency of the
electrons

Under these conditions, the field in the plasma differs
little from the field in vacuum, and can be determined
by perturbation theory

where the zeroth-order field EoO) is simply the external
field (i.e., the field in the absence of plasma), which,
in accord with (1.25), satisfies the relation

[A + K/c')]E«> = 0, divEJ» = O. (2.2)

The correction E " ' to the external field is due to the
presence of plasma and, as follows from (1.25), can be
found from the equation

[Δ + K/c2)] E'o" = (4neVm) [(Τ'ΛΈ»' + (1/ω·,) V (VN• E»>)]. (2.3)

In this case, according to (1.26), the hf-field pressure
forces acting on the plasma are proportional, accurate
to t e r m s linear in Eo 1 ' , to the quantity

V | E'°> [2 + 2V | EJ» (2.4)

If t h e f i r s t t e r m i n (2.4) i s m u c h l a r g e r t h a n t h e
s e c o n d , t h e n t h e h f - p r e s s u r e f o r c e s a c t i n g on t h e
p l a s m a a r e d e t e r m i n e d by t h e e x t e r n a l f i e l d s . The
p l a s m a c a n t h e n b e c o n s i d e r e d by u s i n g E q s . (1.21) and
(1.24), w h e r e t h e hf field i s a s s u m e d g i v e n .

In m a n y c a s e s , h o w e v e r , t h e f i r s t t e r m of (2.4) i s
m u c h s m a l l e r t h a n t h e s e c o n d (for e x a m p l e , if E (

0

0 ) i s
t h e field of a p l a n e w a v e , t h e n t h e f i r s t t e r m i s e q u a l t o
z e r o ) , and to find t h e f o r c e s a c t i n g on t h e p l a s m a , i t i s
n e c e s s a r y to know t h e c o r r e c t i o n t o t h e e x t e r n a l f ie ld.
T h e g e n e r a l s o l u t i o n of E q . (2.3) h a s b e e n t h o r o u g h l y
i n v e s t i g a t e d ( s e e , for e x a m p l e , t h e b o o k [ 3 7 ] ) , and c a n
b e u s e d r e a d i l y t o e x p r e s s t h e h f - p r e s s u r e f o r c e s a c t i n g
on t h e p l a s m a i n t e r m s of t h e p l a s m a d e n s i t y and by t h e
same token to reduce the system of hydrodynamic equa-
tions to equations for Ν and V. Such forces a re calcu-
lated for a number of cases i n [ 3 8 ) 3 9 ] .

Let us consider the next example, which we shall
need subsequently1^0 1. Assume that a plane linearly-
polarized electromagnetic wave i s incident at an angle
φ on a plasma layer in which the density depends only
on one coordinate χ and on the time

K" = (K" c°s Φ. E'^sintp, 0)eik°"c+il">yy. (2.5)

From (2.2) we obtain the dispersion law for the e lectro-
magnetic waves in vacuum, ω 2 = k | c 2 , while Eq. (2.3)
determines Ei/> and E^1 '. If the plasma density is dif-
ferent from zero at L 2 > χ > L l f then the solution of
(2.3) should describe a plane wave propagating from
left to right if χ > Li, and, to the contrary, from right
to left if χ < L 2 . Using these conditions, we obtain the
expressions for the components of the vector ΕΌ11 with
the aid of formula (2.4)-the per unit force of the hf
p r e s s u r e :
. _ 2ziu* . „,,,, | 2

lE.X— _~ . H-a
χ

X [ Jj- cos2 φ ^L + -i- (cos 2φ)2 J Ν (z\ i) cos 2fe0I (x - x') dx']. (2.6)

If the plasma has no sharp boundary and the density
falls off continuously to zero a s χ — », then we can use
Li = °° as the lower limit in (2.6).

3. Geometric-optics approximation. An approximate
solution of (1.25) or (1.23) can also be obtained if the
wavelength of the electromagnetic wave is smal l in
comparison with the character is t ic distance over which
the plasma density varies (λ « L). In this case, the
geometric-optics approximation i s valid (see, for
example, t 4 1 - 4 2 ]).

We consider for simplicity the one-dimensional
case 2 1 . We assume that a linearly polarized wave propa-
gates along the Ox axis and that the electric-field in-
tensity vector is directed along the Oy axis; the plasma
density depends on χ and on the t i m e . We seek the
solution of (1.25) in the form

ω ο » | φ | , (3.1)

where E o and φ a r e rea l functions (amplitude and
phase). In accordance with the assumption made in Sec.
1 we have

EOv (x, t) = Ea (χ, ή eW.0,
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where the dot denotes differentiation with respect to
time. Substituting (3.1) in (1.25) and recognizing that
| N/N'|, | Eo/Ei| « c (the prime denotes differentiation
with respect to x), we obtain the following equations for
the determination of Eo and φ :

£;-<p'2£O + K/c2) £„ = (ineVmc1) NE0, (3.2)
Efr' = -M, (3.3)

where Μ is generally speaking, a function of the time.

Thus, to find the field amplitudes we are left with a
single equation that takes the form

Κ + K/ca) £„ - (M*IE\) - (4jte2/mc2) NE0 = 0. (3 A )

So far we have not used the condition under which the
geometric optics is valid, according to which the phase
φ of the wave changes in space much more rapidly than
the amplitude Eo. If this condition is taken into account,
then the first term of (3.4) should be discarded because
of its smallness3 '. As a result we get

El(x, <) = M/(ayc)[l-(4jte2IV(z, t)/ffw>!)ll/2· (3.5)

If the plasma contains a region in which the density
is constant or equal to zero, then the quantity Μ in (3.5)
can be expressed in terms of the field amplitude in this
region. Then the value of Μ is independent of the time
and, in particular, if the hf wave is incident on the
plasma from vacuum, we have

M = E'°nu>olc, (3.6)

where E(

0

0) is the amplitude of the incident wave.

Using expressions (3.5) and (3.6) we obtain from
(1.26)'"]

/*.« (zE™l32nN\mi) [(\-(NINc)Vm dN Idx, (3.7)

where Nc = mwo/4we2 is the critical density, i.e., the
density at which the Langmuir frequency of the elec-
trons is equal to the frequency of the hf field.

We note that in the geometric-optics approximation
the connection between the force of the hf pressure and
the density is local, in contrast to the transparent-
plasma case considered in the preceding section.
Furthermore, it follows from (3.7) that in the geometric-
optics approximation the force of the hf pressure, like
the force of thermal pressure, is always directed
towards the region where the plasma density decreases.

The geometric-optics approximation is suitable far
from turning points, i.e., at N/Nc < 1. If the plasma is
transparent and N/Nc « 1, then we obtain from (3.7)

/« = — (zE'°'*/32nm,Nl) dN/dx.

This expression also follows from formula (2.6) at
cos φ = 0 and in the limit as kgx — «.

I I I . SMALL PERTURBATIONS

The influence of strong electromagnetic fields be-
comes manifest, in particular, in an appreciable change
of the dispersion properties of the plasma. The hf field
may be the cause of plasma instability. To the con-
trary, there are conditions when the hf field stabilizes
the instabilities existing in the plasma without the hf
field. All these problems have recently been extensively
investigated and are still far from their solution. How-
ever, some questions concerning mainly the linear
theory of small perturbations of a plasma in an hf field
have by now been made sufficiently clear4 ).

T h e m o s t c o m p l e t e t h e o r y was deve loped for s m a l l

p e r t u r b a t i o n s of a p l a s m a t h a t i s h o m o g e n e o u s in t h e

g r o u n d s t a t e and i s s i t u a t e d i n a h o m o g e n e o u s hf field

( s e e t h e r e v i e w [ 5 5 ] ) . It w a s shown e v e n in the f i r s t p a p e r

of this group [ 5 6 ] that in a transparent plasma ω0 »
o>Le) the hf field significantly alters the dispersion laws
of the longitudinal perturbations5', and particularly the
dispersion law of the ion sound. (This result was later
confirmed experimentally[58].) The same paper dealt
with the stabilizing action of a hf field on the current
instability of a plasma.

Next, using a two-fluid hydrodynamic collisionless
plasma model as an example, an important result was
obtained in [ 4 5 ], namely that an instability sets in when
the hf field frequency approaches the plasma frequency
(the so-called "parametric resonance"). In this case,
both in [ 5 6 ] and in [ 4 5 ], unlike many succeeding investiga-
tions and the present review in particular (see the in-
equality (1.9)), it was not assumed that the amplitude of
the electron oscillations in the hf field is low in com-
parison with the perturbation wavelength.

The results of[45] were confirmed in laboratories'·591

(see also[6°~73]) as well as in numerical experiments [ 7 4"7 7 ],
and have been the subject of extensive discussions.
In [ 7 8 > 7 9 ) , using the perturbation theory for the Green's
function, which is valid in the approximation of weak
hf fields (the thermal energy of the electrons is large
in comparison with the energy of the hf oscillations),
an approximation that is the opposite of that considered
in [ 4 5 ] , the parametric-instability threshold connected
with the dissipative effects was obtained. These results
were subsequently discussed in a number of other
papers in which various methods were used[80~881. In
particular, it was shown in [ 8 1 ] that the results of[45]

correspond to plasma instability in fields much stronger
than the threshold value.

It should be noted that in weak hf fields, which have
practically no influence on the wave-dispersion laws in
the plasma, and at sufficiently small damping of these
waves, the parametric instability is closely related with
decay processes in nonlinear wave interaction. In these
processes, one wave (in this case it is the external
wave) breaks up into two other waves whose amplitudes
increase, and the plasma state is then unstable. This
instability was first considered in [ 8 8 ] and is called de-
cay instability (see alsot9 0"9 2 ').

In strong hf fields, to the contrary, a situation ob-
taining in [ 4 5 ] and in a number of other investigations,
the dispersion laws for small perturbations are them-
selves determined by the hf field, and the usual concept
of decay processes does not hold. In this case it is
customary to speak of a strong parametric coupling of
the perturbations in the plasma t 9 3 ].

In the cited papers [ 4 5 > 5 β ' 5 7 ' 7 8" 8 7 ] they considered elec-
trostatic (potential) perturbations of the fields. Under
definite conditions, however, it becomes important to
take the perturbations of the magnetic field into account,
and it is precisely this nonpotential character of the
perturbations which determines the plasma instability.
This question was considered in[94~98], and in many
cases it was important to take into account the finite
length of the pump wave[94>e9-104].

The theory of small perturbations is generalized to
include the case of a magnetized plasma situated in an
hf field inQ 1 0 5"" 5 ] for potential perturbations, and
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i n [ l l e 1 2 4 ] for nonpotential perturbations. I n [ l 2 5 > 1 2 6 ] they
consider parametric instability of surface waves. The
influence of relativistic effects when electrons move
in an hf field a r e discussed i n t l 2 7 ) 1 2 a l ,

A special group of papers is devoted to small oscil-
lations in an inhomogeneous plasma situated in an hf
field. On the one hand, the inhomogeneity of the plasma,
and also that of the hf field, cause special parametric
instabil i t ies 1 1 2 9 " 1 4 1 1 , and on the other hand it affects the
development of the instabilities known to exist in a
homogeneous plasma^ 1 4 2" 1 4 4 1 .

Besides hydrodynamic instabilities, a plasma situated
in an hf field can contain kinetic instabilities due to
radiation of waves by a definite group of part ic les . This
question is discussed in [ 1 4 5 ~ 1 4 8 ] and is outside the scope
of the hydrodynamic theory considered by u s .

The possibility of stabilizing a plasma with the aid
of hf fields, first indicated i n [ 5 6 ] , was subsequently d i s-
cussed in [ 1 4 9 ~ 1 6 0 ] (see also the review [ 1 6 1 ] ) .

It i s not our purpose to discuss in any detail all the
questions of the theory of smal l perturbations within the
framework of the model in question, and we shall con-
fine ourselves only to certain linear-theory problems
that can demonstrate the principal features of small
perturbations in a plasma situated in an hf field.

4. The dispersion equation. In this section we de-
rive the dispersion equation that describes the spectrum
of smal l perturbations in a homogeneous and unbounded
plasma through which a plane monochromatic wave with
specified amplitude (pump wave) passes . The unper-
turbed state of the plasma is characterized by a con-
stant concentration No and by an hf velocity of the
electron oscillations

v0 = vE COS (u>ot — kor), (4.1)

where the frequency ωο and the wave vector ko, as
follows from (1.23), a r e connected by the dispersion
relations (ω 2

 Q = 4πΝ οβ 2/ηι)

(4.2)
(4.3)ko||vE.

We note that the amplitude of the oscillations of the
electron velocity VE can be expressed in t e r m s of the
amplitude of the electric field in the pump wave with
the aid of the obvious relation VE = eEo/mu>o.

In the linear approximation, for small perturbations
of the plasma concentration jN and perturbations of
the hf electron velocity δν we obtain from (1.21)—(1.23)
the system of equations

d*SN/dt2 — (mlm,) & (νοδν>, (4.4)

(4.5)

where s 2 = T/mi .

Equations (4.4) and (4.5) describe field perturbations
that a re coupled parametrical ly via the pump wave
(more accurately, perturbations of the velocity of the
electron oscillations) and perturbations of the plasma
density. The general theory of parametrically coupled
perturbations of two scalar quantities with damping in
a homogeneous hf field has been constructed in C 9 3 ] . The
question of the connection between the low-frequency
and high-frequency waves in a plasma was also dis-
cussed i n 1 · 1 6 2 ' 1 6 4 1 .

To obtain the dispersion equation, we assume that

the concentration perturbations depend on the coordi-
nates and time like δΝ = δΝ 0 exp (-icot + ik - r ) . Then,
using expression (4.1), we obtain from (4.5) for the
perturbation of the electron oscillation velocity

6v = ( (4.6)

where
, 1 . 6ΛΓ0 r * ± , i * ± , j 1 . ( * ± , i * ± . j / * ± ) - e » 1
6V±,, = τ ω ^ Λ , -jf- | _ — ^ — ω*±ε± + ,*±c2_m2±e± J . ( 4 ^)

k-t = k ± k0, ω ± = ω ± ω0, ε± = ε (ω±), ε (ω) = 1 — (ω^/ω2).

It i s s e e n f r o m ( 4 . 6 ) t h a t t h e p e r t u r b a t i o n s o f t h e r a p i d l y
varying electron velocity depend significantly on the a c -
curacy which the resonance conditions k^-c2 = ω±€ or
e± = 0 a re satisfied.

Substituting (4.6) in (4.4) and averaging, we obtain a
dispersion equation that connects ω with the wave vec-
tor k:

ω*=k* is*+4-ωΐ, r ϋ ^ , ' ,

ti>ie_ + J

η

where u)2 ·̂ = 4ffe2zN0/mi is the Langmuir frequency of
the ions.

