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"We believe a gene—or perhaps the whole chro-
mosome fibre—to be an aperiodic solid."
Erwin Schrbdinger, What is Life? The Physical
Aspect of the Living Cell, Macmillan, New York,
1945 (Russ. Transl., IL, M., 1947, p. 88).

I. INTRODUCTION

Λ-S we know, the genetic information that comprises
the overall construction plan of a living organism is
coded in the sequence of monomer links of a giant
molecule of deoxyribonucleic acid (DNA). Figure 1
shows the structure of DNA. The DNA molecule is a
complex of two polymer chains bound together by inter-
molecular forces. Each chain in the complex forms a
right-hand helix, and it consists of a sugar-phosphate
"backbone" having nitrogenous bases of four types at-
tached to it: adenine (A), guanine (G), thymine (T), and
cytosine (C). The repetitive element of the chain
(nitrogeneous base + sugar + phosphate) is called a
nucleotide. Thus, DNA consists of two mutually-twisted
polynucleotide chains. While the bonds between the
nucleotides within each of the chains are rigid and
covalent, and have an energy of about 60 kcal/mole
(3 eV), it is an essential fact that the bonds between the
polynucleotide chains are at least an order of magni-
tude weaker. These chains obey a strict complementar-
ity (correspondence) rule. Namely, thymine is always
found opposite adenine, and cytosine opposite guanine.
The complementarity is determined by the steric cor-
respondence of the bases. Here the complementary
base pairs are stabilized both by hydrogen bonds
(shown by the dotted line in Fig. 1), and simply by elec-
trostatic and London forces. The interaction between
neighboring base pairs in the double helix is essential
for the stability of DNA. The structural parameters of
DNA are the following: the diameter of the molecule is
»20 A; the distance between adjacent base pairs is
«3.4 A; and 10 base pairs occur per turn of the helix,
so that adjacent pairs are twisted with respect to one
another by 36° (see Note 1 at the end of the article).
As a rule, DNA consists of 10 4-10 5 links (see Note 2).
Thus, the macromolecule of DNA is a one-dimensional
aperiodic solid (or crystal). This solid is one-dimen-
sional because each unit cell (base pair) interacts only
with two adjacent cells (the coordination number if two).

DNA is an aperiodic crystal because it consists of a
sequence of unit cells of two types: the nucleotide pairs
AT and GC. This sequence cannot be periodic, just as

Guanine
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T hThymine

N
Η

Cytosine-guanine

FIG. 1. Structure of DNA. a) A fragment of a single polynucleotide
chain: at left—schematic diagram (P denotes phosphate, S is sugar (de-
oxyribose), and Β!, Β 2 , etc. are different nitrogenous bases), and at
right—the chemical structure (the carbon atoms in the deoxyribose ring
and in the nitrogenous bases, as well as the hydrogen atoms on the car-
bon atoms of the bases, are not depicted); b) approximate parameters
of the double helix of DNA in the B-form; c) combination of the com-
plementary bases by hydrogen bonds (dotted lines).
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FIG. 3. Melting curve of a homopoly-
nucleotide. [2]

FIG. 2. Schematic diagram of the helix—coil transition in DNA. a)
Completely helical state (low temperature); b) partly melted state (a
temperature in the transition region); c) completely melted state with
separated strands.

the sequence of letters in the meaningful text of a book
is not periodic, since genetic information is contained
in the order of succession of the nucleotides.

Study of both the experimental and theoretical
properties of such a one-dimensional aperiodic crystal
is of undoubted interest for physics. Physical studies
are also important for understanding the genetic func-
tion of DNA, which consists in preservation, reproduc-
tion, and realization of the genetic information (see
Note 3).

Among the physical processes that occur in DNA, an
especial place is occupied by the relatively well-stud-
ied process of melting of the DNA molecule, which is
called the helix-coil transition. Figure 2 depicts the
helix-coil transition schematically. The single-
stranded DNA that is formed in the helix-coil transi-
tion is a flexible polymer chain. Both the sugar-phos-
phate skeleton and the nitrogeneous bases acquire
great freedom of rotation with respect to the single
bonds. The statistical segment of the single-stranded
molecule (the distance between links in single-stranded
DNA is 6.8 A) is about 7 links (see Note 4). This means
that the single-stranded polynucleotide in solution be-
haves like a chain of freely-jointed segments containing
seven nucleotides each. Such a chain has a Gaussian
distribution of distances between the ends, and is
called a Gaussian or random coil. The different states
of a Gaussian chain are equivalent to the trajectories
of a Brownian particle that has a free-path length equal
to the length of the segment.

The helix-coil transition is reversible. Upon cool-
ing, the complementary chains again form hydrogen
bonds with one another. As before, the distance between
bases along the sugar-phosphate chain is 6.8 A. At the
same time, direct van der Waals contact between
neighboring base pairs at a distance of 3.4 A is ener-
getically favorable. In order that neighboring base
pairs can approach to this distance, they must rotate
by 36° with respect to one another. This requirement
dictates the stereochemistry of the sugar-phosphate
skeleton, and the rotation occurs in such a way that a
right-hand DNA helix is always formed. DNA has a
highly rigid structure in the helical state. Freedom of
rotation about the single bonds is almost completely

SO 5B 5Ί 5B 7,'C

r u l e d o u t . N e v e r t h e l e s s , t h e c h a i n s t i l l k e e p s a c e r t a i n

f l e x i b i l i t y , a n d t w o - s t r a n d e d D N A i s a c o i l h a v i n g t h e

a n o m a l o u s l y l a r g e s t a t i s t i c a l s e g m e n t of a b o u t 3 0 0 b a s e

p a i r s . T h i s s i z e of t h e s t a t i s t i c a l s e g m e n t a r i s e s f r o m

c o n t i n u o u s f l e x i b i l i t y of t h e h e l i x , r a t h e r t h a n f r o m

l o c a l b r e a k d o w n of t h e h e l i c a l s t r u c t u r e . T h a t i s , D N A

i s a w o r m l i k e ( p e r s i s t e n t ) , r a t h e r t h a n a z i g z a g c h a i n

( s e e N o t e 4 ) . T h u s , t h e h e l i x - c o i l t r a n s i t i o n i s a r e -

v e r s i b l e t r a n s i t i o n f r o m t h e e n e r g e t i c a l l y f a v o r a b l e

h i g h l y - o r d e r e d h e l i c a l " c r y s t a l l i n e " s t a t e t o t h e d i s -

o r d e r e d , " l i q u i d " r a n d o m - c o i l s t a t e . I t i s e s s e n t i a l t o

e m p h a s i z e t h a t t h e s e q u e n c e of b a s e s i n t h e c h a i n r e -

m a i n s j u s t a s s t r i c t l y f i x e d i n t h e c o i l a s i n t h e h e l i x ,

s i n c e o n l y t h e w e a k i n t e r m o l e c u l a r f o r c e s a r e d e s t r o y e d

u p o n m e l t i n g , w h i l e t h e c o v a l e n t b o n d s w i t h i n t h e s u g a r -

p h o s p h a t e c h a i n s r e m a i n u n a f f e c t e d . T h e p r o b l e m of

r e v e r s i b i l i t y of t h e h e l i x - c o i l t r a n s i t i o n i s c o m p l i c a t e d

b y t h e f a c t t h a t m u t u a l s e a r c h i n g of c o m p l e m e n t a r y

r e g i o n s i s h i n d e r e d a f t e r c o m p l e t e s e p a r a t i o n o f t h e

f i l a m e n t s , a n d k i n e t i c f a c t o r s e n t e r i n , s o t h a t

h y s t e r e s i s i s o f t e n o b s e r v e d e x p e r i m e n t a l l y . H o w e v e r ,

o n e c a n a v o i d h y s t e r e s i s b y n o t c a r r y i n g t h e m e l t i n g

p r o c e s s t o t h e e n d , s o t h a t t h e s t r a n d s r e m a i n a t t a c h e d

a t s e v e r a l p o i n t s .

T h i s r e v i e w i s c o n c e r n e d w i t h t h e t h e r m o d y n a m i c

t h e o r y of t h e h e l i x - c o i l t r a n s i t i o n i n D N A . H o w e v e r ,

b e f o r e w e p r o c e e d t o p r e s e n t i n g t h e t h e o r y , w e s h a l l

g i v e v e r y b r i e f l y t h e f u n d a m e n t a l e x p e r i m e n t a l d a t a

t h a t m u s t b e a d d u c e d , b o t h f o r s e l e c t i n g t h e t h e o r e t i -

c a l m o d e l , a n d f o r f o r m u l a t i n g t h e q u e s t i o n t h a t t h e

t h e o r y m u s t a n s w e r .

I I . E X P E R I M E N T A L D A T A

T h e h e l i x - c o i l t r a n s i t i o n c a n b e o b s e r v e d b y v a r i o u s

m e t h o d s : o p t i c a l ( a b s o r p t i o n , o p t i c a l a c t i v i t y ) , m i c r o -

c a l o r i m e t r i c , e t c . T h e m o s t w i d e s p r e a d h a s b e e n t h e

m e t h o d of m e a s u r i n g t h e a b s o r b a n c e o f a D N A s o l u t i o n

i n t h e n e a r u l t r a v i o l e t ( n e a r 2 6 0 0 A ) . I t i s b a s e d o n t h e

h y p e r c h r o m i c e f f e c t , w h i c h i s a n i n c r e a s e i n t h e a b -

s o r b a n c e of D N A u p o n h e l i x - c o i l t r a n s i t i o n ( s e e ,

e . g J 1 ] ) . T h i s i n c r e a s e i n a b s o r b a n c e i s d u e t o l o s s of

t h e i n t e r a c t i o n o f n e i g h b o r i n g b a s e p a i r s i n t h e t r a n s i -

t i o n . If D i s t h e a b s o r b a n c e of t h e s o l u t i o n , a n d D m i n

a n d D m a x a r e i t s v a l u e s t h a t c o r r e s p o n d t o t h e c o m -

p l e t e l y h e l i c a l a n d c o m p l e t e l y c o i l - l i k e s t a t e s of D N A ,

t h e n t h e q u a n t i t y ( D - D m i n ) / ( D m a x - D m i n ) 8 i v e s t h e

f r a c t i o n of l i n k s 1 - & t h a t o c c u r i n t h e c o i l - l i k e

( m e l t e d ) s t a t e . F i g u r e 3 g i v e s a s a n e x a m p l e t h e m e l t -

i n g c u r v e f o r a t w o - s t r a n d e d h o m o p o l y n u c l e o t i d e * ( i . e . ,

* Different two-stranded homopoly nucleotides ( b o t h ribo- and

deoxyribo-) have melting curves completely analogous in form. They

differ from one another only in the melting temperature . Chamberl in

[3] has made the most complete study of the melting curves of different

two-stranded homopolynucleot ides .
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FIG. 4. The melting curve (1) as measured by the optical absorption,

and the temperature-dependence of the characteristic viscosity (2) for
T2phageDNA. [4]

a polynucleotide consisting of identical base pai r s) ,
and Fig. 4 shows the same for the DNA of Τ2 phage.
The hydrodynamic c h a r a c t e r i s t i c s , the sedimentation
constant, viscosity, e tc . (see Fig. 4, curve 2) also vary
during the helix-coil t rans i t ion. These quantities c h a r -
acter ize the variation in dimensions of the macromole-
cule during the t ransi t ion. P a r a l l e l measurements of
the helicity by the optical method and of the molecular
dimensions by the hydrodynamic method make it possi-
ble to find the mean length ν per helical region in the
DNA molecule. Such measurements have been recently
performed i n [ 4 ) 5 ] (see below, Fig. 19). The specific
volume effects found i n [ 4 ] proved to interfere with
recalculat ion of the v(d-) re lat ion from the experimental
data. Hence, rel iable enough values could be obtained
only for $ > 0.8. Finally, people have studied the
helix-coil t ransi t ion by microca lor imetry . The lat ter
permits one not only to observe the helix-coil t r a n s i -
tion from the change in heat capacity of the solution,
but also to determine the heat of t rans i t ion. 1 6 7 5 How-
ever , a unique experimental technique is required for
performing microca lor imetr ic s tudies . This greatly
l imits the possibil it ies of using the method.

The melting curve is conveniently character ized by
two p a r a m e t e r s : the melting point T m , which c o r r e -
sponds to the inflection point of the curve, and the
width ΔΤ of the melting range, which is equal to the
difference between the t e m p e r a t u r e s at which the
tangent at the inflection point intersects the levels
& = 0 and tf = 1 (<? is the helicity, i .e., the fraction of
the links in the helical s ta te) . Thus,

1 5
dT max

The variet ies of DNA existing in nature differ ra ther
widely in their relat ive content of AT and GC p a i r s .
The melting t e m p e r a t u r e of the DNA increases with
increasing concentration x 0 of GC pairs ( x 0 = (G
+ C)/(A + Τ + G + C) (Fig. 5). As we see from the dia-
gram, the dependence of T m °n x 0 is s tr ict ly l inear.
The melting point of DNA depends considerably on the
medium in which the molecules a r e dissolved. Usually
the DNA is kept in sal t solution, sodium sal t s being
used as a r u l e . At neutral pH, the melting point of
DNA obeys the empir ica l formula

=176.0 — (2.60-x 0 ) (36.0 — 7.04 lg (№+]), (2)

FIG. 5. Relation between the
GC content of DNA and its melt-
ing point. [8]

FIG. 6. Relation of the melting
point T m of DNA to the logarithm of
the sodium ion concentration in the
solution. The points are the experi-
mental data: [9] 1-M. lysodeikti-
cus (x0 = 0.72); 2-E. coli (x 0 = 0.50);
3-S. saprophyticus (x 0 = 0.33); 4—M.
mycoides var. capri (x 0 = 0.24). The
straight lines are plotted according to
Eq. (2) for the appropriate values of
x 0 . Iff 05

-lg[Na+]

w h e r e T m i s t h e m e l t i n g point in ° C , a n d [ N a + ] i s t h e
m o l e c u l a r c o n c e n t r a t i o n of N a i o n s . F i g u r e 6 s h o w s
t h e e x p e r i m e n t a l d a t a o b t a i n e d i n f 9 1 ( p o i n t s ) for f o u r

d i f f e r e n t DNA s p e c i m e n s , and t h e s t r a i g h t l i n e s a r e
d r a w n a c c o r d i n g t o E q . (2), E q . (2) h o l d s up t o [Na + ]
c o n c e n t r a t i o n s of t h e o r d e r of 1 M . A s t h e s a l t c o n c e n -
t r a t i o n i s i n c r e a s e d f u r t h e r , a d e c r e a s e in t h e r i s e i n
T m i s o b s e r v e d , whi le T m b e g i n s t o fa l l a t v e r y high
s a l t c o n c e n t r a t i o n s . T h i s p h e n o m e n o n d e p e n d s a l s o on
t h e a n i o n s of t h e d i s s o l v e d s a l t .

