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Polarization of electrons arising as the result of radiation during extended motion in a magnetic field
is considered. A calculation is made with the quasiclassical operator method of the probability of a
radiative transition in a magnetic field with spin flip, including the case of a nonuniform magnetic
field. The kinetic equation is obtained for polarization of electrons in an external field with inclusion
of radiation effects, and this is used to analyze the kinetics of radiative polarization. Effects are dis-
cussed which lead to depolarization of an electron beam in motion in a nonuniform magnetic field, and
means of suppressing these effects and also of intentional depolarization of a beam are pointed out.
Means are discussed for measurement of the transverse polarization of high energy electrons, and a
description is given of an experiment in which the first indication of the existence of the radiative

polarization effect has been obtained.
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1. INTRODUCTION

DURING extended motion in a magnetic field, electrons
and positrons can be polarized as the result of radiation
of photons. The polarization arises because the proba-
bility of a radiative transition with spin flip depends on
the orientation of the initial spin. This new mechanism
for polarization of electrons and positrons of high en-
ergy, whose existence in a uniform field was first poin-
ted out by Sokolov and Ternov,t'] is extremely impor-
tant for the following reasons:

1) This is the only available means of obtaining
polarized beams which are immediately of high energy
(it begins to be efficient at an energy of several hun-
dred MeV).

2) The polarization process does not change the
properties of the beam (intensity, spread in parameters,
and so forth), which favorably distinguishes it, let us
say, from the method of obtaining polarized beams by
means of scattering,

3) Electrons and positrons can be polarized at any
specified energy, which removes the very complicated
problem of accelerating the polarized particles.

In this way the possibility is opened of setting up ex-
periments with polarized electrons and positrons, which
in turn significantly broadens the means for study of
electromagnetic interactions at high energies. In ex-
periments in colliding beams the polarization must be
taken into account in even the simplest two-particle
processes, since the cross section for elastic scattering
of an electron by an electron or a positron, and also the
cross section for production of pairs of photons, pions,
kaons, muons, and so forth depend on the polarization
very substantially. Particular interest, however, is pre-
sented by experiments with polarized electrons in which
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the polarization of the final particles will be measured,
which evidently will be possible in second-generation
experiments,

In order to solve the problem of radiative polariza-
tion as a whole it is necessary to discuss the following
basic questions:

1) Determination of the probability of a radiative
transition with spin flip in a magnetic field, particularly
in a nonuniform magnetic field such as exists in storage
rings.

2) Establishment of the kinetics of the radiative
polarization process, for which it is necessary to find
and solve the kinetic equation for the electron spin in an
external field with inclusion of radiation effects.

3) Determination of the important depolarizing
effects and means of removing them, in order to pre-
serve the radiative polarization which arises. And
finally;

4) Measurement of the degree of transverse polar-
ization of high energy electrons moving in a storage
ring.

In what follows we will discuss all of these questions,
and also the first experiment on measurement of radia-
tive polarization.

2. RADIATIVE TRANSITION WITH SPIN FLIP

Quantum effects in external fields are usually dis-
cussed in the so-called Furry representation, in which
the radiation process is considered in terms of pertur-
bation theory with use of exact solutions of the wave
equations (Dirac, Klein- Gordon) in a given field (i.e.,
without use of perturbation theory in the external field).
However, exact solutions are known for a very limited
class of fields (a uniform, constant magnetic field;
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crossed electric and magnetic fields; the field of a
plane wave; the Coulomb field), and the calculations
themselves are extremely complex and tedious. For
this reason at high energies the quasiclassical asymp-
totes of the expressions obtained are used. On the whole
this approach turns out to be unjustifiedly complicated.

2.1. Method of Discussion

In recent work by the author and V. M. Katkov, a
general method was developed for studying electromag-
netic phenomena in external fields.">*? This method is
based on the fact that quantum effects in motion of high-
energy particles in an external electromagnetic field

(for definiteness, a magnetic field) have a twofold origin:

quantization of the motion itself and quantized recoil of
the particle during radiation. In the first case the mag-
nitude of the quantum effects (and, correspondingly, the
non-commutation of the dynamical variables of the par-
ticle) has an order fiw, /e (where wy = vt/R, R is the

instantaneous radius of curvature, v, is the velocity

component perpendicular to the magnetic field, € is the
particle energy, and hw, is the distance between neigh-
boring energy levels of the electron in a magnetic field
in the case of large quantum numbers). The quantity

Tiagle = H/(Hp?) (2.1)

(where y = €/(mc?), H is the magnetic field, Ho

= m®c%/(he) = 4.41 x 10"® G (for an electron) is the criti-
cal magnetic field of the quantum effects) is extremely

small and decreases with increasing energy. Thus, the

motion of an electron in a magnetic field becomes more
classical with increasing energy.

The magnitude of the quantum effects from recoil
during radiation is of order hw/e, where w is the fre-
quency of the radiated photon. The quantum effects in a
magnetic field can be characterized conveniently by the
invariant parameter

he yrre——rg hogyt v AV H
.Y iz . 0oyt v 2 {1 Pt
A= rEa V(F“Vp ) € ¢ mecd Hym "

(2.2)

For y < 1 (just this case occurs in contemporary stor-
age rings) the magnitude of the quantum effects is rela-
tively small, and w ~ woy®. The region x > 1 is essen-
tially a quantum region, and in this case iw ~ €. Thus,
it is evident that at high energies (y >> 1), for any x the
quantum effects of the first type are negligibly small in
comparison with the quantum effects of the radiation.
This fact is the basis of the method developed in refs.
2—4, in which quantum effects of the first type are
neglected. If there are two types of quantum effects in
the theory and we wish from the very beginning not to
take one of them into account, the operator formulation
of quantum mechanics is particularly convenient for this
purpose. Actually, in our case we can neglect the non-
commutation of the dynamic variable operators of the
particle between themselves (of magnitude ~ fiw,/€) and
take into account only their commutators with the field
of the radiated photon (of magnitude ~ fiw/e).