Dispersion equation (4.8), obtained in[99J by a kinetic
approach, determines the spectrum of coupled pertur-
bations of the density and the hf field in the plasma,
which are called electroacoustic waves in a number of
paperst"4'1041.

For perturbations with a wavelength that is small in
comparison with the pump wavelength (| k01 « | k | ),
and under the condition ωο » wLe> w e obtain from (4.8)
the dispersion relation

ω2 = k's* + (1/2) coL, {[(kvE)2/m;] - ([kyE]VkV)}. ( 4 . 9 )

In t h e l i m i t c — °° ( p o t e n t i a l p e r t u r b a t i o n s o f t h e hf
f i e l d ) , f o r m u l a ( 4 . 9 ) c o r r e s p o n d s t o t h e r e s u l t o f [ 5 6 ]

r e l a t i v e t o t h e s p e c t r u m of t h e l o w - f r e q u e n c y p o t e n t i a l
o s c i l l a t i o n s . W h e n t h e l a s t t e r m i s t a k e n i n t o a c c o u n t ,
f o r m u l a ( 4 . 9 ) c a n d e s c r i b e u n s t a b l e p e r t u r b a t i o n s ( s e e
( s e c . 6 b e l o w ) ; i t i s a n a l y z e d i n d e t a i l i n [ 8 5 ] .

F o r m u l a ( 4 . 9 ) c a n e a s i l y b e o b t a i n e d f r o m s i m p l e
p h y s i c a l r e a s o n i n g . L e t u s a n a l y z e t h e t i m e v a r i a t i o n
of a s m a l l p e r i o d i c q u a s i n e u t r a l d e n s i t y p e r t u r b a t i o n
δρ = δρο cos (kx - wt) in a plasma situated in a homo-
geneous hf field E o = E o s i n ωοί ( ω 0 » | ω |) (Fig. 1).

From the continuity equation and from the equation
of motion it follows that

(1/po) 92δρ/5ί2 = —dfldx, (4.10)

w h e r e f i s t h e f o r c e a c t i n g on a p l a s m a ion a s a r e s u l t
of t h e f o r c e s of t h e t h e r m a l p r e s s u r e and t h e hf p r e s -
s u r e .

T h e e x p r e s s i o n for t h e t h e r m a l - p r e s s u r e f o r c e i s
o b v i o u s :

U = —(1/po) d8p,/dx = {Tim,) k6p0 sin (kx - ωί)/ρ0. (4.11)

L e t u s e x a m i n e the f o r c e s c o n n e c t e d with p e r t u r b a -
t i o n s of t h e e l e c t r i c and m a g n e t i c f i e l d s . T h e c o m p o n -
ent Eg | | of t h e hf f ield, which i s d i r e c t e d a l o n g t h e Ox
a x i s , c a u s e s t h e s e p a r a t i o n of the c h a r g e and l e a d s t o
t h e a p p e a r a n c e of a n i n h o m o g e n e o u s r a p i d l y a l t e r n a t i n g
e l e c t r i c f ield, which, a s fol lows f r o m t h e c o n d i t i o n for
t h e cont inui ty of t h e n o r m a l c o m p o n e n t of t h e i n d u c t i o n
vector, is equal at ω 0 » wLe t o

sin ωο<. (4.12)« £ = -(δε/ε) £οιι = (4jiA/mmi(oo»)
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FIG. 1. Perturbations pro-
duced in high-frequency electric
(6E) and magnetic (δΗ) fields by
periodic perturbation of the
plasma density.

The perturbed field, which i s s t ronger wherever the
density perturbations are larger , leads to the appear-
ance of an additional p r e s s u r e force, which equals , in
accordance with formula (1.26),

—ωί), (4.13)

and the direction of the action of the force (4.13) coin-
cides with the direction of the force (4.11).

The component Εοχ of the hf field, directed along
the Oy axis, does not cause separation of the charge,
but leads to the appearance of perturbations of the
rapidly alternating current of the e lectrons, and conse-
quently to the appearance of a perturbed hf magnetic
field directed along the Oz axis :

—d6H/dx = (4n/c) 8/J. = — (4ne/c) 6p (eE^l/mm^) sin ωοί.

This magnetic field, acting on the e l e c t r o n s that execute
hf o s c i l l a t i o n s , produces an average force fH that tends
to i n c r e a s e the in i t ia l density perturbations (in analogy
to the attraction between parallel-f lowing currents ) :

- ' «"; '•"« ^ o ^ - ^ s i n (kx-ωί). (4 14)
2c2 raioj m kmt p0

 v ' ν*·*-"*/-

W i t h t h e a i d o f ( 4 . 1 1 ) a n d ( 4 . 1 3 ) , ( 4 . 1 4 ) , a n d ( 4 . 1 0 ) w e

o b t a i n f o r m u l a ( 4 . 9 ) .

I t i s o b v i o u s t h a t t h e t e r m s i n f o r m u l a ( 4 . 8 ) c o n t a i n -

i n g t h e l o n g i t u d i n a l d i e l e c t r i c c o n s t a n t s e ± i n t h e i r

d e n o m i n a t o r s c o r r e s p o n d t o a l l o w a n c e f o r t h e p r e s s u r e

f o r c e s o f t h e h f e l e c t r o s t a t i c f i e l d p r o d u c e d a s a r e s u l t

o f t h e s e p a r a t i o n o f t h e c h a r g e s i n t h e p u m p - w a v e f i e l d .

On the other hand, the t e r m s whose denominators con-
tain the expressions ω±£± - k^c 2 take into account the
forces due to the perturbation of the hf eddy currents in
the plasma. It is important to emphasize here that the
expressions in the denominators of (4.8) contain ω, and
that when the dispersion equation is solved this depend-
ence is particularly important in resonances, when the
denominators a r e smal l .

5. Weak coupling approximation. Decay instabil it ies.
In this section we establish a connection between the
developed theory and the usual theory of nonlinear wave
interaction. We note that in the derivation of the usual
theory of nonlinear wave interaction one uses a proce-
dure wherein the currents in the plasma are expanded in
powers of the f ield c i e 5 ] . It follows then from the linear
approximation that the dispersion laws of all the waves
are determined by the properties of the plasma in the
absence of these waves, and the nonlinear currents de-
scribe the interaction between the waves. In our case,
such an approximation corresponds to a solution of
Eqs. (4.4) and (4.5), which describe the coupled pertur-
bations of the density and of the field, using perturba-
tion theory with respect to t e r m s proportional to VE
(the approximation of weak parametr ic coupling). It
turns out here that in the zeroth approximation the
density and field perturbations a r e given by two types
of independent proper waves in the plasma, and that

their dispersion laws a r e determined by the usual linear
theory. In the first approximation, on the other hand,
allowance for the t e r m s proportional to VE leads to a
slow change in the amplitudes of the coupled waves.
Therefore, when weak parametr ic coupling of waves i s
considered one can use instead of (4.4) and (4.5) a sys-
tem of abbreviated equations for the slowly varying
amplitudes (see, e .g . , [ 6 > 7 ' 9 1 ] ) . However, many of the
principal resul ts a r e eas ier to obtain from the disper-
sion relation (4.8) by solving it by perturbation theory
with respect to t e r m s containing VE.

We seek the solution of (4.8) in the form

(5.1)

where ω% = k 2 s 2 , and in a nonisothermal plasma ( T e

» Ti) this is simply the dispersion law of the ion-
acoustic waves with a wavelength that is large in com-
parison with the Debye radius of the e lect rons [ 1 β β 1 .

For the determination of ω ( 1 ) we get from (4.8) the
equation

2ω.ω"' = 4-ο

+ (k.vE)'
lei ( 1 _ ωι1'β/ίω1<") ω"»^!?1

I T

... ε'» = εΚ>)·

The form of the correction to the frequency depends
on whether or not the relations customarily called the
decay conditions a r e satisfied:

ωϊ'·βϊ'-Λ·±ε« = 0, (5.3)
e<? = 0. (5.4)

If either (5.3) or (5.4) is satisfied, and the subscript
in these formulas i s minus, then ω ( 1 1 i s imaginary. In
this case the perturbations increase in time and insta-
bility sets in; following1·891, where it was first considered,
this is called decay instability. Let us consider this
question in greater detail.

Assume that condition (5.3) with a minus sign is
satisfied. We write it down in explicit form:

(ω0—ω,)!—a>L-ca(k<,-k)a
(5.5)

The largest t e r m in the right-hand s ide of (5.2) i s the
f irst, and i t s solution i s

y = fed) = ±ffcot,/4(ω0ω,)'/2] | [(k-k 0) vBl |/| k-ko'|. (5.6)

The minus s i g n in (5.6) corresponds to perturbations
that i n c r e a s e with t ime, i .e . , the amplitudes of the ion-
acoustic and t ransverse waves with frequency ωο - Wg
and wave vector ko — k grow simultaneously. At a
specified dispersion law for the pump wave, relation
(5.5) determines those values of the wave vectors for
which instability sets in. If the pump wave has a t r a n s -
verse polarization and the frequency ω 0 i s connected
with the wave vector ko by relation (4.2), then the con-
sidered instability describes the thoroughly investi-
gated transformation of a t ransverse wave into a t r a n s -
verse wave and an ion-acoustic wave (see, for exam-
p l e , [ l e 7 ] ) . From (5.5) it follows that the unstable per-
turbations a r e those having the wave vectors

k = 2 [k0 cos φ — (so>0/c
2)l > 0, (5.7)

where cos φ = k - k o / k k o . In particular, if ω 0 * k o c
and, consequently, ωο » wLe, then we find from (5.7)
that the unstable perturbations a re those with the wave
number k = 2ko cos φ (cos φ > s/c).
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When condition (5.4) with minus subscript is satis-
fied,

(<o0—o)3)
! = o>L, (5.8)

the largest term is the third term in the right-hand
side of (5.2) and the solution takes the form

= ± [ - k0) vE |/| k - k0 (5.9)

In this case the longitudinal Langmuir wave with fre-
quency ω 0 - ω 8 increases together with the sound in
the plasma, and since ω 8 « ωο, o>Le> if (5.8) i s to be
satisfied it is necessary that the frequency of the pump
wave be close to the plasma frequency. If the pump
wave is longitudinal and ω 0

 α ω]_,β, then there follows
from (5.9) the increment obtained in [ 8 9 l (see a l s o [ 1 6 5 ' 1 6 8 ] ) .
However, to determine the wave vectors of the unstable
perturbations it is necessary to take the thermal motion
of the part icles in theji ispersion laws of Langmuir
waves into account in relation (5.8) (see ' 8 9 1 ) , and
this is beyond the scope of our approximations (see
inequality (1.9')).

On the other hand, if the pump wave has t ransverse
polarization and the pump wavelength is much larger
than the perturbation wavelength (k » k 0 ) , then it
follows from (5.8) that the unstable perturbations a r e
those with wave numbers

and the increment is equal to

V = <i>Li I kv£ |/4 (<ϋ1(1)ΐ ί)
1". (5.11)

It is easy to show that neglect of thermal motion of
particles in the dispersion law of the Langmuir waves
i s permissible in this case if the inequality c/νχ
» k/k0 i s satisfied (v|< = T/m).

In this section, when solving the dispersion equation
(4.8), we used perturbation theory and have assumed by
the same token that | ω ( 1 ) | « w s . It i s precisely this
condition that allowed us to state that the instability
corresponds to a slow growth of the wave amplitudes,
whereas their dispersion law is specified. Now, having
at our disposal expressions (5.6) and (5.9), it is eas ier
to obtain an explicit cr i ter ion for the suitability of this
approximation:

·€ (ωοω,)1/1/ωι (5.12)

In particular, at α>ο ^ ω]_,β it follows from (5.12) that
one can speak of ion-acoustic perturbations in a plasma
with an ordinary dispersion law only for fields whose
p r e s s u r e i s much lower than the thermal pressure of
the plasma part ic les, namely ( ν β / ν χ ) 2 « a>s/a>Le·

6. Short-wave perturbations at ω ο « wLe- P a r a m e -
t r ic resonance. In this section we consider the solution
of the dispersion equation (4.8) without using perturba-
tion theory with respect to the hi field. We a r e inter-
ested in the case of short-wave perturbations (k » k 0 )
in the field of a t ransverse pump wave, the frequency
of which is close to the Langmuir electron frequency
(oio* o)Le >;> koc). In addition, we shall confine our-
selves to consideration of perturbations whose phase
velocity is small in comparison with the velocity of
light (kc » | ω | ) , while the wave numbers a re suffic-
iently large (kc » ω]_,β). When all these conditions a re
satisfied, Eq. (4.8) is greatly simplified and takes the
form

w h e r e

s* = s1 — (coij [kvE]2/2A4c2). (fi ο)

F o r p e r t u r b a t i o n s with wave v e c t o r s t h a t a r e a l m o s t
p e r p e n d i c u l a r t o t h e d i r e c t i o n of t h e hf f ield, t h e e x p r e s -
s i o n on t h e r i g h t i n f o r m u l a (6.1) i s c l o s e t o z e r o . T h e
inf luence of t h e p u m p - w a v e field on t h e p e r t u r b a t i o n
d i s p e r s i o n law r e d u c e s i n t h i s c a s e to a r e p l a c e m e n t of
t h e s q u a r e of t h e s o u n d ve loc i ty s 2 by t h e q u a n t i t y (6.2)
( s e e a l s o (4.9)), which c a n be n e g a t i v e if

vl/v% <, ωΙ,/Αιν < 1 (6.3)

This means that the frequency is imaginary and the
plasma is unstable. The physical cause of this instabil-
ity was discussed in Sec. 4.

However, the condition (6.3) i s satisfied only for very
strong hf fields ( ν χ « V E ) · Furthermore, as shown
i n [ 9 5 ] , the unstable perturbations a r e those with wave
vectors lying in the solid angle kc/aiLe, which is very
smal l under the assumptions made.

Of greater interest is the solution of the dispersion
equation (6.1) under those conditions when an inequality
inverse to (6.3) i s satisfied, and the instability indicated
above is impossible. In this case, the only t e r m s of
(4.8) contributing to (6.1) a r e those containing e+ and
e. in the denominators. In other words, all the effects
discussed later on in this section a r e due to perturba-
tions of the electrostatic field.

To simplify the investigation of (6.1), we assume
that

It is clear that the inequality (6.4) is satisfied if
k 1 k 0 . However, as will be shown below, it is also
satisfied for arbi t rary angles between k and k 0 under
the condition that kc » u/Le> which we assume to be
satisfied. The condition (6.4) therefore does not in fact
change the general character of the resu l t s .

