
SOVIET PHYSICS USPEKHI VOLUME 14, NUMBER 6 MAY-JUNE, 1972

539.124
RADIATIVE POLARIZATION OF ELECTRONS IN STORAGE RINGS

V. N. BAIER

Usp. Fiz. Nauk 105, 441-478 (November, 1971)

Polarization of electrons arising as the result of radiation during extended motion in a magnetic field
is considered. A calculation is made with the quasiclassical operator method of the probability of a
radiative transition in a magnetic field with spin flip, including the case of a nonuniform magnetic
field. The kinetic equation is obtained for polarization of electrons in an external field with inclusion
of radiation effects, and this is used to analyze the kinetics of radiative polarization. Effects are dis=
cussed which lead to depolarization of an electron beam in motion in a nonuniform magnetic field, and
means of suppressing these effects and also of intentional depolarization of a beam are pointed out.
Means are discussed for measurement of the transverse polarization of high energy electrons, and a
description is given of an experiment in which the first indication of the existence of the radiative
polarization effect has been obtained.
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1. INTRODUCTION

DURING extended motion in a magnetic field, electrons
and positrons can be polarized as the result of radiation
of photons. The polarization arises because the proba-
bility of a radiative transition with spin flip depends on
the orientation of the initial spin. This new mechanism
for polarization of electrons and positrons of high en-
ergy, whose existence in a uniform field was first poin-
ted out by Sokolov and Ternov,^ is extremely impor-
tant for the following reasons:

1) This is the only available means of obtaining
polarized beams which are immediately of high energy
(it begins to be efficient at an energy of several hun-
dred MeV).

2) The polarization process does not change the
properties of the beam (intensity, spread in parameters,
and so forth), which favorably distinguishes it, let us
say, from the method of obtaining polarized beams by
means of scattering.

3) Electrons and positrons can be polarized at any
specified energy, which removes the very complicated
problem of accelerating the polarized particles.

In this way the possibility is opened of setting up ex-
periments with polarized electrons and positrons, which
in turn significantly broadens the means for study of
electromagnetic interactions at high energies. In ex-
periments in colliding beams the polarization must be
taken into account in even the simplest two-particle
processes, since the cross section for elastic scattering
of an electron by an electron or a positron, and also the
cross section for production of pairs of photons, pions,
kaons, muons, and so forth depend on the polarization
very substantially. Particular interest, however, is pre-
sented by experiments with polarized electrons in which

the polarization of the final particles will be measured,
which evidently will be possible in second-generation
experiments.

In order to solve the problem of radiative polariza-
tion as a whole it is necessary to discuss the following
basic questions:

1) Determination of the probability of a radiative
transition with spin flip in a magnetic field, particularly
in a nonuniform magnetic field such as exists in storage
rings.

2) Establishment of the kinetics of the radiative
polarization process, for which it is necessary to find
and solve the kinetic equation for the electron spin in an
external field with inclusion of radiation effects.

3) Determination of the important depolarizing
effects and means of removing them, in order to pre-
serve the radiative polarization which arises. And
finally;

4) Measurement of the degree of transverse polar-
ization of high energy electrons moving in a storage
ring.

In what follows we will discuss all of these questions,
and also the first experiment on measurement of radia-
tive polarization.

2. RADIATIVE TRANSITION WITH SPIN FLIP

Quantum effects in external fields are usually dis-
cussed in the so-called Furry representation, in which
the radiation process is considered in terms of pertur-
bation theory with use of exact solutions of the wave
equations (Dirac, Klein-Gordon) in a given field (i.e.,
without use of perturbation theory in the external field).
However, exact solutions are known for a very limited
class of fields (a uniform, constant magnetic field;
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c r o s s e d e l e c t r i c and magnet ic f ie lds; the f ield of a

p lane wave; the Coulomb f ield), and the c a l c u l a t i o n s

t h e m s e l v e s a r e e x t r e m e l y c o m p l e x and tedious. For

th is r e a s o n at high e n e r g i e s the q u a s i c l a s s i c a l a s y m p -

t o t e s of the e x p r e s s i o n s obtained are used . On the whole

th is approach turns out to be unjustif iedly compl icated.

2 . 1 . Method of D i s c u s s i o n

In recent work by the author and V. M. Katkov, a

g e n e r a l method w a s deve loped for studying e l e c t r o m a g -

net ic phenomena in externa l fields.^2"1-1 This method i s

based on the fact that quantum e f fec ts in motion of high-

e n e r g y p a r t i c l e s in an externa l e l e c t r o m a g n e t i c f ield

(for de f in i teness , a magnet ic field) have a twofold or ig in:

quantization of the mot ion i t s e l f and quantized r e c o i l of

the par t ic le during radiation. In the f i rst c a s e the mag-

nitude of the quantum e f fects (and, correspondingly, the

non- commutat ion of the dynamical v a r i a b l e s of the par-

t ic le ) has an order hwo/e (where o>0 = v t /R, R i s the

instantaneous radius of curvature, v t i s the v e l o c i t y

component perpendicu lar to the magnet ic field, e i s the

p a r t i c l e energy, and ho>0 i s the d i s tance between neigh-

boring e n e r g y l e v e l s of the e l e c t r o n in a magnet ic f ie ld

in the c a s e of l a r g e quantum numbers ) . The quantity

(2.1)

(where γ = e/(mc2), Η is the magnetic field, Ho

= mV/(he) = 4.41 χ 1013 G (for an electron) is the criti-
cal magnetic field of the quantum effects) is extremely
small and decreases with increasing energy. Thus, the
motion of an electron in a magnetic field becomes more
classical with increasing energy.

The magnitude of the quantum effects from recoil
during radiation is of order hw/e, where ω is the fre-
quency of the radiated photon. The quantum effects in a
magnetic field can be characterized conveniently by the
invariant parameter

= ^ = ^ £ £ · ( 2 · 2 )

For χ <C1 (just this case occurs in contemporary stor-
age rings) the magnitude of the quantum effects is rela-
tively small, and ω « ω0γ

3. The region χ > 1 is essen-
tially a quantum region, and in this case Κω ~ €. Thus,
it is evident that at high energies (y 3> 1), for any χ the
quantum effects of the first type are negligibly small in
comparison with the quantum effects of the radiation.
This fact is the basis of the method developed in refs.
2—4, in which quantum effects of the first type are
neglected. If there are two types of quantum effects in
the theory and we wish from the very beginning not to
take one of them into account, the operator formulation
of quantum mechanics is particularly convenient for this
purpose. Actually, in our case we can neglect the non-
commutation of the dynamic variable operators of the
particle between themselves (of magnitude ~ Κωο/ε) and
take into account only their commutators with the field
of the radiated photon (of magnitude ~fia>/e).

The standard form of the matrix element for radia-
tion of a photon in an external field is

dt (2.3)

field with energy ej and a spin state s, e^ is the photon
polarization vector, and j is the current.

Here and subsequently we use the metric ab = aobo
— a · b, and a system of units c = 1.

For the states of interest to us with large quantum
numbers we can use the approximate representation

e-"i(/V,.(r) = Ψ,^β-^'/^ί), (2.4)

where ·ΦΒ(ΰ') is the operator form of the particle wave
function in a spin state s in an external field. This form
is obtained from the free wave functions by replacement
of the variables by operators; ρ — tf, e — 36 = V#!* + m".
The state vector |i) determines the states of the parti-
cle in the field (except for the spin s). In Eq. (2.4), in-
teraction terms of the spin-field type are neglected; for
example, for particles with spin 1/2 (terms of the form
Σ-Η and α · Ε ) .

We will give an example of Eq. (2.4) for the case of
the Dirac equation in an external field

(ΐ»ί μ -»ΐ ) ι | . ( ΐ ) = Ο, θν = ^ μ - Ά ( * ) · (2.5)

The squared Dirac equation i s

v.-m) ψ (x) - [a» _ m ! - A eaμ - « ! - f «»»/•„„j ψ (χ) = 0, (2.6)

where a^v = i/2[y^, γν], and Γμ,, is the electromag-
netic field tensor. If we discard terms of the spin-field
type l / 2 a ^ F M l / = (-Σ · Η + io · E), then Eq. (2.6) goes
over to the Klein-Gordon equation in this field. With
this accuracy we can represent the solution of Eq. (2.5)
in the form

where Φ(χ) is the solution of the Klein-Gordon equation,
and C is a normalization constant. Using the standard
^-matrix representation, Eq. (2.7) can be rewritten in
the form of (2.4). Thus, in the coordinate representation
|i) is the solution of the Klein-Gordon equation in this
field, <&i(x).

Substituting (2.4) into (2.3) and converting to Heisen-
berg operators, we write the matrix element Ufj in the
form

(2n)3 -</i « | i),

where
eM (t) = Ψί- (θ4) {(e/), e-ikr<')} Ψ, (θ5),

= β * he

(2.8)

(2.9)
) = e h rhe

are the current and particle-coordinate operators, and
{...} designates the symmetrized product of the opera-
tors. It is important that in the large-quantum-number
approximation adopted, the order of writing the opera-
tors entering into Ψ8(ίΡ) is unimportant. For a particle
with spin l/2

where

M. (t) = ut (if) aee-""(«) u. (

<P(E(O)

(2.10)

where Fs s(r) is the solution of the wave equation in this

(2.11)

here <f(£(t)) is a two-component spinor describing the
spin state of the electron at the moment of time t.

We will be interested in the probability of a transi-
tion with radiation of a photon, summed over all final
states of the particle (except spin states). Carrying out
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this summation, we obtain the following expression for
the probability of a radiative transi t ion:

din Η

dw = -

where

137 (2.13)

In derivation of Eq. (2.12) we have used the complete-
ness condition*) Σ |f)(f | = I.

f

In o r d e r to calculate the probability (2.12) it i s
necessary to perform a number of manipulations on the
operators which enter into it. According to the state-
ment made above, in Eq. (2.10) for Mg(t) it i s necessary
to take into account only the commutator of the photon
field ( e - i k ' r № ) with the momentum ifi. The following
relat ions exist:

^ e-ikr«)= e-4kr ( i)(^_ftk), 1

See-*** «> = e~ikr «> (S£ — δω). J

the first of which i s a consequence of the fact that the
operator e~~ ' r W is a displacement operator in mo-
mentum space, and for derivation of the second relation
it is necessary to take into account that

a n d t o c a r r y o u t a n i n t e g r a t i o n b y p a r t s i n E q . ( 2 . 8 ) .

U s i n g E q . ( 2 . 1 4 ) , w e c a n b r i n g o u t t h e o p e r a t o r

e - i k · r ( t i ) t 0 t h e i e f t i n M ( t i ) , a n d t h e o p e r a t o r e * " r ( t z )

t o t h e r i g h t i n M * ( t 2 ) , a n d a f t e r t h i s c o n s i d e r t h e c o m -

b i n a t i o n e ' r 0 - 2 ) e ~ ~ 1 * ' r ( ' w h i c h a r i s e s . T h e o p e r a t o r s

r ( t 2 ) a n d r ( t i ) t a k e n a t d i f f e r e n t m o m e n t s of t i m e d o n o t

c o m m u t e w i t h e a c h o t h e r . I n s o l u t i o n of t h e p r o b l e m

w i t h i n c l u s i o n of a l l o r d e r s i n P l a n c k ' s c o n s t a n t R, i t i s

n e c e s s a r y t o u n f o l d t h i s c o m b i n a t i o n , i t b e i n g i m p o s s i -

b l e h e r e t o l i m i t o u r s e l v e s t o a n e x p a n s i o n i n t h e l o w e s t

c o m m u t a t o r s .

F o r w h a t f o l l o w s i t i s c o n v e n i e n t t o c a r r y out a s u b -

s t i t u t i o n o f v a r i a b l e s i n t h e i n t e g r a l of E q . ( 2 . 1 2 ) ,

t = \(h + h), T = / 5 - t l . ( 2 - 1 6 )

Since we will be interes ted in the transit ion probabil-
ity p e r unit t ime dw/dt, in the integral (2.12) it i s neces-
sary to integrate over the relative time τ and the final
photon s tates . The main contribution to the integral is
given by the region | ν | τ ~ \/y (we will convince our-
selves of this below); for this reason we will expand all
quantities involved in powers of | ν | τ , which corresponds
to expansion in powers of 1/y, and retain only the lead-
ing t e r m s of the expansion. In addition, we will neglect
quantities

№ < 1 - (2-17)

where |H| characterizes the variation of the magnetic
field in the trajectory. Physically this criterion means
that the field in the trajectory does not change apprec-
iably in the characteristic radiation time. If we intro-
duce a field nonuniformity index

*In the coordinate representation <f|. . .|i> = /d3r<I>f(r) . . . Φι (r),

t h e n c r i t e r i o n ( 2 . 1 7 ) t a k e s o n t h e f o r m

( 2 . 1 8 )

( 2 . 1 9 )

T h u s , t h e f i e l d m u s t n o t b e t o o n o n u n i f o r m ; i n a l l

p r a c t i c a l c a s e s t h e f i e l d s a t i s f i e s t h i s c r i t e r i o n .