The standard form of the matrix element for radia-
tion of a photon in an external field is

ieit ig;t

Ufizm S dt S BrFie () e (ef)eiot-x ¢ F Fop),  (2.3)

where F; (r) is the solution of the wave equation in this
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field with energy ¢; and a spin state s, e
polarization vector, and j , is the current.
Here and subsequently we use the metric ab = agb,
—a-b, and a system of units ¢ = 1,
For the states of interest to us with large quantum
numbers we can use the approximate representation

(2.4)

where ¥ (7) is the operator form of the particle wave
function in a spin state s in an external field. This form
is obtained from the free wave functions by replacement
of the variables by operators; p — ¢, € —J = V&% + m®,
The state vector {i) determines the states of the parti-
cle in the field (except for the spin s). In Eq. (2.4), in-
teraction terms of the spin-field type are neglected; for
example, for particles with spin 1/2 (terms of the form
Z-+Hand - E).

We will give an example of Eq. (2.4) for the case of
the Dirac equation in an external field

is the photon

eTG R (1) = B, () emiPE R g,

Py —m) P (z) =0, &, =1ihd,—ed,(z). (2.5)

The squared Dirac equation is
(HPut ) (T —m) (&) = [ Fh—me— F 0w, | W (2) =0, (2.6)

where otV = i/2[yk, y¥], and F,, is the electromag-
netic field tensor. If we discard terms of the spin-field
type 1/20HVF,, |, = (-Z +H + ia - E), then Eq. (2.6) goes
over to the Klein- Gordon equation in this field. With
this accuracy we can represent the solution of Eq. (2.5)
in the form

P (z) =C(HPu+m) D (a), (2.7)

where ®(x) is the solution of the Klein- Gordon equation,
and C is a normalization constant, Using the standard
y-matrix representation, Eq. (2.7) can be rewritten in
the form of (2.4). Thus, in the coordinate representation
[i} is the solution of the Klein- Gordon equation in this
field, ®;(x).

Substituting (2.4) into (2.3) and converting to Heisen-
berg operators, we write the matrix element Ug; in the
form

U=y ) § anr ety (2.8)
where
eM (1) = Vi (&) {(ef), e} ¥, (),
oo ot L (2.9)
jult)=e * jue R, m(f)=e P e P

are the current and particle-coordinate operators, and
{...} designates the symmetrized product of the opera-
tors. It is important that in the large- quantum-number
approximation adopted, the order of writing the opera-
tors entering into ¥g(#) is unimportant. For a particle
with spin 1/2

M, ()= ui () aee=567th u, (59, (2.10)
h
where ey EEE $EW) )
wO=V T\ 22 eem)’ 2.11)

here @(§(t)) is a two- component spinor describing the
spin state of the electron at the moment of time t.

We will be interested in the probability of a transi-
tion with radiation of a photon, summed over all final
states of the particle (except spin states). Carrying out
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this summation, we obtain the following expression for
the probability of a radiative transition:

5 (| | an, [ atero =0 ar0 1y M(t,)] ¥

o2 d3k

dw T Gk (@nRe

(2.12)

where
€2 1

R T

(2.13)
In derivation of g (2.12) we have used the complete-~
ness condition*) 2 [f)(f{ = L.

In order to calculate the probability (2.12) it is
necessary to perform a number of manipulations on the
operators which enter into it. According to the state-
ment made above, in Eq. (2.10) for Mg(t) it is necessary
to take mto account only the commutator of the photon
field (e~ Ik r(t)y with the momentum . The following
relations exist:

Fe—ikr () — g—ikr () (g&_hk), }

dﬂge—ikr (1) — g—ikr (O) (0763 — ho’), (2'14)

the first of which is a consequence of the fact that the
operator e~ K" I(t) j5 3 displacement operator in mo-
mentum space, and for derivation of the second relation
it is necessary to take into account that

[G%;, e—ikr (g)] — —iﬁ% e——ikr (l)’ (2.15)
and to carry out an integration by parts in Eq. (2.8).
Using Eq. (2.14), we can bring out the operator
e ik- rgtl) to the left in M(t,), and the operator elk - r(te)
to the right in M*(t;), and after this consider the com-

bination el " T(t2)g~ 1K - I(t) which arises. The operators

r(tz) and r(t,) taken at different moments of time do not
commute with each other. In solution of the problem
with inclusion of all orders in Planck’s constant h, it is
necessary to unfold this combination, it being impossi-
ble here to limit ourselves to an expansion in the lowest
commutators.

For what follows it is convenient to carry out a sub-

stitution of variables in the integral of Eq. (2.12),

(Gt t), Tttty (2.16)

Since we will be interested in the transition probabil-
ity per unit time dw/dt, in the integral (2.12) it is neces-
sary to integrate over the relative time 7 and the final
photon states. The main contribution to the integral is
given by the region [v|T ~ 1/y (we will convince our-
selves of this below); for this reason we will expand all
quantities involved in powers of [v|7, which corresponds
to expansion in powers of 1/y, and retain only the lead-
ing terms of the expansion. In addition, we will neglect
quantities

<, (2.17)
where |[H| characterizes the variation of the magnetic
field in the trajectory. Physically this criterion means
that the field in the trajectory does not change apprec-
iably in the characteristic radiation time. I we intro-
duce a field nonuniformity index

*In the coordinate representation (fj. .

= fd3rdi@) ...
§c1>f(r)q>;(r') =8(r-r).

b, (1),
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:]611111 (2.18)
dlar |°*
then criterion (2.17) takes on the form
niy < 1. (2.19)
Thus, the field must not be too nonuniform; in all

practical cases the field satisfies this criterion.