Using the notation

we express the solution of (6.2) in the form

ω/ω1β = ± (1/2) {[Δ2 + Β (q% - q%) + Ik (A\\ + 2Δ?Ϊ)'Λ|1/2

± [Δ2 + k' (?} - q%) - 2k (Δ2

(ω2 —
= .& (kv£)s [(1/2) (ω2 + ky) - 2Gxoie (kko/Aa)], (6.1)

(6.6)

L e t u s a n a l y z e t h i s e x p r e s s i o n for d i f fe rent p u m p - w a v e
field i n t e n s i t i e s .

We s t a r t with r e l a t i v e l y weak f i e l d s , when t h e i n -
e q u a l i t y

? E < 4 ? T ((υΕ/ντ) YTcos θ < 8/2). (6.7)

i s s a t i s f i e d . In t h i s c a s e , s o l u t i o n s t h a t i n c r e a s e i n
t i m e a r e obta ined if t h e e x p r e s s i o n u n d e r t h e s q u a r e
r o o t i n t h e s e c o n d t e r m of (6.6) i s n e g a t i v e :

^ + kYT-2k(AYT+2giA)t'2<0. (6.8)

T h e f i r s t t e r m in (6.6) t h e n d e t e r m i n e s the r e a l p a r t of
t h e f r e q u e n c y , and t h e s e c o n d t h e i m a g i n a r y p a r t .

Given t h e a m p l i t u d e and f r e q u e n c y (and c o n s e q u e n t l y
a l s o t h e wave v e c t o r ) of t h e p u m p w a v e , t h e i n e q u a l i t y
(6.8) d e t e r m i n e s t h e w a v e - n u m b e r i n t e r v a l for which
i n s t a b i l i t y t a k e s p l a c e :

1 / 2 1 / 2 ] <k

Ϊ ) [(2Δρ!' + Δ2??)1/2 + (2?ΪΔ)1/21.
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T h i s i n t e r v a l i s s y m m e t r i c a l with r e s p e c t t o t h e wave

n u m b e r

& = &mar = (l/3") (2A^-fA sgi)1 / 2, (6.10)

a t which, a s s e e n f r o m (6.9), t h e i n c r e m e n t i s m a x i m a l

a n d e q u a l t o

.7*1

Vmai
(1/4/2) «j,, {koDEle>Le) (c/s) cos Θ.I

6 · 1 1 )

At k = k m a x , t h e r e a l p a r t of t h e f r e q u e n c y , a c c o r d i n g
t o (6.6), is e>

(Biux = Re ω (kmn) = ω ω [Α1 + (3Δ?|/2}|)]1/2. (6.12)

T o e s t a b l i s h t h e c o n n e c t i o n b e t w e e n t h e r e s u l t s o b -
t a i n e d above and t h o s e o b t a i n e d i n S e c . 5 by t h e w e a k -
coupl ing a p p r o x i m a t i o n , le t u s d i s c u s s f i r s t t h e l i m i t i n
w h i c h t h e f ie lds a r e s o w e a k t h a t t h e i n e q u a l i t y

(6.13)

i s s a t i s f i e d . It fol lows t h e n f r o m (6.9) t h a t t h e r e g i o n of

u n s t a b l e wave n u m b e r s b e c o m e s v e r y m u c h n a r r o w e r ,

s o one c a n s a y t h a t t h e only u n s t a b l e p e r t u r b a t i o n s a r e

t h o s e wi th one def ini te va lue of t h e wave n u m b e r

(6.14)

A s e x p e c t e d , e x p r e s s i o n (6.14) c o i n c i d e s with f o r m u l a
(5.10) for t h e va lue of t h e u n s t a b l e wave v e c t o r s i n t h e
d e c a y of t h e p u m p wave i n t o a L a n g m u i r wave and a n
a c o u s t i c w a v e . F o r m u l a (6.13) t h e n goes o v e r i n t o (5.12),
a n d f r o m (6.11) we c a n e a s i l y o b t a i n t h e i n c r e m e n t (5.11).
T h u s , t h e i n e q u a l i t y (6.13) i s t h e c r i t e r i o n u n d e r which
t h e w e a k - p a r a m e t r i c - c o u p l i n g a p p r o x i m a t i o n i s v a l i d .

When t h e i n e q u a l i t y o p p o s i t e t o (6.13) i s s a t i s f i e d ,
t h e a p p r o x i m a t i o n of weak p a r a m e t r i c coupl ing b e c o m e s
u n s u i t a b l e . But if t h e t h e r m a l p r e s s u r e of t h e p a r t i c l e
i s n e v e r t h e l e s s l a r g e r t h a n t h e p r e s s u r e of t h e h i field
( i . e . , t h e condi t ion (6.7) i s s a t i s f i e d ) , t h e n , in a c c o r d a n c e
with (6.9), t h e w a v e - n u m b e r i n t e r v a l i n which t h e p e r -
t u r b a t i o n s a r e u n s t a b l e i s g i v e n by

(1/21^2) A 3 / 2 / 9 E < ft < 2 (2A) 1 / : Vi i .

T h e m a x i m u m i n c r e m e n t of (6.14) t h e n o c c u r s a t t h e

wave n u m b e r

k = fe «?) (2Δ)"2 = (1/4 V2) (vE/s) (<s> >L.) cos 0,

and t h e r e a l p a r t of the f r e q u e n c y , a c c o r d i n g to (6.12),

i s by no m e a n s c l o s e to t h e sound f r e q u e n c y , but e q u a l s

u » , = ω ^ (qE/q,) (3Δ/2)1 / 2 = (1/4) (3/2)1 '2 (vE/vT) fco«"2 COS Θ.

F i g u r e 2 s h o w s t h e d e p e n d e n c e of t h e i n c r e m e n t o n
t h e w a v e n u m b e r f o r d i f f e r e n t v a l u e s o f t h e f i e l d i n t h e
p u m p w a v e . It i s s e e n f r o m i t t h a t i n w e a k f i e l d s , o n l y
p e r t u r b a t i o n s w i t h a s i n g l e w a v e n u m b e r a r e u n s t a b l e .
W h e n t h e f i e l d i n c r e a s e s t o v a l u e s i n w h i c h t h e a p p r o x -
i m a t i o n of w e a k p a r a m e t r i c c o u p l i n g i s no l o n g e r s u i t -
a b l e , t h e r e g i o n of u n s t a b l e w a v e n u m b e r s b r o a d e n s
t o g e t h e r w i t h a c h a n g e o f t h e d i s p e r s i o n l a w f o r t h e
s o u n d . T h e m a x i m u m i n c r e m e n t t h e n s h i f t s t o w a r d s
s h o r t e r w a v e l e n g t h s , a n d i t s v a l u e i n c r e a s e s l i n e a r l y
w i t h i n c r e a s i n g f i e l d . W h e n a c c o u n t i s t a k e n o f t h e r m a l
p r e s s u r e i n t h e d i s p e r s i o n of t h e L a n g m u i r w a v e s , a s
i s d o n e i n ^ 8 5 1 , i t i s s e e n t h a t f u r t h e r i n c r e a s e of t h e
f i e l d m a k e s t h e i n c r e a s e o f t h e m a x i m u m i n c r e m e n t
m o r e c o m p l i c a t e d .

W e p r o c e e d n o w t o t h e c a s e c o n s i d e r e d i n [ 4 5 ] , w h e r e
t h e hf f i e l d s a r e s o s t r o n g t h a t t h e t h e r m a l m o t i o n o f
t h e p a r t i c l e s c a n b e n e g l e c t e d i n c o m p a r i s o n w i t h t h e

(6.15)

FIG. 2. Dependence of the increment on the wave number at
different hf field intensities. 1 -(vg/vjjz1'2 cos θ < 2k0 c
d e c a y instabi l i ty; 2 - 2 k 0 c / ω ^ < (VE/V-TOZ 1 ' 2 COS θ <

3 - ( V E / V J ) Z 1 ' 2 COS θ > & y / 2 - parametr ic r e s o n a n c e .

FIG. 3 . D e p e n d e n c e o f t h e in-

c r e m e n t o n t h e h f f ie ld f r e q u e n c y

(on Δ = (ω» - ω ΐ ^ / ω τ ^ ) in the
case of parametric instability.

hf field pressure (parametric resonance):

ΪΕ > ?τ·

A c c o r d i n g t o ( 6 . 6 ) , w e h a v e

ω/ο)!.,, = ± (1/2) {[Δ» - k*q% + 2k (2Δ ?£) 1 / 2] 1 / 2

± itf-kVE-2k(.2Aq'E)m]l

Following1*51, we consider the solutions (6.15) for differ-

ent values of the parameter Δ, which character izes the

frequency (or wavelength) of the pump wave. If the con-

dition Δ < k q E i s satisfied, then the nonzero solution of

(6.15) takes the form

ω = ±ikqEe>L. = ±(t/2V2) (| kv £ \laLe) a>LI

and d e s c r i b e s , when t a k e n with t h e plus s i g n , a p e r i o d -

i c a l l y g r o w i n g p e r t u r b a t i o n s . If, t o t h e c o n t r a r y ,

Δ > kqE, then we get from (6.15)

W O L = ±(1/2) {[Δ2 + 2kqE (2K) ι ' ψ / · ± [Δ2 - 2kqE (2A)1/*]1/*}

and i n s t a b i l i t y s e t s in only if t h e following i n e q u a l i t y i s

s a t i s f i e d :

The increment is then maximal for Δ = (kqg /V2 )2/'3

and is equal to

Vmax = (/3/2V3) ω ι . (kqE)*IK

Figure 3 shows a plot of the increment against the
frequency of the hf field (more accurately, against Δ);
this plot agrees with the resul ts of[45] at Δ > 0. It is
important that the increment increases with increasing
wave number (see Fig. 2). (It must be borne in mind
here , of course, that our analysis is valid if

I k · v E 1/ w L e <1.)

Let us discuss briefly the physical cause of para-
metr ic resonance. Assume that a static density pertur-
bation δρ » mj5Nj has occurred in a plasma placed in
a homogeneous external hf field. Then the hf field gives
r i se to a rapidly-alternating separation of the charges
and to an associated electric field. From the equation
div D = 0 it follows that this field is equal to (see (4.12))
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δΕ = - (δε/ε) Ε0 | , = {Απζβ^Ν,Ιτη^ (ω0)) Ε ο | | .

Π ωο > wLe a n c · e(o>o) > Ο, then the charge-separation
field has the same direction as the external hf field.
Consequently, the amplitude of the total field is larger
where the plasma density is larger . The hf pressure
forces, which a r e proportional to 3(δΕ ·Ε 0 | | )/8χ, tend
to decrease the existing density perturbations (see
(4.13)). It i s this which makes it possible to use hf
fields to stabilize instabi l i t ies [ " 9 > 1 6 1 ] .

On the other hand, if ωο < wLe> then e(a>o) < 0 and
the field δΕ is directed opposite to the direction of the
external field. Therefore the amplitude of the total
field in the plasma is smal ler where the density is
la rger . The hf pressure forces tend to increase the
initial density perturbation, and instability sets in.

Actually, the density perturbations a r e not static and
the frequency of the charge-separation field does not
coincide with the frequency of the external hf field.
This does not change the physical gist of the phenome-
non, but causes the picture of the onset of parametr ic
instability, which is considered in this section, to be-
come more complicated.

7. Perturbations in a tenuous plasma » <yLe)

In this section we consider the consequences ensuing
from the dispersion equation (4.8) in the case when the
frequency of the t ransverse pump wave ω ο is much
larger than the Langmuir frequency of the electrons
and it can be assumed that ωο * koc. Then, unlike the
preceding section, it is important to take into account
in (4.8) the t e r m s connected with the perturbations of
the eddy currents (see Sec. 4), and it takes the form

z_±"k* Γ } . (7.1)

To t race the influence of the increase of the pump-
wave amplitude on the character of the decay instability,
we begin the analysis of (7.1) with the case of relatively
weak hf fields, for which the condition (5.12) i s sat i s-
fied, and which have little effect on the soundwave dis-
persion law. We assume that

ω = for (1 + 6).

From (7.1) we obtain for determination of δ the equa-
tion

In the theory of decay instabilit ies, the lengths of the
growing waves a r e determined from the condition of
simultaneous satisfaction of the dispersion relations for
al l the waves participating in the decay process (see
Sec. 4). In this case, only one pair of growing waves
can propagate in a definite selected direction. These
resul t s can also be obtained from (7.2) if it i s assumed
that | β | » 1 and the condition (5.5) is satisfied for the
decay of a t ransverse pump wave into an acoustic wave
and a t ransverse wave, a condition equivalent to the
vanishing of the expression 1 + [k4 -
4 ( k - k / j / 8 k - k o ( s k k ( / c ) .

However, when solving (7.2) it i s also possible not
to determine the lengths of the unstable waves before-
hand, but to find them from the condition Im 5 > 0. If
this is done, recognizing that | δ | « 1, then we obtain
the following limitation on the lengths of the unstable
waves:

vE o>Li— —

1 — 4 Cos2 φ cos3 θ ^
cos2 φ

s \i/2 / 1 — 4cos2<pcos26 Ml/2
) ] ' / 2 < i

(7.3)

where cos φ = k · k o / k k 0 , and cos θ =k-VE/kvj; .If
cos φ > s/c, then the maximum growth rate i s
possessed by waves having the wave number

1 — 4cos2(pcos26

T h u s , t h e f o r m of t h e d e c a y i n s t a b i l i t y c h a n g e s with
i n c r e a s i n g p u m p - w a v e a m p l i t u d e . T h e r e g i o n of u n s t a b l e
w a v e l e n g t h s b r o a d e n s , and t h e wave length for which
t h e i n c r e m e n t i s m a x i m a l d e c r e a s e s (cf. S e c . 6) .

