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Though this be madness, yet there is method i n V '
(Hamlet, Act II, scene 2)

Άναρμονικός μή κρινέτω2 '

(Inscription on a copy of Harmony of the Universe which used to
belong to Max Caspar, the biographer of Kepler)

On one of the pages of the book catalog which was
published for the Spring 1597 Frankfurt Fair (in the
largest center of book trade of the time), there appeared
a new strange-sounding name, "Repleus." The uninten-
tional pseudonym, which owed its existence solely to the
carelessness of the typesetter, concealed an entirely
different but equally unknown name: Johannes Kepler.

The small book, published shortly before the fair (at
the end of 1596) had a fancy title: Precursor of Cosmo-
graphic Investigations Containing the Cosmographic
Mystery Concerning Marvelous Proportions Between
Celestial Orbits and the True Causes for the Number,
Magnitudes as well as Periodic Motions of Celestial
Spheres Demonstrated with the Aid of the Five Regular
Geometric Solids by Johannes Kepler from Wuerttem-
berg, the Mathematician of the Glorious Province of
Styria.

Aside from the calendars, which the Province Mathe-
matician prepared as part of his duties, the Precursor,
or, as Kepler himself preferred to call it, Mysterium
Cosmographicum (The Cosmographic Mystery) was the
first of Kepler's publications dealing with astronomy and
the only work which went through two editions in Kepler's
lifetime. Yielding to the urgings of his friends, Kepler,
in the twilight of his years, undertook to publish the
second edition "for the benefit of not only book dealers
but also scientists." Addressing himself to the new
readers, Kepler, who was nearing the end of his life's
journey (only the Rudolphine Tables remained yet un-
written) proudly wrote in the dedication:

"Nearly twenty-five years have passed since I first
published a small book Cosmographic Mystery. And
although at the time I was still very young and this publi-
cation was my first work dealing with astronomy, none-
theless the success which my small book has had in the
ensuing years loudly testifies that no one ever yet suc-
ceeded to produce a more significant, successful and
valuable first work, as far as its subject is concerned. ...
It was as if an oracle from heaven had dictated to me the
chapters of this small book, so excellent were they, by
general admission, and in accordance with the truth....
More than once the chapters of this small book have
served me myself—a person who for twenty-five years
now has been working on a reform of astronomy (begun
by the famous and noble Danish astronomer Tycho
Brahe) to illuminate the way. Nearly all astronomical
books which I have published in that period have their
beginnings in some one of the chapters of my first pub-
lication and, therefore, can be considered as a more de-
tailed or more comprehensive presentation of respective
chapters. The reason for acting the way 1 did is not that
I, alledgedly, let myself be led by the love for my dis-

coveries... but that the very nature of things, supported
by extraordinarily precise observations by Tycho Brahe,
led me to conclude that there is no other way to the re-
form of astronomy, to reliability of calculations, and to
the construction of the metaphysical part of the astron-
omy, which is called heavenly physics, except the way
which I either described in detail in that book, or (in
cases where deeper insight was lacking) timidly outlined.
In order to corroborate the preceding, I refer the reader
to The New Astronomy, published in 1619, as well as to
my Commentary on the Motions of Other Planets, which
is as yet unpublished, to the five books of Harmony of the
Universe printed in 1619, and to the fourth book of
Epitomes of Copernican Astronomy which appeared in
1620. I call as witnesses all those readers who over
many years now, since the time Cosmographic Mystery
was published, have insistently demanded from me by
now ragged copies of this book in order to be able to see
with their own eyes the way in which it was possible to
infer so many important conclusions."

The objective which Kepler set for himself is dis-
tinctly formulated in the foreword to the reader which
opens the Cosmographic Mystery:

"Kind reader! In this small book I have taken upon
myself to prove that the All-merciful and the Almighty
God, when he created our moving world and when he as-
signed celestial orbits, took for the basis the five regu-
lar solids, which from the time of Pythagoras and Plato
and down to our day have won such great fame, and se-
lected the number and proportions of celestial orbits and
also selected the ratios between motions in accordance
with the nature of the regular solids....

"The essence of three things—why they are arranged
just so and not otherwise—has especially interested me,
and namely: the number, dimension, and movement of
celestial orbits."

Thus, in the foreword of his very first book, Kepler
raised a question which is the basic question of modern
physics—the question concerning the causes of the phe-
nomena of nature. While this question is quite natural in
our days, in the days of Kepler it sounded unusual. It
was not raised in either the Ptolemaic or the Copernican
astronomy. Following a centuries-long tradition, the
astronomers saw the task of their sciences as consist-
ing of describing and predicting as precisely as possible
celestial phenomena. In a review of a paper of Kepler's
his teacher Maestlin presented to Tuebingen University
Rector Hafenreffer, the former noted: " . . . The subject
matter [of this paper] and the method employed are new
and nobody thought about them before Who would ever
even think about ... the number, dimensions, and move-

136 Sov. Phys.-Usp., Vol. 16, No. 1, July-August 1973 Copyright © 1974 American Institute of Physics 136



ment of spheres, then substantiate all this and extract it
from the mysterious designs of God, the Creator? How-
ever, Kepler dared to undertake such a venture and
successfully brought it to the end."

How, then, did Kepler answer his own astonishing
questions? How did he succeed in finding the answers?
The history of the search is described in detail in the
same foreword to the reader.

Initially, Kepler made the assumption that the radii
of celestial spheres differ by factors 2, 3, 4, and so on,
but verification convinced him of the fallacy of this
hypothesis. Having rejected it, he "attempted to try an
astonishingly daring way out." Between Jupiter and
Mars, and also between Venus and Mercury, Kepler
placed "two new planets, invisible because of their
small size and ascribed to them certain periods of
revolution However, one new planet proved to be
insufficient to fill the monstrous interspace between
Jupiter and Mars." The second attempt similarly did
not lead to the desired result and Kepler made a third
attempt. This attempt differed from the two preceding
ones in greater refinement in the selection of mathe-
matical devices: Kepler made the attempt to represent
the distance between the sun and the planet by means of
one trigonometric function while representing the "mo-
tive force of the planet" [a concept to which the velocity
of the planet reduces] by means of another trigonometric
function.

Kepler tells of his subsequent attempts as follows:
" I spent almost the entire summer at this hard work.
Finally, by pure chance I managed to come closer to the
truth.... On July 9, 1595, I intended to show my students
how the great conjunction Lof Jupiter and Saturn] always
jumps over eight signs [of the Zodiac] and jumps from
one trigon to another. To this end I drew within a circle
a multitude of triangles (if only you can call them that)
in such a sequence that they would overlap one another.
The points at which the sides of the triangles intersected
formed a smaller circle, for the radius of a circle in-
scribed into such a triangle equals one half the radius
of the circle that circumscribes it. The relationship
between the sizes of the two circumferences which arose
before my eyes was completely analogous to the relation-
ship between the sizes of the orbits of Saturn and of
Jupiter; but the triangle is the first of the geometric
plane figures in the same way that Saturn and Jupiter
are the first planets. In exactly the same fashion I
attempted to obtain the second distance—between Mars
and Jupiter—by using a square, and the next with the aid
of a pentagon."

The hypothesis that the distances between planets
can be derived with the aid of regular polygons having
successively increasing numbers of sides could likewise
not stand the test and, morevoer, was unsatisfactory be-
cause it did not explain the number of planets known at
that time. But " its end simultaneously became the start
of the last attempt, which was crowned with success."

Here is how Kepler tells about the success of his
undertaking:

" . . . It occurred to me that if I were to follow the road
I chose (if I were to observe the succession of regular
polygons) I would never get to the sun and discover the
reason why there must be only six planets and not 20
or 100.... I reckoned that arbitrariness would creep in
if in order [to explain] the size and proportions of the
six orbits assumed by Copernicus it were necessary to

find among the remaining infinitely many plane figures
five which would differ from the rest by some special
distinguishing characteristics. And here I dashed for-
ward with new energy. What bearing do plane figures
have for three-dimensional orbits? In this connection,
one would rather have to turn to geometric solids. Now,
kind reader, you know my discovery and the subject of
the entire book! For as soon as a person, even one who
poorly knows geometry, utters these words, the five
regular solids and the ratios peculiar to them, between
the dimensions of the inscribed and circumscribed
spheres, come to his mind; that person immediately re-
calls Euclid's famous addendum to the 18th proposition
from Book ΧΠΙ, where it is proven that there do not ex-
ist, and one cannot invent, more than five regular solids.
To think only! Although at the time I have as yet not had
the slightest idea regarding comparative advantages of
regular solids, based on only an intuition and with a
knowledge of only the known distances between planets,
I have immediately succeeded in realizing my cherished
goal—to position the bodies so successfully that later,
when I have investigated the causes of things, there was
nothing that was in need of being changed."

Further, there follows the formula of the discovery:
"The earth31 is the measure of all orbits. Circumscribe
a dodecahedron about it. The sphere circumscribed
around the dodecahedron will be that of Mars. Circum-
scribe a tetrahedron around the sphere of Mars. The
sphere which is circumscribed around the tetrahedron is
the sphere of Jupiter. Circumscribe a cube around the
sphere of Jupiter. The sphere circumscribed around the
cube will be that of Saturn. Into the sphere of the earth
let us insert an icosahedron. The sphere that can be in-
scribed in this will be that of Venus. Let us insert into
the sphere of Venus an octahedron. The sphere inscribed
in this will be that of Mercury."

Here is what, in the opinion of the 23-year-old
Kepler, the mystery of cosmography consisted of: The
universe turned out to be arranged according to a single
geometric principle! But ... was the joy to turn out to be
premature? Failures of previous attempts had convinced
Kepler of the need for serious verification of each ad-
vanced hypothesis, and, restraining the delight that en-
gulfed him at the thought of his marvelous discovery,
Kepler undertook to carry out this verification.

" . . . Now I regretted no longer the lost time, did not
feel tired from working, and shunned no calculation, no
matter how complicated. I spent days and nights in cal-
culating in order to become convinced as to whether the
law formulated by me only verbally will coincide with
the orbits of Copernicus or my joy would be cast to the
winds. In case everything I conceived is correct, some-
thing I did not doubt, I swore to publish at the first op-
portunity this marvellous example of divine wisdom so
that people can become familiar with it. In a few days
everything came out right."

The use of a universal geometric principle enabled
Kepler to answer two of the three questions he raised:
to explain the number of planets known in his day (if
regular solids "are to be considered boundaries or
partititions..., with their aid one can separate no more
than six objects—hence the six planets revolving around
the sun") and to deduce the relative distances between
them. The answer to the third question (the one about
the motion of planets) turned out to be the most difficult
one and was obtained only many years later...

Thus, the solution was found and verified. In general
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outline, the solution was correct and it was now neces-
sary to work out the details and to substantiate it. The
latter task was something Kepler's philosophic views
forced him toward. In Kepler's opinion, God, "the most
perfect of architects had of necessity to produce a crea-
tion possessing irreproachable beauty," guiding himself
in this, like the builders on this earth do, by number and
measurement. "Lines and surfaces do not contain num-
bers—here the unlimited reigns. The same is true of
three-dimensional bodies. Irregular bodies should be
eliminated from consideration, for what is at issue here
is the basis of the best regulated construction." In a
letter to Maestlin dated April 9, 1597, Kepler expressed
this thought in the following fashion: "As the eye was
created for color, the ear for tone, so was the human
intellect created for understanding not just any thing
whatsoever but of quantities; the spirit grasps the mat-
ter so much more correctly the closer it approaches
pure quantities which are at the base of the problem.
The further the spirit diverges from quantities, the more
room there is for obscurity and error ."

Otherwise, everything in this most beautiful of all
possible worlds is regulated so perfectly that no room
remains in it for chance. Everything, including the solu-
tion Kepler found, must have its causes and Kepler
undertook to learn these causes with the thoroughness
characteristic of him.

First and foremost it was necessary to convince the
reader of the correctness of Copernicus' little-known
doctrine which by no means enjoyed universal recogni-
tion at that time. Kepler himself was "converted" to
Copernicanism in his student years.

Kepler tells about his initiation in the following way:
"As far back as the days when I had for six years dili-
gently attended in Tuebingen to the instruction of the
famous Master Maestlin, I sensed how far from perfect
in many respects is the currently prevalent conception
of the structure of the universe. Therefore I was so car-
ried away by Copernicus, whom my teacher frequently
mentioned in his lectures, that not only did I repeatedly
defend Copernican views in student debates, but also
thoroughly prepared a paper on the fact that the "first
motion" [revolution of the sphere of fixed stars] is
called forth by the diurnal revolution of the earth. In
this I proceeded from the fact that the motion of the sun
should be attributed to the earth not only on mathematical
grounds, as Copernicus did, but also on physical grounds,
or, if you please, metaphysical grounds. To this end I
began to collect little by little, in part from Maestlin's
lectures and in part from my own reflections, the advan-
tages which, from a mathematical point of view, Coper-
nicus had over Ptolemy."

The first chapter of Cosmographic Mystery is entitled
"Reasons for which the Copernican Doctrine is Correct.
Exposition of This Doctrine." No one before Kepier
dared to come out so openly in support of a "heretical"
doctrine. Even Maestlin, who readily presented
Copernicus' views in his lectures, wrote the Epitomes
of Astronomy from the positions of the traditional
Ptolemaic astronomy. Only in following through the
printing of Kepler's Cosmographic Mystery did Maestlin
make reference to the author's insufficiently popular
style of presentation ("... he [Kepler] judges others
using himself as a guide, as if anyone in whose hands
this book can come is well familiar with Copernicus'
complicated train of reasoning....") and appended to
Kepler's book a sort of outline of Copernicus' work

Concerning the Revolutions—the so-called "First Nar-
rative" of Rheticus. Similarly, another of Kepler's con-
temporaries, Galileo, was hesitant to come out publicly
in support of Copernicanism. In a letter to Kepler (and
Galileo wrote Kepler personally only twice) he openly
indicates his reasons for remaining silent:

".. . It is many years now that I share the views of
Copernicus and by using them as a guide I have discov-
ered the causes of many phenomena of nature which are
not explainable on the basis of generally accepted hypo-
theses. I have written a great deal on this subject about
direct and indirect proofs; however, frightened by the
fate of Copernicus, our teacher himself, I have as yet not
ventured to print them. He has won immortal fame
among a few; however, infinitely many (for such is the
number of fools) laughed at him and catcalled him. I
would dare to publish my line of reasoning if there were
more people of thy kind of intellect, but inasmuch as this
is not the case, I shall wait."

