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The general results are presented of the theory of motion of a dilute suspension of rigid ellipsoids, ap-
plied to the case when the rotational Brownian motion of the particles becomes significant. In this
case the equations of motion are written with the aid of moments of the distribution function, which are
the internal variables describing the orientation of the particles in the field and in the stream. The
equation of motion contains a finite relaxation time, and consequently the suspension of rigid ellip-
soids is an example of a visco-elastic system. Expressions are presented for the viscosity of a sus-
pension under simple shear motion.

1. INTRODUCTION the question of determining the equation of motion of the
system reduces to finding the stress tensor σ ^ as a

1 H E modern theory of the flow of suspensions dates function of the velocity gradients 3VJ /3x s . In the sim-
back to 1906, when Einstein published a paperc 1 ] (see plest case the stress tensor is given by
also L 2 ] , Sec. 22) devoted to the calculation of the vis- _ _ g , (HEi_,J!nk_\
cosity of a suspension of solid spheres in a viscous ' " ' d X h Ox' > ' ' '
liquid. Einstein's formulation of the problem and meth- where ρ is the pressure and η is the viscosity coeffi-
od of its solution served as a pattern followed in the cient, which in this case is a material constant of the
study of flow of the suspension of rigid ellipsoids. 1 3" 6 ] system. The system (1.1)-(1.3) describes the motion of
Just as in the case of a suspension of rigid spheres, it a viscous liquid. In more complicated cases, the stress
was assumed that the suspension of ellipsoids is an tensor cannot be defined in terms of the velocity gra-
ordinary viscous liquid described by the Navier-Stokes dients alone. In particular, suspension of rigid ellip-
equations, and the presence of particles leads only to a soids considered in this article, the stress tensor is
change in the viscosity of the system. In these first in- expressed, in addition to the velocity gradients, also in
vestigations, therefore, the problem was raised of cal- terms of the moments of the distribution function, for
culating the viscosity coefficient as a function of the which equations of motion should also be written,
concentration, of the velocity gradients, and of the di- In this article we present the general results of the
mensions and shape of the particle, but no equations of theory of motion of a dilute suspension of rigid ellip-
motion capable of analyzing the behavior of the system soids, applicable to the case when the rotational Brown-
under any experimental situation were derived for the ian motion of the particles is significant. The coeffi-
suspension; these equations of motion remained unknown cient of rotational diffusion should be large in compari-
until recently. son with the velocity gradients. This requirement im-

Since any system (henceforth assumed to be incom- poses a limitation on the particle dimensions. According
pressible) satisfies t 2 ] the continuity equation to the estimate, for ordinary liquids and velocity gradi-

,. ... ents, the dimensions of the suspended particles should
,. ( ' ' be small compared with ΙΟ^-ΙΟ" 4 cm, but of course

and the equation of motion^ ^ l a r g e i n c o m p a r i s o n w i t h t h e m o l e C u l a r dimensions. The
p~B~"~dit · ' motion of the suspension without allowance for the
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Brownian motion of the particles is considered in Sees.
3 and 4. The equations of motion of suspension with al-
lowance for the rotational Brownian motion are deter-
mined without a field in Sees. 6 and 7, and in an electric
field in Sees. 8 and 9. In Sec. 10 we consider the optical
anisotropy of a moving suspension.

2. PERTURBATION OF THE FLOW OF A VISCOUS
LIQUID BY AN UNDEFORMED ELLIPSOID

Let us consider first, following Jeffrey,1 3 3 the per-
turbation introduced into the motion of a liquid with vis-
cosity μ by a single particle of ellipsoidal shape, the
surface equation of which, in a coordinate system with
origin at the center of the particle, is x2/a2 + yVb2

+ z 2/c 2 = 1. It will also be convenient to use for the
semiaxes of the ellipsoid the notation ai = a, a.z = b, and
a3 = c .

Let the liquid flow unperturbed by the particle be de-
scribed by a velocity distribution i^Xfe, where yyj is
the constant (in the laboratory frame) tensor of the ve-
locity gradients, which, generally speaking, is not sym-
metrical with respect to the indices. We introduce the
symbols yjjc and o>ik for the symmetrized and antisym-
metrized parts of the velocity-gradient tensor, so that

"ik = Hk + "ik·
The liquid flow perturbed by a rigid ellipsoid is de-

scribed by a velocity field vj, which asymptotically ap-
proaches the unperturbed velocity field at large dis-
tances: vi — t'ikXk· On the boundary surface, the liquid
moves together with the surface of the particles.

The perturbed velocity field should be sought as the
solution of the system of equations of an incompressible
liquid, which have the following form[ 2 3 at small Rey-
nolds numbers:

ρ = —Vip -4~ [iAvi, div ν = 0. ( * Ί )

T h e p a r t i c l e i n t h e s t r e a m h a s n o t o n l y t r a n s l a t i o n a l

b u t a l s o g e n e r a l l y s p e a k i n g r o t a t i o n a l m o t i o n . T h e s o l u -

t i o n o f t h e p r o b l e m o f t h e p e r t u r b a t i o n o f t h e l i q u i d f l o w

b y t h e e l l i p s o i d i s c o n v e n i e n t l y s o u g h t i n a c o o r d i n a t e

s y s t e m c o n n e c t e d w i t h t h e p a r t i c l e a n d r o t a t i n g w i t h a n -

g u l a r v e l o c i t y tljS·

T h e c o n v e r s i o n f r o m t h e c o o r d i n a t e s o f a p o i n t i n t h e

l a b o r a t o r y s y s t e m o f c o o r d i n a t e s X{ t o t h e c o o r d i n a t e s

of t h e p o i n t i n t h e r o t a t i n g s y s t e m o f c o o r d i n a t e s xj^ a n d

c o n v e r s e l y , w i t h a c o m m o n o r i g i n , i s d e s c r i b e d b y t h e

e q u a t i o n s

w h e r e a ^ i s t h e c o s i n e o f t h e a n g l e b e t w e e n t h e i - t h

a x i s o f t h e i m m o b i l e s y s t e m t o t h e k - t h a x i s o f t h e r o -

t a t i n g s y s t e m , w i t h

Differentiating (2.2) with respect to time and recog-
nizing that the linear velocity of a point that is immobile
in the rotating coordinate system is given by the rela-
tion

ut =
we obtain the conversion law for the velocity, and then,
after differentiating with respect to the coordinates, the
law governing the conversion of the velocity-gradient

tensor. The symmetrized and antisymmetrized parts
satisfy the relations

— Qn). (2.4)

In the moving frame, accurate to terms of first or-
der in the velocity gradients, the system of equations of
motion (2.1) takes the form

μΔν( = νιΡ, divv = 0. (2.5)

On the surface of the particle we have ν = 0, and at
large distances from the particle vi — yik x k·

The solution of (2.5), obtained by Jeffrey, t 3 ] has in
the moving frame the form

(2.6)

where p 0 is the pressure in the unperturbed liquid, and
Ω and χ j satisfy the Laplace equation and are given by

The quantities Tj , B ^ , and Ajjj are determined by the
boundary conditions and can be represented in the form

νί

The diagonal components of the matr ix Ajk a r e g iven by

Α
3 αίον ' 'ί~

and the off-diagonal components

Alk = -i
2 (a i0— ak 2 (ofai

( 2 . 9 )

d oWe point out that the components of the matr ix

not form a t e n s o r .

