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A survey of the present state of the theory of rotational Brownian motion is given. Chap-
ters 1 and 2 expound the theory of rotational diffusion and the solution of the problem of
rotational random walks. The probability distributions for the orientations of Brownian
particles are written in terms of generalized spherical functions, which are matrix ele-
ments of irreducible representations of the rotation group. Methods are discussed for the
experimental determination of the nature of Brownian rotation by the use of nuclear mag-
netic resonance, dielectric relaxation, and the Rayleigh scattering of light. Chapter 3
gives an exposition of generalized rotational diffusion, taking account of inertial effects
in the Brownian motion. The influence of inertial effects on dielectric magnetic relaxa-
tion and on the scattering of light is discussed. The conclusion of the review gives a dis-
cussion of precession effects in Brownian motion.
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INTRODUCTION

The theory of Brownian motion, beginning with the
papers of Einstein and of Smoluchowski,1-1-1 is one of the
important fields of modern physics. Recently there has
been intensive study of rotational Brownian motion, owing
to the important part it plays in the interpretation of such
phenomena as nuclear magnetic resonance (NMR) and
electron paramagnetic resonance (EPR), of Rayleigh and
Raman scattering, of the infrared absorption of light, of
dielectric relaxation, and so on.

The purpose of the present review is to present the
results of theoretical researches on rotational Brownian
motion and to give a general idea of the most promising
lines of development in this field. There have been no
such papers in the Soviet literature since Frenkel's
classic work,1-2-1 and the existing reviews in foreign
literature are by no means complete.

The present review consists of four chapters. The
first chapter is devoted to the theory of rotational diffu-
sion; historically this is the first theory of rotational
Brownian motion, its sources going back to papers of
Debyec 3-1 and Perrin.1-4^ Following Favro,-5-1 we give a
derivation of the equation of rotational diffusion. Its so-
lution in the now generally accepted form, a series of
generalized spherical functions, is given in accordance
with1-6"8-1. The connection between the rotational-diffu-
sion tensor and the friction tensor is established by
Einstein's method (cf.1-5-1). The second chapter contains
the solution of the problem of rotational random
walk,1-9'1"3 which has marked a new stage in the study of
Brownian motion. In addition we discuss, on the basis of
a criterion we have given (cf. [ 9 > l i : i ), the results Of[12'13:i

on the determination of the character of the Brownian
rotation of molecules. Steele's theory'-14-' of rotational
Brownian motion with inclusion of inertial effects, and
its applications to NMR and to dielectric relaxation, are
considered in the third chapter. Here also, referring to
papers by McClung and D. Kivelson1-15·1 and by D. Kivel-
son, M. Kivelson, and Oppenheim,'-16-' we discuss pre-
cession effects and their role in EPR. The experimental

papers included in this review and directly connected
with the fundamental theoretical problems of Brownian
motion cannot, of course, claim completeness. In view
of the basic purpose of the survey, the authors have not
tried to give any profound idea of the level of experimen-
tal research in this field. The present state of such re-
search is reflected in excellent monographs by
Abragam,11173 Fabelinskii,Cl8] and ShakhparonovCl9] and
in the reports of All-Union Conferences.C20"22^

1. ROTATIONAL DIFFUSION

a) The diffusion equation. We begin the study of rota-
tional Brownian motion with the derivation of the equa-
tion of rotational diffusion for particles (molecules) with
three rotational degrees of freedom. In specifying the
orientation of the molecule one introduces a molecular,
or movable, coordinate system (x, y, z) rigidly connected
with the molecule. The orientation of the molecule, char-
acterized by the rotation of the movable system (x, y, z)
relative to the laboratory system (Χ, Υ, Ζ), can be speci-
fied: 1) by the Euler angles φ , θ, ψ, 2) by the rotation
matrix g(<p, θ, φ), and 3) by the rotation vector Ω (its
absolute value |ίϊ| is equal to the angle of rotation, and
its direction is that of the axis of rotation). Besides
these there are, of course, other ways of specifying
orientations. For example, Furry*· used quaternions
for this purpose, and Favro1-5-' used Cayley-Klein param-
eters. The first three methods, however, have proved
most suitable in the theory of Brownian motion,l-e"8-1

since they permit direct use of the well-developed ap-
paratus of the theory of representations of the rotation
group. We further note that molecular rotations giving
changes from one orientation to another are specified
analogously.

A fundamental role in the theory of rotational Brown-
ian motion is played by the distribution p(e, At)d3e, which
gives the probability of a rotation with vector e in the
range (c, ί + dc) during the time At. Brownian motion of
the type of free rotational diffusion occurs for the follow-
ing assumptions regarding p(e, At): 1) p(e, At) does not

Sov. Phys.-Usp., Vol. 16, No. 1, July-August 1973 Copyright © 1974 American Institute of Physics



depend on the orientation which the molecule had before
the beginning of the rotation; 2) p(e, At) = p(—e, At);
3) /p(c, At)ej€,d3e is proportional to At; 4) there exists
a small time interval At such that all moments of the
distribution p(c, At) higher than the second can be
neglected. The first and second conditions are obviously
satisfied if there are no external fields and the only
torques acting on the molecule are random moments of
forces caused by the interaction with surrounding mole-
cules in a uniform medium.

With these assumptions about p(c, At) we shall carry
out the derivation of the equation of rotational diffusion,
following Favro.'-5·1 Let Ρ(Ω, t) be the required probabil-
ity that the orientation of the molecule at time t belongs
to the invariant volume element dv = Γ ~ ^ 3 Ω , where Γ " 1

= 4 sin2 (Q/2)/n2.t2il It is more natural, however, to
consider first the distribution W(O, t)d3fi, which gives
the probability that the orientation of the molecule at
time t belongs to the volume element d3n (d3i2 is not in-
variant under rotations). The connection between Ρ(Ω, t)
and W(O, t) is obvious:

Ρ (Ω, ή = TW (Ω, ί). (1.1)

Starting from the law of multiplication of the probabil-
ities of independent events, we find

W(Q, t + Δί) d3Q = [<P&p (ε, Δί) W (Ω ο , t) <23ΩΟ, ( Ι · 2 )

where the range of fi0 includes only those orientations
which lead to the orientation Ω after the rotation e. We
shall take Eq. (1.2) in the molecular (movable) coordin-
ate system (x, y, z). Changing from W(O, t) to P(fi, t),
we have from (1.2)

Ρ (Ω, t + Δί) (ΡΩ0 = f d3ep (ε, Δί) Ρ (Ωο, ί) ά*Ω0. (Ι·3)

As a function over the group, the distribution of orienta-
tions at time t transforms on passage from Ω to β 0 ac-
cording to the relation1-25-1

Ρ (Ω ο , t) £>Q = exp (ίεΜ) Ρ (Ω, t) <PQ, (1.4)

where Mj (i = x, y, z) are infinitesimal operators which
are the same as the quantum-mechanical angular-mo-
mentum operators. Thus it follows from (1.3) that

Ρ (Ω, t + Δί) = f ά3ερ (ε, Δί) exp (ίεΜ) Ρ (Ω, ί). (1.5)

Expanding exp(i€ · Μ) in powers of e; and keeping terms
up to and including the second powers, and also expand-
ing Ρ(Ω, t + At) on the left side of the equation in powers
of At and using the expression linear in At, we get

where

dP (Ω, t)ldt =*—MjDihMkP (Ο, ί),

Dih = Γ d»e ejEhp (ε, Δί)/2Δί.

(1.6)

(1.7)

Equation (1.6) is the desired equation of rotational diffu-
sion; the set of quantities Ό^ is, by definition, the rota-
tional diffusion tensor of the molecule. According to
(1.7), the tensor D ^ is symmetric; like every symme-
tric second-rank tensor, it can be transformed to prin-
cipal axes.

It is easily verified that the form of the equation of
rotational diffusion for the orientation distribution Ρ is
independent of the way the orientation of the molecule is
described. In particular, if the orientation is specified
not by the vector Ω but by the Euler angles φ, θ, ψ, the
equation for Ρ(φ, θ, φ) is still of the form (1.6). The ex-
plicit expressions for.the infinitesimal operators M^ of

course depend on the particular parametrization of the
orientations.

In some practically important cases the equation (1.6)
can be given a simpler form. In the case when the rota-
tional diffusion tensor is diagonal (D·^ = ϋδ·^) we have1-6-1

·^
dP/dt^D&P, (1.8)

With the appropriate change of form of the operator Δ
Eq. (1.8) will also hold for particles with two rotational
degrees of freedom, for example for diatomic molecules.
We write the required expression for Δ, taking the
spherical coordinates © and Φ as the parameters fixing
the orientation of such a particle1-26-1

In analogy with translational diffusion we can intro-
duce a probability current density for rotational diffusion
in the space of orientations Ω . To do so we consider a
small area dA perpendicular to the direction of the Ωι
axis and with the coordinates (Ωι, Ω2, Ω 3 ) . We count how
many molecules in the orientation space pass through dA
in the time At in the positive direction of Ωι. Consider a
particular rotation e. The molecules that have come
through dA by executing the rotation e differ from each
other by the values of the "path" ae (0 < a < 1) trav-
ersed from the beginning of the rotation to the area dA.
Let us select the molecules with values of a in the range
(a, a + da). This part of the molecules passing through
dA fills a parallelopiped with base dA and lateral vector-
edge denoted by ΔΩ. For the projection of ΔΩ along the
axis Ωι (i.e., for the altitude of the parallelepiped) we
have

ΔΩ, = —ida. (εΜ) Ω , . (1.11)

From this we find the invariant volume of the parallele-
piped:

dv = Γ-> dHl = Γ " 1 dA da. (-ίεΜ) Ω , . (1.12)

Let the volume dv correspond, before the rotation e, to
the volume dv' at the point β'. Obviously dv contains the
number of molecules that was in dv', so that

