
Problems of the theory of linear and nonlinear transformation of
waves in inhomogeneous media

N. S. Erokhin and S. S. Moiseev
Physico-Technical Institute, Ukrainian Academy of Sciences, Khar'kov
Usp. Fiz. Nauk 109, 225-258 (February, 1973)

The review is devoted to effects that occur when waves propagate in inhomogeneous
media. The types of linear transformation of waves by the inhomogeneities of the med-
ium are classified, and the conditions under which they are realized are indicated.
Linear transformation of oscillations in a non-equilibrium medium, leading to wave
amplification, is investigated. The linear transformation is consistently analyzed on the
basis of a fourth-order differential equation. Attention is called to the singularities of
linear wave transformation in a plasma-beam system, particularly the anisotropy of the
radiation of transverse waves following passage of a modulated beam through an inhomo-
geneous plasma. The generation of the second harmonic of an electromagnetic wave in an
inhomogeneous plasma and decay processes in inhomogeneous media are considered.
Kinetic nonlocal effects (of the echo type) in an inhomogeneous plasma, wherein the focus-
ing action of the inhomogeneity makes possible linear nonlocal effects as well as echo at
the summary frequency are described. The indicated nonlinear and kinetic nonlocal effects
lead to "transparentization" of the inhomogeneous media. Certain experimental studies
dealing with the problems touched upon in the review are discussed.
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I. INTRODUCTION

Electrodynamics of inhomogeneous media has made
appreciable progress in the last decade. This progress
was due to consistent application of asymptotic methods
to the solution of differential equations of second and
higher order and to the solution of integro-differential
equations. As a result, the electrodynamics of inhomo-
geneous media has led to qualitatively new consequences.
The first pertains to natural modes of the oscillations of
such media, and in the second to the eigensolutions. But
as to the first consequence, notice should be taken first
of the appearance of new oscillation modes that do not
occur in homogeneous media, and most importantly,
some of the oscillations build up, i.e., instabilities set
in. An important division of electrodynamics was crea-
ted, dealing with the instability of inhomogeneous media
and the onset of turbulence. The advances made in this
region have already been dealt with in a number of review
articles (see, e.g., [ 1 ~ 4 ] ) .

The second qualitatively new consequence of the elec-
trodynamics of inhomogeneous media, to which the pres-
ent review is devoted, is the coupling of the eigensolu-
tions pertaining to different oscillation modes. The
coupling of the eigensolutions leads to phenomena of
linear transformation of waves in inhomogeneous
media'-5"10-1, and influences in turn the dispersion equa-
tion for the natural-oscillation frequencies t·11""14-1. In
addition, significant changes take place here in the non-
linear and the kinetic phenomena (see, for exam-
ple, i-15'16-1). Thus, for example, the peculiar interaction
between modulated particle beams and waves in a plasma
leads to an anomalous increase of the plasma trans-
parency'-16-'. These effects are important not only from
the scientific point of view, but also from the practical

one, and are being intensively discussed in the literature
of late.

Let us name certain applications of the already men-
tioned regular linear transformation of waves in an in-
homogeneous plasma:

1) Transformation of electromagnetic waves into
plasma waves (ionic or electronic) can be used to heat
plasma to thermonuclear temperatures. This heating is
possible in a stable laminar plasma if the wave field does
not exceed a certain critical va lue [ 8 ' 1 7 ] . This heating
can be particularly effective in the microwave band for
large-scale thermonuclear reactorst 8 ' 1 8 ] and can be
quite useful when account is taken of surface phenomena
in the problem of obtaining high temperatures by focusing
laser radiation on a solid target t19-1.

2) Wave transformation can be used to improve com-
munication, for example "transparentization" of an
opaque barrier to waves radiated from a source.

3) The transformation of plasma waves into electro-
magnetic waves can serve as the basis for the develop-
ment of plasma sources of electromagnetic radiation.
We have in mind essentially the realization, under lab-
oratory conditions, of the effect investigated in1-7'20-1 in
connection with the radio emission from the sun and
planets, except that we would now be capable of deliber-
ately controlling the plasma parameters by producing
optimal conditions for the emission of transverse
waves [ 1 7 ) 2 ΐ : ι . Even the first experiment1122'233 show that
such an approach is fruitful.

4) Transformation of unstable modes into stable
modes can be used to stabilize instabilities1-17'2*-'. The
preliminary experiments are in agreement with the
theory [ 2 3 : i.
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5) Wave transformation in a plasma whose param-
eters vary with time can be used to transform waves in
different frequency bands.

It should further be noted that the theory of oscilla-
tions of an inhomogeneous medium (plasma, ferromag-
net, mechanical system), developed for the study of wave
phenomena, can find interesting applications in the most
varied branches of physics. Thus, for example, the
theory of the "crossing" of solutions, which is used in
the investigation of wave transformation, was initially
developed in connection with the study of inelastic atomic
collisions [ 2 5 ], where they are used successfully to this
day1-26'27·1. The rapid progress in theory and experiment
has led to the recent appearance of review papers on the
theory of oscillations in an inhomogeneous plasma and an
inhomogeneous liquid ^ 9 ' 1 3^. Let us consider these papers
briefly.

The review'-13-' deals with the eigenvalue problem for
perturbations of inhomogeneous plasma flow or liquid
flow in the presence of resonance points, at which the
phase velocity of the perturbation coincides with the
velocity of the stationary flow. By effectively using the
analogy between the indicated resonances and the reson-
ant absorption of wave energy by individual particles
(Landau damping), which is well-known in physics, the
author ofl^13-' analyzed from a unified point of view a
number of classical and new results of the theory of in-
stability of moving continuous media. The paper1-9-1 is
devoted to a fundamental investigation of theory and ex-
periment in linear transformation of waves in an inhomo-
geneous plasma in the region of hybrid resonances,
where the electric field of the wave (in the cold plasma)
has a singularity. This review contains, in particular,
the most complete experimental results on plasma heat-
ing with the aid of linear wave transformation, carried
out at the Leningrad Physico-technical Institute with the
present authors participating.

However, in spite of the availability of the mentioned
review articles, as well as of such well-known mono-
graphs as [ 5 : l and1120-1, there is at present a noticeable
lack of further reviews on the theory of wave propagation
in inhomogeneous media. For example, in1-9'13-1 there
are no results on nonlinear and kinetic theory of an
inhomogeneous medium, while the monographs1-5 >20-1,
naturally, do not cover the results of the latest years in
this direction. In addition, the review literature does not
deal, for example, with linear transformation of waves
in the case of non-equilibrium media, particularly with
allowance for the mutual influence of the non-equilibrium
character and the transformation, as a result of which
a transformation coefficient larger than 100% can be ob-
tained by using the energy of the non-equilibrium med-
ium. Finally, the wave transformation in the region of
hybrid resonances of an inhomogeneous plasma, which
is investigated in^9-1, is only one case of transformation.
At the present time it is possible, by using a fourth-
order differential equation, to analyze different trans-
formation cases from a unified point of view.

The present review is an attempt at partially filling
the foregoing gaps in the review literature and in the
monographs on the theory of wave propagation in in-
homogeneous media, and also to discuss some of the
latest experiments on the questions touched upon here.
We study the case of regular oscillations. An exception
is one example of linear oscillators, which is considered
at the end of Sec. 2.

We investigate in the review the case of a weakly-
inhomogeneous medium, the behavior of the waves in
which can be studied by asymptotic methods (see,
e.g., £28~3O3 for the case of an abrupt boundary in passive
media, and^31-1 for active media).

II. LINEAR TRANSFORMATION OF WAVES IN
INHOMOGENEOUS MEDIA

1. Classification. We consider in the linear approxi-
mation different types of "crossing" of the wave solutions
for an inhomogeneous media. Since the situation in
which the properties of the medium vary little over dis-
tance on the order of the wavelength is quite common, we
can use the WKB method (the geometrical-optics ap-
proximation). IE the medium is inhomogeneous along the
χ axis, we choose the perturbation in the form φ (r, t)
= φ (χ) exp (ίωΐ — ikyy — ikzz). We then obtain for φ (χ) in
the general case

Σ F"um,.t(x)(d2m<c.'dz-m) = (). (1.1)

where β is a small parameter characterizing the weak
inhomogeneity of the medium. It is assumed for simplic-
ity that the functions u m (x) have no singularities in the
region of interest to us and are well approximated by
polynomials (u m ~ 1, with the exception of the vicinity
of the points at which they vanish). We have left out from
(1.1) the odd derivatives, since in the applications of the
theory they frequently contain derivatives of the func-
tions u m , which in turn yield an extra power of the small
parameter β and therefore do not influence the results
of the zero-order approximation. It is precisely in this
case that it is particularly convenient to classify the
different types of "crossing" of the solutions. We seek a
solution of (1.1) in the WKB approximation in the form

φ (χ) ~ Π (χ) o x p ( ± ί β - " 2 j k (x) dx1).

where Π(χ) is the pre-exponential factor. The WKB ap-
proximation, however, does not hold near points at which
either the wave vector k(x) vanishes (turning point) or
the wave vectors corresponding to different modes coin-
cide, i.e., k s = kp (crossing point of the solutions). Let

us consider different cases of crossing of the solutions
using the illustrative example of a fourth-order equa-
tion. It is convenient here to represent the expression
for ki,2(x) in the form

ku 2 = (1/2) (ft, + ft2) ± (1/2) (ft, - ft2),

and also introduce

At Δ = 0, the solutions "cross." We can indicate the
three most characteristic and qualitatively different
cases of transformation^3^.

a) Transformation of type I. In this case u m (x) ~ 1
(m = 1, 2, 3) and the complex χ plane contains complex-
conjugate crossing points of the solutions. This type of
crossing of the solutions is possible, for example, if

b) Transformation of type II. On the real χ axis there
is a point x0 at which u2(x0) = 0 or u2(x0) « 0 but u^xo)
~ 1. It follows from (1.2) that in this case the point x0

lies between the two crossing points. Assuming from
now on that |u3(x)| -C 1 (the most characteristic case),
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we see that in this case the crossing points of the solu-
tions are in the immediate vicinity of x0. An important
example of this type is the transformation of electro-
magnetic waves into plasma waves, which was investiga-
ted theoretically and experimentally in the r e v i e w ^ .

c) Transformations of type III. The function u m (x)
~ 1 (m = 1, 2, 3), and Δ can vanish only at one point x0

(more accurately, from the vanishing of Δ at the point x0

it does not follow that it is equal to zero at some other
point). In the crossing region we have Δ = χ — x0. Atten-
tion should be called to the fact that in case (c), unlike
case (b), u2 ̂  0 (u2 ~ 1).

Let us examine in greater detail the indicated types
of transformation.

2. Transformation of type I. The crossing of the indi-
cated type, in the case when only ki — kz is multiply
valued, was first investigated in'-25·' in a study of inelas-
tic atomic collisions. The method of1-25-1 was used in C 3 3 ]

to solve the problem of mutual transformation of ordin-
ary and extraordinary waves in a magnetoactive plasma.
The eigenvalue problem for this type of crossing was
considered in'-34-1. The case when both function ki ± k2

are simultaneously multiply valued was first investigated

Certain features of this crossing are most conven-
iently considered using two coupled oscillators as an ex-
ample. From the formal point of view, such a model
differs little from the problem of wave transformation
in an inhomogeneous medium. The equations of motion
for the considered type are taken in the form

x + <oj (t) χ = a (t) y, y-\-a>\(t)y = a(t)x. (2.1)

At constant ωχ,2 and a, the equations for the normal
coordinates become

ν 1 niy π ν j _ o*v Π ΙΟ -/- ΟΙ ίθ 0\
Α -γ- Δύ'Λ = U, I ~\- ai2l = U, \l£^ ψ= "2/1 {***"}

where Ωί and Ω 2 are the frequencies of the normal os-
cillations, defined by the expressions Ωΐ,2

= (ΐ/2){ω! + ω2 ± [4α2 + (ω! - ωΙ)2ϊ'ιΙζ}. The connection
between (x, y) and the normal coordinates (X, Y) is
given by '

(2.3)

The transformation (2.3) corresponds to a normaliza-
tion in which X — χ and Υ -* y if a —- 0 and ω! > ω2.