There were two reasons why Kepler was convinced of
the correctness of Copernicus' doctrine: in the first
place it was "the excellent agreement between all celes-
tial phenomena and the views which Copernicus held''
and in the second place it was the fact that "only
Copernicus substantiates in the most excellent fashion
the things others teach us to wonder about and in so doing
he eliminates the cause for wonderment, i.e. the ignor-
ance of the essence of a phenomenon." Ptolemaic
astronomy was powerless to explain, for example, why
the epicycle of Mars is of such a large size when com-
pared with the epicycles of Jupiter and Saturn although
the deferents (circles along which the centers of the epi-
cycles move) of these planets are significantly greater
than the deferent of Mars; why must Mars, Jupiter, and
Saturn at the time of opposition to the Sun be at the point
of perigee of their respective orbits, why is it that the
sun and the moon never retrograde in their orbits, etc.
All of these phenomena, as Kepler has shown, find a sim-
ple and natural explanation within the framework of
Copernican theory.

Further, Kepler explains why the regular solids must
be arranged precisely in the order discovered by him.
Kepler's reasoning will probably strike us as being com-
pletely devoid of logic and we would be prone to suspect
the author of dishonesty, of trying to mislead the reader.
But Kepler could not be dishonest; what may strike us as
a clumsy stratagem was for Kepler convincing arguments.

As a science develops, changes occur not only in its
contents but also in its language, and, what is even
more important, the logic of proofs changes. The tra-
ditional quod erat demonstrandum has a completely dif-
ferent meaning when used by a 16th Century author and
when used by a 20th Century author. One must not forget
this when reading Kepler today. But Kepler, while trying
out different proofs, in the end still gave preference to
the comparison of theory with experience. For the sake
of accomplishing such an agreement, Kepler can be seen
to have many times restructured his views. According
to Kepler all solids can be subdivided into two classes:
the primary ones (cube, tetrahedron, and dodecahedron)
and the secondary ones (icosahedron and octahedron).

In Book IV of the Epitome of Copernican Astronomy
the following is said regarding the primary solids:
"These solids express particularly clearly the meta-
physical opposition of equality and difference. The cube
is the embodiment of equality, the other two solids (the
tetrahedron and dodecahedron) are the embodiment of
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difference. The cube is the first solid that arises upon
construction, the tetrahedron is the first solid obtained
by excision from the cube, and the dodecahedron is the
first solid that results from combining the produced
their vertices, then in both cases the eye will reject so
ugly a sight."

And nonetheless, the incorrigible optimist considers
his problem solved: ".. . If some peasant now asks you
what sort of hooks hold up the heavens so that they do
not fall, it will be easy for you to answer him." Many
years later in the second edition Kepler notes with bit-
terness in the same spot: "Woe unto me; how terribly
mistaken I was."

The phantasy of the author knows no limits. Nothing
escapes his attention: neither the marvelous properties
of numbers connected with regular solids, nor the
"aspects" of which we will have occasion to speak in
greater detail below in connection with the discussion of
the Harmony of the Universe. And suddenly, in the mid-
dle of the book (in Chapter 13), there rings an unexpected
warning: "Everything said up to this point serves only
to support with likely arguments the law which we have
discovered. Now we wish to go on to the definition of
planetary orbits and to geometric studies. If the calcula-
ted values will not coincide [with those given by
Copernicusj then our entire labor will be unquestionably
in vain."

First of all it was necessary to solve a subsidiary
geometrical problem: to find for each of the five regular
solids the ratio of radii of inscribed and circumscribed
spheres. Taking the radius of the circumscribed sphere
to equal 1,000 parts, Kepler obtained the following values
for the radii of inscribed spheres: 577 for the cube,
333 for the tetrahedron, 795 for the dodecahedron,
795 for the icosahedron, and 577 for the octahedron.

With these data it was not possible to undertake the
solution of the main problem—"the astronomical proof of
the fact that five regular solids are located between the
celestial spheres." Before doing this one only had to
specify a certain, by no means unimportant, detail (it is
frequently forgotten): the spheres that separated the
orbits could not be the infinitesimally thin mathematical
spheres.

Celestial spheres must possess a certain thickness;
this circumstance caused no doubts among physicists: it
was necessary to locate between the inner and outer sur-
faces of the spheroidal layer (the "thick sphere") the
eccentric circular orbit of a planet, which orbit was
highly essential for explaining the unevenness in the mo-
tion of the planets (as yet there was not even a mention
of elliptical orbits). But Kepler disagreed with further
conclusions: "The physicists assumed that, allegedly,
starting with the innermost sphere (that of the moon) and
up to the tenth sphere41 there were no voids, nothing that
was not filled with spheres. The spheres must without
fail touch one another: the inner side of the outer sphere
must coincide with the outer side of the inner sphere
nearest it." Besides, the Ptolemaic astronomy had
nothing to say about the relative sizes of the spheres (in
solids...." The secondary solids differ "from the prim-
ary ones basically in that more than three edges con-
verge in a single vertex...." The earth, on which dwells
the crowning piece of Creation, man, deserves to be
placed between the primary and secondary solids.

Feeling, apparently, the shakiness of such arguments,
Kepler attempts to find yet others: ". . . The primary

regular solids must by their very nature stand upright
while the secondary ones must float. If the latter are to
be placed on one of the edges and the former on one of
the words of Kepler, in this school of astronomy "there
was nothing to go by in investigating proportions of
celestial orbits."). However, the "weak arguments of
physicists in favor of celestial spheres touching each
other" could only be refuted by an astronomer who "with
the aid of observations or hypotheses could himself soar
to the orbits, into the celestial space" (for "one cannot
object to one who writes about New India without having
walked that country from one end to the other himself!").
However, from the hypothesis of Copernicus and from
the assumption about the annual revolution of the earth,
it followed that between neighboring spheres there must
be empty gaps.

For example, "if the average distance from the earth
to the center of the universe is assumed to equal 60
units, the average distance from Venus to the center of
the universe would equal 43 % units, so that the differ-
ence would equal l65/e units. At the perigee earth ap-
proaches Venus an additional 2% units. At the apogee
Venus approaches earth 2/4 units. Consequently, overall,
the two planets come closer to one another by 5 units.
However, the distance between both planets, even at the
point of their greatest proximity, remains equal to 12."

Kepler's physical intuition rebelled against a space
completely filled with celestial spheres. "Why does
Nature need such wastefulness?" he exclaims. "How
absurd and useless would such wastefulness be! How
little of it have we grown accustomed to meet in Nature!"

With trepidation Kepler submitted his results to the
"judgement of astronomy." These results, presented in
table form, are one of the first comparisons of a model
with an experiment ever published in scientific literature.

The experimental data in this case are the spheres of
the planets calculated by Copernicus from the data ob-
tained by observation. The ratios of the outer surface of
a sphere to the inner surface of the next sphere are de-
termined geometrically. The thickness of a sphere as
defined by Copernicus is determined by the difference
between the aphelion and perihelion of a planet.

From our point of view, agreement with the experi-
mental data is not bad in the above model. Yet the point
to note here is that Kepler's model had no foundation
whatever; subsequent discoveries of the three outer
planets (Neptune, Uranus, and Pluto) and of the asteroid
belt deprived that model of any sense altogether. Thus it
was that Nature taught physicists a lesson in being vigil-
ant in dealing with simple models. Kepler, however, was
irritated by the last line in the table. When it came to
the orbit of Mercury, he corrected the rules of the game
on the run.

Having computed an orbit "by the rules," Kepler
found it unsuitable. At this point he introduced another
orbit which can be arrived at if one takes not the radius
of the inscribed sphere but the radius of a sphere that
touches the middle of the edges of the octahedron (and
not the centers of its faces). "This value," Kepler re-
marks, "is not too far off from 723." Of course, such
an obvious digression from the general rules required
some justification, and Kepler devoted a special chapter
to the analysis (an unconvincing one, to our mind) of the
exceptional case. Concerning this chapter, Kepler is to
write in the second edition that "all of this is incorrect,"
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and that "all the arguments are faulty." But nonetheless
the correspondence is sufficiently satisfactory and, as
Kepler himself notes, "the respective numbers are close
to one another. In the case of Mars and Venus they are
equal. In the case of earth and Mercury, they do not dif-
fer all that much. And only in the case of Jupiter do the
numbers diverge, which, after all, is not astonishing if
one takes into account the monstrous distance to it."

"It is not difficult to see," Kepler notes, "how great
would have been the divergence between numbers if our
experiment would have been counter to the nature of the
heavens, i.e., if God in creating the world would have
been guided by other numerical ratios. Such a close
correspondence of numerical ratios characteristic of
regular solids and of distances between the planets can-
not, of course, be accidental "

Similar substantiations were accepted as proofs even
after Kepler's day. But while convincing the reader
Kepler himself could not remain indifferent to the minor
discrepancies which he knew remained. Kepler could not
eliminate these discrepancies and stay within the frame-
work of his geometric model of the structure of the
universe: the scheme contained no free parameters
which one could vary to adjust the results.

First and foremost Kepler noticed that the task he was
achieving differed from the one Copernicus sought to ac-
complish. Copernicus' book Concerning the Revolutions
of the Heavenly Bodies was more of a cosmographic than
an astronomical study. Minor discrepancies in the rela-
tive distances were of no particular significance to
Copernicus.

Moreover, although Copernicus did claim to consider
the sun as being the center of the universe, he, however,
"in order to shorten the calculations and not unduly in-
timidate the zealous readers by excessively large devia-
tions from Ptolemy, did calculate the farthest and the
least distances ... and the points in the orbit of a planet
where it is farthest or nearest the sun, known respec-
tively as "aphelion" and "perihelion," not with respect
to the center of the sun, but with respect to the center
of the earth's orbit, as if the latter were the center of
the universe...."5 '

If Kepler were to believe Copernicus, he would have
been forced to consider that the eccentric distance, i.e.
the distance from the sun to the center of the earth's
orbit, is equal to zero (while the eccentric distances of
other planets, i.e. the distances between the centers of
their orbits and the center of the earth's orbit, would
have to remain, as before, other than zero), and, conse-
quently, to assume that "the sphere of the earth as dis-
tinguished from [the sphere of] other planets has no
thickness. But then the centers of the edges of the dode-
cahedron on the one hand and the vertex of the icosa-
hedron on the other would be located in the same sphere
and the whole world would look more compressed and
flattened out." Such corrections in the model were
scarcely acceptable to Kepler, for they would assign
earth a special role among the other planets.

There remained only one thing to do: to recalculate
Copernicus' data, accepting the center of the sun as the
center of the universe. It was Kepler's former teacher
Maestlin who readily agreed to carry out this labor-
consuming task at Kepler's request. The differences, as
was to be expected, turned out to be rather substantial.
For example, "for Venus, the difference Lin the position
of the line of apsides] comprised more than three signs

of the Zodiac [i.e., more than 90° J, for the aphelion [the
point in the orbit nearest the sun] lies in Taurus and
Gemini while its apogee [the point in orbit nearest the
earth] lies in the Capricorn and Aquarius."

Not only did the distances turn out to be different, but
also the annual parallaxes of planets in aphelion when
computed in three ways: 1) using the scheme of the posi-
tion of regular solids, 2) according to Copernican dis-
tances from the sun, and 3) again according to Kepler's
theory but with the moon included in the sphere of the
earth (which led to an increase in the thickness of the
earth's sphere). Especially markedly different were the
results obtained for Mars (40°9', 37°22', and 37°52') and
Venus (49°36', 47°51', and 45°33').

Such obvious discrepancies did not shake Kepler's
belief in the correctness of the scheme he proposed for
the structure of the universe, but they could make an un-
favorable impression on the readers of the Cosmographic
Mystery and even undermine their confidence in the new
theory. Being aware of it, Kepler undertook an extensive
analysis of possible causes for the discrepancies in the
results.

First of all, it was necessary to find out just how re-
liable the computations were. Maestlin, in making his
calculations, used the so-called Prutenic Tables com-
piled in 1551 by Reinhold on the basis of the Copernicus
model.6' Kepler was quite skeptical in evaluating the re-
liability of these tables: in computing the position of the
planets they, in his words, "not infrequently lead to er-
rors ," they contain values of eccentric distances for
planets which "do not instill trust" and are generally so
rough that at times they do not permit one to attain an
accuracy exceeding 1/2 degree.

Copernicus' data was also not sufficiently reliable.
Therefore, the contradictions that were discovered did
not support Copernicus' theory, but they could not be
considered decisive enough to discredit it. It remained
for Kepler to try another way and to obtain data about
relative distances between planets with the aid of con-
siderations which went beyond the framework of the
geometry of regular solids. Kepler hoped to obtain from
an investigation "of the proportions of motions to orbits"
of celestial bodies the necessary data (and along with it
the answer to the third question formulated in the
Cosmographic Mystery). This idea (intended to save the
model) turned out to be truly a lucky one.