U n f o l d i n g of t h e c o m b i n a t i o n e i k ' r ( t 2 ) e ~ i k ' r ( t l ) l e a d s

t o a n i d e n t i c a l r e s u l t f o r a l l f o r m s of e x t e r n a l f i e l d s ^ 2 " 4 }

( 2 . 2 1 )

w h e r e

T h e c o m b i n a t i o n o b t a i n e d o b v i o u s l y c o m m u t e s

( s e e E q . ( 2 . 1 4 ) ) . In o r d e r t o d i s c u s s i t s c o m m u t a t i o n

w i t h t h e o p e r a t o r a\ i t i s n e c e s s a r y t o t a k e i n t o a c c o u n t

t h e f a c t t h a t , i n o r d e r t o u s e E q . ( 2 . 1 4 ) , i t i s n e c e s s a r y

t h a t a l l o p e r a t o r s d e p e n d o n a s i n g l e t i m e . C a r r y i n g o u t

t h e a p p r o p r i a t e e x p a n s i o n s a n d o m i t t i n g t e r m s of o r d e r

1/y2, w e f i n d t h a t e * " r ( t 2 ) e - i k · r ( U ) c o m m u t e s w i t h d\

T h u s , a f t e r t h e s e o p e r a t i o n s h a v e b e e n c a r r i e d o u t ,

a l l o p e r a t o r s i n E q . ( 2 . 1 2 ) c o m m u t e w i t h e a c h o t h e r

w i t h t h e a c c u r a c y a d o p t e d . T h e r e f o r e a l l of t h e m w h i c h

s t a n d w i t h i n t h e b r a c k e t s of t h e i n i t i a l s t a t e ( t h e a v e r a g e

i n s t a t e s w i t h l a r g e q u a n t u m n u m b e r s ) c a n b e r e p l a c e d

b y c l a s s i c a l v a l u e s . In t h e f i n a l r e s u l t , t h e s q u a r e of

t h e m a t r i x e l e m e n t c a n b e w r i t t e n i n t h e f o l l o w i n g f o r m :

( 2 . 2 2 )

w h e r e

= u s

+.(p')aeu s(p). ( 2 . 2 3 )

Here e ' = e — Κω, ρ' = ρ — Kk. In these express ions e,
e', p, and p ' already are not operators , but c-numbers
(values of energy and momentum). All the information
on the spin and polarization s ta tes i s contained in the
quantity R(t), which has the form of a transit ion matr ix
element for free par t ic le s (with inclusion of the conser-
vation laws). Consequently, all the features of the radia-
tion in an external field in Eq. (2.22) a r e contained in
the fact that a factor e/e' (inclusion of recoil) appears
in the exponential, and in Eq. (2.23) ρ = p(t), where the
evolution of momentum in t ime is taken in this field.
The transi t ion to the class ical theory is that e' —. ε,
ρ' — ρ (fi — 0), while R(t) — e · j , and j i s the class ical
current .

Using the explicit form (2.11) of the spinors u(p), it
is easy to obtain

w h e r e

= A + ίσΒ,

B =

(2-24)

( 2 . 2 5 ) '

H e r e w e h a v e n e g l e c t e d t e r m s of o r d e r l/y; f u r t h e r -

m o r e , it i s e v e r y w h e r e a s s u m e d t h a t t h e f inal e l e c t r o n s

a r e u l t r a r e l a t i v i s t i c . If we t a k e i n t o a c c o u n t the s m a l l -

n e s s of t h e t i m e of r a d i a t i o n i n c o m p a r i s o n wi th t h e

* [ e p ] Ξ
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characteristic period of motion Τ (for example, the
period of rotation), τ ~ T/y, and also the fact that the
period of spin precession is of the same order as the
period of the motion, we can assume that the spin state
does not change during the time of radiation, i.e., with
an accuracy to terms of order l/y we have

(2.26)<p (δ («ι» = φ (δ (0)-
Then

(2.27)

where Rj = Ritj), and s o forth. Equation (2.27) can be
u s e d in d i s c u s s i o n of any phenomena, including spin and
po lar i zat ion phenomena, in radiat ion of photons by an
e l e c t r o n in a m a g n e t i c f ield.

2.2. Trans i t ion With Spin Fl ip

Let us d i s c u s s now a radiat ive t rans i t ion with sp in

flip, i . e . , £ f = - t j . Calculat ing the t r a c e of Eq. (2.27)

in t h i s c a s e , we have

(2.29)

(2.30)

Calculation of the function Β of Eq. (2.25) gives

[qel,

where*

The energies and the field in contemporary accelera-
tors are such that χ € 1 , i.e., Κω <C e. Therefore, all
expressions can be represented in the form of a series
in Planck's constant R (actually in series in χ (see Eq.
(2.2)). In view of the smallness of the expansion param-
eter, for practical purposes it is sufficient to limit our-
selves to terms of lowest order. Obviously, for transi-
tions with spin flip this is order R2. In the expressions
(2.28)-(2.29) obtained by us the coefficient of fi2 is taken
out explicitly. This means that for calculation of terms
of order R2 all remaining terms containing Ηώ and Rk
inside the expressions can be omitted, i.e., we must let
e' — e, p' — ρ in (2.22) and (2.29). From this it is clear
that for solution of the problem of a transition with spin
flip to order R2, in general it is not required to carry out
an unfolding.

Leaving in Eq. (2.28) the main terms in R and carry-
ing out the summation over photon polarizations, we ob-
tain

2 ^ , ! ^ ^ { , ι ί 2 ( ΐ - ^ ) (2.31)

Here the e x p a n s i o n s of the quantit ies enter ing into Eqs.
(2.22) and (2.31) in powers of the relative time τ have
the form

*As shown in Appendix B, an effective electromagnetic field Hg
(3.22) acts on a Dirac degenerate spin. In this language the spin is acted
on by the term σ-B in Eq. (2.24), and this means that the spin is flipped
by the effective electromagnetic field of the radiated wave (compare
Eqs. (2.30) and (3.22), taking into account that we are dealing with
Fourier components).

(2.32)

To obtain the total probabil ity of a radiat ive t rans i-

t ion with sp in flip p e r unit t ime, it i s n e c e s s a r y , after

subst itut ion of (2.32) into (2.31) and (2.22), to subst itute

the e x p r e s s i o n obtained into Eq. (2.12) and per form the

integration over the relative time τ and over the final
states of the photon. It turns out to be convenient to do
this up to the integration over τ by means of the formula

• 0),

where*

Vo — τ — h — tt,

(2.33)

(2.34)

After integration over the final photon states, we ob-
tain for the probability of a transition with spin flip per
unit time

" * - £ (2.35)

where we have made the substitution ζ = τ |v|y, and the
integration contour passes below the real axis and is
closed in the lower half of the plane. From this it is
evident that the main contribution to the integral is made
by the region |ν |τ ~ l/γ. The contour integrals entering
into Eq. (2.35) are easily calculated; as a result we have

In.,
1-n

) 2inn (12) 2 /n + l\ /n+1 nJ-1

* T ^ ' (2.36)

The following final expression is obtained for the
total probability of a radiative transition with spin flip
per unit

We note that this result applies for an arbitrary mag-
netic field (if the weak restrictions (2.17) and (2.19) are
satisfied).

Let us make an analysis of the expression obtained.
For longitudinal polarization (£[vxv]) = 0 the remaining
terms 1 - 2/9(£ · v)2 do not depend on whether the spin
is directed along or opposite to the velocity, so that the
radiation does not change the spin states with longitud-
inal polarization. A different situation arises in the
case of transverse polarization ( t · v) = 0. In this case
the transition probability depends on the spin orienta-
tion. For electrons (e < 0) the probability of a transi-

*We note that formulas of the type of (2.33) can be used only in
the case when the exponent in the integral does not contain terms in
ηω. This situation arises directly in calculation of terms of lowest order
(~h° in calculation of trie total probability, ~ h 2 in calculation of the
probability of a transition with spin flip). However, these formulas can
be useful also for calculation of corrections of the next higher orders,
for which it is necessary to expand in a power series the terms in the
exponential containing ηω.



RADIATIVE P O L A R I Z A T I O N OF E L E C T R O N S IN STORAGE RINGS 699

tion from a state with spin along the field to a state with
spin opposite to the field i s higher than the probability
of the inverse transi t ion. For positrons (e > 0) the op-
posite situation occurs : the probability of a transit ion
from a state with spin opposite to the field to a state
with spin along the field is higher than the probability
of the inverse transit ion. Thus, the resulting polariza-
tion (radiative polarization) is t r a n s v e r s e * and for elec-
t rons i s directed opposite to the field and for positrons
along it. In order to determine the degree of polariza-
tion, it i s necessary to solve the corresponding kinetic
equation, which will be done in the next section.

Sokolov and T e r n o v ^ car r ied out a calculation by
traditional means with use of exact solutions of the
Dirac equation in a uniform magnetic field. The com-
plexity of the calculation did not permit generalization
of the resu l t s even to a weakly nonuniform field. The
derivation presented above follows the ar t ic les of V. M.
Katkov and the a u t h o r . C 2 ) 3 ' 5 ' 6 ]

3. THE KINETICS OF RADIATIVE POLARIZATION

The possibility that t ransverse polarization of elec-
t rons and posi trons can ar i se in an external field fol-
lows from Eq. (2.37). In order to clarify how this possi-
bility is real ized, it i s necessary to obtain and solve the
kinetic equation for the polarization density matr ix with
inclusion of the interaction with the radiation field. This
group of questions will be considered below.

3.1. Equation for the Spin Vector With Inclusion of
Damping

When we take into account the quasiclassical nature
of the motion of a high-energy electron in an external
field, the equation for the polarization density matr ix
can conveniently be represented in the form of an equa-
tion for the spin vector (twice the average value of the
spin operator in the r e s t system of the electron) £.
Thus, we are concerned with obtaining an equation of
the Bargman- Michel- Telegdi type (BMT)C7] with inclu-
sion of the interaction with the radiation field. We will
introduce the Heisenberg e lectron spin operator in the
r e s t sys tem a(t) (a*(t) = a(t)), whose average value

So(i) = <iol"(i)|io) (3.1)

is the spin vector in the res t system of the par t ic le .
Without inclusion of interaction with the radiation field,
the variation of this vector with t ime for par t ic les with
a given anomalous magnetic moment i s determined by
the BMT equation (in the quasiclass ical l imit, i .e., for
fields varying weakly in lengths of o r d e r fi/mc and nar-
row wave packets).

After inclusion of the interaction with the radiation
field (as in the preceding section, we will use the inter-
action representation) the evolution of the state vector
with time is determined by the matr ix U(t, t o ) t :

"This fact is evident beforehand: the axial vector of the polarization
arising can be directed only along the unit axial vector [vv] (or what is
the same thing, H).

fWe note that the state vector |i> which has been introduced is a
two-component spinor, and the U(t, t0) matrix is a 2 X 2 matrix acting
in the space of these spinors. In what follows we will understand the
symbol Re U to mean the Hermitian part of the matrix, and i ImU will
mean the anti-Hermitian part of the matrix.

|i> = tf(i,io)|fo>- (3·2)
The change of the average spin value with time when the
interaction with the radiation field is included is

\ ( t o ) \ t o ) = {to\U+(t, to)a(t)U(t, io)|/o> (3.3)

(ta\U*(t,t0)lo(t), # ( ί , ίο)] | ίο>-Ηί ο | σ (0-σ( ί 0 ) | ί ο ) .

H e r e t h e l a s t t e r m d e t e r m i n e s t h e c h a n g e of t h e a v e r -
a g e s p i n i n the a b s e n c e of t h e r a d i a t i o n f ield. We wi l l
r e p r e s e n t t h e s c a t t e r i n g m a t r i x U(t, to) in t h e f o r m of a
p e r t u r b a t i o n t h e o r y e x p a n s i o n in t h e e l e c t r o m a g n e t i c
c o u p l i n g c o n s t a n t e :

U (t, «„) = / + iT (t, ta) = I+i[T1 (t, t0) + T2 (t, t0) + . . . ] . (3.4)

F r o m t h e c o n d i t i o n of u n i t a r i t y of t h e s c a t t e r i n g m a t r i x
we o b t a i n

r , - r : = o, i ( j ; - f 2 ) = r ; r 1 = 2 i m r 2 . ( 3 5 )

With t h e h e l p of t h e s e r e l a t i o n s and E q . (3.1) we c a n
r e w r i t e E q . (3.3) i n t h e f o r m

S(«)-S (*<,) = <*„ I {T+

l°(t)Ti-±lo(t)T+

lT1 + T+

1T1a(t)}+ (3.6)

+ i [σ (i) Re Γ 2 ] } | ίο) + ζο (0 - So (ίο).
i n w h i c h

S (ίο) = So Co), (3.7)

s i n c e t h e i n t e r a c t i o n wi th t h e r a d i a t i o n f ie ld i s t u r n e d
on a t t h e m o m e n t of t i m e t 0 .