In the case of a slow time variation of the coefficients
of the system (2.1), the general solution Ζ for normal
coordinates can be represented in the form^36-1

where

Z = Aa+ + A2Y+ + A3X_

where

X± = Ω-l" ex ρ (t')df),
2 exp ( ± I j Qs(i') dt').

We denote by A and Β column vectors made up of the
constant coefficients of the general solution Ζ from the
left and from the right of the crossing region (resonance
region), respectively. Then, by using the analyticity of
the exact solution (2.1), it is easy to obtain the matrix Μ
for the column-vector transformation Β = ΜΑ. Since
this conclusion is well known (see^ for example, '-20-1), we
present without proof the matrix Μ for the case

26 = i <£ ((Ω, — Ω2)/2] dt > 0

(the contour X encloses both crossing points), φ is a
phase shift which is unknown in the WKB and does not
influence the coefficient Q of the transformation between
the normal modes X+, Y+, and X., Y_ (Q ~ β~δ).

In a plasma, the complete analog of Eqs. (2.1) is, for
example, the system of equations describing the behavior
of the slow and fast magnetosonic waves in the case of
slow time variation of the plasma density. A derivation
quite similar to the derivation of the equations for a
spatially-inhomogeneous plasmaC 3 7 ] results in the fol-
lowing system of equations:

u, + klv\u, = — (2.4)

here v A and c s are respectively the Alfven and the sound
velocities, θ is the angle between the wave vector and
the magnetic field, Ho = Ηοβζ, v0 = cg(0), h = Hou^t),
ρ = PoU2(t), po(t) is the unperturbed density, and h and ρ
are the perturbations of the magnetic field and of the
density. The crossing occurs in the region v A « c , and
for small angles θ we have δ ~ T(kzvo)02, where τ is the
characteristic time of the variation of p 0 . As δ — 0, the
transformation coefficient Q tends to unity. It must be
emphasized, however, that we are dealing with trans-
formation of normal oscillations. Therefore a strong
transformation of the normal oscillations X and Υ in this
case does not mean at all a large exchange of energy be-
tween the oscillators χ and y^38»393. in fact, assume that
a s t —• — «ο we have

Then as t — + °o we obtain

where

ι/ = £ ω 2

1 / 2 β χ ρ ( i \ u a ( i ' ) < i i ' )

ό

t

r1 / 2exp(-if a)a(i')di) ]ώ=(αΛ

(ωί - ω2 = ωοί/τ, α -C α>2

)2). On the other hand, in this
case, as can be easily seen, 2δ = (π/2)[(α/ωο)(ωοτ)ι/2]2.
It follows therefore that the decrease of δ makes it
more difficult to transfer energy from the oscillation χ
into the oscillation y. In the case of (2.4) this means
that if the energy was concentrated in the acoustic os-
cillations at t — 00, then it remains concentrated in them
at t — » as a —• 0 and δ -• 0. Consequently, the adia-
batic transition, when δ ^ 1 as a result of the large
time τ of the divergence of the branches, is more effec-
tive at small a.

It is not difficult to find the transition matrix in the
case of the resonance Ω ι = — Ώ2, and also on going
through a region in which there are simultaneously the
resonances Ωί = fi2 and Ωί = - Ω 2

[ - 3 5 ' 3 6 - ' .

Referring the reader t o C 4 0 ' " ] for details, we present
the result of the solution of one case of coupled oscilla-
tors, which will be useful later on. Namely, we take the
following system of oscillators

y = χ, - ( - Ι(ί2 + λ)/β] χ -^ y (λ, β > 0), (2.5)

in which x can be treated as an oscillator with negative
mass. This leads to the following equation for the oscil-
lator y
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+ (ί2 + λ) (d*yidt2) + β!/ = 0. (2.6)

The frequencies of the normal oscillations of the system
(2.5) are

Ω ^ ( ί ) = (1/2)[(ί2 + λ + σ ) ΐ / 2 ± ( ί 2 + λ - σ ) ΐ / 2 ] , or = (4β — I ) * ' 2 .

From (2.6) we can easily obtain the invariant

\At |
2 + \A, | 2 - \A31

2- \At |
2 = invar; (2.7)

here A l ; A2, A3, and A4 are analogous to those introduced
above for the solution Ζ of the system (2.1) and (2.2). We
put e 1 ) 2 = (l/2)i J (Ωι± fi2)dt = ττ(λ ± σ)/2 and let
£1 -— °°. We then have

5 D

D S
(2.8)

where Sn = S22 = γ = (1 + e Z)L 2 cos μ, S21 = —S^ = κ

= (1 + e ~ 2 e 2 ) l / 2 sin μ, D22 = - D u = ρ = e ~ Q , D E = D2 1

= 0, μ = (e 2 /i7)[ l- ln(e 2 /Tr)J-argr ((1/2) - (ί€2/ττ)).

We note that the condition (2.7) can be rewritten in
the form Ix + h — h — U = const, where I n is an adiabatic
invariant in the absence of interaction between the
normal oscillations.

In concluding this section, let us consider the follow-
ing problem. When waves pass through a sufficiently
large volume of an inhomogeneous medium, the number
of transformation points can be very large. It is natural
to assume their distribution over the volume to be ran-
dom and specified in the form of a certain random func-
tion. This raises the question of the evolution of waves
in such a medium. As before, it is more convenient,
however, to investigate the analogous problem of the
passage of a system of oscillators through resonances at
random instants of time. Since the adiabatic invariant of
each normal oscillation changes appreciably only in a
narrow region of the resonance, i.e., in fact jumpwise,
we shall speak, in accordance with'-36-', of collisions of
normal oscillations. The trend of the evolution (stability
or instability) depends on the form of the invariant of
the differential equation describing the system of oscil-
lators in the resonance region. If the solution takes the
form χ = Σ ΑηΧη, where X is a quasinormal oscilla-
tion, then the invariant is a quadratic form of the con-

stants An:
γ ,

We assume that all s n have the same sign, and then
|An | is bounded from above, i.e., the motion of the os-
cillators is finite in phase space. In the opposite case,
the system can be unstable. This statement is difficult
to prove rigorously in general form, but it is confirmed
in the particular examples described below.

For one oscillator in a random external field, the
resonances are the points at which Ω(ί) = 0. The invar-
iant takes the form |Α+|2 — |A_|2 = invar. Thus, one can
expect the motion to be unstable. The solution of this

Γ 42 Τ

problem inL J confirmed our conclusion. Wave trans-
formation in a medium with random inhomogeneities was
considered in'-13-'. Formally, the situation is equivalent
to a system of two coupled oscillators with resonances
Ωι = Ω 2 . The invariant took the form |Ax|

2 + |A2|
2

= invar. It was found that, regardless of the initial con-
ditions, the system approaches equilibrium at which
Ii = I2 (in accord with the statements made above).
Transformation in the case of random collisions, for

an invariant of the system of coupled oscillations in the
form (2.7), was considered in^40-1. The system of os-
cillators turned out to be unstable. Let us examine this
case briefly, since it is of greatest importance for ap-
plications.

Let X+ and Y+ be the normal oscillations of a system
of oscillators with frequencies Ωι and Ω 2 , respectively.
We introduce a column vector Ζ with components Zi,2

= X and Zi(3 = Y, and consider the auxiliary system of
equations

dZ/dt = iKZ-^QnZ&(t-tn), (2.9)

where Κ is a diagonal matrix: K u = -K22 = Ωι, Κ«
= -K 3 3 = Ω 2 , and Qĵ  are certain fourth-order matrices.
The solution of (2.9) experiences discontinuities at the
instants of time t n , with Z(tn + 0) = exp (Qn) Ζ (tn - 0). If
we choose a transition matrix exp Qn that coincides with
the matrix of the transition between the normal oscilla-
tions in the collision, we can consider the equivalent
problem of averaging the solutions of the system (2.9)
with a random distribution of t n .

We choose a real solution, Z2 = Zt and Z3 = Z*, and
change over to the real variables ξ lj2 = Re Z 1 ) 4 , rj1;2
= Im Zi,4, which can be treated as coordinates and mo-
menta of certain oscillators. As is customary in prob-
lems of this kind,1-44'45-1, we obtain the following kinetic
equation for the distribution function f(t; ξ 1 ; ξ 2 , η1, η2)
of the coordinates and momenta:

St(/)=-v/ X)J, J=f(l; £„ E2, η,, η2): (2.10)

here ν is the frequency of the collisions, which are as-
sumed to have a Poisson distribution; σ and λ are the
collision parameters with a random distribution
w(A, σ)_̂  As_a result of the collision, the phase-space
point ( l i , ξ 2 , η α, η2) goes over into the point
( ξ ι , ξ ζ , ? 7 i , i j 2 ) .

Choosing (2.8) as_the_matrix_for the transition from
(ξι , ξζ, τ/ι, τ?2) to (ξ χ, ξ 2 , 7ji, η2) and seeking the solu-
tion for the second moments of the distribution function

t
in the form ~ exp (v J Λ (τ) dr), we obtain the dispersion
equation '-40-1

Λ3 + 4 (1 - γ2) Λ2 -!- I?2 + 4 (κ2 - ρ2)] Λ - 2 P y = 0,

(2.11)

where the parameters κ, ρ and γ are given in (2.8), and
q = (Ωι~ Ω2)Λ\

Equation (2.11) always has a positive root Λο. For
weak collisions (2e2 2> 1) its value is 2 exp (-2e2) <iC 1.
In the case of strong collisions, when 2e2 ^C 1, we have
Λο ~ 2, i.e., the instability increment is of the order of
the collision frequency (we recall that the kinetic equa-
tion (2.10) was obtained under conditions that the colli-
sion frequency is small in comparison with the frequen-
cies of the normal oscillations). An important conclusion
of the proof presented here is that for invariants of the
type (2.7) each oscillation in the transformation increases
its amplitude as a result of the energy of the medium.
This conclusion can be of appreciable importance, in
particular, for problems on the stability of plasma ac-
celerators.

3. Transformation types II and ΙΠ. At high tempera-
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tures, when the collision temperatures are low, the
microwave heating of the plasma is effected by trans-
forming the electromagnetic waves into slow plasma os-
cillations, which are then damped primarily as a result
of collisionless damping. This process, which is of prac-
tical importance, occurs in the region of hybrid frequen-
cies of an inhomogeneous plasma and, as indicated in
Section 1 above, is a transformation of type Π, which can
also be called anomalous transformation, since the elec-
tric field and the refractive index have singularities in
the resonant layer of a cold plasma, and the transforma-
tion coefficient can reach unity (see [ 9 : i and the referen-
ces cited therein). The investigation of such a trans-
formation is based on the use of a remarkable property
it possesses, namely, the absorption coefficient of an
electromagnetic wave in a cold plasma is equal to the
transformation coefficient of an electromagnetic wave
into a slow plasma mode'in a "hot" plasma'-10'46'48-1.
This circumstance makes it possible to simplify the
problem greatly, and it is frequently possible to reduce
it to the investigation of a second-order differential
equation. With the aid of the procedure employed i n [ 9 ] ,
it became possible to analyze a large number of prob-
lems from the theoretical and experimental points of
view. It therefore behoves us, from the point of view of
type-n transformations, to discuss only the following
question: Is an analysis of a transformation of type Π
on the basis of a fourth-order differential equation in-
deed necessary, or is it of interest only from the metho-
dological and mathematical points of view, as a supple-
mentary method of proof? The importance of investigat-
ing transformations of type I and ΠΙ on the basis of
fourth-order differential equations is obvious in view of
the absence of the properties indicated above.