Ρ (Ω', ί) dv' = exp (ίαεΜ) Ρ (Ω, t) dv. ( I · 1 3 )

The total number of molecules is of course to be taken
equal to unity. The number of molecules that have exe-
cuted the rotation and passed through dA in the time At is

ρ (ε, daT-1dA(-ieM)Qlexp(iasM) P(ii, t). (1.14)

The total number of molecules that have passed through
dA in the time At is obtained by integrating over all c.
Dividing the result of the integration by AtdA and using
only the terms linear in At, we get the desired expres-
sion for the probability current density:

, = Γ" 1 (MtQ,) DJhMhP (Ω, t) = O, t),

where

(1.15)

(1.16)

The diffusion equation (1.6) can now be written in
terms of J L In fact using (1.6) and (1.15), we find

dPIdt = -TdtJi, (1-17)

where 9i<Ji is the divergence of the current density,

b) The Green's function of the equation of rotational
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diffusion. The Green's function ΰ(φ, θ, ψ; φο, θ0, ψ ο, t)
= G(g, go, t) of the rotational diffusion equation (1.6) can
be introduced in the usual way.'·27-' G(g, go, t)dg is the
probability that the orientation of the molecule at time t
is in the element dg = sin θ άφ άθ άψ if at time t = 0 the
orientation was g0. The solution P(g, t) of the rotational
diffusion equation (1.6) for a given initial distribution of
orientations P(go, 0+) can be obtained from the Green's
function as follows:

Ρ (g, t) = 0+) G (g, g0, t) dgc. (1.18)

The Green's function G(g, go, t) was found by Favro.1-5-1

Ιη [ 6 " β : ι G(g, go, t) is obtained in terms of the generalized
spherical functions τ' (g), which are matrix elements
of irreducible representations of the rotation group. The
use of these functions in practical calculations is a great
advantage, because of the orthogonality relations for the
Tm n(g) over the rotation group. Following1-6"8-1, we
represent the desired Green's function as an expansion
in the eigenfunctions of the operator M.D.kMk, taking

the axes of the molecular coordinate system along the
principal axes of the tensor D., :

= Ζ>νψν (1.19)

G (g, go, t) = Σ Cv (t) Ψν. (1.20)

Substituting (1.20) in (1.6) and using (1.19), we get

acjdt = — cj)v, cv («) = Λτ,β-'ν'1. (1-21)

The constant N^ is determined from the initial condition

G(g, go, 0) = 6(g-g0), ΛΓν = Ψί(£0)- (1.22)

Accordingly,

G(g, go, O = |^teo)'Pvte)e-D-"1. (1.23)

It is easily seen that with the replacement D-k — Κ2,Π /̂2

the operator M;D;kMk becomes identical with the Hamil-

tonian for a top with the inertia tensor <Lk. Therefore

the Ψ in (1.23) are the orthonormal wave functions of
the quantum-mechanical top, and the D,, are obtained
from the energy eigenvalues of the top by the indicated
replacement. For Di = D2, i.e., when the quantum-mech-
anical analog is a symmetric top, we have for Ou and *„
the exact solution1-28'293

-D,)n*, (1.24)

— Z<m, n<Z. (1.25)

Accordingly,

G(g, go, 0 = Σ № + i)W]Tl

mn(go)Tl

mn(g)*eip(-D>mn\t\). (1-26)
Imn

In the case when all three principal values of the rota-
tional diffusion tensor are different, i.e., when the quan-
tum-mechanical analog is an asymmetric top, we can ob-
tain an approximate solution by a perturbation- theory
method.1-28'293 In applications one needs the expressions
for Φ^ and D with I = 2, - 2 < m, η < 2.

We write them out:

Dl^i = 3 (D + D2), <FLi = (5/16π2)1/2 (T2

ml - 7 t_i) ,
2 Ϊ i/2 (T2

mi + T2

m-t),

= 6D - 2gD, Ψί2 = (5/16π 2) 1 / 2 [(cJ4gD)) 1 1 2 (Γ™

Here Di, D2, D3 are the principal values of the tensor
Dj k; 3D = S D J J ; gjj is the anisotropy factor of the ten-

j .
sor D. k: gD = (D| + D2 + D3 - DiD2 - DaE^ - D3Di) ;
c t = 2gD ± 3(D3 - Di). Solutions of the rotational diffusion
equation in the form (1.18) with arbitrary initial condi-
tions are as a rule not encountered in practical calcula-
tions. However, the Green's function is of fundamental
importance; by means of it one can calculate correlation
functions. For example, if we have a random function of
time F(g(t)), whose random nature comes from the ran-
dom dependence of the orientation of a molecule on the
time t, its correlation function K(t) can be calculated
from the formula

Κ (t) = ( 1 (go) G (g, g0, t) dg dg0; (1.28)

here it is assumed that the initial orientations g0 at t = 0
are equally probable; the bar denotes the complex conju-
gate.

c) The rotational diffusion tensor. The rotational dif-
fusion tensor defined by (1.7) is connected with the tensor
coefficient of the viscous forces acting on the rotating
molecule. This connection can be established by the me-
thod of Einstein1-^ in analogy with translational diffu-

sion.
[ 5 ]

Suppose the molecule is acted on by a weak external
torque given by the potential φ(Ω):

Ν(Ω) = ;Μφ(Ω). (1.29)

A stationary distribution of orientations of the molecule
is established in accordance with the Boltzmann law:

P">' (Ω) = c exp (—ψ/kT). (1.30)

Under stationary conditions the angular velocity u>o

of the molecule as a function of its orientation can be
determined from the stochastic equations of motion

Ι·ω + ω χ (Ι·ω) = ίΛ/φ (Ω) — | · ω , (1.31)

where the dot denotes the inner product of a tensor and
a vector,'-30-1 ξ^ is the viscous friction tensor, and Ij· is
the moment of inertia tensor. Assuming that the angular
velocity is sufficiently small, we neglect the second term
on the left in Eq. (1.31). We also assume that φ changes
weakly with change of Ω . The solution then has the form

ω = exp (-I e»o + i II - exp (-Γ'ξί)] (Ω).

In the limit of large t (Γ'ξΙ > 1) we get

ω» = ίξ-'Μφ.

For the rate of change of orientation Ω we then find

Ω = — ίω«ΜΩ.

The current density JyP' caused by the presence of
the potential φ is given by

4Φ) = W (Ω) Ω, = Γ-·/» (Ω) (ξϊ/Λ/,φ) (Μ,Ω,).

Combining J ^ ) and the diffusion current (1.15), we get
the expression for the total current:

/, = Γ"» (Mtii,) (DtJMjP + PUMff).

Under stationary conditions, when Ρ has the form (1.30),
we find

J\"> = Γ"1 (Λί,Ω,) (Du-kTlil) MjP"·'. (1-32)

Since the probability distribution for the orientation does
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not depend on the time, we obtain from (1.17) and (1.32)

dJ\niai = Mt φ,,-knxt) MiP"' = o.

From this there follows the required relation between

d) The friction coefficient and the intertnolecular
interaction. The calculation of the friction coefficient ξ

ij
is an extremely complicated problem, still not com-
pletely solved. In Debye's theory of dielectric relaxa-
tion1-3'31'32-1 the friction coefficient for spherical mole-
cules was calculated on the basis of a hydrodynamical
model. This means that the rotational motion of a mole-
cule was treated like the rotation of a macroscopic
sphere in a continuous viscous medium. The friction
coefficient was then found to be isotropic and given by

I = πηίί3, (1.33)

where η is the viscosity of the liquid and d is the diam-
eter of the molecule. If we measure the diffusion coeffi-
cient, and consequently the friction coefficient ξ , then
from (1.33) we can determine the radius of a molecule.
In the majority of liquids the molecular radii so found
are much smaller than the true molecular radii. It is
quite obvious that the source of this discrepancy cannot
be ascribed to a solvation effect.

In a number of papers [ 3 3"3 5 ; l the attempt was made to
improve the relation (1.33) by taking into account the
shape of the molecule. In particular, for ellipsoidal
molecules the friction tensor

1-38-1

.. was calculated from

formulas of Edwards,1-38-1 derived from a treatment of
the rotation of a macroscopic ellipsoid in a continuous
medium. However, these calculations did not lead to any
successful explanation of the discrepancy between actual
molecular radii and the values found from measured
values of the friction coefficient.

has developed a theory for the calculation
of the friction coefficient on a molecular-kinetic basis;
it is, however, limited to the treatment of molecules of
the spherical-top type, for which the principal values of
the inertia tensor are equal (Ij = I2 = I3 = I). For such
molecules the stochastic equations for the Brownian ro-
tation are

= ΛΓ(ί), (1.34)

where N(t) is the rapidly fluctuating part of the torque,
and

(N (i)> = 0, (N (t) Ν (t')> = / ( J V ) J ( i - f).

It is easy to show from (1.34) that the autocorrelation
functions of the angular velocity components are of the
form

<ω, (t) ω, (0)> = (kT/I) exp ( - ξ,ί//).

From this follows the relation

(1.35)

By using the Hamiltonian equations to express the angu-
lar velocity components a>j(t) in terms of the potential
energy V of the rotating molecule, Steele1-14·1 obtains an
important formula for the principal values ^ of the vis-
cous friction tensor:

Η = (21 In) (d*VldU). (1.36)

It follows from (1.36) that there exists no simple relation

of the form (1.33) between the friction coefficient and the
viscosity η of the liquid. The hydrodynamic model leads
to a scalar friction coefficient for spherical molecules,
while Eq. (1.36) indicates a tensor nature of the friction.
The size of the various components ξ ̂  of the tensor de-
pends strongly on the symmetry of the potential energy
V. In particular, if V does not depend on some rotation
component e ,̂ then the corresponding component of the
friction tensor is equal to zero. The case in which all or
several components of the friction tensor are close to
zero is of particular interest. We shall, however, leave
the detailed discussion of this case for Sec. 3. We
merely note that for small ξ̂  inertial effects begin to
play a large role in the rotational motion, and conse-
quently for small time intervals (£jt <C I) the rotational
diffusion equation in the form (1.6) is without meaning.

