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The problem is treated of reconstructing the spatial structure of biological macromole-
cules and their aggregates (e.g., in viruses and crystals) from electron micrographs,
which are two-dimensional projections of these three-dimensional objects. Potentialities
of the physical methods (optical diffraction, filtering, and holography) in interpreting elec-
tron micrographs are described. The fundamentals are given of the mathematical theory
of three-dimensional reconstruction from projections: the Fourier method, the algebraic
methods, and the analytical methods. Applications are reviewed of the three-dimensional
reconstruction methods in studying a number of objects: protein crystals, helical struc-
tures made of globular proteins, bacteriophages, and spherical viruses.
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1. INTRODUCTION

Electron microscopy has been one of the few methods
whose emergence has permitted a qualitative leap in the
development of the sciences of the microstructure of
matter. This is especially true of biology. The latter, in
going beyond the level of optical microscopy (observing
cells and large microorganisms), has gained the ability
to observe structure at resolutions down to ~ 10 A, i.e.,
structural details of organelles of cells and viruses, and
finally, in recent years, to proceed to studying the struc-
tures of individual biological macromolecules (biomole-
cules). The latter topic will be the specific subject of
our discussion, not merely in the aspect of observing
these molecules, but in getting data on their three-
dimensional spatial structure as based on electron
micrographs.

a) Potentialities of the electron-microscope method.
The resolution of the best modern commercial electron
microscopes is as good as 2-3 A, which is near the
theoretical limit (1.5 A for 100 kV).[1~3] However, un-
fortunately, this resolution cannot be realized at present
as applied to biomolecules. The problem is that they are
made of the light atoms C, N, O, and H, which weakly
scatter and absorb electrons. Thus the contrast proves
to be insufficient in the electron images of these mole-
cules themselves, or of the molecules as compared with
the substrate (carbon or organic films). Hence, people
resort to methods of so-called staining,1-4'7-1 by introduc-
ing into the specimen substances that strongly scatter
electrons, e.g., uranyl acetate, phosphotungstic acid,
etc. In positive staining (Fig. la), one covers, or wraps,
the surfaces of the biomolecules or some of their aggre-
gates with a thin layer of such a material. The method
of negative staining (Fig. lb) is more customary. Here
the specimen is immersed in a mass of stain. The latter
forms a mold of the object. The stain also penetrates
into the cavities of the studied object, e.g., in studying
protein crystals, it replaces the mother liquor that lies
between the biomolecules or their subunits in such a
crystal (Fig. lc, d). Naturally, when electrons are trans-

FIG. 1. Positive (a) and negative (b) staining of biomolecules on a
substrate (the stain is the dark area); diagram of the structure of a pro-
tein crystal: molecules and mother liquor between them (c); a negatively
stained protein crystal (d).

mitted through a stained specimen, the obtained pattern
arises mainly from the distribution of the stain, which
in some way reflects the structure of the scattering ob-
ject.

The stain distribution always shows certain inhomo-
geneities. On the other hand, biomolecules and their
aggregates (e.g., viruses, ribosomes, and protein crys-
tals) possess very complex structures, which at the same
time are maintained by relatively weak forces. Hence,
the stain can affect them severely, and their structure
and shape can undergo certain changes. All of this re-
duces the actually attainable resolution in staining of
biomolecules to 30—20 A, and in the better studies, to
15-10 A.

Another fundamental restriction of the electron-
microscope image is that it is only an enlarged shadow,
or projection, of the object. Owing to the small aperture
(~10~2 radian), the depth of focus of the electron micro-
scope amounts to about 2000 A, which approximately
matches the thicknesses of the studied objects, or ex-
ceeds them. The intensity of the electrons transmitted
through the object is determined by the distribution of
matter in it, i.e., by the corresponding absorption (and
scattering) μ ( χ , y, z) for the penetrating radiation
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(μ = 1 - Q, where Q is the total effective scattering
cross-section):

/ (x, z) ~ /„ exp [ j μ (χ, y, ζ) dy] , D (x, z) = / [/ (x, z)], (1)

where D is the blackening. The blackening law i s usually
logarithmic. Thus, if we know the absorption coefficients
for e lectrons, μ δ in the stain and μ ρ in the protein (the
former plays the major role, as the values of μ a r e
negligibly small in comparison with μ 8 ) , we can t rans-
form from the observed blackening on the photographic
plate to relative or absolute values of the projected mat-
ter distribution in the object (see below). However, we
do not have direct information on the three-dimensional
s t ructure .

In spite of these limitations (in resolution and in
planarity of the image), electron microscopy of biologi-
cal specimens has brought a number of remarkable ad-
vances in the fundamentals of molecular biology. Among
them are the discovery of the symmetr ical s t ructure of
spherical and cylindrical v i ruses, the molecular s truc-
ture of muscle and i t s protein components, the study of
the s t ructures of ribosomes and mitochondria, and the
structure of a number of individual biomolecules, e tc .

What do these studies provide, and what level of
organization of biomolecules i s accessible to electron
microscopy? We recal l that almost all these molecules
are p o l y m e r i c . ^ The chemical formula of the se-
quence of links in a biopolymer is called the primary
structure . This is the topological invariant of the multi-
tude of possible spatial configurations. Some particular
stable conformation of certain regions of the chain, e.g.,
the a helix or the extended β s tructure in proteins, or
the double helix in DNA, is called the secondary s t ruc-
t u r e . The ter t iary structure i s the concrete conforma-
tion of the given biopolymer, e.g., the spatial structure
of a polypeptide chain as packed in the compact globule
of some protein. The molecules of many proteins con-
sist of several (two, four, or a larger number) of so-
called subunits, each of which is an individual coiled
polypeptide chain. The spatial combination of subunits
into the complex molecule i s called the quaternary s t ruc-
t u r e . The information on the secondary and ter t iary
s t ructures , which requires atomic resolution, comes
from X-ray diffraction analysis. However, it is ex-
tremely laborious, and applicable to molecules whose
number of atoms does not exceed ~10 4 , and is possible
only when the object can be crystallized (see, e.g.1-9 '1 0·1).

The current field of electron microscopy of biomole-
cules is mainly in studying quaternary s t ructure , and in
individual cases , in getting certain crude data on ter t iary
and secondary s t ructures . At the same t ime, it i s the
field of study of combination of molecules of proteins,
nucleic acids, and nucleoproteins into aggregates: native
ones, such as the v iruses, r ibosomes, chromosomes, or
membranes, or synthetic ones, such as planar mono-
molecular films, tubes, or crysta ls . We can call this
level of organization the fifth-order level, or quinary
structure . The number of atoms combined into a quater-
nary or quinary structure is of the order of ΙΟ5—107. Of
course, they cannot be observed individually. However,
we can get direct information on the dimensions, shape,
and mutual arrangement of the molecules made of these
atoms, and on conformational changes in the quaternary
structure when such occur, e tc .

Thus, both in the attainable resolution and in the level
of organization of biosystems, electron microscopy ex-

tends the " a t o m i c " level of x-ray diffraction analysis
toward larger objects of study. Other physical methods
that give additional information at about the same level
(on the molecular weight, mean dimensions of macro-
molecules, etc.) are small-angle x-ray scattering, sedi-
mentation analysis (centrifugation), viscometry, e tc . It
i s always desirable to account for data obtained from
them, because the natural state of biomolecules is in
solution or in a hydrated medium, whereas mounting of
specimens often results in desiccating them in vacuo,
and the study itself is conducted in vacuo/ 4 ' 5- 1 although
there a re treatments that permit one to avoid this situa-
tion (see, e.g. 1 1 3 3 ).

b) Interpretation of electron micrographs. Figures
2—10 show electron micrographs of some biological ob-
jec t s . C l l ~ 2 5 ] In most cases , the investigators have r e -
str icted themselves to measuring the dimensions of the
studied object and describing it qualitatively. In a num-
ber of cases , especially when several views have been
taken, i .e., projections of the object, the r e s e a r c h e r ' s
spatial imagination and intuition permit him to build an
idealized model of the object. Moreover, this is simpli-
fied in cases , as are highly typical of biomolecules and
their aggregates, when the structure possesses some
particular symmetry. Thus, Fig. 2 demonstrates the
structure of the glutamate dehydrogenase molecule,
which has the symmetry 32, C l i J while Fig. 3 shows the
structure of the complex molecule of hemocyanin (a blue
protein containing copper that t ransport s oxygen in

FIG. 2, The glutamate dehydrogenase molecule in different orienta-
tions on the substrate: a) (500,000 X magnification); b) the model; c)
simulation of projections of the model in the same orientations as calcu-
lated by a computer.
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FIG. 3. Molecules of hemocyanin.

FIG. 4. The glutamate dehydrogenase complex in different projec-
tions (1.3 Χ 106 X magnification) (a); and a model of it (b).
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FIG. 5. The pyruvate dehydrogenase complex (a); and a model of it
made of 24 subunits (b) (magnification of the model is 8 X 106).

FIG. 6. "Spherical" (icosahedral) viruses: human wart virus and a ball
model of it made of 72 units (200,000 X magnification) (a); adenovirus
(252 units; 200,000 X magnification) (b); herpes virus (162 units;
220,000 X magnification (c); and a model of it (d).

FIG. 7. Tobacco mosaic virus (380,000 X magnification).

mollusks, and has a molecular weight of 8.6 million.)'-12-'
Figure 4 shows pictures that permit one to determine the
quaternary structure of the glutamate dehydrogenase
complex,t13^ and Fig. 5 shows the pyruvate dehydrogen-
ase complex. Figure 6 shows some spherical viruses
(human wart virus, herpes virus, and adeno-
virus)1-7'15'16'17-' which have icosahedral symmetry (see
p. 200 below). Figure 7 is tobacco mosaic virus
(TMV),C 4 ) 7 '1 7 '1 8 ] which has helical symmetry. Figure 8
shows the same symmetry in the tails of bacteriophage,
and the polyhedral structure of their heads.C 4 ' 6 ' 7 ' 1 9 ' 2 0^
We shall present idealized models of some of these
structures.

The problem is more complex when the object is
asymmetric. A typical example is ribosomal parti-
cles [ 4 ' 2 1 ' 2 3 : l (see Fig. 9). Evidently, although building of
such models is useful, and it gives an understanding of
some of the features of the structure of the object, it is
not free from the subjective approach.

Great potentialities are opened up by studying symme-
trical aggregates of protein molecules obtained in vitro.
Figure 10 gives an example. Devising an image-forma-
tion model is a definite forward step. For example, one

FIG. 8. Bacteriophages of Bacillus mic. (220,000 X magnification)
(a); and T4 (300,000 X magnification) (b); unwinding of its tail (c); and
an element of the tail (d).

FIG. 9. Ribosomes in different orientations (a) and a diagram of their
structure made of subparticles with a canal between them (b) (500,000 X
magnification).

FIG. 10. Monomoiecular layers (two-dimensional crystals), tubes, and
individual molecules of beef liver catalase (150,000 X magnification) (a);
and tubes of human erythrocyte catalase (120,000 X magnification) (b).

can consider the "shadow" of the model of some struc-
ture in different orientations (see Fig. 4) by comparing
the obtained patterns with electron micrographs. This
work can also be relegated to the computer. Figure 11
shows different projections of a polyoma-type virus
(such as the human wart virus (see Fig. 6a), which is
made of 72 morphological units), as calculated by a
computer and as they appear on the screen.1-24^ These
projections imitate the corresponding photographs well.
A projection of the glutamate dehydrogenase molecule
has also been obtained (see Fig. 2c).