We now s t o p to d i s c u s s t h e s o l u t i o n s of (7.1) t h a t
differ e s s e n t i a l l y f r o m t h e a c o u s t i c d i s p e r s i o n law. We
c o n s i d e r in s u c c e s s i o n two r e g i o n s of wave n u m b e r s ,
confining ourselves for simplicity to the case cos φ = 0,
i .e., k-n k 0 (a more general case is considered i n [ 1 6 9 ] ) .
We s tar t with nonresonant waves, for which the condi-
tion

ft* — 4ftJ | >_81 ω. | AJ/cA. (7.5)

is satisfied. The solution of (7.1) i s obvious:

ω2 = fc2 {s> - [(G>?.i/2c2) vine - 4ft·)]}. (7.6)

T h i s f o r m u l a w a s f i r s t o b t a i n e d i n [ 9 4 ] and w a s d i s -
c u s s e d i n [ 9 9 > 1 0 4 ] . It fol lows f r o m it i m m e d i a t e l y that a t

i/2c2)yt7s2 (7.7)

aperiodic instability sets in. Therefore, from the con-
dition of simultaneous satisfaction of the inequalities
(7.5) and (7.7), when (7.6) is taken into account, it fol-
lows that this instability sets in when the inequality
opposite to (5.12) is satisfied. The increment increases
as k2 approaches 4k2,. However, the condition (7.5) is
violated starting with a certain value of the wave num-
b e r . We therefore proceed to solve Eq. (7.1) in the
other limiting case, when the inequality inverse to (7.5)
is satisfied (the resonant case) . The dispersion equa-
tion is

ω3 - ale's' + (1/4) ahkvllc = 0. (7.8)

In order for this cubic equation to have complex roots,
it is necessary to satisfy the relation

(7.9)

One of the roots will then describe unstable perturba-
tions. Therefore the inequality (7.9) at a specified
pump-wave frequency (and consequently also k 0 ) deter-
mines the frequency starting with which instability sets
in. This cr i ter ion differs by a numerical factor from
the approximate expression obtained i n [ 9 9 ' . The i n c r e -
ment at resonance (k = 2k0), according to (7.8), is
equal to

T h i s equat ion w a s obta ined i n [ 9 9 ] , and t h e n by o t h e r
m e t h o d s i n ^ 1 0 2 ' 1 0 3 ] .

In c o n c l u s i o n , le t u s d w e l l on t h e p h y s i c a l c a u s e of
t h e c o n s i d e r e d i n s t a b i l i t y . An e l e c t r o m a g n e t i c wave
s c a t t e r e d by p l a s m a - d e n s i t y p e r t u r b a t i o n s t h a t have a
spatial periodicity λ such that 2λ = λ 0 (λ 0 i s the pump
wavelength), forms, together with the pump wave, a
field structure of the standing-wave type. The antinodes
of the field occur at the minima of the density, and the
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force of the hf pressure tends to increase the initial
perturbations. If this force is small in comparison with
the force of the thermal pressure of the plasma, then it
hardly changes the oscillation frequency, but may turn
out to be sufficient to increase the amplitude of the
initial density perturbations.

This case corresponds approximately to weak coup-
ling, or to the so-called decay instability. On the other
hand, if the pump-wave field exceeds a certain value,
say the one determined by formula (7.9), then the hf
pressure forces exceed the thermal-pressure forces.
In this case the concept of ion-sound waves with the
usual dispersion law becomes meaningless, and an
aperiodic instability sets in, with the increment (7.10).

An order-of-magnitude expression for the increment
(7.10) can easily be obtained from simple physical
reasoning, if it is recognized that at k = 2k0 the waves
scattered in a spatial region of length on the order of
c/ω add up coherently, and the force in in (4.14)
should be increased by a factor kc/ω. The expression
(7.10) then follows from formula (4.10), apart from a
constant on the order of unity.

IV. EQUILIBRIUM OF A PLASMA IN A HIGH-
FREQUENCY FIELD

Interest in the study of the equilibrium of a plasma
in an hf field arose initially in connection with the prob-
lem of plasma confinement in installations for thermo-
nuclear research. The first papers on this subject were
published about 10 years ago^170"1791 (see the review1·281).
Special mention should be made of [ m ], which gives the
most complete and consistent solution of the one-dimen-
sional problem of plasma equilibrium in the field of a
plane standing wave (see Sec. 8). Among the later
papers in this field, we mention the papers'·1 8 0 '1 8 1 1, deal-
ing with plasma confinement in a combination of a con-
stant magnetic field and hf fields.

Recently, the question of the equilibrium of a plasma
in an hf field has attracted attention also for another
reason, namely that stationary self-maintaining radia-
tion channels can be produced in a plasma, as in all
other nonlinear media1·1821. Many of the previously ob-
tained results, and primarily the results οί [ 1 7 1 ], turned
out to be applicable also for description of this phe-
nomenon. Extensive material concerning the self-
trapping of radiation not only in a plasma, but also in
other media, is contained in a number of reviews11831.
At the presently attainable hf field intensities, a plasma,
unlike other media, can turn out to be a strongly non-
linear medium, and therefore the effects in it should
become more distinctly manifest^184'185' and are of
particular interest [ 1 β β ].

Another problem pertaining to the investigation of
the equilibrium state of a plasma in an hf field is that
of nonlinear penetration of an electromagnetic wave
into a plasma. For the case of normal incidenc? of a
wave on the boundary of an arbitrary conductor, this
problem was considered in [ 1 8 7 ] (see also [ 1 8 8 ]). It is
shown that, in particular, the redistribution of the
plasma density, which occurs under the influence of hf
pressure7 ', not only alters the character of the penetra-
tion and reflection of the wave, but also leads to a de-
crease of the critical frequency, above which the plasma
is transparent (see Sec. 9). A generalization of the
results of1·1871 to the case of oblique incidence is con-
tained in [ 1 9 O ) 1 9 1 ] . A number of papers have discussed

the question of the propagation of intense electromag-
netic waves along [ 1 9 2 ' 1 9 3 ] and across t194»195) a plasma
layer.

Mention should also be made of a number of inter-
esting papers dealing with the nonlinear theory of
plasma resonancet4 4;1 9 6]. A strong increase of the field
in the resonance region leads to a redistribution of the
plasma near this region, and this in turn leads to a
change of the field. This problem was considered

t1 9 7 1 (see t 9 2 0 1

There is also one other group of problems that have
been considered recently, the solution of which reduces
to an equation for the equilibrium of a plasma in an hf
field. We have in mind stationary (steady-state) non-
linear waves, and in particular solitary waves (soli-
tons). As applied to the case of waves with sufficiently
small wavelength propagating along the hf field, the
problem of determining the shape of the steady-state
waves was solved in1·2 0 2 1. To the contrary, the case of
stationary waves propagating across an hf field is ana-
lyzed in detail ini^,^^-^^ a n d w m b e d i s c u s s e d i n

Sec. 10 below.

To be able to speak of practical realizability of
equilibrium of a plasma and an hf field, it is necessary
to clarify the question of stability of this equilibrium.
Many conclusions obtained for a homogeneous plasma
seem to remain in force in this case (see Chap. II).
There are also, however, a number of differences con-
nected with the inhomogeneity of the plasma and of the
hf field. The stability of certain equilibrium configura-
tions is discussed in [ 2 0 7" 2 1 0 1; steady-state multidimen-
sional solutions of the equilibrium equations that result
from unstable one-dimensional solutions are discussed

8. Equilibrium of a plasma in the field of a standing
wave. In the equilibrium state, the hydrodynamic equa-
tions (1.21, 1.24, and 1.25) of a plasma in an hf field
become much simpler. The plasma as a unit has zero
velocity, and the particle concentration and the hf-field
amplitude do not depend on the time. Therefore Eq.
(1.21) is satisfied, and it follows from (1.24) that the
plasma density and the hf-field amplitude are connected
by the simple relation

Ar = Coexp( — ze*El!iTmtt>D, (8.1)

where the constant Co is expressed in terms of the
plasma concentration at the point where the hf field is
known.

Using (8.1), we rewrite (1.25) in the form

(c2/u>l) rot rot Eo - Eo+\ine1/ma>l) CoE0 exp (— ze'El/iTmu>l) = 0. (8.2)

This is the fundamental equation for the investigation of
equilibrium states of a plasma in an hf field.

In this section, following mainly^1711, we consider the
possible equilibrium configurations of a plasma in the
field of a transverse plane standing wave

Eo = (0, £0 (x), 0).

In this case, using the following dimensionless variables:

we obtain from (8.2) the first integral, which corre-
sponds to constancy of the total pressure at each
point8':

(3.3)
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are)

FIG. 4. Potential
(8.5)for a dense
plasma.

where Ci is the constant that characterizes this pres-
sure. Solving Eq. (8.3) relative to dE/dr/, we obtain in
implicit form the dependence of the hf field amplitude
on the coordinate:

Π - η ο - ± ( 1 / 2 ) j T-i/2(C,-T-( (8.4)

The character of the possible solutions of (8.3) can
be simply understood by using the formal mechanical
analogy proposed i n [ 1 7 8 ) (see a l s o [ 2 8 ] ) . We regard the
intensity of the field Ε as the coordinate of the particle,
and the coordinate η as the t ime. Then relation (8.3)
can be identified with the energy conservation law for
a particle moving in a potential well:

U(E) = E2 -f-2Ce-E2·2. (8.5)

Depending on the constant C, the potential can vary in
character . Indeed, taking the derivative dU/dE and
equating it to zero, we find that at C > 1 (this means
that there is a point at which the plasma concentration
exceeds the cri t ical value N c ) the potential has a maxi-
mum at Ε = 0 and has a minimum at Ε = ±(2 In C ) 1 / 2

(Fig. 4). On the other hand, if C < 1 and the plasma
concentration i s everywhere smal ler than the cr i t ical
value, then the potential curve has a single minimum at
Ε = 0. Let us consider these cases in succession.

The three horizontal lines in Fig. 4, which shows the
potential (8.5) at C > 1, correspond to three different
values of the constant Ci, which character izes the total
energy of the particle (the total pressure of the hf field
and of the plasma). The intersections of these lines with
the potential curve determine those particle coordinates
at which the particle velocity is zero . Depending on the
relation between C and Ci, three different variants of
particle motion are possible; in other words, there a r e
three different hf field configurations.

1) If the plasma density characterized by the con-
stant C i s low enough so that C < Ci, then, a s seen
from Fig. 4, there a r e only two points at which the
particle velocity is equal to zero and, in addition, the
particle passes through the origin. This means that the
particle oscil lates in the potential well and that the field
is a periodic function of the coordinate. Analytic ex-
press ions for the field can easily be obtained in two
l imi t s 9 ' . If Ε < 1, then it follows from (8.4) that

Ε = ± [2 (C, - C)]1'2 (η - ηο).

On t h e o t h e r h a n d , if t h e m a x i m u m (or m i n i m u m ) field

E m d e t e r m i n e d by t h e r e l a t i o n

2C, = U (Em) =

corresponds to the coordinate ηΐα then, by expanding
the quantities that enter in (8.4) in the vicinity of this
point, we also obtain the law governing the field varia-
tion:

£ = £ m {1 — (1/2) ( η - V)2 (1 -C«-H./2)}.

On the bas is of the available data, it i s possible to con-

FIG. 5. Variation of the

field and of the concentra-

tion with the coordinate at

C, > C .

Σ,Ν

FIG. 6. FIG. 7.

FIG. 6. Variation of field and of concentration with the coordinate

a t C , = C .

FIG. 7. Variation of the field and of the concentration with the

coordinate at Ci < C.

s t r u c t a q u a l i t a t i v e p i c t u r e of t h e v a r i a t i o n s of t h e f i e l d

a n d t h e c o n c e n t r a t i o n ( F i g . 5 ) .

2 ) L e t C = C i . In F i g . 4 , t h i s c a s e c o r r e s p o n d s t o

t h e s t r a i g h t l i n e p a s s i n g t h r o u g h t h e m a x i m u m of t h e

p o t e n t i a l . A p a r t i c l e m o v i n g w i t h s u c h e n e r g y w i l l t a k e

an infinite t ime to reach the point Ε = 0. This means
that the field vanishes at infinity. To find the law
governing the field variation as η — ±°°, we consider
formula (8.4). Putting τ « 1 in it, we obtain

exp[-(C-l) 1 / 2ri] as η->+°°,
Ε ~

as
(8.6)

Let the field assume its maximum value E m at
η = 0. A simple relation can then be established between
the value of E m and the plasma density N M at infinity.
Inasmuch as Ε — 0 as η —- ±°°, in accordance with
(8.6), it follows from (8.1) and (8.3) that the constant C
is connected with the density at infinity by the simple
relation C = Ci = N^/N,,, and in accordance with (8.3)
we can write

We denote the plasma density at η = 0 by N m and
recognize that N m = N 0 O e x p ( - E m / 2 ) . From this we
obtain the connection between the plasma densities at
infinity and at the maximum of the field:

NJNn = exp l(Nm - N*,)INC].

If N^/Nj» » 1 and the plasma density at infinity is much
larger than the cr i t ical value (the plasma is opaque to
the hf field), then (N m /Noo) « 1 and

£J,/2 « NJNC (zElJlGnTN» « 1).

It follows therefore that, with exponential accuracy, the
field pressure at the maximum coincides with the p r e s -
sure of the particles at infinity.

Plots that describe qualitatively the dependence of
the field and of the plasma density on the coordinates
a r e given in Fig. 6.

The case when the minimum of the plasma density is
balanced not by the field of one monochromatic wave
but by a set of short waves with different frequencies
was considered recently i n [ 2 0 6 ] .

3) We consider now the case C > C ^ The part icle
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energy i s in this c a s e insufficient to p a s s through the
point Ε = 0. This means that the field amplitude can
never vanish, and ranges from E m i n to E m a x (Fig. 7).
It follows from the requirement (dE/dTj)2 > 0, accord-
ing to (8.3), that the possible values of Ci a r e subject
to the limitation

2C, > Umin = 2 (In C + 1).

At the minimum value of Ci, which equals In C + 1 , the
particle in our mechanical analogy is at re s t at the
minimum of the potential energy. This means that the
field amplitude and the plasma concentration do not de-
pend on the coordinates. If the concentration is equal
to N, then the field is obviously equal to
Ε =[2 In (47re2N/ma>;j)]1/2.

Let us dwell briefly on the case C < 1 (tenuous
plasma). As already noted, the potential U(E) has in
this case a single minimum at Ε = 0 and tends to in-
finity as η — ± °o like E 2 . It is clear that only periodic
changes of the amplitude of the hf field a r e possible for
al l the permissible values, and that there a re always
points at which the field is equal to zero . In the case of
a t ransparent plasma, the field has in fact a s tructure
similar to that of the field in vacuum.

9. Penetration and reflection of a strong e lectro-
magnetic wave. The linear theory of reflection and r e -
fraction of electromagnetic waves by a plasma boundary
is valid in those cases when the electromagnetic-field
pressure is small in comparison with the thermal
p r e s s u r e . If this condition does not hold and the field
pressure becomes comparable with the thermal p r e s -
sure , then we can no longer neglect the changes that the
incident wave produces in the character i s t ics of the
medium. In other words, the problem of reflection and
refraction of waves becomes nonlinear in this case .

As applied to conductors (a plasma or metals), the
stationary nonlinear theory of reflection and penetra-
tion of waves was constructed in [ 1 8 7 1 , where the case of
sufficiently r a r e collisions is considered alongside the
case when the particle collisions a r e completely
neglected. In the present section, following mainly the
cited reference1-1 8 7 1, we consider the one-dimensional
problem of reflection and penetration of an e lectro-
magnetic wave in a plasma, but remain within the
framework of the model investigated by us and neglect
the particle collisions altogether.