2 THE ROTATIONAL RANDOM-WALK PROBLEM

a) Formulation and solution of the problem. As is
well known, the classical problem of translational ran-
dom walk has been treated in the papers of Smoluchowski
(cf. ). The general solution of the problem of transla-
tional random walk, given by Markov^37-1 in 1924, was the
foundation of the branch of probability theory now called
Markov processes. The solution of the problem of rota-
tional random walk was not known, however. By using
the apparatus of the theory of representations of the ro-
tation group we have found this solution and indicated a
criterion for the experimental determination of the nature
of a rotational Brownian motion.

The problem of rotational random walk has two as-
pects: 1) the mathematical formulation and solution of
the problem, and 2) determination of the status and sig-
nificance of the problem in the theory of rotational
Brownian motion. We begin with the formulation and
solution of the problem. [ 9 > l o : l

Suppose a molecule executes Ν successive random
rotations, whose values are characterized by a distribu-
tion p(gi). The initial orientation of the molecule is re-
garded as given. It is required to determine P(g, N), the
distribution of orientations of the molecule at the end of
the N-th rotation. It is important to note that we shall
look for the solution of the problem on the assumption
that the distribution p(gi) for the values of the individual
rotations does not depend on the orientation of the mole-
cule.

It is easy to see that P(g, N) is connected with
P(g, Ν - 1), in analogy with Eq. (1.3), by the obvious re-
lation

Ρ (g, N) dg = ]" dgiP (<?,) P(k, Ν - 1) dk, (2.1)

where the integration goes over gi. In (2.1) k includes
only those orientations possessed by the molecule after
Ν — 1 rotations which give the orientation g after the
N-th rotation g1.

The transformation of the functions (over the group)
P(k, Ν - l)dg upon the rotation gi is accomplished by
means of the finite rotation operator T(gi):

Pig, Ν - 1) dg = Τ (gl) P(k, Ν - 1) dk. (2.2)

Using the fact that T~l(gi) = TJgl1), we get from (2.1) and
(2.2)

P(gi, N) dg = f dgi ρ (gi) Τ (g-1) Ρ (g, N—i)dg. (2.3)

We shall look for the solution of the system of integ-
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ral equations (2.3) in the form of a series in the general-
ized spherical functions:

* . * ) = Σ
I, m,

(2 ·4)
Substituting (2.4) in (2.3), we find recurrence relations
for determining the coefficients C m n :

CL (N) = 2 C'm (N-1) j ρ (gl) Tjm (g7') d?1, ( 2 · 5)

where we have used the transformation rule

(2.6)

We introduce the notation

flVft. (2-7)

Then the relations (2.5) can be written in matrix form:

C (N) = AfC (N — 1), (2.8)

where the superscript Τ denotes transposition. From
this we find

(2.9)

The matrix elements C' (0) can be found from the ex-
nin

pansion (2.4) for Ν = 0. In fact, since P(g, 0) = 6(g— go),
we have

^(g-g<s) = Hcl

mn(u)Tl

mn(g). (2.10)

Multiplying this by T ^ and integrating over the entire
group, on using the orthogonality relations

\ ΤΪ. (g) C (g) dg = [8π*/(2Ζ +1)] δ,,Α A». (2.11)

we get for Cl

mn:

(2.12)

Successive substitution of (2.12) in (2.9) and of (2.9) in
(2.4) gives

(2.13)

Since

owing to the unitarity of the irreducible representations
we finally get for P(g, N):

P(g, Â  = 2[(2i + l)/8n!!]Sp[7" (g-1) A?T' (g)]. ( 2 · 1 4 )

The result (2.14) is the exact solution of the rotational
random-walk problem.

Let us examine one important special case. Let the
torques acting on the molecule be such that rotations
through the same angle around different axes are equally
probable. If g is the matrix for one such rotation, then
the matrices for all the others are given by g' = h"lgh,
where h is an arbitrary element of the rotation group. It
follows that for go = e the probability distribution (2.14)
must satisfy the relation

Ρ (g, Λ0 = Ρ (h-igh, N). (2.14')

This is possible only if the operators Aj and T (̂h) com-
mute:

= T'(k)A,. (2.15)

By Shur's lemma an operator which commutes with all
the matrices of an irreducible representation is a multi-
ple of the unit operator, so that

A, = i.,E,. (2.16)

Taking the trace on both sides of (2.16) and using the
definition (2.7), we get a formula for calculating the co-
efficients λ :̂

λ, = (21 + Sp e« '" ρ (ε) d»e, (2.17)

where

Sp e·"» = sin 1(1 + V2) ε] [sin (ε/2)]"1. (2.18)

Thus for this special case Eq. (2.14) takes the form

P(g, Ar) = S[(2i + l)/8H2]XfSp[7"te-')7"te)], ( 2 - 1 9 )

where the λ, can be calculated from (2.17).

' The probability distribution p(e) of the individual r o -
tations is a character is t ic of the random-walk process
and is not calculated in the theory now being considered.

This distribution must either be postulated on the basis
of physical considerations, or calculated, for example by
the methods of statist ical mechanics. In1-9-1 we took a
rectangular distribution for p(e). Egelstaff1-38-1 takes for
p(e) the expression

ρ (e) = c sin (ε/2) exp (—ε· ε0), (2.20)

where e 0 is the mean angle of rotation; for e 0

^> 2exp(-7r/e0), c is of the form

c « 1/ 2(1 + (2/ε0)
2 (2.21)

The solution of the rotational random- walk problem
for particles with two orientational degrees of freedom
(for example, for diatomic molecules) requires special
consideration. The desired probability distribution for
the orientations of diatomic molecules is most easily
derived from (2.19) by the method of descent from three
degrees of freedom to two. Without dwelling on the de-
tails of the derivation, we give the final result. Let Φ
and © be the angles characterizing the orientation of a
diatomic molecule. Then for the distribution Ρ(Φ, Θ; Ν)
we have the formula'-39-1

, Θ; ΛΟ =
Ι,η

, θ), (2.22)

where the Yji1 are spherical functions and (A^)^ are in-
tegrals of the form

= | Ρ ( Θ , ) Ρ , (cose,) de,. (2.23)

In (2.23) p(®i) is the probability of an individual rotation
through the angle ©i, and P̂  (cos ®i) is a Legendre poly-
nomial.

b) The rotational random-walk problem and rotational
diffusion. The distribution P(g, t). For the calculation of
correlation functions it is necessary to know the distri-
bution of orientations of the molecules at time t, the
original orientation g0 being given. As in the theory of
diffusion, this distribution will be denoted by P(g, t). If
there have been exactly Ν rotations in the time t, P(g, t)
is simply P(g, N). If, however, the number of rotations
in the time t is a random quantity with the distribution
wN(t), then

%P(g,N). (2.24)) = %

It is convenient to take for

wN (t)

the Poisson distribution

(2.25)(ΛΠ)-1 (thfe-"\

where τ is the average time between two successive
rotations of a molecule. As is well known, the use of the
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Poisson distribution assumes the following conditions:
1) the random-walk process must be uniform, i.e., the
probability that Ν jumps occur in a time t is determined
by the length of the interval t and does not depend on the
time from which it is measured; 2) the number of rota-
tions in a time t must not depend on the previous history
of the process, i.e., there are no aftereffects in the
random-walk process; 3) the probability that there are
two rotations in an infinitely small time interval must be
infinitely small (nonpathological nature of the process);
4) the probability that there is one rotation in an infin-
itely small time At is proportional to At.

Accordingly, we get from (2.24), (2.25), and (2.14) the
required distribution:

Ρ (g, t) = Σ 1(21 + 1)/8π2] Sp {Τ' (g?) exp [ - (ί/τ)' (1 - A,)) T' (g)}.

(2.26)

It is natural to expect that for large t (t 3> T) the
P(g, t) given by this formula will agree with the Green's
function of the equation of rotational diffusion. To verify
this, in the definition (2.7) we change from the variable
gi to the variable c:

where D is the diffusion coefficient for the diatomic
molecule, given by

= \ (e) (2.27)

We now expand exp(ieM) in (2.27) in powers of ej, keeping
terms through the second degree:

A, = 1 -

Du = (2τ)-> J e,e,p (β) d3e.

(2.28)

(2.29)

The quantities D.. obviously give the definition of the
components of the rotational diffusion tensor. Equation
(2.28) contains no term from the linear term in the ex-
pansion of exp(icM), since we assume that p(e) = p(-e).

Taking the principal axes of the tensor D- as the axes
of the molecular reference system, we can bring (2.28)
into the form

A, = 1-TID+M* + {D3-D+)M*3 + D-(M1-MI)], (2.30)

where D1 = (Di ± D2)/2. Using the expression (2.30) for
Ai in (2.26), which is legitimate for large t (t » τ), we
get the Green's function of the rotational diffusion equa-
tion. In particular, if Di = D2, we get

p (g, 0 = Σ [(22 + 1)/8π2] 7-Lfeo) Tl

mn (g) exp [-DH(l+l)- (D,- D+) m2] t

(2.31)

For Dx = D2 = D3 = D Eq. (2.29) takes the simple form

P(g, 0 = S[(2/ + l)/8n2]rLte)rLte)exp[-i(Z + l)O<]. ( 2 · 3 2 )

It is also easy to show that in the transition from rota-
tional random walk to diffusion the integral equation (2.3)
becomes the rotational diffusion equation (1.6).