L e t u s t u r n t o c a l c u l a t i o n of t h e i n d i v i d u a l t e r m s in
E q . (3 .6) . A p h o t o n c r e a t i o n ( o r a n n i h i l a t i o n ) o p e r a t o r
e n t e r s in to t h e m a t r i x , and t h e r e f o r e t h e m a t r i x e l e m e n t
i s g i v e n by

s i n c e the s t a t e v e c t o r | t 0 ) d e s c r i b e s t h e s t a t e of t h e
e l e c t r o n in t h e f ie ld (without p h o t o n s ) . T h i s fact i s t a k e n
i n t o a c c o u n t in (3.6) . In c a l c u l a t i o n of t e r m s c o n t a i n i n g
t h e c o m b i n a t i o n T I T i , i t i s n e c e s s a r y t o t a k e in to a c -
count t h a t only t h e m a t r i x e l e m e n t s Ti for t r a n s i t i o n t o
a o n e - p h o t o n s t a t e a r e d i f f e r e n t f r o m z e r o , i . e . ,

(3.9)

(t0\K\t0,k){k,t0\Tt\t0),

w h e r e the i n t e g r a t i o n i s c a r r i e d out o v e r t h e p h o t o n m o -
m e n t a , a n d t h e s u m m a t i o n o v e r t h e e l e c t r o n s p i n s s n

and photon polarizat ions λ; (k, t0[Τχ|to) is the transit ion
matr ix element to a one-photon state with a photon (k, λ)
(radiation of a photon, compare (2.8)). In accordance
with the resu l t s of the preceding section ((2.22)-(2.25))
this matr ix element has the form

(k, i01
i-jHoit-krcl)) (3.10)

On the bas is of the arguments which led us to Eq. (2.26)
and which mean, in the t e r m s used by us, that the char-
acter i s t ic time for change of the matr ix e lements of the
operators Ti i s the radiation time (τ ~ T c / y ) , while the
character i s t ic t ime of change of a(t)(£(t)) is T c ( T c i s ,
for example, the period of rotation), we can neglect the
dependence of a(t) on time with an accuracy to t e r m s of
o r d e r ί/γ. With inclusion of this fact and Eqs. (3.9) and
(3.10), we have



700 V. Ν. B A I E R

where

By means of the relation

• (3.12)

it is not difficult to calculate the trace of (3.12):

S B = - . J

The e x p r e s s i o n obtained for S c o n t a i n s t e r m s of two
t y p e s : quadrat ic in B i , 2 ( S g ~ R2 ( c o m p a r e Eq. (2.9))
and l i n e a r in B i , 2 , Alj2 ( S ^ ~ K). T h e s e t e r m s l e a d to
dif ferent p h y s i c a l c o n s e q u e n c e s , and t h e r e f o r e we wi l l
d i s c u s s them indiv idual ly. We wi l l mul t ip ly S (Eq. (3.14)
b y C :

(SE) = (SB£) = 2 {(Β,ξ) (Β2ξ) - ξ* (B,B2) - ί (ζ [ΒΑ])} = - 2R'2R, \lf,

(3.15)

s o that the t e r m ( S - £ ) i s e x p r e s s e d in t e r m s of the
s q u a r e of the m a t r i x e l e m e n t of the rad iat ive t r a n s i t i o n
with sp in flip (2 .28) . We note that, in c o n t r a s t to the
p r e c e d i n g s e c t i o n w h e r e we d i s c u s s e d the p r o b l e m for
one e l e c t r o n ( | £ | = 1), in t h i s s e c t i o n w e a r e c a r r y i n g
out the d i s c u s s i o n for an e n s e m b l e of e l e c t r o n s (in the
language of one of the d e n s i t y m a t r i x r e p r e s e n t a t i o n s ) ,
s o that, g e n e r a l l y speaking, | £ | * 1. The further c a l c u l a -
t ion of the i n t e g r a l (3 .11) with S B i s i d e n t i c a l to that
p e r f o r m e d in the p r e c e d i n g s e c t i o n * , s i n c e the t e r m s
for given s t ructures with ζ a re separated uniquely.
Thus, the answer follows directly from Eq. (2.37):

Δ | Ι Β _ _ j _ r t _

Δί Τ t
8

5 V 3 Ι ν Ι

where

1 _ 51/3
Γ ~ 8 !

(3.16)

(3.17)

Let us consider now the term Δ £ l A / ^ t . As can be
seen from (3.14), the s tructure of this t e r m is of the
type | F A - t i t ) . In contrast to Eq. (3.16), t e r m s of this
type describe the rotation of ζ, and not the variation of
IS I (obviously £ ι Α Δ £ ι Α = 0, i.e., Α(ξ\Α) = 0).

Using the explicit expressions for (2.25) and (2.29),
A and Β and performing the summation over photon
polarization and the expansion (2.32), we obtain, retain-
ing t e r m s to order l/γ (this i s the order of the t e r m s
Σ Α ι Α 2 and Σ/ΒιΒ 2),
λ λ

Σ μ , Β , + Λ Β ^ ^ Ι ^ ΐ η ν ί . (3.18)

The vector product η · V is an odd function of the photon
emission angles, and therefore, after substituting S A
(3.14) with inclusion of (3.18) into the integral (3.11),

*It is necessary that the time difference be t - 1 0 >τ ~ 1/|ν|γ.

is the axial vector constructed from the vectors of the problem.

we s e e that the in tegra l g o e s to z e r o on i n t e g r a t i o n o v e r
the final photon s t a t e s , i . e . ,

T h i s fact i s not a c c i d e n t a l and i s due to i n v a r i a n c e
a g a i n s t t i m e r e v e r s a l . Actua l ly , for ti — — t i , t 2 — — 1 2 ,
we have ζ ~ - C , d£/dt — d£/dt, while the integral

ΓΖΪ (Α2Β1 + AiB2) in Eq. (3.11) does not change sign with
J λ
t h i s subst i tut ion.

L e t us turn now to the t e r m with Re T 2 . To c a l c u l a t e
t h i s t e r m it i s n e c e s s a r y to know the G r e e n ' s function
of the e l e c t r o n in a m a g n e t i c f ie ld ( s e e Appendix A).
U s i n g E q s . (A.I ) and (A.5), we obtain f o r the s a m e a s -
s u m p t i o n s r e g a r d i n g o(t ) u s e d in ( 3 . 1 1 ) :

<ί ο |ί[σ,

(3.20)

We will recall that H R (A.4) i s the magnetic field in the
res t system of the electron (if in the laboratory system
the fields are Ε and H), and in the limit χ — 0, μ'
= (a/2v)(e/2m). Thus,

^?! = ? ! ^ [ E H R ] = ( ^ ) —[ΕΗΛ], (3·21)

i.e., we have obtained a rotation t e r m proportional to
the anomalous magnetic moment of the electron.

Finally, the difference to(t) - go(to) = ( Δ £ 0 / Δ θ Δ ί oc-
curring in Eq. (3.6) descr ibes the change of the electron
spin vector in an external field in the absence of inter-
action with the radiation field. In the quasiclassical
l imit we can obtain directly from the equation for the
spin operator of the Dirac equation (see, for example,
ref. 9):

;[Ev]. ( 3 . 2 2 )

T h u s , t h e p i c t u r e of t h e p h e n o m e n o n u n d e r d i s c u s s i o n

i s t h e f o l l o w i n g . In t h e a b s e n c e of i n t e r a c t i o n w i t h t h e

r a d i a t i o n f i e l d t h e s p i n p r e c e s s e s a c c o r d i n g t o E q .

( 3 . 2 2 ) . I n c l u s i o n of t h e i n t e r a c t i o n w i t h t h e r a d i a t i o n

f i e l d l e a d s t o e f f e c t s of t w o t y p e s :

1. N e w f o r m s of r o t a t i o n t e r m s a p p e a r , w h i c h a r e

a s s o c i a t e d w i t h t h e a p p e a r a n c e i n t h e e l e c t r o n , a s t h e

r e s u l t of i n t e r a c t i o n w i t h t h e r a d i a t i o n f i e l d , of a n a n o m -

a l o u s m a g n e t i c m o m e n t ( 3 . 2 1 ) . T h e s u m of ( 3 . 2 1 ) a n d

( 3 . 2 2 ) g i v e s t h e e q u a t i o n of m o t i o n of t h e s p i n of a n

e l e c t r o n w i t h a n a n o m a l o u s m a g n e t i c m o m e n t i n a n e x -

t e r n a l f i e l d ( t h e B M T e q u a t i o n ) * .

2 . In a d d i t i o n , t e r m s a p p e a r ( d a m p i n g t e r m s ( 3 . 1 6 ) )

which do not reduce to rotation and which change | ζ \.

*In this sense the calculation which has been carried out is a direct
derivation of the BMT equation. It could have been discussed in the re-
verse order. Proceeding from the general representation (A.I) and (A.5)
for Re T2 without regard for the coefficients, it is easy to see (3.20)
that this is a term of the rotational type. However, then it can be equal
only to the term with an anomalous moment in the BMT equation. We
note that it follows from (3.19) that the dependence of the coefficients
in the BMT equation on the field (χ) enters only through the anomalous
magnetic moment of the electron.
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Altogether we obtain the following equation for the
motion of the spin of an ensemble of e lectrons in an ex-
ternal field with inclusion of radiation effects (3.16),
(3.21), and (3.22):

:4-HE)]-4-fS-4(gv)v +
5V3|v|

(3.23)

where H E i s defined in (3.22), H R in (A.4), l / T in (3.17),
η = (g — 2)/2 = a/2ir. It is necessary to keep in mind that
the rotational t e r m s in (3.23) a r e of order Κ°(χ°) (we
are not taking into account the next correct ions inK(x)
to the rotational t e r m s , since they a re small and do not
lead to new qualitative effects), while the damping t e r m s
are of o r d e r Κ 2 (χ 2 ), but it i s necessary to retain them
since they lead to new qualitative effects— a variation
of | t | .

Nevertheless this difference in the o r d e r s of magni-
tude simplifies to a great extent the solution of the
kinetic equation (3.23) and in many cases p e r m i t s dis-
cussion of rotation and damping effects separately.

3.2. Solution of the Kinetic Equation

We will consider the solution of equation (3.23) in a
magnetic field (E = 0) for the high-energy case y 2> 1,
since only in this case does it make sense to include
t e r m s associated with damping. It turns out to be con-
venient to introduce the system of axes (B.18) (Appendix
B). Then Eq. (3.23) can be rewrit ten in the form (com-
pare (B.13))

(3.24)

where the frequencies Ω and ω a r e determined by Eqs.
(B.17), and l / T by (3.17). The system of equations
(3.24) descr ibes the motion of the spin of an ensemble
of e lectrons with inclusion of damping in an arb i t rary
magnetic field.

As the s implest i l lustrat ion of the nature of the solu-
tions of the system of equations (3.24), let us consider
the motion of an e lectron in uniform magnetic field for
ν 1 H. In this case Ω = η > ω 0 (ω0 = |v| = eH/e is the
L a r m o r frequency), and ω = 0, where Ω and Τ do not
depend on t ime. Then the solution of the system of
equations is as follows:

(3.25)

where we have taken into account that Ω ^> l / T ( te rms
of o r d e r χ 4 have been discarded). Hence it follows that
the components f x(t) and £2(t) a re damped with a char-
acter i s t ic time t ~ Τ (3.17), while the component £3(t)
survives, so that after a time t > T w e have

(3.26)* = - r 4 = = -0.924.

This result does not depend on the initial polarization of
the e lectrons . In par t icu lar , if initially the e lectrons
were not polarized, then

0, ζ3(ί)=—^(1-ε-ΊΤ). (3.27)

E q u a t i o n s (3.25)—(3.27) d e t e r m i n e t h e k i n e t i c s of r a d i a -

t i v e p o l a r i z a t i o n i n a u n i f o r m f ield. We note t h a t f o r

e l e c t r o n s (e < 0) the v e c t o r v x v i s d i r e c t e d a l o n g t h e

f ield, i . e . , t h e p o l a r i z a t i o n w h i c h a r i s e s i s o r i e n t e d

o p p o s i t e t o t h e m a g n e t i c f ield H, and f o r p o s i t r o n s

(e > 0) the vector ν x ν i s directed opposite to the field,
and the polarization aris ing is oriented along the field
(see the footnote on page 00). In this way we can actually
convince ourselves that the last t e r m in Eq. (3.23) has
a nature completely different from the remaining t e r m s :
while these t e r m s lead to rotation of the spin without
changing i ts amplitude, the t e r m with l / T in (3.23)
changes the modulus | £ | . The radiative polarization
p r o c e s s occurs in such a way that on the fast precess ion
of the spin vector in an external field is superimposed
a slow process of damping of the spin components t rans-
verse to the field.

Numerical values of the polarization t ime under ac-
tual conditions a re l isted in the table. The data apply to
the storage r ings VEPP-2 (R = 150 cm) and VEPP-3
(R = 750 cm) in Novosibirsk. These t imes a re of the
o r d e r of the time of operation of the storage r ings, so
that the polarization effects a r e quite observable. One
additional r e m a r k concerns the time dependence of the
degree of polarization. It follows from (3.27) that

| ζ, («>)| = 0.924, | = 0,584, | ζ3(Γ/4) [ = 0.204, (3.28)

s o t h a t a f t e r c o m p a r a t i v e l y s h o r t t i m e s ( c o m p a r e wi th

the tab le) it i s a l r e a d y p o s s i b l e t o o b s e r v e p o l a r i z a t i o n

e f f e c t s * .