T h e m e l t i n g t e m p e r a t u r e a l s o d e p e n d s on t h e pH of
m e d i u m , and d r o p s c o n s i d e r a b l y a t pH v a l u e s be low
5 o r a b o v e 9 .

T h e w i d t h of t h e m e l t i n g r a n g e of DNA i s a b o u t 3" .
On the other hand, Δ Τ ~ 0.5° for homopolynucleotides.

We should note that the various propert ies of DNA
have been studied reliably at present pr imari ly only
under conditions in the medium close to s tandard. The
standard conditions corresponding to those in the cell
a r e : pH = 7, [Na+] = 0.195 M. Henceforth, unless
expressly specified, we shal l a s sume that DNA exists
under these conditions.

Substances that bind strongly to the DNA molecule
exert an especially s t rong effect on the melting curves .
Below, we shall call molecules of such substances
s tab i l i zer s . In contrast to agents that a l ter the proper-
t ies of the medium as a whole (such as sal ts or the pH),
s tabi l izers bind strongly to DNA and can substantially
change the melting curves when their molar concentra-
tion D in the solution is considerably smal le r than the
molar concentration Ρ of the bases contained in the
DNA. This type of substances includes: heavy-metal
ions (Cu, F e , etc.) , cer ta in antibiotics (actinomycin) x

and dyes (acridine orange, proflavin), and certain p r o -
te ins .

As an example, Fig. 7 gives the relation of ΔΤ to
the concentration of the protein r ibonuclease. It is e s -
sential to emphasize that s tabi l izers a r e bound to DNA
by intermolecular forces, and they redistr ibute them-
selves on the DNA molecule during the t ime of experi-
ment. At each t e m p e r a t u r e , they occupy the thermody-
namically most favorable s ta te .
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m №
D/R

FIG. 7. Relation of the width of the melting range of DNA to the
concentration of ribonuclease in the solution. [10]
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T h e g i v e n e x p e r i m e n t a l d a t a p e r t a i n t o t h e l i n e a r ,

u n c l o s e d O N A t h a t i s u s u a l l y s t u d i e d i n s o l u t i o n . A

s p e c i a l a n n u l a r , c l o s e d f o r m o f D N A i s f o u n d i n a n u m -

b e r o f v i r u s e s , a n d a l s o i n b a c t e r i a l c e l l s a t c e r t a i n

s t a g e s i n t h e i r d e v e l o p m e n t .

I n t h i s D N A , w h i c h e x i s t s a s a n o r d i n a r y d o u b l e

h e l i x , e a c h o f t h e c o m p l e m e n t a r y s t r a n d s i s c o n t i n u o u s

a n d c l o s e d o n i t s e l f . H e n c e , t h e t o t a l n u m b e r o f t u r n s

o f o n e s t r a n d w i t h r e s p e c t t o t h e o t h e r c a n n o t v a r y u n -

d e r a n y c h a n g e s i n c o n d i t i o n s t h a t m a i n t a i n t h e i n t e g r i t y

o f t h e s u g a r - p h o s p h a t e s k e l e t o n o f t h e t w o s t r a n d s . T h e

e x p e r i m e n t s t h a t h a v e b e e n p e r f o r m e d h a v e s h o w n [ u ]

t h a t a t r o o m t e m p e r a t u r e t h e d o u b l e h e l i x o f a n n u l a r

D N A i s t w i s t e d a s a w h o l e i n t o a s u p e r h e l i x . T h e l a t t e r

h a s a d e n s i t y o f o n e t u r n o f s u p e r h e l i x p e r 2 0 0 b a s e

p a i r s a n d i s o f o p p o s i t e s i g n t o t h e d o u b l e h e l i x ( i . e . ,

l e f t - h a n d e d ) . U p o n h e a t i n g , t h e D N A " c r y s t a l " u n d e r -

g o e s t h e r m a l e x p a n s i o n , a n d t h e d e g r e e o f t w i s t i n g o f

t h e d o u b l e h e l i x d e c r e a s e s . T h i s r e d u c e s t h e a m o u n t

o f s u p e r h e l i x f o r m a t i o n . A t s o m e t e m p e r a t u r e ( a b o u t

4 0 ° C ) t h a t c o r r e s p o n d s t o t h e t e m p e r a t u r e a t w h i c h t h e

c l o s e d a n n u l a r m o l e c u l e w a s o r i g i n a l l y f o r m e d i n t h e

c e l l , t h e s u p e r h e l i x f o r m a t i o n t o t a l l y v a n i s h e s . U p o n

f u r t h e r h e a t i n g , t h e d o u b l e h e l i x u n t w i s t s , a n d a s u p e r -

h e l i x o f t h e s a m e s i g n ( r i g h t - h a n d e d ) i s f o r m e d . T h e

m e l t i n g c h a r a c t e r i s t i c s o f a n n u l a r c l o s e d D N A a l s o

d i f f e r . [ 1 2 ] T h e m e l t i n g t e m p e r a t u r e o f t h i s D N A i s

a p p r o x i m a t e l y 2 0 ° h i g h e r t h a n f o r t h e l i n e a r m o l e c u l e

( F i g . 8 ) . T h i s h a p p e n s b e c a u s e t h e m e l t e d s t r a n d s i n

t h e a n n u l a r m o l e c u l e r e m a i n t w i s t e d a b o u t e a c h o t h e r ,

a n d t h e e n t r o p y o f t h e m e l t e d s t a t e i s l o w e r t h a n f o r

t h e l i n e a r m o l e c u l e . M o r e o v e r , t h e w i d t h o f t h e m e l t -

i n g r a n g e o f c l o s e d a n n u l a r D N A i s 2 — 3 t i m e s a s l a r g e

a s t h a t o f t h e l i n e a r m o l e c u l e .

T h e p r e s e n t e d d a t a p e r t a i n t o t h e m e l t i n g o f D N A o f

h i g h m o l e c u l a r w e i g h t . T h e m e l t i n g c u r v e s d o n o t d e -

p e n d o n t h e c h a i n l e n g t h o v e r a w i d e r a n g e o f v a r i a t i o n

o f t h e l e n g t h . H o w e v e r , i f t h e m o l e c u l e i s f r a g m e n t e d

s t r o n g l y e n o u g h , t h e m e l t i n g c u r v e s a r e a f f e c t e d : t h e

F I G . 9 . M e l t i n g curves o f T 2 p h a g e

D N A for d i f ferent va lues o f t h e n u m -

ber o f l i n k s i n t h e m o l e c u l e : [ 1 3 ] 1 -

3.3 X 104; 2-9.0 X 10 2; 3-4.5 Χ 102;
4-2.9 Χ 102.

as

70 T.'C

melt ing point d e c r e a s e s and the width of the me l t ing
range i n c r e a s e s (F ig . 9).

T h e s e a r e the fundamental facts concern ing the
h e l i x - c o i l t rans i t ion in DNA. We sha l l c i t e further
e x p e r i m e n t a l information a s needed during the fol low-
ing d i s c u s s i o n . The p r o b l e m s of the theory a r e evident
from what we have p r e s e n t e d : 1) The c h o i c e of a mode l .
2) D e v i s i n g a theory of the h e l i x - c o i l t rans i t ion for
homopolynuc leot ides . 3) D e v i s i n g a theory of the he l ix-
c o i l t rans i t ion in heteropo lynuc leot ides , with account
taken of the di f ference in s tab i l i ty of the different
m o n o m e r l inks ( A T and GC p a i r s ) . Th i s theory must
explain the substantial increase in Δ Τ in going from a
homopolymer to a heteropolymer and from l inear to
closed DNA. F u r t h e r m o r e , the theory must explain the
relat ion of the p a r a m e t e r s of the melting curves to the
chain length.

ΠΙ. THE HELIX-COIL TRANSITION IN HOMOPOLY-
MERS

1. A Single-stranded Homopolymer (the Ising Model)

We shall s t a r t the discussion with a very s imple
model of a homopolymer, the Ising model. The one-
dimensional Ising model has been studied from al l
s ides, and is widely applied in the most varied branches
of physics (see, e.g., the rev iew [ 1 4 ] ) . We shall give be-
low an elementary solution of the model and derive
formulas to be used in the theory of helix-coil t r a n s i -
tions .

Let the given linear chain consist of Ν links, each
of which can occur in two s t a t e s : melted (1) and heli-
cal (2). The macroscopic state of the sys tem is com-
pletely determined by assigning the values of three
var iables : the number of links in state 1 (Ni), the num-
ber of links in state 2 (N 2 ) , and the number η of
regions consisting of links of type 1 (or 2).*

The number of micros ta tes that corresponds to the
given values of Ni, N 2 , and η equals the number of
ways in which one can a r r a n g e Νχ identical elements
in η groups and simultaneously a r r a n g e the other N2
identical elements in η groups. This is equal to W1W2,
where

w, = .
Γ2 —ιι)Γ

( 3 )

( 4 )

*We assume that Ν -» °° and that we can neglect end effects.
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Since we a r e considering the limiting case as Ν — «,
we can neglect the number unity. We can find the
equilibrium values of the quantities Ni, N 2 , and η
from the condition of minimum "non-equi l ibr ium"
free energy*

1-29 1 l - s

(5)

under the condition that Ni + N2 = N. Here Fi and F 2

a r e the (free) energies of links in the melted and heli-
cal s t a t e s , respectively. The difference F x - F 2 s A F
= U - Τ AS. The heat of melting U « 7 - 9 kcal/mole
(3500-4500°K) [ 6 ' 7 1 involves both rupture of the hydro-
gen bonds between the bases of the complementary
s t rands and loss of the " i n t e r p l a n a r " interaction be-
tween consecutive base pa i r s along the chain. The
entropy difference AS between the melted and helical
s tates involves the increase in the number of degrees
of freedom of each of the nucleotides in passing to the
melted s ta te . We can est imate AS roughly by taking
into account the fact that each nucleotide acquires six
rotational degrees of freedom in the melted s tate (see
Fig. l a ) . Correspondingly, a pair of nucleotides a c -
quires 12, while there a r e 2—3 energy minima for each
rotat ion. Roughly speaking, this gives AS » 12. The
melting point T m of the polymer is determined by the
condition A F = 0, which gives

Tm = U/AS.

Hence, T m should be of the order of 300-400°K, which
corresponds approximately to the experimental value
of 340-380°K. The quantity F s is the additional (free)
energy that a r i s e s upon forming a single melted region
within a helical region. Roughly speaking, this addi-
tional energy a r i s e s from the fact that ν + 1 inter-
planar interactions a r e disrupted when ν base pairs
a r e broken. In the more general case, introduction of
the quantity F s reflects the fact that links can occur
in certain intermediate s tates in the boundary region
between the melted and helical reg ions . In order that
Eq. (5) and the entire ensuing discussion may be valid,
the dimensions of these boundary regions must neces-
sar i ly be considerably smal le r than those of the
melted and the helical regions that a r i s e in the melting
interval . Upon applying Stir l ing's formula, we get

F = NxFl + N2F2 +nFs — T[NllnNl-n In η

We obtain from the condition

where a = exp ( - F s / T ) . F r o m the condition(
( a F / 3 N i ) n = 0 , we get:

(6)

where s = e x p [ ( F i - F 2 )/T ].
The derived equations give the relat ion of Nlt N 2 ,

and η to s, which is unambiguously related to the
t e m p e r a t u r e . Thus, for example, we obtain the follow-
ing equation for the fraction of the links d- = N 2 / N oc-
curr ing in the helical s t a t e :

1/0(1—0)" γ a yi

T h e m e a n n u m b e r of l i n k s p e r h e l i c a l r e g i o n i s (when

σ C D
0 \ 1/2

(8)

Equation (8) gives a simple expression for the width of
the melting range :

We note that Eq. (8) goes over into a Boltzmann d i s t r i -
bution when t h e r e is no interaction between the links
(σ = 1 , F s = 0 ) .

This limiting case corresponds to lack of coopera-
tivity: the energy of formation of a boundary between
a melted and a helical region is zero ( i .e . , F s = 0),
and the helical and melted links a r e " m i x e d " com-
pletely randomly. As the surface energy increases
(σ decreases) , the cooperativity of the system in-
c r e a s e s : the mean length of each helical or melted
region grows, and the width of the melting range de-
clines correspondingly. In the limiting case as σ — 0,
we have a fully cooperative, absolutely sharp t r a n s i -
tion.