The, distribution Ρ(Φ, ©; t) for diatomic molecules is
constructed analogously. The final expression for
Ρ(Φ, ®; t) will be of the form

Ρ(Φ, θ; ί) = ο; t)ex?l-(t/T)(l-AM)]Yf (Φ, θ). (2.33)

For the transition from random walk to diffusion we ex-
pand the P̂  (cos ©i) in the definition of A^oo in powers of
©i. Because in the diffusion approximation p(©i) is dif-
ferent from zero only for small ®i, we drop terms of
higher degree than the second in ®i. We then get the re-
sult

(2.35)

The expression (2.34) is obviously the Green's function
of the rotational diffusion equation for diatomic mole-
cules.^ 6 3 We further note that

θ?=4ΰτ. (2.36)

c) Determination of the nature of rotational Brownian
motion from comparative study of NMR and dielectric
relaxation. Two models of rotational Brownian motion
have been studied: rotational diffusion and rotational
random walk through finite angles. The question arises:
Under what conditions is one model or the other real-
ized? By answering this question we can essentially
solve the second problem of the random-walk theory. It
is generally supposed that both models can be realized in
actuality. It was already assumed by Frenkel that the
nature of the rotation of molecules in liquids depends on
their size. The Brownian rotation of relatively large
molecules is of the nature of rotational diffusion, i.e.,
rotations of the molecule through finite angles are made
up of large numbers of small rotations. The Brownian
rotation of relatively small molecules is of the nature of
random walks through finite angles. Of course the final
decision as to the realization of one model or the other
in any concrete case must be determined by experiment.

As is well known, several physical phenomena in con-
densed media are determined by the nature of the rota-
tional motion of the molecules. These effects include, in
particular, dielectric relaxation, infrared absorption,
Rayleigh and Raman scattering of light, the scattering of
slow neutrons, NMR, and EPR. A method for determin-
ing the nature of the rotational Brownian motion on the
basis of these effects was first proposed in1-11-1. The
theoretical basis of the method is given in1-9-1. An ex-
perimental study of Brownian rotation by means of NMR
and dielectric relaxation was soon carried out i n [ 1 2 3 .
With this same method, Pinnow, Candau, and Litovitz1-133

have recently studied the Brownian rotation of molecules
in a number of liquids, using Rayleigh scattering and
dielectric relaxation.

Let us examine the theoretical arguments on which
the method is based. The line shapes or the characteris-
tic times for the effects in question are determined by
the correlation functions of the spherical harmonics
Υ ^ θ , φ), as transformed from the molecular coordinate
system (x, y, z) to the laboratory system (Χ, Υ, Ζ) with
the relation

φ'), (2.37)

Ρ(Φ, θ; ί) = , θ)βχρ[ — (2.34)

where g is the orientation of (x, y, z) relative to
(Χ, Υ, Z), which changes randomly with time, and
Υ^(θ', φ') is a set of constant numbers in the system
(x, y, z). Ordinarily the index/ is equal to 1 or 2. For
example, for infrared absorption and dielectric relaxa-
tion, associated with the correlation functions of a vector
dipole moment, 1 = 1; for Rayleigh and Raman scattering
of light, where the main part is played by correlation
functions of the polarizability tensor of the molecule,
1 = 2.

The correlation functions K(t) of spherical harmonics
are easily calculated from (1.28) both for rotational
random walk with finite angle steps and for rotational
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diffusion of the molecule. Using the distribution (2.26),
we find that for the random-walk case

X (i) = (2/+1)"1 exp [ — (ί/τ)(1 — λ,)] 2 \Υ'™(Θ', φ') i2, (2 38)
m

where τ is the time between two successive rotations.
Thus the correlation time τ of the random function Y^ is
given by the relation

τ, = τ/(1-λ,). (2.39)

TABLE I

For rotational diffusion with
by

= D2 = D3 = D, τ̂  is given

τ, = U(l + l)D]~K (2.40)

It follows that in the case of rotational diffusion the
correlation between values of a tensor (/ = 2) is lost
three times as rapidly as that between values of a vector
(1 = 1), i.e., that

τ,/τ2=3. (2.41)

If the molecule is subject to random rotations by finite
angles, τι/τ2 is in general less than three. For sharp
turns through angles of the order of 2π/(21 + 1) radians
or more, the ratio is

Vt2 = 1. (2.42)

Thus, to determine the nature of the rotational Brownian
motion of molecules (diffusion or sharp turns) it is
necessary to work with two physical effects (if the mole-
cules in question allow this). One effect must be deter-
mined by random changes of a vector (I = 1), the other
by changes of a tensor (1 = 2). The experimentally found
value of τι/τ2 must be close to 3 in the case of rotational
diffusion and to 1 in the case of sharp turns. This is the
essence of the method.

In the paper[12-1 to which we have referred studies
were made of the Brownian rotation of nitrobenzene and
camphor molecules in the solvents CS2 and CC14. The
value of τ2 for the given molecules was determined from
the experimental values of T i r o j . by means of the theory

Of[s,4oi_ τ ι Γ 0(. was determined by measuring the relaxa-
tion time of the longitudinal magnetization of protons in
a wide range of concentrations in the nonmagnetic CS2

and weakly magnetic CC14 solvents, with subsequent
extrapolation to zero concentration. With decreasing
concentration of the given substance in the nonmagnetic
solvent the intermolecular interactions between the given
molecules decrease and the reaction rate Tl1 is more
and more determined by the intramolecular dipole inter-
actions, perturbed by the Brownian rotational motion of
the molecules. In the case of the solvent CC14 there is a
small contribution to the total relaxation rate from inter-
molecular interactions between the molecules being
studied and those of the solvent. Experiments and calcu-
lations show that in measurements by means of proton
NMR this contribution can be neglected.

The correlation times of the constant dipole moments
of nitrobenzene and camphor molecules dissolved in CS2
and in CCU were measured by the dielectric relaxation
method in [ 4 ° .

The values of τι from1·41-1 and τ2 from [12: i and of their
ratio are shown in Table I.

Accordingly, we have as the experimental value of the
ratio τι/τ2 = 3 ± 0.5. This obviously indicates that the
rotational Brownian motion of nitrobenzene and camphor
molecules in CS2 and CC14 is of the rotational-diffusion
type.

Substance
studied

Solvent

CS2

cs2"

CC14

τ,Χ 10",
sec

2.12

2.96
3,23

6.04

t 2 C S 2 101"τ 2 α α 4

sec

7.5

10.7
8.6

15,2

0.7

0.5

τι
T2

3.5

3.6
2.7

2.5

d) Determination of the nature of rotational Brownian
motion from comparative study of Rayleigh scattering of
light and dielectric relaxation. Let us now turn to the
results of the experimental determination of the nature
of rotational Brownian motion as derived from the re-
laxation times of Rayleigh scattering and of dielectric
relaxation.

The Rayleigh scattering of light in pure liquids is due
to three causes: 1) density fluctuations at constant tem-
perature; 2) temperature fluctuations at constant pres-
sure; 3) fluctuations of the orientations of the molecules.
In multicomponent liquids, in which we are not at the mo-
ment interested, local fluctuations of the concentrations
of various components can play an important part. Since
temperature fluctuations at constant pressure can be
neglected,1-42-1 in calculating the shapes and width of
Rayleigh scattering lines in pure liquids one takes into
account only density fluctuations at constant temperature
and fluctuations of the orientations of the molecules. The
most general theory of Rayleigh scattering is due to
Rytov.1-43-' A detailed treatment of Rayleigh scattering
by density fluctuations has also been given in . We
have given a calculation of the shape and width of a
Rayleigh scattering line caused by fluctuations of mole-
cular orientations in1-6'7-1. For the study of the nature of
Brownian rotation we shall look at the theory of'-6'7^ in
some detail.

The field Ε of the incident light wave induces in a
molecule a dipole moment μ. = α^-Ε·, which can be
separated into parts independent of and dependent on the
orientation of the molecule:

μ? = α ^ , αΐ = 4-α,,, (2.43)

μ," = <*«*,. a« = a l j-e'6, j. (2.44)

where «- is the polarizability tensor of the molecule,
i, j = Χ, Υ, Ζ. We are interested in the spectral com-
position of the light emitted by the components μ? . The
normalized spectral density of the radiation can be ex-
pressed as the Fourier component of the correlation
function K..(t) of the random function μΡ:

ί ) 4 ^ Λ , ίΓπ = <μ?'(0)μ!'Μ>· (2.45)

Let us introduce the five independent components am

of the tensor a^ by the relations

(2.46)

When the coordinate system (Χ, Υ, Z) is rotated into
coincidence with the system (x, y, z) (by angles φ,θ,ψ)
the components transform according to the law

( 2 · 4 7 )
where the a'n are defined in the movable system rigidly
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connected with the molecule and are constants character-
izing the molecules of the liquid.

If unpolarized light is incident along the X axis (one
observes the light propagated in the direction of the Ζ
axis), by using (2.46) and (2.47) we easily get

μ? = (i/2) %<^UEY(Tim-Ti)+Ez{rm-rm)h (2.48)
η

(2.49)
μ" = (112) Σ a» [i£r (Π» "f -̂m) + (̂ / V6) £ΖΓ^]. (2.50)

η

Using the facts that ( Ε γ ) = <E2

Z) and (EjEj) = 0 for

i £ j , we can find from (2.48)-(2.50)

(| μ» Ρ) = (1/5) №) Σ Κ Ι2 = (2/15) (Ε\) g'a,

(Ι μξ.'Ρ) = < Ι μ" P> = (7/30) (Ε'γ) Σ I oi Ρ = (7/45) {Εγ) gl,

gl = (112) \{axx - ayyf + (am - a,,)1 + (azz - axx)* + 6 « , + a', + oL)] •

The correlation functions K-.(t) of the quantities μί 1

are calculated from Eqs. (1.27) and (1.28). The result is
(Di / Da £ D3 / DO

(Δω) = Σ №
η

3 | g 2 — <

TC η) = ίγγ (Δω),

ο αίι/ . ο η ,2 _ 3 | α, — α_ι |» „ αΙν

ί _ „
(2.51)

where Δω is the frequency shift from the frequency ω0 of
the incident light.