In e x p r e s s i o n s (2.8) , (2.9) , and those fol lowing we use

the fol lowing notation for the i n t e g r a l s :

άλ

λάλ
( 2 . 1 0 )

where R = [(a2 + X)(b2 + X)(c2 + λ ) ] 1 / 2 . An analogous no-
tation is introduced for integrals with the other semi-
axes of the ellipsoid. The same symbols without zero
denote the corresponding integrals with a variable lower
limit.

3. MOTION OF ELLIPSOID IN A STREAM

The liquid exerts on a unit surface of the ellipsoid a
force Pi = atonic, where for a viscous incompressible
liquid

Otk=* — ρδ ι»+2μγ ί ) ι. (3.1)

Calculating the velocity derivatives (2.6) at λ = 0 with
the aid of the indicated formulas, we obtain an expres-
sion for the force acting on a unit surface area of the
particle:

^-Au %-4w ( 2
( 3 . 2 )
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where

The total force acting on the part ic le in the liquid is
equal to zero, a s can be verified by integrating (3.2)
over the ent ire surface of the par t ic le .

Calculating the torque acting on the part icle

Pkxt)df (3.3)

(3.4)

with allowance for the fact that

1 f»
~a φ X0hgdf = al6i,

where Ω = 4 πabc/3 is the volume of the part icle and
df is the element of the surface a r e a , we obtain

32
κ — Ahi). (3.5)

The rotational velocity of the moving part ic le is de-
termined from the requirement that the sum of a l l the
torques acting on the part ic le be equal to z e r o . We neg-
lect the intert ia l forces .

If the part ic le is acted upon only by hydrodynamic
forces of the s t r e a m , then the requirement that the mo-
ment (3.5) vanish leads to the relation

(α!-αϊ)γί,, + (αϋ + α!)α4 = 0, (3.6)

from which we determine with the aid of (2.4) the p a r -
t icle rotational velocity

Ω,, (3.7)

A s a r e s u l t o f r e l a t i o n s ( 2 . 3 ) , i n t h e g e n e r a l c a s e t h e

d e s c r i p t i o n o f t h e p o s i t i o n o f t h e p a r t i c l e r e q u i r e s t w o

v e c t o r s a n d t h e e l l i p s o i d of r e v o l u t i o n r e q u i r e s o n e v e c -

t o r d i r e c t e d a l o n g t h e p a r t i c l e s y m m e t r y a x i s . In t h e

l a t t e r c a s e

^im = λ (emyis — etyms) es-- alm,

w h e r e w e h a v e i n t r o d u c e d t h e n o t a t i o n

(3.8)

= e j . The
quantity λ = ( a 2 - b 2 ) / ( a 2 + b 2 ) v a r i e s from - 1 to 1, and
its limiting cases a r e a flat disc and a thin needle. At
λ = 0 the part ic le degenerates into a sphere .

F r o m (3.8), using the formula fej = Ω^ςβίς, we obtain
the l inear velocity of the end of the vector

i — k (yises — ,) + u>lmem ( 3 . 9 )

T h e g e n e r a l e x p r e s s i o n ( 3 . 9 ) w a s d e r i v e d b y H a n d , m

w h o g e n e r a l i z e d J e f f r e y ' s r e s u l t s . t 3 ]

4 . S T R E S S T E N S O R

T h e p r e s e n c e of r i g i d p a r t i c l e s i n t h e l i q u i d c h a n g e s

t h e l o c a l v e l o c i t y g r a d i e n t s i n t h e l i q u i d . T h e d e n s i t y o f

e n e r g y d i s s i p a t i o n i n c r e a s e s b e c a u s e t h e l o c a l v e l o c i t y

g r a d i e n t s i n c r e a s e a n d d e c r e a s e s b e c a u s e p a r t o f t h e

l i q u i d i s r e p l a c e d b y s o l i d p a r t i c l e s . It w i l l b e s h o w n

l a t e r , h o w e v e r , t h a t t h e n e t r e s u l t i s a n i n c r e a s e i n t h e

e n e r g y d i s s i p a t i o n a n d c o n s e q u e n t l y i n t h e e f f e c t i v e v i s -

c o s i t y o f t h e s y s t e m .

W e a s s u m e a s b e f o r e t h a t t h e v e l o c i t y a n d t h e t e n s o r

of t h e v e l o c i t y g r a d i e n t s o f t h e l i q u i d a r e s u c h t h a t a t

l a r g e d i s t a n c e s t h e y b e c o m e e q u a l t o t h e u n p e r t u r b e d

velocity and velocity-gradient tensor ι/jjj. Therefore
the observed, smoothed-out, macroscopic velocity is

defined a s Wi = fikXk» The observed velocity-gradient
is £"ik, and is not equal to the average value of the mi-
croscopic velocity gradients (1/V) J^ ikdV, as was a s -
sumed by several authors without sufficient justifica-
t i o n . 1 1 » 8 ' "

Thus, the ent ire problem consists of determining,
for asymptotically specified values of the velocity gra-
dient yjjj, the averaged s t r e s s tensor , which can be ca l-
culated in t e r m s of the averaged energy dissipation in
the system, a procedure initiated by E i n s t e i n / 1 3 or in
t e r m s of the averaged value of the momentum flux ten-
s o r Ilik = P v i v k ~ °rik i n the region where the observed
velocity gradient is constant. The la t ter method was
proposed by Landau and Lifshitz £ 2 ] and turns out to be
more convenient, s ince it does not give r i se to divergent
express ions .

Changing over to a coordinate system moving with a
velocity wj, we obtain, accurate to f i r s t-order t e r m s
in the smal l difference Wi — vi, where Vi is the m i c r o -
scopic value of the velocity,

dV, (4.1)

where c?ik is the microscopic value of the s t r e s s tensor .
Before we proceed to the calculations, we note that

the s t r e s s tensor may turn out to be a s y m m e t r i c a l . In-
deed, the part ic le may be acted upon by a certain ex-
traneous torque, which in the approximation under con-
sideration should be balanced by the torque exerted on
the part ic le by the liquid and determined in the general
case by expression (3.3). If η is the part ic le-number
density, then

a,k-ah,= -nKlh. (4.2)

It is convenient to calculate the s t r e s s tensor (4.1)
by breaking up the region of integration into two r e -
gions (liquid and solid). It should be borne in mind
here that the integration over the separat ion surface
makes a special contribution to the s t r e s s t e n s o r . We
can rewri te (4.1) in the form

Qik = -rr (4.3)

where φ i s the volume concentration of the solid phase
and Ω the volume of one par t ic le . Indeed, s ince the

t e n s o r s a i k and a i k a r e symmetr ica l , and the torque
Kjk is ant i symmetr ica l , we obtain (4.2) from (4.3).