Analysis of the structure of molecules is simplified if
they form regular symmetric structures in vitro. For
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FIG. 11. A polyoma-type virus made of 72 morphological units (a)
and a simulation of it in matching orientations as obtained by a com-
puter (b).

example, the protein catalase can form two-dimensional
monomolecular layers. Tubular, cylindrical protein
crystals (see Fig. 10) were also first discovered with
this material.t!!5~27-1 Just like a number of other pro-
teins, catalase can also crystallize in a three-dimen-
sional crystal (see Fig. 28 below).

Studies have been conducted in the last five years in
the Laboratory of Molecular Biology in Cambridge, in
the Institute of Crystallography of the USSR Academy of
Sciences in Moscow, and at other places, that permit one
to solve quantitatively the problem of determining the
three-dimensional structures of objects from their elec-
tron micrographs. The main topic of our review is to
discuss them. Further, we shall first take up the beauti-
ful physical method of "optical filtering," which gives
some information on three-dimensional structure.

2. OPTICAL DlFRACTION, FILTERING, AND
HOLOGRAPHY

As I have stated, biological objects in a number of
cases are symmetrical. These include two-dimensional
crystals (layers) and three-dimensional protein crystals.
They include the rodlike viruses and phage tails, which
are periodic in one direction, and which possess helical-
cylindrical symmetry (see Figs. 7, 8, 10). The "cylin-
drical crystals" of globular proteins, which are tubes
with monomolecular walls (or more rarely, with thick-
nesses of two or more molecules), have the same sym-
metry. ̂ *"2a-' One can get an optical diffraction pattern
by shining a beam of coherent (laser) light through an
electron micrograph of such an object.'-29"31·1 Figure 12a
shows a diagram of an optical diffractometer, which in
essence is an Abbe microscope system. The diffraction
pattern is determined by the Fourier integral of the
optical density D(x, y) of the micrograph:

Φ (Χ, Υ) = j D (x, y) exp [2πί (xX + yY)] dx dy = % [Dl. (2a)

One can observe this pattern (with an intensity I ~ |Φ|2)
in the back focal plane of the diffractometer. In the gen-
eral case, the value of Φ is distributed continuously in
this plane. The optical density is a superposition of the
image D of the periodic structure and the background

i Dnoise

D = Dp
(3)

The b a c k g r o u n d i n c l u d e s the i m a g e of the s u b s t r a t e and

d e v i a t i o n s f r o m p e r i o d i c i t y in the ob ject i t se l f . T h e dif-

f r a c t i o n f r o m t h e p e r i o d i c c o m p o n e n t

δ [Dp] = J o p (x, y) exp [2π£ (fix + ky)) dx dy = ΦΛΛ = | <bhh | eS*
(2b)

is concentrated at the lattice s i tes hk of the reciprocal
lattice of the object which have the coordinates χ = h/a

FIG. 12. a) Diagram of an optical diffractometer (Li—L} are the
lenses of the optical system, D is the object (an electron micrograph),
M0 is the diffraction plane and a mask that transmits only the Φ ^ , D p

is the plane of the (filtered) image); b) an electron micrograph of a crys-
talline layer of the protein phosphorylase b; c) its diffraction pattern
(the circles correspond to the holes in the mask that transmit only the
Φΐύί diffraction from the periodic component of the image); d) the
filtered image.

and y = k/b (a and b are the periods). Figure 12b gives
as an example an electron micrograph of a monomole-
cular layer of a "two-dimensional c r y s t a l " of the protein
phosphorylase b,'-28-' and Fig. 12c gives the optical dif-
fraction pattern of this layer. If we collect the diffracted
beams of (2a) with a lens, which corresponds to the in-
verse Fourier transform

"1 [Φ (X, Y)\ = D (x, y). (4)

then we get again an image of the micrograph. However,
we can use the fact that the diffracted beams Φ ^ from
the periodic component D are spatially isolated; by
placing in the diffraction plane a screen with apertures
(a mask) having coordinates corresponding to the lattice
points of the reciprocal lattice. That is, we can perform
optical filteringr ] (Fig. 12d). The mask is prepared to
fit the diffraction pattern. Then the image will give only
the contribution of the component (2b), and as in any op-
tical instrument, the transmitted Φη^ will keep their own
phases. (They would have been lost if a photograph had
been taken in the diffraction plane, since a photographic
plate records I ~ |Φ|2.) However, the diffracted beams
S[Db] will be stopped. Thus we get a cleaned-up
(filtered) picture of the periodic structure alone:

( ΐ , y). ( 5 )

I n a d d i t i o n t o t h e p r o b l e m o f r e f i n i n g t h e i m a g e , o p t i c a l

d i f f r a c t o m e t r y p e r m i t s o n e t o d e t e r m i n e t h e l a t t i c e

p e r i o d s v e r y e x a c t l y .

H o w e v e r , t h e m o s t e l e g a n t a p p l i c a t i o n o f t h i s m e t h o d ,

w h i c h r e v e a l s t h e s t r u c t u r e o f t h e o b j e c t i n t h e t h i r d

d i m e n s i o n , i s d i f f r a c t i o n f r o m h e l i c a l c y l i n d r i c a l s t r u c -

t u r e s l i k e t h e c y l i n d r i c a l v i r u s e s , p h a g e t a i l s , a n d m o n o -

m o l e c u l a r t u b e s . T h e s e o b j e c t s s h o w p e r i o d i c i t y a l o n g

t h e p r i n c i p a l a x i s ( w i t h p e r i o d c ) , a n d t h e i r s y m m e t r y i s

m o s t o f t e n d e s c r i b e d b y g r o u p s o f t h e t y p e S p / q N . C 3 3 ~ e : >

H e r e s D / i s t h e o p e r a t i o n o f s c r e w t r a n s l a t i o n b y t h e

a n g l e a = 2Trq/p ( w h i c h a m o u n t s t o o n e p t h o f q c o m p l e t e

t u r n s ) w i t h s i m u l t a n e o u s t r a n s l a t i o n a l o n g t h e a x i s b y

c / p . I n a d d i t i o n t o t h i s s y m m e t r y o p e r a t i o n , w h i c h r e -

l a t e s p a c k i n g u n i t s o f t h e h e l i c a l s t r u c t u r e ( e . g . , p r o t e i n

m o l e c u l e s ) t o o n e a n o t h e r , t h e s e s t r u c t u r e s o f t e n a l s o

have a simple rotation axis of order Ν (usually Ν = 2, 3,
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6, ...) that determines the " s t r a n d e d n e s s " of the helix.
The diffraction from such s tructures having the period c
and the scattering density p(r, φ , ζ) is determined by the
Fourier-Bessel t ransform' · 3 3 ^

Φ(Λ, Ψ, Z)= 2 «ρ[ί»(ψ+.2.)] f j |p(r, f, z)

X Ja (ZwrR) exp { — ι (ηψ+2πζΖ) ] τ dr *|> dz.

T h e e l e c t r o n m i c r o g r a p h i s a p r o j e c t i o n of the s t r u c t u r e

p(r, Φ, z).

According to the general properties of transforms
(see below, (21), (22)), the diffraction from a projection
is determined by the cross-section of the transform (6)
at a certain value of Φ. The analog of the reciprocal
lattice of a crystal here is the so-called cylindrical
reciprocal lattice, whose maxima correspond to the
maxima of the Bessel functions J n entering into Eq. (6).
The lat ter a re determined by the selection rule

l = mp + (ng!N), (7)

Here q and ρ a re the symmetry parameters of the helix,
/ is the number of the layer line in the diffraction pat-
te rn, such that Ζ = Z/c; m = 0, ± 1 , ± 2 , e tc . Figures 13
and 14 give examples of optical diffraction from this type
of s t ructures . Figure 13 i l lustrates the diffraction pat-
tern of the monomolecular tube of catalase in Fig. 10a.
Its parameters are c = 540 A, p/q = 70/11, and Ν = 1.
The outer diameter of the tube is 290 A . [ 3 7 ] Phosphory-
lase b forms analogous tubes, as in Fig. 14a (molecular
weight = 350,000, c = 840 A, p/q = 27/7, Ν = 4, and
d = 320 Α ) . [ 2 8 ] Figure 14b shows the optical diffraction
pattern, with the coordinate grid of a plane section of
the cylindrical reciprocal lattice drawn on it. It is im-
portant to note that this plane section actually breaks
down into two nets (which are provisionally denoted in
Figs. 13—14b with one in solid l ines, and the other in
dotted lines). One of them corresponds to diffraction
from the " f r o n t " wall, and the other from the " b a c k "
wall of the tube made of helically packed molecules.

This circumstance allows us to use the idea of optical
filtering by preparing a mask with holes corresponding
to one of the nets (see Fig. 14c). The slits in the mask
are elongated to fit the profile of the diffraction maxima,
which are determined by the radial spread of the peaks
of the Bessel functions J n . The zero-order peak is
attenuated with a filter to half-intensity. The obtained
image (Fig. 14d) is thus one side of the tube; the back-
ground has also been filtered out of it . The m i r r o r -
equivalent mask (see Fig. 14c) t ransmits the diffracted
beams from the other side of the tube, and correspond-
ingly gives its image (see Fig. 14e). We can distinctly
see the helical packing in these images, and the s t ruc-
ture of the individual protein molecules that form the

FIG. 14. Electron micrograph of a tube made of phosphorylase b (a);
its optical diffraction pattern with two families of diffraction spots cor-
responding to the front and back walls of the tube (b); the same pattern
with the slits of the two corresponding masks (c); the filtered image of
the front and back sides of the tube (d and e); and a model of the mole-
cule (f)·

packing is already manifested. Their appearance in
different angular orientations in the tube made it possi-
ble to build a model of the molecule: it is made of four
bent subunits arranged at the vert ices of a tetrahedron
(see Fig. 14f). A number of other objects having helical
symmetry have been studied in the same way. Thus, a
step has been taken out of the plane of the electron-
optical picture into the third dimension of the studied ob-
jects by using this optical method (with visible light
rays) .

All of the optical procedure of filtering from noise,
or isolating part of an image, can be replaced by com-
puter calculation by the formulas (2)—(7) described
above. The source mater ia l for this is the measurement
of the optical density D of the micrograph. This method
is more complex, but it gives precise quantitative r e -
sults . Here one can also avoid difficulties in interpreting
the secondary (filtered) image that involve photographic
methodology (accounting for the light curves of blacken-
ing, etc.) . In this procedure, the moduli l*hk' a n c * their
phases α η ^ must enter in calculating Eq. (5).

FIG. 13. A catalase tube and its optical diffraction pattern (cf. Fig.
10a).

One can take another path: to combine optical and
computing methods by using the principles of holo-
graphy.1-38-1 As we know, in order to do this, one mixes
in the plane of the hologram the radiation coherently
scattered by the object with a reference beam coherent
with it. The interference pattern, or hologram, contains
a record of the phases, and it reproduces an image of the
object when illuminated with coherent light. In holo-
graphy of aperiodic objects, one does not measure the
hologram itself, and one cannot in practice determine the
phases corresponding to each of its points. However, the
hologram of a periodic object obtained near the diffrac-
tion plane permits one to determine the phases of the
spots hk. We shall call such a hologram a " p h a s o g r a m " .
Figure 15a shows a region of a micrograph of a two-
dimensional monomolecular layer of catalase. Figure
15b shows the phasogram, and Fig. 15c shows its magni-
fied reflections. We see that each spot is crossed by in-
terference fringes. Superposition of the reference wave
Φο = e * w x (ω = (2ν/λ) sin φ , where φ is the angle of inci-
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FIG. 15. A monomolecular layer of catalase (a); its phasogram (b); a
magnified image of the reflections (c); and an image of the molecules
calculated from intensities and phases found from b and c (d).

dence on the photographic plate) and *jjk will give^39-1

/ a v ~ (1/2) + (1/2) 1 Φ,, |a + | Ohh | cos (a - <oX). (8)

Measurement of the amount of shift of the interference
fringes in the spots ΔΧ = Δα/ω = λ/2 sin φ determines
the relative phases a in (2b), and Ι Φ ^ Ι = l{jk· ^ e c a n

now calculate a Fourier synthesis by Eq. (5) using these
quantities. This is shown in Fig. 15c as a contour plot.
Thus we get here a quantitative description of the
periodic component of the image (Fig. 15a).