Kepler's reasoning reduced, apparently, to the follow-
ing. The difficulty was due to the fact that there was no
confidence in the correctness of values obtained for the
distances. Direct observations did not yield reliable
values. Later on, while studying the motion of Mars,
Kepler understood how one should correctly "triangulate
the sky", but for the moment he was carried away by
another idea. If it is impossible to measure the distan-
ces directly, is it perhaps possible to find an indirect
method of carrying out such measurements? Indeed, if

Radius of the
inner surface
of sphere =
1000 units

Saturn
Jupiter
Mars
Earth
Venus

Radius of the outer surface of the
neighboring sphere

according to Kepler

Jupiter 577
Mars 333
Earth 795
Venus 795
Mercury 577 or 707

according
to Coperni-

cus
(Book V)

635
333
757
794
723
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distances between planets are subject to some order,
then the periods of their revolution cannot be accidental:
they must be governed by some simple law which would
establish the interrelation between periods of revolution
and distances involved. In such a case computation of the
radii would simply reduce to substitution of correspond-
ing periods which were known with a great degree of pre-
cision. But there was nobody in Kepler's days who had
analyzed the interrelation between radii and periods of
revolution. Consequently, it had to be established.

Verification has shown that the periods of the planets
are not proportional to the radii of the orbits, for
"although the ratios of the periods is similar to the
ratio of the distances," the two are nonetheless different.
For such a divergence to occur there must be a reason
and Kepler advanced two hypotheses: either the motive
forces of the planets themselves (Kepler wrote about
their "soul") weaken the farther they are away from the
sun, or "there exists only a single motive force [again
"soul"] which emanates from the center of all orbits,
i.e., from the sun, and which acts on all bodies stronger
the closer they move toward the sun." Kepler stops to
consider the second hypothesis.

In the second edition Kepler makes two comments:

" 1 . The fact that such souls [of planets] do not exist
I have proved in my New Astronomy.

"2. If we replace the word "soul" with the word
"force" then we obtain precisely the principle which is
at the basis of celestial physics in New Astronomy. At
first I firmly believed that the motive force of the planets
is the soul Now, however, when I have understood
that the cause of motion diminishes in proportion to the
distance, just as the light of the sun weakens in direct
proportion to the distance from the sun, I came to the
conclusion that this force must be something material
not in the literal sense of the word but ... in the same
sense in which we speak about the material nature of
light, understanding by it the non-material substance
emitted by a material body."

"If the increase in the period of the planet," Kepler
says, "were related only to the increases in the size of
the orbit, then the motions would be in the same ratios
as are the average distances." But such a simple rela-
tionship between the period of revolution and the radius
of the orbit is distorted by a force that comes from the
sun and decreases with the distance from it. "It can be
assumed with a great degree of probability that the in-
fluence of the sun [on the motion of planets] is subject to
the same regularities as is light. We know from optics
how the weakening of a light emanating from a point oc-
curs. A small circle [drawn around the Sun] receives the
same amount of light as does a larger circle. The light
falling on the smaller of the two circles is denser than
the light falling on the larger circle. The measure of the
weakening of the light as well as of the motive force
must be sought in the relationship between the circles.
The orbit of Venus is greater than the orbit of Mercury,
therefore Mercury moves with greater force, with more
haste, more agility and dashing than does Venus. How-
ever, the longer the orbit, the greater the time required
for the planets to complete a revolution even if they are
subject to similar motive forces. Consequently, the in-
crease in the distance from the planet to the Sun influ-
ences in two ways the increase in the period of its revo-
lution "

Planets

Jupiter: Saturn
Mars: Jupiter
Earth: Mars
Venus: Earth
Mercury: Venus

Relative
distances
(Kepler)

0.574
0.274
0.694
0.762
0.563

Relative
distances

(Copernicus)

0.572
0.290
0.658
0,719
0.500

Further, Kepler provides an erroneous relation (which
he himself corrected in the second edition) between the
radii Rt. and R2 and periods Ti and T2 of two planets:

1 1 ·
D .U

This relation, the precursor of Kepler's famous Third
Law, allowed him to compute the relative distances be-
tween planets. The following results were obtained (here
again the Copernican data are regarded as experimen-
tal).

"We see how closely we have succeeded in coming to
the truth," Kepler stated with joy. But the agreement
was still not complete and Kepler could not be content.
He anxiously raises the question: "Will we live to see
the day when both rows of figures can be brought into
complete correspondence with one another?"

Such a day came, although not all that soon. Kepler
needed almost a quarter of a century to come to the dis-
covery of the Third Law of motion of the planets. In a
comment to the second edition of Cosmographic Mystery,
Kepler proudly notes: "We lived to see such a day 22
years later and we, at least I, are happy. I think that
Maestlin and others who have read Book V of the
Harmony of the Universe share my happiness." And in
the same second edition Kepler notes:

"If my numbers turned out to be close to reality, this
occurred accidentally.... Perhaps one should not have
printed these comments. But now it gives me pleasure
to recall how many steep roads I had to travel and what
number of walls I have stumbled into in the darkness of
my ignorance until I finally found the door which led me
to the light.... Thus I have dreamed about the truth."

Work on the Cosmographic Mystery left Kepler full of
creative plans. In his mind Kepler conceived a vast new
study. In a letter to the Bavarian Chancellor Herwart von
Hohenburg dated December 14, 1599, Kepler reports:
"I have already developed the method and prepared the
first drafts for a book entitled De Harmoniae Mundi
dissertatio cosmographica (A Cosmographic Discourse
about the Harmony of the Universe). The book will con-
tain five parts or chapters: the first, geometric, con-
cerning the figures which can be constructed by means of
a compass and a ruler; the second, the arithmetical one,
is about numerical proportions characteristic of regular
polyhedra; the third, the musical one, is about the
causes of harmony; the fourth, the astrological one, is
about the causes of aspects; the fifth, the astronomical
one, is about the causes of periodic motions."

However, one serious circumstance interfered with
the daring project: Kepler was lacking exact observa-
tional data. He couldn't be satisfied by the scanty amount
of information which was available to Copernicus.
Copernicus himself added to the list of the observations
of the ancients only 27 more stars. Only one man in
Europe of that time had at his disposal the necessary
data. This man's name was Tycho Brahe.
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An aristocrat by birth and a scientist by calling, the
famous Danish astronomer Tycho Brahe was the first to
understand the importance of systematic observations.
The precision of observations which he was able to
achieve (without a telescope at that!) not only signifi-
cantly exceeded the precision of observations of his
predecessors but also for a long time remained unattain-
able to those who followed him.

"Everybody must become silent and listen with all
the acuity of their intellect to Tycho," Kepler wrote to
Herwart von Hohenburg (on April 9/10, 1599), "who de-
voted to observations 35 years of his life and who saw
with his own eyes more than many others. Any one of
his instruments is worth more than all of my property
and the property of my relations. When compared with
him, Ptolemy, Alfonso, and Copernicus would have
looked simply as little boys were it not Tycho's custom
to credit to them with the greater part of his knowledge
and ideas which have served as impetus for his discov-
eries.. . ."

Tycho was not exclusively an astronomer engaged in
observations (and to boot the best astronomical observer
of his time), he also was a theoretician, albeit with much
less success. Having become convinced of the inadequac-
ies of Ptolemaic astronomy through his own experience
that stretched over many years, and at the same time
not recognizing the Copernican theory, Brahe advanced
his own scheme of the structure of the universe which
was of a mixed geo-heliocentric nature. According to
Brahe, all planets (except earth) had to revolve around
the sun which, in turn, revolved around the earth.

In a letter to Maestlin written soon after Brahe's
death (Brahe died December 20, 1601 when he was only
55 years old), Kepler characterized Brahe's scientific
work in the following way: "Everything that Tycho ac-
complished, he accomplished before '97 Tycho's main
achievement was his observations, which consist of as
many voluminous tomes as there were years which he
devoted to his work. But his Progymnasmata [The Basic
Principles] truly spread the fragrance of ambrosia....
Tycho taught about all the planets correctly and conduc-
ted thorough investigations but, basically, like
Copernicus, mutatis mutandis he did it in the manner of
Ptolemy. From this you can see how God distributes his
gifts: no one of us has everything. Tycho has performed
the same mission as Hipparchus: he laid the foundation
of a building and in so doing performed a great deal of
work. But no one man is able to carry out everything.
Hipparchus needed Ptolemy, who developed the theory
of the remaining five planets."

We cannot stop here to consider the rather involved
chain of events which preceded the meeting between
Kepler and Brahe, Kepler's move, together with his
family, to Prague, and the start of cooperation between
the two titans. We should only remind the reader that
their uneasy alliance was very short-lived. It lasted for
only a year and a half. The relationship between Brahe
and Kepler was from the start far from cloudless. They
each set vastly different goals for themselves. Brahe
valued highly the refined analytical mind and the learning
of his younger "brother in the observation of the heav-
ens," and Kepler considered it an unusual opportunity to
be able to work with the "prince of astronomy," with
"our phoenix." Already after Brahe's death, Kepler
wrote Maestlin: "If the Lord is in the least bit concerned
with astronomy, and my piety commands me to believe

this way, then I hope to accomplish in this area certain
results, for I see how God has tied with inseparable
bonds my fate with Tycho and did not permit us to part
even after the gravest of arguments."

Having sent Brahe a copy of Cosmographic Mystery,
Kepler hoped to receive in return not only a response
but also the data that interested him very much dealing
with the eccentricities of orbits and the distances be-
tween the orbits. But Brahe intended to use his observa-
tions to support the correctness of his own model of the
Universe and was in no hurry to share with anyone the
treasures which he had accumulated.

Vexed by the unexpected obstacle, Kepler wrote
Maestlin (February 26, 1599): "here is my opinion about
Tycho. He is rich beyond measure, but like the majority
of rich people he does not know what to do with his
riches. It is necessary, therefore, to take upon oneself
the labor (which I have performed with appropriate deli-
cacy) of depriving him of the accumulated treasures, and
to force him to publish the observations without holding
back, and all of them at that."

A personal meeting with Brahe at the latter's observ-
atory in Benatky near Prague did not bring the desired
result either. In a letter to Herwart von Hohenburg dated
July 12, 1600, Kepler reports: "I would have already
concluded my researches about the world harmony had
not Tycho's astronomy so captivated me that I nearly wen
went out of my mind.

".. . One of the most important reasons for my visiting
Tycho was the desire to receive from him the more pre-
cise values for the eccentricities of the planet orbits and
with their aid check the Cosmographic Mystery and the
already mentioned Harmony of the Universe, because the
a priori conclusions must not contradict the obvious but,
to the contrary, must be in complete agreement with it.
No matter how I tried, I could not find out anything from
Tycho. Only at mealtime, in conversations, he mentioned
in passing today the apogee of one planet, tomorrow the
nodes of another."

To Kepler, who was always generous in sharing not
only finished results but also ideas about future work, the
thought of precise observations lying under lock and key
was unbearable. His visit to Benatky convinced Kepler
also of the fact that Brahe alone would not be able to
cope with the task of processing a huge mass of observa-
tions.

"Tycho possesses the best observations and, conse-
quently, material for the erection of a structure," wrote
Kepler. "He has workers and everything else which
might be necessary. What he lacks is only an architect
who would use all of this according to his, Tycho's, own
plans. For no matter how happy a talent Tycho poses-
ses, how skillful he is in architectonics, the diversity of
the tasks and the fact that the truth sometimes lies hid-
den deep within them, hinders his success. Now old age
steals upon him, for his spirit and strength weakened or
will weaken to the point where it will be difficult for him
to accomplish everything alone."

Who, then, must be this architect who shall build from
Brahe's observations the magnificent edifice of the new
astronomy? On this account Kepler had no doubts: it is
no accident that he, Johannes Kepler, came to Benatky
precisely at that recent time when Brahe's assistant,
Christen Soerensen Longomontanus, attempted (without
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noticeable success) to construct a theory of the motion
of Mars. "If Christen was occupied with another planet,"
Kepler reports, " I , too, would have had to become inter-
ested in it." Kepler saw a meaning in the entire course
of events:

". . . I again see the will of Providence in the fact that
I arrived exactly at the time when he was occupied with
Mars. Otherwise we would never have had the opportun-
ity to arrive, on the basis of observations, at the knowl-
edge of the mysteries of astronomy and they would have
forever remained hidden from us."

Mars was always an unusual and wily planet, and poor
Longomontanus had no end of trouble in attempting to
reach a satisfactory agreement with the observations.
Having become convinced of the extraordinary abilities
of his new assistant, Brahe decided to entrust Mars to
Kepler's care (not forgetting to exact from the latter an
oath to keep the data entrusted to him secret) and to as-
sign Longomontanus the theory of the moon.

To Kepler, who considered himself by no means a
novice in astronomical calculations, the new task at first
appeared to be not very difficult and he even made a bet,
rashly promising to complete the theory of Mars in eight
days.

We don't know how high the bet was, but we know that
Kepler lost the bet. Work on the theory of Mars, instead
of the eight days initially promised, took up (to be sure,
with interruptions) almost six years.

"The fruits of titanic efforts were published only in
1609 in a book which was called "The New Astronomy
Based on the Study of Causes or Celestial Physics
Presented in Commentaries About the Motion of the
Planet Mars on the Basis of the Observations of the
Noble Tycho Brahe by the Order, and with the Patronage
of, Rudolph II, The Roman Emperor, etc., Which Was
Developed in Prague in the Course of Investigations of
Many Years Duration by the Mathematician of His Holy
Imperial Majesty, Johannes Kepler."

Kepler succeeded in accomplishing what no one of his
precursors could, which was "to shackle Mars with the
chains of computations."

In the dedication, presenting the Emperor Rudolph II
a conquered Mars, Kepler tells in allegorical form about
the vagaries of a protracted "war" with the latter. With
the triumph of a conqueror, Kepler speaks about the bad
reputation which his "noble captive" has acquired among
the astronomers:

"He (Mars) invariably had the upper hand over human
intuition, he ridiculed all the contrivances of astronom-
ers, destroyed everything that they have created, and
routed enemy troops. The mystery of his might Mars
preserved over all the past centuries and made his voy-
age without restraining his freedom in any way, which
gave Pliny, the most famous of the Latins, the priest of
Nature, reason to exclaim: "Mars is a planet which does
not submit itself to observations! "

No less colorful is another example of the difficulties
connected with the creation of a theory of Mars which
Kepler brings up. This is an incident which occurred
with Georg Joachim Rheticus, "the most famous of
Copernicus' students who was the first to dare and make
the renovation of astronomy the purpose of his desires
and strove to accomplish what he has conveieved with

the aid of observations and ideas of no small impor-
tance."