The liquid in which the ellipsoids a r e suspended i s
by assumption a Newtonian liquid, the s t r e s s tensor of
which i s given by (3.1). After calculating the velocity
gradients and averaging over the volume, we find that
the first t e r m in (4.3) i s

(— ίΌ + 2μγΐί)(1 — φ ) . (4.4)

T h e s e c o n d t e r m i n (4.3) c a n b e c a l c u l a t e d in t e r m s of

t h e i n t e g r a l o v e r t h e s u r f a c e of t h e p a r t i c l e ( s e e C 2 ] ,

S e c . 2) , a n d i s e q u a l t o

.*. (4-5)

Thus, taking into account the expression for the moment
of the forces (3.3), we wri te

σι* = ( - / > ο + 2 μ γ ι ΐ ι ) ( ! - < ? ) + •£ ( 4 . 6 )
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F I G . 1 . C o e f f i c i e n t s o f t h e e q u a -

t i o n o f m o t i o n o f a s u s p e n s i o n o f r i g i d

e l l i p s o i d s o f r e v o l u t i o n a s f u n c t i o n s

o f t h e r a t i o a / b o f t h e s e m i - a x e s o f t h e

e l l i p s o i d o f r e v o l u t i o n .

s w

T h e f o r c e e x e r t e d o n t h e s u r f a c e o f t h e e l l i p s o i d b y t h e

l i q u i d i s g i v e n b y ( 3 . 2 ) , t h e u s e o f w h i c h , w i t h a l l o w a n c e

f o r ( 3 . 4 ) y i e l d s , i n a c c o r d w i t h f o r m u l a ( 4 . 6 )

( 4 . 7 )

T h e l a s t e x p r e s s i o n h a s b e e n w r i t t e n o u t i n a c o o r d i n a t e

s y s t e m b o u n d t o t h e p a r t i c l e , a n d d o e s n o t h a v e a n e x -

p l i c i t c o v a r i a n t f o r m , s i n c e Z / < * j 0 A j j i s n o t a s c a l a r ,

a n d t h e m a t r i x A { k i s n o t a t e n s o r .

W e d e t e r m i n e t h e v a l u e s o f t h e c o m p o n e n t s o f t h e

m a t r i x A ' i k w i t h t h e a i d o f r e l a t i o n ( 3 . 6 ) a n d t r a n s f o r m

( 4 . 7 ) t o t h e l a b o r a t o r y f r a m e , c o n s i d e r i n g f o r s i m p l i c i t y

e l l i p s o i d s o f r e v o l u t i o n , a f t e r w h i c h w e o b t a i n t h e s t r e s s

t e n s o r o f a m o v i n g s u s p e n s i o n o f r i g i d e l l i p s o i d s o f r e v -

o l u t i o n i n t h e c a s e w h e n t h e r o t a t i o n a l B r o w n i a n m o t i o n

o f t h e p a r t i c l e s i s d i s r e g a r d e d :

Oik— —

w h e r e

( 4 . 8 )

( 4 . 9 )

"ι"

T h e v a l u e s o f t h e c o n s t a n t s ( 4 . 9 ) a r e s h o w n i n F i g . 1 a s

f u n c t i o n s o f t h e r a t i o s o f t h e e l l i p s o i d s e m i - a x e s .

E x p r e s s i o n s ( 4 . 8 ) a n d ( 4 . 9 ) , w i t h s l i g h t i n a c c u r a c i e s

in the definitions of ρ and ω were indicated by Hand,C7]

who obtained these expressions by comparing the re-
sults of Jeffrey" ] with the results of Ericksen's phe-
nomenological theory,1-m : and not by direct calculation
as in the present section.

Thus, the system of equations of motion of a dilute
suspension of rigid ellipsoids of revolution, without al-
lowance for the Brownian motion of the particles, con-
sists of the continuity equation (1.1), the equation of mo-
tion (1.2) with definition of the stress tensor (4.8), and
the equation of motion of the vector of the ellipsoid ori-
entation (3.9). The system of equations is closed and can
be used to analyze the motion of a suspension in the case
when the average dimensions of the suspended particles
exceed 10"4-10"3 cm.

5. TRANSLATIONAL AND ROTATIONAL BROWNIAN
MOTION

It is knownC11> U ] that under the influence of thermal
motion small particles execute a disordered motion,
called Brownian, which is described effectively as dif-

fusion of the particles. The problem of determining the
motion of the particles in space and in time reduces to
the problem of finding the probability distribution func-
tions of the positions and orientations of the particles.

The spatial position of a particle of arbitrary shape
can be described by a certain vector of the position of
its center of gravity, r, and the cosines of the angles
between unit vectors rigidly connected to the particle
and the axes of the laboratory frame. We need two unit
vectors to describe the orientation of a particle of ar-
bitrary shape, and one unit vector directed along the
symmetry axis to describe a particle having an axis of
rotation. Thus, in Brownian motion the probability of
the position and orientation of an axially symmetrical
particle is determined by the function W = W(r, e),
where ej is the cosine of the angle between the unit
vector and the j-th coordinate axis. In this case e 2= 1,
so that the distribution function is determined only by
five independent variables.

If the particle is not acted upon by any forces at all,
then the particle has an equal probability of being in any
position and at any orientation, and therefore the distri-
bution function is constant. If the particle is acted upon
by certain forces and torques, then the result is a non-
uniform distribution in space and a predominant orien-
tation of the particles, and consequently we get diffusion
flow,[12:i which occurs for translational motion under
the action of an effective force

-T d\nW (5.1)

w h e r e T i s the t e m p e r a t u r e in energy uni ts , and for

rotational motion under the act ion of an ef fect ive torque,

wh ich w e s h a l l d e t e r m i n e be low.