Since the review [ 9 ] contains a detailed bibliography
of transformations of type II, we shall cite here only the
papers (mainly the most recent ones) needed in connec-
tion with this question.

Let us list the main reason why, in our opinion, it is
important to take into account in the general case the
thermal motion and the analysis of the solutions of the
fourth-order differential equation1':

1) That wave absorption in a cold plasma, described
by an equation of the type (dV/dx2) + (U(x)<p/xm) = 0, is
equivalent to their transformation into thermal oscilla-
tions described by the equation a(d4(p/dx4) + χΐα(ά2φ/άχζ)
+ U(x)cp = 0, has been proved only for m = 1. In the
general case of arbitrary m, this equivalence is far
from obviousC«>"3.

2) If the parameter a in the foregoing fourth-order
equation is complex, then additional investigations of the
indicated equation are needed even when m = 1, in order
to verify that the absorption coefficient is equal to the
coefficient of transformation of the long-wave and the
short-wave oscillations (see'-51 concerning the apparent
and the real singularities).

3) The truncated equation that yields a correct ex-
pression for an absorption coefficient equal to the coeffi-
cient of transformation of the long-wave into the short-
wave mode coincides with the equation for the waves in a
cold plasma only in the limit of sufficiently weak thermal
motion1152].

4) A joint investigation of the influence of dissipation,
thermal motion (within the framework of the fourth-
order differential equation) and the nonlinear processes

is necessary to ascertain the character of the distribu-
tion of the energy of the electromagnetic wave incident
on the region with the singularity of the refractive index.
In some cases, the situation has been analyzed mainly
from the qualitative point of view^26>53].

5) Even in those cases when the investigation of the
"cold" equation gives correct information on the trans-
formation of the long-wave into a short-wave one, an
investigation of the fourth-order equation can yield addi-
tional information concerning this processt 1 4 ] . This is
particularly obvious for the eigenvalue problems consid-
ered in C " * · 1 3 ) 4 0 ' 5 i ' 5 5 3 .

We can thus conclude that transformation of a long-
wave into a short-wave mode is correctly described by
the "cold" equation in the limit of sufficiently weak
thermal motion, at low dissipative and nonlinear effects,
and in the case of a simple zero of the coefficient of the
second derivative for the fourth-order equation. In par-
ticular, it follows from the third remark that the "cold"
equation is not very useful for quasirelativistic elec-
trons.

Leaving out the detailed analysis of the foregoing re-
marks, which can be found in the cited papers, we shall
illustrate briefly only some of them.

We consider the equation

αΡ!φΙν + Ρ» !(ΐ)ΐ(" + »1(ΐ)Φ = 0 (3.1)

with two small parameters a and β ~ (λ/L)2, where λ
and L are respectively the wavelength and the inhomo-
geneity length. The additional small parameter a is con-
nected with the concrete physical situation and character-
izes, for example, the influence of low viscosity or of
weak thermal motion, etc. It is convenient to express
the wave vector k(x) in the form:

k,. , = (1/2) {[(u./a) + 2 ± l(u1/a)-2(ul/a)1/'\'''}· (3.2)

Near the zero of the function u2(x) we have u2 = ux,
Ui = Ui(0). It is seen here from (3.2) that the crossing of
the solutions of (3.1) occurs at the points Xi ;2

= ± 2(aui(0)/u2) , at which the functions ki - k2 and
ki + k2 have branch points. The distance between xi and
x2 (the dimension of the singular region) is of the order

,2\l/4
of Δχ ~ Lff1/2 <C L, and |kAx| ~ (α/β2)

Using the Laplace method, we have investigated from
a unified point of view the solutions of (3.1) for arb i t rary
values of the parameter α/β2^1*^. Making the change of
variable χ = /3y in the vicinity of the zero of u s(x), we ob-
tained from (3.1)

<ρ»Γ + λ* (i,<pn + γ<ρ) = 0, (3.3)

where λ 2 = β*/α and γ = u^O). The solution of (3.3) is
expressed in the form of a contour integral

! exp [(ϊ3/3λ2) + ty- (y/l)) dt. (3.4)

The asymptotic properties of the solutions of (3.4) for
large values of the parameter λ2 were investigated
in C 5 6 ] . An analysis of the contour integrals (3.4) shows
that at sufficiently large distances from the origin y = 0
the asymptotic expressions for <p(y) have the same form
(are similar) for all values of λ 2 . [ 1 4 ] Thus, for example,
for a closed contour C circling around the essential
singularity t = 0, it can be shown that the asymptotic
forms of φ(γ) at distances satisfying the condition
A2|y| ^$> 1 are similar. In this case the asymptotic
form of <p(y) is given by : i 4 ' 5 6 : l
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= V (y) ss 2πί (2 (γ;/)'=) (λ2 Ι V Ι3 '2 » 1). ( 3 . 5 )

where J x is a Bessel function. It is easy to see that the
function (3.5) satisfies the abbreviated equation y<p^
+ γφ = 0 in the entire vicinity of the point y = 0. The
indicated method illustrates the fifth remark, that it is
important to investigate the fourth-order equation. We
present one more solution of (3.3), which coincides
asymptotically with the solution of the truncated ques-
tion, but only in a sector of the vicinity of the point y = 0.
For real y we have C 8 ' 1 4 ' 5 e ' 5 7 ]

\y\ | 1). (3.6)

[40]

The solution (3.6) provides just the description of the
anomalous transition of the transition of the truncated
equation into the short-wave equation, and is the most
important in the theory of wave transformations t 8 ] . Of
course, for the anomalous transformation described by
the solution (3.6) it is necessary to satisfy also the in-
equalities cited above, in addition to the vanishing of the
coefficient of the second derivative. In particular, the
condition |νλ | 3> 1 signifies smallness of the singular
region in comparison with the dimensions of the system.
In addition to the already cited papers, the conditions for
the occurrence of anomalous transformation in magneto-
hydrodynamics were recently repeated in1-58-12'.

It should be mentioned here that anomalous trans-
formation of waves in the region of the upper hybrid
resonance of an inhomogeneous plasma was proved in
with the aid of the energy conservation law.

We make two more remarks concerning the proper-
ties of the solutions of (3.1). First, it follows from the
already noted multiple-valuedness of ki + k2 and ki — k̂
that reflected waves of the same type as the incident ones
can appear in the vicinity of the singular region. The
solutions (3.5) and (3.6) do not contradict this. It is seen
from them, however, that to realize this possibility it is
necessary to impart a physical meaning to the solution
V(y) (for example, under instability conditions, when
growing solutions are meaningful). Second, it is neces-
sary to discuss the classification of the modes, all the
more since the treatment of this question is not unam-
biguous (see, for example, 1 1 1 7 ' 3 2 ' 5 8 3). In addition to (3.2),
we can also use for k(x) the representation

k2----[ui±(ul-iaul)
l'-]/2afi. (3.7)

Expression (3.7) demonstrates the difference between
the cases Ui > 0 and Ui < 0. If ui > 0, the crossing
points of the solutions y on the real axis and, in accord-
ance with the customary definition of oscillation modes
in a homogeneous plasma (see, for example,1-59·1), a tran-
sition between two different modes occurs at the point
u2 = 0. For one of the waves, the components of the
group and phase velocities have opposite signs. In the
case of ux < 0, the crossing points of the solutions lies
in the complex χ plane, and for k 1 ) 2 far from the point
u2 = 0 we have, in accordance with the rule for defining
the branches of the oscillations in a homogeneous
plasma, the following expressions:

M2<0, ' 2

I »l/P«2:

\κ 2 /αβ,

«2>0,
(3.8)

We see from (3.8) that in this case the transition
from the rapidly-oscillating solution to the long-wave

solution is not a transition, in the sense mentioned above,
from one branch of oscillations to another (only )& < 0).
On the other hand, if we use the representation (3.2), then
the transition from the long-wave solution to the short-
wave solution is such a transition for any sine of Ui. Jh
addition, in the asymptotic theory of differential equa-
tions with a small parameter preceding the highest-
order derivative, one deals with a transition between the
singular solutions of the abbreviated equation, obtained
from (3.1) as a ·— 0, on the one hand, and the rapidly-
oscillating solutions of (3.1), on the other. Regardless
of the method used to define the oscillations modes from
the physical point of view it is clear that this trans-
formation leads to an essential change in the properties
of the waves, since the expressions for the k2,2 differ
greatly as χ — ± °°.

It is necessary to call attention next to the fact that
the similarity of the asymptotic forms of (3.1) at arbi-
trary values of λ2 is due to the choice of the coefficients
Ui(x) and U2(x) in the form u2 = ux and Ui = const, and is
not a general property of (3.1). In fact, in an investiga-
tion of the equation

φ Ώ + λ ? ι ν + (βι + σ2·ζ:)(Ρ] = ο (3.9)

it was shown in1^2-1 that the transformation properties of
(3.9) are equivalent to the absorption properties of the
following truncated equation:

ξφ» + (ξ + 2μ) φ = 0, (3.10)

where ξ = σχ - (σ3/λ\), 2μ = (fija) + (σ2/λ\).

As follows from (3.10), the absorption coefficient of
the wave is equal to Q = e~2ir^(l - e~ 2 ">). Since Q de-
pends on μ, i.e., in final analysis on λ2, the transforma-
tion coefficient and the asymptotic forms of the solutions
of (3.9) depend on λ2. Thus, there is no similarity with
respect to λ2 for (3.9). From (3.10) we get the important
conclusion that in the general case the abbreviated equa-
tion (if it exists at all) does not reduce to the "cold"
equation, in accordance with remark (3) (page 68) made
above. It must also be noted that it follows from the re-
sults of1-52-1 that in the general case the coefficient of
transformation of the long-wave mode into a short-wave
mode is not equal to the coefficient of transformation of
the inverse process.

Examples of equations describing the anomalous
transformation in a plasma were given in t 9^ for the case
of hybrid resonances. Let us indicate other examples of
anomalous transformation:

1) Transformation of magnetosonic waves in a
spatially-inhomogeneous plasma, described by the equa-
tion

[37]

' = 0. (3.ii)

In the derivation of (3.11) it is assumed that the
plasma density is inhomogeneous along the magnetic
field, which is in turn directed along the ζ axis. If the
coefficient of the second derivative vanishes, then, ac-
cording to the theory developed above, an anomalous
transformation between the fast and slow magnetosonic
waves is possible1-8-1. As shown in^58-1, it is realized in
a dense plasma, VA < c g , where the solutions of (3.11)
"have time" to assume the asymptotic form (3.6).

2) In the region of ferromagnetic resonance of an in-
homogeneous ferromagnet, anomalous transformation of
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the long-wave and short-wave spin modes is possi-
ble £ 3 2 ' 3 9 3.