Of course, one can also reconstruct the image opti-
cally from the hologram,1'3 8-' and if one combines the
phasogram principle with the principle t 3 2- 1 of filtering
one of the components of the image (by superposing a
mask on it), then one should reconstruct one such com-
ponent such as Fig. 14c, d.

In line with our t reatment here of problems of optical
diffraction and holography, with application thus far to
the light-optical interpretation of electron-optical
images, i t i s pertinent to mention the possibilities of
applying these same ideas in electron optics itself. In
principle, of course, all of this can be achieved for elec-
tron waves as well. However, in pract ice, it has not yet
been possible to invent analogous electron-optical sys-
tems having the necessary minimum of their numerous
inherent aberrat ions. While electron diffraction from
crystals became a working method of s tructure analysis
long ago,'"39'1 it i s a complex problem to get diffraction
patterns from proteins, as the patterns are concentrated
at very small angles because of the huge interplanar dis-
tances. It can be solved by using electron-optical sys-
tems that magnify the deflection angles of the diffracted
beams, i .e. , as though increasing the effective length of
the instrument. Figure 16 gives an example of diffrac-
tion from the same catalase specimen as a whole in the
electron microscope.1-4 0-'

In their origin, the ideas of holography have been
aiming in many ways at electron microscopy. ' 4 1

The problem hinges on a coherent source of e lectrons.
Moreover, one st i l l can't avoid using magnifying elec-
tron optics with i ts aberrat ions, since the hologram must
be recorded on a photographic plate having a resolving
power comparable with that needed for electron waves

FIG. 16. A three-dimensional crystal of orthorhombic catalase and
its corresponding electron-diffraction pattern.

having λ ~ 0.05 A. Nevertheless, current est imates
show that one can hope to increase the resolution (for
non-biological specimens) to ~0.4 A by using the holo-
graphic principle. The image can be reconstructed
from the hologram by the optical-analog method or by
computer calculation. [ 3 ' 4 4 ' 4 5 -' However, there a re as yet
no actual studies on any concrete objects, including
biological.

In closing this chapter, we note that, in addition to
amplitude contrast in the image, which is due to absorp-
tion of electrons in the specimen, electron micrographs
of biological specimens can also show the so-called
phase contrast. The latter i s due to the phase difference
upon scattering in the specimen and the substrate, to
defocusing, and to spherical aberrat ion. Methods have
been developed for accounting for and eliminating this
type of distortion.'-46"50-'

a THE MATHEMATICAL APPARATUS OF
THREE-DIMENSIONAL RECONSTRUCTION

a) The object and its projections. We have already
stated that micrographs obtained in transmission elec-
tron microscopy, when recalculated appropriately, are
two-dimensional projections of the object.

Let p ( r ) be the function describing the structure of
the object, i .e. , i ts density distribution. Then p(r) can
describe an individual macromolecule or a set of them,
in shape and relative arrangement, e.g., an association
of them in a virus particle or in a crystal s t ructure . In
the general case, this function thus describes various
continuous or discrete distributions having variable den-
sity, and it i s defined over a limited region.1-51'52-1

We shall take ρ to be the distribution of matter in the
biomolecule, e.g., a protein. This distribution is a
"negat ive" of the overall distribution of scattering den-
sity in the specimen, which consists of protein and stain.
Thus, p(r) > 0. 1 ' Since the stain does not penetrate the
protein, then we can use a function p c ( r ) of a special type
to describe stained specimens. It is equal to unity within
the boundary surface S(r) of the protein, and zero outside
(Fig. 17):

1 within S (r),
0 outside' S(r).> - { • (9)

S(r) also describes internal surfaces if they exist .

The projection of p(r) along some direction y, onto the
line χ perpendicular to y in the two-dimensional case,
or onto the plane χ in the three-dimensional case, is
defined by the formula
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L (χ) = J ρ (r) dy. (10)

The function L(x) i s a very simple integral r e p r e s e n -
tation of the function p(r).(see Fig. 17). If we continu-
ously vary the direction y of projection, we get a con-
tinuous set of L(x); p(r) unambiguously defines the set
of L(x) . Evidently the converse i s t r u e : the set of L(x)
defines the original function p(r) . The three-dimensional
problem is reduced to a two-dimensional problem if all
the directions of projection yj a re coplanar, e.g., all
perpendicular to z . Such projections can be called co-
axial (Fig. 18a). In them, the two-dimensional c ross-
sections of the function p(x , y, z) project into the one-
dimensional functions LA>k(xj, z c ) , and the three-dimen-
sional problem i s reduced to a set of two-dimensional
problems for Ζ β = c o n s t .

For the two-dimensional case, if ( x ^ , y^) is a coor-
dinate system rotated through the angle ψ with respect
to r ( x , y), the projection along the line y^ has the form

£(ψ, ζψ) = j p(r)djN, (11)

and ψ i s a variable parameter that determines L ( X J , )
(Fig. 18b).

The continuous set of projections L(ty, χ ψ) of the ob-
ject p(r) can be called i t s projection t ransform. Figure
19 shows a two-dimensional a s y m m e t r i c object, or

FIG. 17. The function p(\, y, z) and its
projection L(x, z).

FIG. 18. Coaxial projection (a) and a one-dimensional projection
two-dimensional function (b).

" w r e n c h , " and its projection transform a s represented
a s a set of " c r o s s - s e c t i o n s " having Αφ = v/8 = 22.5°.

Thus our problem can be formulated as follows: to
reconstruct the s t ructure p ( r ) from the projection
transform 1·(ψ, ζ ψ), or in pract ice, from some set of
ρ projections L* (i = 1, 2, ..., p). Exactly the same prob-
lem has been posed also in (macroscopic) radiography
(rontgenoscopy), [53-55] and analogous problems have
been solved in radioastronomy L "" and in the field of
image transfer.'-5 9-1

The following normalization condition ^ "^ holds for
the function p ( r ) and any of i t s projections:

= j ρ (r) dvT = j V- (ψ,, xt) dx,. (12)

In the approximation ρ = p c of Eq. (9), Ω i s nothing
other than the volume of the object (or i ts a r e a in the
two-dimensional case , as in Fig. 18b). The volume of
the object, e.g., molecules or v i ruses , i s usually known
from data on the density or molecular weight. By using
(12), we can express the relative values of L obtained
from an electron-microscopic experiment in absolute
values. Under certain conditions, one can also find the
absolute values of L directly from measuring relative
blackenings on the photographic plate.'-6 0·1

In pract ice, one reconstructs ρ within a certain vol-
ume ν (within an a r e a in the two-dimensional case) . If
the diameter of the function | p | > 0 i s D, then one can
perform the reconstruction in an a r e a having a side a
a z D, so that

ρ = Ω/α 2, (13)

where ρ i s the mean.'-52-'

b) Discret izat ion. The experimentally obtained pro-

jections L* are either measured directly as a set of dis-

crete values L | ( X ^ ) at a certain spacing in x^,, or they

a r e transformed into the lat ter for input into a computer.
On the other hand, p(r) i s reconstructed over a certain
discrete point se t . In this case, if we consider the two-
dimensional case, and bear the condition (13) in mind,
we shall dissect the square region of side a 2 D into m 2

nodes having weights p . ; = p(ja/m, Za/m). (One can also
work with a hexagonal grid.) Let us choose the same
spacing a/m for the projection. Then, upon oblique
projection,

Λ (ψ,, ΡΛ. (14a)

Here the summation Σ ' i s taken over the points p · , that

lie in a s t r ip of width a/m along the axis γφ. passing

through the point Χφ_ = ka/m. We should note that the

quantities L^ a r e sensitive to the spacing of the partition

grid, and they can deviate from the true L* of (11) a s the

spacing is increased.

The normalization conditions (12) and (13) take on the
form

Ω = 2 Ρ Λ = 2-£»> (14b)

p = Q/ms. (14c)

F o r the contrast function p c of (9),

FIG. 19. A wrench (a) and its projection transform (b).

(15a)

(15b)

(15c)
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where w is the number of grid points within the boundary
S. Then the sought function (15a) is described simply as
a square matrix of ones and zeros.

c) Symmetry properties of projections. One can get
information on the three-dimensional structures of
asymmetric objects only when one has different projec-
tions of the object. They can be recorded if the object
rests at random on a substrate in different orientations,
but these orientations must be determined. One can get
systematic information by photographing an asymmetric
object at different inclinations to the beam, or coaxial
projection (see Fig. 18a).

It is always true of an asymmetric object that

L (ψ, ΐψ) = £ (ψ + π, -χ*), (16a)

That i s , projections rotated by the angle π are alike, but
they run in opposite directions (see Fig. 19b).

We have stated that many biomolecules and their
aggregates are symmetrical. If the object has an
N-fold rotation axis, then

ρ (χ, y) = ρ (—*. —y), το
L (ψ,- χ*) = L (ψ, —χι,).

(16b)

while (16a) i s s imultaneously obeyed, F ig . 20 g i v e s a s
an example an object with Ν = 6. The projections along
its directions ψ ί differing by 2ττ/6 = 60° are identical.
We must also bear in mind a property of projections of
objects having a twofold axis (N = 2, and in general for
symmetry axes of even order Ν = 2k). Since here p(x, y)
= p ( - x , - y ) , then

L (ψ, = L (ψ + i

(i = 1, 2, N)
(16c)

while again (16a) holds simultaneously. In other words,

the projections of such objects contain independent in-
formation only in the region (0, χψ) (see Fig. 20). Upon
taking account of (16b) and (16c), we can now say that
one projection of a symmetrical object may suffice for
reconstruction, since it is equivalent to ρ = Ν (for Ν odd)
or ρ = N/2 (for Ν even) projections of an asymmetric
object. In fact, in such an object the independent asym-
metric region occurs in ρ orientations with respect to
the direction of projection. If the object contains a screw
axis Sp/q, then (if we project perpendicular to this axis),

FIG. 20. A figure having the
symmetry Ν = 6 and its projection.

condit ions hold that are analogous to (16b) and (16c), but
the projections are d isplaced to different l e v e l s in z:

L (ψ, xt, z) = L (ψ

2 p)
(16d)

If the s y m m e t r y group i s s p /qN, then the order of the
group i s J"= pN, and one projection i s equivalent to jf
orjf/2 (for even^r) project ions. Thus, the s y m m e t r y
group i s S7/2/6 for the T6 phage ta i l , and one micrograph
(see a l s o below, F i g . 49) is-equivalent to 21 project ions.

Objects like the spher ica l v i r u s e s or individual m o l e -
c u l e s are descr ibed by point groups of s y m m e t r y . For
e x a m p l e , these v i r u s e s have the i cosahedra l s y m m e t r y
532. The ir project ions along s y m m e t r y a x e s have the
corresponding s y m m e t r i e s . Such a projection i s equiva-
lent iaJT/jr1 independent project ions, where *,VasiaJT'
are the orders of the point group of the object and of i t s
projection, r e s p e c t i v e l y .

d) On methods of reconstruct ion. The mathemat ica l
problem of reconstruct ing a function from i t s project ions
w a s s o l v e d long ago, both from the standpoint of Fourier
t rans forms and directly by operating in r s p a c e . How-
e v e r , a s often happens in modern s c i e n c e , the r e s u l t s of
mathemat ic ians and s p e c i a l i s t s in other f ie lds did not
immediate ly fal l in the f ield of v iew of e l e c t r o n m i c r o -
s c o p i s t s , and they developed a number of the methods
anew, but at the s a m e t i m e , they introduced s o m e new
i d e a s into the mathemat ica l theory a s we l l .