Now l e t u s c o n s i d e r the c a s e i n w h i c h t h e e l e c t r o n

i s m o v i n g i n a u n i f o r m f ie ld a l o n g a h e l i c a l l i n e

(ν χ Η * 0). Then from (B.17) it immediately follows
that ω = 7?e(Hn/e) = ^ ( Η , , / Η ^ =(Ω/χ)(Η , / Η ^ < Ω (if
the angle between ν and Η is much l a r g e r than 1/γ).
In solution of Eq. (3.24) a c ircumstance new in compar-
ison with (3.25) is the appearance of the undamped com-
ponent ζ ι, so that the asymptotic polarization vector
(t S> T) l ies in the (1, 3) plane and forms an angle
~ ω/Ω = (l/y) (ΗΝ /Hj) with the e 3 axis. The helical mo-
tion can be obtained from ci rcular motion by means of
a Lorentz transformation along the magnetic field. Since
ί2 = - s 2 i s the square of a 4-vector, the asymptotic de-
gree of polarization for helical motion i s the same as
for c i rcular motion. This same result follows, natur-
ally, from the system of equations (3.24) if we take into
account that in the coefficients for l / T we have retained
only the leading t e r m s of the expansion in ί/γ, so that
in the solution we should also retain only the leading
t e r m s in the expansion in l/y.

In discussion of the motion of an electron in a non-
uniform field we can, as a rule, neglect the first t e r m
in ω (Β.17) in comparison with the second t e r m , which
contains the gradients of the field. The degree of polar-
ization aris ing, generally speaking, changes (in compar-
ison with a uniform field) and can be found if \ω/Ώ |
3> ί/γ (in the opposite case the coefficients in Eqs.
(3.24) have insufficient accuracy; besides, the c o r r e c -
tions a re then negligibly small, ~ l/y 2 ) .

In the cases of pract ical interest the e lectrons exe-
cute small oscillations in a nonuniform field around an

*See Sec. 6.
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Time of radiative polarization

Energy, MeV

500
600
700

Magnetic radius
of curvature,

cm

150
150
150

Time of radia-
tive polarization,

minutes

177
73
33

Energy, MeV

1000
2000
3000

Magnetic radius
of curvature,

cm

750
750
750

Time of radia-
tive polarization,

minutes

693
22
0.95

equilibrium (circular) orbit. The ratio |ω/Ω | <C 1 and
has an order zo/R7?y (z0 is the amplitude of the oscilla-
tions, R i s the mean radius of the orbit). The system of
Eqs. (3.24) can be solved by means of perturbations in
the parameter ω/Ω. In the first approximation we have

ζ+ (i) = eA "> [«. (0) + i j < (τ) e-A W dr] ,

i i
τ

(3.29)

0 J

where £+(t) = f ,(t ) + i f a ( t ) , f . ( t ) = £*(t ) ; fS and £° are

the so lut ions of the z e r o approximation ( s e e (3.25)) :

-4(0= J ( — -gf 4-iSj (ίτ, Β(ί) = Λ(ί) + f 4r· (3.30)
ο ο

T h e d i f f e r e n c e f r o m t h e c a s e o f m o t i o n i n a u n i f o r m

field l ies in the fact that undamped terms of small am-
plitude (~ ω/Ω) appear in ζ 1 and £ 2 , and a damped term
which is linear in ω/Ω appears in £ 3 . The undamped
correction to f 3 appears only in the next approximation,
and has the form

Γ7-ε

Let us now discuss a specific example. Let the elec-
trons execute small (betatron) oscillations along axis 3
in a field which in the plane X3 = 0 has the form H3

= H0(R/r)n, H^ = H r = 0. Then in the oscillator approxi-
mation we havemation we have

where

For this case

= p0
_ ρ ) , (3.32)

-up), ω = - - φ . 4--^(l-3«p). (3-33)

Substituting (3.32)-(3.33) into (3.29), we obtain for the
spin components

£iW = c §r sin (ω3/ + β3)ζ5(Ο +damped terms, ]
(ω3ί + β3)ζ?(ί) + damped terms, [(3.34)

damped terms, J

w h e r e

ω! ( 3 . 3 5 )

T h e u n d a m p e d c o r r e c t i o n t o £ 3 ( 3 . 3 1 ) h a s t h e f o r m

A ; _ 2 InxU °>!j , , o , ( 3 . 3 6 )
5 1/3 * Λ / ω ! - Η 2 V •" 'τμ3>·

T h e e x p r e s s i o n s o b t a i n e d d e t e r m i n e t h e p o l a r i z a t i o n

p r o c e s s i n a n o n u n i f o r m f i e l d . It i s e v i d e n t , i n p a r t i c u -

l a r , t h a t t h e a s y m p t o t i c d e g r e e o f p o l a r i z a t i o n c h a n g e s

b y a n a m o u n t ~ ( x i i / R ) 2 i f w e a r e f a r f r o m t h e r e s o n a n c e

Ωο ~ ω3 (see Sec. 6).
The first evaluations of the kinetics of radiative

polarization were made by means of the elementary bal-
ance equations^13 in the case of a uniform field. The
discussion given above follows the articles of V. M.
Katkov, V. M. Strakhovenko, and the 0 1 1

4 . D Y N A M I C S O F P O L A R I Z A T I O N . D E P O L A R I Z A T I O N

E F F E C T S

I n t h e p r e c e d i n g s e c t i o n i t w a s s h o w n t h a t d u r i n g e x -

t e n d e d m o t i o n of e l e c t r o n s ( p o s i t r o n s ) i n a m a g n e t i c

field they are polarized along the direction ν χ ν. It is
natural that questions arise as to the dynamics of the
spin motion, the control of the beam polarization, and
also its preservation. In the kinetic equation (3.23)
there are terms corresponding to rotation of the spin
vector and variation of the modulus of the spin vector.
The latter terms lead to appearance of radiative polar-
ization. The characteristic frequencies of the spin mo-
tion (see Eq. (B.19) of Appendix B) are Ω = l/tQ « αγω0

(ω0 is the frequency of rotation of the electron in the
field Η χ), while the inverse time ("frequency") of the
polarization (3.17) i s 1/T ~ αγω0χ

2. The ratio of these
times is

- ^ ~ x 2 · (4.1)

Since χ <C 1 with a large margin, in study of the spin
motion and the depolarization phenomena associated
with it, if the times of these phenomena are much l e s s
than T, we can omit the terms with damping and discuss
the BMT equation (B.6), (B.I3). Below we limit
ourselves to discussion of this case.

For motion in a uniform field Ho (for Ε = 0, ν χ Ηο

= 0) we have from Eq. (B.6)

<*№) n (4.2)— j — — υ ν ιdt

i . e . , t h e p r o j e c t i o n o f t h e s p i n v e c t o r o n t h e d i r e c t i o n

o f t h e f i e l d i s c o n s e r v e d * .

I n s t o r a g e r i n g s t h e r o l e o f H o i s p l a y e d b y t h e g u i d e

f i e l d a v e r a g e d o v e r t h e o r b i t . W i t h a p p e a r a n c e o f f i e l d

n o n u n i f o r m i t i e s ( a n d t h e f i e l d H M ) t h i s p r o j e c t i o n i s

a l r e a d y n o t c o n s e r v e d . T h u s , a l l e f f e c t s o f c h a n g e o f

t h e d i r e c t i o n o f p o l a r i z a t i o n ( s p i n r o t a t i o n ) a r e i n o n e

*Since in this situation the polarization is directed along (opposite
to) the vector H, this means conservation of the polarization. In the
general case of periodic motion (see Appendix C) the projection of the
spin vector is conserved in the periodic solution of Eq. (B.6).



RADIATIVE P O L A R I Z A T I O N OF E L E C T R O N S IN STORAGE RINGS 703

way or another associated with nonuniformity of the
magnetic field*. The nonuniform part JHj| <€. |H0|;
therefore, generally speaking, the effects of the addi-
tional rotation are small. However, if Hj contains
harmonics resonating with the average precession fre-
quency, the spin can rotate by a large angle. If the spin
rotation occurs incoherently, this corresponds to de-
polarization of the beam (dynamic depolarization). An
additional depolarization mechanism exists which is as-
sociated with the appearance of stochastic elements in
the motion (for example, quantum fluctuations of the
radiation lead to a stochastic spread in the beam
energy). As a result of this, a spread in the average
spin value can arise which also leads to depolarization
(stochastic depolarization). Below we will discuss in
detail the dynamics of motion of the spin ζ, and also the
two depolarization mechanisms.

4.1. Dynamics of Spin Motion. Dynamic
Depolarization^ l 4 ; 3 1 3 1

We will consider the spin motion under conditions of
small oscil lations of the par t ic les with respect to the
equilibrium motion (|HjJ <C |H 0 | ) . The problem of dy-
namic depolarization as a whole reduces to finding those
conditions for which the solution of Eq. (B.6) gives an
appreciable deviation of the vector ζ from the initial
direction (the polarization axis), and also to analysis of
the mixing of different deflections of the vector ζ for
individual par t ic le s and the mixing of the beam depolar-
ization associated with this . The mixing p r o c e s s , as a
rule, occurs as a consequence of the spread in the
p a r a m e t e r s (energy, momentum, coordinates, and so
forth) of the par t ic le s in the beam. Equations (B.6) a re
in many ways analogous to the equations for motion of
charged par t ic le s in an external field and can be solved
by the same methods. Here it turns out to be convenient
to use the equations for the spin motion in the form
(B.13).

a) The nonresonance case. It is shown in Appendix Β
that under actual conditions Ω 3> ω. Therefore solutions
can be sought by means of perturbat ions in powers of
ω/Ω. We will represent the solution of Eqs. (B.13) in
the form

(4.3)

Ζ:ι -"' b.

w h e r e

Φ-^ΩάΙ + φ. (4.4)

The functions ζ and Φ introduced satisfy the equations

ζ ^ — ω ΚΊΓ^Γ2 sin Φ, φ = ^ -cosΦ. (4.5)

The last equations contain ω in the right-hand side and
therefore a re suitable for solution by successive ap-

*In the general case, particle oscillations occur relative to the equilib-
rium (periodic) trajectory and, as is shown in Appendix C, the correspond-
ing motion of the spin vector is along the periodic solution η of equation
(B.6), the role of the vector H 0/iH 0 | being played by n. For definiteness
the further discussion will be carried out in terms of H o and H;.

tThis group of questions has also been discussed by a number of
authors. Γ 1 2 · 3 4 " 3 8 ]

proximations. In the zero approximation ω = 0, ζ = ζ0

= const, φ = ψ0 = const. In this case it follows from
(4.3) that the projection of the spin vector on axis 3 i s
conserved, and the projection perpendicular to axis 3

rotates with an average frequency Ω I fit = J f id t I, i .e.,
\ ο /

a precess ion of the spin vector ζ occurs around axis 3
with this average frequency. In the first approximation
it follows from (4.5) that

£» - (4.6)(Δφ),=
τ/ι -α

ψ»,

where
t t

•ψ,— f ωδίηΦ,,ώ, \pc = \ ω cos Φο dt, Φ 0 = [ Ω ώ + φ 0 , (^·7)

s o that the complete so lut ion in the f i rs t approximation
i s

- ( / 1 - S sin (4.8)

where

α, =-ψ8cos ο — \|:,. sinΦο, α, = ψ8 sin Φ,,-f i|\.cosQ0. (4.9)

F r o m the solut ion (4.8) it fo l lows that s m a l l o s c i l l a t i o n s
are s u p e r i m p o s e d on the spin p r e c e s s i o n (F ig . 1).
F o r m a l l y the solut ion of the f i r s t approximation can be
obtained from the so lut ions of the z e r o approximation by
m e a n s of the t rans format ion m a t r i x S:

s =

1 0 a,
0 1 a,

—« ( —a, 1
(4.10)

With an a c c u r a c y to second order th i s m a t r i x i s ortho-
gonal ( S T = S~\ det S = 1), i .e . , c o r r e s p o n d s to rea l
rotat ions and r e p r e s e n t s a s u c c e s s i o n of rotat ions by a
small angle ο/χ in the (1, 3) plane and by a small angle
a 2 in the (2, 3) plane, so that in transformation of the
coordinates by means of the matr ix S the 3 axis rotates
by an angle -Ja\ + a%.

The result obtained is applicable if the correct ion
t e r m s found by perturbation theory a re small . For
ω = const the o r d e r of magnitude of these t e r m s is ob-
viously ω/Ω <C 1. In the general case it is necessary to
expand o>(t) in Four ie r se r ie s . If among the harmonics
of the expansion there a r e harmonics which are multi-

- / - t \pies of Ω (Ωί = jQat 1, small denominators will appear
\ ο '

in the quantit ies (4.7) , i .e . , these quant i t ies can b e c o m e
l a r g e . The h a r m o n i c s of w(t) are mul t ip les of al l char-
a c t e r i s t i c f r e q u e n c i e s of the prob lem, i . e . , if

FIG. 1
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Ω = Νωο + Nt(uz-\- N^x-}- N3<U, (4·11)

(where ω0, ω ζ , ω χ , and ω δ are the angular frequencies
of ζ and r betatron and synchrotron oscillations), the
solution obtained above is inapplicable. This condition
is the condition of resonance.

b) Spin motion near resonance. Let the average fre-
quency J2 be close to some resonance harmonic Ω η

(4.11):

S\

F I G . 2

In solution of the problem of motion of the spin vector
ζ, it is frequently convenient to find the system of coor-
dinates in which the spin projection on some direction
is conserved, and then to discuss the motion of this sys-
tem relative to the initial system. In the nonresonance
case this transition is accomplished by the matrix Ŝ ".
However, this approach is particularly useful in the
resonance region. Let us go to a system rotating with a
frequency Ω η relative to our initial system:

(4.13)

where Φη = ψη + φ η , ψη = Ωηί. The phase ψη is constant
and will be chosen below. If £ι, ζ2, and f 3 satisfy the
system of equations (B.13), then ζχ, fy, and £ z satisfy
the equations (in what follows we take into account one
harmonic)

costf),,
sin0n

0

— sinOu
cosOn

0

0
0
1

x~-= — δζ» + ω sinφ,,ξ2,

ζζ = — ω sin Φηζχ — ω cos Φηζ,,.