3) Anomalous transformation of spin waves into elec-
tromagnetic waves and vice versa was investigated
in C 6 0 ] .

In concluding this section, let us dwell very briefly
on the transformation of the third type. This case was
considered in'·12-', where the rules for bypassing the
crossing points of the solutions were obtained and the
spectrum of the oscillations was determined for finite
problems. Attention was called in^32·1 to the fact that for
propagating waves this case corresponds to 100% trans-
formation. As noted in Section 1 above, the transparency
region for both types of waves lie, in the case of a trans-
formation of type III, on both sides of the crossing point,
near which the components of the group velocities of the
waves take the form

(da/dk)u\ as ± 2 Id (*, - Λ2)/<*ωΗ. (3.12)

It follows therefore that the group velocities are anti-
parallel in the region of the crossing point of the solu-
tions. On the other hand, it is seen from (3.2) that near
the crossing point (where \il = 4aui), only the internal
sign of the wave vector can change, i.e., the transition
ki — kz is realized. Using this fact, as well as formulas
(3.12) and the fact that both waves exist only on one side
of the crossing point (the attenuate on the other side), we
can draw conclusions concerning the character of the
transformation process. The incident wave is completely
transformed into a wave of another type, which is reflec-
ted backwards. This type of transformation can be called
reflective. At the present time only one example of this
transformation is known. This is the case of potential
oscillations of a non-isothermal (Tj 3> T e) plasma in
the frequency region cojji C w C u>ne (kx 3> k ,
ω > k,V T e , ΚΥτί), for which k^x) takes thelorm

1.2 _ !.>

Γ ">2e ω 2 > ΓΙ ω ρ β ω ! . ϊ

(3.13)

As follows from (3.13), 100% transformation of the
waves is possible in a half-space filled with an inhomo-
geneous plasma with a pressure that decreases towards
the plasma boundary, or with an increasing magnetic
field [ 3 2 ] .

4. Certain features of wave transformation in the
interaction of a beam with a plasma. It is well known that
a plasma through which a beam of charged particle
passes is the simplest example of a nonequilibrium un-
stable medium (see, for example, [ 6 1 " 6 3 ] ) . in a homogene-
ous plasma, a nonrelativistic beam generates short-wave
longitudinal oscillations which do not satisfy the condi-
tions of propagation in vacuum. Jh the case of an in-
homogeneous plasma, longitudinal and transverse com-
ponents of the electromagnetic fields are "coupled," and
consequently such a system is more convenient from the
point of view of drawing energy from the plasma, owing
to the possibility of converting quasilongitudinal fields
into quasitransverse ones. Although the investigation of
transformations of longitudinal oscillations into trans-
verse oscillations in a plasma-beam system is only in
the beginning stage (see, for example, [ 2 1 ~ 2 3 > 6 3 ' 6 4 ] ) , many
features of this process have already been revealed, and
will be illustrated here with certain characteristic ex-
amples.

a) Anisotropy of the radiation of transverse waves.
We present here the results of theoretical and experi-
mental investigations of the efficiency of the transforma-
tion of longitudinal waves into transverse ones as a func-
tion of the sign of the density gradients when a beam
moves along an inhomogeneity1123'6511. Thus, in [ 6 s : i the
plasma chamber was a glass tube 50 cm long with inside
diameter 2.6 cm, placed in a homogeneous longitudinal
magnetic field of intensity up to 2 kOe.

The plasma density could easily increase monotonic-
ally in the direction of beam injection, or decrease, de-
pending on the direction from which the working gas was
admitted. The oscillations from the plasma were re-
ceived by external probes located outside the plasma
chamber in a longitudinal direction. In addition to using
probes, the longitudinal electric component of the oscil-
lations extracted from the plasma by the electron beam
were registered with the aid of broad-iband helical junc-
tions placed at both ends of the plasma chamber. The
results of the experiments show that in the case when the
plasma density increases in the beam-injection direction,
the generation of both transverse and longitudinal oscil-
lations is observed. A plasma density gradient with
direction opposite to the beam propagation changes the
picture of the radiation of the oscillations radically. One
observes a complete absence of generation of transverse
oscillations, as registered by the probes, and a simul-
taneous presence of radiation of longitudinal components.

Proceeding to the explanation of the experimental re-
sults, we must note first, that, with the exception of the
region of the resonance of the natural oscillations of a
cold plasma at rest and the drift oscillations of the
beam (beam mode), the dispersion properties of each of
the waves at wjje 3> ω are determined, as is well known,
from the following respective equations (see, for exam-
ple, 6 3 ):

(ImA:z<Re/cz for «&<«,,); (4.1)

here ω ρ Θ is the plasma frequency on the axis of the in-
teraction region and varies along the beam propagation
direction; k z and kL are the components of the wave
vectors along and across the magnetic field, respectively;
n b and iip are the beam and plasma densities, and V is
the beam velocity. For a small plasma wave excited in a
plasma waveguide we have [ 6 6 : i k± ~ l/a (a is the radius
of the waveguide).

When the beam moves in a direction in which the
plasma density decreases, the amplified "cold" plasma
mode (4.1) propagates in the direction of beam motion
(at o)jje > ω the phase and group velocities are paral-
lel), and is transformed in the vicinity of ω«6 « ω in to a
rapidly damped "hot" plasma wave with large k z

L 5 ' 8 : l ,
for which the propagation conditions in vacuum k z

3> ω/c are not satisfied. It is in this case that no energy
of the transverse oscillations is drawn from the beam.

It should be noted that if the plasma density changes
noticeably over distances L comparable with the wave-
length λ, then wave transformation must be taken into
account also in regions where geometrical optics in first
order in λ/L is valid1167-1. When this remark is taken
into account, it becomes clear that if the amplified per-
turbation moves in the direction of increasing density,
when V II Viu and the refractive index Ν decreases, an
appreciable fraction of its energy is transformed into
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FIG. 1. Dependence of the squares of the refractive indices of the
waves on the density in a cold plasma at U}je > ω. 1) Extraordinary
wave; 2) ordinary wave; 3) beam mode without allowance for interaction
between the beam and the plasma. The regions of transformation of
"cold" plasma modes are encircled.

waves that "flow out" from the plasma chamber to the
outside. Such a transition is possible also when
Ν > l^68-1. Furthermore, it must be emphasized that if
a second "cold" (fast) mode can propagate in the plasma
waveguide, the mode with a singularity of the refractive
index can be converted into a fast mode that is readily
radiated to the outside. In Fig. 1, the transformation
regions are encircled. The transformation is effective
for angles θ < (2cAwL)l/2l:53 (Θ is the angle between Ho
and k). Since the region of the crossing of the beam and
plasma modes is to the left of the transformation region,
it is clear that this transition occurs when the beam
moves in the direction of increasing plasma density.

We have disregarded above transformation effects
due to the transverse density gradient, for in this case
ωΗβ ^ ω ρε ~ ω > Meaning that the condition of the indi-

ρ
cated transformation,
fied.

« ω2
ω2, cannot be satis-

We note that when a beam moves in the direction of
increasing plasma density, the phase velocity of the os-
cillations increases. The quasilinear regime observed
i n [ 6 9 ] could in this case lead to a decrease of the effects
considered here, for in this case the energy should re-
turn to the beam. However, if the inhomogeneity is
strong enough, (V/o>L) ~ 1, this circumstance is appar-
ently immaterial.

It is curious to note that the transition radiation of a
modulated beam in a plasma with longitudinal density
gradient also has a pronounced anisotropy^21-1. We con-
fine ourselves in the proof to the case of transition
radiation of a uniformly moving charge on a blurred
plasma boundary without the magnetic field. Using the
standard procedure, we obtain an equation for the mag-
netic field of the wave with an electron vector lying in
the incidence plane (Ηχ, E y, E z ) [ 7 0 : l :

it-ilka, dh\r(z, ort dlliu,,

dz dz ^ i - ^ ) ; (4.2)

Here e = 1 - [ω 2(ζ)/ω 2][ΐ + i(v/w)J is the dielectric con-
stant of the cold plasma, ν is the collision frequency,
k± is the transverse component of the wave vector, and
ν is the velocity of the charge. If the density varies
linearly in the vicinity of the resonance point e = 0 we
have e « — [(z/L) + ί(ν/ω)]. Using the results of t70·1, we
can easily show that the amplitude of the field of the
transition radiation of the charge is proportional to the
integral I:

cxpi-HoK/v)][lll(z);e(z)\dz. (4.3)

where Hj.(z) is a solution of Eq. (4.2) without the right-
hand side, and attenuates as ζ —·+<». It is seen from
(4.3) that I vanishes when ν < 0 (when the charge moves
against the density gradient), since the pole of the in-
tegrand e = 0 lies in the lower half-plane of z. This re-
sult can be understood from qualitative considerations if
one recognizes the equivalence, noted in Sec. 2, of the
thermal motion to dissipation in the region of plasma
resonance. The transition radiation process can be then
represented as the onset of plasma oscillations as the
result of synchronism with the moving charge, followed
by their transformation into transverse waves. If the
dispersion of the -plasma waves is taken into account, it
is easy to see that the synchronism point, at which the
phase velocity of the plasmon is equal to the charge
velocity, is located to the left of the transformation point
e = 0. Therefore when the charge moves in the direction
in which the density decreases, the plasma waves excited
by it "drift" away from the point e = 0, and a transverse
electromagnetic wave can arise only as a result of over-
the-barrier effects with amplitude of the order of
exp(— U>L/V). In the opposite case when the charge moves
in the direction of increasing density, the plasma os-
cillations reach the point e = 0 and are transformed into
transverse waves that are radiated to the outside. The
amplitude of the transition-radiation field is then of the
order of exp(— 1β3/λ), where θ is the angle between the
density gradient in the radiation direction and λ is the
wavelength of the transverse oscillations.

b) Remarks concerning the problem of heating and
interruption of instabilities in a plasma. We discuss
briefly certain possibilities connected with wave trans-
formation:

1) Besides being of independent interest, wave trans-
formation can be important for problems of plasma
stability1-17-'. The correctness of this statement can be
demonstrated by the following reasoning'-17-1. Let one of
the "coupled" waves (with wave vector ki) oscillate at
infinity, and let the other (with wave vector k2) attenuate.
We assume that a localized perturbation ("packet"),
made up of waves with wave vector k2 and increasing
with time, has been produced in the plasma. If the rate at
at which the energy goes off to infinity as a result of the
transformation into the wave kL now exceeds the rate of
energy influx to the perturbation from the instability
sources, then no instability develops, and the plasma
can serve as a generator of oscillations that go off to
infinity. Owing to the inhomogeneity, the unstable mode
can be "coupled" with the stable one or with a more
stable one. It is clear that in this case the development
of the instability can be difficult. An example of such a
situation was analyzed in'-24-', where it was shown that
the crossing of the "hot" and "cold" plasma modes in
the vicinity of the upper hybrid resonance causes the in-
crease of the critical current, above which two-stream
instability develops, to oscillate in the range from
(V/VTe) to (V/Vipe)

3 times, where V is the beam velocity
and Vrpe is the thermal velocity of the plasma electrons.