We must a l s o note the s imi lar i ty of th is problem in a
certa in aspect to the problem of x-ray structural analy-
s i s of c r y s t a l s or he l i ca l s t r u c t u r e s , where the t h r e e -
dimensional structure of an object i s determined from
diffraction data. However, a difference c o n s i s t s in the
fact that a l l the data on the moduli of the structure a m -
pl itudes e x i s t in x-ray analys is in r e c i p r o c a l Four ier
s p a c e , but there are no data on their p h a s e s . Yet here
direct i m a g e s of project ions e x i s t , and th is m e a n s that
in r e c i p r o c a l space data e x i s t both on the moduli and
the p h a s e s , but not throughout i t s vo lume.

e ) The a lgebraic approach. This approach w a s pro-

posed and carr ied out in t 5 1 ) 5 2 ! 6 1 " 8 3 ] and treated a l s o
C"ee]

i n
C"-ee]

I t c o n s i s t s i n t n e fol lowing. In a d i s c r e t e

representat ion, the p « are projected into the Lj_, and

(11) i s t ransformed into the l inear equations (14a):

£ * = Σ Ρ ; ! ( i = l , 2, . . . , Ρ). (17)

The number of unknown p . , in each equation of (17) is

approximately m .

If there are ρ projections L* (i = 1, 2, ..., p), then
there are pm known L?_ and m2 unknown p. . The condi-
tion for unique solvability of (17) is :

pm > ma, 1 .e . , ρ > m. (18a)

The condition (18a) may prove to be e x c e s s i v e l y r igid.
Thus, evidently, when Ll = 0, a l l of the p.. = 0. Th is

g i v e s d irect ly a convex enveloping contour about the
outer contour S. The solution i s found by inverting the
matr ix of the l inear equations (17).

For contrast functions p c (0, 1), reconstruct ion
a lgor i thms have been developed that work on the princi-
ple of sorting.C«i-«,»T,e] H e r e t h e c r i t e r i o n ( 1 8 a ) i s

sufficient but not n e c e s s a r y , and a s e s t i m a t e s have
shown, one can get a sat is factory reconstruct ion when

mc « ( 3 - 5 ) p. (18b)
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The conditions (18a) and (18b) define the optimum
choice of m, i.e., the cells of the partition grid a/m that
give a unique solution. In a certain sense (see p. 196
below), the quantity a/m corresponds to the "resolution"
of the reconstructed structure.

The experimental data may prove to be incomplete in
that the number ρ of obtained projections can be small
and insufficient for getting the desired partition a/m ac-
cording to (18a) or (18b). Then the equations (17) become
indeterminate. Then one can find all of the solutions by
using some algorithm, and select from them certain
ones by using additional criteria. We should note that
here the sum of any t solutions

Σ P$?7f (19)

i s also a solution. However, for contrast functions ρ? ,

such a sum is no longer a contrast function itself, i .e . ,
it does not satisfy the condition (15a). If we use the con-
dition of discrete normalization (15b), we can map the
sum of the solutions with a contour line such that w
points lie within it. This will be the contour of the most
probable solution. The study of catalase was an example
of applying the linear-equation method. Figure 21 gives
one of the solutions and their sum for one of the cross
sections of the three-dimensional crystal (see also Figs.
30b—c below). Thus, the overall pattern of the algebraic
methods i s :

a set of V ->- p. (20)

f) The double Fourier transformation method.

DeRosier and K l u g t e 4 ' e 9 ) ? o : l proposed this method for
three-dimensional reconstruction in electron micro-
scopy (see also ' for the two-dimensional case). In
essence it is a mathematical extension of the method of
optical filtering. As we know, the Four ier transform of
the function p ( r ) and its projection L(x) a re related by:

f p (r) exp (2nirS) dx dy dz = g [ρ] = Φ (S). (21)

where S(X, Υ, Z) is the reciprocal-space vector. At the
same t ime,

j L (x) exp I2ni (xSx)] dx dz = % [L] = Φ (X, 0, Ζ) (22)

i s the two-dimensional cross section of the transform
Φ($) in the plane S-χ, i .e., for Υ = 0. One can reconstruct
the functions ρ and L from their t ransforms by inverse
Four ier transformation:

r 1 (Φ (S)I = Ρ (r), (23a)

gr1 ΙΦ (βχ)] = L (χ). (23b)

Correspondingly, in the two-dimensional c a s e the t rans-
form of a projection i s a one-dimensional c r o s s sect ion

0 0 2 6 8 8 5 2 0

FIG. 21. Algebraic solution for one of the cross-sections of the unit
cell of hexagonal catalase (a) (the numerical values of the projections
are given at the side; the points correspond to p c = 1 and the empty
nodes to pc = 0; there are five such solutions); and their sum by Eq.
(19) as a contour plot (b).

o f t h e t w o - d i m e n s i o n a l t r a n s f o r m . I f w e k n o w s e v e r a l

p r o j e c t i o n s , t h e n w e c a n c a l c u l a t e t h e c o r r e s p o n d i n g

c r o s s s e c t i o n s i n r e c i p r o c a l s p a c e ( F i g . 2 2 ) , a n d i f t h e r e

a r e m a n y o f t h e s e c r o s s s e c t i o n s , t h e n i n t e r p o l a t i o n b e -

t w e e n t h e m g i v e s a r e p r e s e n t a t i o n o f t h e s t r u c t u r e o f t h e

t r a n s f o r m * ( S ) , f r o m w h i c h w e c a n n o w t r a n s f o r m b y

( 2 3 a ) t o p ( r ) .

T h u s , i n c o n t r a s t t o ( 2 0 ) , t h e p a t t e r n o f r e c o n s t r u c -

t i o n [ e 4 ] i s h e r e :

a set of 1? — a set of ^ ( Χ ψ . ) — Φ(Β) — p ( r ) . (24)

The transform (6) of a helical object p ( r , ψ, ζ) in
cylindrical coordinates can be rewritten in the form

Φ(Λ, ψ, Ζ) = ΣΜΛ,Ζ)βχρ[ίη(Ψ + π/2)], (25a)

( 2 5 b )

while the inverse transformation has the form

ρ (r, ψ, z) = 2 j gn (r, Z) exp (ί»Ψ) exp (2nlzZ) dZ,
η

s o that g n and G n are mutually rec iproca l B e s s e l t r a n s -
f o r m s :

Gn (R, Z) = j gn (r, Z) Jn (2nrR) (2nr) dr. (2 5c)
ο

W e s h o u l d n o t e t h a t t h e s e l e c t i o n r u l e (7) h a s t h e e f f e c t

that each layer line / having ζ = l/c i s practically deter-
mined by the one function J n having the lowest n , with the
contribution of the others neglected.

The system of calculation consists in the follow-
ing. Ce4>69i7°] One calculates from the observed projection
L(x, z) a two-dimensional transform like (2a), but it i s
equivalent to the cross section of the function Φ(ΙΙ, * , Ζ)
of (25a) at Φ = 0 and τ, so that Xo = R ^ = Q, - X O = Χψ = π

= R * =JJ·. The radial component is transformed accord-
ing to (25c). If the object possesses symmetry, then
upon using the conditions (16a)—(16d), one can duplicate
this cross section at different angles Φ i 0 or π:

Φ (R, 0, Ζ), Φ (Λ, Ψ,, Ζ), Φ (R, ΨΝ_,, Ζ). (26)

If one u s e s a s p e c i a l interpolation procedure between
these c r o s s - s e c t i o n s , one g e t s the three-d imens ional
transform *(R, Φ, Ζ) defined at a sufficient number of
points, and i ts transform by (25b) will give p ( r , φ, ζ ) .
Figure 23 gives as an illustration the values of the

FIG. 22. The transform 3>(S) and its
cross-section

o.oz am ο o.ot o.oz o.of
FIG. 23. The tail segment of phage T4(a); the modulus (b); and the

phase (c) of one of the harmonics of its cylindrical transform by (25).
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modulus and phase angle for one of the harmonics of the
transform of the image of the tail of T4 bacteriophage as
obtained thus.1-69-1 The calculations require a rather
large amount of machine time. Nevertheless, the method
has furnished a number of valuable results that are
described below.

g) Synthesis by projecting functions. ί ! Β '7 1 ] Just like
the other methods to be discussed below, this method
does not require in its application the transformation
(24) into reciprocal space. That is, it is carried out by
the direct system of (20). It is intuitively clear that
superposition upon one another of projections extended
along the direction of projection, as in Fig. 20, should
give information on the structure of the sought function.
But which ones? Let us examine the two-dimensional
case. Let us extend each projection L1(x^) along y^ into
a two-dimensional "projecting function" L^x^ y{)
(Fig. 24a):

L/Xi
/ A

reproduces the original function p(r) well. However, a
background arises around each point of p(r) that is pro-
portional to p(r) at that point, and which declines like
r"1. This will give a certain overall background B(r),
which declines rapidly as we leave the region of non-
zero values of p(r). We can find quite analogously that
the function Ι Γ Γ 2 plays the role in the three-dimensional
case of the function Irl"1:

2three-dim(r) = p'^'fr \~\ (31)

Thus, in both the two- and three-dimensional cases,

Σ (r) = ρ (r) + Β (r) « Σρ (r). (32)

For the contrast functions p c ( r ) of (9), the background is
easily distinguished from the image. According to (11)
and (13), the mean is

g y^

where b (>a) is a certain distance. Now let us super-
pose the ρ functions L (̂x^y )̂ on one another in the xy
plane (Fig. 24b):

ρ

2 i ' ( r ) - S , ( r ) . ( 2 8 )

A n a l o g o u s l y , a c o n t i n u o u s s y n t h e s i s o f a m u l t i t u d e o f

L ( 4 > , r ) g i v e s

π

f L ( i | ) , r ) d i | ) = 2 ( r ) . ( 2 9 )

Let us examine how a point, i.e., a δ-function 6(r), is
imaged when we perform the procedure (27)—(29). The
projecting function for the point 6(r - 0) will be a straight
line passing through it (Fig. 24c). Superposition of a
discrete multitude of such lines will give a " s t a r "
(Fig. 24d), while superposition of a continuous multitude
of them is equivalent to rotation of line about the point
r = 0, which gives rise to the function Irf1 = r"1 (Fig.
24e). This is the image of 6(r). Hence, the image of any
two-dimensional function 6(r) will be its convolution with
Irf1:2 ' ^

Since Irf1 becomes infinite at r = 0, convolution with it

(r) = (p - 1) Ω/α2. (33)

Figure 25 gives an example of reconstruction of the ob-
ject in Fig. 19 by this method. The methods of calcula-
tion are described in'-72-'. Photosummation of the pro-
jecting functions is a graphic method.ίΊ3~* Figure 20
shows the production of such a function, and Fig. 29a
shows the formation of the corresponding image for
various values of p. One can also reconstruct a complex
asymmetric image (see Fig. 29b—e). The structures of
a number of phages have been determined by this method
(see below).

h) Exact reconstruction in real space. One can
directly transform from the function Σ ( Γ ) of (29) to
ρ (Γ) . 1 - 7 4 - 1 Let us consider the fact that in the two-dimen-
sional case the functions
ciprocal t ransforms:

| r | and IS I a re mutually r e -

(34)

Now, by forming the autoconvolution |rf l and applying
the Laplace operator, we find that

A Ι Μ1 Δ Ι *|VΙ ι r | | V r i = Δ j IS |->exp (2nirS) dss = - (2π)« δ(r). (35)

In the synthesis of S(r) in (30), the point 6(r) is imaged
as Ι Γ Γ 1 , and the analytical expression of this imaging is
(35). Hence, the integral equation (30) can be solved for
p(r) by the expression

By using i t , we can reconstruct the exact values of p ( r )

4- 1

Κ-

0 r

FIG. 24. Formation of a projecting function (a); superposition of FIG. 25. Reconstruction of the wrench of Fig. 19 (a) from four (b)
these functions (b); the projecting function of a point (c); superposition and eight (c) projections; and reconstruction from eight modified pro-
of these functions (d); and formation of the function Irf1 (e). jections by Eq. (46) (d).