Rheticus, according to the legend, growing desperate
in his attempts to understand the motions of Mars, turned
to his guardian angel with a request to have the latter
help him master the truth. The guardian angel, driven
out of his wits with insistent pestering, grabbed his
charge by the hair and proceeded to hit Rheticus' head
against the ceiling, then threw him on the floor, while
mumbling all the time: "Here you have the theory of
Mars!"

"Legend is a wicked creature," Kepler adds. "Noth-
ing can inflict greater harm on a good name than a
legend for it transmits fiction and fable as strictly as it
does declare the truth. However, it is quite possible that
the troubled spirit of Rheticus became enraged from the
fact that Rheticus' speculations brought no results, and
his head began to beat against the wall on its own. Must
one be amazed at the fact that Rheticus, who dared to in-
vestigate Mars, met the same fate as did the emperor
Octavian Augustus who lost five of his legions under the
command of Quintilius Varus when these were surrounded
by the enemy of Augustus Arminius, an offspring of the
German God of War."

Kepler himself did not trust the rumors about the in-
vincibility of Mars, considered them exaggerated, and
"always thought about the way to victory."

The first to venture against the formidable enemy
was Tycho Brahe, who with his observations laid the
groundwork for future victory.

"Absolutely special praise," Kepler wrote, "is de-
served by the zeal of Tycho Brahe, the supreme com-
mander-in-chief in this campaign. Supported by the kings
of Denmark, Frederick II and Christian, and of recent
time by your Imperial Majesty [Rudolph II] as well, he,
working nights over the last 20 years unceasingly re-
connoitered all the habits of our enemy and his military
cunning, he exposed all the enemy's intentions and, be-
fore dying, wrote all of the above in his books."

Armed with Brahe's observations, Kepler replaced
him in the post of the "Supreme Commander-in-Chief."

The struggle against the perfidious enemy proceeded
with variable results. "Oftentimes we lacked machines
of war precisely in those places where they were espec-
ially necessary," Kepler reports. "Clumsy drivers de-
livered them by roundabout ways with great delays and
at great costs. The enemy, as yet poorly studied, turned
out to be in places other than those where he was expec-
ted to be. The sun and the moon blinded the gunlayers,
thick clouds at times obscured the target. Even more
frequently the cannon balls drifted off target because of
the damp air."

Sometimes one managed to approach the den of the
enemy quite closely, but a successful storm of the den
was hindered by the "slanting walls of faulty con-
clusions." The enemy put up an extremely tenacious and
inventive defense. As soon as one bastion was taken, he
immediately erected a new one and the old means were
insufficient to conquer it and it was necessary to develop
new ones. One also felt the accidents and pestilence in
one's own camp: "loss of a valiant Commander-in-Chief,
divisions, infections, and diseases." Domestic affairs,
"pleasant and unpleasant," also took time.
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Finally the enemy, no longer capable of enduring the
persistent chase, began to think about concluding peace
(to be sure, not before he became convinced of the fact
that "in all of the Empire he did not have a single relia-
ble refuge left") and asked for mercy. "Mother Nature"
became the mediator in negotiations dealing with the
terms of capitulation. Having secured for himself the
freedom within the confines permitted by the voluntarily
assumed fetters, Mars, "under armed escort of arith-
metic and geometry, heartened and cheerful," went into
captivity, into the camp of the conqueror.

Great were the trophies captured by Kepler in the
exhausting "duel" he fought with Mars. Kepler discov-
ered not only the two laws of planetary motion (first the
one we call second, and then the first) which have immor-
talized his name, but he also proved the productivity of
an essentially new, physical, approach to the study of
celestial phenomena.

The novelty and daring of the conclusions and methods
of the New Astronomy could frighten a reader educated
in the spirit of the old astronomy (for they signified a
break with a two-thousand-year-old tradition!), and
Kepler decided to move gradually, forcing the reader to
go the road from the old to the new that he had had to
travel himself.

"What is, after all, involved here is not just the
simplest way to introduce the reader to the essence of
the subject matter being presented," Kepler explains the
manner of presentation he had selected. "Another thing
is important: for what reason, by use of what intricate
device or happy accident did I, the author, manage to
arrive at what I did. When Christopher Columbus,
Magellan, and the Portuguese (the first discovered
America, the second the Chinese Ocean, while the
Portuguese discovered the sea route around Africa) tell
of how they lost their way, we not only do not condemn
them, but, to the contrary, are afraid to miss something
in their stories, so great is the pleasure we derive from
reading them. Therefore I too should not be blamed if
out of love for the reader I shall use in my work the same
device. Reading about the exploits of the argonauts we
do not experience the difficulties which they have suf-
fered, while the difficulties and the thorns on the road of
my thought are unfortunately quite perceptible to the
reader. Such is the lot of all mathematical compositions.
Just as some people derive pleasure from one thing,
others from another thing, there will be, I am sure, those
who will experience the greatest joy when, having over-
come all the places which are difficult to understand in
my writings, they will be able to grasp with one look the
chain of my discourses."

Kepler starts from afar by relating how the astrono-
mers learned to "distinguish the first motion of the
planets from the second, or the motion proper," and how
in investigating the second motion they have discovered
two inequalities—the first and the second.

"The fact that the motions of the planets are circu-
lar," Kepler says, " is attested by their unceasing repe-
tition. The intellect that deduces this truth from experi-
ence immediately concludes from here that the planets
revolve along ideal circles, for among the plane figures
the circle, and among the solids, the celestial sphere,
are considered the most perfect ones. However, with
more careful investigation, it turns out that the experi-
ence teaches us something else, namely the orbits of the
planets are different from simple circles. Inasmuch as

such a conclusion caused the greatest of amazements,
people were finally forced to take upon themselves the
task of finding the causes of the aforementioned devia-
tion.

"Thus appeared the kind of astronomy whose objec-
tive it was to point out the reasons why the motions of
heavenly bodies appear to be disorderly when observed
from the earth while in the heavens they are subject to
a strict order, to investigate the circles along which the
heavenly bodies revolve, and to predict the positions of
heavenly bodies and of celestial phenomena for any given
point in time."

For the ancient astronomers, who did not know the
difference between first and second motion, the orbits of
heavenly bodies appeared to be entangled ("like the
thread in a ball") and complicated.

"These naive views of astronomy," Kepler notes, not
without sarcasm, "based not on the explanation of phe-
nomena by causes but on crude observations not repre-
sentable in the form of figures and numbers and not ap-
plicable to the future (for they are never repeated—the
duration of one revolution differs from the duration of
another, one spire of an orbit never goes into another
spire of the same size), are the views, I say, that at-
tempts are being made to revive by those who are eager to
to gain the recognition of the mob and who are not without
sucess in obtaining such recognition from the unenlight-
ened. Fortunately, those who are knowledgeable in
astronomy consider that such people are either fooling
around, or, as Patrizzi7' used to say about philosophers,
are themselves fools, their intellect not withstanding."

Reflecting over the amazingly complicated motion of
heavily bodies, the astronomers gradually understood
that the motions of stars which are visible from the earth
are in reality a superposition of "two simple motions,
the first and the second, the general and the particular."

"The first motion is understood to involve the rota-
tion of the entire sky, with all the stars, from the east
over the south to the west, and from the west, over the
lower portion of the sky, to the east, which occurs every
24 hours. The second motion is the motion of individual
planets from west to east, which occurs at greater inter-
vals of time."

Having separated the first motion from the second,
the astronomers discovered that in the second motion
one can single out two so-called inequalities: the first is
the non-uniformity of the angular velocity of the planet
(it takes different lengths of time for a planet to traverse
similar arcs), the second is the non-uniformity of the
direction of the motion of a planet (periods when a planet
stands still and when it retrogrades). Methods were de-
veloped which allowed both inequalities to be taken into
account.

Thus, an eccentric circle (the eccentric) was used in
the astronomy of Ptolemy to explain the first inequality,
and the epicycle to explain the second inequality.

Following the greatest authority of antiquity and
middle ages, Aristotle, the astronomers (not only
Ptolemy and his contemporaries but also Copernicus
and, of course, Brahe) imbued the circular motion with
special properties. In their opinion the exalted nature of
everything celestial, and, consequently, of planets as
well, demanded that the majestic celestial bodies should
revolve in circles without hastening or slowing down
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their pace. Every violation of the uniformity of move-
ment (every inequality) contradicted their conception of
the ideal order governing the heavens and was declared
as being apparent or imaginary.

The non-uniformity of the angular velocity of a planet
(the first inequality) in Ptolemy's astronomy was attribu-
ted to an unfortunate selection of the point of observa-
tion: a displacement of the earth relative to the center
of the "equant point" A from which the movement of the
planet would appear uniform. In order to explain the mo-
tion of the Sun it was sufficient to have a "simple ec-
centric"; in other words, it was assumed that the center
Ο of the circular orbit of the sun coincides with the cen-
ter of the equant point A. In more complicated cases (for
instance, when examining the motion of Mars), the
scheme of motion proved to be not all that simple. In
order to achieve agreement with observations it was
necessary to introduce a hypothesis according to which
three points—the center of the universe which coincides
with the center Τ of the earth, the center of the equant
point A, and the center Ο of the circular orbit of the
planet, all lie on a straight line and do not coincide one
with the other. The non-uniformity of the angular veloc-
ity of the planet was explained by the fact that the earth
(T) and the center of the equant A lie on different sides
of the center Ο of the circular orbit of the planet. There-
fore, from point Τ the motion of the planet appears to be
the slowest in the aphelion and the fastest in the peri-
helion.

In constructing the theory of Mars within Ptolemaic
astronomy, it was necessary to introduce yet another
hypothesis, that TO = OA. (The only argument in favor
of such a hypothesis was a reference to the analogy be-
tween the motion of Mars and the motion of the inner
planets Mercury and Venus.)

To explain the second equality (when the motion of
planets is arrested and reversed), Ptolemy proposed to
use the epicycle, i.e., represent the motion of planets as
the result of superposition of two circular motions: uni-
form revolution of a planet in a small circle, the epi-
cycle, and revolution of the center of the epicycle on the
circumference of another circle, the deferent (a com-
plete revolution of the center of the epicycle must occur
in the sidereal period of the revolution of a planet).
Moreover, the radius vector drawn from the center of
the epicycle to the planet must at any one moment in
time be parallel to a radius vector drawn from the cen-
ter of the solar equant to the so-called average sun (this
is true for the upper planets). Kepler defines the aver-
age sun as follows: "The true position of the sun is that
place where we see the sun as the result of the inequality
of its motion, the average position is the place where the
sun would have been had there been no inequalities,"
i.e., if the sun were to move uniformly.

In Copernicus' theory the necessity of introducing the
epicycle for the explanation of the second inequality was
eliminated: the fact that planets stood still and retro-
graded received a much simpler and more natural ex-
planation. They were considered as being conditioned by
the fact that the observations of the movement of planets
were conducted from a moving observatory, the earth.
However, Copernicus did require epicycles, although for
another purpose, to explain the first inequality because
the orbits of the planets continued to be considered cir-
cular in form. The object of particular pride for
Copernicus was the fact that all circular motions (of the

planet in the epicycle and of the center of the epicycle
along the larger, deferent, circle) were uniform.
Copernicus saw in this the correction of Ptolemy's er-
ror and a return to the "true principles" of motion.

Copernicus, who approached the study of the motion of
planets from the position of a pure mathematician, as-
sumed that his epicycle was completely equivalent to the
Ptolemaic equant. Kepler came to a different conclusion.
Having demonstrated with the aid of a simple geometric
construction the qualitative equivalence of both methods
of explaining the first inequality, he, at the same time,
did not neglect a slight difference in the position of the
planet as computed in accordance with the recipes of
Ptolemy's and Copernicus' theories (the difference in
the formula for the angle or the true anomaly). And
although we will have many more occasions to come
across Kepler's amazing power of observation and his
unusual "attention to details," this first manifestation
of the wonderful gift of a great astronomer cannot but
evoke admiration, for Kepler (if one were to use modern-
day terminology) observed a discrepancy in the third
order of the theory of perturbations along the eccentricity
of Mars.

The fact that Kepler had proved approximate equival-
ence of kinematic schemes used in Ptolemy's and
Copernicus' theories for the explanation of the first in-
equality by no means meant that Kepler considered the
physical content of these two theories equivalent. From
the point of view of a creator of a new science, celestial
physics, Copernicus' theory had undisputable advantages
over both the ancient doctrine of Ptolemy and the new
theory of Brahe.

Kepler speaks out on this point (in the introduction) in
no uncertain way: " . . . Although the difference between
the three points of view with regard to their physical
content is established with the aid of hypotheses, the
hypotheses are such that in their reliability they are not
inferior to hypotheses of doctors about the functions of
parts of the human body or some other physical hypothe-
ses.

But even the best among the theories, that of
Copernicus, was far from perfection and was in need of
corrections.

Copernicus saw nothing strange in the fact that in his
theory the center of the universe was not a material body
but a certain "empty" point, the center of Earth's circu-
lar orbit. Copernicus drew conviction in the correctness
of his hypothesis by reference to the high authority of
Ptolemy, who had planets moving along epicycles sim-
ilarly rotating around a "non-physical" point.