The discussed model corresponds physically to the
case of a s ingle-stranded homopolymer (see Note 5).
In fact, in a s ingle-stranded polymer, the number of
s ta tes of the ith melted region, which consists of v[
segments (freely jointed links) is

where

Hence, the additional contribution to the entropy of the
sys tem will be

The free energy will be expressed by Eq. (5), with F !
replaced by Fi - Τ In w0.

2. A Two-stranded Homopolymer

The discussed model is not appropriate for the case
of a two-stranded polymer such as the polynucleotides,
since then the entropy of the melted part of the polymer
is not an additive quantity. In fact, the melted regions
in a two-stranded polymer a r e closed polymer chains.
The number of s tates of a closed polymer chain equals
the number of s tates of the opened chain wo1*1 mult i-
plied by the probability of c losure of the chain (i.e.,
that its beginning and end points will occur within some
smal l volume 6V):

\ 3/2 6V (9)

"Here and below, we assume as usual that the energy and the tem-
perature are measured in the same units.

Here / is the length of a segment of the chain (see
Note 6). Eq. (9) is often called the Jacobson-Stock-
mayer formula . [ 1 5 ] We should emphasize the fact that
Eq. (9) gives the total number of s tates of the closed
chain, including the s ta tes which the chain must inter-
sect itself to attain. In fact, both s tates without and
with knots were taken into account in deriving Eq. (9).
Evidently, a physical t rans i t ion from an unknotted to a
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FIG. 10. Formation of a knot and its migration into the molecule.

knotted state is impossible without breaking the chain.
Hence, the number of states of a closed loop is smaller
than that given by Eq. (9).

In order that Eq. (9) should hold, knot formation
must be possible. This possibility exists in a polymer,
owing to presence of free ends. In executing their com-
plicated motion, the free ends can give rise to knots in
the outer melted region, and the knots can then migrate
into the polymer (Fig. 10). Thus, in order to permit
applying a formula like (9), relaxation with respect to
the number of knots must set in within the time of ex-
periment (topological relaxation). It is very hard to
estimate the time of this relaxation. Hence, we shall
treat the problem of the helix-coil transition in general
form by assigning the arbitrary function f(^) as a co-
efficient to the number of states of a melted region.
Here we assume that it has the asymptotic form v~a

(the problem of the true value of a will be discussed
below). A number of studies [1β~23] have been concerned
with treating the helix-coil transition in homopolymers
with account taken of the coefficient ν~α. We shall
give a general treatment of this problem below by a
method differing from those applied in the cited papers.

The number of states of a two-stranded polymer
made of Ni melted links, N2 helical links, and η heli-
cal and coil-like regions is W1W2. As before, W2 is
given by (4), while

Σ Σ (10)

Here {ν} and {μ} are the numbers of links in segments
of the first and second strands, respectively, and

k = 0,

In order to perform the summation in Eq. (10), we
shall use a mathematical procedure that was first ap-
plied by Darwin and Fowler (see, e.gj2 4 1). Let us sub-
stitute for the δ-symbols in Eq. (10) their integral
representations

where C is any contour in the complex plane surround-
ing the origin. We get

(li)

where

Φ(«1.*.)=Σ Σ /(ν+μ)*ϊ*ϊ=ΐΣ (τ

If we make use of the identity

Σ

and carry out the summation, we get.

00 00 n-l
Σ 6m= 2 &« Σm=n-f-1 n=2 m= i

(12)

We shall calculate the double integral in (11) by the
method of steepest descent, while assuming that Nx

;» n. Analysis shows that the saddle point is found at
Zi = z2. That is, it can be found from the condition

dg(z)ldz =

where

Here,

g(z)= - , χ ) .
( 1 3 )

I n W , = <

W e c a n e a s i l y s e e t h a t

Φ(ζ, z)= 2 v (14)

and here the saddle point lies near ζ = 1.
In order to calculate Wi in explicit form, we must

treat separately the different regions of α values.
1) α < 2. Since ζ is close to unity, we can replace

the summation in Eq. (14) by integration:

If we substitute this into Eq. (13) and equate the deriva-
tive to zero, we find the saddle point:

F i n a l l y , w e h a v e

w h e r e

( 1 5 )

= ( 2 - α ) / 2 .

2) 2 < a < 3. We cannot transform Eq. (14) into an
integral in this case, since the obtained integral
diverges at the lower limit. However, this summation
can be transformed into the form

Φ(ζ, ζ)=--Α-

w h e r e
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The saddle point is

Hence,

where

—2

(16)

C = ( 3 - a ) ( 4 - l

a-2
, 3-a

Let us proceed to calculate the equilibrium values
of Ni, N 2 , and n. They a r e found from the condition
that the " n o n - e q u i l i b r i u m " free energy of (5) should
be a minimum. Here W2 is given by Eq. (4), and Wi
by E q s . (15) and (16) for the cases α < 2 and 2 < a
< 3, respect ively. Let us t r e a t these two cases
separately again.

1) α < 2. Minimization of Eq. (5) leads to the equa-
tions

Γ (2β) σ ' (18)

W e g e t t h e f o l l o w i n g e q u a t i o n f o r t h e d e p e n d e n c e of

t h e h e l i c i t y $ o n t h e t e m p e r a t u r e ( i . e . , o n s ) ( u p o n

substituting β = (2 - α ) / 2 ) :

1 — ( 3 — α) ft 1-s

T h e m e a n l e n g t h of a h e l i c a l r e g i o n v2 = N 2 / n i s

1

ι 2 — c t \ 2 - B 3[ / 2 — a \ 2 - a ι •>""

ι 1~τ~) Ι ι ο \
σ Γ(2-α) J I l - « ^

2 - a

3 ~ a

(19)

(20)

Equation (19) implies that the point s = 1 ( i .e . , F i
= F 2 ) does not correspond to the value # = %, as in a
single-stranded homopolymer, but to the value ,?
= 1/(3 - a ) . Here ,

(21)

Upon c o m p a r i n g Eq. (19) with Eq. (3), we s e e that
the c a s e of the s i n g l e - s t r a n d e d homopolymer i s
formal ly e n c o m p a s s e d by E q s . (19) and (20) if we s e t
α = 1 therein, and replace 2σ by σ.

In order to determine the width ΔΤ of the melting
range, we must calculate | d$/os Imax, which is , to a
good accuracy,

ι of>
\

1 3 - q 1 Μ - α \ 2

max 8 2 - a L
1+2

W ]
( 3 - a ) »

( 2 2 )

2 ) 2 < a < 3 . I f w e s u b s t i t u t e ( 4 ) a n d ( 1 6 ) i n t o ( 5 ) ,

w e g e t

( 2 3 )

w h e r e

Fi = F.-TlnA, γ

T h e c o n d i t i o n 3 F / 3 n = 0 g i v e s

( 2 4 )

W e r e c a l l t h a t t h e t r e a t m e n t h a s b e e n c o n d u c t e d u n d e r

the assumption that n « N i and η ^ N 2 . That is , σ*
= e x p ( - F | / T ) <C 1. In this approximation, the solution
of Eq. (24) for η has the form

n = o'N2[l-C(y + i)(a'^)yj. (25)

If w e s u b s t i t u t e ( 2 5 ) i n t o ( 2 3 ) , w e g e t

where

(26)

We see from Eq. (26) that the derivatives of F with
respect to Ni can become discontinuous as N 2 / N i — 0,
while the free energy F itself remains continuous.
That i s , a second-order phase t ransi t ion will occur in
the vicinity of this point. We can set N i » Ν in the
vicinity of the transit ion, and upon introducing the
variable η2 = Ν 2 / Ν , we get (omitting the t e r m that
does not depend on η):

(27)

Here AS is the entropy difference per link between the
melted and helical s tates of the homopolymer.

As we see from Eq. (27), the phase t rans i t ions in
the t reated model fit into Landau's generalized
s c h e m e . [ 2 5 ] When Τ > T o , the minimum is attained
when η2 = 0, i .e., in a state corresponding to the fully
melted homopolymer. When Τ < T o , the minimum in
F is reached at a fraction of helical links that differs
from z e r o , being

_il? _ «2 _ β /γ ψ\ y \Δο)

w h e r e .

It is interest ing to note that γ var ies from 0 to « as
the parameter a varies from 2 to 3. This makes the
type of t ransi t ion depend very strongly on a. The
relat ion η ~ | T o - Τ | ^ 2 derived in the ordinary
Landau theory a r i s e s in the discussed model at
a = 5/2.

Thus, the system being t reated behaves substantially
differently at different values of a. When a < 2, the
melting curve is a function that is continuous along
with al l of i ts derivat ives. Hence, even at a t e m p e r a -
ture appreciably exceeding the "melt ing point" T m , a
certain finite concentration of helical links remains in
the polymer. However, if α > 2, melting of the poly-
mer acquires the nature of a phase t rans i t ion: at t e m -
peratures above the cr i t ica l value T o , the whole poly-
m e r proves to be completely melted. In the interval
2 < α < 3, the order of the derivative that is discon-
tinuous at the point T o gradually declines with i n c r e a s -
ing a > 3, even the melting curve itself is discontinu-
ous. f1B]

The question of the t rue value of a for a two-
stranded homopolymer r e m a i n s open as yet. The
value α = 3/2 is obtained under conditions of complete
topological relaxation. However, in this case helical
regions formed by the s t rands from different melted
regions can a r i s e in principle (Fig. 11). It is very hard
to take such states into account because the problem
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FIG. 11. Two melted regions of a homopolynucleotide that are
twisted about each other.

ceases to be one-dimensional. However, one can show
(A. M. Dykhne, unpublished results) that phase transi-
tions do not occur in the case of such a complete
topological relaxation. Treatment of the actual situa-
tion is complicated by the fact that the helical regions
formed by twisting together two different coil-like
regions cannot arise by diffusion of these elements
from the ends of the chain, as happens with knots (see
Fig. 11), since slippage of strands into helical regions
is impossible. Hence, the relaxation time in the forma-
tion of such helical regions must increase exponentially
with increasing chain length. On the other hand, helical
regions can be formed between two melted regions un-
der conditions in which topological relaxation is absent.
However, then the remaining parts of the melted
regions that didn't enter into the helical region must
be twisted about each other by the same number of
turns as the helical region has, but in the opposite
sense (to the left, since the DNA helix is right-handed).
This leads to additional entropy effects, and accounting
for them complicates solution of the problem greatly.
Finally, we must take into account excluded-volume ef-
fects, which can affect the value of a. [ 2 1 ]

In the ensuing situation, the most reasonable course
would be to treat α as a parameter of the theory, and
try to determine it by comparing the formulas derived
above with experiment. Applequist'261 has made such
an attempt for the case of double-helical poly-A.
Applequist thinks that his experimental data show that
melting of poly-A exhibits a second-order phase transi-
tion under certain conditions. However, in our opinion,
more painstaking design of the experiments is required
to permit drawing such an important conclusion.
Mainly, one should perform control experiments on the
high-molecular-weight character and homogeneity of
the preparations. The data obtained by other authors1 2 '3 1

indicate that the melting curve is smooth in most
cases. We should emphasize as a whole that there have
been too few papers concerned with experimental study
of the helix-coil transition in homopolynucleotides, and
hence, one cannot yet find the value of a by experiment.

In line with this situation, we cannot deem unreason-
able an attempt to estimate σ that starts with the as-
sumption that a = 3/2, as Crothers and Zimm [ 1 8 ] have
done for the first time. Since ΔΤ is about 0.5° for
homopolymers, the obtained values of σ lie in the
range 10~4—10~5. We note that this estimate agrees in
order of magnitude with an estimate of σ obtained
from completely different data: from the kinetics of
interaction of DNA with a slowly reacting agent

(formaldehyde).[27] We should emphasize that neither
method of estimating σ is completely satisfactory.
Hence, these estimates must be refined further. How-
ever, the fact that the two methods give similar results
permits us to use the estimate until a more accurate
value has been found.

In addition to the problem of melting of two-stranded
homopolymers, melting of three-stranded homopoly-
mers has also been treated in the l iterature/ 2 8 ' 2 9 1 as
well as melting of heteropolymers having strictly alter-
nating sequences of links. [ 3 0"3 2 ] The former problem
has been treated in connection with the helix-coil
transition in three-stranded complexes of poly-A + 2
poly-U, and the latter in connection with melting of the
polymer poly-AT (i.e., a polymer with the sequence of
links . . . AT AT AT AT . . . ) . However, in these cases the
adequacy of the treated models to the actual situation
is even more questionable than in the case of the
homopolynucleotides discussed above.

3. Melting of Complexes of Polynucleotides with
Stabilizers

Now we shall discuss a polymer that forms a com-
plex with molecules of a substance of low molecular
weight (stabilizers). Here we are considering a re-
versible complex, so that the stabilizers can attain an
equilibrium distribution between the helical and coil-
like portions of the polymer within the time of experi-
ment at each temperature. In terms of phase systems,
such a "solution" of the stabilizers in the polymer
corresponds to a binary solution. As we know, a phase
transition is smeared out in such binary systems, and
it covers a broad temperature range because the con-
centration of the solute in the liquid phase varies as
crystallization proceeds. Thus, the redistribution of
the solute between the solid and liquid phases leads to
radical changes in the melting of the phase system. If
redistribution does not occur (which happens at the
saturation concentration), then the system undergoes
an ordinary phase transition. Figure 12 gives some
data on the temperature-dependence of the heat
capacity of pure water and of a salt solution that graph-
ically illustrate the aforesaid.

