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The purpose of the review is to compare the existing experimental data on total cross
sections and also the differential cross sections for elastic and inelastic scattering of
fast particles by deuterons with theoretical predictions based on a diffraction model of
the interaction. A detailed discussion is given of corrections to the total cross sections
arising as the result of inelastic screening, i.e., taking into account the possibility of
diffraction excitation of the incident particle by the first nucleon, as a result of which a
shower is formed which subsequently is absorbed in the second nucleon. A summary is
presented of values of the parameter (R~2) obtained from the total cross sections for πά
and pd scattering at energies from 2 to 60 BeV. It is shown that the comparison of theor-
etical angular distributions with the experimental data on ;rd, pd, and pd scattering indi-
cates that the theory correctly reproduces the main characteristics of elastic scattering.
Discrepancies are observed only for very large momentum transfers (greater than
1 BeV/c). A satisfactory description is also given of pd scattering with breakup of the
deuteron, in which a characteristic qualitative feature is observed—a peak corresponding
to double scattering of the incident particle by the nucleons of the deuteron. In the con-
cluding chapter the main premises of the Glauber theory are discussed, the diagram ap-
proach is briefly described, and on its basis an estimate is made of the accuracy of the
theory. (539.171)
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1. INTRODUCTION deuteron and most of all on the average distance between

o, . , ,. , ,. . . , , , , , the proton and neutron.
Strong interactions are studied mainly by bombard- r

ment of various targets by beams of fast particles. The T h e P u r P 0 S e o f t h e P r e S e n t r e v l e w i s t o compare the
purest experiments from the point of view of elementary- existing experimental data on the interaction of fast
particle physics are those performed in hydrogen (pro- particles with deuterons with theoretical predictions
ton) targets. However, more complex targets are fre- b a s e d o n t h e assumption of a diffraction nature of the
quently used for technical reasons or for the purpose of elementary interactions. We first discuss the Glauber
studying nuclear interactions. In the theoretical inter- correction to the total cross section, which arises as the
pretation of data on the interaction of particles with r e s u l t °t mutual screening of nucleons and which is de-
nuclei, difficulties associated with the need of taking into termined by the structure of the deuteron. Here informa-
account nuclear effects are necessarily encountered. t l o n 1 S u s e d o n t h e deuteron form factor obtained from

elastic electron scattering. Then a comparison of theory
A special place is occupied by experiments with a with experiment is made for the angular distributions of

deuterium target. In the first place, interactions with elastic pd, nd, and pd scattering, and also for pd scatter -
deuterons can, as a rule, be studied in apparatus intended i n g w ith breakup of the deuteron. We discuss corrections
for measurements with an ordinary hydrogen target. In to the Glauber theory which arise at high energies as the
the second place, the proton and neutron in the deuteron result of the virtual production of particles (inelastic
are weakly bound and the nuclear corrections are small screening). In conclusion a brief review is given of the
(for example, of the order of 10% in the total cross sec- principal assumptions of the Glauber theory, and the ac-
tions). In the third place, the nuclear effects in scatter- curacy of the theoretical predictions is discussed,
ing of fast particles can be reasonably well calculated by
means of the Glauber theory^1~4-1. This theory is based _ ___. _ __
on the fact that the interaction between particles at high 2" T O T A L C R O S S SECTIONS AND THE GLAUBER
energies has a diffraction nature. As a consequence of CORRECTION
this, scattering by a deuteron can be represented as the The total cross sections for interaction of particles
superposition of direct scattering by one of the nucleons with deuterons are usually measured with high accuracy,
(the impulse approximation) and a process in which the The Glauber theory permits calculation of the correction
incident particle successively interacts with the two for screening, so that the theoretical error in the total
nucleons (two-fold rescattering). Effects associated with cross section is ~ 1%. As a result it has been possible
rescattering depend substantially on the structure of the to find the cross sections for interaction of particles
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with a neutron with satisfactory accuracy from data on
deuteron cross sections. As experiments show, the
cross sections for interaction of particles with protons
and neutrons are very similar at high energies. This
circumstance is naturally explained by the theory of
complex angular momenta. In this connection it is in-
teresting to know the value of the difference in the total
cross section σ - σ , and particularly its behavior with
energy.

The total cross section for interaction of a particle
with a deuteron can be represented in the following form:

• <Tn — Δ , (1)

where Δ is the cross-section defect, a quantity which is
positive for sufficiently high energies, which corresponds
to the idea of nucleon screening. Under certain assump-
tions, which although rather crude are qualitatively cor-
rect, the quantity Δ is represented in the form1-1-1

where R is the distance between the proton and neutron
in a deuteron, and the angular brackets denote averaging
over the deuteron bound state. This result was obtained
with the following conditions:

1) The radius of strong interactions is much smaller
than the size of the deuteron. This is a rather crude as-
sumption, and as a matter of fact for this reason the
coefficient <R~2) in Eq. (2) not only is determined by the
deuteron structure but also depends on the nature of the
elementary interactions. However, this dependence is
weak, and theoretically the coefficient (R~2> in Eq. (2) is
almost constant. A detailed analysis is given in Chap. 3.

2) The cross section for scattering with charge ex-
change of target nucleons is much smaller than the elas-
tic cross section. Here it follows from isotopic invar -
iance that in Eq. (2) we can set σ ρ = σ η .

3) The amplitude of forward elastic scattering by a
nucleon is pure imaginary. The validity of the last two
assumptions is discussed in the Appendix (page 61).
Analysis shows that the corresponding corrections do
not exceed (0.1—0.2)Δ in the energy region above 1 BeV.

Equation (2) permits calculation of the nuclear cor-
rection in the deuteron by means of one parameter which
does not depend on energy and which is common for all
incident particles: <R"2). This quantity can in principle
be found from the deuteron wave function. However, it
depends substantially on the behavior of the wave func-
tion at small distances, and therefore it is difficult to
find with high accuracy (see Chap. 3 for more detail).