Such a choice of a point for the center of the Universe
was unacceptable to Kepler, who considered that a
"mathematical point, even if it is the center of the
universe, can neither move a heavy body nor attract i t ."
In his first book, the Cosmographic Mystery, Kepler ex-
pressed the opinion that the sun is the source of the mo-
tion of the planets. In Kepler's opinion it is precisely the
sun, and not the imaginary "average" sun but the real
" t r u e " one, that must be located at the center of the
universe. From here followed a very important practical
conclusion: the circular orbits should be defined when
observing the position of the planets at the point of their
opposition with the true and not the average sun (as
Ptolemy, Copernicus, and Brahe had proposed). (At the
point of opposition with the sun, the earth—planet and

145 Sov. Phys.Usp., Vol. 16. No. 1, July-August 1973 Yu. A. Danilov and Ya. A. Smorodinskif 145



sun—planet directions coincide, which makes it possible
to eliminate the second inequality which is due to the
difference between the geo- and heliocentric longitude.)

This thesis of Kepler's was the cause of an argument
with Brahe during one of the first few days Kepler spent
at Benatky. Kepler himself describes the discussion with
Brahe in the following way: "Having arrived at Brahe's,
I immediately noticed that he, along with Ptolemy and
Copernicus, defined the first inequality according to the
average motion of the Sun. But four years previous to
this, supported by physical considerations, I came to the
conclusion that one should proceed (as was shown in the
Cosmographic Mystery) from the true motion of the sun.
When a difference of opinions arose between us, Brahe
made reference to the fact that in describing the first
inequality he succeeded in achieving just as good a
correspondence with observations when using the aver-
age motion. I, however, objected to his comment, point-
ing out that the circumstance just brought up does not
prevent one from using, when describing the first in-
equality, the same observations but with reference to the
true motion of the sun, for only the second inequality can
decide which one of us is right."

Inasmuch as Brahe and his assistant Longomontanus
did, indeed, succeed in achieving satisfactory corre-
spondence with observations (in matters concerning the
first equality), Kepler had to prove that the changeover
to the true sun leads to only insignificant changes in ob-
served results. The computations which he had carried
out had demonstrated that the maximum changes in the
heliocentric longitude (because of the small eccentricity
of the Earth's orbit) reach 5' and, consequently, do not
lead to contradictions with observations. Kepler carried
out all of the subsequent computations in the theory of
Mars using the true motion of the sun.

Kepler's conception of the sun as being the source of
planetary motion allowed him to introduce an important
improvement which, at first sight, may appear to be
paradoxical: In explaining the first inequality, Kepler
refused to use the epicycle introduced by Copernicus and
returned anew to an (almost) Ptolemaic eccentric circle,
i.e., he shifted the sun relative to the center of the orbit
of the planet. And this Kepler did after he himself
demonstrated the approximate equivalence of both me-
thods of representing the first inequality!

In reality this step of Kepler's did not involve an in-
ternal contradiction and did not signify a return to
Ptolemaic views. Kepler had filled the old Ptolemaic
picture of motion with new physical contents: having
placed the sun outside the center of a circular orbit,
Kepler explained what caused the planets now to acceler-
ate, and now to decelerate their motion. From two
mathematically equivalent means of describing the first
inequality, Kepler chose the one which made more sense,
physically speaking.

Kepler's eccentric circle differed from the Ptolemaic
one not just by the fact that, according to Kepler, the
true sun was at the center of the Universe and the circu-
lar orbit of Mars should be defined according to the
planet's opposition with the true sun. Kepler rejected
the hypothesis that the center of the circular orbit Ο of
Mars divides in half the segment between the position of
the sun S and the center of the equant A (the complete
eccentricity). The ratio in which the point Ο divides the
segment AS now had to be computed from observations.

The hypothesis about the circular orbit of Mars sim-
ilarly had to be confirmed with the aid of Brahe's obser-
vations. Kepler had at his disposal a table of ten opposi-
tions compiled by Brahe and entitled "An Exact Descrip-
tion of the Motion of the Planet Mars Along its Eccentric
Circle Based on Exact Acronychal Observations Carried
Out, as is Clear From the Table Itself, With Particular
Meticulousness over 20 Years (from 1580 to 1600) with
the Aid of Our Instruments for Various Constellations."

Kepler was unable to use Brahe's data directly for
two reasons: First, because the astronomers before
Kepler (including Brahe and Copernicus) did not know
how to correctly take into account the angle which the
plane of the orbit of Mars forms with the plane of the
ecliptic, because they considered that this angle fluc-
tuates in time. Second, because Brahe referred all his
observations and computations to the average sun, it was
necessary to interpolate Brahe's data to obtain dates of
actual oppositions and of the position of Mars. The first
problem was particularly difficult. In solving it, Kepler
again demonstrated the subtlety of his physical intuition.
Kepler not only had to solve a difficult problem, but he
also had to dispel the myth about the fluctuation of the
plane of the orbit of Mars which, before him, was trans-
mitted by astronomers from generation to generation.

Kepler the physicist, as contrasted with Copernicus,
flatly rejected from the very start the thought of the
plane of Mars' orbit fluctuating without any visible
causes. It was necessary only to support this confident
belief with computations based on Brahe's observations.
Having selected six such observations, Kepler found the
longitude of the ascending node (it turned out to be equal
to 46-73°). He then computed the angle of the plane of
Mars' orbit relative to the plane of the ecliptic by three
different methods.

The calculations which Kepler made enabled him to
come to " a completely reliable conclusion: the angle of
the plane of the eccentric relative to the plane of the
ecliptic does not change" and is equal to lD50'.... "Why
shouldn't we now generalize this conclusion," Kepler
notes, "for there are no reasons why this must be true
for only one planet, are there? However, I can prove an
analogous conclusion for Venus and Mercury on the basis
of observations, too."

Having proved the constancy of the angle between the
plane of Mars' orbit and the plane of the ecliptic, Kepler
was able to carry out a correct reduction of heliocentric
longitudes to the longitudes in the plane of the orbit of
Mars. After evaluating for greater precision of calcula-
tion the diurnal parallel of Mars and augmenting Brahe's
table of oppositions with two more observations of his
own (1602 and 1604), Kepler obtained the initial data for
verifying his hypothesis about the circular orbit of Mars.

From the days of Ptolemy astronomers knew how to
find the position of the line of apsides and the eccentric-
ity of circular orbits. Assuming that the center of the
orbit divides the eccentricity in half, three observations
were necessary. The solution was obtained by a simple
(at least by contemporary standards) geometrical con-
struction. In refusing to accept the hypothesis that the
eccentricity is divided in half by the center of the orbit,
Kepler made the problem more complicated. To find the
value of the proportion, an additional (fourth) observa-
tion was needed. The method proposed by Kepler for
finding a solution was also completely different from the
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Ptolemaic one. Having selected from twelve oppositions
four (1587, 1591, 1593, and 1595), Kepler obtained a
geometrical solution for the problem of determining
heliocentric coordinates.

Presenting his line of reasoning, Kepler notes: "If
you, reader, have grown weary from the tiring method,
then you have more reason to have sympathy for me, who
has done all these calculations at least seventy times,
and who has spent on them a great deal of time. I think
you will not be amazed when you learn that it is already
the fifth year since I began to occupy myself with the
theory of Mars, although almost the entire year of 1603
had to be devoted to research in optics."

Kepler the mathematician, who saw in Euclid's
Elements the ideal of mathematical structures, was not
satisfied with the method because it was not "purely
geometric."

Kepler the physicist was proud, and rightly so, of his
remarkable accomplishment, and addressing a challenge
to mathematicians, he wrote:

There will be artful geometers, men like Vieta, who,
if they succeed in proving that my method is not suffi-
ciently skillful, will consider it a special accomplish-
ment of theirs. Vieta has cast, in connection with other
problems, an analogous reproach to Ptolemy, Copernicus,
and Regiomontanus. Well, these mathematicians can test
their strength and find a geometric solution to the prob-
lem. I will consider each one of them a great
Apollonius. I am satisfied that, proceeding from one
premise (four observations and two hypotheses), I can
construct four or five conclusions, i.e., find the way out
of the labyrinth not with the light of a torch but with the
aid of a simple thread (which, however, was in my hands
from the very beginning). If it is difficult to understand a
method, then it is even more difficult to investigate things
without a method."

Having carried out a huge amount of computations,
Kepler obtained the data he needed about the orbit of
Mars. Thus were found the position of the line of apsides
and the ratio in which the center of the orbit divides the
full eccentricity (the distance between the center of the
equant and the sun). After checking the results obtained
on the eight observations which were unused, Kepler
addresses the reader:

"You see, industrious reader, that a hypothesis based
on methods presented above not only reproduces in the
course of computation the four observations used in
reaching a conclusion, but also conveys all the remain-
ing observations to within two minutes."

It would seem that the desired objective had been ac-
complished, but a more rigorous check revealed the
illusory nature of the success achieved and the triumph
of the victor gave way to the bitterness of failure.

"Who could have thought that such a thing is possi-
ble!" Kepler exclaims. "The hypothesis which produced
such close correspondence with acronical observations,
nonetheless turned out to be erroneous as soon as one
switched to the observations of the average or true sun.
Ptolemy had warned us against this when he taught that
the eccentricity of the equant must be divided in half by
the center of the eccentric carrying the planet. I, how-
ever, along with Tycho Brahe, did not presume the
division of the eccentricity into equal parts. True,
Copernicus, too, was not afraid to overlook, from time

to time, the division of the eccentricity into equal parts.
But Copernicus utilized an extremely small amount of
observations, assuming, apparently, that Ptolemy, too,
utilized no more observations than those mentioned in
his great work. Tycho Brahe succeeded in forging ahead
only a little bit further than that."

What further is to be done? ". . . We have assumed
that the orbit along which a planet revolves is an ideal
circle and that, besides, there exists on the line of ap-
sides a unique point which is located a specific distance
away from the center of the eccentric [which is, pre-
cisely, the center of the equantj and relative to which
Mars, during equal periods of time, traverses equal
angles. One of these two assumptions or both of them
are erroneous, more likely both, for the observations I
have used are correct." One cannot but admire the
merciless logic of Kepler.

Kepler undertook one more attempt to save the circu-
lar orbit of Mars with the aid of an old hypothesis ac-
cording to which the eccentricity of the eccentric is equal
to the half of the full eccentricity. However, the compu-
ted positions of Mars at eight points failed to coincide
with observations, although the deviation was, after all,
rather insignificant—about 8'. Having discovered this,
Kepler wrote a classic discourse concerning the exact-
ness of theory and experiment.

"Such a small deviation—eight minutes—is the reason
why Ptolemy resorted to the division of the full eccen-
tricity in an equal ratio, for the mistake resulting from
the division of a full eccentricity in half ... is at most 8',
and this is for Mars, which has the greatest eccentricity.
In the case of other planets, the error is even less.
Ptolemy says himself that the precision of his observa-
tions nowhere exceeds 10', i.e., 1/6 of a degree. Thus,
imprecision, or, as they say another way, permissible
deviation in observation, exceeds the error rate of
Ptolemaic computations.

"We, however, have been given by Divine Goodness
so diligent an observer as Tycho Brahe. His observa-
tions exposed the error of Ptolemaic observations so
that we could with gratitude recognize this good deed
of God and use it, i.e. proceeding from the proven mis-
taken nature of the hypotheses, we have taken upon our-
selves the labor of finally finding the true form of celes-
tial motions. This is the road I wish to travel to give ex-
ample to others. If one could overlook these 8', I would
have long ago perfected the hypothesis regarding the
circular orbit of Mars I formulated in Chapter XVI by
introducing into it the division of the full eccentricity in
an equal ratio. However, inasmuch as one cannot over-
look the aforementioned mistake, these 8' pointed the way
to the reformation of the whole of astronomy. They have
served as a building material for the greater part of my
work.''

So, although the hypothesis that Mars had a circular
orbit did permit one to compute the heliocentric longi-
tude of that planet rather precisely, it proved to be in-
consistent, despite all the tricks resorted to by Kepler.

"Thus," Kepler concludes, "the edifice, which we have
erected using only Tycho's observation, had to be
destroyed by us using other observations by the same
man. We had to endure this punishment, because in fol-
lowing our predecessors we have accepted hypotheses
which seemed plausible but were in reality false."
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It was necessary to look for a new approach in estab-
lishing the form of the Mars' orbit, and Kepler knew how
to find it by selecting a round-about way—through a defi-
nition of the form of the Earth's orbit. Kepler hoped to
obtain the outline of Earth's orbit by selecting on it a
sufficiently dense network of points and calculating the
respective distances from these points to the sun. "If in
this way one will succeed in finding the key," Kepler
wrote, "then the way toward everything else will be
open."

And again the physical ideas come to the forefront.
Back in Chapter 22 of his Cosmographic Mystery, having
expressed possible causes for the non-uniform motion
of the planets, Kepler made a special metnion of the fact
that his physical considerations, if proven correct, were
in equal measure applicable to all planets, including the
Earth. In pre-Keplerian theories the earth and the sun
have occupied "privileged" positions. It was considered
that they uniformly revolved along the so-called simple
eccentric (i.e. along the circumference), creating only an
illusion of slowing down when approaching the perihelion
and of speeding up when approaching the aphelion. The
other planets, however, whose equants were considered
not to coincide with the center of the eccentric, indeed
had to speed up when approaching the sun and slow down
when moving away from the sun.

Kepler, in his words, "got the suspicion" that the
earth too is similar to the remaining planets.

The method by which Kepler refuted the authorities
and proved the existence of the eccentricity of the equant
for the earth's orbit too is exceptionally clever. Using
our present-day terminology, one could say that, in order
to compute the distance between the earth and the sun,
Kepler used the method of triangulation. Kepler formu-
lated the task before him in the following manner:

" I intend to find three or more observations of Mars
in which the planet is located in one and the same point
of the eccentric and trigonometrically calculate the dis-
tances from these points of the epicycle or the orbit to
the equant. Inasmuch as the circumference is defined by
three points, I will establish by three observations the
position of the circumference and its line of apsides and
will also compute the eccentricity of the equant. If there
will be yet a fourth observation, it can be used for veri-
fication."