194 Sov. Phys.-Usp., Vol. 16, No. 2, September-October 1973Β. Κ. Vainshtein 194



from Σ (r). However, we can also do this without gener-
ating 2 p ( r ) , but directly from the set of projections

Li_[55,!8,74-78] ^ o r d e r t ( ) d o j y ^ ^^^g (21)_(23) HI

mind, let us write the two-dimensional Fourier transform
of the object Φ(8) in terms of its cross-sections Φ(Χψ)
in the form

π

f Φ (Xv) (2aR) άΨ = Φ (S), (37)
ο

where R = |ΧψΙ = |S | . 3 )

The transform of Φ($) is p(r) (see (23a)). The trans-
form of the product in the integral of (37) corresponds to
the convolution of the transform of Φ(Χψ) with |R|:

Χ (ΧΨ) = gf [Φ (Xv)) % [ I R | ] = Lf^K (i), (38)

H e r e t h e f i r s t function b e i n g convoluted i s t h e o r i g i n a l

p r o j e c t i o n L ( x ^ ) , w h i c h we know, a n d t h e s e c o n d function

(39)

x e x p ( — 2niRx)dR,

i s t h e s a m e f o r a l l a n g l e s . T h e p r o d u c t i n ( 3 7 ) b e c o m e s

close to zero when |Φ(Χψ)| « 0, and these values of
| X * l m a x = Rmax a r e determined by the "dimensions of
the inhomogeneities" d of the function p(r), such that
R ^ 1

m a x

Κ (χ,

g

e t a k e ^38^ w i t h i n t h e s e limits, we get

Ζ ( s i n { 2 n x R m ^ ) l n x ] — [ s i n a { n x R m ! y % ) l ( . n x f ] . ( 4 0 )

This function is shown in Fig. 26. Hence, we can calcu-
late the "modified projection" Ζ(χψ) of (38) byC58>74>75]

#(!«,)= J £(*},) AT(*ψ-*»)<&*. (41)

Now we can c o n s t r u c t p ( r ) by (23a), wi th (37)—(40) t a k e n

i n t o a c c o u n t , by i n t e g r a t i n g the funct ions L ( x ^ ) o v e r the

a n g l e in r e a l s p a c e :

p(r)= f

I»

Σ χ*
i l

( 4 2 a )

( 4 2 b )

Here we must extend the χ(χψ) along y, as in (27), by
transforming them into χ(ψ, r ) . Thus, by an operation in
real space analogous to the projecting-function synthesis
of (29), Eqs. (41) and (42) now give an exact reconstruc-
tion of p(r) . In order to do this, we must in advance
calculate the convolution of each projection L with the
function K.

One can proceed in a different way.1-74-1 Let us repre-
sent Eq. (39) in the form

"max
Κ (χ) = 2S1J- J signRexp(-ZniRx)dR (43)

~flmax

and t a k e the l i m i t a s R m a x ~~* °°- Now, upon s t a r t i n g with

(37) and u s i n g (21) and (23), we ge t for r = 0:

π

ρ ( 0 ) = - ( 1 / 2 π 2 ) j d y Sf dx* [L ( * • ) / * * ] , ( 4 4 )

0

o r

ρ ( 0 ) = - (45)

T h e p r i n c i p a l v a l u e o f t h e i n t e g r a l i s t a k e n i n ( 4 4 ) a n d

(45). In other words, one can calculate ζ(χψ) by the
following formula instead of (41):

(46)

a n d t h e n r e c o n s t r u c t p ( r ) b y ( 4 2 ) . F i g u r e 2 7 s h o w s an

e x a m p l e of t h e t r a n s f o r m a t i o n L — X b y ( 4 6 ) f o r o n e o f

t h e p r o j e c t i o n s of t h e w r e n c h s h o w n i n F i g . 1 9 . W e s e e

that Χ(χφ) acquires minima that will truncate the posi-
tive background that arises upon integration of the other
χ(χφ) over the angle φ. In practice, the integration over
the angle in (42a) is replaced by summation by (42b) of a
finite number of modified projecting functions X^(>h, r ) .
Equation (45) is known as the formula of Radon,^""^ who
was the first to solve the problem of reconstructing a
function from its projections. We note that the maximum
contribution to p(r) in (42) comes from S(r) of (39),
owing to the presence of x% in the denominator of (45)
and (46).

We have given the derivation of Eqs. (42)—(47) in the
overall context of reconstruction theory in connection
with the Fourier-transformation method and the project-
ing-function synthesis.4' They can also be derived in the
theory of generalized functions without transformation
into Fourier space by expanding the δ-function into plane
waves. Figure 25d gives an example of reconstruc-
tion of the already-familiar object of Fig. 19 by Eqs. (42)
and (46).

In practice, we possess a finite number ρ of the pro-
jections L* (which correspond to ρ cross-sections Φ*).
This restricts the resolution of reconstruction of p. One
can improve the smoothness of the solutions by inter-
polating between the projections, either by using recipro-
cal space or without it.

i) The iteration method. We saw in the last section
that accumulation of information at a point r of a region
being reconstructed from the " r a y s " incident on it, or
straight lines from each projection, gives a picture 2( r )
that resembles p(r). Analogously, one could construct a
product function II(r) or a minimum function M(r) of
these data accumulated at the point r.1-51-1

Gordon, Bender, Herman, et al.t"»"'8 0"8 2 1 1 have
treated the possibility of reconstructing p(r) by itera-
tions that cause some initial distribution to approach one
satisfying the condition that its projections will resemble
the set L1 ("the algebraic reconstruction technique", or
ART). On a discrete grid, let us assign py in a zero-

FIG. 26. The function K(x, Rm a x). \

z *%

FIG. 27. The original L (a) and its corresponding function £(b)
modified by Eq. (46).
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FIG. 28. The relation of δ by Eq.
(48) to the number of iterations for
different variants of the iteration
method (the numbering of the curves
is explained in the text).

order approximation to be a uniform distribution of mean
va lues (see (14c))

T h e p r o j e c t i o n of t h e q - t h a p p r o x i m a t i o n p ? a t t h e a n g l e

φ^ (with (14a) used to account for discreteness) is LJ_>C*.

The next approximation p ^ + * for each point ]l can be
obtained by the "mult ipl icat ion" procedure:

Pji1"1 = (IXIVK ') P?I (47a)

or by "addi t ion" :

p ? ; ^ max (pji+ (£**—it'J/JV*^; 0], (47b)

Here Ν» i is the number of points in the projection L i .

The latter procedure is less sensitive to e r r o r s in meas-
uring the projections. We see that one iteration
" a d j u s t s " the projection L$ of the previous distribution

ρ 4 toward Lj_. One cycle of iterations consists in

"running p9. around all the angles φ.." However, pro-

ceeding to another angle can impair the resul t s obtained

by the iterations at the previous angles. According to1-"-1,

the iteration process leads at some q = Q (Q « 10—20)

to getting a certain distribution

Figure 30a gives an example of a reconstruction showing
that the obtained images are close to the true function.
The reconstruction is carr ied out here with m > p. That
i s , it does not satisfy the condition of unique solvability.
The exact solutions have a " j u m p y " ("peppered") char-
acter (Fig. 30b), although their sum in the form of (19) i s
smoother (Fig. 30c). The authors could not state the
exact meaning of the obtained functions (47a) and (47b).

Recently Gilbert1·7 9 1 5·1 found that the iteration process
of ART depends on initial application in it of the discre-
tized projections L^ of (14a), rather than the true projec-
tions of (11). Application of the true projections of (11)
initially gives a certain minimum deviation δ of the ob-
tained function from the initial function:

δ = ΐΣ(Ρ,·,-ρ?!)2/Σ (P.i-p)2]1'2, (48)

The latter can be taken as the " b e s t " reconstruction by
the ART, but further iteration impairs the ^ u l t (Fig.
28, curves 1 and 2). Use of the discretized L^ of (14a)
initially gives good convergence, but here the true func-
tion is reconstructed more poorly (Fig. 28, curve 3).

However, according t o 1 - 7 - 1 , if one s tar t s in the i tera-
tions with the true projections L* of (11), and takes ac-
count of the contribution of the res t of the projections as
well as the given projection (the SIRT method) by the
formula

p-X

HK) Ε TOl

FIG. 29. The function Σ as obtained by photosummation for the
pattern in Fig. 20 for ρ = 6, 9, 18, and 36 (a); examples of asymmetric
images (b and c); and their reconstructions for ρ = 18 (d and e).

FIG. 30. An object and its image as obtained by the iteration method
(a) (the number of projections used is indicated); one of the exact solu-
tions of Eq. (17) for ρ = 8, m = 50 (b); and the average of a set of such
solutions (c).

[pj, - (Σ .4 ), 0] (49)

(l^ is the length along ŷ  ), then the process becomes
convergent (see Fig. 28, curve 4), and the initial function
is reconstructed distinctly enough.

j ) Accuracy of reconstruction and resolu-
tion Λ 5 2 ' 5 8 ' 8 * ' 7 3 ' 7 5 ' 8 1 ' 8 ' 3 Evidently these character is t ics
of ρ depend on the number ρ of existing projections and
the experimental e r r o r s . The reconstruction is per-
formed on a discrete grid of m χ m nodes with a spacing
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a s D/m, where D is the diameter of the function p. The
condition of algebraic solvability has in general the form
ρ = m (18a), while for contrast functions p c , it has the
form ρ < m (18b). This means that differing values of
p. can be determined with the spacing

λ = Dip, λ < Dip. (50a)

T h e s e c o n d i t i o n s d e t e r m i n e t h e b e s t choice of s p a c i n g
of the subdivision grid. The function ρ can be character-
ized by the dimensions d of its inhomogeneities, or the
"half-width" of its narrowest peaks. The latter are r e -
solved (a minimum appears between them) if the distance
between them amounts to « d. One can get such a resolu-
tion on a discrete grid if the peak covers several nodes,
e.g., the linear sequence ... 010100 ... resolves peaks
separated by 2a. Thus, in this case,

λ 3* Wlp. (50b)

We should n o t e t h a t in e l e c t r o n m i c r o s c o p y wi th n e g a t i v e
s t a i n i n g we a r e dea l ing wi th a c o n t r a s t function p c a s in
E q . (9). We m u s t d e t e r m i n e i t s b o u n d a r y S, w h i c h i n a
d i s c r e t e r e p r e s e n t a t i o n i s m a r k e d by a b r e a k l ike
... 000111 ... T h e c r i t e r i o n (50a) suf f ices for t h i s . We
c a n a l s o g e t an e s t i m a t e of the r e s o l u t i o n in the language
of reciprocal space. The transform Φ = S[p] declines
to J Φ(S)J κ 0 when JSJ * d"1. On the other hand, in order
to reconstruct a p with a diameter of D, we must have a
grid in reciprocal space with a spacing of D"1 (see Fig.