2) At present there is no meeting of minds concern-
ing the most promising method of plasma heating to the
thermonuclear temperatures. It is already clear, how-
ever, that high frequency and microwave heating methods
are quite important. It is necessary to determine the
frequency range which is the most acceptable. At the
very utmost, the heating must not violate the plasma
containment conditions. Since the diffusion coefficient
is D ~ λ2 (λ is the wavelength), heating at shorter wave-
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lengths seems to be more promising. This is confirmed
by the results of[23:i, where they succeeded (by varying
the density distribution and applying modulating signals)
in verifying the heating and containment of a plasma by
exciting different sections of the wave spectrum in a
plasma-beam discharge. It turns out that up to ion-
cyclotron waves, the excited low-frequency oscillations,
while heating the plasma strongly (30% of the beam en-
ergy is given up), lead to a rapid drift of the particles
and of the energy from the apparatus, with a diffusion
coefficient close to the Bohm value. On the other hand,
when the heating is produced by waves in the region of
the lower hybrid frequency, the diffusion is small, for in
addition to the small wavelength, an important role is
apparently played by the fact that ion scattering by the
field pulsations should cause an increase of the ion-ion
viscosity. We note that this frequency range is conven-
ient also because both electrons and ions are adequately
heated in it.

In concluding Chap. Π, we mention briefly one more .
linear transformation in which waves with opposite signs
of the energy propagate simultaneously in an inhomo-
geneous medium. As is well known^71^, oscillations with
negative energy are possible in a non-equilibrium med-
ium. It follows then from general physical considera-
tions t 7 1 ' 7 2 ^ that interaction of waves with opposite ener-
gies should lead to their mutual amplification and to in-
stability. It is clear therefore that if waves with opposite
signs of the energy are present in the inhomogeneous
medium, linear transformation effects similar to those
considered above can lead to a buildup of oscillations.
By way of example we mention the instabilities observed
in[ 7 3> 7 4] a n c j connected with the outflow of waves from
an inhomogeneous-plasma region, in which their energy
is negative. It follows from the foregoing also that the
coefficient of linear transformation of the waves can ex-
ceed 100% in a nonequilibrium inhomogeneous medium.

III. CERTAIN NONLINEAR AND KINETIC
NONLOCAL EFFECTS PRODUCED WHEN WAVES
PROPAGATE IN AN INHOMOGENEOUS PLASMA

We consider kinetic nonlocal effects produced when
waves propagate in an inhomogeneous plasma. By
"nonlocal" we mean throughout effects of the spatial-
echo type in a homogeneous plasma, which were investi-
gated in C 7 5 - r a ] .

We recall that the echo effect in a plasma is based
on phase coherence of particles of different energies,
and satisfaction of this coherence gives rise to arithme-
tic addition of microscopic currents of individual plasma
particles, leading to a burst of macroscopic current,
meaning also field. In a homogeneous plasma, however,
owing to the thermal scatter of the particle velocities,
the initial perturbation attenuates irreversibly with time
or with distance from the source. We have in mind a
process analogous to the decay of the wave packet as the
result of random diffusion of the plasma particles, which
was investigated in detail ϊ η [ 8 0 ] . For this reason, the
echo effect in a homogeneous plasma is nonlinear. In the
case of an inhomogeneous plasma, when the wave in each
layer of the plasma interacts resonantly with some defin-
ite particle group, the phase coherence can be satisfied
in the approximation linear in the field amplitude, and
consequently it is possible to observe linear nonlocal
effects. This was first done in 1 1 1 6 ' 8 1 ' 8 2 3 . We proceed to
consider the nonlocal effects.

5. Linear nonlocal reflection of waves in an inhomo-
geneous plasma, a) We first describe briefly the method
proposed in1183^ for the investigation of nonlocal effects.
For one-dimensional longitudinal electronic oscillations
of an inhomogeneous plasma, the basic equations are

where fi(x, v, t) and F(g) are respectively the perturbed
and equilibrium distribution functions, 6 = (v2/2) + Φ(χ)
is the normalized energy, φ(χ) = - (m/e^(x) is the
effective static potential that maintains the inhomogeneity
of the plasma and is assumed to a monotonically decreas-
ing function of x, with F(-°°) = 0. The current density is
given by

oo

h (x, «) = /«t (x, t)-en0 j d% (dF/dg) [/<" (x, g, ί)-/<-> (χ, i, /)]; (5.2)
Φ(Ι)

Here ^ ' ( x , E, t), f<->(x, S, t) are the values of f^x, v, t)
for ν > 0 and ν < 0, respectively, jgj^x, t) is the cur-
rent density of the external source, and n0 = const.

We expand the perturbation of the distribution function
in a Fourier integral with respect to time:

/, (x, g, t) = \ /, (x, g, ω)exp (— ίωί) d(o.
— το

We then obtain from (5.1) by the method of characteris-
tics

χ

ίΐ'(χ. Ζ, <a) = (e/m) (dF/dg) f £,(*', ω) exp [ίωί (x, x')\dx',
— OO

X

I'-' (x, %, ω) = (elm) (dF/dSS) f Ε, (χ', ω) exp [ίωί (χ', χ)] dx' ( 5 · 3 )
x«

*%
+ (e/m) (df/dg) f £,(*', ω) βχρ [ίωί (χ%, χ)-\-ΙΜ(χ%, x')]dx\

£)= f lv(y, v(y, g) = {2 [ « -

where

and Xg is the point of reflection of particles with energy
ϋί(Φ(χ£) = 8). After substituting expressions (5.3) in
formula (5.2), we obtain a singular integral equation for
the electric field Ει(χ, ω) of the longitudinal oscillations

Ε, (χ, ω) = i (ω'/ω) j (dF/dg) { f £, (χ1, ω) exp [ίωί (χ, χ')] dx'

+ j £·, (χ', ω) exp [ίωί (χ', χ)] dx' (5.4)

— j £, (χ', ω)exp [ίωί (xg, x) + iat(x%, χ')]} dg + (4πΐ/ω) j e i t (*, ω),

where ω2 = 4i7e2n0/m.

We consider the natural oscillations of a weakly-
inhomogeneous plasma. Seeking the solution of (5.4) by
the WKB method, we represent the electric field in the
form

χ

E t (χ, ω ) = A t (χ, ω ) e x p i \ k ( x ) dx' .

We put j e x t = 0 and integrate in (5.4) twice by parts with
respect to x. Introducing the local dielectric constant
e(a>, k, Φ) of the inhomogeneous plasma

ε(ω, k, Φ) = 1— —— f -τκτΓί*——) ~ ( i : + —) I dg.

72 Sov. Phys.-Usp., Vol. 16, No. 1, July-August 1973 N. S. Erokhin and S. S. Moiseev 72



we obtain for the amplitude Αι(χ, ω) the equation here

At (χ, ω) ε (ω, ft, Φ) - i {deldk)l>'{dldx) [A, = 0. (5.5)

Equating the terms of the different orders of small-
ness in the WKG in sequence to zero we obtain the os-
cillation dispersion equation ε(ω, k, Φ) = 0 (from which
we obtain the complex wave vector ku(x) = k(a>, Φ(χ))
= qw(x) + ϊκω(χ)), and also the electric field amplitude

At (χ, ω) = const Λδε (a,ka (i))/d*fc (x)]~'h-

We note that for slowly-damped waves, integration by
parts in (5.4) leads to small denominators (k — (ω/ν)).
In this case the contribution of the resonant particles is
calculated by the saddle-point method1-83-1 and enters in
the form of the usual anti-Hermitian part of the dielec-
tric constant e(o>, k).

b) We consider now nonlinear nonlocal wave reflec-
tion in a weakly inhomogeneous plasma. The physical
mechanism of the nonlocal reflection consists in the fol-
lowing: The plasma particles with energy S moving in
the propagation direction of the incident wave with fre-
quency ω interact resonantly in the vicinity of the point
x s (g) with the wave qw(x s) = ω/ν(χ8, €) and absorb its
energy. The interaction between the wave and the
plasma produces modulated beams of particles with
different energies. After reflection from the potential
that maintains the inhomogeneity of the plasma, the par-
ticles again return to the region χ « x s, where they are
now at resonance with the reflected wave, and conse-
quently they can radiate the reflected wave. However,
the effective radiation of the reflected wave occurs only
in the absence of interference between the radiation of
particles with different energies. To this end it is neces-
sary to satisfy a certain condition, called the " phase-
coherence condition" E82], which states that the times
required for the particles with different energies % to
return to the corresponding resonance point xs(i>) should
be equal, i.e.,

dx (χ, ΐ%) — ο / d f da:' \ I n
= Ζ 1 -τ^- \ —γ—,—«Τ" Ι = U.

:=x \ ί)̂ § J ι; (Χ , ig) / | χ^χΒ

(5.6)

The phase-coherence condition (5.6) determines the
energy t,0 of the particles that generate the reflected
wave, and at the point of generation we have x c = xs(So).
When (5.6) is satisfied, the particles with energies SS
near g ο emit the reflected wave in the vicinity of the
point Xg coherently. In the opposite case, the nonlocal
reflection is an over-the-barrier effect.

To calculate the coefficient of linear nonlocal reflec-
tion, we represent the field Ει(χ, ω) in the form of a
sum of incident and reflected waves:

Ei(i, ui) = A+{x, <o)exp (i f ka(x')dx'\ + A.(x, ω)exp ( — i f ka(x')dx'\

(5.7)

where A,.(x, ω) = Π ω (χ)/π ω (χ 0 ) is the amplitude of the
incident wave and Π ω (χ) = [θε(ω, kw(x))/skw(x)] .
Substituting (5.7) in (5.3) and recognizing that the main
contribution to the integral comes from the saddle point
Xs(i5)> w e obtain the oscillations of the distribution func-
tion of the reflected particles:
ι,,-, ra«, / 2 β , \</2 d*Jd%

xexp fi f ka(x')dx' -\-i<i)t(x^, x) + iat (x

We next obtain from (5.4) an equation for the amplitude
of the reflected waves (5.5) with a right-hand part

(5.8)

We see that the source of the nonlocal reflection, the
right-hand side of (5.8), contains information on the past
of the particles, namely on their interaction with the
field of the incident wave prior to reflection. The solu-
tion of (5.8) reduces t o [ 8 2 : r

•<4_ (χ, ω )

A+ {χ, ω)

ί f ka(x')dx' + i f ka(x')dx'\ f xsexp [ίΨ(χ, xs)\ dxs,

(5.9)

where

Ψ(χ, x,) =

In the case of weakly inhomogeneous plasma, the inte-
grand in (5.9) contains a rapidly-oscillating function, and
its value is therefore determined by the contribution of
the saddle point x s = x c, at which the phase Φ(χ, x s ) has
an extremum. It is easy to show that the extremum con-
dition θφ(χ, x s)/8x s = 0 can be recast in the form (5.6),
so that this condition ensures phase coherence. As a re-
sult of the calculations we obtain for the nonlocal-re-
flection coefficient R = |E.(x, w)/E+(xa ω)|2 the expres-
sion

Λ = 4π(κ?/|γ|)οχρ[-2 j κω (*') da'- 2 j κω (χ1) dx'j ; (5.10)

Here KC = *cw(xc), Ύ = β0 + (w/2)(d2r(x, x g ) / d x 2

s ) | x = x .

In order of magnitude, we have (γ ~ β ~ q/L )

Ι ϊ ~ { κ ( L , , / ? ) ' / 2 ] 2 e x p ( - 2 j χ ω (χ1) dx - 2 j κ ω (χ) d x ' ) .
*it 'x

The region of applicability of formula (5.10) obtained
above is determined by the estimate[-82-1

(qL,,y>* > 1, > > (o>/qvrey.

In addition, the dimensions of the region where particles
of given energy are at resonance with the wave (Lq/q)
should be small in comparison with the wave damping
length K" 1 .