The rotational mobi l i ty of the non-interact ing part i-

c l e s d o e s not depend on the i r pos i t ion in s p a c e , and

t h e r e f o r e the rotational Brownian motion can b e c o n -

s i d e r e d s e p a r a t e l y f rom the trans lat ional one. In th is

c a s e the end of the unit v e c t o r connected with the s y m -

metry a x i s of the par t ic le can be regarded a s a B r o w n -

ian par t ic le with an i sotrop ic mobil ity, s o that the unit

v e c t o r can only rotate, s i n c e e 2 = 1, and the probabil ity

of par t ic le or ientat ion i s d e s c r i b e d by the distr ibut ion

function W(e), which i s u s u a l l y 1 4 ' ω» ω : de termined from

the continuity equation wr i t ten in a s p h e r i c a l coord inate

s y s t e m . To find the equation for W(e) in a Car tes ian

coordinate system, we assume that the vector θ can
also change its length, i.e., we assume all the compo-
nents of the vector, which we now denote by s, to be in-
dependent. Then the diffusion equation for the distribu-
tion function W(s) can be obtained : 1 2 ] from the conti-
nuity equation

dt dsi *— = 0 · (5-2)

The average velocity of the end of the vector u is de-
termined from the requirement that the sum of all
forces acting on the Brownian particle be equal to zero.

If the particle is acted upon by a force f, then in a
coordinate system connected with the rotating particle
the force-equilibrium condition is

ii-T~aTl χ«Λ«Α«ι = Ο. (5.3)

We have added to t h i s condition, in a c c o r d a n c e with our
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a s s u m p t i o n , a t e r m p r o p o r t i o n a l t o t h e v e l o c i t y o f t h e

r a d i a l m o t i o n o f t h e p a r t i c l e u j j e ^ e j .

M u l t i p l y i n g ( 5 . 3 ) v e c t o r i a l l y b y s , w e o b t a i n a n e q u a -

t i o n f o r t h e m o m e n t s o f t h e f o r c e s

L - r r s u ^ q = o , ( 5 . 4 ) *

where L is the sum of the moments of all the forces
acting on the Brownian particle, which is balanced by
the effective moment of the forces connected with the
Brownian motion of the particle,

- T [ B < ^ ] . ( 5 . 5 )

T h e c o n d i t i o n ( 5 . 4 ) d e t e r m i n e s t h e r o t a t i o n a l v e l o c i t y

o f t h e p a r t i c l e .

B e i n g i n t e r e s t e d h e r e o n l y i n t h e r o t a t i o n a l m o t i o n

of the particles, we shall henceforth put χ — » in the
final results. Then s — e and W(s) — W(e).

All the physical quantities are expressed in this case
in terms of the moments of the distribution function
W(e), so that we shall be faced with the problem of cal-
culating such moments, for example the second-order
moments

(eteh) = \ W (e) etek de. (5.6)

The integration is carried out here under the condition
e 2 = 1. The higher-order moments are determined
analogously.

It is sometimes more convenient to calculate the
moments with the aid of the function W(s) and then go
over to the limit, so that, for example:

(e;efc) = Iim \ W (s) e;ekds. \"··)
X-»oo J

We call attention to the fact that the translational
ability of a nonspherical particle depends on its orien-
tation relative to the direction of motion. For exam-
p l e , 1 " 3 the diffusion coefficients D11 and D 1 of an
oblate ellipsoid of revolution are different for motion
along the symmetry axis and for motion transverse to
the symmetry axis. The average value of the diffusion
coefficient of ellipsoids of revolution is a tensor and is
expressed in terms of the second-order moment of the
distribution function:

Dtk = D±6,k+(Dn — D±){eieh). (5.8)

The connection between the translational and rotational
diffusion for particles of a different type is discussed by
Brenner. : l l : l

We shall not consider translational Brownian motion,
and assume that the particle distribution in space is
equally probable and remains equally probable during
the course of motion.

6. MOTION OF AN ELLIPSOID IN A STREAM WITH
ALLOWANCE FOR THE ROTATIONAL BROWNIAN
MOTION

When considering the motion of a particle in a stream
with allowance for the rotational Brownian motion we
start, following c l 7 ] , from the condition (5.4) and re-
quire that the total torque of all the forces acting on the

particle be equal to zero. It is necessary here to add to
the thermodynamic torque (3.5) the effective torque
- Te χ V In W.

The condition that the total torque be equal to zero
now leads in (3.6) to the relation

(al — a\) y'ik + (<z| + a\)u>\k — anash jg—; (a?ai0 + alah0) [eV In W],, = 0,
(6.1)

whence, changing over to the laboratory frame, we ob-
tain the particle rotational velocity

37* ?[eVlnW]Ja.Ira = -5 1 uiiujiu.mkush Yjs , >"!m — "!i"ji"m*"-sfi 1R j " >
aj,-fai 1 0 π μ ak-\-ai

F o r a n e l l i p s o i d o f r e v o l u t i o n , t h e l a s t r e l a t i o n , w i t h

a l l o w a n c e f o r ( 2 . 3 ) , t a k e s t h e f o r m

iiim = Q°m + D\eVln W],m, ( 6 . 2 )

w h e r e ftjm d e n o t e s t h e v e l o c i t y o f t h e e l l i p s o i d i n t h e

s t r e a m w i t h o u t a l l o w a n c e f o r t h e r o t a t i o n a l B r o w n i a n

m o t i o n , a s g i v e n b y ( 3 . 8 ) . T h e c o e f f i c i e n t o f r o t a t i o n a l

d i f f u s i o n i s d e f i n e d b y

The dimensionless coefficient of rotational diffusion

is shown in Fig. 2 as a function of the ratio a/b of the
semi-axes of the ellipsoid of revolution.

From (6.2) we obtain the linear velocity of the end
point of the vector

u, = 'ej + D(elenVn In W- V, In W), (6.4)

where e* is the linear velocity of the motion of the end
of the vector, defined by formula (3.9).

From the continuity equation (5.2) we obtain with the
aid of (6.4) an equation for the distribution function of
the orientation of the symmetry axes of uniaxial ellip-
soids moving in a stream

d w , η / ο dW ι
dt ' \ ' d'j

&W\

SW v = o.

( 6 . 5 )

F r o m ( 6 . 5 ) w e g e t a n e q u a t i o n f o r t h e r a t e o f c h a n g e

o f t h e s e c o n d - o r d e r m o m e n t s o f t h e d i s t r i b u t i o n f u n c -

t i o n

- 4 δ Ι Λ ) + λ « β ^ >

+a>ht (tjei) — 2λ (e&

(6.6)
The relaxation time is defined here as τ = 1/6D. It

F I G . 2 . D i m e n s i o n l e s s c o e f f i c i e n t

s

njs

OJZ
of rotational diffusion as a function of
the ratio a/b of the semi-axes of the el- agB

lipsoid of revolution.
ΟβΊ

Ο

/

/

/

\

\

\

* [ s ( 3 In W/ds)] = s X 3 In W/ds.
0.1 0,?. lit 1 Z s w

a/b
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i s p o s s i b l e t o o b t a i n i n s i m i l a r f a s h i o n e q u a t i o n s f o r t h e

h i g h e r m o m e n t s o f t h e d i s t r i b u t i o n f u n c t i o n . W e n o t e

t h a t t h e e q u a t i o n s f o r t h e r a t e o f c h a n g e o f t h e s e c o n d -

o r d e r m o m e n t s c o n t a i n s f o u r t h - o r d e r m o m e n t s , a n d t h e

e q u a t i o n f o r t h e r a t e o f c h a n g e o f t h e f o u r t h - o r d e r m o -

m e n t s c o n t a i n s s i x t h - o r d e r m o m e n t s , e t c . T h u s , t h e

s y s t e m o f e q u a t i o n s f o r t h e m o m e n t s i s n o t c l o s e d a n d

c a n n o t b e s o l v e d w i t h o u t s o m e a d d i t i o n a l a s s u m p t i o n s .