In two cases the quantity Δ can be found experimen-
tally:

a) Scattering of π mesons. The value of the cross-
section defect is found from comparison of the total
cross sections σ(τΓρ), σ(7Γρ) = σ(η'η) and σ(π*ά) = a(;r~d)
(the equalities are accurate to the radiation corrections).
All three cross sections are measured with high accur-
acy.

b) Nucleon scattering. It is necessary to compare
σ(ρρ), a(pd), and σ(ρη). The cross section σ(ρη) is de-
termined by bombardment of a proton target by a beam
of neutrons; the accuracy in measurement of this quan-
tity is somewhat poorer than for the other cross sec-
tions. For energies Ξί 10 BeV the difference σ(ρρ)
- σ(ρη) lies within the experimental error. Therefore in
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FIG. 1. The quantity <R"2> determined by Eq. (2) from data on
scattering of π mesons and nucleons by deuterons [ 5 · 6 ] . The data ob-
tained on the basis of experiments at Serpukhov [ s b '6 b] are shown sepa-
rately at the right; here in determination of (R'2> it was assumed that
σ(ρρ) = σ(ρη).

estimating the value of Δ at high energies we can neglect
this difference1'.

Figure 1 shows the value of (R~2) calculated from
Eq. (2) by means of the data existing in the litera-
ture L5 k>e i l ]. ( T h e b e h a v i o r o f t h e q u a n t i t i e s Δ and <R~E>
for pd scattering has been discussed in ref. 7.) Within
the rather large experimental errors the values of (R~2)
are weak functions of energy and agree in measurements
with π mesons and nucleons. It is not excluded that there
is some rise in (R~2) with increasing energy for
Ε > 20 BeV. This effect can be produced by inelastic
screening (see Chap. 6).

3. DEUTERON FORM FACTOR

The Glauber theory'-1-' gives a result which is more
accurate than Eq. (2) and which takes into account the
finite value of the strong-interaction radius:

Δ = 2 \ ρ (4τ) (dajdz) dx, (3)

where da^/dr is the elastic differential cross section
for scattering of the incident particle by a nucleon (the
difference in the cross sections for protons and neutrons
is small), and τ is the squared momentum transfer
(τ > 0), ρ(τ) is the deuteron form factor:

Ρ Μ = (r) I 2 exp (iqr/2) d?r, τ = q2, ρ (0) = 1 (4)

(with accuracy to certain complications due to the
nucleon and deuteron spins).

For small momentum transfers and for the condition
that the scattering amplitude is pure imaginary (this
assumption is necessary to obtain Eq. (3)), the strong-
interaction cross se'ction is represented in the form

If we assume that P(4T) changes significantly more
rapidly than the elastic cross section, we can take the
cross section for τ = 0 outside the integral sign and ob-
tain Eq. (2), where by definition

^(1/2) |ρ(4τ)<ίτ.

The form factor is measured in elastic scattering of
electrons by deuterons:

da (ed)!dx = [do0 (ed)ldr\ [ρ (τ) G, (τ)]2,

where dao/dr is the cross section for a point particle,
and G S (T) is the isoscalar form factor of the nucleon.
The elastic cross section for ed scattering has been
measured1183 up to τ = 35 F"2 =.1.37 (BeV/c)2. The ex-
periment was carried out for small electron-scattering
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angles, and therefore only the charge portion of the cross
section was determined, i.e., some combination of the
charge and quadrupole form factors. The data obtained
have been compared with various theoretical predictions.
In particular, satisfactory agreement of the experiment
has been observed with the Hamada- Johnston model^9-1

(χ2 = 67 for 62 degrees of freedom). This model uses for
calculation of the wave function of the deuteron a nucleon-
nucleon potential with a large number of parameters
which are determined from data on scattering at small
angles. At small distances there is a repulsion with
radius r c = 0.485 F (rp

2 = 0.16 (BeV/c)2). The model
takes into account nucleon spins and the D wave in the
deuteron. The form factor of interest to us is expressed
in terms of the radial wave functions of the S and D
waves, u(r) and v(r), as follows:

Slopes of elastic-scattering differential cross sections

Ρ W = (r)] /„ (Γ VT/2) dr,

where j 0 is a spherical Bessel function. The result of the
calculation with the Hamada-Johnston model is shown in
Fig. 2. Integration of Eq. (6) over the region 0 < r
< 20 F"2 leads to the value <R~2> = 0.039 mb"1, which is
consistent with the data shown in Fig. 1. We must of
course keep in mind that the uncertainty in the value of
the integral can be significantly greater than the uncer-
tainty in the form factor for finite τ known to us from ed
scattering.

In the region 0 < τ < 20 F~2 the form factor ρ(τ)
calculated from the Hamada-Johnston model is approxi-
mated with an accuracy of ~ 0.01 over the entire interval
by the equation

ρ (τ) = fte—.τ (7)(1 _ 6) β - α ! τ ?

where ax = (1.15 ± 0.01) F"2, a2 = (0.22 ± 0.01) F~2,
b = 0.40 ± 0.01. The first exponential corresponds to the
size of the deuteron, and the second to the repulsive
core.