^22). The cross-sections of ρ diverge at distances greater
'than D"1 (i.e., they cease to cover the grid) when jrd"Vp
«* D"1. Hence,

λ «tiO/p. (50c)

T h i s i s a l m o s t t h e s a m e e s t i m a t e a s (50b). I n d e e d , the
condi t ion for d e r i v i n g (50c) i s t o o s t r i c t , s i n c e the v a l u e s
of |Φ*| a re small at the distance d"1, and they contribute
little to the transform |Φ| . We can make a s t r ic ter est i-
mate by assigning a concrete form to the inhomogenei-
ties d(r), and thus, to the trend of Φ(Β) in reciprocal
space (see Eq. (51) below).

The objects studied in the electron microscopy of
biomolecules usually have dimensions D ~ 200—400 A.
Given the experimental resolution « 20 A of stained
specimens, the number of projections needed for recon-
struction therefore amounts to ρ » 10—20.

If the projections L1 have a sharply inhomogeneous
angular distribution, e.g., being concentrated in a certain
angular range, then the resolution will be anisotropic:
greater in the direction perpendicular to the "concentra-
t i o n " direction, and less along that direction.

We can take the correlation functions of the deviation
of the reconstructed p * from the true ρ as a measure of
the accuracy of reconstruction:

if, = Ω- 1 j | ρ - ρ* I ds,, R2 = j | ρ - ρ* I2 dsrj j p2 ds,

(one can also use (48) in the discrete representation, in
which the integrals a re replaced with sums). The quan-
tity Ri is an analog of the reliability factor in X-ray
structural analysis . i s 3 ^ The " p r o c e d u r a l " accuracy de-
pends on the number of projections ρ and the number of
computational operations (interpolation, etc .) . The
" e x p e r i m e n t a l " accuracy is determined by the mean
relative e r r o r b of measuring the projections: Δ Χ
= |L - L e x p | = bL. One can estimate the procedural ac-
curacy by taking some model function p . For a bell-

^ [ 5 e : l
s h a p e d p , we ge t the e s t i m a t e Ri ^ l /2p.
w h e r e b y we ge t a s a r e s u l t a p p r o x i m a t e l y

[ 5 e : l

i?, « b + (l/2/>).

This quantity i s of the order of 10%. In o r d e r to est imate
R2, analogously to what i s done in crysta l-s tructure
analysis, 7 > M ' 8 4- 1 we can use the completeness theorem

j | Φ |2 dss.

The mean e r r o r of the |Φ*1 corresponding to the If- i s
also b . The reconstruction corresponds to using these
in a " s t a r - s h a p e d " region U of reciprocal space (see
Fig. 22), while the region u ' i s not used at a l l . Hence,

f [ρ-ρ·|2ώ, = J
&

j <Da ifeg. (51)

Therefore,

Rt ss b* + f (p),

R
e x p

« b ,

where f is a quantity that is close to zero when (50c) is
fulfilled. If ρ < m, then this has an effect in increasing

f(p). '

4. EXPERIMENTAL STUDIES

Study of a given object encompasses a s e r i e s of
stages. The first is biochemical: to isolate and purify
the specimen of interest to us. In preparation for e lec-
tron microscopy, special procedures a re performed of
depositing on a substrate, staining, and sometimes crys-
tallization.'·*'5-' Then one obtains electron micrographs,
taking them at different inclination angles if the object i s
asymmetr ic . t 8 ! " 1 The usual electron-microscopic magni-
fication is of the order of 50,000—100,000. It i s very
important to select good micrographs, which are then
used for the three-dimensional reconstruction. Figure
32 shows an overall diagram of how a study i s conducted.

The fundamental process of three-dimensional recon-
struction is shown on the left-hand side. After one gets
the projections L*, one can perform the reconstruction
either by the Fourier method or by direct methods in
real space. The dotted lines indicate procedures that can
supplement the reconstruction as taken in the narrow
sense of the word. The right-hand side shows the possi-
bility of using X-ray diffraction in combination with
electron-microscope data, which we shall t reat in more
detail below. Now we shall discuss a set of concrete
studies.

a) Study of catalase using the method of l inear equa-
tions of (17). Catalase is an enzyme that catalyzes the
decomposition of hydrogen peroxide into water and oxy-
gen. The molecular weight of catalase is about 240,000.
It has been shown biochemically that it can be dissocia-
ted into two and then four subunits. This protein is easi ly
crystallized to form three- or two-dimensional crys-
ta l s , [ β 1 " β 3 ' 8 β " 8 β ] and also t u b e s . [ 2 5 " 2 7 ] The hexagonal
modification of catalase from beef liver has been studied.
Electron-microscopic and X-ray study made it possible
to determine the unit-cell dimensions of wet (Ι—Π) and
dry (ΠΙ) crystals given in Table I. There are six mole-
cules per unit cell. The space group of the s t ructure i s
P3;L21. The volume &m of the catalase molecule found
from density measurements i s 300,000 A3. Figure 31
shows a catalase crystal , and corresponding micrographs
of the s tructure in state Π, which i s close to ΙΠ, in orien-
tations along [1010] (c) and [0001] (d) (see Table I ) .
Figure 33a i s a contour plot of the values of L ( x , z) found
from Figs . 31c and d. Owing to the presence of the 3i
screw axis, this projection is equivalent to three projec-
tions, that i s , there are three one-dimensional projec-
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FIG. 34. The structure of crystals of hexagonal catalase (three-di-
mensional reconstruction) (a); and an individual molecule (b).

FIG. 31. Crystals of hexagonal catalase in two orientations (in the
optical microscope at 200 X magnification (a and b); the corresponding
electron micrographs (c and d); and magnified regions of them (e and f)·

Calculation
methods to
eliminate

aberrations

Object

\
Electron

micrograph
1

Densitometry

1
Projection L1

-

-

Optical
diffraction

Double Fourier
transformation

Λ

MODEL
FIG. 32. Block diagram of three-dimensional reconstruction. Left:

basic operations of transformation from electron micrographs to p,
which can be performed by direct reconstruction or by the Fourier
method (possible use of optical diffraction is shown; right: combination
with the X-ray diffraction method.

FIG. 33. Contour plot of the projection corresponding to Fig. 3 le
(the symmetrically independent region) (a); and solutions for five inde-
pendent cross-sections of catalase (b).

FIG. 35. Reconstruction of an element of the actin filament.

Table I. Parameters of the modifications of hexagonal
catalase

Parameters

a, A
c A
Ω, 10» A3

ΐ<, = Ω Μ η / Ω

X-ray diffraction

Wet (I)

1 7 3 . 3

2 3 7 . 4

6 . 1 4

0 . 3 0

Electron microscopy

Crystal t y p e :

I n t e r m e d i a t e (II)

1 6 5 - 1 5 5

2 4 0 - 2 3 5

5 . 5 - 4 . 7

0 . 3 6 — 0 . 4

Dry (III)

130

2 0 0 — 1 8 0

2 . 9 — 2 . 6

0 . 6 7 — 0 . 7 5

t i o n s f o r e a c h t w o - d i m e n s i o n a l c r o s s - s e c t i o n o f p ( x , y , z )

at ζ = constant. Reconstruction was performed in the
proper manner for the contrast function p c of Eq. (9).
In accord with (18b), m = 9 was chosen. The interval Δζ
was taken to be c/24 = 10 A. That i s , four independent
cross-sections were reconstructed. A sorting algorithm
made it possible to find a set of solutions for each of
them. For i > 1, the criterion for selecting the most
probable solution was taken to be similarity of the solu-
tions in adjacent sections. This is equivalent to choosing
molecules having the least surface. Moreover, the ex-
perimental projection along [0001] (Fig. 31d, f) was also
taken into account, in that the projection of the found dis-
tribution of the protein p(x, y, z) in the unit cell must
resemble it. Plates of thickness c/24 were prepared from
"patterns" like those in Fig. 33b, and superposition of
them gave a three-dimensional model of the structure
(Fig. 34a) . L e l ] The obtained distribution ρ describes
both the packing of molecules in the crystal and their
intrinsic structure at a resolution ~ 20—30 A.
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The molecules form an open packing, being seemingly
threaded on the 2i axis. Their shape manifests clearly
the two subunits of molecular weight ~ 120,000. Examin-
ation of the arrangement of subunits and the shape of the
molecule as a whole shows that it has the tetrahedral
symmetry 222, which agrees with existence of four sub-
units. The boundary between the smallest subunits of
molecular weight 60,000 is marked as well. Figure
34b l-e3-1 shows a model of the molecule as averaged over
i ts intrinsic symmetry axes. The dimensions of the
molecule along its three axes are about 70, 80, and 95 A.
The coordinates of the center of gravity of the molecule
a r e χ = 0.64 ± 0.006, y = 0.14 ± 0.06, ζ = 0.05 ± 0.03. The
subunits of 60,000 molecular weight have dimensions of
about 55 A x 47 A x 40 A, and their centers of gravity
form a flattened tetrahedron of sides 55, 47, and 35 A.

Thus, electron microscopy has given a quantitative
result which could have been obtained heretofore by
X-ray diffraction, even at the low resolution of
~ 20—30 A, by an incomparably longer path.

The point is that, besides the colossal experimental
laboriousness, of X-ray s tructural analysis of protein
crysta ls , the latter requires in its performance a com-
plex procedure of introducing heavy atoms into the pro-
tein and taking diffraction patterns of these isomorphous
crystals in order to determine the phases of the reflec-
tions.'-8 '1 0-' However, an undoubted advantage of X-ray
structural analysis i s the possibility of getting high
resolution and analyzing not only the quaternary, but
also the ter t iary and secondary s t ructure . Nevertheless,
electron microscopy can become an important stage
even in an X-ray s tructural analysis, at least at low
resolutions, since the calculated distribution
p(x, y, z)gjyj can be used to calculate by (21) the phases

hkl
i

reflections whose moduli have been de-hkl
termined experimentally.

In order to do this, we must first convince ourselves
that Pg»j in the stained crystals studied in the electron
microscope and Ρ χ ^ in the wet protein crystals resem-
ble one another. We can do this by comparing the ampli-
tudes l*niwl f°r the two distributions. Figure 36 shows
the optical diffraction pattern of the electron micrograph
in Fig. 3Id and the corresponding X-ray diffraction pat-

FIG. 36 FIG. 37
FIG. 36. Comparison of the X-ray diffraction pattern (hkO zone) (a);

and the optical diffraction pattern (b) of catalase from the micrograph
in Fig. 31 d.

FIG. 37. Electron density of the catalase molecule at a resolution
about 30A, as found by the right-hand side of the block diagram of Fig.
32.

t e r n . It clearly indicates that the s t ructures a re s imilar,
and hence, one can calculate the phases from Pg]^ . Such
a calculation has been performed under various assump-
tions, and as a result it has permitted us to construct a
Fourier synthesis of the electron density from
' * ' X R exp·'"88"' •"· S a v e a more detailed picture of the
crystal structure and the quaternary structure of the
catalase molecule (Fig. 37), which resembles in funda-
mental features the electron-microscopic model of Fig.
34b.

Thus we see that the single way of studying the s t ruc-
ture of protein crystals (X-ray structure analysis with
introduction of heavy atoms) can now be supplemented
by electron microscopy, and as yet at low resolutions,
even replaced by i t .

b) Studies by the double Fourier transformation
method. A ser ies of studies by DeRosier, Klug, et a l .
performed by this method has been concerned with s truc-
tures of cylindrical and also icosahedral symmetry.
Asymmetric objects (ribosomes) have also been studied.