L e t u s d e t e r m i n e t h e d i s t r i b u t i o n f u n c t i o n a n d i t s

s e c o n d - a n d f o u r t h - o r d e r m o m e n t s i n t h e s t a t i o n a r y

c a s e a t s m a l l v e l o c i t y g r a d i e n t s , s t a r t i n g f r o m E q . ( 6 . 5 ) .

W e s e e k t h e d i s t r i b u t i o n f u n c t i o n i n t h i s c a s e i n t h e

f o r m o f a n e x p a n s i o n i n i n v a r i a n t c o m b i n a t i o n s o f t h e

vector e{ and the tensors γα- and oofa. Accurate to
second-order terms in the velocity gradients we have

= ~L· ( i +

• • ) ·

( 6 . 7 )

I n t h e c a s e o f a s i m p l e s h e a r f l o w , t h e d i s t r i b u t i o n

f u n c t i o n w a s d e t e r m i n e d w i t h h i g h a c c u r a c y b y P e t e r -

l i n C 4 ] a n d r e c e n t l y b y W o r k m a n a n d H o l l i n g s w o r t h . [ u :

I n t h e c a s e o f s i m p l e t e n s i o n , t h e d i s t r i b u t i o n f u n c t i o n

w a s d e t e r m i n e d b y T a k s e r m a n - K r o s e r a n d Z i a b i c k i . c l e : i

T h e d i s t r i b u t i o n f u n c t i o n ( 6 . 7 ) c a n b e u s e d t o d e t e r -

m i n e [ 1 7 ] t h e s e c o n d - a n d f o u r t h - o r d e r m o m e n t s o f t h e

d i s t r i b u t i o n f u n c t i o n , w h i c h t a k e t h e f o r m

5 2
315£«

12
-Ϊ0552

(6.8)

» + · · ·,

» +.. .)+.. . ,

Where A j s m n = 6 j s 6 m n + 6 j m 6 s n + 6 j n 6 s m . The dots
in the parentheses of the last formula denote terms with
all the remaining combinations of the indices.

7. STRESS TENSOR AND VISCOSITY OF A SUSPEN-
SION WITH ALLOWANCE FOR THE ROTATIONAL
BROWNIAN MOTION OF THE PARTICLES

We now take into account the rotational Brownian mo-
tion of the particles in the calculation of the stresses
arising in the motion of the suspension, following in the
general case a method t l 8 ] used to calculate the stress
tensor in the stationary case.

Equation (4.7) remains valid also when the rotational
Brownian motion is taken into account, and the problem
consists of determining the components of the matrix
A[jj with the aid of the new condition (6.1) and of chang-
ing over to the laboratory frame. After performing
these operations and averaging with the aid of the dis-
tribution W(e), we obtain an expression (determined by
another method by Shmakov and Taran c l 9 : l ) for the
stress tensor of a suspension of ellipsoidal particles,
with allowance for the rotational Brownian motion of the
particles

ee) 6 )

(7.1)

where ρ, ω , ξ, and χ have the meaning indicated by
formulas (3.9), and

3λ 12(«a-
(7.2)

The values of κ, ρ, ζ, ω, and χ as functions of the ratio
a/b of the semi-axes of the ellipsoid of revolution are
shown in Fig. 1.

Thus, the system of equations of motion of a dilute
suspension of rigid ellipsoids of revolution consists of
the continuity equation (1.1), the equation of motion
(1.2) with a definition of the stress tensor (7.1), and an
infinite chain of equations for the even-order moments
of the distribution function, the first of which is (6.6).
The system of equations is not closed, and the analysis
of the motion of the suspension cannot be carried out
without some approximations. When the particle shape
deviates little from spherical, |λ | « 1, we can use suc-
cessive approximations.

For stationary cases, the expression (7.1) for the
stress tensor can be rewritten with the aid of (6.6), in
which the time derivative is equal to zero, in the form

lt) 6ih + 2μ (1 + φο>) yihOik = - (

( —-1-λκ) (β<β 4 ί Λ ) yh.

( 7 . 3 )

T h e a d v a n t a g e o f t h i s e x p r e s s i o n , w h i c h h a s b e e n i n -

d i c a t e d i n c W : i , l i e s i n t h e f a c t t h a t a t a g i v e n a c c u r a c y

o f t h e m o m e n t s i t d e t e r m i n e s t h e s t r e s s w i t h a g r e a t e r

a c c u r a c y t h a n e x p r e s s i o n ( 7 . 1 ) . F o r e x a m p l e , w i t h t h e

a i d o f m o m e n t s c a l c u l a t e d a c c u r a t e t o t e r m s o f s e c o n d

o r d e r i n t h e g r a d i e n t s i t i s p o s s i b l e t o d e t e r m i n e i n t h e

s t a t i o n a r y c a s e t h e s t r e s s - t e n s o r c o m p o n e n t s a c c u r a t e

t o t h i r d - o r d e r t e r m s .

T h e s t r e s s e s p r o d u c e d f o r a g i v e n s t a t i o n a r y f l o w o f

p a r t i c u l a r f o r m c a n b e d e t e r m i n e d f r o m t h e s t r e s s t e n -

s o r ( 7 . 3 ) a n d t h e d e f i n i t i o n s ( 6 . 8 ) a n d ( 6 . 9 ) . F o r e x a m -

p l e , f o r t h e c a s e w h i c h , f o r u n d e r s t a n d a b l e r e a s o n s , a t -

t r a c t e d g r e a t a t t e n t i o n o n t h e p a r t o f t h e r e s e a r c h e r s , 1 - 4 "
β ] n a m e l y f o r s t e a d y - s t a t e s i m p l e s h e a r f l o w , w h e n o n l y

o n e c o m p o n e n t o f t h e v e l o c i t y - g r a d i e n t t e n s o r d i f f e r s

from zero (viz Φ 0), the indicated relations determine
the stresses, of which only the component σ» and CTU
are equal to zero, accurate to terms of third order in
the velocity gradients. The shear stress σΐ2 = ηνιζ de-
termines the coefficient of effective shear viscosity

(7.4)

where

405 ^24 λ ~ Γ 2 8 0 ~ 2 8 ~ 3 5 7 '

I t c a n b e v e r i f i e d t h a t S i s a l w a y s p o s i t i v e a n d t h e r e -

f o r e t h e c o e f f i c i e n t o f s h e a r v i s c o s i t y o f a s u s p e n s i o n

d e c r e a s e s w i t h i n c r e a s i n g v e l o c i t y g r a d i e n t , a f a c t c o n -

n e c t e d w i t h t h e o r i e n t a t i o n o f t h e p a r t i c l e s b y t h e f l o w .