Equations describing the properties of a binary
phase system can be derived from the condition that
the chemical potentials of the solvent and the solute
should be equal. For weak solutions, it has the form
(see, e.g., [ 2 5 ]):

U ι rp rp \ I f< / i \ rp ^ 9 0 \
~~Φ— \1 — •* Of ~~— \^ 1 — ^ 2 / 0 ' \ ^ * * /

•£- = *>. (3°)
£7,(1— u)+C2# = C, (31)

Here U and To are the heat of melting and the melting

FIG. 12. Temperature-dependence of the
partial heat capacity of water in 0.15N NaCl
solution (points). [33] The solid curve is plotted
according to Eq. (32).
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point of the solvent, Ci and C2 a r e the concentrations

of the solute in the liquid and solid phases, j is the

fraction of the mater ia l in the solid phase, and ρ is the

distribution coefficient of the solute between the phases .

For a solution of salt in water, in which C2 = 0, we

have

,12m

IS

The heat capacity is

where AS = U/T o is the entropy of melting. Finally,

we get

(32)

This formula descr ibes well the temperature-depend-

ence of the heat capacity in the interval between the

melting point T o and the eutectic point (Fig. 12).* For

an a rb i t ra ry p, we can easily derive the following

expressions for the tempera ture shift and the width of

the melting range :

XT υ

T« r.
υ '

(33)

(34)

Here 6 T m = T m - T o , the melting point T m being de-

fined as the t e m p e r a t u r e at which # = y2, and ΔΤ is

defined by the relation Δ Τ = 1/| d#/dT | χ = χ .

It turned out upon studying the complex of a homo-

polymer with s tabi l izers that the resul t s obtained for

phase sys tems fully r e m a i n in effect. Thus, Eqs . (33)

and (34) have been proved to be str ict ly valid in this

c a s e . [ 3 4 ' 2 2 ] Here we should take ΔΤ in Eq. (34) to be

δ Δ Τ , which is the difference in transi t ion widths b e -

tween the polymer containing s tabi l izers and the pure

polymer. Detailed analysis s h o w s [ 2 2 ' 3 5 ] that presence

of s tabi l izers has absolutely no effect on the way in

which the polymer breaks down into helical and coil-

like regions. Hence, one simply adds a range due to

the redistr ibution of the s tabi l izers to the melting

range of the pure homopolymer, and the redistribution

occurs exactly as in a phase sys tem. General formulas

were also derived i n i 2 2 ] for 6 T m and 5ΔΤ that a r e

valid for any concentration of s tabi l izers in the poly-

m e r . Here the variation in the transit ion range caused

by the s tabi l izers does not depend on the range for the

homopolymer, i .e. , on the cooperativity factor, what-

ever the value of C. Figure 13 shows the variation of

the t ransi t ion t e m p e r a t u r e and the width of the t r a n s i -

tion range for ρ = 5. As we see from the diagram, the

theory qualitatively explains the experimental resu l t s

of Fig. 7. Quantitatively, the theory agreed with experi-

ment in detail for the region of smal l C (Eqs. (33) and

(34)). They found the heat of melting of DNA from

these m e a s u r e m e n t s , independently of the microca lor i-

metr ic d a t a . [ 1 0 > 3 6 ] By analogy with the equilibrium

*For the experimental data shown in Fig. 12, C * 2 X (0.15/55) =
5.4 Χ 10"3. In order to find c s p in cal/g-deg, we must multiply the right-
hand side of Eq. (32) by the gas constant, which is 2 cal/mole-deg, and
divide by 18. Then Eq. (32) will give the curve drawn as a solid line in
Fig. 12, with the heat capacity referred to the level shown by the dotted
line. The sharply discrepant point on the graph at a temperature of about
-22°C corresponds to melting of the eutectic.

FIG. 13. Theoretical relation
of the melting point and the
width of the melting range of a
complex of a homopolymer with
stabilizers to the concentration of
the stabilizers. [3 5·2 2] as

u

c u r v e s of p h a s e s y s t e m s , we c a n s a y t h a t t h e s t a t e

d i a g r a m for a c o m p l e x of a p o l y m e r wi th s t a b i l i z e r s

i s c i g a r - s h a p e d . Of c o u r s e , we m u s t t a k e t h i s s t a t e -

m e n t in a qual i f ied s e n s e , s i n c e s e p a r a t i o n in to m a c r o -

s c o p i c p h a s e s d o e s not o c c u r h e r e : t h e " l i q u i d " and

" s o l i d p h a s e s " r e m a i n m i x e d .

IV. THE HELIX-COIL TRANSITION IN HETERO-

POLYMERS

L e t u s t r e a t t h e p r o b l e m of i n t r a m o l e c u l a r m e l t i n g

of r e a l DNA, which c o n s i s t s of t w o t y p e s of l i n k s : low-

m e l t i n g A T a n d h i g h - m e l t i n g G C . A p o l y m e r c o n s i s t i n g

of only AT p a i r s (po ly-AT) would m e l t a t T A T * 340°K,

a n d a p o l y m e r of only GC p a i r s ( p o l y - G C ) a t TQQ

« 380°K,* in a c c o r d wi th t h e t h e o r y of m e l t i n g of a

h o m o p o l y m e r p r e s e n t e d a b o v e . T h e q u e s t i o n a r i s e s :

how wi l l DNA c o n t a i n i n g b o t h AT and GC p a i r s m e l t ?

T h e a n s w e r t o t h i s q u e s t i o n d e p e n d s on t h e t y p e of

m u t u a l a r r a n g e m e n t of t h e A T a n d GC l i n k s in t h e

D N A . If, for e x a m p l e , t h e c h a i n i s c o m p o s e d of l a r g e

AT and GC r e g i o n s , t h e n t h e m e l t i n g c u r v e wi l l h a v e

t h e s h a p e d e p i c t e d by c u r v e 1 in F i g . 14; h e r e t h e AT

r e g i o n s w i l l f i r s t m e l t i n d e p e n d e n t l y , a n d t h e n t h e G C

r e g i o n s . M e l t i n g wi l l follow t h i s t y p e if t h e length of

t h e AT a n d GC r e g i o n s i s s u b s t a n t i a l l y l a r g e r t h a n t h e

m e a n length of a m e l t e d r e g i o n in a h o m o p o l y m e r . If

t h e DNA c o n t a i n s n o l a r g e A T a n d GC r e g i o n s , t h e n i t

w i l l m e l t a s a whole n e a r s o m e m e a n t e m p e r a t u r e b e -

t w e e n 340° and 380°K. T h e m e l t i n g of DNA h a v i n g a

r e g u l a r a l t e r n a t i o n of AT and GC l i n k s , p e r i o d i c a l l y

r e p e a t e d AT a n d G C b l o c k s , c a n b e t r e a t e d a n a l o g -

ous ly t o t h e t r e a t m e n t of m e l t i n g of a h o m o p o l y m e r

a b o v e . F o r e x a m p l e , a c h a i n of a l t e r n a t i n g A T , G C ,

A T , GG, A T , GC l i n k s wi l l m e l t a t Τ = ( T A T + T Q C ) / 2 .

T h e width of t h e m e l t i n g r a n g e wi l l r e m a i n v e r y s m a l l

( F i g . 14, c u r v e 2) . H o w e v e r , we a r e i n t e r e s t e d in r e a l

DNA, in which t h e s e q u e n c e of AT and GC p a i r s c a n

b e c o n s i d e r e d r a n d o m . T h e diff iculty and p e c u l i a r i t y of

t h e p r o b l e m of c a l c u l a t i n g t h e t h e r m o d y n a m i c p r o p e r -

t i e s of s u c h a DNA involve t h e fact t h a t t h e s e q u e n c e of

AT and GC l i n k s i s f ixed in a de f in i te way, t h o u g h

r a n d o m . H e n c e , a l l t h e t h e r m o d y n a m i c c h a r a c t e r i s t i c s

of t h e DNA m u s t be c a l c u l a t e d for t h i s p a r t i c u l a r s e -

q u e n c e of l i n k s . S p e c i f i c a l l y , t h i s m e a n s t h a t we c a n n o t

*Under the so-called standard conditions (SSC), in which 0.15
moles of NaCl is dissolved per liter of water. [Translator's note: This
abbreviation is generally used in the literature, e.g., [9] to mean a solu-
tion that is 0.15MinNaCl, 0.015M in trisodium citrate, at pH 7.4.]
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340 360

FIG. 14. Melting curves of
hypothetical heteropolynucleotides
consisting of 50% GC pairs, for dif-
ferent types of distributions of the
pairs along the chain: 1—half of
the molecule is a GC homo-
polymer, and half is AT; 2-a
strictly alternating sequence of
AT and GC pairs; 3—a random

~K sequence of base pairs.

average the partition function over all possible se-
quences of links having different rupture energies when
finding the partition function of the molecule (while
maintaining the content of low-melting and high-melting
pairs).* In the partition function, we must perform the
summation over phase space, while maintaining the
fixed sequence of AT and GC links.

From this standpoint, a heteropolymer in solution
is a system that is not in complete thermodynamic
equilibrium: the DNA "skeleton" undergoes no chem-
ical changes at the temperatures used within the time
of experiment. This is, not all the sequences of AT
and GC links in the DNA molecules are realized that
are permitted by static thermodynamics (and which
have equal energies. Rather, only the single sequence
exists that the DNA had when originally dissolved.
However, this does not prevent us from applying the
thermodynamic approach to the helix-coil transition,
since weak bonds are broken or reestablished in this
transition, and the DNA can reach complete thermody-
namic equilibrium with respect to them when the ex-
periment is carried out slowly (within minutes).

In line with what we have said, melting of hetero-
geneous DNA differs in nature from the melting of
DNA containing "stabil izers" (although there are two
types of links with differing energies of rupture in
both cases). "Stabilizers" redistribute themselves
between the solid and liquid "phases" of DNA as melt-
ing proceeds, and the process resembles the melting
of a solution. However, heterogeneous DNA having a
fixed AT—GC sequence melts in a different way: upon
heating, first the low-melting portions (with a large
content of ΔΤ pairs) melt out of it, and then the more
high-melting portions. The shape of the melting curve
is determined by the fluctuations in AT and GC com-
position of the DNA in its different regions. Since
these fluctuations are microscopic in nature, the dis-
cussed melting process of the heteropolymer has no
analogy among phase systems: macroscopic ally, a
phase system of this type is homogeneous. Thus, the
difference between the problem of melting of a hetero-
polymer and that of melting of a homopolymer contain-

*Such an averaging corresponds to solving the problem of melting
of a homopolymer containing stabilizers, as discussed in the preceding
section. We should note that the partition function was averaged over
different sequences of links in some studies [37·38] treating the helix-
coil transition in a heteropolymer. The results obtained in these studies
differ shaply from those obtained from a heteropolymer with correct
calculation of the partition function. Actually, in these studies they
calculated in a complicated way the partition function for a homo-
polymer containing stabilizers. We can directly convince ourselves of
the latter by comparing these studies with the results obtained in I22·

ing stabilizers is manifested especially sharply in the
limiting case of a phase system. We shall give below
two variants of an elementary semiquantitative theory
of the helix-coil transition in a heteropolymer, which
are modifications of the treatment carried out in [ 3 5 1.

1. Elementary Theory of the Helix-coil Transition in
Heteropolymers

a) Onset of melting.* Let us discuss the very onset
of melting, when individual regions of melted links are
melting out of the helical DNA, and the fraction of
melted links is small. The condition for melting out of
a region in heterogeneous DNA that contains ν links
and has a concentration of χ high-melting GC pairs is
that the difference in free energies of all the links of
the region in the helical and coil-like states should
equal the surface energy F s of the two boundaries of
the melted region with the adjacent helical regions of
the DNA:

ν[ΑΡΑΎ(1~χ) + ΑΡ(χχ) = Κ; (35)

Here Δ F A T *S the difference in free energies per link
between the helical and coil-like states of poly-AT;
Δ F A T vanishes at the melting point T A T of poly-AT,
and near T A T it is given by

where i s the entropy of melting of poly-AT.
Analogously,

We shall assume that A S Q C = ΔβΑΤ = ^ S (this is not
essential, but it simplifies the formulas). Let us sub-
stitute these values of Δ Ρ Α Τ a n d AFGC i n t o (35)> a n d

introduce the deviation in concentration of GC pairs in
the given region from the mean value x 0 over the
molecule: Δχ = χ - x 0 . Thus we find the melting point
of a region having a concentration of high-melting GC
links that is reduced by the amount Δχ:

(36)
AS '

Here we have introduced the notation:

Ta = TAT(l-x0) + TGCxc,. (37)

For the entire molecule, ν i s very large (ΙΟ5—107), so
that the fluctuations in concentration are very small,
and we can neglect the last two terms on the right-hand
side of (36). Then (36) implies that the melting point of
heterogeneous DNA is given by Eq. (37), in good agree-
ment with the experimental data (cf. the empirical
formula (2)).

However, we see from (36) that DNA begins to melt
at a lower temperature than T o : e.g., long regions
consisting solely of AT links (x = 0, Δχ = -x 0 ) will
have melted at a temperature that satisfies the in-
equality To > Τ > T A T · Thus, formally speaking, we
must assume that melting occurs throughout the inter-
val T A T < Τ < T Q C · * * I11 f a c t , there are few such low-
melting regions, and the entire melting process covers

*The completion of melting can be treated analogously.
**As the empirical formula (2) implies, TGC-TAT = 36.0-7.04 log

[Na+]. For the standard salt conditions in which [Na+] = 0.195, this
gives the value TGC—TAT = 41°. Henceforth in calculations and esti-
mates, we shall use the rounded value TQC~^AT = ^0° ·
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a far narrower t e m p e r a t u r e range of the order of
severa l degrees near T o . Let us est imate the width of
the melting range (i .e., the relat ion of the number of
melted links to the t e m p e r a t u r e ) .