Having selected from Brahe's observations positions
of Mars which differed each from the other by a whole
sidereal period (the sidereal period of Mars, equal to
687 days, was well known), Kepler obtained the basis of
triangulation, the segment SM, where S is the true sun
and Μ a point to which Mars returns after complete
revolutions. Angles at which the segment SM is seen
from the earth were known from observations. It was
possible to calculate angles at the vertex S (from the
sun) with the aid of a theory of the sun developed by
Brahe. From the Mars—earth—sun triangles Kepler
found the distance between the sun and the earth, using
the distance between the sun and Mars as the unit of
measurement; after which he had no difficulty calculating
the radius of the circumference (the orbit of the earth,
the direction of the line of apsides) and, finally, to
achieve the goal of the entire undertaking, which was to
determine the distances from the center of the equant
and of the sun to the center of the earth's orbit. Both
distances turned out to be the same and equal to .018 of

the radius of the earth's orbit. Thus, Kepler's idea about
the "equality" of the earth with other planets (more
precisely, the idea that the earth is not different from
other planets) had been proven true.

The result, however, was too important without a
rigorous verification of its correctness or on the basis
of a single proof. Kepler verified it by different methods.

Only after this did Kepler consider the result obtained
as being reliably well-founded and, having used it for the
purposes of compiling an extensive table of distances
from the earth to the sun (with 1° interval), turned to
his favorite topic, the discussion of the physical causes
of the motion of planets.

It is precisely at the point in time where one of his
guesses (the one about the "equality" of the earth with
other planets), which, in the final analysis, was also
based on physical considerations, received such brilliant
substantiation that Kepler returned to an idea long nur-
tured in his head and dealing with the connection between
the distance from the planet to the sun and the speed of
the planet, and he developed his ideas about the forces
that cause the planets to revolve around the sun.

In the beginning Kepler discovered that, in the vicinity
of apsides, the time it takes a planet to traverse an arc
is proportional to the length of a radius-vector drawn
from the sun, and he then applied this regularity to other
sections of the orbit. Of course, a theoretician so atten-
tive to observations as Kepler did not miss the fact that,
outside of aphelion and perihelion, the ratio he had ob-
served is realized only approximately. Proceeding from
a partial regularity established on the basis of observa-
tion, Kepler came to the conclusion that "the force
moving the planets is concentrated in the sun." Kepler's
line of reasoning reduces to the following:

"It was proved in the preceding chapter that the time
necessary for a planet to traverse equal parts of the ec-
centric (or equal segments of distance in the celestial
space) is proportional to the distance from these seg-
ments to a point from which the eccentricity is calcula-
ted, or, simply put, a planet revolving round a point as-
sumed to be the center of the universe is less subjected
to the action of the force the farther it moves from that
point. From here it follows necessarily that the cause
of such a weakening lies hidden either in the body of the
planet itself and the motive force dwelling within it, or
in the point taken to be the center of the universe.

"A commonly accepted axiom of all of natural philos-
ophy says that if some phenomena occur simultaneously,
in the same fashion, and always on the same scale, then
one of them is either the cause of the other or they are
brought about by the action of a cause common to both.
In our case, as a planet approaches the center of the
universe or moves away from it, there is always a coin-
cidental proportional acceleration or deceleration of the
planet's motion. From this I conclude that either the de-
celeration of the motion is the cause of the planets mov-
ing away from the center of the universe, or, conversely,
the movement away from the center of the universe
causes deceleration, or both phenomena have a common
cause."

Having conscientiously examined all three possibili-
ties, Kepler came to the conclusion that in reality only
the second one comes about. "Thus," he sums up his
reasoning, "there remains only the assumption accord-
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ing to which the cause of deceleration and acceleration
of the motion lay hidden ... in the point accepted to be
the center of the universe

"Consequently, inasmuch as with increasing dis-
tance from the center of the universe a planet deceler-
ates with increasing distance and accelerates with de-
creasing distance, the source of the motive force must
necessarily lie at the point which we took to be the cen-
ter of the universe. If such a hypothesis is accepted, then
the cause of the observed phenomenon becomes clear:
it follows from the hypothesis that the motion of the
planet is subject to the law of the lever. Indeed, a planet
moving under the influence of a force emanating from
the center of power will be heavier (and therefore move
more slowly) the less the distance from it to the center.
The same occurs when I say that the weight is greater
the farther it is from the fulcrum, not by itself, but be-
cause of the lever action which is proportional to the
length of the arm. In both cases (here the lever and the
weight, there the motion of the planet), the force de-
creases in inverse proportion to the distance.

". . . And since the sun is situated in the center of the
planetary system, it follows from what has been proven
that the seat of motive force is in the sun, for such a
seat of power must be located precisely in the center of
the universe."

Kepler's conception of the sun as being the source of
motion was subsequently made more precise and was
supplemented. Kepler saw a very close analogy between
properties of the force emanating from the sun and the
properties of light, and with the aid of this analogy he
once more substantiated the law he had derived from
general considerations, and according to which force
decreases with distance. The carriers of force, in
Kepler's opinion, are special non-material particles re-
leased by the sun. For planets to move along the circle,
these particles which impart motion to them must them-
selves move along circles. Consequently, Kepler con-
cluded, the sun, which is the source of motion, must
also revolve around its axis. Kepler explains the nature
of the sun by means of an analogy comparing it with a
magnet.

Kepler presents, in the form of the following six
"absolutely correct" axioms, the sum of his reflections
on the nature of forces acting on planets and governing
their motion.

" 1 . The body of a planet, where it can be considered
isolated from other bodies, tends, by its nature, to re-
main at rest ."

"2. Force emanating from the sun moves the body of
the planet from one place on the Zodiac to another."

" 3 . If the distance from the planet to the sun were to
remain constant, the planet would revolve along a circu-
lar orbit."

"4. If some one planet were to make two complete
consecutive revolutions, each at different distances from
the sun, then the periods of revolution would be in the
same ratio as the squares of distances or the lengths of
circumferences.

" 5 . The force hidden in the planet itself is insuffi-
cient for the planet to move from place to place, for it
has neither legs, nor wings, nor fins which it could use
to lean against the heavenly ether.

"6 . Nonetheless, a change in the distance from the
planet to the Sun is conditioned by the force possessed
by the planet itself."

Finally the moment came to "translate these specu-
lative conclusions into the language of numbers." It is
here that Kepler made one of the discoveries that im-
mortalized his name: he formulated the so-called second
law of motion of the planets which now carries his name
(chronologically speaking, the second law was discovered
before the first).

Again (how many times!) the road to discovery lay
through tiring calculations.

"Inasmuch as the periods of time which a planet re-
quires to traverse equal sections of the eccentric stand
in the same proportion to one another as do the distances
from these sections to the center of the Universe, and
these distances change from one point on the semicircle
to the next, it cost me no small labor to find in what
manner one can obtain the sum of individual distances.
Indeed, without knowing the sum of all the distances (and
there are infinitely many), it is not possible to indicate
the time interval corresponding to a given distance, for
any part of the sum stands in the same proportion to its
respective period of time as does the entire sum to the
entire period of revolution.

"Therefore, I began by dividing the entire eccentric
into 360 equal parts (considering them to be, as it were,
the smallest) and assumed that within the limits of each
such part the distance to the center of the universe does
not change."

The table of distances was prepared beforehand. It
only remained now to sum them.

"Then," Kepler continued, "I took the period of revo-
lution equal to 365 days and 6 hours, rounded it off, and
decided that it must correspond to 360°, or the complete
circumference, which signifies to astronomers the aver-
age anomaly. I have assumed the ratio of the sum of the
distances to the sum of the times to be equal to the ratio
of any individually taken distance to the respective time
period. Finally, I summed up all the results obtained
and carried out all the computations for every degree."

It was extremely difficult to carry out such computa-
tions and Kepler, by his own admission, "began to look
for a method that would make computations easier."

"Inasmuch as I knew that the eccentric consists of an
infinitely large number of points, corresponding to which
there are infinitely many distances," Kepler says, "it
came to me that all those distances are contained in the
area of the eccentric. I remembered that once
Archimedes, in striving to find the ratio of the length of
the circumference to the diameter, divided the circle in
exactly the same manner into infinitely many triangles.
Precisely in this lies the innermost meaning of indirect
proof proposed by Archimedes. Instead of dividing the
circumference, as before, into 360 parts, I divided into
as many parts the area of the eccentric circle, drawing
rays out of the point from which the eccentricity is cal-
culated...." After this was accomplished, it only re-
mained for Kepler to assume that the area, the sum of
the radius vectors, was proportional to time.

Kepler concludes his research into the second inequal-
ity with the following words:

"Thus, I have, with the aid of quite reliable observa-
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tions and proofs, precisely described the cause and
measure of the second inequality which, right before our
eyes, causes the planets to stop, retrograde, or continue
their motion. I have shown that the second inequality
affects the first inequality as well, and that the theory of
the sun or the earth (according to Copernicus) or that of
the epicycle (according to Ptolemy) is in all respects
similar to the theory of other planets. I have also found
the physical cause of the first inequality and have used
this in computing the orbit of the sun."

Having made the orbit of the earth more precise,
Kepler could again return to his main task, the estab-
lishment of the form of the orbit of Mars.

After selecting several groups of observations (three
observations to a group), Kepler computed for each of
the observations, on the assumption that the orbit is
circular, the parameters of the orbit of Mars—the posi-
tion of the line of apsides, and the magnitude of the
eccentricity. The scatter of the obtained values exceeded
by a great deal both the observation errors and the
computation errors. "Just how erroneous all these re-
sults are," Kepler concludes, "can be seen from the
fact that some different result was obtained every time."

Turning to observations, Kepler compares them with
distances from Mars to the sun, calculated in accordance
with the circular-orbit hypothesis, and arrives at the
following results:

Date of observation

31 October 31, 1590 ι
31 December 31, 1590
25 October 25, 1595 ·

Angular distance
from the
aphelion

9°37'
36°43'

104°25'

Distance calcu-
lating according
to circular-orbit

hypothesis

1.66605
1.63883
1.48539

Distance from
observations

1.66255
1.63100
1.47750

Difference

0.00350
0.00783
0.00789

From the preceding Kepler concludes: "The orbit of
the planet Mars is not circular in form. The orbit
gradually deviates inward on two sides and then returns
toward a circular form in the perihelion. It is customary
to call an orbit of such form an oval." Then the oval
was replaced by an oviform orbit with the blunt end
turned toward the aphelion and the pointed end turned
toward perihelion (the oviform oval is tangent to the
circle at the aphelion and perihelion).

Kepler not only attempted to prove the deviation of the
orbit from circular empirically, making references to
the observations of Brahe, but also to substantiate it
proceeding from the "physical" ideas he had developed
about two forces acting on a planet, one of which (the one
emanating from the sun) causes the planet to revolve
uniformly around the sun and the other (hidden within
the planet itself) which forces the planet to move
uniformly along a small epicycle thereby causing per-
iodic changes in the distance between the planet and the
sun. However, all of this reasoning proved to be faulty
and the first to recognize this was Kepler himself:

"As soon as it became clear from the reliable obser-
vations of Brahe that the orbit of a planet is not an exact
circle but is rather flat on two sides, it seemed to me
that I knew the natural cause of such a phenomenon. For
I have investigated such questions in great detail in
Chapter 30. I would like to ask the reader that, before
going on, he carefully reread that chapter. Indeed, in it
I have attributed the eccentricity to a certain force hid-
den within the planet itself, from which it followed that I

ascribed the deviation of the planet from an eccentric
circle also to the same force. However, what happened to
me could not be described better than by the old proverb,
"haste makes waste."

What in the beginning appeared to be sufficiently con-
vincing proof turned out to be nothing more than plausi-
ble reasoning. Observations had brought to naught all
of the artful constructions. Kepler had to begin from the
point which he succeeded in attaining without resort to
"physics," from the determination of the shape of the
orbit point by point. Although each step was possible
only at the cost of tremendous computational difficulties,
Kepler did not lose his spirit. More than that, he had the
strength to be ironic about his (temporary, to be sure)
reverse:

"At the time I was drunk with the triumph over the
motions of Mars as if the latter were already conquered,
thrown in the jail of tables, and fettered by the equations
of the eccentric, from different places there began to
arrive reports that the victory was only ephemeral and
the war flared up with new force. Within the walls of my
house, the enemy, whom I had considered my prisoner,
tore the fetters of equations and broke out of the jail of
tables, for not a single one of the geometric methods...
could compare in terms of precision with the temporary
hypothesis8' (which leads to correct equations although
it is based on incorrect assumptions). Outside, the spies
positioned along the entire orbit (I have in mind here the
true distances) had overpowered the troops of physical
causes I had called forth in Chapter 45, and they had
overthrown their yoke and had again found freedom. A
little bit more and the enemy, who has escaped, would
have joined the rebels, which would have led me to des-
pair. Without wasting a minute, I secretely sent out sup-
port troops—regiments of new physical causes, and have
with all haste reconnoitered in what direction the fugitive
departed and began to pursue him, hot on his heels."

So, the "physical reasons" why the orbit of Mars had
to be oval, have, as Kepler put it, "gone up in smoke."
But did this mean that one couldn't extract any informa-
tion about the true shape of the orbit from the hypothesis
that the orbit is oval? No. Comparing distances compu-
ted with the aid of the temporary hypothesis with the dis-
tances computed in accordance with the oval-orbit hypo-
thesis, Kepler became convinced that, when far from
aphelion and perihelion, the first set of distances invar-
iably turns out to be longer, and the second set shorter,
than the distances obtained from observations. From
this Kepler draws a conclusion: "The truth lies some-
where in-between."