As can be seen from (2.51), the shape of the Rayleigh
line is the superposition of five Lorentz curves with
widths D£' j n and weights | Ω η | 2 .

In the case with Di = D2 the calculation of the spectral
density must be done by using the Green's function
(1.25).

The result is

(2.52)

(2.53)
Accordingly, in the case Di = D2 the shape of the Rayleigh
line is the superposition of three Lorentz curves with the
widths (2.53) and the weights (2.52).

In the special case with Di = D2 = D3 = D we have

;« (Δω) = ρ (6ΰ) = τ2/π [1 + (τ2Δω)2], (2.54)

where T2 = l/(6D).

It is easily verified that the Brownian rotation of the
molecules is of the nature of isotropic random walks

through finite angles, then the spectral density of the
Rayeligh line is still of the Lorentz form (2.54), but the
time T2 must then be taken to mean the average time τ
between two successive rotations.

Obviously all of these formulas are equally applicable
to Raman scattering lines, if a^ is replaced by 8^ /9QV

(Qv are the vibrational normal coordinates of the mole-
cule).

As we have already ascertained, the dielectric relaxa-
tion time τι is equal to 3τ2 in the case of rotational diffu-
sion; in the case of sharp turns η = τ2. From this there
follows the possibility, mentioned in Sec. c) of this chap-
ter, of determining the nature of the rotational Brownian
motion by comparing the experimental dielectric re-
laxation time τι with the time T2 given by the inverse
halfwidth of the Rayleigh scattering line. It must be
emphasized that the theoretical conclusion about the
ratio of the times τι and T2 is valid only if the changes
with time of the dipole moment and of the polarizability
tensor are determined by the same rotational motion.
For example, molecules in which an internal rotation ex-
ists may not satisfy this requirement.

A convenient material for the study of Brownian rota-
tion by this method is the liquid polyethylene glycols. As
is well known, the molecules of these liquids are linear
and the polarizability tensor is uniaxial. Experimental
data on the Rayleigh scattering of light by three poly-
ethylene glycols are reported in1- "-1. The dielectric re-
laxation times needed for calculating the ratio τι/τζ
(or τ2/τι) are given in1-45'46-1. The measured values of
the ratio τ2/τι for n-octanol, 1,3 butanediol, and glycer-
ine are respectively 0.3, 0.54, and 1.1. From this it fol-
lows that in n-octanol the Brownian rotation is of diffu-
sive nature, and in glycerine it is sharp turns through
angles of the order of 120°. In the case of 1,3 butanediol
the Brownian rotation is of intermediate character be-
tween those of the other two substances. According to
our formulas given in Sec. c) of this chapter, we can de-
termine the angles of the elementary rotations from the
measured values of η and T2. For n-octanol these angles
are smaller than 20°, and for butanediol they are about
45°.

The authors of1-133 make a bold assumption about the
nature of the parameter τ, which we have introduced in
solving the problem of rotational random walk. They
suppose that the time τ, i.e., the time between two suc-
cessive rotations of the molecule, is the same as the
time of volume or structural relaxation Ty p, as meas-
ured by the ultrasonic method at constant pressure.'-49-1

This identification seems fairly well justified, since the
time between two successive rotations is essentially the
same as the correlation time of the free volume of the
molecule, and this last can reasonably be identified with
TV,P·

The assumption that τ and τγ ρ are equal can be
tested experimentally on the basis of the following con-
siderations. The correlation time (2.39) of a tensor of
rank I, calculated in the Egelstaff approximation (2.20)
with use of the relation τ = Τγ ρ , is of the form

1/t, = I (I + 1) Drl[l + 1(1 + 1) Drty.p], (2.55)

where D r = <ε2)/6τ. Writing Eq. (2.55) for / = 1 and I = 2
and eliminating D p from the resulting equations, we find

(2.56)
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TABLE II

Liquid

n-octanol
1, 3-butanediol
Glycerine

ti

calculated

0,35
0.48
0,78

measured

0.3
0.54
1.1

TV,P

40
4.3
1.5

Accordingly, we can either, as we already know, find the
ratio T2A1 directly from measurements of dielectric re-
laxation and Rayleigh scattering, or else calculate it
from (2.56), after first measuring j y ρ/τι. Agreement
of the calculated and measured values of τ2/τι will give
an indication as to the correctness of the assumption
that τ and Ty ρ are equal.

Table II shows the measured values of τι/ry p, and

also the calculated and measured values of τζ/τχ for
polyethylene glycols. It is seen that the agreement be-
tween the calculated and measured values of τ2/τι is
good for n-octanol and 1,3 butanediol, and is fairly satis-
factory for glycerine. Accordingly, we can say that the
experimental test on the whole indicates that the assump-
tion τ = Ty ρ is reasonable.

We point out one further interesting fact that follows
from Eq. (2.56). We have so far used the ratio τι/τ2 (or
T2A1) as a criterion for determining the nature of rota-
tional Brownian motion, but according to (2.56) the ratio
τι/τ-u ρ can also serve as such a criterion. Rotational

diffusion is characterized by large values of r iAy p

(τι/ry ρ 3> 1). For rotational random walk by angles of

the order of 120° or more τι = Ty p.

e) Cooperative effects in Brownian motion. In dealing
with physical phenomena in liquids correlation effects in
the Brownian rotation of different molecules have not
been considered. If, however, there actually are such
correlations, it may be impermissible to neglect them
in some cases. There are great difficulties in construct-
ing a theory of Rayleigh (and Raman) scattering with
cooperative effects taken into account. Nevertheless one
can use semiqualitative arguments to predict the main
results of such a theory.

For simplicity let us consider molecules whose
polarizability tensor can be represented by an ellipsoid
of rotation. We take the axis of symmetry of the ellipsoid
as the ζ axis of the moving coordinate system. If for the
m- th molecule we denote the angle between the ζ and Ζ
axes by em, it is easily shown1-13'38-1 that the spectral
density Ι(ω) of the depolarized Rayleigh scattering line
can be represented in the form

/((o)~Re

n = 0, 1, 2,

This means that the chosen pair of molecules interchange
their orientations after each time interval of duration tx.
In particular, during the time interval from 0 to tx the
orientation of the first molecule is θι(0) and that of the
second is 02(O); in the interval from ti to 2^ that of the
first is Θ2(Ο) and that of the second is 6^0). To general-
ize this scheme one can assume that after interchanging
orientations with the second molecule the first molecule
at time 2tx interchanges orientations with a third mole-
cule, and so on.

It is easy to see from (2.57) that this scheme, with the
indicated generalization, leads to a spectral density of
the form Ι(ω) ~ δ (ω). If in this case one were to use
instead of (2.57) the simplified expression (2.45), one
would find that the Rayleigh line has a width ~ l/U. Thus
inclusion of cooperative effects has led to a narrowing of
the Rayleigh line. A similar conclusion could be reached
about the Raman scattering lines.

It must be noted that this simple model of cooperative
Brownian rotation is too simple and could not be actually
realized in a pure form. Nevertheless we can expect that
cooperative effects accompanied by exchange of orienta-
tions exist in certain systems and have a considerable
influence on the shape and widths of observed Rayleigh
and Raman scattering lines. For example, Egelstaff[38]

has convincingly shown the presence of cooperative ef-
fects in a plastic modification of cyclohexane, by making
comparisons between Rayleigh and Raman scattering of
light and the incoherent scattering of slow neutrons.
This research was essentially as follows.

The incoherent scattering of slow neutrons, caused by
the rotational motion of molecules, is decidedly different
from the scattering of light. The de Broglie wavelength
of slow neutrons (λ ~ 4 A) is comparable in order of
magnitude with atomic dimensions. Owing to this the
scattering of neutrons reflects the individual character
of the Brownian rotational motion of the molecules.
Mathematically this means that the differential scatter-
ing cross section dV/dfidw, which is the essential char-
acteristic of neutron scattering, can be expressed in
terms of correlation functions <P^(cos g(t)) P;(cos 9(0)))
depending on the random rotations of individual mole-

^ 3 8 ^

(cos 8m (<)) />2 (cos θ η (0))\ exp{ — ie>t)dt, (2.57)

where P2(cos Θ) is the second-degree Legendre polynom-
ial.

The exact calculation of the average in (2.57) cannot
at present be done, since it requires a knowledge of the
conditional probability density of the orientations of the
interacting molecules of the ensemble. For this reason
it is interesting to use a simple hypothetical model of
cooperative Brownian rotation proposed by Egelstaff.

Assume that some fixed pair of molecules rotates ac-
cording to the scheme

θ2 (t) = θ2 (0),
η = 0, 1 , 2 ,

Egelstaff calculates the correlation functions
(P^ (cos 9(t)) Pj (cos 0(0))) for various types of Brownian
rotation of the individual molecule. In this way he finds
the differential cross section both for rotational diffusion
of the molecules and for rotational random walk by large
angles (in the latter case he uses the solution of the ro-
tational random walk problem given in Sec. (b) of this
chapter). Comparison of the calculated differential cross
sections with the experimental values gives the correla-
tion times T2 corresponding to the different types of
Brownian motion. It turns out that for any assumed
mechanism of the individual molecular rotational mo-
tions the value of rll is an order of magnitude larger
than the width of the depolarization Rayleigh scattering
line. This can be explained by assuming that in plastic
cyclohexane the Brownian rotation of the molecules is of
a cooperative nature, of the type of interchange of orien-
tations. Namely, as we have seen, the presence of orien-
tation exchange narrows the Rayleigh (or Raman) scat-
tering line, but does not affect the scattering of slow
neutrons. It can also be said that when there are cooper-
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ative effects of the orientation-exchange type the "mem-
ory" (correlation time) of an individual rotating molecule
will in general be shorter than that of a collective of
rotating molecules. This last result can scarcely be re-
garded as obvious.