In the general case η can obviously be represented in
the form of an expansion in even powers of the velocity
gradient.

The values of the dimensionless initial shear viscos-
ity V = ( η0 - μ)/μφ, which does not depend on the ve-
locity gradients, are shown in Fig. 3 as functions of the
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FIG. 3. Initial shear viscosity of
the suspension V = (η 0 — μ)Ιμψ as a
function of the ratio a/b of the semi-
axes of the ellipsoid of revolution.

0.1 02

rat io a/b of the semi-axes of the ellipsoid of revolution.
The function V + 1 was tabulated in c s ' 2 0 1 . The dimen-
sionless s h e a r viscosity coefficient a s a function of the
p a r a m e t e r s a/b and 1̂ 12/D was tabulated in C 2 1 1 .

The propert ies of the suspension were considered
also in other s imple par t icu lar c a s e s . i m > 1 8 > 2 2 ]

We note that if the ellipsoids degenerate into spheres ,
then the integra ls in (2.10) can be easily calculated and
formulas (4.9) and (7.2) yield ω = 1.5, ρ = £ = χ = κ = 0 .
The stress tensor (7.1), just as (4.8) and (7.3), takes in
accordance with the results of the theory of suspension
of small spheres1-2 3 1 the form

and coincides with (1.3). In this case the suspension is
an ordinary viscous liquid with a viscosity coefficient

8. DIELECTRIC ELLIPSOID IN A STREAM AND IN
AN ELECTRIC FIELD

In the preceding sections we considered the behavior
of a suspension in the case when the ellipsoids are acted
upon by the torque due to the hydrodynamic forces,
which lead to orientation of the particles by the stream,
and the torque due to the effective Brownian force, which
causes disorientation of the particles. It is possible to
consider in perfectly similar fashion the motion of el-
lipsoids and the properties of the suspension in the case
when the particles are acted upon directly, in addition,
by some extraneous torques, for example, the moment
produced when an electric field of intensity Ε is ap-
plied. If the particle has a dipole moment 3\ then the
moment of forces acting on the particle is given by the
formula t 2 4 ]

G = [OTS]. (8.1)

Let us consider the case when the particles do not
have a constant dipole moment. Let the principal axes
of the dielectric tensor coincide with the axes of the
ellipsoid. Then the expression for the dipole moment
of the ellipsoid in the coordinate frame connected with
the axes of the particle i s 1 2 4 1

~ 3 •E'k,

where £ ' a r e the pr incipal v a l u e s of the d i e l e c t r i c
t e n s o r of the par t ic le , e i s the d i e l e c t r i c constant of
the liquid, and n ( ' a r e the depolar izat ion coe f f i c ients ,
e x p r e s s i o n s for which can be found in c 2 4 ] , S e c . 4. F o r
ellipsoids of revolution we have n ( 2 ) = n ( 3 ) = (1 - η ' ΐ ! )/2 .
n ( 1 ) and n ( 2 ) a r e shown in Fig. 4 a s functions of the r a -
tio a/b of the semi-axes of the ellipsoid.

Confining ourselves henceforth to ellipsoids of revo-
lution, we write an expression for the dipole moment in

FIG. 4. Depolarization coef-
ficients as functions of the ratio
a/b of the semi-axes of an ellip-
soid of revolution.

the laboratory f rame

—""

N.

OJ 02
a/b

(8.2)

where

_ ,
ε0 — ε-τ<Ρ

e |3e (e<2' — ε) + ε (e"> —e"> — s<") + (e<" — e) (e<a — e) (B»> + 2rc'H)1 /ο β\
α)_ε) η <ΐ)] [ε_(ε<2>-ε)η'2>] ' V '

ε 2 ( 6 α > — E

> — ε ) η ( ΐ ι ] [ ε + ( ε ' 2 ' — ε
>— n<H)

( 8 . 4 )

W i t h t h e a i d o f ( 8 . 2 ) w e n o w w r i t e a n e x p r e s s i o n f o r t h e

m o m e n t o f f o r c e s a c t i n g o n t h e p a r t i c l e i n t h i s c a s e

w h i c h t e n d s t o o r i e n t t h e p a r t i c l e a l o n g t h e f i e l d .

F r o m t h e r e q u i r e m e n t t h a t t h e n e t r e s u l t a n t t o r q u e

a c t i n g o n t h e p a r t i c l e b e e q u a l t o z e r o , w e o b t a i n t h e r o -

t a t i o n a l v e l o c i t y o f t h e e l l i p s o i d

En [ e E ] , . . ( 8 . 5 )

where Ω j m is the velocity of rotation of the ellipsoid
of revolution in the stream without an electric field, and
is determined by formula (6.2).

For ellipsoids of revolution we obtain from (8.5) the
linear velocity of the end of the unit vector

Uj = Uj— -J—( - enEnEj), (8.6)

where Uj is the linear velocity of the end of the unit vec-
tor in the stream without the electric field, and is deter-
mined by formula (6.4).

From the continuity equation (5.2) we obtain with the
aid of (8.6) the diffusion equation for the distribution
function of the orientations of the symmetry axes of
axially symmetrical ellipsoids moving in the stream
and in an electric field

^ + O l °W

~Έ$ [(ese1emE,Em~esEsEl) •^ + (3e]e.EiE.-E^) W] = 0 .

(8.7)
F r o m the last equation we obtain a relation for the

rate of change of the second-order moments of the d i s-
tribution function

jj- (ejeh) + < ) — 2λ (e,ehesej) ysi

^L· h - 2 <eie*«»eJ> E'Et + <-e^l) ElEi) •
(8.8)

Equations for the higher moments of the distribution
function can be obtained in similar fashion. Just as for
a suspension moving without the field, the equation for
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the rate of change of the second-order moments contains
fourth-order moments, the equation for the rate of
change of the fourth-order moments contains sixth-
order moments, etc. Thus, the system of equations for
the moments is not closed and the moments cannot be
obtained without some additional assumptions.