The form factor in the Hamada-Johnston model
changes sign for τ ~ 22 F~2, and this of course is not
described by Eq. (7). However, for τ > 20 F~2 the very
concepts of a nonrelativistic wave function and the ordin-
ary form factor (4) lose their meaning. In this region
not only the relativistic corrections but also corrections
due to meson currents become important. In other words,
on close approach of the nucleons in the deuteron, we can
observe with appreciable probability mesons emitted by
one nucleon and absorbed by the other. These mesons
affect the charge distribution in the interior of the deu-
teron. Estimates of the effect of exchange currents
have been made many times (for example, see the refer-
ences given by Elias et al.'-8-'). In the recent work of
Blankenbecler and Gunion1-10·1 the correction for the form
factor was calculated on the basis of the hypothesis of
vector meson dominance. It was shown that this correc-

FIG. 2. The deuteron form factor
in the Hamada-Johnston model.
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tion is not only very important for τ > 20 F 2 but also
makes appreciable contribution to the deuteron magnetic
moment. In what follows we will not consider the ob-
served deviations from the ordinary nonrelativistic
model of the deuteron, which have little effect on the
total cross sections and also on the differential cross
sections for small momentum transfers.

The role of the finite size of the diffraction cone in
scattering by nucleons2' (A £ 0) can be estimated in the
following way. We will substitute Eqs. (5) and (7) into
Eq. (3). Then instead of the definition (6) we obtain

/ D - 2 l . _ * / ' , 1 —i> \

For η mesons at energies > 10 BeV, we have
A = 10 (BeV/c)"2 = 0.39 F 2. Using the parameters of Eq.
(7), we obtain for ηά scattering (R~2) = (0.028 ± 0.001)
mb'1. Thus, the measured value of the cross-section
defect Δ agrees quite satisfactorily with the Hamada-
Johnston model for the deuteron wave function. As a
rule, it is sufficient to use the simplified formula for the
form factor ρ(τ) = exp(-a-r) (this form factor corresponds
to a wave function with a Gaussian shape'-12-'). Then the
correction for screening has the form

Here we can take 4a = 1.36 F2 = 35 (BeV/c)"2. Thus, the
effect of the finite radius of the strong interaction
amounts to ~ 20-30% of the correction for screening
(the effect is particularly noticeable in the case of pd
scattering), and its inclusion evidently improves the
agreement of the data on the value of (R~2) obtained
from scattering of π mesons and nucleons with the data
on ed scattering with large momentum transfers. We
note that, since the slopes of the differential cross sec-
tions A are of the same order for different particles and
change slowly (logarithmically) with energy, the effective
value of the parameter <R~2} in the correction for
screening can be assumed constant up to an energy of
the order 20 BeV.

4. ANGULAR DISTRIBUTION OF ELASTIC pd
AND πά SCATTERING

In investigating the question of how accurate is the
correction given by the Glauber theory to the total cross
section, it is useful to compare the predictions of this
theory for angular distributions with the experimental
data. The study of angular distributions permits separa-
tion of the contribution of double scattering. The point is
that, while the Glauber correction amounts to only sev-
eral percent for the total cross sections, for momentum
transfers greater than 0.6—0.7 BeV/c the differential
cross section is completely determined by double scat-
tering.

According to the Glauber theory, the amplitude for
elastic scattering of a particle with momentum k by a
deuteron, F(q), where q is the momentum transfer, is ex-
pressed in terms of the amplitude for scattering by a
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FIG. 3. Differential cross sections for pd scattering, a) k = 1.7
BeV/c [ 1 5 ] ;b)k = 2.8 BeV/c [16] (theory-in ref. 14; the dashed
curves have been plotted without inclusion of the D wave); c) k =
1.7,4.54, and 6.37 BeV/c [ " ] .

0,8 1.2.
-t, (BeV/c)!

proton L(q) and a neutron fn(q) in the following way:

/,(iq-q')^'; (8)
here ρ is the deuteron form factor (4), and the integra-
tion is carried out over the momenta q' lying in a plane
perpendicular to the incident-particle momentum. The
amplitudes are normalized as follows:

daldQ = | F (q) | 2, σ,ο, = (inlk) Im F (0),

where σ is the cross section in the laboratory system.
In particular, the latter equality, in the case where f (q)
= fn(q) is a pure imaginary quantity in the region of
small q, leads to representation of the cross-section
defect Δ in the form of Eq. (3).

The angular distribution obtained from Eq. (8) for
elastic scattering has qualitatively the following form.
The terms corresponding to single scattering are domin-
ant for small q, but fall off rapidly with increasing q as
the result of the factor p(q2). The term corresponding to
double scattering, which is small for small q, drops
much more slowly: the scale of falloff is determined by
the behavior of the differential cross section for scatter-
ing by an individual nucleon. The fact is that the main
contribution to the integral in Eq. (8) is from the region
of small q', where p(4q'2) ~ 1, and therefore the drop
associated with "friability" of the deuteron is absent.
In other words, double scattering in which a momentum
q is transferred to the deuteron occurs preferentially in
such a way that the particle sequentially transfers to
each of the nuclear nucleons a momentum q/2, but the
relative momentum of the nucleons in this case remains
small.

If the amplitudes for scattering by the neutron and
proton are pure imaginary, the terms corresponding to
single and double scattering in Eq. (8) have opposite
signs. Thus, if we take into account only the S state of
the deuteron, the amplitude should pass through zero at
a certain momentum and correspondingly the differential
cross section should go to zero. Inclusion of the real
parts of the amplitudes f and fn leads to the result that
the amplitude for scattering in the deuteron does not go
to zero but has a deep minimum which is not observed
experimentally. The situation is corrected by taking into
account the D wave in the deuteron, which leads to filling
in of the interference minimum1-4'13'14-1.

Figure 3 shows a comparison of the experimental
data on elastic pd scattering with the theoretical calcula-
tion on the basis of Eq. (8). The deuteron D wave was
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FIG. 4. Differential cross sections for elastic ir'd scattering for three
initial momenta: 1 -0.9 BeV/c [ 1 8 ], 2-3.75 BeV/c [ 1 9 ] , 3-9.0 BeV/c
[2 0](the theoretical curves have been taken from ref. 21).