We investigate now the condition of phase coherence
(5.6) as a function of the potential Φ(χ). It is easy to
show that the phase coherence is satisfied if Φ(χ) = 0 at
χ < 0 and Φ(χ) = v ^ / L at χ > 0. In the case when Φ(χ)
= Vrp(x/L)n (with η > 0), phase coherence is possible if
the following equation has a real solution (£ = g/Φ)

Ι ζ/ (ζ- I ) ] " 2 = [(1/2) - (1/n)] ζΐ/η \ ρ- ι/» [y (y - l ) ] - i / 2 d y

Ί

It follows therefore that we must have η > 2.

In concluding this section, we make two remarks.
First, in the case of a quadratic potential Φ(χ)
= Φ0(χ/ΐ-ι)2, all the particles are trapped and have the
same period of oscillations. The nonlocal wave reflec-
tion is then highly effective and, as shown in1-84-1, leads
to the onset of "regenerative" plasma oscillation modes
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FIG. 2. Coordinate dependence of the magnetic field eH(z)/mc
(curve 1) and of the function a(z) = [ω—cofje (z)l /CQOJ(Z) (curve 2).
The non-transparency regions of the extraordinary wave are singly-
hatched.

which is the equation for the velocity v0 of the particles
regenerating the extraordinary wave.

The regeneration efficiency is determined by the
ratio d(z, Zo) = Sp(z)/S.(z0) of the energy fluxes in the
regenerated and initial waves. Calculations similar to
those performed in the preceding section lead to the fol-
lowing expression for d(z, ZQ)1- :

with frequency equal to double the frequency of the parti-
cle oscillations in the potential well Φ(χ). Second, phase
coherence of the particles exists not only under the con-
dition (5.6). It is automatically fulfilled if the time of re-
turn of the resonant particles is small in comparison
with the period of the wave, ωτ(χ 8 , x%) <C 1, for in this
case the distance between the reflection point and the
resonance point is so small that there is no phase mix-
ing of the particles generating the reflected wave.

6. Linear regeneration of extraordinary waves in an
inhomogeneous magnetic field. As follows from the re-
sults of Sec. 5, linear nonlocal effects result from the
focusing of particles by the plasma inhomogeneity. How-
ever, investigation of the phase-coherence condition show
that in an inhomogeneous plasma without a magnetic field
these effects have the character of nonlocal reflection.
At the same time, particular interest attaches to the
transport of the waves by the particles through the non-
transparency regions and through regions of strong
collisionless damping "forward". As shown in[1β-',
linear "forward" transport of waves by particles, which
we shall call regeneration, is possible in a plasma situa-
ted in an inhomogeneous magnetic field.

We examine the propagation of an extraordinary wave
along a weakly inhomogeneous magnetic field H(z) in the
form of a hump, with H m i n < mcin/e < H m a x . The func-
tion H(z) is shown schematically in Fig. 2. We recall
that the condition under which plasma particles having a
velocity v z along the magnetic field are in cyclotron
resonance with an extraordinary wave of frequency ω
and wave vector k ,̂ = q w + i κω can be expressed in the
form

ο (ζ) = [ω — <οΗ« (z)]/cqa (z) = vjc. (6.1)

from which we obtain the function z(vz) (which is multiply
valued in our case) that determines the position of the
cyclotron-resonance point as a function of the particle
velocity. A plot of a(z) at ω ! θ <C ω2 is also shown in
Fig. 2 (curve 2).

Let the extraordinary wave be excited by a source
located at a point ζ 0 to the left of region I and let it
propagate in the positive ζ direction. The plasma parti-
cles moving in the same direction interact resonantly
with the wave at points ζ.χ(νζ) of region I. Absorbing
part of the wave energy, they pass through region Π into
region IH, where the conditions of cyclotron resonance
with the extraordinary wave traveling in the same
direction can again be satisfied for the particles (it is
assumed that the incident wave does not penetrate into
region III as a result of cyclotron damping and of the
nontransparency barriers). Consequently at the cyclo-
tron-resonance points z2(vz) the plasma particles radiate
(regenerate) an extraordinary wave. Coherent regenera-
tion occurs upon satisfaction of the condition^16'85^

dz, („„)
J -2 \ κ«(ζ')ώ'-2

(6.3)

where ρ = d2*(vo)/dvo, «n = κ ω (ζ η (ν 0 )) is the cyclotron
damping constant of the extraordinary wave.

From (6.1) we have

Consequently, the dimension of the region where par-
ticles of given velocity are in cyclotron resonance with
the wave is of the order of Δζ ~ (Lg/q) l / 2. We then ob-
tain from (6.3), in order of magnitude,

d U, (v0), z, (!;„)] ~ [κ (Lq/g)l/>]>.

We see therefore that when the inhomogeneity length L
increases the regeneration effect increases and we can
expect d[z2(v0), Zi(vo)J to become of the order of unity at
i/c(Lq/q) l /2i2 ~ 1. Strictly speaking, formula (6.3) was
derived under the assumption that /c(Lq/q)l/i -C 1.

We consider in greater detail the conditions under
which this effect exists. First, the phase-coherence
condition (6.2) reduces to the form

Ί(»ο>

\ [ω-ωΗβ(ζ)]άζ = 0,

for which it follows that the function [ω - &jjie(z)] should
go through zero.

Second, cyclotron absorption of the extraordinary
wave by the plasma particles is possible if the following
inequalities are satisfied [ 8 5 ]:

Κ,,/ω) 2 < 2yo/3 Ϋ3 c, effm|n/m«u < 1 -(3ω«,/2ω2).

Third, in an inhomogeneous magnetic field, the longi-
tudinal plasma-particle velocity v z depends on the trans-
verse velocity. .Therefore when the particles pass be-
tween the wave absorption and regeneration regions, an
additional phase mixing occurs, generally speaking,
owing to the thermal scatter of the particles with respect
to the transverse velocities. This mixing does not have
time to occur if Ιν^δψ/θν^ <C 1. In the opposite case,
the phase-coherence condition (6.2) must be supplemen-
ted with the requirement that the phase Φ be extremal
with respect to the transverse velocity, otherwise the
regeneration will have the character of an over-the-
barrier effect.

7. Nonlinear "transparentization" of an inhomogene-
ous plasma. It was shown in the preceding section that
even in the linear approximation, owing to the presence
of "memory" in the system, the extraordinary wave can
penetrate anomalously in a plasma situated in an in-
homogeneous magnetic field. It is therefore of interest
to investigate effects of nonlinear "transparentization"
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FIG. 3. Echo points z c and plot of the plasma density N(z) as func-

tions of the locations of the sources.

of an inhomogeneous plasma. We consider the case of
an isotropic plasma.

There is a well-known statement that electromagnetic
waves do not penetrate into a plasma region where
ω2 > ω2. We shall show that penetration is actually

pc
possible in effects of the nonlinear-echo type.

a) Proper longitudinal echo of transverse waves in an
inhomogeneous plasma. Assume that there are two
transverse external sources

2

jrat(z, i )= e j / Τ /ίδ(ζ — at)cos<u4

in a plasma that is inhomogeneous along the ζ axis. We
assume for simplicity the fundamental part of the plasma
to be almost "cold" with density N(z) that decreases
monotonically with increasing z, to which a "hot" com-
ponent with a Maxwellian velocity distribution and homo-
geneous density n0 is added. The frequencies ω 1 ) 2 of the
external sources belong to the non-transparency region,
by virtue of which the fields are contained in the linear
approximation in skin layers near the points ζ = ai,2.
Under these conditions, in second order in the field
amplitude, a longitudinal echo current of the "hot"
component, with difference frequency α>3 = ω2 — ωχ > 0,
is produced at a distance ΔΖ = (a2 - ai)a>i/u>3 from the
second source (a2 > ai). If the echo point z c is located
in the transparency region of a wave with frequency ω3

(ω2 > 4jre2N(zc)/m), then the echo current excites a
natural longitudinal oscillation of the "cold" plasma
component, and this oscillation propagates towards the
plasma boundary. The locations of the sources, the echo
points z c, and a plot of the density N(z) are shown
schematically in Fig. 3.

In the case when the echo point z c coincides with the
reflection point of the plasma wave ω2 = 4tfe2N(zc)/m,
the expression for the electric field of the echo takes
the form11853

tTr ]

b) Echo at the summary frequency. The number of
types of frequency spectra of the echo becomes much
larger in an inhomogeneous plasma. Whereas in a
homogeneous plasma the echo is nonlinear, and in a
homogeneous isotropic plasma it is possible in the
second order in the field amplitude only at the difference
frequency, linear echo effects are possible in an in-
homogeneous plasma (as shown in Sees. 5 and 6). We
shall now show that a nonlinear echo at the summary
frequency of the external signals is possible in an in-
homogeneous plasma without a magnetic field. This
effect is analogous fundamentally to the nonlinear local
reflection, since in both cases the phase coherence of
the particle is satisfied because of the focusing action of
the plasma inhomogeneity.

We consider by way of example two longitudinal
2

sources j e x t (x , t) = Σ) j g6(x - a s ) cos u>st in a plasma
s = l

with the inhomogeneity described in Sec. 5. Particles
traveling in the positive χ direction interact at the point
ai and a2 with the external source, as a result of which
modulated streams can be produced in the plasma. We
assume that ai < a2 < x g , where χ g is the point of re-
flection of the particles with energy f, ·. After the parti-
cles are reflected from the potential Φ(χ) that contains
the inhomogeneous plasma, the phase of the oscillations
of the second-approximation distribution function takes
the form

where Hi and H2 are the magnetic fields near the
sources at the frequencies ωχ and ω2, H+ = 4ττ mc2eo/ed,
d = z c - ai, e0 = ( ν τ / ω 3 ν Γ 2 / 3 , VT is the thermal velocity
of the "cold" component, L is the length of the inhomo-
geneity of the density N(z) near the point z c, ω2

= 47re2n0/m, and e(z) = 1 - (4πβ2Ληω3)Ν(ζ) is the dielec-
tric constant of the "cold" component at the frequency
ω3.

This effect can be used to transmit to the plasma
boundary, in the form of plasma waves, information
concerning oscillations from emitters located in the
non-transparency region. It should be noted here that
the longitudinal plasma wave (which propagates almost
normally to the abrupt plasma boundary) is transformed,
with the transformation coefficient on the order of unity,
into a transverse wave which is radiated into the
vacuumt 8 6 ' 8 7 ] .

where v(x, g) = {2|.S - Φ(χ)]} ι/2. Under the phase-co-
herence condition 9*(x, S)/a t = 0, a macroscopic cur-
rent of plasma particles begins to flow and excites a
natural plasma oscillation at the summary frequency
ω4 = α>! + α>2, if the resonance point xg((ff), at which
ω4 = q(o>4, x s)v(x s, 8) is situated near the phase-coher-
ence point of the particles with energy t. Thus, coherent
excitation of a longitudinal wave at the summary fre-
quency occurs under the condition

•W(s, %)
lit -«, («)

0. (7.1)

x c for the

Equation (7.1) determines the energy So of the parti-
cles generating a wave with frequency ω4, and also the
position of the echo point X(, = xs(lfo). In this example,
greatest interest from the experimental point of view
attaches to the case 2 ω 1 ) 2 < a>pe(ai,2), wp e(x c) < ω4,

when the fields near the emitters are confined to the
skin layers in the first and second approximations, and
transparency occurs in the echo region χ
wave at the summary frequency.