(4.14)

In the right-hand part of th i s s y s t e m there a r e only the

low frequencies δ and ω (the variables f x , J y , and ζΖ

are slow). In this situation it is appropriate to use
Bogolyubov's method of averaging,[143 which consists of
averaging the coefficients of the small parameters (in
our case the frequencies) over time* (i.e., the zero
terms in the Fourier series expansions are retained).
Carrying out this averaging, we have

where

en sin Φ,, = wc sin φ , , -| ws cos cpn, Ί

r- f ( 4 . 1 5 )
ω cos Φ,, = (oc cos <p(l — ω5 sin φ η , J

G)c = ω cus °> = ω51"Ψ«· (4.16)

Choosing the phase φ η so that

sincp,, = - ^ - , costp,,= — ^£-, ω,, = ΐ/"ω;+ω|, (4.17)

we obtain

ΐ')8ίιιΨ,, = 0, ω ο ο β Φ η = — ω η . ( 4 . 1 8 )

A f t e r a v e r a g i n g ( 4 . 1 8 ) , E q . ( 4 . 1 4 ) a c q u i r e s t h e f o r m

( 4 . 1 9 )

T h e s e e q u a t i o n s f o r m a l l y c o i n c i d e w i t h t h e e q u a t i o n s o f

* T h e d i s c a r d e d o s c i l l a t o r t e r m s a r e t a k e n i n t o a c c o u n t i n t h e h i g h e r

a p p r o x i m a t i o n s o f t h e a v e r a g i n g m e t h o d , w h i c h w e wi l l n o t d i s c u s s h e r e .

m o t i o n i n a m a g n e t i c f i e l d w h o s e v e c t o r l i e s i n t h e ( x , z )

plane: u = u(-a>n, 0, -δ). To obtain a solution for a
constant frequency difference δ, we can introduce a sys-
tem of coordinates whose z axis coincides with u, in
which the solution has the obvious form

z f = V1 — z2 cos (ω,,ί -j- <ps),

z~z = const,

( 4 . 2 0 )

where ω ρ = Va>n + tir, a n d t h e p h a s e <p g i s g i v e n b y

the initial conditions. For transformation to the x, y, ζ
coordinate system it is necessary to carry out rotations

x \ / δ/ωρ Ο ωη/ωρ\ Ι

Λ Α ο ί ο
,ζ / \— ton'Up 0 δ/<0ρ / \

( 4 . 2 1 )

a n d s u b s t i t u t e t h e r e s u l t s o b t a i n e d i n t o ( 4 . 1 3 ) .

T h e r e s u l t s o b t a i n e d h a v e a s i m p l e i n t u i t i v e m e a n i n g .

T h e s p i n v e c t o r s l o w l y p r e c e s s e s a r o u n d t h e a x i s u ,

w h o s e d i r e c t i o n i s d e t e r m i n e d b y t h e i n t e r a c t i o n b e t w e e n

a>n and δ. If δ 3> ω η , the vector u is directed almost
along the z axis, so that we reach a nonresonant case:
the vector u precesses around the z axis, and the spin
vector slowly precesses around u, all precession angles
being small. However, the situation changes for δ ^ α>η,
when the vector u is directed at a large angle to the z
axis. Then the precession angles of the vector ζ around
u can be large (see Fig. 2, where 2 corresponds to a
polarization initially directed along the z axis (3) and
the vector u in turn precesses rapidly around the z axis.
Since δ is the magnitude of the frequency difference (the
distance from resonance), it is natural to assume as an
effective width of the resonance δ = uin. If the spin vec-
tor falls inside the resonance, it is strongly deflected
from its initial position. In view of the fact that differ-
ent particles are deflected by different amounts (and can
have different phases), depolarization of the beam can
occur.*

c) Rapid traversal of a resonance. A real situation
is the crossing of a spin resonance by a particle, i.e.,
when the precession frequency Ω varies, at a certain
moment Ω(ί) = Ω η (δ = 0) (see (4.11) and (4.12)). This
situation is realized in acceleration of polarized parti-
cles, and also in oscillations of the energy in a storage
ring.

We will first discuss the case of a rapid traversal,
in which the frequency difference δ changes rather

*We note, however, that the dynamic mixing (dynamic depolariza-
tion), both in motion near a resonance and in the cases discussed below
of traversal of a resonance, as a rule does not give f 3 = 0. For complete
disappearance of the polarization, the stochastic mechanism must play
in the problem (see Sections 4. le and 4.2).
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rapidly and the t e r m s containing ω in Eq. (4.14) can be
considered a s a perturbation and we can apply to them
the Bogolyubov method of averaging.E1 4 ] Then in the
zero approximation

(4.22)

3 = £0 = const, & = K l -

so that the spin projection on the 3 axis does not change,
f+ °° = £ 3 °°. Applying this method of averaging (see
Eq. (4.18)) to Eq. (4.14), we obtain in the first approxi-
mation of perturbation theory the correction to ξ3:

—oo I
) = ζ!ωη j di sin [ j f l( i)dt+ ?>„], (4.23)

where

φ η = j 6dt+(f). (4.24)

The expression (4.23) obtained is universal for rapid
t r a v e r s a l through a resonance. In o r d e r to obtain
specific resu l t s , it is necessary to provide a definite
model 6(t). For the simplest case δ = r o t , Γ ο = const,
we have

where

(4.25)

(4.26)

It is evident that the main contribution to the integral is
from the region t ~ l/vfo, while the time of spin rota-
tion (in the " s l o w " var iables (4.14)) is ~ l/o>n. The con-
dition of applicability of the approximation used is :

ΐ/1/Τ;<1/ωη. (4.27)

This also is the condition for rapid passage through the
resonance, and in this situation the spin i s not able to
rotate during the t ime of passage. If the passage in-
volves a change in energy, then Γ ο = ηο>ο(άγ/άΐ). The
strong dependence of the result (4.23) and (4.25) on phase
has a c lear physical meaning—a perturbation of ~ ω i s
superimposed on the main motion (4.22) and shifts ζ3 as
a function of the phase of the main motion (and the en-
countered phase). We will again find an addition of the
first approximation to the t r a n s v e r s e components of
(4.22). Carrying out this calculation accurately as in
(4.22)- (4.26), we obtain

| δ ξ + Μ Η ζ 0 / ^ ϊ . (4.28)

d) Slow passage through resonance. Now we will dis-
cuss passage through resonance when the inequality in-
verse to (4.27) i s satisfied*:

νΤ0-€ωη. (4.29)

In this case, during the t ime of crossing, the spin com-

*The general case of passage through a resonance (including the case
~ ω η ) has been discussed by Derbenev et al. [1 3]

pletes many revolutions around the u axis, i.e., we can
assume that the spin p r e c e s s e s at each moment of time
about the instantaneous axis u, but the precess ion axis
itself rotates by an angle of o r d e r π. At any given mo-
ment in the zero approximation we can use the expres-
sions (4.20) and (4.21) obtained above, which were ob-
tained on the assumption that δ = const. In rotation of
the u axis by an angle π, the spin adiabatically follows
the u axis, i.e.,

ζ ί ~ = - ζ , - . ( 4 · 3 ° )

Thus, for slow passage through resonance, the spin flips.
We can find nonadiabatic correct ions by means of per-
turbation theory applied to Eqs. (4.19) with the zero ap-
proximation solutions (4.20) and (4.21). If we take into
account that the increase in the precess ion angle cos 0
= δ / ω ρ is

in β, (4.31)

t h e n f r o m (4.19)—(4.21) we h a v e i n t h e f i r s t a p p r o x i m a -

t i o n of p e r t u r b a t i o n t h e o r y

w h e r e

(4.33)

T h e m a i n c o n t r i b u t i o n t o t h e i n t e g r a l i n t h e a r g u m e n t of

t h e c o s i n e i n E q . (4.32) i s f r o m t h e i n t e r v a l of t w h e r e

this argument is ~ 1, i.e., t ~ ΐ / ω η -C 1/VfV However,
2 < r 0 C ω η and the argument of the cosine is

g

t h e n Tot 2

η

C a l c u l a t i n g t h e i n t e g r a l (4.32) we o b t a i n ( F i g . 3)

=•• —ζζ — '» cos<pr.
( 4 . 3 4 )

where ω η / Γ 0 2> 1. The exponentially small value of the
nonadiabatic correct ions i s due to the symmetr ic pass-
age (the velocities of t raver sa l Γ ο before and after the
crossing are the same). In the opposite case we obtain
a power-law smallness.

e) An example of intentional depolarization of the
beam. In the experimental study of the degree of polar-
ization of a beam, and also in the performance of ex-
per iments with polarized part ic les , it i s desirable to be
able to depolarize the beam. From the discussion p r e -
sented above it follows that there a r e several means of
dynamic polarization (with participation of the stochas-
tic mechanism (see the footnote to the preceding page):

FIG. 3
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1) setting the average frequency of spin motion Ω
near a resonance (4.11);

2) repeated rapid passage through resonance, (4.25)
and (4.26), with mixing in phase;

3) slow passage through resonance with mixing in
phase (4.34) and in the time of t r a v e r s a l .

It i s a lso possible to shift artificially to a resonance
by introduction of an external electromagnetic field or
to introduce an external depolarizing electromagnetic
field. We will d i scuss an example of the lat ter .

Let us introduce an external field Hn in a length I
(the length of the orbit i s 2L):

#n = fffi sinew, (4.35)

where

ωΛ = ωί + β(»3ίηΩ«ί. (4.36)

The frequency ω η can be adjusted to the spin frequency
(compare (4.11)):

ω£ = Ω-ηω0, (4.37)

where δω β ί η Ω ^ is the detuning, which changes sign
with the frequency fim. Modulation of the frequency as-
s u r e s multiple t r a v e r s a l of the resonance.

The frequency ω (Β.17) i s

ω = (^2)0),,^-sin ωΛί. ( 4 · 3 8 )

The frequency ω η i s calculated from Eqs. (4.16) and
(4.17):

sin (ηπ-i-) H? l

F o r r a p i d t r a v e r s a l i t i s n e c e s s a r y t h a t , i n a g r e e m e n t

w i t h ( 4 . 2 7 ) , w e s a t i s f y t h e i n e q u a l i t y

6 (t — 0) = δωΩ,η > α>\. (4.40)

For a s ing le t r a v e r s a l , if the init ial p h a s e s of the
spin a r e not corre la ted, we have ( s e e (4.26))

eg = & i ^ . (4.41)

Taking into account that the t i m e of a s ing le p a s s a g e
through the resonance is T r = ir/Slm and that the devia-
tions add quadratically (which means that the spin aver-
aged over the ensemble (ζ) i s scattered), we obtain
from (4.41) for the depolarization time

Τ τ
6(0) 1 δω

(4.42)

H?,/H z ~ 10~3, and Z/24if we choose δω/ω ~ 10"
~ 10 3 , then the depolarization time is several seconds
under typical e lectron-storage-r ing conditions.

4.2. Stochastic Depolarizatiorf 1 1^

In addition to the depolarization mechanisms dis-
cussed above, there i s a specific mechanism associated
with the stochastic nature of the radiation p r o c e s s .
This mechanism also acts only in nonuniform fields, but
fulfillment of the resonance conditions (4.11) is now not
essent ia l . The effect is due to the fact that the jumps in
energy, angle, and so forth, associated with the quantum
nature of the radiation p r o c e s s (or any other stochastic
p r o c e s s , for example, scatter ing in a gas), when expan-

ded in a Four ie r integral, contain, in par t icular , har-
monics which provide resonance (4.11). Therefore, the
bas i s of the effect is a resonance with the unpleasant
feature that, generally speaking, it cannot be avoided by
selection of p a r a m e t e r s (energy e, field H, and so forth).

We will consider the stochastic depolarization proc-
e s s far from the dynamic resonances (4.11). Then the
spin motion is described to first order in ω/Ω by Eqs.
(4.8). Construct

(4.43)

The quant i t ies £° and £j_ a r e constant for constant en-
ergy. The quantity £ 3 and £ χ are instantaneous projec-
t ions of the spin on the 3 a x i s and on the plane perpen-
dicular to it; £° and £*]_ are a v e r a g e s about which o s -
c i l la t ions £ 3 and £ ± o c c u r ( s e e S e c . 4.1).

In radiation of a photon, the electron energy under-
goes a jump Δε, while the relative probability of spin
flip in a radiative transit ion i s of order χ2 (see Sec. 2)
and i s negligibly smal l in comparison with the probabil-
ity of a radiative transit ion without spin flip. Therefore
the values of £3 and £ j_ do not change at the moment of
radiation. However, at the moment of radiation a dis-
continuous change occurs in the value ^ s in Eq. (4.43),
which i s proportional to the energy jump Δε. Since £3
and £ ± do not change, this means a discontinuous change
in the averages £3 and £*[. Compensation of the loss by
radiation r e t u r n s ^ s (more accurately, the amplitudes
in (4.43)) to the initial values. However, a set of such
jumps leads to a stochastic buildup of £3 and £° , and
therefore of £ 3 and £j_ (spin diffusion).