Let the plasma occupy the half-space χ > 0 and let
a linearly polarized electromagnetic wave be incident
normal to its surface on the boundary χ = 0. We
represent the wave field in the plasma in the form

E l n = (0, £„ (x) cos [ωοί + φ (*)], 0). (9.1)

For the field outside the p lasma, which i s the sum of
the incident and ref lected waves, we use the e x p r e s s i o n

Eout = (0, £ i n c[sin ωοί) + R sin ωοί + ψ)Ι, 0), (9.2)

where E j n c is the amplitude of the incident wave, R is
the reflection coefficient, and φ i s the initial phase of
the reflected wave.

From the condition for the continuity of the electric
and magnetic fields on the plasma boundary ' 4 1 ' we ob-
tain . „.

R = \^(M*ik\E^0), 0-3)
Eo (0) = £ ^ ( 1 + Λ2I + 2R cos ψ)1/', (9.4)

ctg φ (0) = —R sin ψ/(1 + R cos ψ), (9.5)

sin ψ = - £ 0 (0) E; (0)/2k0E]nc R, (9.6)

where Μ = -E?(0) cp'(O) and the prime denotes differ-
entiation with respect to the coordinate.

We substitute (9.1) in Eq. (8.2), which determines
the field in the plasma, and equate the sine and cosine
t e r m s . As a result we obtain two equations, which a r e
expressed in the notation of Sec. 8 in the form

- £ 2 (η) φ ' (η) = Μ, (9.7)

cPEIdrf - Ε (efcp/dr])» + Ε - CE exp (-£a/2) = 0. (9.8)

We a r e interested in the c a s e when the field d o e s not
penetrate the plasma and at η — + °° we have Ε — 0
and E' — 0. Then, according to (9.7) and (9.3), we have
Μ = 0 and R = 1, i.e., the wave is completely reflected
from the plasma. Using this condition, we write down
the first integral of (9.8) in the form

(dEldi\Y + £ 2 + W (e-E'-H — 1) = 0, (9.9)

where the constant C is connected with plasma density
at η = « by the relation C = 47re2N0O/mu>2.. Expression
(9.9) corresponds to the second case with C > 1 con-
sidered by us in Sec. 8, when C = Ci. Unlike the solu-
tion investigated in Sec. 8, however, where the field
decreased both as η —• +°° and as η —- - », in the
present case the solution at η = 0 must satisfy definite
boundary conditions, which is not possible at arbi t rary
values of the parameters of the wave incident on the
plasma.

At R = 1 it follows from the boundary conditions
(9.4) and (9.6) that

£ 0 (0) = 2£ i n ccos (ψ/2), £j(0) = —2/co£incsin(\|)/2), (9.10)

and from formula (9.9) we obtain for the phase of the
scat tered wave

cos2 (ψ/2) = -(NJNn) β In [1 - (1/β)1, (9.11)

where N c i s the cr i t ical density and β = 4 irTN o 0 /zE 2

n c

is the ratio of the thermal pressure of the particles at
η = °° to the pressure of the field in the incident wave.
From (9.11) we see that cos 2 ($/2) > 0 only if β > 1,
and if the field is to have a stationary distribution in
the plasma it is necessary that the pressure of the inci-
dent wave be smal ler than the thermal pressure of the
plasma. In addition, it follows from (9.11) that the
cri t ical frequency u>c, below which the field can de-
crease in the plasma as η —• +°°, is equal to

ω? = (4πΛν*,Μβ) {—In [1 —(Ι/β)]}"1.

Figure 8 shows a plot of the dependence of the cri t ical
frequency on β. It follows from it that with increasing
amplitude of the incident wave (i.e., with decreasing β),
the region of plasma opacity shifts towards lower fre-
quencies .

To obtain the dependence of the field in the plasma
on the coordinate, we use formula (8.4), in which we
put C = Ci and make the substitution τ = u 2 /2:

£(0)
η= j [2C(1 — β«»/2)_u*r"2du. (9.12)

Ε

T h e u p p e r l i m i t E ( 0 ) i n ( 9 . 1 2 ) c o r r e s p o n d s t o t h e f i e l d

a t t h e p l a s m a b o u n d a r y , a n d i t c a n e a s i l y b e e x p r e s s e d

i n t e r m s o f t h e a m p l i t u d e o f t h e i n c i d e n t w a v e w i t h t h e .

a i d o f f o r m u l a s ( 9 . 1 0 ) a n d ( 9 . 1 1 ) . F i g u r e 9 s h o w s p l o t s

c o n s t r u c t e d w i t h t h e a i d o f ( 9 . 1 2 ) , w h i c h i l l u s t r a t e t h e

v a r i a t i o n o f t h e f i e l d i n t h e p l a s m a a n d t h e c o n c e n t r a -

t i o n o f t h e p a r t i c l e s w i t h t h e c o o r d i n a t e f o r d i f f e r e n t

values of the constant β characterizing the amplitude
of the incident wave, and at a constant concentration of
the unperturbed plasma at infinity.
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FIG. 8.

2

FIG. 9.
FIG. 8. Dependence of the critical frequency on the ratio β of the

thermal pressure of the particles to the pressure of the incident-wave
field.

FIG. 9. Variation of the plasma concentration Ν and of the
amplitude Ε of the hf field with variation of the coordinate η for
different amplitudes of the incident wave (E t a c 2 > E i n c j).

10. Nonlinear stat ionary w a v e s . In Chap. Ill we have
cons idered problems of the l inear theory of coupled
perturbations of the density and of the hf field (e lectro-
acoust ic waves ) . In this s e c t i o n we dwel l briefly on the
r e s u l t s of nonlinear theory of e lec t roacoust ic stationary
waves , i . e . , waves propagating in a p lasma at constant
velocity without changing their shape.

We c o n s i d e r the one-dimens ional problem for
s impl ic i ty and a s s u m e that a l l the quantities in (1.21)—
(1.23) depend on the coordinate and on the t ime in the
following fashion:
Ν (χ, t) = Ν (χ — ut), V (χ, t) = V (χ — ut), υ (χ, t)

— ν0 (χ — ut) cos 1ωο< — φ (χ — ut)]. (10.1)

Substituting (10.1) in (1.21)—(1.23), we obtain

NW = Cu (10.2)
(W2/2) + (zmlimi) ιή, -f s2 In Ν = C2, (10.3)

άψ/άξ = (C, + uu>avl)lvl (c2 + u%), (10.4 )

-rfp-+ (Ci + Ua)i "o + 'if (c* + u*)' ~ m^ + ul) Νυ«=°< (10-5)

where ξ = χ - ut, W = V - u; Ci, C2, and C 3 a re con-
stants, and s 2 = T/mi·

Thus, the problem of investigating the s tructure of
stationary electroacoustic waves reduces to a solution
of Eq. (10.5), in which the concentration i s expressed
in t e r m s of the amplitude of the hf oscillations of
electrons with the aid of a relation that follows from
(10.2) and (10.3), namely

A qualitative analysis of the possible types of solu-
tions of (10.5) and (10.6) is presented i n [ 2 0 5 ] . We con-
fine ourselves to one example, in which it is possible
to obtain analytic, expressions for Ν and v0. Follow-
ing [ 1 0 4 ] , we consider small perturbations of the plasma
density Ν = No + δΝ. From (10.6) we have

and the first integral of (10.5) takes the form ( ω 2

= 4πβ 2 Ν 0 /πι) L

<< ι, c*

Τ 2 c i + a i kmi s'--(C\lNl) v\ (c2 + ιχ*γ ~~ 4 ' U U .

A m o n g t h e p o s s i b l e t y p e s o f s o l u t i o n s o f ( 1 0 . 8 ) ,
s p e c i a l i n t e r e s t a t t a c h e s t o t h e s o l u t i o n s c o n s i d e r e d

in[«>4,203-205 209^ ^ ^ h a v e t h e f o r m o f s o l i t a r y w a v e s .

For these solutions, the hf electric field and the mag-
netic field vanish at infinity, as do also δΝ and

ν ( δ Ν , v0, V, dvo/d4 — 0 as ξ — ±°°), and the phase of
the wave is constant. These conditions allow us to con-
clude that the constants C 2, C 3 , and C4 in (10.8) a r e
equal to zero, and Ci = - N o u . As a result we have

( Φ ' + ̂ ί ΐ - ΐ Κ ί - ^ ^ - Ο , (10.9)

We have taken into account here the fact that u « c,
and assumed the condition | 1 - ( ω ^ / ω 2 ) ! > u 2 / c 2 .

Equation (10.9) can have a solution that is bounded
in space only in the case of a opaque plasma in which
ε(ωο) = 1 - ( ω ^ θ / ω ο ) < 0. This solution i s

vo = Asech {l(a>h-alY>2/c}(x-ut)), (10.10)

where the maximum amplitude A of the electron oscil-
lations i s connected with the soliton propagation
velocity u by the relation

/ 2. (10.11)

According to (10.7), this is a rarefaction wave and the
density varies like

JV = J V 0 { l - 2 - ^ r ^ - s e c h 2 [ t '-' c (x-ut)]). (10.12)

If it is recognized that the amplitude of the electron
oscillations i s connected with the amplitude of the hf
wave by the relation A = eEo/ma>o, then expressions
(10.10)-(10.12) go over into the results of [212] (see
a l s o [ 5 ] ) . The evolution of the solitons with time and the
boundary conditions that determine their formation
when an electromagnetic wave is incident on the plasma
have been considered i n [ 2 1 2 ) 2 0 4 ] . In [ 2 0 3 ; l they took into
account the influence of weak dissipative effects on the
development of the solitons. The question of soliton
stability is discussed i n [ 2 0 9 ] .

V. PLASMA MOTION IN A HIGH-FREQUENCY
FIELD

The study of plasma motion in strong hf fields was
initiated more than 10 years ago and was stimulated by
work on the radiation method of plasma accelera-
t ion 1 2 1 3 1 . In the first s tudies 1 2 1 4 " 2 1 7 1 (for details
see [ 2 1 8 > 2 1 9 ] ) the plasma was regarded as a formation with
a given and invariant configuration (sphere, ellipsoid,
torus , etc.), and the forces acting on this formation in
different hf fields were investigated (see a l s o [ 2 2 0 ] ) . Of
course, the conclusions drawn concerning the motion of
the plasma on the basis of such a simplified model were
only qualitative in character .

Possible deformations of plasma formations have
been discussed i n [ 3 8 ' 3 9 ] , in which the distribution of the
hf pressure forces was obtained for a given distribution
of the density of a transparent plasma. The possibility
of changing the plasma configuration was deduced on
the basis of these data. However, the change in the hf
pressure forces was not taken into account.

A more real ist ic model of the acceleration of a layer
of opaque plasma was used by the authors of [221] (see
also^ 2 2 2 1 ). In their model, the hf field played the role of
a piston and the internal motion of the plasma particles
reflected from this piston was taken into account. How-
ever, the self-consistent problem of the plasma motion
was not solved in these studies.

A number of very simple cases in which the non-
linear equations describing the joint variation of the
plasma density and of the hf fields in the plasma could
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be solved were considered in'4 0»4*1 and will be discussed
here in greater detai l .

In Sees. 11 and 12 we consider, in a quasistatic ap-
proximation, two variants of motion of a layer of t r a n s -
parent plasma in the field of a traveling electromag-
netic wave of sufficiently large amplitude. We shall
show that under certain conditions, the plasma spreads
out, while under other conditions it i s accelerated and
contracts . In Sec. 13 we solve the self-similar problem
of the spreading of a plasma boundary on which an elec-
tromagnetic wave of wavelength much shorter than the
characterist ic thickness of the boundary is incident.

11. Spreading of a plasma layer. In this section we
consider the spreading of a thin layer of a transparent
plasma under the influence of hf pressure forces [ 4 0 ] .
We assume that the plasma density depends only on the
coordinate χ and on the t ime, and that the wave propa-
gates along the Oy axis, the electric field intensity
vector being directed along the Ox axis . At such a
geometry, it i s necessary to put in (2.5) kQX = 0,
sin φ = 0, and cos φ = 1. Then, if the wavelength c/ωο
is large in comparison with the t ransverse layer
dimension, we obtain the corresponding expression for
fE from (2.6), and, neglecting the thermal pressure , we
write down Eqs. (1.21) and (1.24) in the form

dVldt + V dV/dx = —γ dN/dx, ( U . l )

dNIdt + dNVIdx = 0, (11.2)

where y = (4ττβ2ζ/2ΐηί)νϊ,/α>ο and vg = eE0/mo)o.

The solution of Eqs. (11.1) and (11.2) under the
initial condition

V (0, x) = 0, Ν (0, χ) = N= Nm ch- 2 (χ/α) (11.3)

V = (2ytla) Ν th l(x - Vt)lal

JV = [N«» - {ytW) №] ch"2 l(x - Vt)/a],

takes the f o r m [ 2 2 3 ] (other types of solut ions of this s y s -
t e m a r e cons idered i n [ 2 2 4 ] )

(11.4)

(11.5)

where N ( 0 ) i s the initial plasma density at χ = 0, and a
is a quantity characterizing the initial width of the
plasma layer.

The plots in Fig. 10 were obtained with aid of for-
mulas (11.4) and (11.5), and show the variation of the
dimensionless density ν = N/N< 0 > against the coordinate
ξ = x/a for different values of the time
τ= l A Vz)( V E / acD0) t o , . , where u>*u = 4tfze2N(0>/m i. It
is seen from the figure that the plasma layer spreads
out in the course of t ime. The maximum density is r e -
tained at the center of the layer and is equal to

vmax = ν (0, τ) = (1/2τ) 1(1 + 4τ')1/« - 11. (11.6)

It i s important that at a cer ta in instant of t ime To,
which can be obtained from formulas (11.4) and (11.5),
namely

τ0 «1,6 (i xZ,2Yz(a<s>olvE)lvLi), (11.7)

a density discontinuity i s produced. The flow velocity
of the p lasma at the discontinuity point i s
0.95 (u>Li/wo)vE/V2~z. It must be borne in mind that
Eq. (11.1) b e c o m e s m e a n i n g l e s s at the discontinuity
point, a s d o e s (1.24), s i n c e the theory cons idered by u s
i s based on the assumption that the character i s t i c d i s -
tance over which the density v a r i e s i s much larger than
the amplitude of the e l e c t r o n osc i l la t ions in the hf field.