We shal l a s sume that the distribution of AT and
GC links in any region of the DNA is random. Then the
probability that a region of length ν should have a
concentration χ = m/u GC links (when their mean con-
centration is x0) is described by the binomial distr ibu-
tion:

ν!
m! ( ν — m)\ (36')

If the region that is melting out is long enough, i .e.,
m ^> 1 (we shall see below that this is exactly the
case in the melting of DNA), then the binomial distr ibu-
tion of (36') goes over into a Gaussian distribution:

Υ ν

where σ2

ν = x o ( l - x o )/V
If we find from (36) the fluctuation Δχ that is neces-

sary to permit melting of a region of length ν at the
t e m p e r a t u r e T, and substitute it into (37'), we find that
the probability that a region of length ν will melt out
of helical DNA at Τ < T o is proportional to*

e x p j _ 2 / 2 , 0 ( ! - * „ ) } ; ( 3 8 )

T h i s s a m e e x p r e s s i o n a l s o g i v e s t h e l e n g t h d i s t r i b u t i o n

o f t h e m e l t e d r e g i o n s o f t h e D N A .

A s w e s e e f r o m ( 3 8 ) , t h e m e a n l e n g t h o f a m e l t e d

r e g i o n i n c r e a s e s a s w e a p p r o a c h t h e m i d p o i n t T o o f

t h e m e l t i n g r a n g e :

( 3 9 )
To-Τ

I f w e s u b s t i t u t e t h i s v a l u e i n t o ( 3 8 ) , w e c a n f i n d t h e

f r a c t i o n o f m e l t e d l i n k s o f t h e h e t e r o g e n e o u s D N A :

( 4 0 )

H e r e , ^ i s t h e h e l i c i t y , a n d

( 4 1 )

Analogously, when Τ > T o , in the region in which
the fraction of unmelted regions in the DNA is smal l ,
we have instead of (40):

(40')

b) Approximate t rea tment of the ent ire melting
curve. We shall divide the heteropolymer into identical
segments containing λ pairs each. If λ is large
enough, then the concentration distribution of GC
pairs over these segments will be described by Eq.
(37'), with υ replaced by λ. Since we have assumed
the distribution of base pa i r s to be random, and the
segments do not overlap, there is no corre lat ion at al l
between the GC content of different segments .

The total number of GC pai r s per melted region will
be a minimum whenever segments having a concentra-

*We are carrying out the treatment under the assumption that the
fraction of melted regions in the DNA is small, so that the argument of
the exponential in (38) is large; we have omitted the coefficients of the
exponential, which are inessential under these conditions.

tion of GC pairs below some threshold value x\ will be
melted, while al l the segments having χ > χχ will be
helical . The quantity χχ i s determined by the condition:

(42)

The mean concentration of GC pairs in the melted part
of the molecule is

(43)

Since the compositions of different regions a r e not
corre la ted, the probability that a melted region will
consist of k consecutive segments is simply equal to

Hence, the mean number of segments in the melted
region is

Therefore, the mean number of base pairs in the melted
region is

v, =-- Xk = -
(44)

while the number of melted regions in the entire mole-
cule is

(45)

The free energy of the polymer has the form

F {Nt, N2, n) = Nt [i,/1

1

GC+ (1 - i i ) ^ T l + N2 [ V\ G C + (1 -* 2 ) ^ T J + nF..

If we apply the condition

omit the constant t e r m in the expression for the free
energy, and t ransform from the variable η to the
variable λ, we get

F(Ni, \) = NixlAFGC + Nl(l-~x,)^AT + ^- (i--^) Fa, (46)

H e r e , AFQQ = F G < -· - F G C , and a n a l o g o u s l y for Δ F A T 5

Xi is determined by Eq. (43), using χχ from (42).
The equilibrium values of Ni and λ a r e found from

the condition that the expression in (46) should be a
minimum in both p a r a m e t e r s . In order to find the
mean length of a helical region and the width of the
melting range of the heteropolymer, we should con-
sider Eqs . (42), (43), and (46) in the neighborhood of
N x / N = y2, i .e. , expand them in power s e r i e s in t e r m s
of e = (Νχ/Ν) - 'Λ.

Upon using Eq. (37'), and again omitting the constant
t e r m s , we get, to an accuracy of second-order t e r m s
in e :

+-It ν-***>}.
(47)

where AF = X 0 A F Q C + (1 ~ Χ Ο ) Δ Γ Α Τ ·
Upon equating to zero the derivative with respect to

λ, we get (for e = 0):
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F,

U s i n g the equality A F Q C ~ Δ F A T = ( T Q C ~ T A T )
x ( U A T / T A T ) > w e f i n d f rom this ( s e e

(48)

Upon equating to zero the derivative with respect to e
(at constant λ), and differentiating the expression that
we get with respect to T, we obtain

(49)

Now let us consider how Eqs. (48) and (49) are
changed if we take into account the formation of loops
in the melting of the heteropolynucleotide. In this case,
we must add to the free energy of (46) a term describ-
ing the entropy of the loops (see Eq. (9)):

This gives

where

We get for λ0 the transcendental equation:

' κ -

and the following expression for ΔΤ:

-xo(l-xo).

(51)

(52)
(in λο+γ(4-))

We can easily convince ourselves that 0 < y(%) < 1.
On the other hand, λ0 usually amounts to something of
the order of several hundred. Hence, the quantities
y{%) - 1 in Eq. (51) and γ{%) in Eq. (52) give very
small corrections. Thus, the major effect when we
take account of loops is to replace Fg by Fg + aT In λ0.
Here we can find λ0 by Eq. (51), e.g., by the method of
successive approximations.

2. Exact Theory of the Helix-coil Transition in
Heteropolymers

Let the polymer consist of a definite sequence of Ν
links in which all the links generally differ. The parti-
tion function of the polymer has the form

1=1, 2
·•· Σ

= 1, 2

Here the superscript i denotes the serial number of
the link along the chain, and δ is the Kronecker sym-
bol. We shall measure the quantities F (*' and Fs*·'
with respect to certain standard values F and F s .
Then upon introducing the notation

we obtain an e x p r e s s i o n for the matr ix M l l > :

sPi
\ <"/>; -rr)

We note that the s y m b o l p^ i n t 3 B ] denotes the quantity
e x p [ ( F ( i ) r F ) / T ] , i . e . , p i / £ i , rather than
£ i e x p [ ( F ( 1 ) - F ) / T ] . The new method of defining the
quantity pj i s convenient in that here Pi d o e s not de-
pend on the type of the adjacent l inks, but c h a r a c t e r -
i z e s only the link i .

As Ν — °°, the value of ζ does not depend on the
state of the links at the ends of the chain. Hence, we
can attach links in arbitrary states to the beginning
and end of the chain. Let these extra links always oc-
cur in the melted state, whereby £N-— t

 = °· Then the
expression for ζ can be written in the form

1 1

Let us introduce the vector

l l/ I 1 \ / I 1 \
( .„ )··•( . Λ
\ "«Pi -j£- ) \OSp, -£-)

, «>0,

1, (50) T h e n >
(.go /o) = (i i);

(53)

In order to determine In z, let us represent it in the
form

Ν
l n z = 2 l n G j ,

W e c a n f i n d G j b y u s i n g t h e e q u a t i o n

1 1

whence
gl=gl-l+OSPtf,.,,

( 5 4 )

( 5 5 )

( 5 6 )

( 5 7 )
ζί—1 '

) m ( 5 7 ) , a n d s i

g e t

'PI \ ι Ι Λ i \ /EO\
T— ) +gi-2°sPl ( 1 — ~Zr—)· {°°)

If w e e l i m i n a t e f i_ 2 f r o m ( 5 7 ) , a n d s u b s t i t u t e f i - i

f r o m ( 5 7 ) i n t o ( 5 6 ) , w e g e t

If w e d i v i d e E q . ( 5 8 ) b y g i - 1 ; w e g e t

( 5 9 )

w h e r e

The helicity is calculated by the formula

a_J_£Jn_£
Ν fllns "

If w e s u b s t i t u t e ( 5 4 ) i n t o ( 6 0 ) , w e o b t a i n

( 6 0 )

( 6 1 )

where Qi = a In Gi/θ In s. We find by direct differen-
tiation that

Q, = . ^ { G | - i + & (62)

The number η of the regions in which all the links are
in state 2 is determined by the formula

din z
(63)
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Here the mean length per helical region is ν -
Upon substituting (54) into (63), we get

Ν

( 6 4 )

where Ri = 3 In Gi/8 In s . We find by direct differen-
tiation

r. 1
( 6 5 )

where CJ = apjS.
The r e c u r r e n t formulas (59), (61), (62), (64), and

(65) derived i n t 3 9 ] a r e very convenient for direct calcu-
lations of melting curves on a computer . An analogous,
but somewhat more complex, method of numerical
solution of the problem was proposed in f 4 0 ^ (see
a l s o [ 4 1 1 ) . In later s t u d i e s / 4 2 ' 4 2 1 the partition function
was calculated by direct matr ix multiplication. The
resu l t s of the calculations performed in the cited
studies agree.* The s implest and most convenient for-
mulas for numerica l calculations a r e (59), (61), (62),
(64), and (65), since h e r e the problem is reduced to
elementary r e c u r r e n t equations, and the difficulties
a r e eliminated that a r i s e in matr ix multiplication or in
numerica l differentiation. We note that this problem
has quite recently been discussed again i n [ 4 4 1 .

An exact account of loops in t reat ing the helix-coil
t rans i t ion in a heteropolymer is very difficult, and has
not been c a r r i e d out thus far . An approximate method
of solving this problem based on the theory presented
above has been proposed i n [ 4 S 1

As we have noted in discussing a homopolymer,
accounting for loops leads to the appearance of the
following coefficient multiplying the t e r m in the par t i -
tion function corresponding to η melted regions having
lengths of ι>ι vn:

•r=\lvr^. (66)

In order to calculate this partition function by the
matrix method, the power-function dependence va is
replaced by the exponential function q^/μ . This is
done in such a way that the values and the first der iva-
tives of these two functions coincide for the mean
length Vi of a melted region. These conditions give
formulas for q and μ :

9 = ̂ Γ· (67)

μ = -4-ε°· (68)
V

Here the helicity $ is calculated by Eqs. (59), (61), and
(62), and the mean length ~vx per melted region by
Eqs. (59), (64), and (65). Account is taken here of the
fact that ϊ»! = (1 - ,>)N/n, and s is replaced by qs, and
σ by μσ in al l formulas . In order to get the t rue values
of $ and Vu it is s implest of al l to use the method of
success ive approximations. One s t a r t s with arb i t rary
values of q and μ and calculates "ΰχ by Eqs . (67) and
(68). Then one calculates new values of q and μ, from

* I n [ 4 2 · 4 3 ] , t h e m e t h o d o f c a l c u l a t i n g t h e p a r t i t i o n f u n c t i o n b y

d i r e c t m u l t i p l i c a t i o n o f a r a n d o m s e q u e n c e o f m a t r i c e s i s c a l l e d t h e

M o n t e C a r l o m e t h o d . T h i s t e r m i n o l o g y i s i n c o r r e c t a n d c o n d u c i v e t o

e r r o r . A c t u a l l y , t h e M o n t e C a r l o m e t h o d i s n o w h e r e u s e d i n s u c h c a l c u -

l a t i o n s , w h e r e a s t h e i n t r o d u c t i o n o f a r a n d o m s e q u e n c e o f l i n k s i s a

n e c e s s i t y i n v o l v i n g o u r i g n o r a n c e o f t h e t r u e s e q u e n c e .

w h i c h i>! i s a g a i n c a l c u l a t e d . T h i s i s c o n t i n u e d u n t i l

t h e v a l u e s o b t a i n e d i n t h e n e x t s t e p o f t h e p r o c e d u r e n o

l o n g e r d i f f e r f r o m t h o s e o b t a i n e d i n t h e p r e c e d i n g s t e p .

T h e b a s i s o f t h i s p r o c e d u r e f o r c a l c u l a t i o n i s g i v e n

i n [ 4 5 ] .

a ) A n a l y t i c a l s o l u t i o n / 4 6 1 O n e c a n t r e a t t h e q u a n t i t y

G a s a r a n d o m q u a n t i t y , a n d i n t r o d u c e i t s d i s t r i b u t i o n

f u n c t i o n P ( G ) , w h i c h i s d e f i n e d a s

4 - S 6 ( G - G * > · ( 6 9 )

W h e n t h e r e a r e t w o t y p e s o f l i n k s , t h e r e c u r r e n c e

f o r m u l a ( 5 9 ) i m p l i e s a n e q u a t i o n f o r t h e f u n c t i o n P ( G ) :

where Xi and X2 a r e the fractions of links of types 1
and 2 in the heteropolymer (xi + x2 = 1). The partition
function is expressed in t e r m s of P ( G ) as follows
(see (54)):

In ζ = Ν [ Ρ (G) In G dG. /η j \

It h a s not b e e n p o s s i b l e t o find a n e x a c t a n a l y t i c a l

s o l u t i o n of E q . (70). A n a l y t i c a l e x p r e s s i o n s for t h e

s o u g h t q u a n t i t i e s c a n b e found u n d e r t h e a s s u m p t i o n

t h a t

Here it turns o u t [ 4 6 ] that the helicity ό depends on the
t e m p e r a t u r e as follows:

E = J ^ J L (73)

where τ is given by Eq. (41); at the melting point,

(74)

With decreasing t e m p e r a t u r e , ξ = (T - Τ 0 )/2τ — - « ,
,» — 1 + 2£e 2£, so that I - j = [ ( T o - T)/r ] exp
χ [(Τ - To)/τ]. This agrees with Eq. (40), which was
derived by qualitative considerat ions.