3. INERTIAL EFFECTS IN ROTATIONAL
BROWNIAN MOTION

a) The generalized equation of rotational diffusion.
As was already indicated in Sec. (a) of Chap. 2, for small
time intervals (ξ jt <C I) the ordinary rotational diffusion
equation (1.6) is without meaning. For small £j such in-
tervals can be quite large, so that the interpretation of
physical phenomena in liquids on the basis of the rota-
tional diffusion equation (1.6) can be incorrect. The
reason that the theory of rotational diffusion developed
in Chap. 1 is invalid for small t is that the fundamental
equation (1.6) does not include the inertial characteris-
tics of the molecules. In fact, for small time intervals
the rotation of a molecule is practically determined by
its inertia. The smaller the friction coefficient, the
closer the rotation is to a free motion. Neglect of the
inertial effects in the rotational motion of a molecule
leads to the nonanalyticity of the correlation functions
K(t) at t = 0. As we have seen in Sec. (d) of Chap. 2, the
K(t) calculated on the basis of the distribution of orienta-
tions (1.26) have an exponential time dependence. From
the physical point of view it is hard to explain the exis-
tence of a discontinuity of the derivative of a K(t) at t = 0.

A theory of rotational Brownian motion including iner-
tial effects has been constructed by Steele. For the
desired probability distribution of the orientations Steele
writes the equation of continuity

dPIdt = V£/. (3.1)

Under rather general assumptions the current density J
can be written in the formL 4 8 > 4 9 ]

J = Rvep, (3.2)

(3.3)

here, as in the previous sections, ω^ are the components
of the angular velocity along the moving axes. For Rj·
we find from (1.35)

From this we get the generalized rotational diffusion

equation

(3.5)

For i j t/ l 3> 1 Eq. (3.5) goes over into the ordinary
rotational diffusion equation

^ (3.6)

where kT/ξ j = D give the components of the diffusion
tensor. The solution of this equation in terms of Euler
angles has already been treated in Sec. (b) of Chap. 1.

The solution of Eq. (3.5) for arbitrary t is derived on
the assumption ξ χ = £„ (the case of unequal ξ j leads to
difficulties and therefore will not be considered). Chang-
ing to Euler angles in (3.5) and using ξ = ξ , we have

We look for the solution of (3.7) as a series in general-
ized spherical functions:

P=i%riCmn(t)T'mri(<e,o, ψ). (3.8)

On substituting (3.8) in (3.7) we find that the C ^ t ) are
of the form

where the Dj n satisfy the equation

here 1^ n = n2 - 1(1 + 1). Solving (3.10), we easily

(3-9)

(3.10)

find

(3.11)(

As was to be expected, for ijt/l > 1, the D; n(t) have
exponential time dependence. For | j (/l <C 1,'however,
D tk G i f

p
D7 _ takes a Gaussian form

i ,11

»Lt.J. (3.12)

The desired solution of the problem is obtained from
(3.8), (3.9), and (3.11). The coefficients a ^ are deter-
mined from the given initial distribution. To obtain the
Green's function of the equation (3.7) the initial condition
must be taken as a δ function, as in Sec. (b) of Chap. 1.

Since we shall be discussing the influence of inertial
effects on nuclear magnetic relaxation and dielectric re-
laxation, we give the correlation functions

?} = (ΥΤ (β (/), «(0) Υ? (β (0), α (0))}. (3.13)

as calculated from (3.8). The angles β and α in (3.13)
characterize the direction of some vector rigidly connec-
ted with the molecule relative to the laboratory coordin-
ate system. For dielectric relaxation this vector is the
dipole moment, and for NMR it is the vector drawn be-
tween a pair of spins in the molecule. Let the vector in
question make the angle η with the ζ axis of the mole-
cular (moving) coordinate system. According to the cal-
culations of Steele t50·1 we have

(3 1

(3.15)

(3.16)

= (1 - γ sin2 η ) 2 exp ( - 6AX) +,

where
h, = (IkTI®) [(UII) + exp (-y/I) - 1 ].

Since this theory holds for a molecule of the spherical-
top type, the moving coordinate system can be chosen so
that the vector under consideration is along the ζ axis,
and we can set η = 0 in (3.14) and (3.15). For η = 0 and
small ξ we get from (3.14) and (3.15) correlation func-
tions of Gaussian form

,' = exp (-τ·1), (3.17)

(3.18)

(3.7)

where τ* = t(kT/I) l A. Equations (3.17) and (3.18) are an
important result of Steele's theory. A further investiga-
tion is required to find the limits of validity of these
formulas. It turns out that (3.17) and (3.18) do not hold
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for large £j, as is evident from their derivation, and for
small values of ξ* = ξ./(Ιΐα ι)1/'2, namely for 0 < ξ* < %.
In fact, for sufficiently small ξ * the rotation of the mole-
cule will be "almost free", and1 it is completely free for
ζ* = 0. "Almost free" rotation is characterized by the
fact that during the correlation time—the time in which
there is a radical change of the correlation functions

K(

(i)(t) and )—the molecule can make one or more
complete revolutions. For completely free rotation
(ζ* = 0 ) the correlation times become infinitely large.
Under such conditions (i.e., for ξ? = 0), as we know, Eq.
(3.1) cannot be used for the probability distribution func-
tion of the orientations. The correlation functions calcu-
lated for the laws of free r o t a t i o n [ 5 0 ] a re of the form

K<» (t) = (2/3) (1 - τ·2) exp ( - τ*2/2) + (1 /3), (3.19)

K$ (t) = (2/5) (1 - 4τ·2) exp ( - 2τ«) +

+ (2/5)(1-τ·2)βχρ(-τ·2/2) + (1/5). (3.20)

The Gaussian approximation and the approximation of
free rotation practically coincide for t < (kT/l) . Ac-
cordingly, the Gaussian correlation functions (3.17) and
(3.18), derived from (3.14) and (3.15) by passage to the
limit ξ * —· 0, become completely invalid for sufficiently

small ξ? (0 < ξ-f < %). According to Steele's est imates,
the region of values of ξ * for which the Gaussian form
is a good approximation is defined by the inequality
Vz £ ξ? < 2. Thus as ξ? varies from sufficiently large
values (ξ? > 2) to zero the shape of the correlation

functions K*' and Kj™' changes continuously from ex-
ponential (for ξ? > 2) to Gaussian (% < ξ? < 2) and
from Gaussian to the form (3.19), (3.20) for free rotation

It can easily be verified that the integral jK; m ) ( t)dt
0

takes a minimum value when Kjm)(t) has the Gaussian
form (i.e., when % < ξ? < 2). As we shall see in the
following section, this property plays an important part
in the interpretation of experiments on NMR in liquids.

b) lnertial effects in NMR, dielectric relaxation, and
the molecular scattering of light. In the fundamental
paper by Bloembergen, Pur cell, and Pound'-51-' and in
many subsequent papers nuclear magnetic relaxation
was interpreted on the basis of rotational and transla-
tional diffusion. The best agreement between measured
and calculated nuclear magnetic relaxation times Tj was
found for polar liquids, in particular for water. In the
case of nonpolar liquids the theoretical values of Ti
deviate from the experimental values rather strongly.
On the basis of Steele's theoretical work, c " ' 5 0 ] Moniz,
Steele, and Dixon'-52-' have shown that in many cases
these deviations can be overcome if in calculating Ti
one takes into account the inertial effects in the rota-
tional Brownian motion of the molecules.

According to1-51"53-1 the inverse nuclear magnetic re-
laxation time TI1 in a liquid is composed of two parts;
one part, (l/T 1) r o j ;, is due to intramolecular dipole-
dipole interactions of the spins, modulated by the rota-
tional Brownian motion of the molecules, and the second
part, ( l / T i ) t r a n s , is due to the modulation of the inter-
molecular dipole interactions of spins by the transla-
tional Brownian motion, so that

Ι/Γ, = (1/Γ,)ΓΟ«+ (l/TOtran*. ( 3 · 2 1 )

Under conditions of strong narrowing ( l / T i ) i r a n s for
I = z4 (I is the nuclear spin) is given byt 5 1" 5 3]

(l/r.)tr,n. = nft'p/iaD, (3.22)

where γ is the gyromagnetic rat io, ρ is the density of
nuclear spins, a is the radius of the molecule, and D is
the translational diffusion coefficient. Assuming that for
translational Brownian motion D and the viscosity η of
the liquid are connected by the Stokes-Einstein relation

^ —&?76παη, (3.23)

we get from (3.22)

(l^i)trans = 3π2γ4δ2ρη/2Λ:Γ. (3.24)

The formula for the intramolecular contribution to

™(ωη) + 4/«;(2ωη)], (3.25)

where ω η is the Larmor frequency, b is the distance be-
tween the pair of spins in the molecule, and j(m)(o)n) is

the Fourier transform of the correlation function KJ '(t).

Using the fact that IOm)(t) does not actually depend on

m, for the strong narrowing case we can reduce (3.25)
to the form

(VTt)mt = ( j$ (0). (3.26)

Calculations based on the assumption that the Brownian
rotation of the molecule is of the simple diffusion type
give for j ( m )

™))(0) =
(3.27)

where ξ is the friction coefficient calculated by the
hydrodynamic method (ξ = 8ττηΆ3).