Kepler's attention was attracted by the lunes between
the circle and the inscribed oval. Taking the radius of
the circle to be 1, he found that the width of the lunes was
0.00429. Kepler could not get this number off his mind.
Again and again he returned to the thought that, in es-
sence, "nothing much is said in Chapter 45, and that
precisely therefore the triumph over Mars proved to be
a chimera." The solution came, as always, unexpectedly.
Kepler calculated the angle (let us call it a) at which the
observer, located on Mars, would see a segment from
the center of the orbit to the position of the sun. In order
to understand Kepler's further search, we shall look at
the ellipse. The segment under discussion is the dis-
tance from the center of the ellipse to its focus. The
width of the lune is the difference between the semimajor
axis a and the semiminor axis b (expressed in units of
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the semimajor axis) so that ( a - b)/a = 0.00429. All that
we have to know in addition is that the distance from the
focus to the end of the minor semiaxis is also a. Kepler
noticed another fact which seemed strange to him,
namely, when the angle a is at its maximum, its cosecant
equals 1.00429, differing exactly by unity from the previ-
ously calculated width of the lune. We, however, know
that this cosecant equals the ratio of the distance to the
planet when it is located at the end of the semiminor
axis (when a is maximal) to the length of the semiminor
axis:

cosec α = -r- = ; —
b a — {a — b)

: 1 4-

This is precisely this that Kepler discovers. The coin-
cidence amazes him. One can only wonder what intuition
of a naturalist one must possess to discern a profound
law behind these numerical curiosities. For Kepler no
coincidences are accidental. In analyzing the corre-
spondences between the angle and the distance for other
positions, he comes to equation of the ellipse in the form
called to this day the ellipse equation (a = 1):

r = 1 • e cos β.

In this equation β is the eccentric anomaly, i.e. the angle
between the radius vector drawn from the center of the
ellipse and the major axis, and e is the eccentricity. As
the result of the preceding, Kepler found sufficient rea-
sons for the final rejection of the circular motion of the
planets and for the establishment of a new law.

But can one consider the results substantiated if they
have not been supported by physical considerations? Of
course not. And Kepler again indulges in complicated
reasoning to prove, with its aid, that the result is inevi-
table. Only a short distance remained in the great voyage
to the shores of New Astronomy, but even the last leg of
this voyage didn't come easy.

"The closer one comes to Nature," Kepler reflects,
i e the more she frolics and plays pranks with those who

want to catch her, to flee him the moment she is almost
caught." But the long wished-for shore was near. One
more effort, and Kepler found the truth: "For the orbit
of a planet there remains no other form except that of
an ideal ellipse, for causes deduced from physical prin-
ciples agree with ... the results of observation and the
temporary hypothesis." Thus was discovered Kepler's
first law.

The New Astronomy, which Kepler called Celestial
Physics, ends with the verification of a new theory, the
computation of the coordinates of Mars, which have not
yielded to the efforts of Kepler's predecessors. The
search for harmony brings Kepler rich finds and confi-
dence in the fact that it is precisely he who is pre-
destined to understand in the end the mechanics of the
planets which were concealed from all others. Working
frenziedly over the theory of Mars, filling hundreds of
pages with computations (sometimes repeating them up
to 70 times!), he never forgot about his intention to
write a grandiose book, De Harmoniae Mundi, whose
plan he presented in a letter to Herwart von Hohenburg
as easly as 1599.

Work on Celestial Physics demanded not only patience
but also new ideas; it cost Kepler tremendous effort
and he simply had no free time to take up the new subject
which concerned him very much; however, he never
stopped thinking about it. One testimonial as to how un-
ceasingly Kepler was pursued by the thought of search-

ing for the harmony of the universe is contained in the
admission which the conqueror of Mars let slip in a
letter to the Englishman Heydon (in 1605): "Would but
that God free me from astronomy so that I can concen-
trate all my thoughts on the work Harmony of the
Universe!"

The Harmony of the Universe was completed only on
May 27, 1618 (though the last, the fifth book of the great
work, was subjected to significant revisions during the
time of printing and its final version was completed only
on February 19, 1619.)

If in Cosmographic Mystery we sense the romantic
flight and youthful passion of the author, and if in the
New Astronomy we are amazed by the refined intuition
of the author allowing him to find the correct way
through the labyrinth of observations, then in the
Harmony of the Universe we see emerging Kepler the
philosopher, concerned with finding the key to the struc-
ture of the cosmos, the super principle allowing him to
grasp at one look the entire wealth of phenomena and to
substantiate the common character of all the members
of the solar system.

But it is precisely in this book that the weakness of
Kepler's method came to light. Now we clearly see that
numerical laws alone, that is to say the arithmetic of
harmony, are insufficient for constructing the dynamics
of the motion of planets. For this it was necessary to
have Newton's equations. Kepler, of course, did not know
this. He saw that one must find harmony not only in the
geometric properties of the system of planets but also in
the laws of their motion. His fantasy is as ever un-
restrainable. Overcoming mathematical difficulties9', he
strove to solve the great problem for the solution of
which he was predestined by fate.

The book is full of ideas and fantasies; however, it is
very difficult for us now to follow the author's line of
thought: today we know that his way was doomed to fail-
ure from the very start and, in advance, we treat with
suspicion those discoveries which appeared valuable to
him. But among these discoveries there was also
Kepler's third law, whose value is undisputed. We shall
not cite in detail everything that is written in the book.
Nearly everything there is of no relevance to the third
law. We shall "s trol l" through the book, stopping to
consider only some of its noteworthy aspects.

The lofty objective of the book required a special
manner of presentation. Inasmuch as the contents dealt
with the uncovering of the innermost plans originated in
the course of Creation, all conclusions had to be logic-
ally flawless. Therefore Kepler decided to follow the
manner of presentation in Euclid's Elements, which
mathematicians had considered for many centuries to be
the ideal of mathematical rigor.

For Kepler, who saw in geometry "the prototype of
the beauty of the world," it was natural to look for
causes of harmony not in numerical ratios as was done
by the Pythagoreans, but to view the properties of num-
bers only as a reflection of geometric figures that stood
behind them. The leading idea of the entire book is the
universal nature of the harmony of the universe, and the
role of mathematics in learning this harmony are clearly
formulated in the epigraph from Kepler's beloved author
of antiquity, Proclus Diadochus, which introduces the
first book:

Mathematics makes its greatest contribution in the
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study of nature by allowing us to discover a harmonious
system of ideas in accordance with which the universe is
built ... and to represent simple elements, which the
heavens are founded on, which assume in different parts
appropriate forms in all their harmonius and balanced
unity."

In his research on harmonic proportions Kepler used,
in many regards, Book X of Euclid's Elements, augment-
ing Euclidean theory of irrational numbers by their
classification according to various degress of "con-
structibility." (It is curious to note that the very term
"irrational" was considered by Kepler to be incorrect
and he replaced it with the term "inexpressible.")10'

Kepler tells in detail in the introduction to Book I of
the Harmony of the Universe about his attitudes toward
Euclid!

"When I saw that true and authentic differences be-
tween geometric figures, from which I intended to deduce
the causes of harmonic proportions, are usually com-
pletely unknown; when I saw that Euclid, who subjected
them to investigation, had been reduced to confusion and
suppressed by the malicious criticism of Ramus,11' that
he had been muffled by the cries of arrogant ignoramu-
ses, and that either nobody listens to him or he speaks
about the mysteries of philosophy to the deaf; when I
saw that Proclus, who has made Euclid accessible to
understanding, who has extracted what was hidden in
broad daylight, and who has managed to make the most
difficult places easily understandable, now serves as the
object of scoffing and his commentaries reach no further
than the tenth book, it became clear to me what had to be
done. I saw my task, first of all, as copying from the
Tenth Book of Euclid everything that was particularly
important for the plan I have conceived; then, with the
aid of certain classification, to put Euclid's ideas in a
clear order and indicate reasons for which Euclid over-
looked a given part of this sequence, and, finally, to in-
vestigate the figures themselves. Inasmuch as what was
involved was a quite clear exposition of Euclid, I restric-
ted myself to only giving formulations of respective
theorems. Much of what Euclid proved in other ways I
had to present anew inasmuch as I pursued a quite defin-
ite goal, to compare the constructible and the non-con-
structible figures. I connected that which was disjointed
and changed the order. For the convenience of reference
I introduced continuous numbering of definitions, propo-
sitions, and theorems as I did in Dioptrics.12' I did not
strive to be particularly precise in the lemmas and was
not very much concerned about expressions, for to a
greater degree I was concerned with the subject itself
acting not as a mathematician in the domain of philosophy
but as a philosopher in this area of mathematics."

Next follows an analysis of the properties of geome-
tric figures and their most important property is de-
clared to be the rationality of the ratio of the lengths of
their elements and the possibility of constructing them
with the aid of a compass and a ruler. This property is
made the basis for classifying dividing polygons as those
that are constructible and those that are not. Kepler
says that "the discussion here concerns very important
things, for this is precisely the reason why God did not
use a heptagon and other figures of this sort for adorning
the world as distinguished from the 'constructible figures
which were introduced' earlier."

However, there were infinitely many "constructible"
figures and to select from among them a finite number of

figures with which one could "substantiate" harmonic
proportions was impossible.

Having become convinced of that, Kepler attempted to
distinguish figures according to a new property which he
called congruence. The Second Book of Harmony of the
Universe is, indeed, entitled "Congruence of Harmonic
Figures." Kepler defined congruence as the filling of a
plane by geometrical figures or the construction of poly-
hedra from plane figures.

In investigating plane congruences Kepler was one of
the first to solve the problem of parquets, i.e., the com-
plete covering (with no uncovered gaps and overlapping)
of an area by figures, both by those that are the same
and by those of different forms and sizes.

However, it was in investigating three-dimensional
configurations that Kepler made his main mathematical
discovery. If one is to allow the faces of a regular poly-
hedron to intersect one another, then one can add to
Plato's five regular polyhedra six more having the form
of a star. Two of them were discovered by Kepler and
are called Keplerian to this day. His contemporaries did
not appreciate this discovery of Kepler's. It was for-
gotten and re-discovered only in the beginning of the last
century by the French mathematician Poinsot.

The number of congruent figures turned out to be fin-
ite and they all belonged to the class of constructible
figures. This appeared to be a good omen.

Now Kepler had to extract from the numerical ratios
characteristic of these figures those which could be taken
to form the basis of harmony. Initially Kepler took up
music, later going on to the planets. But it was already
clear to him at that point that the study of the periods of
revolution of the planets is the area in which he must
apply the theory he was creating.

Book III of the Harmony of the Universe, which is
called "The Origins of Harmonic Ratios and Also the
Nature and Differences of Musical Intervals", is devoted
to the search for harmonic ratios. In the preface to this
book Kepler relates the legend which ascribes the dis-
covery of harmonic ratios to Pythagoras: "They say that
Pythagoras, passing by a smithy and hearing the
harmonic sounds emitted by the hammers, was first to
discover that the difference in tone was related to the
size of the hammer: the big hammers emit a low tone,
the small ones the high tones. Inasmuch as what is
called a ratio is connected with numerical quantities, he
measured the hammers and without difficulty found the
proportions corresponding to harmonic or dissonant,
melodic or non-melodic, sound intervals. From ham-
mers Pythagoras went to the lengths of strings for which
the ear indicates more precisely which part produces
consonance and which part produces dissonance."

Attempts to construct the entire musical scale from
some basic intervals were undertaken before Kepler's
time as well. Thus, for instance, Plato in "Timaeus"
arbitrarily took three intervals as basic: the octave, the
fifth and the fourth. Kepler, with his stand on primacy
of geometric figures, had before him a much more com-
plicated problem to solve: not only to point out a finite
number of intervals with which one could build all the
remaining consonances but also to derive basic intervals
from the properties of geometric figures.

Having completed computations comparable in volume
only to those connected with the empirical determination
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of the orbit of Mars or of the earth point by point, and
having looked over many variants, Kepler (in mid-
August 1599) obtained seven harmonic intervals (con-
sonances): the octave (which has 1: 2 frequency ratio),
the major sixth (3:5), the minor sixth (5:8), the fifth
(2:3), the fourth (3:4), the major third (4:5), and the
minor third (5:6), and derived from them the entire
scale, the major and the minor tone, and so on.

"I have first found these seven divisions of the
string," Kepler explains, "guided by the ear in number
equal to the number of harmonies within the limits of
a single octave and only then, not without difficulty, have
I deduced, from the deepest foundations of geometry, the
causes for individual divisions and of their entirety."

Musical harmony provided Kepler with convenient
terminology. However, important as the musical har-
monic intervals may be, they represent nothing more
than a concrete realization of abstract relationships,
which are harmonic in the true sense of the word. The
carrier of such "pure" harmonies is the ideal circle
and its subdivisions. In Chapter 1, entitled "Concerning
the Essence of Sensory Harmonic Ratios as well as
Harmonic Ratios Accessible Only to the Spirit," Kepler
presented in detail his understanding of harmony:

"It is necessary to distinguish sensory harmonies
from pure harmonies, which are analogous to them but
which are deprived of everything sensory. The first are
numerous and have various carriers. The pure harmon-
ies, however, which lack sensory carriers, are always
the same. For example, the type of harmony that arises
from a double proportion is always the same. If it is
expressed in sounds, it is called an octave; if it is
found in angles between two rays, then it is called the
opposition. Moreover, in the musical system an octave
can be high or low, the harmony can be that of human
voices or of sounds emitted by musical instruments.
Manifestations of this harmony in meteorology are just
as varied; an octave can be the opposition of Saturn and
Jupiter or some other pair of planets, it can be observed
between the signs of the Zodiac near the points of equi-
nox or between the signs of the Zodiac near solstices."

Yet another realization of harmonies are the so-
called configurations which Kepler defines in the follow-
ing manner:

"Definition I. The word 'configuration' signifies the
angle at which rays of some two planets arrive at the
earth (considered as a point), or, which is the same, the
arc of the great circle passing through the Zodiac, which
(arc) serves as the measure of the aforementioned
angle

"Definition II. A configuration is called efficacious
in case the angle between the rays emanating from the
two planets possesses special properties to excite ani-
mate beings by virtue of their sublunar nature and limi-
ted abilities, in such a way that during the time of such
a configuration these beings devlop heightened activity."