As ξ — 0, Eq. (73) gives us & = l/2 - ξ/3 . This ap-
plies that the points of intersection of the limiting
values of the helicity $ = 0 and $ = 1 with the tangent
to the melting curve at the midpoint of the melting
range a r e separated from one another by the distance
ξ ο - ξι = 3. That i s , the width of the melting range de-
termined by using the tangent to the melting curve at
4 = Yz is

ΔΓ^β,-ξ^τ^Βτ, (75)

where τ is given by Eq. (41).
Thus, the exact theory confirms the c o r r e c t n e s s of

the qualitative picture of the helix-coil t ransit ion in
heterogeneous DNA outlined above, as based on the
idea of stepwise melting (as the t e m p e r a t u r e r i s e s and
the middle of the melting range is approached) of even
larger regions in the DNA, which a r e less and less en-
riched in the low-melting AT component. The elemen-
tary theory and the approximate analytical theory give
identical re lat ions of ΔΤ and V to al l the p a r a m e t e r s .
However, all these formulas were derived by using
various approximations. Hence, the resu l t s of the
exact calculations that have been performed with the
r e c u r r e n t formulas (59), (61), (62), (64), and (65) a r e
of great in teres t .
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ο -ε -4 -

FIG. 15. Melting curves of a
one-stranded heteropolymer
having a random sequence [3 9]
(σ = 5Χ ΙΟ'5). 1-χο = 0,Τ ο =
340 °K, N = 2X 1 0 4 ; 2 - x 0 = 0.1
To = 344 °K, ρ = 3.310, Ν =
4 Χ 1 0 4 ; 3 - x 0 = 0 . 5 , T 0 = 3 6 0
°Κ, ρ = 3.138, Ν = 6Χ ΙΟ4.

Τ-τ.

FIG. 16. Relation of the mean length
of the melted regions to the fraction of
melted links for a one-stranded hetero-
polymer having a random sequence. [3 9]
Curves 1—3 correspond to the same values
of the parameters as the corresponding
curves in Fig. 15.

b ) M a c h i n e c a l c u l a t i o n s o f t h e h e l i x - c o i l t r a n s i t i o n

i n a h e t e r o p o l y m e r a n d c o m p a r i s o n w i t h e x p e r i m e n t .

T h i s s e c t i o n w i l l p r e s e n t c h e r e s u l t s o b t a i n e d i n [ 3 9 ' 4 5 > 4 7 ] .

T h e i n d e p e n d e n t p a r a m e t e r s t a k e n i n t h e c a l c u l a t i o n

w e r e : t h e f r a c t i o n x 0 o f G C p a i r s i n t h e D N A , t h e

m e l t i n g p o i n t s T A T a n d T Q C ° f t h e c o r r e s p o n d i n g

h o m o p o l y m e r s , t h e h e a t o f m e l t i n g U A T > a n < * t h e c o -

operativity factor σ. The calculations were run on the
M-20 and M-220 computers. In the calculation at an
assigned x0, a sequence of randomly alternating
nucleotide pairs of total number Ν was constructed.
The probability of finding an AT pair was taken to be
1 - x0, and that of a GC pair was x0.

First we shall treat the results for the case of
melting without formation of loops. For the assigned
parameters, the helicity rf was calculated by Eqs. (59),
(61), and (62), the mean length per helical region by
Eqs. (59), (64), and (65), and the width of the melting
range by Eq. (1). The quantity | d$/dT\ was calculated
by the recurrent formulas [ 3 9 ]

β *

dins
\UAT

where

(77)

(78)

The calculation made it possible to get the melting
curves and the mean length per helical region in the
polymer for various values of the parameters listed
above. Figures 15, 16, and 17 give appropriate exam-
ples. The curves in these diagrams have been drawn
for values of the parameters close to the real values:

FIG. 17. Relation of the width of the melting range of a one-
stranded heteropolymer having a random sequence to the GC content.
[39] The sizes of the root-mean-square deviations are indicated.

TAT = 340°K, TGC = 380°K, UAT = 7 kcal/mole (3500°K)
σ = 5 x 10"5. The number Ν of links in the calculated
chain in different series was taken from 2 χ 104 to
10". The scatter in the theoretical points shown in
Fig. 17 (root-mean square deviation) corresponds to
the fact that the chains of identical composition that
are generated in the calculation differ in sequence.
The marked interval contains 68% of all the cases.
This scatter approaches zero only as Ν —- °°. The
nucleotide compositions of the chains generated in the
calculation for the taken values of Ν differ insignifi-
cantly, and they cannot give rise to such a scatter in
values of ΔΤ (at Ν = 105, it can give a scatter in ΔΤ
values in the region of x 0 = 0.5 of no more than
10"4°C). In this sense, we should not distinguish be-
tween the a priori and a posteriori compositions of
the chains, and the remark made on this point in [ 4 1 ]

is not important in this case. However, as we see, the
difference in nucleotide sequence of different DNA
molecules with a given composition can lead to differ-
ences in ΔΤ of the order of 0.2-0.3°C (when Ν = 105;
this quantity declines like 1//N with increasing N). In
order, when needed, to calculate the width of the melt-
ing range for different values of the parameters, it is
convenient to use the following interpolation formula,
which satisfies the results of the machine calcula-
tion -S4^

rM- (79)

According to the machine calculations, the melting
temperature T o satisfies Eq. (37). Equation (79) holds
over a wide range of values of the parameters, and has
an accuracy no worse than 10%. This accuracy is
maintained over the following ranges of variation of
values: the parameter x0 from »0.15 to «0.85; T Q C

- TAT> a t l e a s t f r o m 2 0 1 0 1 0 0 ° ; σ f r o m 1 0~ 3 t o z e r o ;
for UAT, practically any positive value can be used,
Naturally, not all the permissible values of the
parameters have real meanings, and the concrete
choice of parameters is determined by the experi-
mental data.

It is interesting to compare Eq. (79) with the
formulas derived above in the approximate analysis.
In this case, when the heterogeneity is the determining
factor (the first term in Eq. (79) considerably exceeds
the second term), we see that Eq. (79) gives the same



THE H E L I X - C O I L TRANSITION IN DNA 729

FIG. 18. Melting curves of a two-
stranded heteropolymer having a ran-
dom sequence. [ 4 S ] l - σ = 5 X 1(T5;
2-σ = 5 Χ 10"4.

358 3SS

dependence on x0 and on σ as the above-derived
formulas do, but the exponent of T Q C - T AT i s I · 6 ,
rather than 2. Thus, the approximate theory not only
reflects correctly the fundamental qualitative features
of the melting of a heteropolymer, but it also gives a
quantitatively correct result for the relation of ΔΤ to
σ in the region of small σ. In the region of actual
values of σ, the second term in Eq. (79) contributes
about 1° to ΔΤ. We note, besides, that Eq. (79) remains
valid if we go from a heteropolymer to a homopolymer
(cf. Eq. (8)).

In discussing the melting of closed ring DNA, we
shall compare below the experimental data with the
outlined results of calculation for the case in which
melting occurs without formation of loops. However,
we should give for comparison with experiment the
results of calculation for melting with loop formation.

The melting curves of DNA with account taken of
loop formation were calculated by the above-described
iteration procedure, with the same values of the
parameters as in the calculations whose results are
shown in Figs. 15-17. Figure 18 shows these curves.
The width of the melting range for these curves was
found to be: ΔΤ = 2.7° for σ = 5 χ 1(Γ5, and ΔΤ = 3.2°
for σ = 5 x ΙΟ"4. When loops were not accounted for,
values of ΔΤ = 7—8° were obtained (by Eq. (79)) in-
stead of these values. This narrowing of the melting
range agrees with Eq. (52).

If we take the value 9 kcal/mole for UAT, which is
apparently closer to the truth than 7 kcal/mole, then
ΔΤ increases somewhat, and attains values «3° for
σ = 5 χ 1(Γ5.

Thus, the results of calculating the width of the
melting range of heteropolynucleotides having a random
sequence, with account taken of loop formation, give
the value ΔΤ = 2.8—3.2° in the region of actual values
of the parameters.

Figure 19 gives the calculated curves for the rela-
tion of the mean length of a helical region to the
helicity for two extreme values of U A T ·

The obtained results agree with those of Crothers'
calculations/4 8 1 which were performed by a different
method. However, in Crothers' study, the calculations
were performed for rather small chain lengths
N(5000), and he assumed to simplify the calculations
that melting can only occur in regions of several tens
of links (from 30 to 50). In this respect, Eichinger and
and Fixman [ 4 9 ] have seriously criticized the results
of1481. In turn, Fixman and his associates'·4 9 '5 0 1 have
proposed a method of calculating the helix-coil transi-
tion in heteropolymers that is highly artificial and has
no firm justification. The only justification is the fact

4000
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FIG. 19. Relation of the mean length per helical region to the heli-
city. The curves are the theoretical ones calculated for a two-stranded
heteropolymer having a random sequence: [ 4 S] 1-σ = 5 Χ 10"5, U A T =
7 kcal/mole; 2-σ = 5 X 10"s, U A T = 9 kcal/mole. The points are the
experimental values for T2 phage DNA. [ s ]

that the ir ca lcu la t ions for s i n g l e - s t r a n d e d heteropo ly-

m e r s a g r e e w e l l in a c e r t a i n range of p a r a m e t e r va lues

with the r e s u l t s of the exact theory ( s e e [ 5 0 1 ) . However ,

the r e s u l t s for a two-stranded h e t e r o p o l y m e r d i s a g r e e

sharp ly with t h o s e g iven above for th i s c a s e , and g ive

a width of the me l t ing range of about 0.2°. The e l e -

mentary theory presented above c l e a r s h o w s that tak-

ing account of loops in a h e t e r o p o l y m e r cannot g ive

s u c h e n o r m o u s e f f e c t s . H e n c e , we think that the r e s u l t s

of [ 4 9 ] a r e in e r r o r .

We s h a l l proceed to c o m p a r e the theory with e x p e r i -

ment . Unfortunately, the only e x p e r i m e n t a l l y m e a s u r a -

b le c h a r a c t e r i s t i c until r e c e n t l y has been the mel t ing

c u r v e . The shape of the me l t ing curve a g r e e s with

exper iment , a l m o s t independently of the ca lcu lated

model , and it cannot s e r v e a s a c r i t e r i o n for the c o r -

r e c t n e s s of the theory . H e n c e , it m a k e s s e n s e only to

c o m p a r e the n u m e r i c a l value of the width of the m e l t i n g

range . At present , suff iciently c o m p l e t e e x p e r i m e n t a l

data e x i s t for two condi t ions : standard ionic condit ions

(SSC), and for a 7.2 Μ NaC104 solution. In the former
case, T G C - TAT = 41°, and in the latter case, 56°.
The rest of the parameters vary relatively slightly.
The table shows the comparison of theory with experi-
ment. The data for T2 phage DNA are from [ 4 ], and the
rest of the data from [ 1 2 ]. The DNA's of T2 and T7 pha
phages are linear, and the DNA of polyoma II is an-
nular, but with a break in one of the chains, so that its
chains can freely unwind. Hence it should obey the
same theory as linear DNA. Polyoma I DNA is annular
and closed, and it should obey the theory for single-
stranded polymers.

The theory that predicts the width of the melting
range contains a single "purely theoretical" parame-
ter a. All the other parameters are determined
directly from independent experiments (calorimetry
and determination of Tm). We note that, while ΔΤ for
a homopolynucleotide depends strongly on σ (by a
power law), this dependence is considerably weaker
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Comparison of theory with experiment

DNA

SSC(0.15 Μ
T2
T7
Polyoma II
Polyoma I

Δ Τ « ρ

NaCl), Τ(χ
3.2°
2.5—3°
2.5-3°

i Ttheor

- T A T =41°

1 2.8—3.2°

DNA

7.2 Μ NaCIO

T2
T7
Polyoma II
Polyoma I

a T exp

5°
5.5°
8D

19°

*Ttheor

T =56°

1 4.8—5.2°

(logarithmic) for a heteropolynucleotide. Hence, it is
reasonable to select σ by comparing theory with ex-
periment for homopolynucleotides. As we pointed out
above, this gives a value of 10~4—10"5. Naturally, some
uncertainty remains here, which we discussed above in
the section dealing with melting of homopolymers.
However, owing to the logarithmic dependence on σ of
the melting parameters of a heteropolymer, this un-
certainty can hardly affect the result appreciably.

We should deem the agreement that we get between
the experimental and calculated values of ΔΤ to be
quite satisfactory. In 7.2 Μ NaClO4 solution, the ex-
perimental values for polyoma DNA proved to be sub-
stantially larger than the theoretical values. Here
there is an internal contradiction in the experimental
data, since T7 phage and polyoma II DNA have identical
values of Δ Τ under SSC conditions, but different in
7.2 Μ NaC104 solution. In line with this, we shouldn't
yet grant any serious meaning to a certain discrepancy
between theory and experiment.