A s applied to the problem cons idered here, neglect

FIG. 10. Spreading of
the plasma layer an hf field.,

of the t h e r m a l - p r e s s u r e f o r c e s , in accordance with
(1.24), i s justified provided the following conditions a r e
sat i s f i ed :

where i g = m v g / 4 is the average energy of the elec-
tron oscillations in the hf field and ω | ^ = 47re2N<0)/m.

12. Acceleration and contraction of a plasma layer.
In this section we consider the motion of a t ransparent
thin plasma layer on the surface of which an e lectro-
magnetic wave is normally incident. As in the preced-
ing section, we assume that the density depends only on
a single space variable χ and on the t ime, but the elec-
tromagnetic wave propagates not along the layer, but
perpendicular to the layer, and the electric field in-
tensity vector is directed along the Oy axis. The hf
pressure force corresponding to this case can easily
be obtained from (2.6). Neglecting thermal pressure ,
the equation of motion (1.24) then takes the form

( L ! = °o)
χ

dV/dt + V dV/dx = - βο \ Ν (χ', ί) cos 2fc0 (x-x')dx', (12.1)

where /30 = ( z v E / 2 c 2 ) - 4 7 r e 2 / n i i .

By multiplying (12.1) by N ( x , t ) and integrating with
r e s p e c t to the coord inates, we eas i l y obtain the equation
of motion of the center of gravity of the layer

du
1Γ

Ν ( ι , i) V ( i , <) dx

Ν (ζ, ί) dx

JV(x, N(x,t)sin2koxdx)t], (12.2)

w h e r e N s = j N ( x , t ) d x i s t h e t i m e - i n d e p e n d e n t n u m -

b e r o f p a r t i c l e s i n t e g r a t e d o v e r t h e l a y e r t h i c k n e s s . I t

i s s e e n f r o m ( 1 2 . 2 ) t h a t t h e a c c e l e r a t i o n o f t h e c e n t e r

o f g r a v i t y o f t h e l a y e r d e p e n d s o n t h e d e n s i t y d i s t r i b u -

t i o n o v e r t h e c r o s s s e c t i o n . I n t h e p a r t i c u l a r c a s e o f

w a v e l e n g t h s k^ 1 = c / w 0 t h a t a r e l a r g e r t h a n t h e l a y e r

t h i c k n e s s , i t f o l l o w s f r o m ( 1 2 . 2 ) t h a t t h e a c c e l e r a t i o n

d u / d t i s c o n s t a n t a n d i s i n d e p e n d e n t o f t h e d e n s i t y

d i s t r i b u t i o n :

du/dt = Nszn (et/mclf (c*£J/mia)*).

T h e e n s u i n g c h a n g e i n t h e l a y e r c o n f i g u r a t i o n c a n b e

t r a c e d w i t h t h e a i d o f E q s . ( 1 . 2 1 ) a n d ( 1 2 . 1 ) , w h i c h t a k e

t h e f o r m *

dVldt + V dV/dx = - β0 j Ν (χ', ί) dx',

dNIdt + dNVIdx = 0.

The general solut ions of th is s y s t e m of equations a r e
given i n [ 4 0 ] , and under the init ial conditions (11.3) they
a r e

ξ = wx + arcth [1 — (wlx)], (12.3)
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ν — [ch2 (ς — ιντ) — τ2. ( 1 2 . 4 )

where the following dimensionless variables a r e used:

I = χ/α, ν = Λ7Λ™, τ = (l/2]/z) (vFJc) tissLl, w = (cYlluE) Vlau>Li.

In accordance with the resu l t (12.2), it follows from
(12.3) and (12.4) that the coordinate at which the density
i s maximal var ies in proportion to the square of the
t ime ξ = τ2, and that the density at the maximum is
equal to

v™* = 1/d - τ2).

Figure 11 shows a plot of the function !/(ξ, τ) based on
formulas (12.3) and (12.4). We see from it that the
plasma layer not only accelerates a s a unit, but also
contracts . This is due to the fact that the force acting
on the plasma is larger on the side of the incident wave.

The foregoing resul t s a r e valid only so long as our
assumption that the plasma is t ransparent, y m a x

« maio/47re2N lo), remains in force. In addition, the con-
ditions for neglecting the thermal pressure in this case
leads to the inequality

1 3 . R a r e f a c t i o n w a v e . L e t u s e x a m i n e h o w a p l a s m a

o n t h e b o u n d a r y o f w h i c h a p l a n e e l e c t r o m a g n e t i c w a v e

is normally incident spreads in a vacuum ^ 4 4 ]. We a s -
sume that the plasma density depends only on the co-
ordinate χ and varies little over the wavelength. Then
Eq. (1.24), in which the hf pressure force is given by
(3.7) and in which the thermal pressure force of the
plasma is neglected, and also the continuity equation
(1.21), take the forms

dNIdt + dNVIdx = 0. (13.1)

(13.2)

Let the quantities Ν and V depend only on one self-
s imilar variable ζ = x / t . From (13.1) and (13.2) it fol-
lows that

v = ι — s (TV), (13.3)

where

2 (TV) = ( ,) Ν/[I - (N/Nc)] 3/2

V = j [s (N)/N] dN.

From (13.3) we obtain with the aid of (13.1) the con-
nection between the p lasma velocity and i t s density:

(13.4)

Further, us ing an e x p r e s s i o n derived from (13.4), we
can obtain the functions Ν(ξ) and ν ( ξ ) from (13.3).
The simplest expressions a r e obtained in the limit of a
tenuous plasma, when ( N / N c ) < 1 :

τ-0,9

FIG. 11. Acceleration and

contraction of a plasma

layer.

N/No = (1/9) [(ξ/50) + 2J«,
V = (2/3) ( | - s0),

(13.5)
(13.6)

where s 2 = Ε ί , 0 ) 2 ζ Ν 0 / 3 2 π Ν ^ ί is the propagation
velocity of smal l perturbations (see formula (7.6) with
s 2 = 0 and kjj » k 2 ) .

The plasma flow velocity is maximal at Ν — 0 and
is given, in accord with (13.5) and (13.6), by

Fmai= - 2 s o = -V2(au/<0o) « H I -

A more general analysis of the rarefaction wave, par-
ticularly with allowance for the constant magnetic field,
is contained i n ' 4 4 ' .

VI. CONCLUSION

In connection with the progress made in microwave
and laser technology, the investigation of plasma prop-
er t ies in strong hf fields has recently become particu-
larly timely not only from the scientific point of view,
but also in pract ice. Naturally, on§ can expect to obtain
the most complete and consistent description of the
plasma under these conditions only with the aid of
kinetic theory 1 0 ' , and the hydrodynamic theory con-
sidered in the present review i s quite crude. It does not
enable us, for example, to consider dissipative effects
that a r i s e in the kinetic description; the thermal motion
of particles is taken into account only via the tempera-
t u r e , which i s assumed to be constant. For many phe-
nomena, however, the relatively simple hydrodynamic
theory can yield a perfectly satisfactory description.
This pertains to the questions of hydrodynamic stability
of the plasma and of the parametr ic wave coupling, to
questions of plasma equilibrium in hf fields, reflection
and penetration of waves, and to questions of plasma
dynamics in hf fields, which were considered in the
present review. A number of the problems considered
a r e relevant only for a plasma in which it i s relatively
easy to produce hf fields whose pressure exceeds the
internal pressure (in this case, the thermal pres sure) .
On the other hand, problems in which the density
changes produced by the hf field a r e small can easily
be dealt with also in connection with other t ransparent
media. Conversely, all problems usually considered
phenomenologically for arbi t rary transparent media
(envelope shock waves and modulation waves [ 2 2 6 ] ,
transients occurring during instability development' 2 2 7 1,
etc.) situated in an hf field fall within the scope of the
described hydrodynamic theory and pertain also to
plasma. There is also a large group of problems of
interest and practical importance, the solution of which
is possible with the aid of the hydrodynamic theory of a
tenuous plasma in a strong hf field.

*[VeBJ =VeX B.

-1,5 -1,0 -0,5 0 0,5 1,0 1,5

"The equations of the hydrodynamics of a plasma in a constant mag-
netic field and in hf fields were discussed i n [ " · 1 2 ] .

2)The general case of field equations in the geometric-optics approxi-
mation, for an inhomogeneous and nonstationary medium, is con-
sidered in[ 4 3 ] with allowance of both the frequency and the spatial
dispersions.

''Relation (3.3) in fact determines the energy flux of the hf wave in
the plasma[42 ]. If the hf wave is a standing wave, then Μ = 0 and
Eq. (3.5) is not suitable. To determine the field amplitude it is neces-
sary to use Eq. (3.4), from which the next-to-last term must be dis-
carded (for details, see Chap. III).

4)Quasilinear effects for a plasma in an hf field were discussed i n [ 4 5 " 5 0 ] ;
nonlinear interactions of waves that are unstable in an hf field were
taken into account in[ 5 1 · 5 2 ]; nonlinear effects connected with the
action of unstable waves on the field of a pumping wave are the sub-
ject of [ " · 5 4 ] .
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s'Since the frequencies of the waves depend in this case on the ampli-
tude of the pump wave, this suggests the interesting possibility of
exciting these waves parametrically by modulating the amplitude of
the pump wave[S7].

"it should be noted that all the expressions considered by us are
valid only if it is legitimate to neglect the thermal motion in the dis-
persion law of the Langmuir waves. As already noted in Sec. 5, this
requires satisfaction of the inequality k<> c ̂  kvy, which can be ex-
pressed with the aid of (6.12) in the form Δ > (m, /m) [Δ2 + 2Δ
QE/qT

7)The question of the change of plasma density under the influence of
pressure of the natural surface wave is considered in [189 ].

8)In the case of wave traveling along the Oz axis, the equation for the
field differs from (8.3) in that the second term on the left is preceded
by a constant factor 1 - (c2 k§ z/coj>), where koz is the projection of
the wave vector on the Oz axis.

9 Îf the pressure of the hf field is much smaller than the thermal pres-
sure of the plasma, then the exponential in (8.4) can be expanded and
the connection between the coordinate and the field can be obtained
in explicit form (see[187> 2 0 1 ], and also Sec. 10).

10)A kinetic equation for a weakly inhomogeneous plasma in an hf
field, in which an average<Lforce acting on the particle is introduced,
has been considered in[ 2 2 ^.

'V . I. Veks ler , Atomnaya Energiya 2 , 427 (1957).
2 L . P . Pi taevsk i l , Zh. Eksp. T e o r . F i z . 39, 1450 (1960)

[Sov. P h y s . - J E T P 12, 1008 (1961)].
3 S . A. Akhmanov and R. V. Khokhlov, Usp. F i z . Nauk

88, 439 (1966) [Sov. P h y s . - U s p . 9, 210 (I960)] .
4 V. S. Starunov and I. L. Fabel inski i , Usp. F i z . Nauk

98, 441 (1969) [Sov. P h y s . - U s p . 12, 463 (1970)].
5 B . B. Kadomtsev and V. I. Karpman, Usp. F i z . Nauk

103, 193 (1971) [Sov. P h y s . - U s p . 14, 40 (1971)] .
e N . Bloembergen, Nonlinear Opt ics, Benjamin, 1965.
7 S . A. Akhmanov and R. V. Khokhlov, Prob lemy

nelineinoi optiki (Prob lems of Nonlinear Optics),
Moscow, VINITI, 1964, Chaps. 1 and 4.

8 I . L. Fabel inski i , Molekulyarnoe r a s s e y a n i e sveta
(Molecular Scatter ing of Light), Moscow, Nauka,
1965, S e c . 34.

9 E . L. Lindman, P h y s . Fluids 10, 396 (1967).
1 0 N . Ya. Kontsarenko and A. M. Fedorchenko, Zh. Tekh.

F i z . 36, 460 (1966) [Sov. Phys .-Tech. P h y s . 11, 340
(1966)].

n R . K l i m a , Z h . E k s p . T e o r . F i z . 5 3 , 882 (1967) [ S o v . P h y s .
J E T P 2 6 , 5 3 5 (1968)] ;Czech. J . P h y s . B 1 8 , 1 2 8 0 (1968).

1 2 R. Klima and V. A. Petrz i lka, ibid., p. 1292.
1 3 V. L. Ginzburg and A . V. Gurevich, Usp. F i z . Nauk

70, 201, 393 (1960) [ S o v . P h y s . - U S P . 3 , 1 1 5 , 1 7 5 ( 1 9 6 0 ) ] .
1 4 A. V. Gurevich, Geomagn. i Aeron. 5, 70 (1965).
1 5 D . T. Farlay, J. Geophys. R e s . 68, 401 (1963).
1 6A. G. Litvak, 8th Intern. Conference on Phenomena

in Ionized G a s e s . Contributed P a p e r s , Vienna, IAEA,
1967.

1 7 F . G. B a s s , Yu. G. Gurevich, and M. V. Kvimsadze,
Zh. Eksp. Teor . F i z . 60, 632 (1971) [Sov. P h y s . -
J E T P 33, 343 (1971)] .

1 8 A. V. Gurevich, ibid. 48, 701 (1965) [21, 462 (1965)].
1 9 M . A. Liberman and A. T. Rakhimov, ibid. 6 1 , 1047

(1971) [34, 559 (1972)].
2 0 A. G. Litvak, ibid. 57, 629 (1969) [30, 344 (1970)].
2 1 A . G. Litvak, Canadidate's Disser ta t ion , Scientific

Research Institute of Radiophysics (NIRFI), Gor'kii,
1967.

2 2 V. A. Golovko, Zh. Eksp. T e o r . F i z . 47, 1765 (1964)
[Sov. P h y s . - J E T P 20, 1189 (1965)].

2 3 V. P . Sidorov and T. R. Soldatenkov, Zh. Tekh. F i z .
35, 1749 (1965) [Sov. P h y s . - T e c h . P h y s . 10, 1354
(1966)].

2 4 N . Ya. Kotsarenko, S. M. Levitski i , A. M. Feodor-

chenko, and V. F. Virko, ibid. 37, 1148 (1967) [12,
827 (1967)].

2 5 B . Chakraborti, Zh. Eksp. T e o r . F i z . 59, 457 (1970)
[Sov. P h y s . - J E T P 32, 250 (1971)].

2 e A . M. Morozov and L. S. Solov 'ev, in : Voprosy
teor i i p lasmy (Prob lems of P l a s m a Theory), Vol. 2,
Moscow, Gosatomizdat, 1963.

2 7 A. V. Gaponov and M. A. Mil ler , Zh. Eksp. T e o r .
F i z . 34, 242 (1958) [Sov. P h y s . - J E T P 7, 168 (1958)].

2 8 H . Motz and C. I. H. Watson, Adv. E l e c t r . and
Electron P h y s . 2 3 , 154 (1967).