Unfolding of the combination elK ' T(t2)g™ 1K T(t)) jeaq45
to an identical result for all forms of external fieldsf* %

(2.20)

eikT (1) g—1kr (1) = exp {i [(or-{—

W?m (kp — wr)]} ,

where
p=r(t;)—r(). (2_21)

The combination obtained obviously commutes with &%
(see Eq. (2.14)). In order to discuss its commutation
with the operator 9, it is necessary to take into account
the fact that, in order to use Eq. (2.14), it is necessary
that all operators depend on a single time. Carrying out
the apprOprlate expansions and om1tt1ng terms of order
1/y2, we find that el T(tz)e— 1K r(ts) commutes with .

Thus, after these operations have been carried out,
all operators in Eq. (2.12) commute with each other
with the accuracy adopted. Therefore all of them which
stand within the brackets of the initial state (the average
in states with large quantum numbers) can be replaced
by classical values. In the final result, the square of
the matrix element can be written in the following form:

G M) M eyl =exp {i[or £ 5 (ke—ur) |} B (0) R(2). (2.22)

where

R (t) = us: (p") aeus (p). (2.23)

Here ¢ = € - Hw, p’ = p— hk. In these expressions ¢,
€, p, and p’ already are not operators, but c- numbers
(values of energy and momentum). All the information
on the spin and polarization states is contained in the
quantity R(t), which has the form of a transition matrix
element for free particles (with inclusion of the conser-
vation laws). Consequently, all the features of the radia-
tion in an external field in Eq. (2.22) are contained in
the fact that a factor ¢/¢’ (inclusion of recoil) appears
in the exponential, and in Eq. (2.23) p = p(t), where the
evolution of momentum in time is taken in this field.
The transition to the classical theory is that €' — ¢,
p’  — p (h — 0), while R(t) — e-j, and j is the classical
current.

Using the explicit form (2.11) of the spinors u(p), it
is easy to obtain

R(t) =1 g, }
O=A 1 ioB, (2.24)
where
A= [t otn] B=g {2 Jo
2 Lletm P e m]) T2 le+m g 4m (2.25)*

Here we have neglected terms of order 1/y; further-
more, it is everywhere assumed that the final electrons
are ultrarelativistic. If we take into account the small-
ness of the time of radiation in comparison with the

*[ep] =e X p.
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characteristic period of motion T (for example, the
period of rotation), 7 ~ T/y, and also the fact that the
period of spin precession is of the same order as the
period of the motion, we can assume that the spin state
does not change during the time of radiation, i.e., with
an accuracy to terms of order 1/y we have

&) =0& ) =0 X (). (2.26)

Then

B3R, =Sp {(B28) (4, —ioBy) (152%) (4, + 0By}, (2.27)
where R; = R(t;), and so forth. Equation (2.27) can be
used in discussion of any phenomena, including spin and
polarization phenomena, in radiation of photons by an
electron in a magnetic field.

2.2. Transition With Spin Flip

Let us discuss now a radiative transition with spin
flip, i.e., t ——t Calculating the trace of Eq. (2.27)
in this case we have

RIR, |spin-niip = BB — (EBy) (§B,) — i (£ [BBy)). (2.28)
Calculation of the function B of Eq. (2.25) gives
14
B= TeTm Iqel, (2.29)
wherex*
] v
q:Bl-)f-m—_ =0 (1+(1/y)“'")' (2.30)

The energies and the field in contemporary accelera-
tors are such that y < 1, i.e., hw < e. Therefore, all
expressions can be represented in the form of a series
in Planck’s constant K (actually in series iny (see Eq.
(2.2)). In view of the smallness of the expansion param-
eter, for practical purposes it is sufficient to limit our-
selves to terms of lowest order. 0bv1ously, for transi-
tions with spin flip this is order K. In the expressmns
(2.28)—(2.29) obtained by us the coefficient of h* is taken
out explicitly. This means that for calculation of terms
of order h’® all remaining terms containing iw and fik
inside the expressions can be omitted, i.e., we must let
€ — ¢, p — pin(2.22) and (2.29). From this it is clear
that for solution of the problem of a transition with spin
flip to order H°, in general it is not required to carry out
an unfolding.

Leaving in Eq. (2.28) the main terms in fi and carry-
ing out the summation over photon polarizations, we ob-
tain

; R:}?]lsf:% {‘h% (1‘(‘%‘5)‘2)
.(; (ck)k

+ 2 1(ad) (@) + (@:d) (quk)] — &

(2.31)
[‘Ilqz]}

Here the expansions of the quantities entering into Egs.
(2.22) and (2.31) in powers of the relative time 7 have
the form

*As shown in Appendix B, an effective electromagnetic field Hg
(3.22) acts on a Dirac degenerate spin. In this language the spin is acted
on by the term ¢-B in Eq. (2.24), and this means that the spin is flipped
by the effective electromagnetic field of the radiated wave (compare
Egs. (2.30) and (3.22), taking into account that we are dealing with
Fourier components).
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(2.32)

To obtain the total probability of a radiative transi-
tion with spin flip per unit time, it is necessary, after
substitution of (2.32) into (2.31) and (2.22), to substitute
the expression obtained into Eq. (2,.12) and perform the
integration over the relative time 7 and over the final
states of the photon. It turns out to be convenient to do
this up to the integration over 7 by means of the formula

gy, (2.33)

5 M (k) it:)—k-: — f(10,) (o—teq)i—y2

where*
Yp=T=l—1t, y=r,—r, pP=y—y=1 [(1/Yn)+t'vﬂ] (2 34)

After integration over the final photon states, we ob-
tain for the probability of a transition with spin flip per
unit time

dw
W= (2.35)

S Syl () @S e ]
12

where we have made the substitution z = 7 |v|y, and the
integration contour passes below the real axis and is
closed in the lower half of the plane. From this it is
evident that the main contribution to the integral is made
by the region |V|7 ~ 1/y. The contour integrals entering
into Eq. (2.35) are easily calculated; as a result we have

i-n
| dz __inm(12) °
In,m—‘ &zﬂ(l-}-%)mvd {(m—1)1

() (5241 (2o m2).
(2.36)

The following final expression is obtained for the
total probability of a radiative transition with spin flip
per unit timel®®1:

W2 Y o 2 e VP {15 @4 V @) - (2.37)

We note that this result applies for an arb1trary mag-
netic field (if the weak restrictions (2.17) and (2.19) are
satisfied).