The same reasoning can be applied to angular jumps
during radiation, and also to any other stochastic mech-
anism (for example, multiple scatter ing in a gas) in
which the relative probability of a transit ion with spin
flip is small in the individual events.

The reasoning presented above p e r m i t s us to obtain
general formulas character iz ing stochastic (quantum)
depolarization. Let a p a r a m e t e r ξ (energy, angle, and
so forth) undergo a discontinuous change. Then

Δξ; ( 4 . 4 4 )

here the values of £° and £°x, i .e., the angle of inclina-
tion of the spin vector (tan θ = £ χ /£°), undergo jumps,
and from (4.43) it follows that

Δψβ = ΔΘ. (4.45)

Then the t i m e of depolar izat ion (the t i m e of spin drift by
an angle of o r d e r unity) i s

(4.46)

where dW(A£) i s the probability p e r unit t ime of a t ran-
sition with a given p a r a m e t e r jump Δξ.

As an example* we will consider stochastic depolar-
ization a s the result of energy jumps Δε in magnetic
bremsstrahlung during forced oscillations along the 3

*A number of examples of stochastic depolarization (spin diffusion)
for the specific conditions of storage rings have recently been discussed
by Derbenev and Kondratenko. [39 ]
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axis for motion of the e lectron in an axially symmetr ic
magnetic field*. In this case ψ 3 (4.7) has the form

ψ 1 ) ι = _ + nonresonant t e r m s , (4.47)

where we have taken the perturbation t e r m with the k-th
harmonic, and χ°^ is the oscillation amplitude; in Eq.
(4.47) we have explicitly written out only the resonance
t e r m providing the main contribution. Substituting (4.47)
into (4.44) and (4.46), we obtain

Hep- 8 Ζά \ R ) L * - η ν J ε- (4.48)

hr0

192 y-i

where r 0 = e2/47rl5m = 2.8 χ 10~13 cm is the class ical
electron radius . The mean-square energy fluctuation is
calculated a s follows:

j i ^ y \ ( 4 . 4 9 )

where dW(j, ω) is the probability of radiation of a pho-
ton p e r unit time.C1 '2^

It is evident from (4.48) that the stochastic depolar-
ization effect depends in the strongest way on energy,
and depends strongly on the number of the nearest
resonance harmonic, on the distance to the resonance
( k - r\y), and on the amplitude x!^. We will est imate the
effect for definite p a r a m e t e r values: energy e = 6 BeV,
R = 3 χ 103 cm, k-ηγ = 1/2, k = 14, 15 and x ^ = 0.1 cm.
Then τ^β = 25 sec (under these same conditions the
polarization time is Τ = 190 sec).

Thus, in the situation considered it i s necessary to
take special m e a s u r e s to p r e s e r v e the polarization (to
suppress resonant forced oscil lations).

Let us make another est imate of the depolarization
in motion near a spin resonance, where the role of the
stochastic mechanism is played by radiative damping of
the oscil lations. Substituting in Eq. (4.7) for ips the
harmonic ω closest to the spin resonance (frequency
difference δ (4.12), frequency ωη (4.17)), we obtain from
(4.46)

1/Tdep « (Δψ,)2/Δί ~ ( (4.50)

τ0 i s the radiative damping t ime. This formula can be
used to evaluate the width of the resonance.

In o r d e r to make simple es t imates of the influence of
depolarizing effects of the stochastic type on the degree
of radiative polarization, we will introduce a depolariz-
ing t e r m (of the diffusion type) into the equation for ζ3

(3.24) for ω = 0:

£/Tdep. (4.51)

The so lut ion of th is equation has the form

), (4.52)

where

*The spin motion is extremely sensitive also to jumps in the vertical
angle, especially with coupling of the ζ and r oscillations, when the
jumps are proportional to the quantum fluctuations of energy.

It i s obvious that in the p r e s e n c e of depolar iz ing e f fec ts
the d e g r e e of radiat ive po lar i zat ion d e c r e a s e s .

4 .3 . Other Depolar iz ing Ef fects

In addition to the e f fects d i s c u s s e d above, it i s n e c e s -
s a r y to take into account depolar izat ion in scat ter ing by
res idua l g a s a t o m s , b r e m s s t r a h l u n g on res idual g a s
a t o m s , s c a t t e r i n g of p a r t i c l e s ins ide the beam, and so
forth. However , e l e m e n t a r y e s t i m a t e s show that al l
t h e s e e f fects a r e negl ig ib ly s m a l l . This i s due to the
fact that the sp in flip probabil ity, for e x a m p l e , in s c a t -
ter ing or b r e m s s t r a h l u n g at a s m a l l angle i s s u p p r e s s e d
by a factor γ2.

As an i l lustration we will give the time of depolariza-
tion due to internal scatter ing of e lectrons inside the

i 9 ^

(4.53)

V is the volume of the beam, θ0 i s the minimum scat-
tering angle, and No i s the number of par t ic les in the
beam.

For the VEPP-2 installation, τά ~ 108 sec (see the
table).

5. MEASUREMENT OF ELECTRON POLARIZATION

The polarization aris ing as the resul t of extended
motion in a magnetic field must be measured and con-
trolled experimentally. Below we will d iscuss methods
of measuring the t r a n s v e r s e polarization of high-energy
electrons and positrons moving in a storage ring, which,
as will be shown below, have a number of specific fea-
t u r e s .

5.1. Measurement of Polarization in Experiments on
Interaction of High-energy Particles

The c r o s s sections for two-particle react ions a r e
extremely sensitive to electron and positron polariza-
tions. We will give below the c ross sections for these
react ions for t ransverse ly (and antiparallel) polarized
electrons and posi trons in the center-of-mass system.

The c r o s s section for production of a pa i r of pseudo-
sca lar par t ic les (ττ+;Γ, Κ+Κ~, K^Kg) in annihilation of
t ransverse ly (and antiparallel) polarized e lectrons and
posi trons has the form^16^ *

where | £ i | and | £ 2 | a r e the degrees of polarization of
the posi trons and e lectrons, φ i s the angle between the
plane of production (the plane passing through the mo-
menta of the initial part ic le ρ and the final part ic le q)
and the plane perpendicular to the spin direction (the
plane of the orbit), da°p is the c r o s s section for un-
polarized par t ic les :

where q =

Tit 9 8 ·> ix ι f ι r <>\ \=> 3(~\ t CZ. O \

-y-^- - ~ sui" is ] /' (αε2) | dii, V"·^)

F ( s ) i s t h e f o r m f a c t o r , r 0 = a/m i s

*In all cross sections we will discard terms of order 1/γ2.
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the c lass ical e lectron radius ( r 0 = 2.82 χ 10~13 cm), & i s
the angle between ρ and q. If the initial par t ic les a r e
completely polarized, I t i l = | t« l = 1» then d a 2 p {φ = 0)
= 0 (the production plane coincides with the orbit plane)
and d a 2 p (φ = π/2) = 2da°p (the production plane is per-
pendicular to the orbit plane, so that the spin vector
l ies in the production plane). The exclusion of φ = 0 is
the consequence of conservation of pari ty in annihilation
of t ransverse ly polarized par t ic le s . From considera-
tions re lated to parity conservation, conservation of
helicity in electromagnetic interactions at high energies
(with accuracy to o r d e r ί/γ), and the one-photon nature
of the channel in annihilation of t ransverse ly polarized
electrons and posi trons, a number of other exclusions
follow^ 1 7 ' 1 8} In part icular, three pseudoscalar mesons
(3π, ΚΚπ°) cannot be produced in the plane in which the
spin vector l ies . In a real situation the polarization i s
par t ia l : for a t ime t » Τ (see Eq. (3.17)) d a 2 p (φ = 0)
= 0.14 da° da (φ = π/2) = 1.86 da0 (compare Eq.
(3.26)). μ p v

The c r o s s section for production of a pseudoscalar
meson and photon (π°(?7) + γ) has the form^ 1 8 ]

da,,v - l + | ξ, 11 Es | (1-2 sin* φ)·sing ft (5.3)

h e r e άσ° i s the c r o s s section for unpolarized par t ic les :

G(4e2)
G(0)

•da, (5.4)

where τ i s the lifetime for decay of the meson into two
photons, mo i s the meson m a s s , q/e = 1 — m | / 4 e 2 , and J
i s the emission angle of the final par t ic les . For com-
pletely polarized par t ic les dffpy (^ = π/2, φ = π/2) = 0

(final part ic le momentum directed along the spin d i rec-
/2 °tion), = π/2, φ = 0) = 2da° (final part icle mo-

mentum perpendicular to spin direction).
The c r o s s section for production of a pai r of ferm-

ions with spin 1/2 in annihilation of t ransverse ly
(antiparallel) polarized e lectrons and positrons^ 1 6} has
the form

(5.5)

where Fi and F2 are the electromagnetic form factors,
and μ is the anomalous magnetic moment. For produc-
tion of a pair of muons (Fi = 1, F 2 = 0) we have

;2sin2(p —1)\\ dQ. (5.6)

For relativistic muons, q/e « 1, and we have for com-
pletely polarized particles άσ2μ (J = π/2, φ = π/2) = 0
(muon momentum directed along the spin) and
^σ2μ (* = f/2, φ = 0) = 2da2Vl (muon momentum perpen-
dicular to the spin). In production of a pair of baryons
the polarization effects are distorted by the form fac-
tors.

The cross section for two-quantum annihilation has
the form

ft+1 Ei 11 g81 sin" 0 ( 1 - 2 sin* φ)}, (5.7)

where ν i s the init ial-particle velocity. For completely
polarized par t ic les we have άσ2γ (<> = π/2, φ = π/2) = 0,
άσ2γ(* = ιτ/2, Ψ = 0) =2άσ°2γ.

It must be kept in mind that for the case of produc-
tion of a pa i r of pseudoscalar mesons, the exclusions
exist for planes (do not depend on the production angle
of the final part ic les) , while for all remaining react ions
they exist only if the final part ic le momentum i s per-
pendicular to the momentum of the initial part ic les .^ 1 7 !

We will give for reference the c r o s s section for elas-
tic scatter ing of t ransverse ly (antiparallel) polarized
electrons and posi t rons:

1-cos ft
I 5i ll£> I sin*

(3 +cos2 ft)2-(1-2 sin2 φ) . (5.8)

For this process the azimuthal asymmetry is also maxi-
mal for i> = π/2, but the degree of asymmetry is apprec-
iably smaller than for the processes discussed above,
since the term depending on spin orientation enters with
an additional factor 1/9.

5.2. Internal Scattering Effects and Polarization
Measurement^19^

We have discussed means of polarization measure-
ment based on measurement of the interaction cross
section at high energies. However, we must keep in
mind that in this case:

a) The electron spin is in the additional field of the
colliding beam and the depolarizing effects associated
with this must be investigated (by the methods set forth
in the preceding chapter).

b) In one form or another the question may arise of
the origin of observed effects which are assigned to
polarization. Therefore it is desirable to have indepen-
dent means of measuring the polarization of each of the
beams. We will discuss such means below.

We will begin with a method utilizing the interaction
of particles inside the beam. It is well known that an
important cause of the loss of particles in storage rings
with high intensity is elastic scattering of electrons
inside the bunches.C20^ If this scattering occurs into a
sufficiently large angle and is such that particles with a
large transverse momentum and small longitudinal mo-
mentum (in the rest system of the beam) acquire a large
longitudinal momentum, then in conversion to the lab-
oratory system the longitudinal momentum is subject to
the relativistic transformation and can turn out to be
larger than the permissible value. As a result the par-
ticles are lost. Under some conditions the lifetime of a
beam in a storage ring is determined by just this effect,
which is sometimes called the Touschek or ADA effect.
Internal scattering effects depend on the particle polar-
ization, since the electron-electron scattering cross
section at the large angles which determine the internal
scattering effect depends substantially on electron
polarization, and in particular the cross section for
scattering of identically and completely polarized elec-
trons by an angle π/2 goes to zero in the nonrelativistic
limit. This dependence of the internal scattering effect
on polarization can in principle be used to measure the
polarization of electrons in a storage ring:

a) by analysis of the dependence of the lifetime (for
the condition that it is determined by internal scattering
effects) on polarization;

b) by analysis of the dependence of pairs of particles
knocked out of the beam on polarization.
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Let us find the lifetime of a beam of polarized part i-
cles against internal scatter ing effects. Here , as
usuallyp°-22~\ we will assume that:

1) all par t ic les in the beam have the same energy
(the spread in energy is appreciably le s s than the per-
missible value);

2) 5 q z <C 6q (6q z and 6q a r e the mean-square mo-
menta of the vert ical and radial oscil lations, respec-
tively) .

In considering the general case in which the energy
of the t r a n s v e r s e oscil lations i s relat ivist ic, it i s im-
possible to use in the calculations the so- called small
angle approximation (in which only the sin"4 i? t e r m s are
retained), since it is not sufficiently accurate (10—30%),
and the polarization-dependent t e r m s have a s t ructure
which cannot be determined in this approximation.