FIG. 5. Differential cross sections for elastic π'ά scattering at 9.0
BeV/c (a) and pd scattering for 12.8 BeV/c (b) for large momentum
transfers. The experimental data have been taken from refs. 20 and 23;
the theoretical curves have been taken from refs. 21 and 22. The dot-
dash curve in part a) corresponds to inclusion only of double scattering,
and the dashed curves in part b) were obtained by varying the pN-scat-
tering parameters. Good agreement is obtained for those parameter
values which are inconsistent with the experimental data on pp and pn
scattering.

taken into account in the calculations. The agreement
with experiment is quite satisfactory. The dashed lines
in Figs. 3a and b show the results of the calculation not
taking into account the D-wave admixture. It is quite ap-
parent that the D-wave admixture has little effect on the
result both in the single-scattering region (small angles)
and in the double-scattering region (large angles), but is
extremely important in the region of the interference
minimum.

A similar situation is observed also in nd scattering.
In Fig. 4 the differential cross sections for elastic iTd
scattering for three energies [18~20-1 are compared with
theoretical calculations from Alberi and Bertocchi'-21-'.
In scattering with large momentum transfers, as we could
expect from the very beginning, the situation is some-
what poorer. The theoretical curves for both -n'd and pd
scattering lie substantially above the experimental points
(see Fig. 5, taken from the work of Bradamante et al.'-22-';
the experimental data on the 77~d scattering are from
ref. 20, and those for pd scattering from ref. 23). The
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cause apparently lies in the fact that for large momen-
tum transfers (q2 ~ 1.5—2.0 (BeV/c)2) the main assump-
tions of the theory are invalid. For example, large cor-
rections are made which are associated with inclusion of
nucleon recoil and virtual rescattering of nucleons
(chapter 7). Moreover, as was noted in chapter 3, we do
not have reliable information on the deuteron wave func-
tion at small distances, since in analysis of data on ed
scattering the relativistic corrections, exchange cur-
rents, double scattering, and other effects become im-
portant. In order to obtain agreement of theory and ex-
periment at large momentum transfers in terms of the
ordinary Glauber theory, it would be necessary to as-
sume that <R~2} = 0.02 mb~\ i.e., much less than the
presently accepted value (see Chap. 2 and Fig. 1).

It is interesting to note that a preliminary calculation
carried out by Franko and Glauber^4-1 in which the πΝ
and pN scattering amplitudes were taken in the exponen-
tial form (i.e., the cross sections in the form of Eq. (5)),
the exponent being assumed constant and independent of
momentum transfer, gave results which are in agree-
ment with experiment up to momentum transfers q2

= 2 (BeV/c)2. However, more accurate calculations tak-
ing into account the change in slope of the cone in πΝ
and pN scattering 2 1 ) 2 2 j have shown that this agreement
was only apparent.

Quite recently experimental studies have been made
of elastic pd scattering at momenta from 1.6 to
2.0 BeV/c.[24] The differential cross sections obtained
in that work for four different initial momenta are shown
in Fig. 6, together with the results of calculations using
the Glauber theory. The solid curve which agrees best
with the experimental data was obtained on the assump-
tion that the ratio of the real part of the pp and pn scat-
tering amplitudes to the imaginary part is 0.4.

In all of the figures shown the theoretical predictions
are in good agreement with the experimental data for
small momentum transfers, agreement being observed
even where the main premises of the theory are clearly
no longer valid (for example, at low energies). The same
good agreement is observed also in analysis of data on
nd and pd scattering at other energies '^.

It should be noted that the question of the causes of
the filling of the interference minimum can nevertheless
hardly be considered solved. It is not excluded that, in
addition to the D-wave contribution, other reasons are
also important here (inelastic processes in the inter-
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FIG. 6. Differential cross sec-
tions for elastic antiproton-deu-
teron scattering [ 2 4 ] . Curves-
calculation according to the
Glauber theory with use of vari-
ous values of a = Re f/Im f; the
dot-dash, solid, and dashed curves
correspond to ap = ctn = 0, 0.4,
and 0.6.

FIG. 7. Feynman diagram corre-
sponding to inelastic double scattering
by a deuteron.

mediate state, the contribution of terms usually discar-
ded, which will be discussed at the end of chapter 7, and
so forth). An experiment with polarized particles or
with detection of the polarization of the final particles
would be of assistance in solving this problem'-14'25-'.
The corresponding studies are only beginning (see the
article by Booth et al. , who have measured the polar-
ization of protons in pd scattering at 1 BeV/c, and the
work of Bunce et al.'-27a-' , who have determined the
polarization and quadrupolarization of deuterons in dp
scattering for a deuteron momentum of 3.6 BeV/c, and
also ref. 27b, where the asymmetry and polarization
have been determined at 600 MeV. The results of pre-
liminary calculations of polarization effects[27C-1 only
qualitatively agree with the experimental data. They
turn out to be very sensitive to the possible change of
the ratio Re f/Im f for the NN-scattering amplitude with
momentum transfer).

On the whole the comparison of theoretical angular
distributions with experimental data indicates that the
theory correctly transmits the basic behavior of elastic
scattering.

5. INELASTIC SCATTERING BY OEUTERONS

An additional possibility of studying the scattering of
high-energy particles by neutrons appears in study of
the process accompanied by breakup of the deuteron.
Here information can be obtained not only on the total
cross section but also on the behavior of the differential
cross section for small momentum transfers.

The point is that if we measure the spectrum of par-
ticles elastically scattered by deuterons at a fixed angle,
under certain conditions a peak will appear correspond-
ing to double scattering of the particle by the nucleons of
the deuteron (see the diagram of Fig. 7). This peak has
been observed in the momentum spectrum of protons
with initial momentum 19.2 BeV/c which have been scat-
tered by deuterons at angles from 40 to 65 mrad1-28" (see
Fig. 8, where the left-hand peaks are single, i.e., quasi-
elastic, scattering; the right-hand peaks arise from
double scattering). The location of the peak corresponds
to elastic pd scattering, but the area under it is much
greater than that which would be given by the elastic
process L 2 8 ' 2 9 a ] .