Let us make an analysis of the expression obtained.
For longitudinal polar1zat1on (¢[v xv]) = 0 the remaining
terms 1 — 2/9(¢ - v)* do not depend on whether the spin
is directed along or opposite to the velocity, so that the
radiation does not change the spin states with longitud-
inal polarization. A different situation arises in the
case of transverse polarization (£ - V) = 0. In this case
the transition probability depends on the spin orienta-
tion. For electrons (e < 0) the probability of a transi-

*We note that formulas of the type of (2.33) can be used only in
the case when the exponent in the integral does not contain terms in
fw. This situation arises directly in calculation of terms of lowest order
(~1° in calculation of the total probability, ~h? in calculation of the
probability of a transition with spin flip). However, these formulas can
be useful also for calculation of corrections of the next higher orders,
for which it is necessary to expand in a power series the terms in the
exponential containing he.




vk

RADIATIVE POLARIZATION OF ELECTRONS IN STORAGE RINGS 699

tion from a state with spin along the field to a state with
spin opposite to the field is higher than the probability
of the inverse transition. For positrons (e > 0) the op-
posite situation occurs: the probability of a transition
from a state with spin opposite to the field to a state
with spin along the field is higher than the probability
of the inverse transition. Thus, the resulting polariza-
tion (radiative polarization) is transverse* and for elec-
trons is directed opposite to the field and for positrons
along it. In order to determine the degree of polariza-
tion, it is necessary to solve the corresponding kinetic
equation, which will be done in the next section.

Sokolov and Ternov' ') carried out a calculation by
traditional means with use of exact solutions of the
Dirac equation in a uniform magnetic field. The com-
plexity of the calculation did not permit generalization
of the results even to a weakly nonuniform field. The
derivation presented above follows the articles of V. M.
Katkov and the author.[?3:%:¢]

3. THE KINETICS OF RADIATIVE POLARIZATION

The possibility that transverse polarization of elec-
trons and positrons can arise in an external field fol-
lows from Eq. (2.37). In order to clarify how this possi-
bility is realized, it is necessary to obtain and solve the
kinetic equation for the polarization density matrix with
inclusion of the interaction with the radiation field. This
group of questions will be considered below.

3.1. Equation for the Spin Vector With Inclusion of
Damping

When we take into account the quasiclassical nature
of the motion of a high-energy electron in an external
field, the equation for the polarization density matrix
can conveniently be represented in the form of an equa-
tion for the spin vector (twice the average value of the
spin operator in the rest system of the electron) §.
Thus, we are concerned with obtaining an equation of
the Bargman- Michel- Telegdi type (BMT)"] with inclu-
sion of the interaction with the radiation field. We will
introduce the Heisenberg electron spin operator in the
rest system o(t) (o°(t) = o(t)), whose average value

Eo(t)=<to| 0 (t)[20) (3.1)

is the spin vector in the rest system of the particle.
Without inclusion of interaction with the radiation field,
the variation of this vector with time for particles with
a given anomalous magnetic moment is determined by
the BMT equation (in the quasiclassical limit, i.e., for
fields varying weakly in lengths of order fi/mc and nar-
row wave packets).

After inclusion of the interaction with the radiation
field (as in the preceding section, we will use the inter-
action representation) the evolution of the state vector
with time is determined by the matrix U(t, to)¥:

*This fact is evident beforehand: the axial vector of the polarization
arising can be directed only along the unit axial vector [vv] (or what is
the same thing, H).

TWe note that the state vector |i) which has been introduced is a
two-component spinor, and the U(t, to) matrix is a 2 X 2 matrix acting
in the space of these spinors. In what follows we will understand the
symbol Re U to mean the Hermitian part of the matrix, and i ImU will
mean the anti-Hermitian part of the matrix.

[ty=U (t, to) | o). (3.2)

The change of the average spin value with time when the
interaction with the radiation field is included is

(] 6(1) [y~ (ta] 0 (1) [ to) = (1 | U™ (¢, t) 6 (2) U (¢, t0) | 1) (3.3)
— ([0 (to) | to) = ([ U™ (t, 8) [6(2), U (¢, to)]] to}+ (£ 16 (£) — 6 (£) | £,).

Here the last term determines the change of the aver-
age spin in the absence of the radiation field. We will
represent the scattering matrix U(t, to) in the form of a
perturbation theory expansion in the electromagnetic
coupling constant e:

Ut to)=T+iT (¢, to) =T+ i [Ty (b to) = Tot, £o) - 1. (3.4)

From the condition of unitarity of the scattering matrix
we obtain

T,—TF =0, (T} —T)=TiT,=2ImT,. (3.5)

With the help of these relations and Eq. (3.1) we can
rewrite Eq. (3.3) in the form

LO—Et) = {TloT— 6@ T T+ TITowl +  (3.6)

o) Re Tal | [10) 4+ 8o () — Lo (t0),
in which

€ (o) = Lo (o), 3.7)

since the interaction with the radiation field is turned
on at the moment of time t,.