2 9 Ya. L. Al 'pert, A. V. Gurevich, and L. P . Pitaevski l ,
Iskusstvennye sputniki ν razrezhennoi plazme
(Artificial Satellites in Tenuous Plasma), Moscow,
Nauka, 1964, Chap. 4, Sec. 18.

3 0 R . Klima and V. A. Petrzi lka, Czech. J . Phys. B19,
35 (1969); Phys. Lett. A27, 20 (1968).

3 1 J . Teichmann, II-eme Colloque Intern, sur Interac-
tions entre les Champs Oscillants et les P lasmas
(Saclay, 15-19 Janvier 1968), v. II, P. , L'Institut
National des Sciences et Techniques Nucleaires-La
Direction de la Physique, 1968, p. 511.

S 2 T . W. Johnson, RCA Rev. 21, 4 (1960).
3 3 K. S. Golovanivskn and A. A. Kuzovnikov, Zh. Tekh.

Fiz. 34, 1714 (1964) [Sov. Phys.-Tech. Phys. 9, 1325
(1965)].

3 4 V. I. P e r e P and Yu. M. Pinskii, Zh. Eksp. Teor . Fiz.
54, 1889 (1968) [Sov. Phys .-JETP 27, 1014 (1968)].

3 5 A. F . Aleksandrov, A. A. Kuzovnikov, N. Nikolov, and
. A. A. Rukhadze, Nucl. Fusion 9, 137 (1969).

3 6V. V. Sever'yanov, Zh. Tekh. Fiz . 41, 504 (1971)
[Sov. Phys .-Tech. Phys. 16, 392 (1971)].

S 7 L . D. Landau and Ε. Μ. Lifshitz, Teoriya polya (Field
Theory), Moscow, Nauka, 1965, Sec. 62.

3 8 L . M. Kovrizhnykh, Zh. Eksp. Teor . Fiz. 33, 72
(1957) [Sov. Phys .-JETP 6, 54 (1958)].

3 9 V. V. Yankov, Zh. Tekh. Fiz. 36, 438 (1966) [Sov.
Phys.-Tech. Phys. 11, 324 (1966)].

4 0 L . M. Gorbunov, Zh. Eksp. Teor . Fiz. 56, 1693 (1969)
[Sov. Phys .-JETP 29, 907 (1969)].

4 1 L . D. Landau and E. M. Lifshitz, Elektrodinamika
sploshnykh sred, (Electrodynamics of Continuous
Media), Moscow, Gostekhizdat, 1957, Sec. 65.

4 2 V. L. Ginzburg, Rasprostranenie elektromagnitnykh
voln ν plazme (Propagation of Electromagnetic Waves
in Plasma), Moscow, Fizmatgiz, 1960, Sec. 16.

4 3Yu. A. Kravtsov, Zh. Eksp. Teor. Fiz. 55, 1470
(1968) [Sov. Phys .-JETP 28, 769 (1969)].

4 4 L . M. Gorbunov, ibid. 54, 205 (1968) [27, 110 (1968)].
4 5V. P . Silin, ibid. 48, 1679 (1965) [21, 1127 (1965)].
4 eV. P . Silin, ibid. 56, 574 (1969) [29, 317 (1969)].
4 7 A. Yu. Kirii, ibid. 60, 955 (1971) [33, 517 (1971)].
4 8 E . J . Valeo and C. Oberman, Bull. Am. Phys. Soc.

15, 1477 (1970).
4 9 O . M. Gradov and B. M. Markeev, FIAN SSSR

Prepr ints Nos. 35 and 36, Moscow, 1971.
5 0V. V. Pustovalov and V. P . Silin, ZhETF P i s . Red.

14, 439 (1971) [ JETP Lett. 14, 299 (1971)].
5 1V. V. Pustovalov and V. P . Silin, Zh. Eksp. Teor.

Fiz. 59, 2215 (1970) [Sov. Phys .-JETP 32, 1198
(1971)].

5 2 E . Valeo, C. Oberman, and F . W. Perkins, Phys.
Rev. Lett . 28, 310 (1972).

5 3V. E. Zakharov, V. S. L'vov, and S. S. Starobinets,
Zh. Eksp. Teor. Fiz. 59, 1200 (1970) [Sov. Phys.-
J E T P 32, 656 (1971)].

5 4V. E. Zakharov and V. S. L'vov, Zh. Eksp. Teor . Fiz.
60, 2066 (1971) [Sov. Phys .-JETP 33, 1113 (1971)].

232 . Sov. Phys.-Usp., Vol. 16, No. 2, September-October 1973 L. M. Gorbunov 232



5 5V. P. Silin, in: A Survey of Phenomena in Ionized
Gases, Vienna, IAEA, 1968; Usp. Fiz. Nauk 108, 625
(1972) [Sov. Phys.-Usp. 15, 742 (1973)].

5 6Yu. M. Aliev and V. P . Silin, Zh. Eksp. Teor. Fiz.
48, 901 (1965) [Sov. Phys .-JETP 21, 601 (1965)].

5 7 Yu. M. Aliev and D. Zyunder, Zh. Eksp. Teor. Fiz.
61, 1057 (1971) [Sov. Phys .-JETP 34, 567 (1972)].

5 8 S . Takamura, S. Aihara, and K. Takayama, J . Phys.
Soc. Japan 31, 925 (1971).

5 9 R . A. Stern and N. Tzoar, Phys. Rev. Lett . 17, 903
(1966).

6 0A. V. Wong, M. V. Goldman, F . Mai, and R. Rowberg,
ibid. 21, 518 (1968).

6 1 H . Kubo and S. Nakawa, J . Phys. Soc. Japan 22, 1304
(1967).

6 2 S . Hiroi and H. Ikegami, Phys. Rev. Lett. 19, 1414
(1967).

6 3 I . R. Gekker and O. V. Sizukhin, ZhETF P i s . Red. 9,
408 (1969) [JETP Lett. 9, 243 (1969)].

6 4 G . M. Batanov, K. A. Sarksyan, and V. A. Silin,
FIAN SSSR Preprint No. 7, Moscow, 1968.

6 5 K. F. Sergeichev, FIAN SSSR Preprint No. 61, Mos-
cow, 1969.

6 e H . Dreicer , D. B. Henderson,and I . C . Ingrahm, Phys.
Rev. Lett. 26, 1616 (1971).

6 7 H . Eubank, Phys. Fluids 14, 2551 (1971).
6 8 A. M. Messian and P. E. Vandeuplas, Phys. Lett.

A25, 389 (1967).
6 9 M . Fitaire and A. M. Pointa, 9th Intern. Conference

on Phenomena in Ionized Gases, Contributed P a p e r s ,
Bucharest, Academy of Science, 1969.

7 0 M . Porkolab and R. P . H. Chang, Phys. Rev. Lett .
22, 826 (1969); Phys. Fluids 43, 2766 (1970).

7 1 R . A. Demirkhanov, G. L. Kharasanov, and I. K.
Sidorova, Zh. Eksp. Teor. Fiz. 59, 1873 (1970) [Sov.
Phys .-JETP 32, 1013 (1971)].

7 2 R . Sugaya, K. Mizuno, and S. Tanaka, J . Phys. Soc.
Japan 30, 253 (1971).

7 3 D . Phelps, S. Ryme, and G. von Hoven, Phys. Rev.
Lett. 26, 1688 (1971).

7 4 W. L. Kruer, P. K. Kaw, J . M. Dawson, and C. O.
Oberman, ibid. 24, 987 (1970).

7 5 W. L. Kruer, P . K. Kaw, and J . M. Dawson, Bull.
Am. Phys. Soc. 15, 1407 (1970).

7 6 I . Katz and J . S. de Groot, Bull. Am. Phys. Soc. 15,
1472 (1970).

7 7W. L. Kruer and J . M. Dawson, Phys. Rev. Lett . 25,
1174 (1970).

7 8 M . Goldman, Ann. Phys. (N.Y.) 88, 95, 117 (1966).
7 9 D . F. DuBois and M. Goldman, Phys. Rev. Lett. 14,

544 (1965).
8 0Y. C. Lee and C. H. Su, Phys. Rev. 152, 129 (1966).
8 1 E . A. Jackson, ibid. 153, 235 (1967).
8 2 D . F . DuBois and M. Goldman, ibid. 164, 207.
8 3 K. Nishikawa, Progr . Theor. Phys. 37, 769 (1967).
8 4 K. Nishikawa, J . Phys. Soc. Japan 24, 1152 (1968).
8 5 N . E. Andreev, A. Yu. Kirn, and V. P. Silin, Zh.

Eksp. Teor. Fiz. 57, 1024 (1969) [Sov. Phys .-JETP
30, 559 (1970)].

8 6 V. P . Silin, ZhETF P i s . Red. 7, 242 (1968) [JETP
Lett. 7, 187 (1968)].

8 7 D . F . DuBois, i n : Statistical Physics of Charged
Part ic les Systems, ed. by R. Kubo and T. Kihara,
N. Y., W. A. Benjamin, 1969.

8 8 I . R. Sunmartin, Phys. Fluids 13, 1533 (1970).
8 9V. N. Oraevskii and R. Z. Sagdeev, Zh. Tekh. Fiz.

32, 1291 (1962) [Sov. Phys.-Tech. Phys. 7, 955
(1963)].

9 0 V. N. Oraevskii, Doctorate Dissertation, Nucl. Phys.
Inst. Ukrainian Acad. Sci., 1969.

9 1 N . Bloembergen, Am. J . Phys. 35, 989 (1967).
9 2 A. Sjblund and L. Stenflo, J . Appl. Phys. 38, 2676

(1967).
9 3 K. Nishikawa, J . Phys. Soc. Japan 24, 916 (1968).
9 4 T . F. Volkov, in : Fizika plazmy i problemy upravl-

yaemykh termoyadernykh reaktsii (Plasma Physics
and Problems of Controlled Thermonuclear Reac-
tions), Vol. 4, Moscow, Izd-vo AN SSSR, 1958.

9 5 L . M. Gorbunov and V. P . Silin, Zh. Eksp. Teor. Fiz .
49, 1973 (1965) [Sov. Phys .-JETP 22, 1347 (1966)].

9 6 D . Montgomery and I. Alexeff, Phys. Fluids 9, 2075
(1966).

9 7 R . Prasad, ibid. 11, 1768 (1968).
9 8 K . P. Das, J . Phys. Soc. Japan 28, 1541 (1970).
" L . M. Gorbunov, Zh. Eksp. Teor . Fiz. 55, 2298

(1968) [Sov. Phys .-JETP 28, 1220 (1969)].
1 0 0 A. Yu. Kirii, ibid. 58, 1002 (1970) [31, 538 (1970)].
1 0 1 N . E. Andreev, ibid., p. 2099 [1132].
1 0 2A. G. Litvak and V. Yu. Trakhtengerts, ibid. 60, 1702

(1971) [ibid. 33, 921 (1971)].
1 0 3V. E. Zakharov, V. V. Sobolev, and V. S. Synakh, ibid.,

p. 136 [77].
1 0 4 V. T s . Gurovich and V. I. Karpman, ibid. 56, 1952

(1969) [29, 1048 (1969)].
1 0 5Yu. M. Aliev, V. P . Silin, and H. Watson, ibid. 50,

943 (1966) [23, 626 (1966)].
1 0 8 1 . Amano and H. Okamoto, J . Phys. Soc. Japan 23,

1432 (1967).
1 0 7 V. I. Domrin, Zh. Tekh. Fiz. 38, 1259 (1968) [Sov.

Phys.-Tech. Phys. 13, 1036 (1969)].
1 0 8 T . Ohinuma and Y. Hatta, Phys. Lett. D26, 620 (1968).
1 0 9Yu. M. Aliev and D. Zyunder, Zh. Eksp. Teor . Fiz .

57, 1324 (1969) [Sov. Phys .-JETP 30, 718 (1970)].
U 0 N . Tzoar, Phys. Rev. 178, 356 (1969).
m O . M. Gradov and D. Zyunder, Zh. Eksp. Teor. Fiz.

58, 624 (1970) [Sov. Phys .-JETP 31, 335 (1970)].
U 2 N . E. Andreev, Izv. Vuzov (Radiofizika) 14, 1160

(1971).
1 1 3 N . E. Andreev and A. Yu. Kirn, Zh. Tekh. Fiz. 41,

1080 (1971) [Sov. Phys.-Tech. Phys. 16, 854 (1971)].
1 1 4 B . M. Markeev, PMTF, No. 5, 12 (1971).
1 1 5 D . Zyunder and A. A. Rukhadze, Izv. Vuzov (Radio-

fizika) 14, 36 (1971).
1 1 6Y. Pomean, Phys. Fluids 10, 2695 (1967).
U 7 L . M. Gorbunov and V. P . Silin, Zh. Tekh. Fiz. 39, 3

(1969) [Sov. Phys-Tech. Phys. 14, 1 (1969)].
1 1 8 N . E. Andreev, ibid., p . 1650 [1237 (1970)].
1 1 9A. G. Litvak, Magnitn. gidrodin. 1, 30 (1965).
1 2 0 C . S. Chen.and G. J . Lewak, J . Plasma Phys. 4, 357

(1970).
1 2 1 M . V. Goldman, Phys. Fluids 13, 1281 (1970).
1 2 2 R . Prasad, ibid., p. 1310.
1 2 3 K. P. Das, J . Phys. Soc. Japan 28, 1310 (1970).
1 2 4 R . Prasad, J . Plasma Phys. 5, 291 (1971).
1 2 5Yu. M. Aliev and E. Ferlengi, Zh. Eksp. Teor. Fiz.

57, 1623 (1969) [Sov. Phys .-JETP 30, 877 (1970)].
1 2 6Yu. M. Aliev, Ο. Μ. Gradov, and A. Yu. Kirii, ibid.

63, 112 (1972) [36, 59 (1973)].
I 2 7 A. L. Berkhoer and V. E. Zakharov, ibid. 58, 903

(1970) [31, 486 (1970)].
1 2 8 N . L. Tsintsadze, ibid. 59, 1251 (1970) [32, 684

(1971)].
1 2 9 I . H. Krenz and G. S. Kino, J . Appl. Phys. 36, 2387

(1965).
1 3 0A, Takeo, J . Phys. Soc. Japan 22, 1282 (1967).
1 3 1 I . Okutani, ibid. 23, 110.

233 Sov. Phys.-Usp., Vol. 16, No. 2, September-October 1973 L. M. Gorbunov 233



1 3 2 R . R. Ramazashvili, Zh. Eksp. Teor . Fiz. 53, 2168
(1967) [Sov. Phys .-JETP 26, 1225 (1968)].

1 3 3 Τ . Amano and M. Okamoto, J . Phys. Soc. Japan 26,
529 (1969).