The appearance of the peak can be understood qualita-
tively in the following way. Imagine that successive scat-
tering of the incident proton occurs by two stationary
nucleons, the first scattering angle being θχ and the
second θ2. If we consider for simplicity the case in which
the two momenta lie in the same plane, we then have the
condition

= θ, (9)

where θ is the angle at which the secondary-proton spec-
trum is recorded. We will assume to begin with that the
differential cross sections for scattering by protons and
neutrons are identical. The pp-scattering cross section
is well described by the equation

daldil ~ exp (— Ak2Q2),
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FIG. 8. Momentum spectra of protons from inelastic pd scattering
at angles from 40 to 65 mrad for an initial momentum of 19.2 BeV/c.
The experimental data have been taken from ref. 28, and the theoretical
curves from ref. 29a.

where k is the initial momentum, θ is the scattering
angle, and A ~ 10 (BeV/c)"2 for energies in the vicinity
of 19 BeV. Therefore the cross section for double scat-
tering will contain a factor

exp [ — Ah* ( (10)

For the condition (9), Eq. (10) will have a maximum for
θχ = θ2 = θ/2. This corresponds to a difference of the
initial and final momenta of the fast proton Ak = k292/4m.
Exactly the same value of Ak occurs in elastic pd scat-
tering at an angle Θ. The spectrum of protons after
double scattering is cut off at k' = k - (k2e2/4m), since
Ak = k2(e\ + θΙ)/2τη cannot, if we take into account Eq.
(9), be less than k2f?2/4m, and a peak exists at this value
k'. For smaller values of the momentum k', Eq. (10) can
be written in the form

<PaldQ dk' ~ exp (—2Am Δί:).

The width of the peak corresponding to double scattering
is of the order (2Am)"1 f» 50 MeV/c. Of course, the
nucleon motion inside the deuteron and the experimental
resolution result in the peak being smeared out and its
right-hand boundary being no longer sharp.

A detailed calculation of the shape of the scattered-
proton spectrum has been carried out by Glauber

1 ]

et al.
pe

1· ] The results are shown in Fig. 8 by the solid
lines. A Gaussian wave function was used for the deu-
teron'-12-'. The cross sections for pp and np scattering
were assumed identical. As can be seen from Fig. 8,
good agreement of the theoretical and experimental dis-
tributions was obtained.

The size of the right-hand peak in Fig. 8, and also the
location and magnitude of the minimum between the
peaks, are sensitive to the parameters of the amplitude
for scattering by the neutron and could show its differ-
ence from the pp-scattering amplitude. One of the con-
clusions which are drawn by Glauber et a l . ^ 2 9 a ] is just
that the pp and pn scattering amplitudes at 19.2 BeV/c

agree within the experimental accuracy .

An important point in discussion of inelastic scatter-
ing is the choice of the complete system of functions
describing the neutron and proton produced in breakup
of the deuteron. Glauber et al.'-29^' chose two systems:
plane waves (which corresponds exactly to the diagram
of Fig. 7) and functions in an oscillator well whose
parameters were chosen so that the Gaussian wave func-
tion of the deuteron described the ground state in this
well. The results agree with high accuracy, which evi-
dently indicates a low sensitivity to the choice of the
system of functions of the final slow proton and neutron
and permits us to hope that the theoretical calculation is
reliable.

Among the other conclusions of Glauber et al. t 2 9 a- 1 we
note the following: within the experimental accuracy
there is no need to consider that the ratio Re f/Im f for
the pp- and pn-scattering amplitudes changes with mo-
mentum transfer; for the energies and momentum trans-
fers considered, the contribution of processes with
intermediate inelastic channels amounts to no more than
20%.

Improvement of the experimental data will permit
more accurate conclusions to be drawn regarding the pn
scattering amplitude and the angular dependence of the
ratio of the real and imaginary parts of the amplitude.

Recently a paper by Amaldi et al.1-2 -1 has appeared
in which the spectra have been measured of protons
scattered by deuterons at angles from 13 to 107 mrad
(the initial momentum was 24.0 BeV/c). Quasielastic
(single) and double scattering peaks were clearly ob-
served. The cross section for elastic pd scattering was
measured separately for values of |t | from 0.6 to
1.8 (BeV/c)2. It agrees beautifully with the Glauber
theory and gives about 1/3 of the integral of the cross
section under the right-hand peak in the scattered-proton
spectrum (the locations of the double-scattering peak
and the peak from elastic pd scattering coincide kine-
matically). The authors extract from the set of data the
differential cross section for elastic pn scattering for | t |
from 0.1 to 5.8 (BeV/c)2. Within experimental error it
agrees with the differential cross section for elastic pp
scattering.

6. INELASTIC SCREENING

The Glauber theory directly takes into account only
elastic rescattering by nucleons, it being assumed that
if the incident particle goes into any excited state (for
example, a many-particle state), it is knocked out of the
beam. However, at high energies inelastic rescattering
is possible: diffraction excitation of the particle occurs
in the first nucleon and a shower is produced which then
is absorbed by the second nucleon (Fig. 9). Inelastic re-
scatterings have been discussed by several authors1-30"33-1.
This effect can be observed only at rather high energies.
One nucleon cannot absorb a momentum greater than the
average momentum in the deuteron state q2 ~ ( R 2 ) ,
since in this case the probability that the deuteron not
break up is small (in other words, the form factor drops
sharply for q2 > (R~2))· On the other hand, the minimum
momentum which the incident particle must transfer in
order to be excited to a state with mass w is

Xw = (υ? _ μψ/iE',

where μ and Ε are the mass and energy of the incident
particle in the laboratory system. Therefore inelastic
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FIG. 9. Feynman diagrams describing elastic scattering by a deu-
teron: a) single scattering, b) elastic double rescattering, c) rescattering
with formation of particles in an intermediate state.