Let us turn to calculation of the individual terms in
Eq. (3.6). A photon creation (or annihilation) operator
enters into the matrix, and therefore the matrix element
is given by

(to| Ty | t) =0, (3.8)
since the state vector |t,) describes the state of the
electron in the field (without photons). This fact is taken
into account in (3.6). In calculation of terms containing
the combination T{T,, it is necessary to take into ac-
count that only the matrix elements T, for transition to
a one-photon state are different from zero, i.e.,

I TTT |ty =) | T [m)n| TH 2y)

n

= [ @k 3 I Tl 0o By (ks 1] T 1),

L

(3.9)

where the integration is carried out over the photon mo-
menta, and the summation over the electron spins sy
and photon polarizations A; (k, to|T,|t,) is the transition
matrix element to a one-photon state with a photon (k, 1)
(radiation of a photon, compare (2.8)). In accordance
with the results of the preceding section ((2.22)—(2.25))
this matrix element has the form

+i—§,— (ot—Kr ()

&y o) Tyl to) = Qe

S ey

e

mfp;[ dt] - (3.10)
On the basis of the arguments which led us to Eq. (2.26)
and which mean, in the terms used by us, that the char-
acteristic time for change of the matrix elements of the
operators T, is the radiation time (7 ~ T, /v), while the
characteristic time of change of o(t)(£(t)) is T, (T, is,

for example, the period of rotation), we can neglect the

dependence of o(t) on time with an accuracy to terms of
order 1/y. With inclusion of this fact and Egs. (3.9) and
(3.10), we have
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A§;E<lol{Tf0T1—% [GT:rTi”x‘“T:rTﬂ]}lto) (3.11)

i t
2 q dsk i
ZJE(—W S = S diy g dtz% Sexp {—;—?[m(tz—ti)~k(r2—r,)]} s
to 1o
where

$=5p {[ 000, — 3 (60; 0.+ 0100 | 152 - (3.12)

By means of the relation

Q0=0Q,+2[B, o], (3.13)
it is not difficult to calculate the trace of (3.12):
S=8,+8,, 3
Syi=— [(Asz - AZBI) C], ! (3'14)

Sp= —2i[B,B,] 4B, ({B,) +- B, (§B,) — 2 (B B,).

The expression obtained for § contains terms of two
types: quadratic in B, (Sg ~ h° (compare Eq. (2.9))
and linear in B, 2, A; 2 (85 ~ H). These terms lead to
different physical consequences, and therefore we will
discuss them individually. We will multiply 8 (Eq. (3.14)
by §:

() = (Ssb) = 2 {(BL} (BoL) — % (B,B,) — i (§ [BB,)} = — 2RIR, |,
(3.15)

so that the term (S-¢{) is expressed in terms of the
square of the matrix element of the radiative transition
with spin flip (2.28). We note that, in contrast to the
preceding section where we discussed the problem for
one electron ([£ | = 1), in this section we are carrying
out the discussion for an ensemble of electrons (in the
language of one of the density matrix representations),
so that, generally speaking, |[{| # 1. The further calcula-
tion of the integral (3.11) with 8g is identical to that
performed in the preceding section*, since the terms
for given structures with { are separated uniquely.
Thus, the answer follows directly from Eq. (2.37):

e & [ [ F

(3.16)
5V3]v|

where
51/3

8

(3.17)

[
a P,

Nl

Let us consider now the term AglA/At. As can be

seen from (3.14), the structure of this term is of the
type |Fp - £11). In contrast to Eq. (3.16), terms of this
type describe the rotation of {, and not the variation of
|&| (obviously £, AAL A = 0, i.e., A(L2,) = 0).

Using the explicit expressions for (2.25) and (2.29),
A and B and performing the summation over photon
polarization and the exyansion (2.32), we obtain, retain-
ing terms to order 1/y° (this is the order of the terms

20 AA; and 20 B,By),
Y x

hw? 4
3} (4B, +4,8,) = 55t fav).
A

(3.18)

The vector product n-v is an odd function of the photon
emission angles, and therefore, after substituting Sp
(3.14) with inclusion of (3.18) into the integral (3.11),

*It is necessary that the time difference be t —to 71 ~ 1/|vly.
tF A is the axial vector constructed from the vectors of the problem.
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we see that the integral goes to zero on integration over
the final photon states, i.e.,

A{;“:O. (3.19)

At
This fact is not accidental and is due to invariance
against time reversal. Actually, for t, ——t,, t, — —t.,
we have ¢ —~{, d¢/dt — d¢/dt, while the integral
f? (A2B, + A;By) in Eq. (3.11) does not change sign with

this substitution.

Let us turn now to the term with Re T:. To calculate
this term it is necessary to know the Green’s function
of the electron in a magnetic field (see Appendix A).
Using Egs. (A.1) and (A.5), we obtain for the same as-
sumptions regarding o(t) used in (3.11):

(ty] 110, Re Ty} | 2y) :(ilsp[(i-zgq)

- (3.20)
ito,6(—ReD) || )= | at 2 (gHa).
to

We will recall that Hp (A.4) is the magnetic field in the
rest system of the electron (if in the laboratory system
the fields are E and H), and in the limit y — 0, p’

= (a/27)(e/2m). Thus,

o 1 (557) 5 e,

(3.21)
i.e., we have obtained a rotation term proportional to
the anomalous magnetic moment of the electron.