Let us discuss the data from study of muscle pro-
teins . 1 - 1 9 > 8 9 ' 9 0 ] As we know, muscle i s built of the fibrous
proteins actin and myosin, and their filaments interact
with one another and make possible the functioning of the
contractile mechanism of muscle. The actin filaments
can be isolated separately (Fig. 38a). They have a diam-
e t e r of about 80 A, and are made of globular subunits (of
molecular weight 45,000) arranged on a double helix
having the symmetry Su with c/p = 55 A. A purified
specimen can also be prepared in the form of a " p a r a -
c r y s t a l " made of these filaments (Fig. 38b). Figure 35
shows a reconstruction of the actin filament that reveals
the globular subunits and the bonds between them.1-89-1

Actin filaments isolated directly from muscle and
" d e c o r a t e d " with the so-called subfragments of myosin
have a more complex structure (Fig. 38c). They have
the same symmetry. The subfragment molecule has a
thickness of about 45 A and a length of about 150 A. The
reconstruction is given in Fig. 40a, while Fig. 40b shows
a model of such a filament. A fundamental feature is the
inclination of the subfragments. This implies a polarity,
or " a r r o w l i k e " nature of the s t ructure, which makes it
possible to concretize the molecular mechanism of mus-
cular contraction.

FIG. 38. Electron micrographs of a paracrystal of the muscle protein
actin (a); an individual filament of this protein (the arrows indicate the
~715A period) (b); and a filament with subfragments of myosin added
(c).
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FIG. 39. An electron micrograph of phage T6(a); a magnified region
of the tail (b); and its densitogram (c).

The Fourier method has also been used to study
spherical viruses of animals and p lants . [ 9 1 > 9 2 ] These
viruses, e.g., herpes, polyoma, poliomyelitis, and turnip
yellow mosaic virus, e tc . , are built of a protein envelope
which contains the RNA, or c a r r i e r of the genetic infor-
mation. This RNA enters the host cell and compels the
informational-synthetic system of the latter to work at
reproducing the virus, rather than the proteins needed
by the cell itself.

The closed protein envelope is built of a monomole-
cular layer of protein morphological units which in a
first approximation can be represented by spheres (see
Fig. 6d). This envelope i s seemingly build of a close-
packed layer of these units.1"7 '1 7· ' The most economical
principle of construction of an envelope is realized when
the ratio of the inner volume to the surface is a maxi-
mum. Close packing of morphological units on the sur-
face of a sphere is impossible, but the closest thing to it
is an icosahedral packing. The icosahedral point-group
symmetry has the symbol 532. That i s , it i s character-
ized by presence of six fivefold axes, ten threefold axes,
and fifteen twofold axes, while there are correspondingly
twice as many points of exit of these axes on the surface.
We can see the mutual arrangement of the axes in Fig.
41a. The morphological units at the exit points of the
fivefold axes have the coordination number five, while
the res t have the coordination number six. Symmetry
planes are impossible h e r e , just as in any biological
s tructures made of " left-handed" amino acids.

An individual protein globule (subunit) is always
asymmetr ic . Hence, a morphological protein unit, which
is provisionally depicted as a sphere in Figs . 5 and 6,
must consist of six protein molecules in the " p l a n a r "
regions of the envelope and on the edges, i .e. , it is a so-
called hexamer. At the same t ime, in order to permit
building a closed icosahedral envelope, we must assume
that the morphological subunits lying on the fivefold axes
and having fivefold coordination are associations of the
subunit molecules into pentamers (Fig. 41b). The penta-
m e r s and hexamers are distinguishable in electron
micrographs (see Fig. 6). The possible number Μ of
morphological units in icosahedral viruses and the num-
ber Ρ of protein subunits in the envelopes are determined
by the formulas:

Μ = 12<pem) + 10 (T - l ) ( h e x ) , Ρ ^ 60Γ + 6(Λί - 12),

Here the number Τ can take on certain integer values:
Τ = 1, 3, 4, or 7 . C l 7 3 Thus, for phage φ, Τ = 1, i .e. ,
Μ = 12 and Ρ = 60 (the simplest case). For turnip yellow

FIG. 40. Reconstruction of an element of the actin filament with
subfragments of myosin added (a); and a model of this bihelical filament
(b).

FIG. 41. A soccer ball patterned according to the icosahedral sym-
metry 532 (a) (the exit points of the corresponding axes are shown); and
a diagram of the formation of the morphological units in the envelope of
a virus (pentamers Ρ and hexamers H) from asymmetric protein mole-
cules (b).
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mosaic virus, Τ = 3, Μ = 32, and Ρ = 180, and for herpes
(see Fig. 6c) and varicella, Τ = 16, Μ = 162, and
Ρ = 1500. All of these rules have been established by
direct observation and analysis of micrographs of viruses
and their empty protein envelopes (lacking RNA). X-ray
diffraction analysis also directly confirms the 532 sym-
metry.

Three-dimensional reconstruction methods have made
it possible to refine the idealized models of these
viruses/ 9 1 ' 9 2 - 1 The reconstruction was conducted in
cylindrical coordinates, and here the most advantageous
position of the particle on the substrate had the fivefold
axis parallel to the lat ter . According to (16b), this is
equivalent to observing ρ = 10 projections. Actually, in
order to expand the set of φ in (25a), another particle
was selected, also with i ts fivefold axis parallel to the
substrate, but with a different azimuthal orientation. As
a result , the effective number ρ = 20. The orientations
were identified from model calculations of the projec-
tions1^4-1 (see Fig. 11). The so-called Whittaker-Shannon
interpolation t 9 3 ^ w a s used. This made it possible to
arrange the measured data on a regular grid discretized
in cylindrical coordinates, as is necessary for the
Fourier transformation (Fig. 42). The results of the
calculations were averaged over the icosahedral symme-
try.

One of the objects was human wart virus (see Fig. 6a).
Its diameter is 560 A, T = 7, Μ = 72, and Ρ = 420. The
resultoof reconstruction at the relatively low resolution
of 60 A (Fig. 43a) distinctly revealed the icosahedral
symmetry and nature of theopacking of the part ic les . At
a resolution as good as 40 A, the hexamers and penta-
mers appear as " r i n g s " of protein globules.

Tomato bushy stunt virus has a diameter of 330 A,
Τ = 3, and Ρ = 180. Here the grouping into pentamers

a n d h e x a m e r s p r o v e s n o t t o b e c l e a r l y m a r k e d , but

d i m e r s a r e m o r e c l e a r l y r e s o l v e d . T h e r e a r e 9 0 of t h e

l a t t e r . F i g u r e 4 3 b s h o w s t h e r e c o n s t r u c t i o n a t a r e s o l u -

t i o n of ~ 3 0 A . B l o b s of d e n s i t y c o r r e s p o n d i n g t o d i m e r s

s t a n d o u t c l e a r l y . S o m e of t h e m l i e o n t h e e x i t p o i n t s of

t h e t w o f o l d a x e s . T h e s e d i m e r s s e e m m o r e m a s s i v e ,

a n d t h e i r r a d i u s i s g r e a t e r by 1 0 A . T h e d i m e r u n i t s a r e

g r o u p e d i n f i v e s a r o u n d t h e f i v e f o l d a x e s , but t h e y a l s o

e n t e r i n t o s i x e s a r o u n d t h e t h r e e f o l d a x e s .

T h r e e - d i m e n s i o n a l r e c o n s t r u c t i o n o f i c o s a h e d r a l

v i r u s e s i s h i g h l y p r o m i s i n g . Of c o u r s e , i t i s m o r e

n a t u r a l h e r e t o u s e t h e i r i n t r i n s i c s y m m e t r y , r a t h e r

than t h e c y l i n d r i c a l c o o r d i n a t e s i n w h i c h t h e c a l c u l a t i o n s

w e r e p e r f o r m e d .

T h e d o u b l e F o u r i e r t r a n s f o r m a t i o n m e t h o d h a s a l s o

b e e n u s e d f o r s t u d y i n g a s y m m e t r i c p a r t i c l e s , t h e r i b o -

s o m e s . ' " 9 4 - ' T h e s e e l o n g a t e d p a r t i c l e s a r e b u i l t l i k e a

" m u s h r o o m " : of a " c a p , " o r s o - c a l l e d 4 0 S s u b u n i t , o n

a n e l l i p s o i d a l b a s e , o r s o - c a l l e d 6 0 S s u b u n i t . T h e h e i g h t

of t h e p a r t i c l e i s a b o u t 2 6 0 A, a n d t h e " d i a m e t e r " a b o u t

2 2 0 A ( s e e F i g . 9 C 2 1 " 2 3 D ) .

T h e r e i s n o s y m m e t r y i n t h i s c a s e , a n d i n o r d e r t o

g e t a s e t of p r o j e c t i o n s of a s t a i n e d s p e c i m e n , i . e . , a t

d i f f e r e n t i n c l i n a t i o n s , a s p e c i a l d e v i c e w a s b u i l t a n d

m o u n t e d i n t h e P h i l i p s E M - 3 0 0 i n s t r u m e n t . [ 8 5 ] T h e

number of projections amounted to ρ = 15. The very
laborious calculations resulted in the picture shown in
Fig. 44. It corresponds in general features to the known
model, but we should consider it as yet only as evidence
of the potentialities of application of the method to
asymmetr ic objects.

Ribosomal particles pack into helical " b r a i d s " to
form a paracrystall ine packing in the so-called chroma-
toid bodies of certain amoebas (Fig. 45a). Several dif-
ferent braids have been found, with the symmetr ies
S12/5, S17/5, and S19/7, with the respective diameters 410,

FIG. 42. A region of the two-dimensional Fourier transform of
tomato bushy stunt virus (a cross-section perpendicular to the 2 axis)
in which values of log |F| are indicated. FIG. 44. Reconstruction of a tetramer of ribosomes.

FIG. 43. Reconstructions of the structures of wart virus (a) and
tomato bushy stunt virus (b).

FIG. 45. An electron micrograph of chromatoid braids (a); the
density of a braid filtered out of the background on a computer (b); one
of the reconstructed cross-sections (c); and a three-dimensional model
of a chromatoid braid (d).
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500, and 560 A. A three-dimensional reconstruction was
performed by the Four ier method with prel iminary
mathematical filtering of the image (Fig. 45b). Figure
45c shows one of the cross-sections (perpendicular to
the axis of the helix).

The resolution of the reconstructed picture is ~ 50 A.
Figure 45d shows a three-dimensional model of a
chromatoid braid. The particles in the packing have a
shape s imilar to that of r ibosomes a s studied by other
methods. 5 '

c) Studies performed by the method of synthesis by
projecting functions. The s t ructures of the tail segments
of the T-even phages of E. coli Β (T2, T6, and DD6) have

been studied by this method. 1 7 2 ' 9 7- 1 Phage T4 belonging
to the same group has been studied by the double Fourier
transformation method,C e 9-1 and we shall compare the
obtained data h e r e . Figure 39 is a micrograph of the
tail of phage T6 and i ts densitogram. These bacterial
viruses belong to the group of complex v i ruses . Their
fundamental morphological components a r e : the head,
which contains the nucleic acid; the tai l , which intro-
duces the nucleic acid into the cell being infected; and
an apparatus for attaching the tail to the bacterial cell.
The tail consists of a hollow cylindrical core of mole-
cular weight 2.3 x 10 e -3.2 x 10e and a sheath of mole-
cular weight 7.8 x 10 e -8.0 x 10 e. The sheath of the tail
i s the contractile organ, and it can exist either in the
contracted state or in the extended state character is t ic
of the intact part icle. The tai ls of these bacteriophages
have helical symmetry.