screening associated with the virtual formation of a par-
ticle with mass w is important for

For example, if the incident particle is a π meson and
the virtual particle is a p meson, then inelastic screen-
ing can in principle begin to be felt already at energies
of several BeV. For a quantitative estimate of inelastic
screening, data are necessary on the inelastic interac-
tions with nucleons, in particular, on the average phase
shift of the amplitude for production of virtual particles.
If we assume that, as in the elastic case, this amplitude
is pure imaginary, we obtain the simple result [ 3 3 : l :

Δ = 2 f ρ (4τ) (da/dx) dx;

here, in contrast to Eq. (3), άσ/άτ is the total cross sec-
tion for all interactions of the incident particle with
transfer to the nucleon of momentum q, q2 = T:

Recently the idea has been advanced (see, for exam-
ple, the work of Ter-Martirosyan^4·1) that inelastic
processes at high energies can be separated into two
main groups. The first group consists of processes in
which each of the colliding particles transfers with
small momentum transfer to a state with a small mass
(in comparison with the energy). These processes, often
called quasielastic, are in many respects analogous to
elastic scattering, especially in cases where excitation
of the particles occurs without change of the quantum
numbers and can be due to exchange of a vacuum Regge
pole. Here the differential cross section has a diffrac-
tion nature with a clearly expressed exponential peak at
τ = τψ. It is natural to suggest that the amplitude of this
diffraction excitation is pure imaginary, although direct
measurement of the amplitude phase shift is impossible.
However, the main contribution to the total inelastic
cross section is apparently from processes belonging to
the second group, in which the momenta of the particles
produced are distributed uniformly (processes of the
"comb" type). Nevertheless the main contribution to
screening of nucleons is from elastic and inelastic dif-
fraction processes, since, in contrast to comb processes,
they are concentrated almost completely in the region of
small τ.

In order to estimate the contribution of diffraction in-
elastic processes to the cross-section defect, we will
substitute into Eq. (11) the form factor in exponential
form and the cross section in the form

dofdx= \ dw A {w) σ (w) exp [ — A(W)(T — ι (12)

where Jdw σ (w) = σ ^ is the combined cross section for
all diffraction processes of interaction of the incident
particle with a nucleon in which the nucleon is not ex-
cited. As a result,

FIG. 10. a) Reggeon mechanism of particle production at high
energies; b) reggeon diagram for interaction of a particle with a deuteron
at ultrahigh energies [ 4 1 ] .

where A is the average value of the slope in the inelastic
cross section. The exponential under the integral sign,
naturally, cuts off the integral over w.

The effect of inelastic screening in scattering by deu-
terons has been evaluated numerically in several
papers L 3 2 ' 3 5 > 3 e : i (for pd scattering) and by Gurvits and
Marinov1-37-1 (for πά scattering). Pumplin and Ross1-32-1

directly utilized data1-38-1 obtained by detection of protons
in the reaction ρ + ρ — ρ + X. If the inelastic reaction
for small τ is completely described by the diffraction
mechanism, the contribution due to it to Δ at an energy
of 30 BeV can reach 30% of the elastic contribution. The
effect of inelastic screening in pd scattering was calcula-
ted subsequently by Anisovich et al.'-35-' These authors
used another method of extrapolating the data on the in-
elastic cross section to the region of large w, and also
used newer experimental data. Their result is that in-
elastic screening amounts to 25—30% of the elastic
screening in the energy interval 15—30 BeV, and changes
little in this interval. Kaidalov and Kondratyuk'-36^1, in
calculation of inelastic screening, utilized the quantita-
tive evaluations of the contributions of various mechan-
isms to the total cross section obtained by Kaidalov^9-1

on the basis of analysis of the experimental data'-38] by
means of the theory of complex angular momenta. If we
assume that diffraction excitation is described by ex-
change of a vacuum pole (Fig. 10a), we can extrapolate
the data on the reaction ρ + ρ — ρ + X for small τ and
w < 2 BeV to the high-energy region. As a result for
k = 20 BeV/c for proton scattering the contribution of
diffraction excitation to the cross-section defect Δι
amounts to ~ 12% of the elastic contribution Aej. This
ratio slowly rises with increasing energy, as a result of
decrease in T W for fixed w, reaching ~ 16% at
k ~ 100 BeV/c. We note again that when data on the
probability of inelastic processes are used to estimate
the value of Δ!, the amplitude of the reaction ρ + ρ — ρ
+ X is assumed to be pure imaginary.

In regard to processes of the comb type, there is as
yet no way in which the average phase of the production
amplitude can be predicted. The corresponding contri-
bution to the screening Δ2 can be negative if the average
phase shift is small and can be maximal if the amplitude
is pure imaginary (this, however, is very doubtful). In
the latter case Δ2 can be of the order of Aej. Kaidalov
and KondratyukC36] noted also that Δ2 ~ <R~3>, and not
^R~2) as for the Glauber term, and also for Δι. This is
explained by the fact that the cross section for a process
of the comb type is distributed almost uniformly over
the entire region of secondary masses w, and therefore
the cutoff of the deuteron form factor is important both
in the transverse and longitudinal components of the mo-
mentum transfer.