Finally, the difference {ot) — Lo(to) = (ALo/At) At oC-
curring in Eq. (3.6) describes the change of the electron
spin vector in an external field in the absence of inter-
action with the radiation field. In the quasiclassical
limit we can obtain directly from the equation for the
spin operator of the Dirac equation (see, for example,
ref. 9):

1

Ko -2 (gHpl, Hp=H4 (B

T+0m (3.22)

Thus, the picture of the phenomenon under discussion
is the following. In the absence of interaction with the
radiation field the spin precesses according to Eq.
(3.22). Inclusion of the interaction with the radiation
field leads to effects of two types:

1. New forms of rotation terms appear, which are
associated with the appearance in the electron, as the
result of interaction with the radiation field, of an anom-
alous magnetic moment (3.21). The sum of (3.21) and
(3.22) gives the equation of motion of the spin of an
electron with an anomalous magnetic moment in an ex-
ternal field (the BMT equation)*.

2. In addition, terms appear (damping terms (3.16))
which do not reduce to rotation and which change |{|.

*In this sense the calculation which has been carried out is a direct
derivation of the BMT equation. It could have been discussed in the re-
verse order. Proceeding from the general representation (A.1) and (A.5)
for Re T, without regard for the coefficients, it is easy to see (3.20)
that this is a term of the rotational type. However, then it can be equal
only to the term with an anomalous moment in the BMT equation. We
note that it follows from (3.19) that the dependence of the coefficients
in the BMT equation on the field (x) enters only through the anomalous
magnetic moment of the electron.
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Altogether we obtain the following equation for the
motion of the spin of an ensemble of electrons in an ex-
ternal field with inclusion of radiation effects (3.16),
(3.21), and (3.22):

8 .
51/§|{:|[W])' (3.23)
where HE is defined in (3.22), HR in (A.4), 1/ T in (3.17),
n =(g —2)/2 = a/2n. It is necessary to keep in mind that
the rotational terms in (3.23) are of order K°(y°% (we

are not taking into account the next corrections in hi( )
to the rotational terms, since they are small and do not
lead to new qualitative effects), while the damping terms
are of order 1’(x?), but it is necessary to retain them
since they lead to new qualitative effects—a variation

of [£].

Nevertheless this difference in the orders of magni-
tude simplifies to a great extent the solution of the
kinetic equation (3.23) and in many cases permits dis-
cussion of rotation and damping effects separately.

3.2. Solution of the Kinetic Equation

We will consider the solution of equation (3.23) ina
magnetic field (E = 0) for the high-energy case y > 1,
since only in this case does it make sense to include
terms associated with damping. It turns out to be con-
venient to introduce the system of axes (B.18) (Appendix
B). Then Eq. (3.23) can be rewritten in the form (com-
pare (B.13))

5 I L
b~ ] (3.24)
Lo =, + ofy — (5,/T), t

|

éxi 'mgz—% (Cs “"5;.:/3) ' J

where the frequencies § and w are determined by Egs.
(B.17), and 1/T by (3.17). The system of equations
(3.24) describes the motion of the spin of an ensemble
of electrons with inclusion of damping in an arbitrary
magnetic field.

As the simplest illustration of the nature of the solu-
tions of the system of equations (3.24), let us consider
the motion of an electron in uniform magnetic field for
v L H. In this case = 7yw, (wo = |V| = eH /e is the
Larmor frequency), and w = 0, where & and T do not
depend on time. Then the solution of the system of
equations is as follows:

£1=01(0) cos (Qt - qp) e=84/T,
Le=1L1 (0) sin (Qt + o) e781/97,
b= (5 O+ 5375) 4785513,

where we have taken into account that & > 1/T (terms
of order x* have been discarded). Hence it follows that
the components £,(t) and £:(t) are damped with a char-
acteristic time t ~ T (3.17), while the component ¢;(t)
survives, so that after a time t > T we have

gi"_‘;'.!:ov C:s:

(3.25)

= —0.924. (3.26)

8
513
This result does not depend on the initial polarization of
the electrons. In particular, if initially the electrons
were not polarized, then
LO=L0O=0, LH=—2:

513

(1—e-uty.  (3.27)
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Equations (3.25)—(3.27) determine the kinetics of radia-
tive polarization in a uniform field. We note that for
electrons (e < 0) the vector v X v is directed along the
field, i.e., the polarization which arises is oriented
opposite to the magnetic field H, and for positrons

(e > 0) the vector v X Vv is directed opposite to the field,
and the polarization arising is oriented along the field
(see the footnote on page 00). In this way we can actually
convince ourselves that the last term in Eq. (3.23) has

a nature completely different from the remaining terms:
while these terms lead to rotation of the spin without
changing its amplitude, the term with 1/T in (3.23)
changes the modulus |{|. The radiative polarization
process occurs in such a way that on the fast precession
of the spin vector in an external field is superimposed

a slow process of damping of the spin components trans-
verse to the field.

Numerical values of the polarization time under ac-
tual conditions are listed in the table. The data apply to
the storage rings VEPP-2 (R = 150 c¢cm) and VEPP-3
(R =750 c¢m) in Novosibirsk. These times are of the
order of the time of operation of the storage rings, so
that the polarization effects are quite observable. One
additional remark concerns the time dependence of the
degree of polarization. It follows from (3.27) that

[Ca(00)|=0.924, |5(T){=0,584, |L3(T/4)[=0.204, (3.28)

so that after comparatively short times (compare with
the table) it is already possible to observe polarization
effects*,

Now let us consider the case in which the electron
is moving in a uniform field along a helical line
(vx H #0). Then from (B.17) it immediately follows
that w = ne(Hn/e) = nwo(H /HL) =(/v)(H ||/Hl) < 9 (if
the angle between v and H is much larger than 1/y).