Moniz, Steele, and Dixon have pointed out that for
most nonpolar liquids the nuclear relaxation times Ti
calculated from (3.21), (3.24), and (3.26) are much
shorter than the observed times. This indicates that the
assumed relaxation mechanism is "too effective." We
can look for the source of the error in the theoretical
calculations on the basis of the following considerations.
The values of T 1 j . r a n s calculated from (3.24) are rarely
smaller than the observed values of Ti. On the other
hand, the ^iroi calculated from (3.26) is almost always
much shorter (by a factor 10 or more) than the measured
Ti. It follows that the discrepancy between the theoreti-
cal and experimental values is due to an incorrect esti-
mate of T l r Q j.. It is intuitively evident that the theoreti-
cal T i r 0(. must increase (and thus come closer to the
experimental value) if one takes into account the inertial
effects in the Brownian rotation. In fact, in the limiting
case of free rotation with some fixed angular velocity
the relaxation time is infinite. Therefore we can expect
that inclusion of inertial effects in the rotational
Brownian motion will in general lead to an increase of
T i r 0(-. We now look at the quantitative relations.

The Fourier transform of an even correlation func-

tion K^m\t) is of the form

K) = 2 j cos (CM) K^ (t) dt. (3.28)

We see that for the calculation of (l/T 1) r 0(. we need the

j(m)(con) with / = 2 and m = 1, 2. Under conditions of
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FIG. 1. Temperature dependence
of the spin-lattice relaxation time of
cis-decalene. The curves are the theo-
retical dependences found with (1)
and without (2) inclusion of inertial
effects.

rapid motion, when ωη* is much larger than the charac-
teristic time for decrease of K(

(

2

m)(t), J<(

m) is simply
twice the " a r e a " under the curve of K(,m>(t) for change
of t from 0 to «,: J(

(2

m> = 2S, where

t(t)dt. (3.29)

As was shown in Sec. (a), the form of the time depen-
dence of K l m ) is determined by the nature of the Brown-
ian rotation. The nature of the molecule's rotation in
turn depends strongly on the friction coefficient ξ (we
recall that we are discussing spherical-top molecules
with a scalar friction coefficient). Thus S, and also
( l/T 1 ) r o ( ; , is a function of ξ . The calculations show that
S(?) takes its minimum value when ξ is in the region
defined by the inequality l/4 < i/(IkT) l / 2 < 2, and that the
minimum value of S is the value calculated in the Gauss-
ian approximation (3.18). The time T i r 0(- corresponding
to the Gaussian approximation is the largest:

(l/r,)roa

t

uss= (3v*S2/4fce) (nI/3kT)1'2. (3.30)

Equation (3.30) can also be applied to molecules of the
asymmetric-top type, if we take I to mean an average
moment of inertia defined by

7-1 = (/j1 + /^ + /7l)/3, (3.31)

where I x , I v , I z are the principal moments of inertia.

For a number of nonpolar liquids Moniz, Steele, and
Dixon have experimentally and theoretically studied the
temperature dependence of Τχ. The contribution to Ti
from the translational Brownian motion was calculated
from (3.24). The agreement between measured and cal-
culated values of Tx as functions of the temperature is
very good if the rotational contribution to Tx is calcula-
ted with inertial effects included from (3.30), and is bad
if one uses the formula (3.27) of Bloembergen, Purcell,
and Pound to calculate T i r ot;. As an example, Fig. 1
shows the experimental (circles) and theoretical tem-
perature dependences of the spin-lattice relaxation time
for cis-decalene.

Let us now discuss the role of inertial effects in
dielectric relaxation. In the first theory of dielectric
relaxation,[-3'31-1 given by Debye on the basis of rotational
diffusion, there are two essential difficulties. First,
Debye assumes that the polarization of a dipole liquid in
a constant field approaches the equilibrium value ac-
cording to an exponential law. This assumption is actu-
ally equivalent to requiring that for a sharp change of the
field the angular velocities of the molecules change in-
stantaneously. The finite masses of the molecules make
this requirement unrealistic. Second, Debye's formulas
predict a constant nonvanishing absorption at high fre-
quencies. It is well known, however, that the dielectric

relaxation absorption observed in the radio region is ab-
sent for visible light. Theories of dielectric relaxa-
tion'-54'59-' which take into account the influence of iner-
tial effects are free from these shortcomings, although
quantitatively they too lead to large disagreements with
the experiments. We shall here discuss inertial effects
in dielectric relaxation, following mainly a paper by
Birnbaum and CohenC 6 0 ]. According to1·60-1, the imaginary
part of the complex dielectric constant e* = e' - ie" is of
the form

ε" (ω>=τρ- <f (°) μ (θ)) th (-f^) j φ (ο cos ο* dt, (3.3 2)

where n is the index of refraction and φ is the quantum-
mechanical correlation function of the dipole moment,
defined as

φ (i) = (1/2) (μ (0) μ (ί) + μ (ί) μ (0)>/<μ (0) μ (0)>. (3.33)

In (3.32) and (3.33) μ denotes the dipole moment opera-
tor. The real part of the complex dielectric constant can
be found from the Kramers-Kronig relation

f ω) ά(ύ (3.34)

In the classical approximation ordinarily used for polar
liquids, φ is of the form

Φ (0 = (μ (0) μ (ί))/<μ (0) μ (0)>; (3.3 5)

where μ(ί) is the classical dipole moment. Accordingly,
in the classical approximation e*(w) satisfies the rela-
tion

(3.36)

In (3.34), (3.36) e^ and e0 are the dielectric constants in
the respective limits of very large and very small fre-
quencies.

We note that in (3.32) and (3.36) the reactive field has
not been included. When it is taken into account (3.36)
takes the form

(ε* - ε»)/(8ο - ε-) = (2ε0 + ε.) {ε«-ε. + [3Eo/L (-φ)]}"1. (3.37)

In our case ηω <C 2kT, so that for e 0 - ex we have the
approximation

ε0 _ e» = 4πμ2/3&Γ. (3.38)

We now proceed, folio wing'-β0·1, to find <p(t) for mole-
cules of the spherical-top type with a scalar friction
coefficient ξ. We first note that for sufficiently long
time intervals t inertial effects do not affect cp(t), which,
according to the general theory (see Sec. (a)), must de-
crease exponentially with the time:

φ = exp (-ί/τ,), (3.39)

where τ1 = ?/2kT. We can find the form of cp(t) for small
t by expanding it in a Taylor's series

where

Λ» (μ(Ο)μ(Ο»

(3.40)

(3.41)

For a system in thermal equilibrium (A(t)B(t)) is inde-
pendent of t, and consequently (AB) =-(AB>. Applying
this equation to (3.41), we get

φ(2—D(0) = 0,
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(3.42)

Dropping te rms beyond the second power of t in (3.40)
and using (3.41) and (3.42), we get
φ (<) = 1 + (1/2) ί2φ<2> (0) + · • · =

(3.43)

According to Birnbaum and Cohen, for arbitrary t the
correlation function cp(t) is approximated by the function

φ (ί) = exp {δ - [δ2 + (i/t,)a]}V2, (3.44)

where δ is a parameter chosen so that for smal l t Eq.
(3.44) goes over into (3.43), i .e.,

(τξδ)"1 = (| μ<') (0) |2>/(| μ (0) |2). (3.45)

For large t (3.44) obviously agrees with (3.39). To see
the physical meaning of the parameter δ, we compare
<p(t) for small t imes with the correlat ion function ob-
tained by Steele. For I = 1 we have from (3.41)

φ Η) = 1 _ (1/2) e (ZkTII) + . . . (3.46)

On the other hand, we find from (3.44)

9(i) = l-(l/2)l'(l/i]8)-|-,,, (3.47)

From (3.46) and (3.47) it follows that

f0- δ = HkTI\\

The parameter δ can also be written in the form

« = τ,/τ,, (3.48)

where i j is the correlation time of the angular velocity
(or of the angular momentum, since J = Ιω). In fact, for
ξ: = ξ we have from (1.35)

forr- = III.

Recalling that τι = C/2kT, we can verify that (3.47) and
(3.48) are equivalent. For what follows we also note the
relation

τ, τ, = I/2kT.

This result was first derived by Hubbard.1613 Thus the
form of the correlation function cp(t) is determined by
the correlation time Tj of the angular momentum and
the correlation time Ti of the orientation. For any finite
Tj, cp(t) is an analytic function at t = 0.

The function L(-<p), calculated by means of (3.37), is
of the form

L ( - φ ) = (1 + χ 2 )- 1 [1 - χ2δψ (χ, δ) - ixe»zKt (z)],

Where Kt(z) is the modified Bessel function of the sec-
ond kind, or Macdonald function, and

χ = ωτ, ζ = δ (1 + χ 2 ) 1 / 2 .

The function Ψ(χ, δ) is defined as
1

Ψ(χ, δ) = βχρδ· j

From this we get the expression for the imaginary part
of the dielectric constant:

^^ο-ε^Ιωτ,/ίΙ+ωΗίίΙί'δίΙ+ωΗ^'^ΛΓ,ΙδίΙ+ωΗ;)"2]. (3.49)

This is the Debye function multiplied by exp δ · zKi(z).
For δ <^ 1, exp δ « 1. Asymptotic forms of Ki(z) for
small and large ζ are

zK, (z) « 1, ζ < 1,

ζΚι (z) as (nz/2)V> e", ζ > 1.

Accordingly, for small frequencies (ωτι «C 1) and δ <C 1
(i.e., when a « l ) e"(a>) coincides with the Debye func-

0 SO 120

Wave number, cm"1

/SO

FIG. 2. Absorption coefficient of liquid methylchloroform at 20°C.
1-experiment; 2, 3-theory not including (2) and including (3) internal
effects.

tion. In the high-frequency region (ωτι 3> 1), however,
the factor zKi(z) [Eq. (3.49)], which decreases practic-
ally exponentially with increasing z, plays the decisive
role. Because of this the absorption coefficient
a = ωε''/cn goes to zero for ω — <», in agreement with
experiment.