Gurvits and Marinov1-37^ used data on the τΓρ interac-
tion obtained with the large hydrogen bubble chamber at
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CERN1-40^ to estimate the effect of inelastic screening
in 7rd scattering. For k = 16 BeV/c these authors found
partial cross sections for processes of the form
π'ρ — ρτΓ + πιπ (m = 0, ..., 5) and distributions in mo-
mentum transfer to the proton d a m / d r which have a
clearly expressed exponential peak forward. The integ-
ral in Eq. (12) was replaced by a summation over the
number of π mesons m. The process π~ρ — pir'tr'v* can
occur by a diffraction mechanism, has a large value of
the product of the slope by the cross section, and gives
the principal contribution to inelastic screening. Alto-
gether at 16 BeV/c Δ = Δθι + Δι « 2 mb (Δβ 1 = 1.4 mb).
The necessary data on inelastic πρ interactions at higher
energies do not yet exist, and therefore there is at pres-
ent no possibility of interpreting the data obtained at
Serpukhov on the value of Δ for energies up to 60 BeV.

Some arguments relating to the energy dependence of
Δ have been given by Kancheli and Matinyan [ 4 1 ]. These
authors suggested that the amplitude for interaction of
the incident particle with two nucleons in the deuteron is
described by a diagram of the form of Fig. 10b. If the
duality hypothesis is valid, the scattering of a reggeon
by a particle on the average is satisfactorily described
by single reggeon exchange also for not very large en-
ergies w. Since only the integral over w enters into the
result, in considering the various reggeons we can in-
vestigate the asymptote of Δ. The authors reached the
conclusion that there is a logarithmic variation of Δ
which possibly reaches a maximum at an energy of the
order of several tens of BeV.

In conclusion we should note that the rather accurate
experimental determination of the value of Δ can become
a valuable source of information on the inelastic interac-
tion of the incident particle with a nucleon, and in par-
ticular on the relation of the different mechanisms for
particle production and on the average phase shift of the
production amplitudes.

7. BASIC ASSUMPTIONS AND ACCURACY OF
THE GLAUBER THEORY

In conclusion we will dwell briefly on the basic as-
sumptions and initial relations of the Glauber theory.
In this way we will obtain an idea of the theoretical ac-
curacy of the results and also of what kind of questions
can be answered by more accurate measurements.

The Glauber theory of interaction of high-energy par-
ticles with nuclei i-1"^ is based on an analogy with the
propagation of light in a nonuniform medium. It is as-
sumed that the energy of the particle is so large that its
wavelength is small in comparison with the radius of
interaction of the particle with a nucleon, which will
subsequently be denoted by r^j (r|j ~ A). Here a large
number of partial waves contribute to the amplitude of
interaction with the nucleon, and scattering by the
nucleon occurs mainly at small angles. Only processes
with small energy and momentum transfer are dis-
cussed: Ak/k < 1, ΔΕ/Ε <S 1.

The principal assumptions of the theory are as fol-
lows:

a) It is assumed that during the time of interaction of
the incident high-energy particle with the nuclear sys-
tem, the nucleons in it are at rest (the nucleons are
frozen), i.e., v^/v <§C 1, where ν is the velocity of the
particle and vN is the characteristic velocity of the
nucleons in the nucleus.

b) Deviations from geometrical optics are neglected,
i.e., it is assumed that the particle is propagated through
the nucleus along a straight line. This requires that the
condition kr|[ > R b e satisfied, where k is the incident-
particle momentum and R is the nuclear radius.

c) The transfer of longitudinal momentum is neglec-
ted, which is satisfactory only in scattering by very
small angles. This assumption is not fundamental.
Equations can be obtained which take into account also
the longitudinal momentum transfer, but they are un-
wieldy and it is difficult to work with them.

d) A collision between the incident particle and an
intranuclear nucleon is assumed to be the same as if the
nucleon were free.

e) The phase additivity rule is assumed valid: the
phase shift of a wave describing a particle passing
through the nucleus is equal simply to the sum of the
phase shifts at the individual nucleons. This rule is
based on analogy with optics and quasiclassical theory
and clearly cannot be exact. It is violated, for example,
in the inclusion of inelastic processes in the intermed-
iate state (see Chapter 6) and of three-particle forces.

If the incident-particle energy is not very high (up to
several BeV) and we can neglect inelastic processes in
the intermediate state, then Eq. (1) is obtained also from
the relativistically covariant formalism in discussion of
the Feynman diagrams of Fig. 9b [ 3 0 ' 3 1 ' 3 3^. For small
momentum transfers the integration over the zero com-
ponents of the momenta in the expression for the dia-
gram of Fig. 9b is easily carried out, after which we
obtain the equation (for simplicity it is written out for
forward scattering)

> + (Elm) - + 2qq,) - ίη
dq dqs, (13)

here Ε is the total energy of the incident particle, q is
the momentum of the nucleon in which the first collision
occurs in the system in which the deuteron is at rest,
qi is the momentum transferred in the first collision,
m is the nucleon mass, q>(q) is the deuteron wave func-
tion in the momentum representation, fn and fp are the
amplitudes for scattering by the neutron and proton,
which are, generally speaking, taken off the mass shell.
(We note that Eq. (13) is derived particularly simply if
the nuclear diagram technique is used^42-1.)

The Glauber result is obtained if the propagator of the
fast particle between collisions, which occurs in the de-
nominator of the integrand of Eq. (13), is reduced to an
eikonal form. For this purpose it is necessary to neglect
small terms (E/m)(2qi + q2 + 2qqii) and q2 in comparison
with 2kq. The first of these terms corresponds to the
nucleon recoil in virtual scattering, and its rejection is
equivalent to the assumption of frozen nucleons. Dis-
carding the q2 term corresponds to the transition to
geometrical optics in discussing the motion of the par-
ticle inside the nucleus. The remaining eikonal propaga-
tor of the form (2kq + ίη)~ι allows the fast particle to
move only in a straight line. If we further neglect the
dependence on the virtual amplitudes fn and fp off the
mass shell and the contribution to Eq. (13) of the integ-
ral in the sense of the principal value (i.e., if we limit
ourselves to subtraction in the pole of the propagator),
a result identical with Eq. (8) is obtained.