In the case of a single source with j g x t = j δ (x - a)
χ cos u>t, the echo at the summary frequency leads to
nonlocal generation of the second harmonic. The phase-
coherence condition (7.1) means in this case that the
travel times of the particles (with reflection) from the
source to the resonance points x g should be the same.
Assuming Φ(χ) = 0 at χ < 0 and Φ(χ) = v^gX/L for χ > 0,
and assuming that the source and the echo points at
double frequency are located in the region χ < 0 where
the plasma is homogeneous, we obtain as a result of the
calculations the following expression for the electric
field of the second harmonic '-85^:
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where Ε+ = 2Ή] /vip, and κ2 = Im k (2 ω) is the decrement
of the spatial damping of the longitudinal wave at the
frequency 2 ω. We note that the method indicated for
harmonic generation in an inhomogeneous plasma can be
quite effective for diagnostic purposes.

In concluding this section, we make a few remarks.
The nonlocal effects considered above occur as a result
of phase coherence of the particles focused by the plasma
inhomogeneity, and lead to transport of the wave over a
distance on the order or larger than the inhomogeneity
length of the phase velocity of the waves. At sufficiently
short distances, however, as noted in'-82-', transfer of
information concerning the wave motion can occur also
in the absence of focusing, as a result of incomplete
cancellation of the currents of the individual particles.
Such effects were investigated for a piecewise-homo-
geneous plasma i n [ 8 8 > 8 9 ] . In a weakly inhomogeneous
plasma, they lead to transport of information over a dis-
tance much shorter than the inhomogeneity length of the
phase velocity of the waves'-853. In addition to the linear
nonlocal effects considered above, a new type of trans-
formation is possible in an inhomogeneous plasma,
namely linear nonlocal transformation of waves belonging
to different plasma oscillation modes'-86'88-1. As shown
in1-90'91-1, the echo is sensitive to the action of Coulomb
collisions and to microturbulence, which smooth out the
distribution-function perturbations that oscillate rapidly
with the particle velocity. Therefore the foregoing in-
vestigation of nonlocal effects is valid in a sufficiently
rarefied plasma with a low turbulence level, when the
characteristic lengths of the processes considered here
are small in comparison with the transport length of the
oscillations of the distribution function. Furthermore, at
sufficiently large distance, owing to a phase-mixing
mechanism similar to that investigated in1-92'93-1, the
echo effects become saturated and the field of the echo
wave has an asymmetrical dependence of the source
amplitudes E 9 4 " 8 6 ]. Nor do we consider here effects of
temporal echo in an inhomogeneous plasma.

Temporal echo for the case of the upper hybrid reson-
ance of a inhomogeneous plasma was investigated in'-97-'.

8. Second harmonic generation by electromagnetic
wave incident on an inhomogeneous plasma. As is well
known, second-harmonic generation is possible in non-
linear homogeneous media only if the following synchron-
ism conditions are satisfied ̂

<i>2 = 2a>i, k 2 = 2 k ( .

In a homogeneous plasma without a magnetic field, the
dispersion of the electromagnetic waves is such that the
synchronism conditions cannot be satisfied. Nonetheless,
experiment shows noticeable second-harmonic genera-
tion when electromagnetic waves are reflected from the
ionosphere, and also an appreciable admixture of the
second harmonic and the spectrum of the radio emission
of the solar corona : 2 o : l . The solar second-harmonic
radio emission band duplicates in general outline the
features of the first-harmonic radio emission band.
Attempts were therefore made to attribute this effect to
Rayleigh scattering of the second harmonic of the plasma
wave into electromagnetic radiation, or to Raman scat-
tering of plasma waves by thermal fluctuations
(see'-6'20-'). In1-15-1 another second-harmonic generation
mechanism was proposed, based on the inhomogeneity of
the plasma and preserved in a cold plasma. Let us con-
sider this case briefly.

1) Let an electromagnetic wave be incident on a cold

isotropic plasma which is inhomogeneous along the ζ
axis. The electric field vector is in the plane of inci-
dence Ε = (0, E y, Ez), and the magnetic field has a com-
ponent H x . Assuming the nonlinear effects to be weak
and representing the magnetic field of the second
harmonic in the form H^2)(z, y, t) = H2(z) exp (2iwt
- 2ikxy), we obtain for H2(z) the e q u a t i o n ^

at, dH2 (8.1)

where e2 = 1 — (ade(z)/4a>2) is the dielectric constant of
the plasma at the second harmonic, and F(z) is a non-
linear source in the form

'M-"£-[-s!^4--S^£--£(-S-£)]s (8.2)
here ei = 1 - (a>pe(z)/a>2) [l + i(v ^/ω)] is the dielectric
constant at the fundamental frequency, and E z and Ey
are the components of the electric field of the first
harmonic. We call attention to the fact that F(z) is pro-
portional to the density gradient and vanishes in a homo-
geneous plasma (in a homogeneous isotropic plasma the
nonlinear currents induced by the incident wave are
purely longitudinal). We note that the electric field of
the first harmonic has a singularity at the plasma-
resonance point where the dielectric constant €i van-
ishes [ 5 ' 6 1 .

The second-harmonic radiation field is proportional
to the matrix element

-|-oo

V= j [F(z)H{z)/es(z)]dz,

where H(z) is a solution of (8.1) without the right-hand
side. In a weakly-inhomogeneous plasma, V is deter-
mined by the contribution of the integrand singularity
closest to the real axis, in our case by the contribution
of the resonance point (in a magnetic field, the synchron-
ism conditions can be satisfied, so that in addition to
the contribution of the singularities it is necessary to
take into account the competing contribution of the
synchronism point). Near the resonance point we have
ei =-[(z/L) + i(yg££/w)J = -£ /L , and the magnetic and
electric fields of the first harmonic take the form

Hi" = - / / (0) Λ±ζ//ί" (kj,). (0) = Η (0),
(8.3)

here C is the Euler constant. For a weakly-inhomogene-
ous plasma, the quasiclassical parameter ρ = ωί,/c is
large, so that noticeable generation of the second har-
monic occurs at small angles of incidence of the wave
on the plasma, when a = (ckj/ω) •C 1. In this case we
obtain from (8.1)—(8.3), neglecting small terms of the
order of a and p" 1, but assuming that p a 3 >> 1,

cPH2-gjj
(1 + C) + In (k, ζ β)— j , \p.1)

where ki = (4a>2/c2)(e2 - a2). To solve (8.4), we formulate
the boundary conditions for the radiation

H2 (z)-> C±exp (=Fi*2z), as z-»±°°.

Then the constant C+ are given by the formulas

= ~ j F(z)exV(±ik2z)dz. (8.5)

Since the singular point of the function F(z) lies in the
lower half of the ζ plane, the constant C+ is equal to
zero. This means that the second harmonic is omitted
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from the resonance region "backward" and is present
only in the reflected signal. Calculation of C. yields

C = _ n

(8.6)

Let us compare the energy fluxes at the first and
second harmonics. Their ratio is equal to

(8.7)

where Ho is the magnetic field of the first harmonic in
vacuum. We estimate in our approximation the results
for the maximum possible generation of the second
harmonic. According to'-15-', the criterion for the small-
ness of the nonlinearity is

eH (0)/mcco < (ρ/α) (ν eff /ω)5'*. ,ggj

Substituting (8.8) in (8.7), we obtain

Substituting (8.9)—(8.11) in (8.5) and assuming that
(p/32) <C 1, we obtain by calculation the same ex-
pression (8.6) for the constant C. as before, while the
constant C+ turns out to be equal to zero. Thus, the
second-harmonic emission does not depend on the con-
crete mechanism that limits the electric field in the
resonance region. In other words, the equivalence of
thermal motion to dissipation, which was demonstrated
above, is preserved also in the nonlinear c a s e t 3 9 ] . This
conclusion remains in force for an inhomogeneous
plasma in a magnetic field. It is therefore necessary to
point out the published incorrect result '•"-' on the gen-
eration of the second harmonic of an electromagnetic
wave incident on an inhomogeneous plasma situated in an
inhomogeneous magnetic field. According to1-99-', the
direction of the second-harmonic radiation from the

hybrid resonance region ω2 +
di

where

E i " = iaH (0) (ρ/β)2/3 \ exp [iql+ (>?3/3)] dq, (8.10)
Ό

= vjc, ζ = (c/ω) (ρβ2)'/3ξ.

For the transverse component of the electric field we
obtain

g]; (8.11)
Ό

here A = ί(ττ/3) + (1/3) C + In (a/2) + (1/3) In (p/32/3).

= ω2 varies, depend-

For comparison we indicate the fraction of the energy
absorbed in the resonance region. As ^eff — 0 and at
pa3 > 1, it is equal to W,, = 2S*,1' exp (-4ρα3/3). Thus,
in the case investigated by us, a small fraction of the
energy absorbed in the region eL « 0 is transformed
into the second harmonic. One can expect them to be-
come comparable, however, when 4ρα3/3 ~ 1 and
(eH(0)/mcw) ~ {p/a)(uefi/ω)5/2 (for details see 1 1 1 5 ' 3 2 ' 3* 0).

2) We consider now second-harmonic generation
under conditions when the collisions are sufficiently rare
and effects of the finite temperature of the plasma be-
come significant. When the thermal motion in the reson-
ance region is taken into account in the resonance region
ei ~ 0, linear transformation of the incident electromag-
netic wave gives rise to plasma oscillations t 5 ' 6 ' 4 7 ^ .
They carry energy away from the resonant region, by
the same token limiting the electric field. As indicated
in [ 5 : l , it is possible to introduce in this case an effective
dissipation for which u^ = w(rj-)/L)2 , where r^ is the
Debye radius and L is the plasma-density inhomogeneity
length in the region εχ « 0. As seen from (8.6), the
second-harmonic emission intensity does not depend on
feff at p(j^eff/w) <C 1. It is unnatural to expect the re-
sults on second-harmonic generation to remain in
force in a thermal collisionless plasma '-15-'. We shall
demonstrate this by direct calculation of the second-
harmonic emission.

First, in place of formula (8.2) it is necessary to take
for a nonlinear source F(z) the expression

ί»= i!-JL-{2ik±El+-?-(EyEI)]. (8.9)

Further, the longitudinal electric field is given by^47]

ing on whether the longitudinal electric field is limited
in the resonance region by collisions or by the loss of
energy through thermal oscillations. The error in that
paper lies in the incorrect choice of the integral repre-
sentation for the electric field of the plasma wave
emerging from the region of the hybrid resonance.

We call attention to a qualitative difference between
the generation of the second harmonic of the electromag-
netic wave in a cold collision-governed plasma and the
case of generation in a thermal collisionless plasma. In
a cold plasma, the second-harmonic generation is con-
nected with singularities of the field of the initial wave.

In a thermal plasma, the wave fields are analytic
functions (see formulas (8.10)—(8.11)). Thermal oscilla-
tions (plasmons) are then produced in the resonance
region as a result of linear transformation of the incident
electromagnetic waves. It is the nonlinear interaction of
two plasmons, and also of a plasmon with an incident
wave, which leads to second-harmonic generation.

In concluding this section, we make the following re-
marks. First, second-harmonic generation in normal
incidence of an extraordinary wave on a cold inhomogene-
ous plasma situated in a homogeneous magnetic field was
investigated in'-100-'. The results do not differ in prin-
ciple from those given here. Second, the hysteresis
phenomena investigated in1-101·1 that are parasitic for
second-harmonic generation and are produced in the
resonance region in a sufficiently strong high-frequency
field. In our case they are of no importance if the cri-
terion (8.8) is satisfied.