In solution of Eq. (3.24) a circumstance new in compar-
ison with (3.25) is the appearance of the undamped com-
ponent £, so that the asymptotic polarization vector

(t > T) lies in the (1, 3) plane and forms an angle
~w/Q = (1/y) (4, /H,) with the e; axis. The helical mo-
tion can be obtained from circular motion by means of -
a Lorentz transformation along the magnetic field. Since
¢ = -5’ is the square of a 4-vector, the asymptotic de-
gree of polarization for helical motion is the same as
for circular motion. This same result follows, natur-
ally, from the system of equations (3.24) if we take into
account that in the coefficients for 1/T we have retained
only the leading terms of the expansion in 1/y, so that
in the solution we should also retain only the leading
terms in the expansion in 1/y.

In discussion of the motion of an electron in a non-
uniform field we can, as a rule, neglect the first term
in w (B.17) in comparison with the second term, which
contains the gradients of the field. The degree of polar-
ization arising, generally speaking, changes (in compar-
ison with a uniform field) and can be found if |w/Q]
> 1/4 (in the opposite case the coefficients in Egs.
(3.24) have insufficient accuracy; besides, the correc-
tions are then negligibly small, ~ 1/y%).

In the cases of practical interest the electrons exe-
cute small oscillations in a nonuniform field around an

*See Sec. 6.
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Time of radiative polarization

IMagnetic radius| Time of radia-

Energy, MeV | of curvature, | tive polarization,
cm minutes
500 150 177
600 150 73
700 150 33

Magnetic radius| Time of radia-
Energy, MeV of curvature, | tive polarization,
cm minutes
1000 750 693
2000 750 22
3000 750 0.95

equilibrium (circular) orbit. The ratio |w/] < 1 and
has an order z,/R7y (2o is the amplitude of the oscilla-
tions, R is the mean radius of the orbit). The system of
Eqgs. (3.24) can be solved by means of perturbations in
the parameter w/Q. In the first approximation we have

t

=" ts O+ [ ot @eamar], (3.29)
0

Sty
]

- t
L) =8 —e ' Imts(0) S © (1) eB @ dr,
0
where £.(t) = £.(t) +1iZ2(t), £(t) = £X(t); ¢35 and £° are
the solutions of the zero approximation (see (3.25)):

t t

A(i):S (—%—‘ zo)dr, B(t ——A(z)_ET’_,

[ 1]

(3.30)

The difference from the case of motion in a uniform
field lies in the fact that undamped terms of small am-
plitude (~ w/Q) appear in £, and ¢, and a damped term
which is linear in w/Q appears in ¢3;. The undamped
correction to {3 appears only in the next approximation,
and has the form

-{
_V_e 0 Re[S

Let us now discuss a specific example. Let the elec-
trons execute small (betatron) oscillations along axis 3
in a field whlch in the plane x; = 0 has the form Hj;

'ﬂlﬁ'

A=

eE”)S (Ty) —A(md-,] (3.31)

= Ho(R/1)", = Hy = 0. Then in the oscillator approxi-
mation we have
zy=a3cos (st +Bs), p=pocos(art+Pr), P=w,(1—p) (3.32)
where
o="7F, or=VT moy wy=Vra, o=,
For this case
Q=Qt—np), 0= =12, foLi_sy). (3.33)

Substituting (3.32)—(3.33) into (3.29), we obtain for the
spin components

L) =c g2 sin (@t +Bs) 13 (¢) + damped terms, |

La() = —ccos (05t +B5) & (t) -+ damped terms, '[(3-34)
L()=5() + damped terms, J
where o )
G{t)y= L0+ et
5'lf
it wl V (3.35)
c:—R_mg—szz'
The undamped correction to ¢; (3.31) has the form
At==2 (1) P cos 2 (0st 8. (3.36)

The expressions obtained determine the polarization
process in a nonuniform field. It is evident, in particu-
lar, that the asymptotlc degree of polarlzatlon changes
by an amount ~ (x3/R)® if we are far from the resonance
Qo ~ w; (see Sec. 6).

The first evaluations of the kinetics of radiative
polarization were made by means of the elementary bal-
ance equations''] in the case of a uniform field. The
discussion given above follows the articles of V. M.
Katkov, V. M. Strakhovenko, and the author.[*?’*!]

4, DYNAMICS OF POLARIZATION. DEPOLARIZATION
EFFECTS

In the preceding section it was shown that during ex-
tended motion of electrons (positrons) in a magnetic
field they are polarized along the direction v x v. It is
natural that questions arise as to the dynamics of the
spin motion, the control of the beam polarization, and
also its preservation. In the kinetic equation (3.23)
there are terms corresponding to rotation of the spin
vector and variation of the modulus of the spin vector,
The latter terms lead to appearance of radiative polar-
ization. The characteristic frequencies of the spin mo-
tion (see Eq. (B.19) of Appendix B) are € = 1/tg ~ ayw,
(wo is the frequency of rotation of the electron in the
field H |), while the inverse time (‘“frequency’’) of the
polarization (3.17) is 1/ T ~ aywe®. The ratio of these
times is

RCRN (4.1)

Since y < 1 with a large margin, in study of the spin
motion and the depolarization phenomena associated
with it, if the times of these phenomena are much less
than T, we can omit the terms with damping and discuss
the BMT equation (B.6), (B.13). Below we limit
ourselves to discussion of this case.