Estimates of the accuracy of Eq. (8) show the follow-
ing. If we use the eikonal form of the fast-particle
propagator, there are firm bases for assuming that the
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FIG. 11. Feynman diagram correspond-
ing to the process with virtual rescattering
of the nucleons.

effects of going off the energy shell and treating the in-
tegral in the sense of a principal value are compensated
by the contribution of multiple scattering1-43~45·1. Taking
into account the nonstraightness of the particle path
leads to corrections of the order 10—20% in the double-
scattering term for energies in the vicinity of
1 BeV1·46'48-1. The correction rapidly goes to zero with
increasing energy. Effects due to inclusion of nucleon
recoil and virtual rescattering of nucleons (see the dia-
gram of Fig. 11) have been discussed in detail by us
previously t 4 8 ' 4 9 j . Inclusion of nucleon recoil leads to a
correction of the order 10—20% (in the same direction as
the deviation from geometrical optics), which does not
decrease with increasing energy. It is interesting that
the contribution from recoil effects is related in a sim-
ple way to the contribution from nucleon-rescattering
effects. Furthermore, if we leave only those diagrams
of the type shown in Fig. 11 in which scattering of the
incident particle occurs by different particles (i.e., first
by a neutron and then by a proton or the reverse), the
corrections from recoil and rescattering effects are
completely compensated for zero momentum transfer.
In this case there remain only the corrections due to
double scattering of the incident particle by the same
particle (i.e., twice by the neutron or twice by the pro-
ton). For πd and pd scattering at small angles in the
region 500—800 MeV, all of the corrections indicated
above compensate each other practically completely.
This apparently explains the success of the Glauber
theory even at these low energies.

As follows from the results of Kolybasov and
Kondratyuk , the corrections to the double-scattering
amplitude lead to corrections of the following order in
the observed quantities:

1) for the total cross sections the corrections are
~ α/kR, a/mR, l/(kR)2, l/(mR)2, where k is the incident-
particle momentum, R is the deuteron radius, and a is
the ratio of the real part of the amplitude for scattering
of the incident particle by the nucleon to the imaginary
part;

2) in addition, for the elastic-scattering differential
cross sections for momentum transfers τ ^ R~2, the
corrections are also of the order (rR/l6m) 2, (rR/8k)2,
(r/l6m2)2 (see also ref. 50);

3) the most appreciable corrections, ~ 1/kR, 1/mR,
must be expected in the polarization effects which are
determined by the interference of the real and imaginary
parts of the amplitude.

In conclusion the authors express their gratitude to
I. S. Shapiro for discussion of the material of the review.

APPENDIX

THE GLAUBER FORMULA WITH INCLUSION
OF CHARGE EXCHANGE AND THE REAL PART
OF THE ELASTIC SCATTERING AMPLITUDE

We present here equations for the cross-section de-
fect Δ which replace Eq. (2) in the case where the differ-

ence in the proton and neutron cross sections, the effect
of charge exchange, and also the departure of the elastic-
scattering amplitude phase shift from 90° must be taken
into account. The charge-exchange effect was first dis-
cussed by Wilkin'•"•'. The real part of the amplitude is
easy to take into account by proceeding from Eq. (8);
this result is contained in the first paper by Glauber1-1-1.

1. The incident particle has isospin 1/2 (nucleon,
antinucleon, Κ meson). The charge-exchange amplitude
is expressed in terms of the difference of the elastic
amplitudes, for example:

/ {K-p -* K«n) = f (K-n — K'n) - f (Κ~ρ -+ K~p). (A.I)

Substituting this expression into the term corresponding
to charge exchange in an equation similar to Eq. (8), we
obtain

2) {2apon (1_αραη)-(1/2) [σ*(1-α·) (Α.2)

where σ β and σ η are the total cross sections for inter-
action of the incident particle with the proton and neu-
tron, a p n = Re f p n / l m fpn for τ = 0.

2. The incident particle has isospin 1 (π meson).
Instead of Eqs. (A.I) and (A.2) we have

/ (jrp -* JtOn) = (1/1/2) [/ (π-η -+ jrit) — / (it"p -• n-p)].

The corrections to Eq. (2) due to the charge-exchange
effect are of the order p 2, where ρ = (σρ - ση)/σρ (if we
neglect the unknown quantity «p— a n ) . The value of ρ
can be found comparatively accurately for π" mesons
(since σ(π*η) = σ(π*ρ)), and also for neutrons from the
data of neutron experiments. For other particles it is
necessary in calculation of ρ to use the theoretical
formula for the Glauber correction

P » ( ) — 2 + (4n)-i CH-2> σ ρ (1—ρ (A.3)

For ir~ mesons ρ « 0.3 at k = 5 BeV/c and falls off slowly
with increasing k, so that for k > 10 BeV/c ρ < 0.1. For
protons |p | < 0.05 at k > 4 BeV/c. An evaluation by
means of Eq. (A.3) gives \p\ < 0.1 for Κ mesons for
momenta exceeding several BeV/c.

The corrections due to the quantity a are roughly of
the same scale. For protons the value of a2 is maximal
for k ~ 5 BeV/c and then falls off slowly with increasing
energy. For high energies <y2 is in general small for all
particles. This quantity takes on its largest value for
K+p scattering: for k ~ 10 BeV/c a2 m 0.16 (see, for ex-
ample, ref. 52 and also the report by Giacomelli^53-1).

"it should be noted that the experimental accuracy of the inequality
σ(ρρ) = σ(ρη) for energies up to 30 BeV where it has been measured is
1 — 1.5 mb (the value of Δ for pd scattering is 3-3.5 mb). The errors in
the quantity <R'2> in Fig. 1 do not take into acocunt the possible dif-
ference σ(ρρ)-σ(ρη) for k > 30 BeV/c.

2)The value of the parameter A in Eq. (5) is given in the table for various
processes (for example, see the review article by Lasinski et al. [ "]) .
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