The angles between the rays (the "aspects") arriving
at the earth from luminaries, in Kepler's opinion, influ-
ence the weather. In order to sense the aspects, the
earth has to be an animate being, etc.

We shall not stop to investigate the astrological views
of Kepler and will limit ourselves to a list of the "effi-
cacious aspects." Kepler has eight of them: the conjunc-
tion (1:1), sextile (1:6), quadrature (1:4), trigon (1:3),

opposition (1:2), quintile (1:5), trioctant (3:8), and bi-
quintile (2 : 5). The chief realization of harmonies is in
celestial motions; to it Kepler devotes the fifth book of
the Harmony of the Universe under the title "The Most
Perfect Harmony in Celestial Motions and the Origins of
Eccentricities, Radii of Orbits and Periods of Revolution
Connected with It."

There is the unfeigned joy of a man who has success-
fully completed the work of his entire life, who has at-
tained the desired objective toward which he has strived
for many years, resounding in a colorful, temperamen-
tal, purely "Keplerian" foreword.

"The things about which I only guessed 25 years ago,
before the discovery of the five regular solids between
celestial orbits; the things of which I was convinced be-
fore reading the manuscript of Ptolemy about harmony;
the things which I promised my friends, having selected
the title of this book before the subject itself was clear
to me; the thing which 16 years ago I proclaimed as be-
ing the goal of my research in one of my books;13' the
things which drove me to dedicate the best part of my
life to astronomical research, to find Tycho Brahe, and
to select Prague as my place of residence, ... I have,
finally, brought out for judgement.

".. . Now, 18 months after the first gleam of daylight,
3 months after a bright day, only a few days after the
bright sun of a most highly remarkable spectacle rose,
nothing can stop me. I give myself up to sacred ecstasy.
Unafraid of the mockery of the mortals, I confess openly.
Yes, I have plundered the golden vessels of the Egyptians
in order to construct a sacrificial altar for my God far
from the borders of Egypt. If you forgive me, I will be
happy. If you condemn me, I will bear it. The die has
been cast. I have written a book either for my contem-
poraries or for my posterity; it is all the same to me
for whom I have written it. Let the book wait for its
reader for hundreds of years: after all, God himself has
waited for 6,000 years before a witness has appeared."

Two major ideas form the basis for the Keplerian
scheme of the structure of the universe, two principles:
a geometric one (the number of planets and distances be-
tween them are determined by five Platonic regular
solids) and a harmonic one, which governs the eccentric-
ities and periods of revolution. The geometric principle
has been presented in detail in Cosmographic Mystery,
and the first chapter of the astronomical (fifth) book of
the Harmony of the Universe basically follows the work
of Kepler's youth. True, when speaking about the family
of regular solids, Kepler makes mention of his new dis-
covery, the star polyhedron, which was previously un-
known ("'... This family contains also a three-
dimensional star which can be obtained if the facets of a
dodecahedron are extended to intersect in one point"),
but there are no basic changes.

Chapter 2, "Concerning the Connection Between the
Harmonic Ratios and Five Regular Solids," was intended
by Kepler's design to show that the two principles are
not exclusive but rather complement each other. In this
chapter mention is made in particular of the following:

".. . This connection is quite varied; however, it is
basically of four types. It can be seen in the superficial
forms of regular solids, or in ratios which arise when
one constructs their facets, which are also harmonic,
or in ratios of solids already constructed viewed separ-
ately or together, or, finally, in ratios which exactly or
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approximately correspond to the ratios of spheres in-
scribing or superscribing respective regular solids."

However, although the harmonic ratios have been
found, their carrier in celestial motions remained, as
before, unknown. Before embarking on a search for the
mysterious carrier of celestial harmonies, Kepler con-
sidered it necessary to remind the reader of the "basic
information necessary in considering celestial harmon-
ies"; to present in 13 theses the state of the astronom-
ical science of his day, and to prepare the ground for
further research. This amazing essay opens with a
presentation of ideas of Copernicus and Brahe. "First
of all, the reader should know that the old astronomical
hypotheses of Ptolemy in the form they are presented in
Peuerbach's Theoriae [Theories] and in the textbooks of
other authors are completely excluded by us from con-
sideration and will not be taken into account, for they in-
correctly represent both the positions of celestial bodies
and their motions.

"The place of old hypotheses can only be taken by the
teachings of Copernicus concerning the structure of the
universe, of whose correctness, I would like, if this is at
all possible, to convince all the people. Regrettably, the
majority of people, when discussion centers on the study
of the universe, consider this to be something new. It
rings very uncommon to their ears to hear that the earth
should be one of the planets and, like the other luminar-
ies, it should revolve around the sun. Therefore every-
one for whom the novelty of Copernicus' teachings is a
stumbling block must know that the discussion of
harmonies that follows is true also for the hypotheses of
Tycho Brahe. Indeed this master does not differ with
Copernicus as far as the position of heavenly bodies and
the explanation of their motion are concerned. It is only
that he relates the Copernican annual motion of the earth
to the entire system of planetary orbits, including the
sun, which by the unanimous opinion of both masters is
the center of the entire system."

Following introductory comments (concerning the fact
that "all planets, except the moon, revolve around the
sun" and that the distances from respective planets to
the sun do not remain unchanged, etc.), in the fifth thesis
Kepler sums up his research on the theory of Mars:14)

"In the fifth place, in order to obtain motions between
which harmonies arise, I would particularly like to draw
the reader's attention to the things I succeeded in estab-
lishing in New Astronomy on the basis of the highly re-
liable observations of Tycho Brahe. A planet traversing
equal arcs of the eccentric corresponding to a period of
time, for example a twenty-four hour period, will not do
so with the same speed. Unequal intervals of time
corresponding to equal arcs of the eccentric are propor-
tional to the distances to the sun, the source of motion.
Conversely, if one takes equal time intervals ... then
corresponding true arcs of the eccentric orbit are in-
versely proportional to the distance from the arc to the
sun. Furthermore, I have shown that the orbit of the
planet has the form of an ellipse and that the sun, the
source of motion, is situated in the focus of this ellipse.
From this it follows that the planet attains its average
distance from the sun between the greatest distance in
the aphelion and the least distance in the perihelion,
when it covers one fourth of its orbit from the
aphelion...."

The novelty begins when Kepler comes to the eighth
thesis. Here he formulates his famous third law of the

motion of planets. This time Kepler's creative labor-
atory remains concealed from the reader. We do not see
the painful search for the truth, we are not the witnesses
of numerous verifications. Kepler strives toward his
main goal of fathoming the harmony of the Universe and
the third law, for all its importance, remains in the eyes
of Kepler only a means toward attaining an end. A little
history and the formulation is all that Kepler reports
about his discovery.

". . .It [the true ratio between the periods of revolu-
tion and the sizes of orbits] came into my head on March
8 of this year [1618J when I needed to make certain dates
more specific; however, my hand was not successful and
I rejected my guess as erroneous. Finally, on May 15,
the same thought again occurred to me and, with the
second attempt, it dissipated the gloom of my spirit.
Between my work of seventeen years on the observations
of Tycho Brahe and my present reflections there devel-
oped such a complete accord that I began to think that I
was dreaming about all of this and that I was taking what
I desired for what was real. However, it has been posi-
tively and exactly established that the ratio between
periods of revolution of any two planets is exactly one
and one half times the ratio of their average dis-
tances...."

The new weapon was immediately used: in theses 11,
12 and 13, Kepler finds, with the aid of the third law, the
relationship between the distances from the sun to the
planets in aphelion and perihelion and their greatest
and least velocities, and he also determines average
velocity from the extremal ones. But it was not this law
that was the most important one for the author.

Kepler formulated the main question as follows:
"Where in the motion of planets did the Creator imprint
the harmonic ratios, and how does this occur?"

After a long search he turned to the ratio of angular
velocities of a planet in aphelion and perihelion: "The
sun of harmony started to shine in all its brightness"—
the ratio of the extremal velocities for the outer planets
indeed turned out to be very close to being harmonic
(Saturn—4:5; Jupiter-5 :6; Mars—2:3).

Kepler considered that harmony arises not only out of
the relationship of angular velocities in aphelion and
perihelion of a single planet but also out of the relation-
ship between the extremal velocities of two different
planets, and he distinguished the two types of harmonies.

"There is a great deal of difference between the
harmonies we have introduced for a single planet and
the harmonies of two planets. The first cannot arise at
some specific moment in time, for the latter this is quite
possible. Indeed, if some planet is located in the aphel-
ion, then it cannot simultaneously be in perihelion, which
is opposite it. If, however, one is talking about two
planets, then one of them can be in the aphelion while the
other one is at the same moment in time in the perihel-
ion. In this connection one can make the following anal-
ogy. Harmonies formed by single planets relate to har-
monies formed by pairs of planets in the same way as
the simple, or monophonic singing, called choral, which
is the only one known to the ancients, relates to the poly-
phonic, the so-called figured singing, discovered in the
last century."

"Thus, the celestial motion," Kepler concludes, "is
nothing but the polyphonic music (perceived not by ear
but by the intellect) which never stops for an instant."
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The school of New Astronomy was not in vain. While
bringing in the most varied proofs in support of the
"harmonic theory," Kepler nonetheless did not miss the
opportunity to turn to observations, to arrive with their
aid at a final judgement. But here, too, the irrepressible
phantasy does not abandon him.

Kepler sought to explain a minor discrepancy be-
tween, on the one hand, the angular velocities of planets
in aphelion and perihelion (relative to an observer loca-
ted on the sun) contained in tables and, on the other hand,
theoretical harmonic relations, deduced from geometri-
cal considerations, as being due to the fact that the
heavenly sextet must sound equally in harmony in both
the minor and the major keys, and to this end the planets
must have the opportunity to tune their instruments.

Proceeding from the harmonic relations between the
extremal values of angular velocities, Kepler, using the
second and third laws, again calculates the elements of
orbits.

As a result Kepler comes to the conclusion that "all
the numbers are very close to the distances obtained by
me from Tycho's observations."

An explanation was also found for the previously
noticed discrepancy between distances computed in
Cosmographic Mystery on the one hand and Brahe's
observations and distances given by the harmonic theory
on the other. The geometry of regular solids defines
only the sequence in the position of the planets, then re-
linquishes its role of the structural principle to harmonic
relations: "The geometric cosmos of the most perfect
disposition I.of regular solidsJ cannot coexist alongside
the most harmonic cosmos."

We can now see that by far not everything was victory.
The circle has, indeed, closed and Kepler returned to
the point where he began his journey. The irony of fate
lay in the fact that Kepler failed to appreciate his great
discoveries. He wrote in the Harmony of the Universe
about his third law without the usual details. He suc-
ceeded in forgetting about the second law altogether. In
his search for harmony, Kepler tried to take from it
more than it had to offer. But it was beyond his power
to see harmony in his two superficially dissimilar laws.
To accomplish this, one had to have the equations of
mechanics.

After this Kepler did not return to celestial physics.
No, he did not stop working. In his closing years he
completed the publication of Tabulae Rudolphinae
(Rudolphine Tables), a reference book which contains
tables for computing the positions of planets and which
also contains a catalog of 1005 stars (777 of which were
taken from Brahe). His death (in 1630) interrupted work
on Somnium (Dream), the first science-fiction novel

about a flight to the moon. But not a word more was
written about harmony. There were no more over-par-
ticular verifications, there were no new hypotheses.
Kepler was tired.

"My brain grows tired when I try to understand what
I wrote, and I have difficulties in re-establishing the con-
nection between the drawings and the text which once I
had found myself...."

This is how the drama came to an end. With Kepler's
death his discoveries were forgotten. Even the wise
Descartes knew nothing about them. Galileo did not find
it necessary to read his book. Only with Newton do
Kepler's laws find new life. But Newton was not inter-
ested in harmony. He had equations. New times have
arrived.

''Hamlet was published in the same year Kepler met Brahe.
2'He, who has no music within him, shall remain silent
3'ln a note to the second edition, Kepler explains that what was meant
here was the orbit of the earth.

4)The eighth sphere contained the fixed stars, while the ninth and tenth
spheres were introduced to define the motion of the point of vernal
equinox (in Ptolemy's system).

s'This circumstance frequently escapes many authors. For Copernicus
the motion of the planets did not require any kind of a cause and oc-
curred (as we would say nowadays) under its own momentum. There-
fore, for him the sun was not the center of energy and the position of
the sun did not at all have to coincide with the center of the earth's
orbit. The fact that the center of a planetary system was not associated
with some material object did not appear strange to Copernicus. Only
Kepler in reflecting on the source of motive force understood the role
played by the sun. It is precisely this idea that helped him to gradually
disentangle the mechanics of planets.

6)These tables replaced the Alfonsine Tables which were in use since the
13th Century.

7)Patrizzi is a medieval philosopher.
8)Kepler called the hypothesis about the circular orbit of Mars, tempo-

rary.
"We did not mention that Kepler was in fact the first to effectively em-

ploy logarithms in his computations. The tables of logarithms which
he compiled were still in use in the 18th century.

'"'"Translators into Latin render this term by the word 'irrational,' i.e.
they use an expression which holds within it the danger of ambiquity
and nonsense. We wish to put an end to the use of the term 'irrational,'
for there are many segments of whose existence we are convinced by
the most impressive of grounds, although these segments are inexpres-
sible."

'"Peter Ramus (Pierre de La Ramee) (1515-1570), a mathematician,
perished in the Massacre of St. Bartholomew.

12)The book Dioptrics was written by Kepler during his work on New
Astronomy.

'''Reference here is made to the Cosmographic Mystery.
'"'it is strange that he does not recall his second law here, returning in-

stead to reasoning once rejected.

Translated by A. Andreyewsky
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