1 3 4 M . Yomaduchi, S. Hagimawa, and S. Kojima, ibid.
25, 1743 (1968).

1 3 5 T . Hiroshi and W. Shinoune, J . Phys. Soc. Japan 24,
969 (1968).

1 3 6 K. Kato and M. Yoseli, ibid. 23, 671 (1967).
1 3 7 M . A. Hassen and P . W. McDonald, Phys. Fluids 11,

2775 (1968).
1 3 8 A. Tanaca and S. Watanabe, J . Phys. Soc. Japan 24,

969 (1968).
1 3 9 K. Kato, M. Yoseli, S. Kijama, and S. Watanabe, ibid.

20, 2097 (1965).
1 4 0 C . S. Chen, J . Plasma Phys. 5, 107 (1971).
1 4 1Y. Amagishi, K. Yamagiwa, H. Kozima, and K. Kato,

Phys. Lett . A36, 241 (1971).
1 4 2 F . W. Perkins and I. Flivk, Phys. Fluids 14, 2012

(1971).
1 4 3A. D. Piliya, in : Konferentsiya po teori i plazmy.

Annotatsii dokladov (Conference on Plasma Theory.
Abstracts of Papers) , Kiev, 1971.

1 4 4 Μ . Porkolab and R. P. H. Chang, Phys. Fluids 13,
2054 (1970).

1 4 5V. P . Silin, Zh. Eksp. Teor . Fiz. 51, 1842 (1966)
[Sov. Phys .-JETP 24, 1242 (1967)].

1 4 6 E . Rebhan, Phys. Fluids 12, 192 (1969).
1 4 7V. P . Silin, Zh. Tekh. Fiz . 37, 989 (1967) [Sov. Phys.-

Tech. Phys. 12, 712 (1967)].
1 4 8 P . L. Nanez, Phys. Fluids 14, 633 (1971).
1 4 9Ya. B. Fainberg and V. D. Shapiro, Zh. Eksp. Teor .

Fiz. 52, 293 (1967) [Sov. Phys .-JETP 25, 189 (1967)].
1 5 0 V. D. Shapiro, Doctorate dissertation (FTI AN

USSR, 1967).
1 5 1 J . Teichmann, Phys. Lett . A26, 328 (1968).
1 5 2 R . A. Demirkhanov, T. 1. Gutkin, and S. N. Lozovskil,

Zh. Eksp. Teor . Fiz . 55, 2195 (1968) [Sov. Phys.-
J E T P 28, 1164 (1969)].

1 5 3 R . A. Demirkhanov, G. L. Kharasanov, and I. K.
Sidorova, ZhETF P i s . Red. 6, 861 (1967) [JETP Lett .
6, 300 (1967)].

1 5 4 D . Lepechinsky, P . Rolland, and J . Teichmann, Nucl.
Fusion 11, 297 (1971).

1 5 5 T . I. Gutkin and G. I. Boleslavskaya, Ukr. Fiz. Zh.
16, 1415 (1971); Nucl. Fusion 11, 167 (1971).

1 5 8 S . Aihara and S. Takamura, Appl. Phys. Lett. 18, 375
(1971).

1 5 7 M . Okamoto, T. Amano, K. Kitao, J . Phys. Soc.
Japan 29, 1041 (1970).

1 5 8 L . M. Gorbunov and V. P . Silin, Yadernyl sintez 6,
118 (1966).

1 5 9Yu. S. Kostyukova and F . M. Nekrasov, Nucl. Fusion
10, 277 (1970).

1 6 0 F . M. Nekrasov, in: Fizika plazmy i upravlyaemye
termoyadernye reaktsi i (Plasma Physics and
Controlled Thermonuclear Reactions), FTI GKAE
Preprint No. 3, Sukhumi, 1970, pp. 162 and 165.

1 8 1 Ya. B. Fainberg, Usp. Fiz. Nauk 93, 593 (1967) [Sov.
Phys.-Usp. 10, 737 (1968)].

1 6 2A. A. Vedenov, Fizika plazmy (Plasma Physics),
Moscow, VINITI, 1965, Chap. 6.

1 β 3Α. S. Bakai, Zh. Eksp. Teor. Fiz. 55, 266 (1968).
[Sov. Phys .-JETP 28, 140 (1969)].

1 6 4 V. E. Zakharov and A. M. Rubenchik, PMTF No. 5,
84 (1972).

1 6 5 B . B. Kadomtsev, see ref. 26, Vol. 4, 1964.
l 6 6V. P . Silin and A. A. Rukhadze, Elektromagnitnye

svoistva plazmy i plazmopodobnykh sred (Electro-
magnetic Propert ies of Plasma and Plasma-Like
Media), Moscow, Atomizdat, 1961, Sec. 14.

1 6 7 L. M. Kovrizhnykh, T r . FLAN 32, 173 (1965).
l e 8 R . Z. Sagdeev, see ref. 26, Vol. 4, 1964.
1 6 9 L . M. Gorbunov, FIAN SSSR Preprint No. 174, Mos-

cow, 1969.
1 7 0 E . B. Knox, Austr. J . Phys. 10, 565 (1957).
1 7 1 T . F . Volkov, see ref. 94, Vol. 3, p . 336.
1 7 2 R . Z. Sagdeev, ibid., p . 346.
i 7 3 M . A. H. Boot, S. A. Self, R. B. R.-Shersby-Harvie,

J . Electron, and Control 4, 434 (1958).
1 7 4 E . S. Weibel, ibid. 5, 435.
1 7 5 R . T. P . Whipple, Rept. A.E.R.E. R 2917, London,

1959.
1 7 6 S . A. Self, Phys. Fluids 3, 488 (1960).
1 7 7 R. B. R.-Shersby-Harvie, J . Electron, and Control

8, 421 (1960).
1 7 8 H . Motz, Phys. Fluids 6, 308 (1963).
1 7 9 T . W. Johnston, RCA Rev. 21, 570 (I960).
1 8 0Yu. A. Berezin, T. I. Gutkin, S. N. Lozovskii, and

T. R. Soldatenkov, Zh. Tekh. Fiz. 34, 448 (1964)
[Sov. Phys.-Tech. Phys. 9, 350 (1964)].

1 8 1 R . Klima, Czech. J . Phys. B16, 16 (1966).
1 8 2 G . A. Askar'yan, Zh. Eksp. Teor. Fiz. 42, 1567

(1962) [Sov. Phys .-JETP 15, 1088 (1962)].
1 8 3 B . I. Bespalov, A. G. Litvak, and V. I. Talanov, in:

Nelineinaya optika (Trudy 2-go Vsesoyuznogo
seminara po nelineinoi optike) (Trans. Second All-
Union Seminar on Nonlinear Optics) Novosibirsk,
Nauka, 1968; S. A. Akhmanov, A. P. Sukhorukov, and
R. V. Khokhlov, ibid. p. 348.

1 8 4Yu. A. Brodskii, B. G. Eremin, A. G. Litvak, and
Yu. A. Sakhanchik, ZhETF P i s . Red. 13, 136 (1971)
[ J E T P Lett. 13, 95 (1971)].

1 8 5 G . M. Batanov and V. A. Silin, ibid. 14, 445 (1971)
[14, 303 (1971)].

1 8 6 V. I. Talanov, Izv. Vuzov (Radiofizika) 7, 564 (1964);
Yu. R. Alanakyan, Zh. Eksp. Teor. Fiz. 55, 1338
(1968) [Sov. Phys .-JETP 28, 700 (1969)]; A. G. Litvak,
Izv. Vuzov (Radiofizika) 8, 1148 (1965); 9, 629, 900
(1966).

1 8 7V. P . Silin, Zh. Eksp. Teor . Fiz . 53, 1662 (1967)
[Sov. Phys .-JETP 26, 955 (1968)].

1 8 8 R . B. Hall and A. Gerwin, Phys. Rev. A3, 1151 (1971).
1 8 9Yu. R. Alanakyan, Zh. Tekh. Fiz. 37, 817 (1967) [Sov.

Phys.-Tech. Phys. 12, 587 (1967)].
1 9 0V. M. Eleonskii and V. P . Silin, ZhETF P i s . Red. 13,

167 (1971) [JETP Lett . 13, 117 (1971)]. Zh. Eksp.
Teor. Fiz. 60, 1927 (1971) [Sov. Phys .-JETP 33,
1039 (1971)].

I 9 1V. V. Demchenko and A. Ya. Omel'chenko, Ukr. Fiz .
Zh. 15, 2065 (1970).

1 9 2 V. V. Demchenko and V. V. Dolgopolov, Izv. Vuzov
(Radiofizika) 12, 504 (1969); Zh. Tekh. Fiz . 38, 1856
(1968); 41, 839 (1971) [Sov. Phys.-Tech. Phys . 13,
1495 (1969); 16, 661 (1971)].

1 9 3 V. V. Demchenko, V. V. Dolgopolov, and A. Ya.
Omel'chenko, FTI AN USSR Preprint 70-57,
Khar'kov, 1970.

1 9 4 V. A. Mironov, Izv. Vuzov (Radiofizika) 12, 1765
(1969); 14, 1450 (1971).

1 9 5 V. V. Demtchenko and A. M. Hussein, J . Plasma
Phys. 13, 996 (1971).

1 9 6 A. V. Gurevich and L. P . Pitaevskii, Zh. Eksp. Teor.
Fiz. 45, 1243 (1963) [Sov. Phys .-JETP 18, 855
(1964)].

1 9 7 V. B. Gil'denburg, ibid. 46,2156 (1964) [19,1456 (1964)].

234 Sov. Phys.-Usp., Vol. 16, No. 2, September-October 1973 L. M. Gorbunov 234



198 V. V. Golgopolov, Zh. Tekh. Fiz. 36, 273 (1966) [Sov.
Phys.-Tech. Phys. 11, 198 (1966)].

199V. B. Gildenburg, I. Y. Kondrat'ev, and M. A. Miller,
8th Intern. Conference on Phenomena in ionized
Gases. Contributed Papers, Vienna, IAEA, 1967.

200V. B. Gil'denburg, I. G. Kondrat'ev, and G. A.
Markov, Izv. Vuzov (Radiofizika) 12, 655 (1969).

201V. V. Demchenko and V. V. Dolgopolov, Zh. Tekh.
Fiz. 38, 1843 (1968) [Sov. Phys.-Tech. Phys. 13,
1486 (1969)].

202R. R. Ramazashvili, Kr. Soobshch. fiz. (FIAN SSSR),
No. 1, 15 (1971).

203 V. Ts. Gurovich and V. I. Karpman, IYaF SO AN
SSSR Preprint No. 310, Novosibirsk, 1969.

204V. I. Karpman, J. Plasma Phys. 13, 477 (1971).
205V. V. Vas'kov and V. I. Karpman, Zh. Tekh. Fiz. 41,

676 (1971) [Sov. Phys.-Tech. Phys. 16, 529 (1971)].
206B. A. Trubnikov, ZhETF Pis. Red. 14, 472 (1971)

[JETPLett. 14, 322 (1971)].
207 V. E. Zakharov, Zh. Eksp. Teor. Fiz. 53, 1735 (1967)

[Sov. Phys.-JETP 26, 994 (1968)].
208 V. I. Domrin and R. R. Ramazashvili, Kr. soobshch.

fiz. (FIAN SSSR), No. 7, 62 (1970).
209V. V. Vaskov and V. I. Karpman, Nucl. Fusion 11, 215

(1971).
210V. Ts. Gurovich, V. I. Karpman, and R. N. Kaufman,

IYaF SO AN SSSR Preprint No. 262, Novosibirsk,
1968.

211V. M. Eleonskii and V. P. Silin, Zh. Eksp. Teor. Fiz.
56, 574; 57, 478 (1969) [Sov. Phys.-JETP 29, 317
(1969); 30, 262 (1970)].

212 V. I. Karpman, ZhETF Pis. Red. 9, 480 (1969) [JETP
Lett. 9, 291 (1969)].

213 V. I. Veksler, Proc. of the Symposium on High-
Energy Accelerators and Pion Physics, v. 1, Vienna,
IAEA, 1956.

214M. L. Levin, Trudy RTI AN SSSR 1, No. 1, 5 (1969).
215G. A. Askar'yan, M. L. Iovnovich, M. L. Levin, and

M. S. Rabinovich, Nucl. Fusion Suppl. 2, 797 (1962).
2leM. L. Levin, Tr. TRI AN SSSR 1, No. 2, 36 (1959).
217M. A. Miller, Zh. Eksp. Teor. Fiz. 36, 1909 (1959)

[Sov. Phys.-JETP 9, 1358 (1959)].
218V. I. Veksler, I. R. Gekker, E. Ya. Gol'ts, B. P.

Kononov, G. S. Luk'yanchikov, M. S. Rabinovich,
K. A. Sarksyan, K. F. Sergeichev, V. A. Silin, and
L. E. Tsopp, Tr. FIAN 32, 60 (1966).

219R. Z. Muratov, Candidate's Dissertation (FIAN, 1969).
220M. L. Levin and R. Z. Muratov, Zh. Tekh. Fiz. 39,

1712 (1969) [Sov. Phys.-Tech. Phys. 14, 1285 (1970)].
221 A. V. Gurevich and V. P. Silin, Yad. Fiz. 2, 250

(1965) [Sov. J. Nucl. Phys. 2, 179 (1966)].
222 V. I. Domrin and R. R. Ramazashvili, ibid. 5, 312

(1967) [5, 219 (1967)].
223S. A. Akhmanov, A. P. Sukhorukov, and R. V.

Khokhlov, Usp. Fiz. Nauk 93, 19 (1967) [Sov. Phys.-
Usp. 10, 609 (1968)].

224A. V. Gurevich and A. B. Shvartsburg, Zh. Eksp.
Teor. Fiz. 58, 2012 (1970) [Sov. Phys.-JETP 31,
1084 (1970)].

a25A. G. Litvak, M. I. Petelin, and E. I. Yakubovich,
Zh. Tekh. Fiz. 35, 108 (1965) [Sov. Phys.-Tech.
Phys. 10, 81 (1965)].

228L. A. Ostrovskii, see ref. 183, p. 301; A. V. Gaponov,
L. A. Ostrovskii, and M. I. Rabinovich, Izv. Vuzov
(Radiofizika) 13, 163 (1970).

227N. M. Kroll, J. Appl. Phys. 36, 34 (1965); Chen-
Show Wang, Phys. Rev. 182, 482 (1969); L. M.
Gorbunov, in: ref. 143; Zh. Eksp. Teor. Fiz. 62, 2141
(1972) [Sov. Phys.-JETP 35, 1119 (1972)].

Translated by J. G. Adashko

235 Sov. Phys.-Usp., Vol. 16. No. 2, September-October 1973 L. M. Gorbunov 235