A comparison of the calculated and measured values
of a = α (ω) has been made for methylchloroform (Fig. 2).
Values used in the calculation were e0 = 7.11, £M = 2.06,
and I = 345 · 10"40 g-cm2. The correlation time τι was
determined from the fall of the low-frequency wing of the
function α (ω) and was found to be 5.8 · 10~12 sec. In the
region up to 80 cm"1 the observed absorption is larger
than the calculated. Beyond 80 cm"1, however, the calcu-
lated absorption is larger than the measured. The cause
of the numerical deviation may be that cooperative effects
in the Brownian rotation of the dipoles were not taken
into account in the calculations of e"(a>).

Finally, let us dwell briefly on the role of inertial
effects in the molecular scattering of light. These are
discussed in more detail in the monograph ^la^.

Experimental and theoretical studies^18-1 show that
for the most rigorous calculation of the spectral com-
position of depolarized light scattering (i.e., the wings of
the Rayleigh line) in liquids one must take into account
the influence of inertial effects in Brownian rotation.
Such a calculation has been undertaken in papers by
Starunov.'-62'63-1 According to him, the part of the wing
adjacent to the undisplaced line and extending 15 to
20 cm"1 out from it is due to Brownian rotation of the
diffusion type. The rest of the wing is due to rotational
oscillations of the molecules. The spectral density for
both regions is found in [ 6 2 > 6 3 : l .

c) Relaxation of angular momentum. Effects of free
precession. In some cases, for example in calculations
of the line width of Ε PR caused by spin-rotational inter-
action, the correlation time TJ of the angular momentum
of a molecule is of particular interest. For spherical-
top molecules with a scalar friction coefficient TJ is the
same as the correlation time of the angular velocity
Lcf. Eq. (1.35)J and is given in the hydrodynamic approxi-
mation by

tj => Ilm\cP, (3.50)

where d is the hydrodynamic "rotational diameter" of
the molecule. We similarly find the correlation time of
the momentum of the molecule by applying the Stokes-
Einstein approximation to the translational motion:

τρ = m/6jirot|, (3.51)

where r a is the hydrodynamic (we do not say "transla-
tional") radius of the molecule. As was already indica-
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ted in Sec. (d) of Chap. 1, the "rotational" radius d/2 is
smaller than the true radius. On the other hand, the
hydrodynamic radius found from (3.51) and the experi-
mentally known τ and η is extremely close to the actual

radius. Writing d/2 as « r a (0 < κ < 1), for TJ we get
from (3.50)

τ, = //8πηφί. (3.52)

This expression for Tj has been successfully used in a

number of papers'-"'65-1 to interpret the spin-rotational
broadening of Ε PR lines, with the coefficient κ being
chosen for each liquid to give the best agreement be-
tween theory and experiment. At the same time the
shortcomings of (3.52) are obvious. First, there is no
explanation of the nature of the formally introduced co-
efficient κ. Second, (3.52) is valid only for molecules of
the spherical-top type.

McClung and D. Kivelson[153 and D. Kivelson, M.
Kivelson, and Oppenheim'-16-1 have developed a more
general theory for calculating the correlation times τα

of the components M f l of the angular momentum. Ac-
cording to their results,

? + τ?)" (3.53)

here τα is the correlation time for the angular momen-
tum component Mffl (a = x, y, z), I f f are the principal
values of the inertia tensor, and Aa is the precession
frequency of the free rotation of the molecule:

Aa = (h - -fv)1'2 (*Γ)1/2/(/α/β/ν)
1/2. (3.54)

For a spherical-top molecule Δα is obviously zero [in
(3.53) and (3.54) the set of indices α, β, γ corresponds
to the set x, y, z ] . The quantity « a in (3.53) depends only
weakly on the temperature and pressure and satisfies
the approximate equation

4xar»/3 «(7Vg)/(pi>,

with 0 < κ == 1. Here, as in Sec. (d) of Chap. 1, N e de-
notes a component of the torque. Thus the quantity KQ

is proportional to the ratio of the mean square of the
corresponding torque component to the mean square of

[(^> < > ^>the force component = <Py> = owing to the as-
sumption that the liquid is isotropicJ, i.e., κ determines
the weight of the anisotropic part of the potential energy
of the molecule. The derivation of the formula (3.53) for
τ (a = x, y, z) is rather complicated, and we shall not
give it because of lack of space. We shall only point out
the assumptions on which this theory is based. It is as-
sumed that the correlation time of the force acting on the
molecule from all the neighboring molecules is the same
as that of the torque of this force. Furthermore the pre-
cession frequencies Δ α are assumed to be small
(Δ τ C l ) . The first assumption is the most impor-
tant, since it gives the expected relation between the
characteristics of the rotational motion (TJ, TI, T2, etc.)
and the viscosity η of the liquid.

Equation (3.53) for the correlation time τα of the
angular momentum component Μ contains two times.
The first (predominant) term is due to the action of
torques on the molecule in question, and the second to
precession effects (Δα £ 0). The relative contribution
of the terms to τ̂ 1 is governed by the coefficient κα. If
the potential energy is strongly anisotropic κ α is close
to unity and the term in (3.53) containing Δ^ can be
neglected, so that ra is given by Eq. (3.52). For KQ = 1,
τ is determined by the Stokes-Einstein approximation

(3150). For smaller anisotropy of the potential energy
κα is smaller and the contribution of free-precession
effects to T~Q is more important.

The Ε PR of free radicals C1O2 was studied in the pa-
per of McClung and Kivelson.[15:l The width of the EPR
line of C1O2 is due to spin-rotation interaction and is
consequently determined by the correlation time τα.
Comparing the calculated and measured spin-lattice re-
laxation times Ti, the authors of[15] obtained values of κ
(on the assumption that «a = κ for all a) for CIO2
molecules in various solvents. In carbon tetrachloride
and n-pentane the values of κ· are small, 0.0178 and
0.0237, respectively. In acetone, on the other hand, κ is
rather large, 0.372. In a number of other solvents κ
takes intermediate values; for example, in dichlorme-
thane κ = 0.178. For acetyl acetonate complexes κ is
large in all solvents; for example, in chloroform
κ = 0.818.

Generally speaking, the experimentally observed de-
pendence of the EPR line width on Τ/η for CIO2 radicals
in various solvents is nonlinear. The smaller κ, the
larger the deviations from linearity. In the case of acetyl
acetonate complexes of copper and vanadium, for which κ
is large, the line width is proportional to T/VC e 3 '6 4 ] The
theory given explains these facts. The approximation
(3.52) for TJ, which is valid for large κ, leads to a linear
dependence of the width on Τ/η. For small κ, when pre-
cession effects are important, the formula (3.53) for τα

predicts deviations from linearity. By choosing the
value of κ (0 s κ < 1) one can achieve good agreement
between theory and experiment for the dependence of Ti1

(and consequently of the width) on Τ/η. [ 15-1

4. CONCLUSION

We can state that the aspects of rotational Brownian
motion in liquids that have at present been most studied
are rotational diffusion, the rotational random-walk
problem, and generalized diffusion with inertial effects
taken into account.

The physical phenomena considered here are of
course not all of the phenomena associated with Brown-
ian rotation. The purpose set for this review did not, in
particular, permit consideration of nuclear quadrupole
relaxation and the Maxwell and Kerr effects, whose im-
portance for the study of molecular motions in condensed
media is well known. ̂ 1 8 ]

In future research rotational diffusion (including in-
ertial effects) and the rotational random-walk problem
will undoubtedly be further developed. There will also
probably be much attention given to the study of coopera-
tive effects.1'

APPENDIX. REPRESENTATIONS OF THE
ROTATION GROUP

The three-dimensional rotation group consists of all
possible rotations of space around a fixed point (the
origin of coordinates). As already noted in the main text,
a rotation of space is specified by three parameters.
For these we can use the components of the rotation
vector e, or else the Euler angles φ , θ,φ. More often,
however, rotations of space are specified by the rotation
matrix g which transforms the "new" coordinates of
some vector into the "old" coordinates. In terms of the
Euler angles this matrix is
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(
cos φ cos if—cos9sinipsini|) —sincpcosij)— cos θ cos φ sin ψ sin^sin

sin ψ cos φ + cos θ cos ψ sin φ —sin φ sin ψ -j- cos θ cos φ cos ψ —cos ψ sin

sin φ sin θ cos φ sin θ cos θ

The operators T(g) of a representation of the rotation
group form a matrix group homomorphic to the rotation
group, and are completely determined by the infinitesi-
mal operators Mj (i = x, y, z):

Τ (g) = exp (fuM).

The operators M- correspond to infinitely small rota-
tions around the coordinate axes, and thus are the same
as the quantum-mechanical angular momentum opera-
tors.

The irreducible representation of the rotation group
of dimension I is realized in the space whose basis vec-
tors are the spherical functions Ym. The explicit ex-
pressions for the matrix elements of this irreducible
representation are of the form

7m (Φ, Θ, t|)) = e-
i™P/>«> l (cos Θ) «-<"*;

here p O (cos Θ) are functions defined by
mn

(ΐ+μ) «μ>-»

Γ ('—( —ra)l m)\(l — n)\ J

Because the irreducible representations are unitary we
have the equation

The matrix elements T_n(g) have the property of ortho-
gonality over the rotation group:

where dg is the volume element in the rotation group.
When the rotations are specified by the Euler angles dg
is of the form

dg = sin θ dtp d9 Λ|>.

An important feature of the property (1) is that it en-
ables us to expand an arbitrary square-integrable func-
tion f(g) over the rotation group in a series of general-
ized spherical functions T^^cp, θ, ψ):

, = T'mn{g)f{g)dg.

"While this review was being prepared for the press some new papers on
rotational Brownian motion in crystals were published. [6 6·6 7] The re-
sults in these papers are unfortunately erroneous.
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