The moments of the distribution function can be cal-
culated directly if (8.7) is used to determine the distri-
bution function, which can be obtained in the stationary
case, at low velocity gradients and in a weak electric
field, in the form of an expansion in scalar combinations
of the vectors ej and Ejj and of the tensors γ^ and
α>ϋς. Accurate to terms of first order in the velocity
gradients and of second order in the field intensity, we
have

(8.9)
We note that the distribution function in the particu-

lar case of simple shear motion ( i^ i* 0) and an elec-
tric field directed along the 1 axis was obtained by
Ikeda. t 2 5 ]

Just as in Sec. 6, we calculate the moments of the
distribution function and obtain, with the indicated ac-
curacy

~ 4 λ ) ^ + 2 λ 13

(etekenei) = X Alhnl +

+ λ [10 (E,Enyih + . . . ) +10 (EsEhyst8ln + . . . ) -

where Δ^Ι = δ^δ^ + δ^δ^ + δ^ δ^, and the dots in
the last formula denote the omitted terms with all the
remaining combinations of the indices.

9. STRESS TENSOR AND VISCOSITY OF A SUSPEN-
SION IN AN ELECTRIC FIELD

The expression (4.7) which we derived above is ap-
plicable to a suspension moving in an electric field.
After determining the components of the matrix Ajjj for
the case in question, changing over to the laboratory
frame, and averaging, we obtain expressions for the
stress tensor of a suspension moving in an electric
field:

(Po
+ μφκΰ ((

"&Γ[(1 ~ λ ) (e

(Po + μψΡ <«ί «·> Ί!>) δι* + 2μ (1 + φω) ytk

((eteh) — j β,» ) + μφζ «ί^> y!k + (ehe,) yit) + μφχ (eieh e,es) y,,

'ΕΛ+ 2 λ (e'e"eie-> EiE> ~ (! + λ> <e*«>> EjEih
(9.1)

The constants ρ, ω, ζ, χ, and κ are determined as
before by the expressions (4.9) and (7.2), and are shown
in Fig. 1 as functions of the ratio of the ellipsoid semi-
axes. We note that the stress tensor of a suspension
swing moving in an electric field is not symmetrical.

Thus, the system of equations of motion of a dilute
suspension of rigid dielectric ellipsoids in an electric
field, with allowance for the Brownian motion of the
particles, consists of the continuity equation (1.1), the
equation of motion (1.2) with definition of the stress

tensor (9.1), and an infinite chain of equations for the
even-order moments of the distribution function, the
first of which i s (8.8). Jus t a s for a suspension without
a field, the system of equations is not closed and an
analysis of the motion of the suspension cannot be car-
ried out without some approximations. When the parti-
cles differ little from spheres and |λ | « 1, we can use
a successive-approximation method.

Let us consider further the case of steady-state
shear flow (ui2 * 0), when the electric field intensity
vector lies in the (1, 2) plane and has components E x

= Ε cos φ, E 2 = Ε sin ψ, and E3 = 0. Then the expres-
sions (9.1), (8.10), and (8.11) determine the shear stress,
accurate to terms of first order in the velocity gradient
and of second order in the field intensity, from which we
get the coefficient of the effective shear viscosity

(9.2)

where ?70 is the initial value of the shear viscosity,
which does not depend on the velocity gradients and on
the field.

The increase of the effective viscosity of the suspen-
sion in the field is due to the hindered rotation of the
particles. The dependence of the viscosity on the field
direction is obviously connected with the orienting in-
fluence of the field on the suspended particles. In a field
applied along the flow direction, the viscosity of a sus-
pension of prolate ellipsoids decreases, and that of ob-
late ellipsoids increases.

The analysis of the motion of a suspension of dielec-
tric ellipsoids in an electric field can be easily general-
ized to the case when the particle has a constant elec-
tric moment d. It is necessary to take into account here
that the particle is acted upon by an additional torque
d χ Ε (Ε is the average value of the field intensity in
the system), which must be taken into account when the
balance of the forces acting on the particle is set up.
All the calculations are performed in the same manner
as shown in the preceding sections.

In this more general case, the stress tensor, which
was recently determined by Begoulev and Shmakov,1-263

is expressed in terms of the first, second, third, and
fourth moments of the distribution function. The system
of equations of motion of the suspension should include
in this case (besides the continuity equation (1.1), the
equation of motion (1.2), and the definition of the stress
tensor) also an infinite chain of equations for the even
moments of the distribution function, and, unlike the
cases considered above, also of the odd ones.

An expression for the coefficient of effective viscos-
ity of a suspension of ellipsoids was obtained, for the
particular case of shear motion, by Saito and Kato t 2 7 : i

and by Chaff ey and Mason. : 2 8 ]

We note that when the ellipsoids degenerate into
spheres, the stress tensor (9.1) takes on the form (7.5).
Thus, if the spheres have no dipoles, the field does not
influence the motion of the suspension, which in this
case is an ordinary viscous liquid with a viscosity coef-
ficient r) = μ(1 + 1.5φ). However, if the spheres have
constant dipole moments, then the stress tensor cannot
be reduced to the simple form (1.3), but is determined
in terms of the third-order moments. The system of
equations for the moments, and consequently the system
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of equations of motion, i s likewise not closed in this
case and i t s analysis cal ls for approximate methods.

If s imple s h e a r motion is considered (viz Φ 0) in the
case of an arbi tar i ly directed field with intensity com-
ponents E i = Ε cos ψ sin γ, Ez = Ε sin φ sin y, and E 3

= Ε cos γ, we can obtain an expression for the effective
coefficient of shear viscosity of a suspension of spheres
in the form of an expansion in even powers of the field
intensity. Accurate to fourth-order t e r m s , we have

F r o m ( 1 0 . 2 ) a n d ( 1 0 . 3 ) w e o b t a i n

(9.3)

where Ε i s the mean value of the field intensity in the
medium.

The motion of a suspension of spherical part ic les in
an external field without allowance for the rotational
Brownian motion of the part ic les was considered in [ 2 9 >

30 ]_
All the resu l t s of the theory of motion of a suspen-

sion in an e lectr ic field a r e valid, with suitable change
in notation, for a suspension of magnetic par t ic les mov-
ing in a magnetic field, and also for a suspension 1 1 3 0 ]

of buoyant part ic les moving in a gravitational field and
having a m a s s center that does not coincide with the
geometrical center .

10. DIELECTRIC TENSOR

A flowing suspension of non-spherical part ic les b e -
comes optically anisotropic as a result of the or ienta-
tion of the part ic les by the flow. Let us examine this
phenomenon, following t l 7 : , and start ing from the d i-
e lectr ic tensor ey^, defined by the r e l a t i o n C 2 4 ]

Di = eihEk,

where Dj and E^ a r e the induction and e lectr ic field
intensity, averaged over a volume greatly exceeding the
volume of the par t ic le .

Since the field E^1 ' inside an ellipsoid placed in a
homogeneous field i s homogeneous, we can write for a
single part ic le the average values

+ n£F, (10.1)

where e ( ' a r e the principal values of the dielectr ic
tensor of the part icle; by assumption, this tensor is
diagonal in a coordinate system connected with the axes
of the ellipsoid; e i s the dielectr ic constant of the l iq-
uid. In view of the assumed anisotropy, the last formula
of (10.1) i s valid only in the coordinate system con-
nected with the par t ic le .