It is of great interest to compare the theory with
other experimentally found characteristics of the helix-
coil transition in DNA. Some experimental data ob-
tained in [ 4 ' 5 ] are plotted (as the points) in Fig. 19. As
we see, the results of calculations for various possible
values of the parameters (UAT from 7 to 9 kcal/mole)
bracket the experimental points. Since ~v depends
somewhat more strongly on σ than ΔΤ does (see, e.g.,
Eqs. (48) and (74)), comparison of the experimental
values of V with the theoretical permits one in princi-
ple to make an additional refinement in the choice of σ.
The results of this comparison favor a choice of σ of
about 5 x 10'5.

The obtained agreement of theory with experiment
indicates that some DNA's, in particular the experi-
mentally well-studied T2 phage DNA have sequences of
base pairs which behave, when subdivided into regions
of hundreds of links, just like the random sequence that
was adopted in the theoretical calculations. However,
this type of DNA, which has a narrow melting interval
(about 3°) is the exception, rather than the rule. Even
among the virusses, there are some whose DNA con-
sists of long regions that strongly differ in their mean
GC content. These DNA's melt in stepwise fashion:
each step corresponds to melting of an individual
region, or block. DNA from higher organisms has very
broad melting curves with ΔΤ = 10°, though smooth
enough. This has been shown recently to be explained
by the block character of the base-pair distribution in
the DNA of higher organisms. [ 5 1 ' 5 2 ] In a first approxi-
mation, we can consider the DNA of higher organisms
to be a sequence of blocks of mean dimension about
ΙΟ4—105 pairs. Within each block, the sequence of base
pairs is close to random with a fixed value of x0, but
the value of x0 differs for different blocks. The DNA

of b a c t e r i a h a s a n a n a l o g o u s s t r u c t u r e , b u t t h e b l o c k s

i n t h e m d i f f e r l e s s i n t h e i r m e a n G C c o n t e n t , a n d h e n c e

ΔΤ is smaller for them.*

3. Relation of the Width of the Melting Range of DNA
to the Chain Length

The results discussed thus far have referred to
melting of long molecules in which end effects play no
role. Decrease in the chain length lowers the melting
point and broadens the melting range, both for homo-
polymers and heteropolymers. This effect is mani-
fested especially clearly when the chain length becomes
considerably shorter than the mean length of a helical
region that is formed in the course of melting of a
polymer. Then we can assume that melting of such
fragments occurs as a whole, without formation of in-
termediate states. Melting of a short fragment is
facilitated by the fact that it has a surface energy equal
to the energy Fs of two boundaries in a polymer, so
that the condition of equilibrium has the form (cf. Eq.
(35)):

v&F=—Fs, (80)
Here AF is the difference in free energy per link be-
tween the helical and coil-like states of a long polymer.
Since AF = -U + ΤΔβ, and V/AS = To is the melting
point of the long polymer, then the melting point of a
fragment of length ν is

Tm = Ta ^--. (81)

Eq. (81) is valid for either a homopolymer of a hetero-
polymer. The melting curve of a solution of fragments
of length ν will be described by the mass-action law
(Boltzmann distribution):

whence
6 =

n-FiΤ

1 + ·

1

vbF+Fs

Τ

V\F+F,

' τ -

,(82)

Thus, the me l t ing point in (81) c o r r e s p o n d s to the point

at which 4 = %, whi le the width of the mel t ing range

has the form

Λ 7 · - ! _!<> - A i ? . (83)

Evidently, this formula holds only for a homopolymer
or for a preparation consisting of molecules of a
heteropolymer that have strictly identical sequences
(see Note 7).

The presented results make expecially evident the inadequacy of
the attempts made in [Ai ] to explain the different values of ΔΤ for
DNA from various sources by arbitrary adjustment of the parameter ο
(which had to be varied over several orders of magnitude) within the
framework of calculating the helix-coil transition for a heteropolymer
with a random sequence without account taken of loops.
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In the fragmentation of a long heteropolymer mole-
cule having a random sequence, the different fragments
have concentrations of GC pairs that differ from the
mean x 0 by the amount Δχ. The lat ter quantity has the
Gaussian distribution (37'). The relation between the
melting point Τ of a fragment and Δ χ is given by the
formula (cf. Eq. (36)):

Γ , . ΐ Α . - ϋ . (84)

(85)

Hence, the melting curve will have the shape of an
error curve:

oo
ΐ/2πσ ν . J dl,

where Δ χ ( Τ ) is given by Eq. (84). By using the defini-
tion in (1), we obtain from Eq. (85):

(Δ77 = 2π {Toe - ΤΑΊγχα (1 _ * 0 ) A. (86)

T h e s e a r e t h e e l e m e n t a r y a s y m p t o t i c ( f o r s m a l l v)
f o r m u l a s r e l a t i n g t h e m e l t i n g p o i n t a n d t h e w i d t h o f t h e
m e l t i n g r a n g e t o t h e c h a i n l e n g t h . T h e s e f o r m u l a s
p r o v e t o b e v e r y u s e f u l f o r r o u g h e s t i m a t e s o f t h e m o s t
v a r i e d t y p e s ( s e e , e . g . [ 5 3 ] ) . H o w e v e r , t h e y c a n n o t p r e -
t e n d t o d e s c r i b e e x p e r i m e n t q u a n t i t a t i v e l y , e s p e c i a l l y
a m o n g h e t e r o p o l y m e r s .

T h e f i r s t a t t e m p t t o d e v i s e a q u a n t i t a t i v e t h e o r y
r e l a t i n g t h e m e l t i n g c u r v e s o f f r a g m e n t e d D N A t o t h e
c h a i n l e n g t h a n d t o c o m p a r e i t w i t h e x p e r i m e n t w a s
made ί η [ Μ ] . They showed in this study that quantitative
comparison of the melting point with experiment is
hindered by the fact that this character i s t ic is sensitive
to whether the s t rands separate completely upon melt-
ing. In other r e s p e c t s , this study is not convincing,
since the numerical calculations c a r r i e d out in it r e -
ferred only to the limiting case of short lengths, and
were compared with experiment for great lengths
( > 4 0 0 links), for which the width of the melting range
of the fragmented DNA differed little from that of DNA
of high molecular weight. We should also note that the
experiments performed i n t 5 4 ] have too low an accuracy
to permit quantitative comparison with theory.

The melting curves of fragmented molecules can be
calculated by the general formulas (59), (61), and (62).
Breaking a chain made of Ν links into pieces contain-
ing n 0 links each is c a r r i e d out in the theory by impos-
ing the condition (it is assumed that Ν = n o k o ):

1 for i φ kn0,
l/σ for i = kn0,

= l, 2, (fco-1). (87)

T h i s c o n d i t i o n i m p l i e s l o s s of i n t e r a c t i o n b e t w e e n t h e
l i n k s n u m b e r e d k n 0 a n d k n 0 + 1. E x p e r i m e n t a l l y , s u c h
a l o s s of i n t e r a c t i o n c a n b e e f fected b o t h by a c t u a l
f r a g m e n t a t i o n of t h e DNA, o r by f o r m a t i o n in s o m e way
of l o c a l l y d e n a t u r e d r e g i o n s in i t . F i g u r e 20 s h o w s t h e
m e l t i n g c u r v e s for d i f f e r e n t v a l u e s of n 0 , a s c a l c u l a t e d
by E q s . (59), (61), (62), a n d (87) . We s e e t h a t a r e g u l a r
shift t o t h e left a n d b r o a d e n i n g o c c u r wi th d e c r e a s i n g
n 0 . S i n c e t h e c a l c u l a t i o n s w e r e p e r f o r m e d u n d e r t h e
a s s u m p t i o n t h a t t h e s t r a n d s do not s e p a r a t e c o m p l e t e l y
upon m e l t i n g , we s h o u l d not e x p e c t good a g r e e m e n t wi th
e x p e r i m e n t of t h e m e l t i n g - p o i n t shi f t c a l c u l a t e d in t h i s
w a y . T h i s i n v o l v e s t h e fact t h a t , a s w a s n o t e d a b o v e ,
t h e m e l t i n g - p o i n t shi f t d e p e n d s on w h e t h e r t h e s t r a n d s

FIG. 20. Theoretical melting curves of a heteropolymer having a
random sequence, when "fragmented" to different values of n 0 : [5S]
l - n 0 = 3 X 1 0 s ; 2 - n o = 200; 3-n 0 = 100;4-n 0 = 50.

FIG. 21. Theoretical (dotted
line) and experimental (circles) re-
lations of δ(ΔΤ)2 to l/n 0 .

0 1 Ζ 3 Ί s - β

s e p a r a t e c o m p l e t e l y . C o n v e r s e l y , t h e v a r i a t i o n i n t h e
w i d t h of t h e m e l t i n g r a n g e s h o u l d n o t d e p e n d o n t h e s e
f a c t o r s . M o r e o v e r , c a l c u l a t i o n s s h o w [ 5 5 ] t h a t t h e
q u a n t i t y

δ(Δ77^(ΛΓ)2-(Δ077, (88)

where Δ 0 Τ is the asymptotic value of the width of the
melting range, is practically independent as n 0 — °° of
the value of the cooperativity factor σ adopted in the
calculation. Since shifting from the model of a single-
stranded heteropolymer to a model of a two-stranded
heteropolymer is equivalent in theory to changing the
effective value of σ, the calculated values of δ(ΔΤ) 2

should not depend on the model. Finally, the calcula-
tions showed [ 5 S ] that the size of δ(ΔΤ) 2 is practically
independent of the nature of the length distribution of
the fragments. The following interpolation formula has
been derived from the resul t s of machine calcula-
t i o n s : ^ 7 1

100 ; (0.87^ + 0.20)-
y + 0.074 '

Here y is a quantity that is related to δ ( Δ Τ ) 2 :

s 0.103 I
V i

-UA

(89)

( 9 0 )

One can compare this formula with experiment. The
melting curves of DNA that had been fragmented to
different molecular weights were obtained i n [ 1 3 ] (see
Fig. 9). The shape of the curves in Fig. 9 agrees
qualitatively with what the theory predicts . Actually,
the r i s e in the left-hand branch of the curves with
decreasing molecular weight exceeds the expected
amount. Apparently, this involves inexact c ross- rupture
of the molecules upon fragmentation, which gives r i s e
to single-stranded " t a i l s " at the ends of the fragments.
Figure 21 shows the relation of δ(ΔΤ) 2 to l / n 0 . The
value of n 0 was determined by sedimentation and by
electron microscopy.
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The circles in Fig. 21 are the experimental points,
and the dotted line has been drawn according to Eq.
(89), with values of the parameters corresponding to
standard ionic conditions. We see that the theory
agrees with experiment. Thus, measurement of the
width of the melting range can be used to determine the
chain length of fragmented DNA. Furthermore, since
the effect of broadening of the melting curve involves
loss of interaction between links along the chain, rather
than specifically the rupture of the sugar-phosphate
backbone, measurement of the width of the melting
range can serve as a universal method for determining
the concentration of defects in the secondary structure
of DNA. Such a method was proposed in [ 1 3 ] , and its
potentialities were demonstrated with the example of
DNA that had been subjected to ultraviolet irradiation,
which brings about in DNA defects in the secondary
structure without breaking the sugar-phosphate back-
bone.

V. CONCLUSION

We can see from all that has been said that the
phenomenon of the helix-coil transition in DNA is
among the physical phenomena that are currently
amenable to detailed theoretical and experimental
analysis. The studies that have been conducted show
that in natural DNA's we are dealing with an actual
one-dimensional aperiodic crystal. Synthetic homo-
polynucleotides are periodic crystals. What are the
forthcoming problems in the theoretical and experi-
mental study of the helix-coil transition in DNA? First
of all, we must note the lack of information on the
properties of synthetic homopolymers. This involves
primarily the poor accessibility of preparations of
homopolynucleotides of high molecular weight. Per-
formance of systematic, careful studies of homopoly-
nucleotides would substantially speed progress in this
field. One must also make careful measurements of
melting curves of actual DNA's under different ionic
conditions in order to get quantitative data on the rela-
tion of Δ Τ to the conditions in the medium. This would
make it possible to compare theory with experiment in
further detail.

With regard to theory, the main difficulty involves
the problem of knots in the melted region of the poly-
mer. On this point, the theory of the helix-coil transi-
tion proves to face difficulties that are analogous in
many ways to those encountered in other fields of
polymer physics (see, e.g.,[5e~58]).

We have restricted our treatment in this article to
the thermodynamics of the helix-coil transition in DNA.
The kinetics of this process has been studied inten-
sively in recent years (see [59~61]). A number of inter-
esting experimental results have already been obtained,
but there is as yet no adequate theory.

Another interesting approach that has developed in
recent years is to study the kinetics of unwinding of
DNA when acted on by chemical agents whose reactions
with the bases prevent the latter from forming comple-
mentary pairs. In particular, formaldehyde is such an
agent. The kinetics of unwinding of DNA treated with
formaldehyde has been already studied in considerable
detail. On the basis of this study, a highly sensitive

method of detecting locally denatured regions in DNA
has been developed (see [ 6 2 ' 2 7 ' 6 3 ] ). This method in itself,
as well as in combination with some methods based on
thermodynamic properties of DNA, makes it possible
to get results that can be of direct biological inter-

est>[53,63,64]
The purpose of this article has been to present the

existing theoretical concepts of the thermodynamic
properties of DNA as a one-dimensional aperiodic
crystal. Study of the helix-coil transition in DNA is
interesting in itself, since we are dealing with the un-
usual physical phenomenon. However, the importance
of an all-sided study of the thermodynamic properties
of DNA, and especially of its complexes with proteins,
has recently become more and more evident in under-
standing how the fundamental stages of functioning of
DNA occur in the cell. Perhaps the most interesting
study along this line is that of Alberts and Frey. [ 6 5 ] In
this study they isolated the protein of gene 32 of T4
bacteriophase. The presence of the latter in large
amounts is necessary for normal occurrence of replica-
tion (duplication of DNA) and genetic recombination.
The studies performed in [ 6 5 ] showed that this protein
has a much higher binding constant with one-stranded
than with two-stranded DNA. Hence, presence of this
protein in the solution should substantially facilitate
separation of the strands of DNA. The unwinding action
of the protein was shown directly in its interaction with
the synthetic two-stranded polynucleotide poly-
(dAT :dAT). A number of interesting properties of this
protein were also studied. Thus, special proteins exist
in the cell that break down (or weaken very greatly)
the helical structure of DNA, and this breakdown is
necessary for the functioning of the cell.