The parameters p, q, and Ν of the helix were deter-
mined by optical diffraction (Fig. 46a). According to
the selection rule (7)/ 3*' 3 6- 1 Bessel functions whose order
i s a multiple of the order Ν of the rotation axis of the
object participate in producing the reflections in the dif-
fraction pattern. It was found that Ν = 6. Thus, these
structures can be described as piles of disks having six-
fold axes (Fig. 20 shows an object of approximately this
configuration). The disks lie on one another with a rota-
tion determined by the p a r a m e t e r s ρ and q. These
parameter s a re also determined from the optical diffrac-
tion pattern: p/q = 7/2, and the symmetry is S7/26. Thus,
the rotation of the elementary disk with respect to the
next one is 4ττ/7 « 103°. Every eighth disk is translation-

ally equivalent to the first. That i s , it l ies exactly under
(or over) the latter in the same angular orientation. The
elementary grouping is the grouping of smallest volume
whose translational repetition can describe the entire
object; it contains a certain number of asymmetric
groupings in agreement with the order of the group. In
line with (16c) and (16d), one projection of the tail (and
this means also one of the elementary disk) is equivalent
to ρ = 21 projections, which suffices for reconstruction.
Table II gives the diameters of the tail segments, their
periods, and certain other source data. Thus, determin-
ing the s tructure of one disk suffices for determining the
spatial structure of the tail segment. The thickness of a
disk is about 40 A. Their structure was calculated in
four cross-sections separated in height by c/4p, i .e. ,
about 10 A. From the densitogram in Fig. 39c, 4 X 7
= 28 corresponding cross-sections were taken. They
could be represented as projection transforms (Eq. (11))
for each of the four sections. Figure 46b shows one of
them.

Figure 47 shows the four functions Σ (Eq. (28)) as
contour plots of the cross-sections of the elementary
disk. Since the outer radius of the phage i s known, the
value of the edge contour that marks presence of protein
in the object is also known. This (or taking account of
the volume of the object) makes it possible to select the
contour that marks the boundary of the protein.

We can get a model of the elementary disk (Fig. 48a)
by extending each section p . by 9.5 A along the ζ axis,
thereby making disks, and placing these disks on one
another. Superposing these disks on one another with a
103° rotation gives the three-dimensional structure
(Fig. 48b).

Figure 49 shows models of the tai ls of the phages T2
and DD6 obtained in the same way. The tai l segments
have s imilar s t ructures , but differ only in their dimen-
sions. The diameter of T6 i s 170 A, while the other
phages have s imilar dimensions (see Table II). Two
families of helical grooves a re observed on the outer
surface of the tail segment that seem to form parallelo-
grams on the surface of a cylinder. These are the unit

FIG. 46. The optical diffraction pattern of the tail of bacteriophage
T6 (a) (the numbers of the layer lines are indicated at the side, and the
orders of the Bessel functions of the principal maxima are indicated on
the vertical lines); and the projection transform of one of the four inde-
pendent cross-sections of T6.

FIG. 47. The function Σ of Eq. (28) for four independent sections
of the elementary disk.
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FIG. 48. The elementary disk (a); the three-dimensional structure of
the tail of phage T6 (the cutout section shows the axial channel and one
of the helical channels) (b); and the structure of the subunits of the
sheath (c).

FIG. 49. The three-dimensional structure of the tail segments of
phages T2 (a) and DD6 (b).

Table Π. Fundamental parameter s of the extended tail
segments of phages T2, T4, T6, and DD6 of Ε. coli Β

Parameter

til
Ν
clp,k

Length of tail, A

Number of asymmetric units

Outer diameter of tail, A

Diameter of the axial channel of the core, A

Outer diameter of the core, A

Diameter of the helical channels, A

Distance from the axis of the tail to the axial

channels, A

Q f sheath

μ | core

tail segment

T2

7/2
β

4 0
9 6 0

144

1 6 5 - 1 7 0
2 0 — 2 5

7 0 - 8 0
20

4 0 — 4 5

1 . 3
1.5

1 . 3

T6

7/2
6

38
8 1 2
144

170
2 5 — 3 0

8 5
2 0 - 3 0

4 5

1.5
1 . 1 - 1 . 4

1 . 3 — 1 . 4

DD6

7/2
6

4 1 . 5

9 9 6
144

206
3 5 — 4 0

9 0 — 1 0 0
3 0

6 0 — 6 5

1.5

1 . 1 - 1 . 5

1.6

T4

7/2
6

38

8 1 2
144

240
30

100
3 0
6 5

c e l l s o f t h e s o - c a l l e d r a d i a l p r o j e c t i o n . T h e r e a r e s i x

u n i t c e l l s a b o u t t h e e q u a t o r o f t h e m o d e l t o c o r r e s p o n d t o

t h e n u m b e r o f a s y m m e t r i c u n i t s i n t h e d i s k s . T h e r e i s a

c e n t r a l c y l i n d r i c a l c h a n n e l a l o n g t h e a x i s ( d « 3 0 — 3 5 A ) .

I n a d d i t i o n , s i x h e l i c a l c h a n n e l s o f s o m e w h a t s m a l l e r

d i m e n s i o n s a r e f o u n d a t s o m e d i s t a n c e f r o m t h e a x i s o f

the tail segment (see Table Π). Two density maxima are
found along the radii of the tail segments. One of them
directly abuts the axial channel,.aniJ the other is on the

periphery of the tail segment. The maxima near the
axis correspond to the protein molecules that form the
so-called phage core, and the peripheral ones c o r r e -
spond to the sheath. The synthesis allows us to assume
that the asymmetr ic units of the sheath apparently con-
sist of two protein subunits (Fig. 48c). Each of the six
peripheral density maxima in the assembled model ap-
pears as a "dumbbel l " of i r regular shape with a volume
of about 50,000 A3 (see Fig. 48c).

We can conveniently describe the "polypeptide mat-
t e r " proper of the protein molecules with a quantity
numerically equal to the ratio of the volume Q (in A3) to
its molecular weight M. This quantity should have the
value

ΩΙΜ = mH/p mi, 3, (52)

w h e r e mj j i s the m a s s of a h y d r o g e n a t o m , which i s

1.65 x 10~24 g; ρ is the density of the protein, which is
1.27 x-10"24 g/A3. The value given in (52) i s confirmed
well by X-ray s tructural analysis of a number of pro-
teins. Table II gives the corresponding values of fi/m.

Table II also shows the numerical character is t ics of
T4 phage, as obtained by DeRosier and Klug [ e 9 : i by the
Fourier method. They are in general s imilar, apart
from the 240-A diameter of T4, which also deviates
from the other electron-microscopic l i terature data:1·8-1

2R = 160—180 A. Apparently we can ascribe this dis-
crepancy to the double Fourier transformation (series
termination, and the introduction of a function to smooth
the "boundary" of the experimental micrograph).

An estimate of the resolution by Eq. (50a) gives 12 A.
However, micrographs of stained phages have a resolu-
tion of ~25 A from optical diffraction data. We should
take the latter quantity to be the resolution of the ob-
tained models.

Thus the reconstruction methods have given direct
quantitative information on the three-dimensional s t ruc-
ture of the tail segments and on the shape and mutual
arrangement of the protein molecules that form them.
Of course, this is incomparably more than one could
draw from mere examination of micrographs like Figs .
39a and b. In part icular, the existence of helical internal
channels has been established only by reconstruction.

5. CONCLUSION

We are now at the onset of a new approach in electron
microscopy, which has already given a number of sub-
stantial resu l t s . The theory and algorithms of recon-
struction of three-dimensional structure make possible
the necessary treatment of the experimental data.

It i s interesting to note that the theory of reconstruc-
tion of functions from projections and similar algor-
i thms, as we have stated, were developed in a number of
other fields. This is how the problem was solved of find-
ing the intensity distribution of radio sources from
scanning ( i .e . , projection) data on this intensity. [ M " 5 B : 1

In essence, the same problem exists, but on a macro-
scopic level, in medical radiography.1-S3~5S-1 Similar
problems are treated in the fields of coding and transfer
of images.'-59-' The problem of visual perception, s tereo
vision, and creation by the brain of spatial images'-9911

also resembles the discussed set of problems.

With regard to electron microscopy as such, we should
should say that the problems of further study of the
three-dimensional s t ructures of biomolecules and their
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aggregates are problems of biochemistry and of elec-
tron-microscopic experimental technique. The biochem-
ical procedures must permit one to isolate, purify, and
prepare the necessary objects. The electron-microscopic
technique will develop along the line of improving the
methods of mounting, increasing the resolution of the
stained objects, and of taking micrographs directly from
biological preparations without staining.

In the usual system of the transmission electron
microscope, the image is formed according to Eq. (1)
from the primary beam by absorption and scattering of
i t s electrons by the specimen. However, one can also
use the "dark-f ie ld" method, in which the image is
formed by the electrons scattered at a certain angle

eLi>s,ioo] T h i g m e t h o ( j c a n a l s o b e a ppi i e c j to unstained

specimens.

The method of the transmission scanning electron
microscope proposed by Crewe1-1 0 1 '1 0 2-1 is also highly
promising. The well-known method of scanning in r e -
flection ("stereoscan")'- 1 0 '- 1 gives a resolution of the
order of 100—200 A. After overcoming very serious
experimental difficulties, Crewe was able to build an
instrument in which the diameter of the electron beam
at the specimen is 5 A. Scanning the specimen with such
a transmitted electron probe and measuring i ts intensity
(Fig. 50a) with subsequent output on a television screen
makes it possible to produce an image. One can show
that the optical system of such a microscope is equiva-
lent to the formal-geometric " i n v e r t e d " system of the
ordinary microscope. However, although i ts resolution
i s l e s s , it has the advantage of easy analysis of the dif-
ferential distribution f (θ, Ε) of the transmitted electrons
with respect to the angle θ and energy Ε (see Fig. 50a),
e.g., measuring the elastic and inelastic components, the
pure absorption, e tc . Thus one can select favorable sys-
tems for detecting heavy atoms, or distinguishing the
scattering from the specimen from that of the substrate,
e tc . , from absolute measurements, or , e.g., from the
ratio of signals from elastic and of certain inelastic
components. As an example, Fig. 50b gives the image
of a hemoglobin molecule (unstained). oe-1 Of course,
such an isolated molecule has been deformed in mount-
ing, but the obtained image permits us to discern certain
details of i ts tert iary and quaternary s t ructure . Of
course, the problem of three-dimensional reconstruction
i s also important in the scanning transmission electron
microscope, since here also the image i s a projection.

Application of high-voltage electron microscopy (up
to 1 MeV) will create new possibilities in studying bio-

1 1 0 * 1

Combination of the ideas of optical diffraction, holo-
graphic methods, combination of data from electron
microscopy and X-ray diffraction (and all this is just
diffraction optics, but with different wavelengths), and
widespread use of computers will certainly increase the
potentialities for analyzing the s tructure of biomolecules
and of matter in general .

"The theory of reconstruction to be treated below generally does not

require (except for specially qualified cases) that the function p(r) be

positive, but of course, it is applicable to this special case as well.

^See also footnote 3.
3'\Ve can give another derivation of Eq. (30) by analogy with (37).

According to (22), synthesis by the projecting functions Σ ( Γ ) of Eq. (29)
corresponds in reciprocal space to the expression.

π η
f Φ (ζψ) (2π) ί ψ = f Λ-ΐφ (*ψ) (2πΛ) άψ,

which differs from (37) by the coefficient R'1. The transform of R'1 =
|sf is |rf' (see 34)), which can be written as a Fourier-Bessel transform
of the function R"1: /" R"1 J n (2*rR) (2irR) dR = /" J n (2irrR) (2π) dR =
r"1 (in particular also when η = 0). Hence the inverse transform of (37')
will be the convolution of the inverse transforms of <t>(S) and R"1. That
is, it will be p(r) Irl"1. This gives the conclusion of (30) in the language of
reciprocal space.

4'Another paper [7 9 a] has recently appeared on this topic, which has
been discussed in [ 5 8 . ' 4 · " . 7 8 ] .

5)Recently published studies ["] give fuller data.

FIG. 50. A fundamental diagram of a transmission scanning electron
microscope (a); and an image of a hemoglobin molecule obtained in this
microscope (b).
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