Eliminating the averaged field outside the part ic le
from the formulas in (10.1), we obtain

— e)Eiiy. (10.2)

The expression for the field intensity inside an el l ip-
soid located in an external field, which we a s s u m e in
the case when the part ic le is large compared with the
molecular dimensions to be the average macroscopic
field E k (in accordance with I 2 * ] , Sec. 8), is

ΕΪ" = -ε- (ε(ίι) — ε) «<&> '

w h e r e n ( * a r e t h e d e p o l a r i z a t i o n c o e f f i c i e n t s .

( 1 0 . 3 )

- - ~ « ' ε + ( ε < * ) - ε ) η < 1 " S l

W e n o w c h a n g e t o t h e l a b o r a t o r y f r a m e a n d c o n f i n e o u r -

s e l v e s t o e l l i p s o i d s o f r e v o l u t i o n w i t h a l l o w a n c e f o r

( 2 . 3 ) , a n d o b t a i n a f t e r a v e r a g i n g o v e r t h e p a r t i c l e o r i -

e n t a t i o n s a n d t a k i n g t h e t o t a l n u m b e r o f p a r t i c l e s p e r

u n i t v o l u m e i n t o a c c o u n t a n e x p r e s s i o n f o r t h e i n d u c t i o n

o f t h e e l e c t r i c f i e l d , w h i c h d e t e r m i n e s t h e d i e l e c t r i c

t e n s o r

εϋ. = εοο»! + γφ y{eieh) — - - oik I, (10.4)

w h e r e e 0 a n d y a r e d e t e r m i n e d by (8.3) a n d (8 .4) . T h e

m o m e n t s of t h e d i s t r i b u t i o n funct ion a r e d e t e r m i n e d i n

t h e g e n e r a l c a s e b y (6.6) f o r a s u s p e n s i o n w i t h o u t e x -

t e r n a l f i e lds a n d by (8.8) for a s u s p e n s i o n m o v i n g in a n

e l e c t r i c f ie ld. F o r s t a t i o n a r y flow i t i s p o s s i b l e to u s e

i n t h e r e s p e c t i v e c a s e s t h e e x p r e s s i o n s (6.8) a n d (8 .10) .

F r o m (10.4) a n d (6.8) w e c a n o b t a i n a r e l a t i o n b e -

t w e e n t h e d i e l e c t r i c t e n s o r a n d t h e v e l o c i t y - g r a d i e n t

t e n s o r . A c c u r a t e t o f i r s t - o r d e r t e r m s we h a v e

fi"=eo6,-A-L-|^-7 i ;,. (10.5)

A n a l o g o u s l y , f r o m (10.4) a n d (8.10) w e o b t a i n , l i k e w i s e

a c c u r a t e to t h e f i r s t o r d e r , t h e r e l a t i o n

ει,ι = εβίΗ-\-~Ά /#,£,, __]_£2β.Λ + -!!!* γ.,( (10.6)

T h e a p p e a r a n c e of o p t i c a l a n i s o t r o p y i s c o n n e c t e d wi th

t h e o r i e n t i n g a c t i o n of t h e v e l o c i t y g r a d i e n t , a n d of t h e

f ie ld on t h e p a r t i c l e s u s p e n d e d i n t h e l i q u i d .

T h e o p t i c a l a n i s o t r o p y of t h e s u s p e n s i o n i n t h e p a r -

t i c u l a r c a s e of s t e a d y - s t a t e s h e a r m o t i o n w a s c o n s i d -

e r e d by P e t e r l i n a n d S t u a r t 1 3 1 ] a n d w i t h g r e a t e r a c c u -

r a c y by S c h e r a g a , E d s a l l , a n d G a d d , [ 3 2 : l a n d i n t h e c a s e

of o s c i l l a t o r y s h e a r m o t i o n by C e r f a n d T h u r s t o n . C 3 3 ]

T h e o p t i c a l a n i s o t r o p y of a s u s p e n s i o n i n s i m p l e

s h e a r m o t i o n ( v 2 i * 0) i n a w e a k e l e c t r i c f ie ld, w h e n t h e

e l e c t r i c f ield i n t e n s i t y v e c t o r i s d i r e c t e d a l o n g t h e 1

a x i s , w a s c o n s i d e r e d by I k e d a , c 2 5 : i who a l s o t o o k t h e

p r e s e n c e of a c o n s t a n t d i p o l e m o m e n t of t h e p a r t i c l e

i n t o a c c o u n t .

11. CONCLUDING REMARKS

T h u s , i n t h e c a s e w h e n t h e r o t a t i o n a l B r o w n i a n m o -

t i o n of p a r t i c l e s m u s t b e t a k e n in to a c c o u n t , i . e . , when

t h e d i m e n s i o n s of t h e s u s p e n d e d p a r t i c l e s a r e s m a l l e r

t h a n 1 0 " 3 - 1 0 "* c m , t h e e q u a t i o n s of m o t i o n of a d i l u t e

s u s p e n s i o n of r i g i d e l l i p s o i d s of r e v o l u t i o n c a n b e e x -

p r e s s e d w i t h t h e a i d of t h e m o m e n t s of t h e d i s t r i b u t i o n

funct ion, w h i c h i n t h i s c a s e a r e t h e i n t e r n a l v a r i a b l e s

d e s c r i b i n g t h e o r i e n t a t i o n of t h e p a r t i c l e s i n t h e f ie ld

a n d i n t h e s t r e a m . T h e e q u a t i o n of m o t i o n c o n t a i n s a

finite relaxation t ime τ = 1/6D, and this distinguishes
the system under consideration from a viscous liquid o r
an elast ic body, whose respective relaxation t imes a r e
zero or infinity and do not enter in the equation of mo-
tion. This means that a suspension of rigid ellipsoids
exhibits v isco-elast ic propert ies and is an example of a
system whose behavior is in a certain sense in termedi-
ate between that of a viscous liquid and a solid.
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The relaxation process connected with the disorien-
tation of the particles is not the only one for suspen-
sions. Other relaxation processes, which were recently
considered by Afanas'ev and Nikolaevskii'343 for a sus-
pension of small spheres, and which must be taken into
account in the study of the suspension of other parti-
cles, are those connected with the equalization of the
translational and rotational motions of the system.

The theory of flow of suspensions of rigid ellipsoids
was initially developed1 1 4'5 ] to explain the behavior of
dilute solutions of macromolecules, and at the present
time the results of the theory are widely used to obtain
information on the dimensions and shapes of rigid mac-
romolecules.1·35·1 The present theory does not apply to
dilute solutions of flexible macromolecules which form
statistical coiled balls. A theory of motion of suspen-
sions of deformable particles is presently being inten-
sively developed for the description of the behavior of
systems of this type . " ' 3 e ' 3 8 3
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