It should also be noted that in a magnetoactive
plasma the dependence of the phase velocity of the wave
on the frequency, plasma density, and other parameters
is nonmonotonic, and therefore the synchronism condi-
tions can be satisfied. For example, in the case of
normal incidence of an extraordinary wave on a cold
magnetoactive plasma, the synchronism between the
first and n-th harmonic is satisfied along the curve
ω Ηβ ω ρε = (ωρβ ~ ω*) {^ωΖ ~ wpe) i n t h e Plane of the

^ 2
parameters , ω 2 ) . This circumstance should lead
to a "crumbling" of a wave propagating to the synchron-
ism region of an inhomogeneous plasma1-21-1.

9. Nonlinear generation of electromagnetic radiation
upon propagation of a plasma wave in an inhomogeneous
plasma. As shown in the preceding section, second har-
monic generation is produced in a resonant layer with
€i « 0 when an electromagnetic wave is incident on a
weakly inhomogeneous plasma. However, the incident
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wave penetrates into the region with e x « 0 under the
non-transparency barrier, and therefore the generation
effect is, generally speaking, small and depends strongly
on the angle of incidence of the wave on the plasma. It is
therefore of interest to consider the excitation of the
second harmonic of an electromagnetic wave by a plasma
wave that is directly reflected in the resonant layer. We
note that in a homogeneous plasma one plasma wave does
not generate an electromagnetic wave'-102-'.

According to [ 5 3 : ] , where this problem was solved, the
second-harmonic magnetic field satisfies equation (8.1)
with a nonlinear source F(z) in the form (8.9), in which
it is necessary to substitute the perturbations due to the
plasma wave. We point out that F(z) vanishes in a homo-
geneous plasma, for in this case the nonlinear currents
induced by the plasma wave are purely longitudinal.

We retain the notation introduced in Sec. 8 and assume
that the parameter pa3 is large. Under this condition, the
linear transformation of the plasma wave into an electro-
magnetic wave is exponentially small'-47-'. We consider
first the case p ^ ' C l , where the characteristic length
of variation of the field of the plasma wave in the reson-
ance region L(/3/p) is small in comparison with the
second-harmonic wavelength of the electromagnetic
wave c/ω. Using the results of the linear theoryC 4 7 ' 1 0 3 : l,
we write for the longitudinal electric field the expression

£<ι> = Αι-'/!(ρβ»)·'6 j [ e xp(_i i 5_i^.)_exp(i ? ? + i4)]d<7, (9.1)
ο

where A = const, and the normalization is chosen in such
a way that in the incident plasma we have

t = - C i . (9.4)

Here k z = (w/vT e)(-z/L) l / 2. If (Pj32)l/3 < 1, the nonlinear
source oscillates rapidly at the second-harmonic wave-
length, and it can therefore be averaged. After the aver-
aging, we obtain

(F (z)) = (2eaA7mc2) (ρβ2)1/» (dldz) {-c/ωζ)1''
(F (z)) = 0 if ζ > 0.

if ζ < 0,

Calculation of the amplitude of the magnetic field of the
second harmonic of the electromagnetic wave is analog-
ous to that carried out in Sec. 8, and yields

C.= -(2n/3)i/2(eavl7mc(u)(ppy/2eW\ C+=-Cf. (9.2)

Thus, the second harmonic is radiated equally in both
directions from the resonant layer. The coefficient of
transformation of the plasma wave into the second har-
monic is

) = (8n/3) ρβ2 (eaA!mv^<a)\ (9.3)

In the second limiting case (ρβ2) 3 » 1, the nonlinear
source F(z) is a slowly varying function of z. Therefore
the main contribution to the second-harmonic emission
comes from the synchronism point z0 = -L(k2VTe/2w)2,
at which k2 = 2ki = (2W/CJ3) (-z o /L) l / 2 . The dimension of
the synchronsim region can be estimated from the con-
dition

{k,-2k,)dz\~i.

It follows therefore that Δζ ~ (ο/ω)(ρβ2) ι/2. At the same
time, F(z) is proportional to the small factor of "trans-
versality" of the nonlinear currents induced by the
plasma waves, |dki/k5dz| ~ (ρβ2)'1. The final result
takes the form

The coefficient of transformation of the plasma wave
into the second harmonic is

' ' = (2/ρβ2 (9.5)

From a comparison of (9.2)—(9.3) with (9.4)-(9.5) we
see that in the region ρβ2 <C 1 the generation effect in-
creases with increasing inhomogeneity length L of the
plasma density, reaches a maximum at p/32 ~ 1 when
(S '̂/S*,1*) ~ (8ir/3)(eaA/mvTew)2, and then decreases
with further increase of L, in full accord with the case
of a homogeneous plasma. We note also in conclusion
that generation of electromagnetic radiation with fre-
quency ω w 2cc>pe by plasma oscillations with a broad
wave-number spectrum in a homogeneous unbounded
plasma was investigated in^ 1 0 4 ], and in a homogeneous
plasma layer in [ 1 0 5 : ! .

10. Singularities of nonlinear interactions of waves
in an inhomogeneous plasma. The foregoing investiga-
tion of the generation of second harmonic of an electro-
magnetic wave shows that the nonlinear interaction of
waves in the presence of plasma inhomogeneity has a
number of singularities in comparison with the case of a
homogeneous plasma. These will be briefly analyzed here
on the basis of the presently available litera-
ture '- 2 1 ' 5 3 ' 9 9 ' 1 0 6 - ' . We note that we are not concerning
ourselves here with parametric instability of waves in
an inhomogeneous plasma.

a) Nonlinear wave shift. A particular case of non-
linear wave shift is the second-harmonic generation
considered above t 1 5 > 5 3 ] , in the quasistationary state, the
amplitude * 3 (r) of the wave excited by the shift is pro-
portional to the matrix element V = J Φ1Φ2 Φ*dr, where
Φι,2 describe the fields of the initial waves and are as-
sumed specified. In the quasiclassical region, the func-
tions Φη(ζ) are given by

Ψ η ~ β Χ Ρ ( ± i j kn{z')dz'),

and the wave vector kn(z) satisfies the dispersion equa-
tion ω = <^n(kn). in a weakly inhomogeneous plasma, the
question of the estimate of the value of the matrix ele-
ment V is perfectly analogous to the question of the esti-
mate of the value of the quasiclassical matrix element
in quantum mechanics £ 1 0 7 ] . Considering Φη and k n in
the complex ζ plane (as an analytic continuation of the
real axis), we find that the matrix element V is deter-
mined by the competition of contributions made to the
integral from the singularities (such as poles and branch
points) of the functions Φη(ζ), and the contributions of
the point zo at which the decay condition ki + k2 = fe is
satisfied. In the latter case, the dimension Δζ of the
wave-generation region can be estimated from the con-
dition

- 1 .

Thus, decays forbidden in a homogeneous plasma (the
decay condition is not satisfied on the real ζ axis) occur
in an inhomogeneous plasma with exponentially small
probability if the fields of the interacting waves have no
singularities on the real ζ axis.

Attention should be called to the fact that a change
takes place in the very formulation of the problem of
limiting the amplitudes of waves growing in an inhomo-
geneous plasma as a result of nonlinear interactions'-53-1.
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In a homogeneous plasma, nonlinear wave interaction
leads to a redistribution of the energy over the spectrum
of the wave numbers k, but the interaction itself proceeds
simultaneously in all of r-space. In the case of an in-
homogeneous plasma, the decay occurs in a boundary
region of space occupied by the plasma. Therefore the
decay problem should be formulated in terms of wave
emission from the decay region, and at sufficiently small
amplitudes the outflow of energy from the region obvi-
ously leads to establishment of a quasistationary state.
This, in particular, distinguishes decay in an inhomo-
geneous plasma from decays in a bounded plasma, which
were investigated in^108-1. By way of illustration, we con-
sider the system'-53-'

which simulates second-harmonic generation in an in-
homogeneous medium. The wave vectors of the first and
second harmonic are equal to ki = (z — z j (2A)"1,
k2 = ζ , and the synchronism condition k2 = 2ki is satis-
fied at the point z0 = Zi/(1 — λ2). Since the solutions of
(10.1) are analytic functions, second harmonic is gener-
ated only in the vicinity of the synchronism point z0.
Taking into account the boundary condition of the radia-
tion Ψ2 = Iz" l Aexp[i (TT/4) + (2/3)iz3/2J as ζ — +», we ob-

tain I = a J ν(β + αξ2)άξ, where ν(ξ) is an Airy function
ο

and β = (ζϊζο) ι / 3, α = [(z0 - z

If β ^> 1, then the synchronism point is located in the
wave transparency region, far from the reflection points.
Then I « (l/2)(W/3r 2cos(2/3 3 /73). We note that

For β < 0, the synchronism point falls into the non-
transparency region, therefore the generation effect be-
comes exponentially small: I « (1/4) Ιπα/^Ι1 / 2

x exp(-2|0|3 / 2/3).

b) Decay of large-amplitude wave. We now consider
the decay of a wave of large amplitude, called pump
wave, in a weakly-inhomogeneous medium. Problems of
this type were solved in^ 1 0 6 ' 1 0 7^. The main features of
this decay can be traced with the following simple exam-
ple. If the reflection points are far from the decay reg-
ion, the equation for the amplitude ai,2(z) of the growing
waves can be represented in the form

/ac) αϊ,ι exp (ikaz
2/L), (10.2)

where ao is the amplitude of the pump wave, which is as-
sumed invariant; κ, k0, and a are positive parameters;
the decay condition is satisfied at the point ζ = 0, by vir-
tue of which

j (ko(z'j-kt (ζ')-λ·2(ζ')) dz' = ^ i .
0

For the function bi(z) = ai(z)exp (— ikoz
2/2L) we obtain

from (10.2) the equation

(d'bjdz*) :- [(A-0z/L)2 -;- I (kJL) - (κ | «„ |/ac)
2] 6, ..= 0. (10.3)

As seen from (10.3), the growth of the waves occurs in
the region of the barrier |z| < KL |ao | /koa,,, the width of
which is proportional to the amplitude of the pump wave
and to the inhomogeneity length L.

We substitute for Eqs. (10.2) the boundary conditions
la j 2 = 1 and | a 2 | 2 = 0 as ζ — - « . The solution of (10.3)

is expressed in terms of parabolic-cylinder functions.
As a result we have a s z - + »

M2/,. (10-4)

Thus, in an inhomogeneous medium the decay of the pump
wave leads to a finite amplification of the waves ai and

From (10.4) we obtain the condition for the termina-
tion of the decay instability L <
Λ is a number on the order of five.

|a P /a 0 | 2 , where

"We emphasize that if the corresponding parameter in the fourth-order
derivative ceases to be small when account is taken of the thermal mo-
tion, it becomes necessary to investigate the exact integral equation.

2'Apparently, because of a misunderstanding, the author of [58] has in-
correctly interpreted the results of [ 1 4 > 1 7 ] . Namely, when referring to
ji4,n] ^ n e ^ 0 6 § n o t g j v e aj] t n e c o n ( jitions obtained there, which are
needed for anomalous transformation, and only the condition that the
coefficient of the second derivative vanish. In addition, the exponential
smallness of the transformation coefficient in [ 3 7 ' 3 8 ] , which the author
of [5S] uses as a supporting argument, is in fact connected not with the
conditions for the applicability of the phase-integral method, but with
the type of transformation. In the terminology of the present paper, the
transformation referred to in [37>38 ] is of the over-the-barrier type.
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