We list below the resu l t s of calculations c a r r i e d out
by a well known method^ 2 1 ' 2 2 ] for the coefficient a which
determines the beam lifetime τ (τ is the time in which
the number of par t ic le s d e c r e a s e s by a factor of two):

Ϋ^-\2νκ89~^-+\η-—ψ-\. (5.15)ap)*bq I ' 4 n 4 I x '

l/t = aN0, (5.9)

where No i s the initial number of par t ic les in the beam.
For a rectangular distribution of radial momenta of

the e lectrons in the beam we have

2jtr|

(5.10)

where V i s the volume of the beam in the laboratory sys-
tem, Δρ i s the maximum permiss ib le deviation of mo-
mentum from the equilibrium value in the laboratory
system, δρ i s the maximum momentum of the distribu-
tion, which is re lated to the mean-square value by 6q
= δρ/·/?, η = Δρ/e, e i s the e lectron energy in the labor-
atroy system, and y = δ ρ/η; we have used the system of
units m = 1.

In derivation of this formula we have systematically
expanded all quantities in powers of l/ t 2 , η2, 1/y2, and
have retained only the leading t e r m s of the expansion.
Under actual conditions η ~ 10~2, y var ies over the
range 10—103 when the e lectron energy is 102—103. In
the nonrelativist ic approximation δρ <C 1 we obtain

(5.11)

In the ul t rare lat iv i s t ic l imit

" F(Ap)2y3 6? L ' * 4 ' " η 4 J- V - " J

F o r a G a u s s i a n d i s t r i b u t i o n of r a d i a l m o m e n t a of t h e

e l e c t r o n s w e h a v e

2 V π r%c
( 5 . 1 3 )

-Va ] β*·(1-Φ(*))*<:}

where Φ(χ) i s the probability integral.
In the nonrelativistic approximation 6q < 1 we have

O w = = 4 V « * / ΐ η ν _ 3 + ^ _ ^ 1 , (5.14)

w h e r e C i s E u l e r ' s c o n s t a n t , C = 0 . 5 7 7 . . .

I n t h e u l t r a r e l a t i v i s t i c l i m i t

The value of a depends weakly on the shape of the mo-
mentum distribution, especially in the ul trarelat iv is t ic
limit (and also in the intermediate region^2 2^); for this
reason it is possible to use for e s t i m a t e s the s impler
formulas for a rectangular distribution. This i s due to
the fact that the main contribution to internal scattering
effects i s from small scatter ing angles and the low-
velocity region in the distribution. F r o m the same cir-
cumstance it follows that the relative contribution of the
constants in a (including those dependent on polariza-
tion) r e m a i n s appreciable up to 5q « 1, and only when
the momentum of the majority of e lectrons becomes
relat iv is t ic, 6q ^> 1, does this contribution drop sub-
stantially.

We will est imate the contribution of the polarization-
dependent t e r m s for the VEPP-2 installation at
Novosibirsk for an energy e = 700 MeV, at which the
character i s t ic t ime of radiative polarization is about
30 min (see Sec. 3), η « 10"2, 6q = 1 (δρ = V3). Then the
relative contribution of polarization- dependent t e r m s to
a for complete polarization of the e lectrons (Eq. (5.13))
i s about 6%.

5.3. Measurement of Polarizat ion by Means of Compton
ScatteringC 2^

In Compton scattering of c i rcular ly polarized photons
by t ransverse ly polarized high-energy e lectrons, t e r m s
in the c r o s s section ar i se which depend on the electron
polarization vector. In head-on collisions of l a s e r pho-
tons (with energy ωχ) with high-energy e lectrons, the
final photons a r e emitted mainly in a narrow cone with
an angle ~ \/y relative to the initial e lectron direction
and have an energy

(5.16)2ε λ

where λ = 2o>ie/m2, and the photon emission angle i s
i> = n/γ -C 1. To lowest order in e 2 the c ross section
has the form (see refs. 24 and 25)

ίίσ - - (to0-[-dojlj j ζ{\ sin φ , ( 5 . 1 7 )

w h e r e da0 i s t h e c r o s s s e c t i o n f o r u n p o l a r i z e d p a r t i c l e s ,

ξ 2 is the degree of c i rcular polarization of the photons,
and φ i s the angle between the plane perpendicular to
the vector £1 and the scatter ing plane. We note that the
corre lat ion t e r m in (5.17) of the form |2(£ik 2 ) is the
only possible t e r m from considerations of Ρ and Τ in-
var iance. The azimuthal asymmetry coefficient has the
form

da0

2λη
( 5 . 1 8 )

if' reaches an extremum / :

e x » - 1/3 for λ « 1, n « 1.
For storage rings presently in existence and l a s e r s ,
λ « 1 ; then

4rg(l+n«) nan dtp ( 5 . 1 9 )

T h e m a x i m a l v a l u e o f t h e a s y m m e t r y c o e f f i c i e n t / m a x

i s r e a c h e d f o r n = 0 . 7 6 a n d i s / ' m a x = - 1 . 1 4 A . T h e

a s y m m e t r y c o e f f i c i e n t f o r c r o s s s e c t i o n s i n t e g r a t e d

over the scattering angle 0 i j £ ^ 0 = no/y is ϋ-0 = —0.8λ
for no = 2 and 3'0 = — 0.6y for n0 S> 1. Therefore it is
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necessary to use the shortest-wavelength photon sources
possible. The effect of asymmetry in Eq. (5.17) is maxi-
mal for φ = ± π / 2 , i.e., when the vector £1 lies in the
scattering plane, so that for £2(k2 ·£i) < 0 the cross sec-
tion is maximal and for £2(k2 · £1) > 0 the cross section
is minimal.

If we use a krypton laser (photon energy ω ι
= 3.5 eV^263) as the photon source, then λ « 0.09 for
€ = 3.5 BeV, so that the up-down polarization asymme-
try for no = 2 reaches ~ 14%. For a laser power of
1 watt, a number of electrons in the storage ring Ne

= 1011, a beam cross-section area s = 10"2 cm2, and
Αφ ~ 0.1, the number of final photons is ~ 104 sec"1.

5.4. Scattering In a Polarized Electron Target and
Measurement of the Polarization

An azimuthal asymmetry also exists in the cross
section for scattering of transversely polarized fast
electrons by a polarized electron target^27^:

da = dao + dal\ ζ,\ | ξ2 |cos(2cp-t-cp,), do, = (r/\2y) dQc, (5.20)

where dao is the Miller cross section, \ζζ\ is the de-
gree of polarization of the electron target, and the angle
φ is defined as in Eq. (5.17). The vector f 2 is chosen
in the plane perpendicular to the momentum vector of
the initial electron (then the asymmetry is maximal),
φι is the angle between the vectors £i and £2, and df2c

is the element of solid angle in the center-of-mass sys-
tem. The greatest asymmetry occurs for 2φ + φι = 0
or ir. For example, for ζχ ||f2 (φι = 0) this corresponds
to φ = 0 (scattering plane perpendicular to the vector
£i) and φ = rr/2 (the vector d lies in the scattering
plane). The asymmetry coefficient 3' = dai/dao is maxi-
mal for a scattering angle i> = V2/y (which corresponds
to a c.m.s. scattering angle ^ c = π/2) and is given by
ff'max = 0.11. For cross sections integrated over scat-
tering angle,

V2ly t
c/2,

the asymmetry coefficient is

(5.21)

For «>c = 75° i'o = 0.1. The low value of the asymmetry
coefficient does not permit use as a target of magne-
tized ferromagnetic materials, where | £ 2 | < 0.09, so
that the total up-down asymmetry is <2%. Obviously
it is desirable to use as a target atomic beams in which
the electron polarization can be raised to | £ 2 | ~ 1 and
the total asymmetry for ^ c = 75° reaches 20%. For
known densities of polarized atomic beams
(n ~ 10 u cm"3) for e = 700 MeV, Ne ~ 10", a size of the
interaction region ~ 1 cm, #c = 75°, and Αφ ~ 0.1, the
number of scattered electrons is ~ 10 sec"1.

The methods described above, from our point of view,
are most promising for determination of the transverse
polarization of high-energy electrons in a storage ring.
It should be noted that the relative contribution of terms
depending on the electron polarization increases with
energy for Compton scattering of laser photons (so that
the method is suitable at an energy of several BeV) and
decreases with energy for internal scattering effects
(so that the method is suitable at an energy of several
hundred MeV), and is independent of energy for scatter-

ing by an electron target (i.e., this method is applicable
for any energy if the number of events is sufficiently
great).

5.5. Other Methods

We will discuss other methods of determining the
transverse polarization of high-energy electrons:

a) The cross section for scattering of transversely
polarized electrons by a polarized nuclear target, with
an accuracy to terms of order l/γ, does not depend on,
the electron polarization, a consequence of helicity con-
servation (see, for example, ref. 28).

b) The degree of circular polarization of a brems-
strahlung photon in electron scattering by a Coulomb
field depends on the electron polarization; for the cross
section integrated over final-electron emission angle,
the degree of circular polarization of the photon for
transversely polarized initial fast electrons under opti-
mal conditions does not exceed 10%f29^ in addition, the
photon polarization measurement which is necessary in
this method is in itself a rather complex problem; the
bremsstrahlung cross section summed over final-parti-
cle polarization with inclusion of all Coulomb correc-
tions with an accuracy to l/y terms has the same struc-
ture as the Born cross section, and consequently, does
not depend on electron polarization.^29^

c) Quantum corrections to the intensity of synchro-
tron radiation, which depend on electron polarization,
are of order χ = (ϋ/Ε0)γ and are extremely small.

Thus, the methods listed in this section are not very
suitable for determination of the transverse polarization
of electrons.

For determination of the transverse polarization of
electrons, a method with conversion of transverse
polarization to longitudinal polarization is also promis-
ing*. This can be accomplished, for example, as the re-
sult of precession of the electron spin relative to the
velocity in a magnetic field perpendicular to the spin
vector and the momentum. The rotation angle of the
electron in this field, in which the transverse polariza-
tion is transformed to longitudinal, can be found from
Eq. (B.6); it is

Δφ = 2 γ η·
( 5 . 2 2 )

T h e s a m e r e s u l t i s o b t a i n e d if, i n s t e a d of a m a g n e t i c

f i e l d , w e u s e a n e l e c t r i c f i e l d d i r e c t e d a l o n g t h e s p i n

vector with the condition that η γ2 3> 1. Measurement
of the longitudinal polarization obtained can be easily
carried out, for example, in experiments on scattering
in a polarized electron target (the contribution of polar-
ization-dependent terms is ~ 1) or in experiments on
scattering by a polarized proton target.

6. AN EXPERIMENT ON STUDY OF RADIATIVE
POLARIZATION

An experimental study of the radiative polarization of
electrons has been carried out recently in the storage
ring VEPP-2 in Novosibirsk.^32] The polarization meas-
urement was accomplished by the method described in
Section 5.2 which utilizes the dependence of internal

*See also Appendix C.
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scatter ing effects on the polarization of the e lectrons in
the b e a m . c i 9 ] For the energy chosen (e = 650 MeV) the
polarization t ime is Τ « 50 min and the theoretical de-
gree of polarization (3.27) during the experiment is
|£ 3 (2T) | « 0.80. In this experiment it is extremely im-
portant to exclude the effect of depolarizing factors (see
Section 4). F o r this purpose it i s necessary first of all
to be sufficiently far from spin resonances (4.11). The
result of a specific analysis of resonance harmonics for
the VEPP-2 storage ring is shown in Fig. 4, in which
the frequencies a r e given in units of ω0

(ν = ηγ = ( g - 2/2)y, vz = ωζ/ω0 = 0.809.J, vK = ω χ / ω 0

= 0.7614) and the o r d e r of the resonance i s indicated.^ 3 2 3

The depolarization time (height of the resonance) in
Fig. 4 was est imated (see Sec. 4.1b) on the assumption
that dynamical mixing occurs as the consequence of the
spread in amplitude of betatron oscil lations, and that the
stochastic mechanism is radiative damping. It is c lear
that, if ω η (4.17) satisfies α>η » τ'ο , then r j 1 ~ TJ 1

(compare Eq. (4.50)); and if ωη <iC το\ then rr^

~ ω η ( ω η τ 0 ) . This situation is described by the inter-
polation formula

The widths of the resonances in Fig. 4 (the " w i n g s " of
the resonances) were evaluated on the bas is of (4.50).
In Fig. 4 we have also shown the radiative polarization
t imes Τ and the radiative damping time τ0. It can be
seen from Fig. 4 that in the region below € = 500 MeV
the electron beam is practical ly unpolarized. We note
that with increasing energy l / T increases rapidly, and
for higher energies we can expect that depolarizing fac-
to r s will play a smal ler role. In accordance with an
analysis which was made, the working point was chosen
at an energy e = 650 MeV. When depolarizing effects
(4.53) are taken into account, the expected degree of
radiative polarization is | f f (2T) | « 0.66.