Studies along this line are just beginning. However,
it is already clear that they will lead to a considerably
deeper understanding of how DNA performs its func -
tions in the cell.

NOTES

1. Watson and Crick established the structure of the
DNA molecule from x-ray crystal-structure data and
stereochemical considerations in 1953. The correctness
of the Watson-Crick model was subsequently proved
rigorously by Wilkins and his associates on the basis
of much more complete x-ray data. The establishment
of this structure has been acknowledged to be the great-
est achievement of the 20th Century in the field of
biology (J. Watson [ae] has vividly described the history
of the discovery of the structure of DNA in his book).
This discovery founded a new science: molecular
biology.

The so-called B-form of DNA has the parameters
cited in the text. DNA can change its structure when
the external conditions are changed greatly. Thus, for
example, when a DNA preparation is dried, it trans-
forms to the Α-form, in which the DNA contains 11
base pairs per turn to the helix, and the normal to the
plane of the base pairs is inclined by 20° to the axis
of the helix. At higher humidity, DNA occurs in the
B-form. Therefore, people assume that DNA has the
same structure in dilute solution. The correctness of
this assumption is confirmed by a number of indirect
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data (flow birefringence, small-angle x-ray scatter ing,
optical d ichroism, e tc . ) . Very convincing data of this
type have been obtained recently ( s e e [ 6 7 ] ) . They showed
that the c i rcu lar dichroism spectrum of DNA in solu-
tion coincides with that of DNA films at high relat ive
humidities at which DNA occurs in the B-form accord-
ing to x-ray data. A marked change in the c i rcu lar
dichroism spect rum i s observed with decrease in
humidity as the DNA t rans forms to the A-form.

Information has recently been accumulating that
s m a l l changes in the s t r u c t u r e of DNA can occur (e.g.,
the angle between neighboring base pairs) upon chang-
ing the propert ies of the solution (the tempera ture or
the salt concentration).

2. In oder to study the propert ies of DNA molecules,
they a r e isolated from cel ls or v iruses by purification
from al l other components (mainly proteins). The
methods commonly used to isolate DNA a r e ra ther
s e v e r e . The velocity gradients that a r i s e in the isola-
tion p r o c e s s , as well as cer ta in biochemical factors,
break the DNA molecules into fragments containing no
m o r e than s e v e r a l tens of thousands, or at the most,
hundreds of thousands of l inks. The t rue length of the
molecules in a living cel l or in a virus part icle differs
greatly for different living o r g a n i s m s . Thus, the length
of the DNA molecule for different v iruses can vary
from severa l thousand links to hundreds of thousands
of l inks. The DNA molecules of bacter ia already con-
tain severa l million l inks. Here it has been established
that the entire set of genetic information of a bacter ium
is contained in the sequence of one gigantic DNA mole-
cule whose contour length is approximately a mil l i-
m e t e r . In more complex, multicellular organisms, the
genetic information is not written down continuously,
but is contained in severa l individual DNA molecules.
The total contour length of a l l the DNA molecules that
bear the total, unitary bulk of information (this com-
plete set of genetic information is called the genome)

is equal, for example, to about 1.8 m e t e r s for man.
That i s , it contains severa l billion l inks.

Besides the increase in bulk of genetic information,
multicel lular organisms differ from bacter ia and
viruses in that the DNA in multicellular organisms is
very firmly complexed with protein. The existence of
this complex is manifested especially distinctly in the
stage of cell division during which the DNA and protein
form special part ic les that can be seen in the optical
microscope, or c h r o m o s o m e s . Very little is yet known
about the s t ructure of these nucleoprotein complexes.

3. The genetic information written in the form of a
sequence of nucleotides in a DNA molecule is real ized
as follows (we give below a highly schematic and some-
what exaggereated description of the p r o c e s s e s ; for
more detai l s , see, e.g., the excellent book by J .
Watson [ 6 8 ] ) . One one of the s t rands of the DNA mole-
cule (which is called the significant s t rand), an RNA
molecule complementary to this s trand is synthesized
with the aid of the special enzyme RNA polymerase .
This RNA is called informational RNA (or mRNA from
the English word messenger) . This process is called
transcr ipt ion. However, not the whole DNA molecule
is copied, but only a smal l part of it called the gene.
The gene contains the information for the chemical
s t r u c t u r e of one protein molecule. The mRNA synthe-

sized on the gene forms a complex with special p a r t i -
called r ibosomes, which synthesize protein according
to the pattern brought by the mRNA. The point is that
protein molecules, which perform practically al l the
functions of the living organism, a r e l inear polymer
chains that a r e packed quite capriciously in space (all
enzymes a r e proteins; moreover, all the s t ructura l
components of the cell and the living organism consist
of proteins to a considerable degree). The monomeric
links of a protein chain a r e amino-acid res idues , so
that a protein chain (a part of it is also called a poly-
peptide chain) has the form

Rj O R 2 Ο R 3

H — N — C — C — N — C — C — N — C — . .

Η Η Η Η Η Η

Ηΐν
Ι Λ

. - N - C - C C .
Ι Ι ΟΗ
Η Η

The a m i n o - a c i d r e s i d u e s differ f rom one another in
the rad ica l R. Twenty t y p e s of amino-ac id r e s i d u e s in
a l l a r e found in p r o t e i n s . The s i m p l e s t of them i s g ly-
c i n e , where s i m p l y hydrogen o c c u r s a s R. Then fol-
lows alanine, which has the methyl group CH3 a s R,
e t c .

The r i b o s o m e s per form the t rans la t ion from the
polynucleot ide language to the po ly-amino acid language.
The dict ionary that the r i b o s o m e u s e s in t rans la t ion i s
c a l l e d the genet ic code . The genet ic code has a lready
been dec iphered ( s e e , e .g . , Watson 's b o o k [ 6 e l ) . Some
s p e c i a l , very s m a l l RNA m o l e c u l e s ca l led transport
RNA (tRNA) play an e s s e n t i a l r o l e in t h i s p r o c e s s .
They contain only about a hundred nuc leot ides , and they
transport the amino-ac id r e s i d u e s f rom the so lut ion to
the polypeptide chain.

4 . One e s t a b l i s h e s the m a c r o m o l e c u l a r s t ructure
of one-stranded and two-stranded DNA, or a s one often
s a y s , the morphology of the DNA m o l e c u l e in solut ion,
by us ing the ordinary methods of po lymer so lut ion
p h y s i c s ( s e e the monograph^ 6 9 1 ). Thus, the s t a t i s t i c a l
s e g m e n t of s i n g l e - s t r a n d e d DNA has b e e n determined
from v i s c o s i t y data i n [ 4 ] for T2 phage DNA, and i n [ 7 0 ]

for the homopolymer poly-U, and they got pract ica l ly
ident ica l r e s u l t s . T h e r e i s a s ye t no c o m p l e t e certa inty
about the s i z e of the s t a t i s t i c a l s e g m e n t of double -
h e l i c a l DNA, s i n c e l ight s c a t t e r i n g and hydrodynamic
methods g ive d ivergent r e s u l t s ( s e e [ 7 1 ] ) . The hydrody-
namic data g ive a s i z e of the s t a t i s t i c a l s e g m e n t of
about 300 b a s e p a i r s . The methods of po lymer solut ion
phys ics do not permit one to c h o o s e between two m o d e l s
of f lexibi l i ty of a po lymer chain: z igzag, in which the
m o l e c u l e i s a chain of f ree ly- jo inted, c o m p l e t e l y r ig id
r o d s ; and w o r m - l i k e (pers i s tent ) , in which the m o l e c u l e
b e h a v e s l ike a rubber h o s e that has a cer ta in very
s m a l l f lexibi l i ty at e v e r y point. Th i s prob lem w a s
s e t t l e d in favor of the w o r m - l i k e mode l when it w a s
s h o w n r 6 2 ] that loca l l y denatured r e g i o n s that could
s e r v e a s the joints for a z i g z a g model a r e absent in
DNA for d i s t a n c e s of at l e a s t s e v e r a l thousand b a s e
p a i r s .

5. A wel l-s tud ied e x a m p l e , both exper imenta l ly and
t h e o r e t i c a l l y , of a s i n g l e - s t r a n d e d homopo lymer that
undergoes a h e l i x - c o i l t rans i t ion with changing condi-
t ions in the m e d i u m i s a polypeptide ( s e e Note 3). A
polypeptide molecule can form a so-called α-helix, in
which the chain is twisted into a helix. It is reinforced
by hydrogen bonds formed along the axis of the helix
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between the N-H and C-0 groups of amino-acid resi-
dues separated by three links along the chain. When
the external conditions are changed (the temperature,
the pH, or the composition of the solvent), the α-helix
can break down and transform into an ordinary flexible
polymer chain. Zimm and Bragg first applied the
Ising model to describe the helix-coil transition in a
polypeptide in 1958. Subsequent experimental and
theoretical studies have shown that the results of cal-
culations performed within the framework of the Ising
model agree quantitatively with experiment. These
problems have been presented in detail in the mono-
graph/ 7 2 1

6. As we have mentioned, each state of a freely-
jointed "immaterial" chain (i.e., without interaction
between remote portions along the chain) is equivalent
to the trajectory of a Brownian particle. Here the num-
ber ν of segments of the chain plays the role of the
time. Hence, the probability P(h) that the ends of a
chain of ν segments will be separated by a distance
from h to h + dh is (see e.g.,C73]):

P(h)dh =
ν 3/2 - -

dh.

The probability that both ends will occupy the small
volume 6V will evidently be P(0)3V, which leads to
Eq. (9) of the main text.

7. The results given in the main text were obtained
essentially by applying the assumption (upon which the
entire treatment of the helix-coil transition in DNA is
based) that the strands do not separate completely upon
melting. This is just why we could use the first-order
reaction equation (82) to describe the helix-coil equili-
brium. There are a number of experimental situations
in which such a treatment is justified, even for short
regions. That is, the strands actually do not separate.
For example, in [ 5 3 ] , Eqs. (81) and (83) were used to
estimate the length of low-melting regions continued
in T2 phage DNA that melt at a temperature below the
onset of melting of the main part of the molecule. Here
it was assumed that they are sequences consisting al-
most exclusively of AT pairs. Evidently, what we
should consider in this case is precisely a first-order
reaction.

However, there are other situations that one en-
counters in studying homogeneous two-stranded
oligonucleotides (i.e., very short polynucleotides) in
which equilibrium between two-stranded and one-
stranded oligonucleotides can be established within the
time of experiment. In this case, one must consider a
second-order reaction. This has been done by Apple-
quist and Damle. [ 7 4 ] Following their work, we shall
treat the equilibrium between single and double-helical
chains of the complementary oligonucleotides A and B.
As before, we shall assume that the process follows an
"all-or-none" principle:

A + B*eAB.

The equation for equilibrium has the form

[AB] „
[A] [B]

We shall introduce the total concentration C of one-
stranded oligonucleotides of one type:

[A] + [ABJ=C.

Upon assuming that [A] = [B], we get the quadratic
equation

AT[A]a+[A]-C = 0,

Hence, we obtain the following formula for the fraction
of melted links 1 - ,» = [A]/C:

' - " ' 2 K

T h i s f o r m u l a d e s c r i b e s t h e h e l i x - c o i l e q u i l i b r i u m i n

s h o r t o l i g o n u c l e o t i d e s . I t i m p l i e s t h a t t h e d e g r e e o f

c o n v e r s i o n f r o m t h e h e l i c a l t o t h e c o i l - l i k e s t a t e d e -

p e n d s b o t h o n t h e t e m p e r a t u r e ( v i a t h e e q u i l i b r i u m

c o n s t a n t K ) a n d o n t h e c o n c e n t r a t i o n C o f t h e o l i g o -

n u c l e o t i d e . E v i d e n t l y , t h e m e l t i n g p o i n t a t w h i c h h a l f

o f t h e l i n k s a r e i n t h e c o i l - l i k e s t a t e i s d e f i n e d b y t h e

c o n d i t i o n

Evidently, the equilibrium constant Κ will be (cf. (82)):

where Co is a constant having the dimensions of con-
centration that does not depend on ν and T.

From the condition K m C = 2, we find for T m the
equation

1 1 -±[ILJ Lin—1

where To is the melting point of a long homopolynucleo-
tide (as ν —"*>). This formula differs substantially
from (81) in that it contains the concentration C of the
oligonucleotide in the solution.

If we differentiate the expression for 1 - & with
respect to T, we get the following formula for the
width of the melting range:

This formula is fully analogous to Eq. (83), and differs
from it only in the numerical coefficient.

A number of experimental studies have recently
appeared on the melting of very short two-stranded
homopolynucleotides. They have shown that the theory
of Applequist and Damle presented above is applicable
to those systems.
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