The measurements were made in the following way.
The electron beam in the storage ring was polarized for

nint. scatt.'-V

W6.0

WSJ

7PS.0

IMS
Z00 woo t, sec

FIG. 5

a time t ~ 2T, and the par t ic les leaving the beam as a
consequence of internal scattering effects were recorded
by two counters . Then the beam was depolarized by ap-
plication of an external longitudinal field (Sec. 4.1e) for
time (4.42) τ^ θ ρ ~ 100 sec. In this case according to

(5.13) the rate of departure of par t ic les from the beam
increases (i.e., the number of counts in the counters
increases) . Figure 5 shows the experimental re su l t s for
an energy e = 638.8 ± 0.8 MeV, where a jump can be
seen in the counting rate (normalized to the square of
the current), occurr ing at the turning on of the depolar-
izing field*. From the size of the jump we can deduce
the following value of the degree of polarization of the
electron beam:

1 (271) | =0.52 ±0.13, (6.2)

which is consistent with the expected value of the degree
of polarization given above with inclusion of depolariz-
ing effects | f r ( 2 T ) | « 0.66, although it is somewhat
smal ler . Thus, we have obtained the first experimental
indications of the existence of the radiative polarization
effect. Naturally, further experimental investigation of
this effect i s des irable, in part icular , removal of the
influence of depolarizing effects.

In conclusion the author takes pleasure in expressing
his s incere gratitude to V. M. Katkov and A. N. Skrinskii
for numerous discussions of the radiative polarization
problem and for valuable observations. The author is
grateful to V. M. Strakhovenko for discussions, and to
Ya. S. Derbenev, A. M. Kondratenko, A. N. Skrinskii,
G. M. Tumalkin, and Yu. M. Shatunov for making avail-
able thei r resu l t s p r i o r to publication.

APPENDICES

A. CALCULATION OF <to|Re T2 |t0)

By definition <to|T 2 | t o) is a scattering matr ix element
of second order in the coupling constant e, taken between
single-particle s tates , i .e., the contribution of the self-
energy d iagram. This contribution has been found (for
arb i t ra ry χ) in ref. 8. Taking into account that in Sec-

700 e, MeV

*In this fact we have a method for extremely accurate absolute
measurements of the electron energy in the storage ring, since the
(g-2)/2 factor of the electron is known very accurately. With the de-
polarization method used, the accuracy is determined by the band width
of the frequency modulation δω (4.36).
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tion 3 we use a state vector which i s a two-component
spinor, i .e. , | t 0 ) = φ\ΐ), we have, using Eq. (2) of ref. 8,

where s = v/ |v | ,

„.,,, ami Ρ udu

(<o I 7, | ίο) = Ζς? = j dt <7j» + Tf>) (ζ [vs])

= 1 f Λ((|φ+(Β0+ίσϋ)φ|ί>,

2u

(A.I)

( A · 2 )

Ki/3(z) i s the Macdonald function. A unique re lat ion e x -
i s t s between the t e r m s T{ 2 ) and D o and between Tl 2 ' and
D; there fore from T22 ) we can a l s o d e t e r m i n e D (the
t e r m ΤΪ 2 ) (Do) does not contribute to Eq. (3.20) and
therefore is not given here) . If we take into account
that

( E [ v s ] ) = — -

mf_
(A. 3)

where av i s the polarization 4-vector, μ 0 = e/2m, F
α β , and Ϋαβ i s the external field tensor,

β

then Hj^, the magnet ic f ie ld in the r e s t s y s t e m of the
p a r t i c l e , i s found to be

F r o m (A.I)—(A.3) we have

The quantity μ' is the anomalous magnetic moment of
the electron to o r d e r e 2 in the interaction with the radia-
tion field and with inclusion of all o r d e r s in the external
f i e l d s For χ <C 1, μ '/μ 0 = (α/2ττ)(1 - 1 2 x

2 l n χ + . . . ) .
If we l imit ourselves to an accuracy μ'/μ 0 = a/2n, then
the result (A.5) can be obtained also by means of
Schwinger's results,'-3 0^ as was done in ref. 10.

B. EQUATION FOR SPIN MOTION IN AN EXTERNAL
FIELD

In Sec. 3 we obtained in t e r m s of quantum electro-
dynamics the equation of motion of the electron spin
(the average value of the spin operator in the res t sys-
tem). If we retain in this equation t e r m s of o r d e r Κ°(χ°)
(i .e . , if we omit damping t e r m s ) , this equation goes over
to the BMT equation. The l a t t e r does not contain
Planck 's constant Κ and can be obtained on the bas is of
purely class ical considerations a s the direct relat ivis-
tic generalization of the equations of motion of the mech-
anical (spin) moment (for a given gyromagnetic rat io
μ = (ge/2m)(£h/2)) in a magnetic field in the res t sys-
tem of the par t ic le :

Κ|μΗ1. (B.I)

If we set J = (1/2) tK, then

• § = £ K H J . ( B . 2 )

We will introduce the 4-vector sl·1 such that in the elec-
tron r e s t system s = (0, ζ). Obviously, if u^ is the
velocity 4-vector u = (γ, yv), then (su) = 0. Hence it fol-
lows that So = (s · v) and in the res t system

The relat ivist ic generalization of (B.2) and (B.3) i s the
BMT e q u a t i o n ^

here τ is the p r o p e r t ime. Taking into account that

• , _ . » , P ( P S ) S = ( P S ) ( B . 5 )

η (6 + m) ' ° m '

we can convert from the equation for s (B.4) to an equa-
tion for ζ. We finally obtain (3.23) without damping
t e r m s * (see (3.19) and (3.22)):

(B.6)

Let us discuss the right-hand p a r t of the BMT equation
in the form of (B.6). The magnetic moment is acted on
by the magnetic field H J J in the res t system of the par-
ticle, if the fields a re Η and Ε in the laboratory system.
However, it i s necessary to keep in mind that increment
in the spin vector Αζ = (d£/dt)At consists of p a r t s of
which one is due to rotation in the field H p and the sec-
ond is kinematical and i s due to rotation of the spin a s
the resul t of the fact that the e lectron motion in the ex-
ternal field is accelerated (in other words, a s a conse-
quence of the fact that the res t sys tems at the moments
of t ime t and t + At a r e different and that one is rotated
relative to the o t h e r t ) . The la t ter increment is easy to
calculate by means of the Lorentz transformation equa-
tion

= 7"^^-- ( B · 7 )

The total change of ζ (compare (B.6)) i s

(B.8)

Hence it i s evident that the field Hj^ actually acts only
on the anomalous par t of the moment, while the effective
field H E (B.6), (3.22), which can be considered as acting
on the intr insic moment of the spinor par t ic le , turns out
to be strongly attenuated in comparison with H p at high
energies (γ 3> 1). Jus t for this reason, although the
anomalous magnetic moment of the e lectron (in units of
eK/2mc) is extremely small , ( g - 2)/2 = a/2t + .. ., the
t e r m s with it a r e extremely important, since they con-
tain an additional power of γ.

Equation (B.6) (see (3.10) and (3.22)) involves the
fields Η and Ε and the part ic le velocity, which is deter-
mined by these same fields. Therefore the form of
(B.6) i s not always convenient. It turns out to be useful
to write Eq. (B.6) in such a way that only the independent
variables occur as coefficients in the right-hand part .
There are several sets of independent quantities; we

*If a vector A does not change with respect to some rotating system,
and its change with respect to a fixed system is due only to the rotation,
then A = Ω X A, where Ω is the angular velocity (frequency) of rotation.
Equation B.6) is of just this type. It is clear that (ff) = 0, f2 = const for
F = const, F X f = const, i.e., the vector f precesses about the axis F with
a frequency |F | .

fThis fact is sometimes called Thomas precession.
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will choose the set v, v, H N , EL (ΗΜ and E x a r e the field
components along the velocity and perpendicular to the
velocity).

Taking into account that

Η χ _ 1 . { [ ν Ε ] — i ^ ] } , (B.9)

we obtain for the BMT equation (B.6)

,. , fvv] , 2μ r r,, , 2μ (Ην) ν / η ι r\\

where μ = (g/2)(e/2m), 77 = g / 2 - 1. If we introduce the
unit vectors

(B. l l )

and expand the vector £ in these unit vectors :

ζ = ζιει + ζ 2 ε 2 + ζ 3 β 3 , ( Β . 1 2 )

t h e n t h e f o l l o w i n g s y s t e m of e q u a t i o n s ^ 1 3 ^ f o l l o w s f r o m

E q . ( B . 1 0 ) :

(B.13)

w h e r e t h e f r e q u e n c i e s a r e

_ 1

or

where the frequency u has components

u = (o>, 0, — Ω ) .

( B . 1 5 )

( B . 1 6 )

Thus, in the chosen system of unit vectors the spin vec-
tor moves around the β3 axis with a frequency Ω and
around the ei axis (the direction of the velocity) with a
frequency ω.

If the e lect r ic field Ε = 0, then ν = ν and the expres-
sions for the frequency take the form

(e3V)
!- = η -

:v-H)

Ι ν 11 Η ,
(B.17)

where for time-independent fields Η = (v-V)H, and as
unit vectors we choose the vectors

[vv)
Ι ν Ι Ι ν I

(B.18)

C. E V O L U T I O N O F S P I N V E C T O R I N P E R I O D I C

M O T I O N

I n t h e c a s e i n w h i c h F ( t ) = F ( t + T ) i n E q . ( B . 6 ) , p a r -

t i c u l a r i n t e r e s t i s p r e s e n t e d b y t h e p e r i o d i c s o l u t i o n s

of t h i s e q u a t i o n , w h i c h m e a n t h a t a t a g i v e n p o i n t of t h e

t r a j e c t o r y t h e r e e x i s t s a s t a b l e d i r e c t i o n of p o l a r i z a -

t i o n , w h i c h i s r e p e a t e d e v e r y r e v o l u t i o n s 3 1 ^ 1 W e w i l l

d e s i g n a t e s u c h s o l u t i o n s b y

ϋ(/ + η = η(ί), η==1, n=[nFl. ( C . I )

A n y s o l u t i o n of E q . ( B . 6 ) c a n b e e x p a n d e d i n t h e t h r e e

o r t h o g o n a l s o l u t i o n s x m ( m = 1 , 2 , 3 ) :

w h e r e n m a r e c o n s t a n t s . T h e n t h e p e r i o d i c i t y c o n d i t i o n

a c q u i r e s t h e f o r m

( C . 3 )

The first t e r m in ω (Β.17) is extremely smal l in
comparison with Ω (their rat io is ~(ί/γ)(Ή^/Ήι), where
ordinari ly H|t < Η χ ) . Therefore in nonuniform fields the
principal role i s played by the second t e r m , which ex-
plicitly depends on the field nonuniformity. Under typical
s torage-r ing conditions the par t ic les execute small os-
cillations with a frequency a>oS and amplitude a. Then

ω _ (vV)ff o 0 s O ( B . 1 9 )
Ω ~ γηωο/ί j_ γηωο/ϊ <S ' •

T h i s c i r c u m s t a n c e h a s b e e n s y s t e m a t i c a l l y u t i l i z e d i n

t h i s w o r k .

T h e e q u a t i o n s o f m o t i o n ( B . 1 3 ) d e t e r m i n e t h e m o t i o n

o f t h e s p i n v e c t o r r e l a t i v e t o a f i x e d s y s t e m , b u t j u s t

t h i s s y s t e m i s d e f i n e d p h y s i c a l l y .

o r

w h e r e

(')= Υ nmxm(t+T)

m- Aftm) nh=0,

T h e s y s t e m of E q s . ( C . 4 ) h a s s o l u t i o n s if

det(/ — Λ)=0.

( C . 4 )

( C . 5 )

( C . 6 )

T h i s c o n d i t i o n i s a l w a y s s a t i s f i e d , s i n c e t h e c o n s t a n t

matr ix Λ corresponds to a rea l rotation Λ Λ = Ι ,
det Λ = 1 (a general existence theorem exists for
periodic solutions of uniform l inear sys tems of differ-
ential equations with periodic coefficients; see, for ex-
ample, LefshetzC3 3]). Since any two solutions of Eq.
(B.6) satisfy the condition d(f a £ D ) / d t = 0, for an arbi-
t r a r y initial spin direction (£ · n) = const. Hence it fol-
lows that the spin vector rotates about the periodic solu-
tion n, which is fixed for a given azimuth, conserving its
projection on the n direction. The general solution of
Eq. (B.6) can be expanded in n and two vectors η in the
plane perpendicular to n. Let 2πν be the angle by which
the solution t r a n s v e r s e to n is rotated in a revolution;
in complex form this condition is 77(t + T) = e ^ ^
Expanding T)(t) in x m ( t ) , we have

( C . 7 )

so that it is necessary to find the eigenvalues of the
matr ix

dot (λ/ — Λ) = 0, X=e ( C . 8 )

One of them, obviously, is λ = 1, and the other two are
obtained from the conditions

λ|λ2λ:, = det Λ = 1 , ( C . 9 )

λ 3 •-=. cos -ςπν —
Sp Λ — 1

The corresponding eigen solutions n, η, and η* are
orthogonal if cos 2πι/ * 1. The general solution can be
written in the form

i(t)-=--in« I-v(c (CIO)

where £ n = const, c and c* = const. In the case of reson-
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ance (cos 2πν = 1) there is a degeneracy λι = λ2 = λ3 = 1
and all solutions are periodic.

The existence of a stable periodic solution permits
any polarization to be produced at a given point of the
trajectory (for example, at the point where beams col-
lide in storage rings). For example, at high energies
such that η/2ηγ -C 1, by introducing into a straight
section of a storage ring a radial magnetic field in
which the angle of rotation is ir/2y77 (see (5.22)), it is
possible to convert a transverse polarization to longi-
tudinal, and after the collision region to again convert
it to transverse. It is true that the degree of polariza-
tion in this case will be somewhat smaller than in a
uniform field, as the result of radiative polarization in
the radial field.
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