For motion in a uniform field H, (for E = 0, v x Hy
= 0) we have from Eq. (B.6)

d(EHy) 4.2
168y _ g (4.2)

i.e., the projection of the spin vector on the direction
of the field is conserved*,

In storage rings the role of H, is played by the guide
field averaged over the orbit. With appearance of field
nonuniformities (and the field H,) this projection is
already not conserved. Thus, all effects of change of
the direction of polarization (spin rotation) are in one

*Since in this situation the polarization is directed along (opposite
to) the vector H, this means conservation of the polarization. In the
general case of periodic motion (see Appendix C) the projection of the
spin vector is conserved in the periodic solution of Eq. (B.6).
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way or another associated with nonuniformity of the
magnetic field*. The nonuniform part |H;| < |Hol;
therefore, generally speaking, the effects of the addi-
tional rotation are small. However, if H; contains
harmonics resonating with the average precession fre-
quency, the spin can rotate by a large angle. If the spin
rotation occurs incoherently, this corresponds to de-
polarization of the beam (dynamic depolarization). An
additional depolarization mechanism exists which is as-
sociated with the appearance of stochastic elements in
the motion (for example, quantum fluctuations of the
radiation lead to a stochastic spread in the beam
energy). As a result of this, a spread in the average
spin value can arise which alsc leads to depolarization
(stochastic depolarization). Below we will discuss in
detail the dynamics of motion of the spin {, and also the
two depolarization mechanisms.

4.1. Dynamics of Sgin Motion. Dynamic
Depolarizationf***!1t

We will consider the spin motion under conditions of
small oscillations of the particles with respect to the
equilibrium motion (|H;| < [Hy|). The problem of dy-
namic depolarization as a whole reduces to finding those
conditions for which the solution of Eq. (B.6) gives an
appreciable deviation of the vector { from the initial
direction (the polarization axis), and also to analysis of
the mixing of different deflections of the vector ¢ for
individual particles and the mixing of the beam depolar-
ization associated with this. The mixing process, as a
rule, occurs as a consequence of the spread in the
parameters (energy, momentum, coordinates, and so
forth) of the particles in the beam. Equations (B.6) are
in many ways analogous to the equations for motion of
charged particles in an external field and can be solved
by the same methods. Here it turns out to be convenient
to use the equations for the spin motion in the form
(B.13).

a) The nonresonance case. It is shown in Appendix B
that under actual conditions @ > w. Therefore solutions
can be sought by means of perturbations in powers of
w/$. We will represent the solution of Egs. (B.13) in
the form

Zy-= V1T—=Ccos®,
&= 1—Csin®, 4.3)
;:*, = ;v ]
where
m:SQm+¢ (4.4)

The functions ¢ and & introduced satisfy the equations

Vf(i(.z cos D, (4-5)

The last equations contain w in the right-hand side and
therefore are suitable for solution by successive ap-

i’,—: — o) 1—sin®, (’p=

*In the general case, particle oscillations occur relative to the equilib-
rium (periodic) trajectory and, as is shown in Appendix C, the correspond-
ing motion of the spin vector is along the periodic solution n of equation
(B.6), the role of the vector Hy/iH,| being played by n. For definiteness
the further discussion will be carried out in terms of H, and Hj.

1This group of questions has also been discussed by a number of
authors. [12-34-38]

703

proximations. Inthe zero approximation w =0, ¢ = &o
= const, ¢ = @o = const. In this case it follows from
(4.3) that the projection of the spin vector on axis 3 is
conserved, and the projection perpendicular to axis 3

t
rotates with an average frequency & <§t = det) , i.e.,
0

a precession of the spin vector ¢ occurs around axis 3
with this average frequency. In the first approximation
it follows from (4.5) that

(A= —VIT—Ts (4.6)

__ Lo
(Ag)y= Viea P,

where
i t

Py == 5 wsin®ydi, P,= 5 wcosDydt, Oy= S Q dt+ @q, (4.7

so that the complete solution in the first approximation
is
Z: = V1 - Cﬁ cos O -+ Lyouy, )

O= V12 sin®y+ Lty (4.8)
B=C—w V18,
where
oy = s cos Wy — e sin By, oy = P sin By 4- Y cos D, (4.9)

From the solution (4.8) it follows that small oscillations
are superimposed on the spin precession (Fig. 1).
Formally the solution of the first approximation can be
obtained from the solutions of the zero approximation by
means of the transformation matrix S:

1 0 o
gr=8g, S= 0 1 o, }.

—oy —a, 1

(4.10)

With an accuracy to second order this matrix is ortho-
gonal (ST = S, det S = 1), i.e., corresponds to real
rotations and represents a succession of rotations by a
small angle a, in the (1, 3) plane and by a small angle
@ in the (2, 3) plane, so that in transformation of the
coordinates by means of the matrix S the 3 axis rotates
by an angle va? + a3,
The result obtained is applicable if the correction
terms found by perturbation theory are small. For
w = const the order of magnitude of these terms is ob-
viously w/€ < 1. In the general case it is necessary to
expand w(t) in Fourier series. If among the harmonics
of the expansion there are harmonics which are multi-
t
ples of (ﬁt = det), small denominators will appear
4]

in the quantities (4.7), i.e., these quantities can become
large. The harmonics of w(t) are multiples of all char-
acteristic frequencies of the problem, i.e., if

AR
i SS

FIG. 1
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Q=Nwy+ N @+ Nyoe - Ny, (4.11)

(where wo, Wy, Wy, and wg are the angular frequencies
of z and r betatron and synchrotron oscillations), the
solution obtained above is inapplicable. This condition
is the condition of resonance.

b) Spin motion near resonance. Let the average fre-
quency § be close to some resonance harmonic Q
(4.11):

Q=0Qu+0o. (4.12)

In solution of the problem of motion of the spin vector
¢, it is frequently convenient to find the system of coor-
dinates in which the spin projection on some direction
is conserved, and then to discuss the motion of this sys-
tem relative to the initial system. In the nonresonance
case this transition is accomplished by the matrix sT,
However, this approach is particularly useful in the
resonance region. Let us go to a system rotating with a
frequency relative to our initial system:

) cos®, —sin®, 0 Le
(cz)z(sin(l),, cos D, ()) (Cy),
€3 0 0 1 ;z

where &, = ¢, + ¢, ¥ = Qput. The phase @, is constant
and will be chosen below. If ¢, {2, and ¢; satisfy the
system of equations (B.13), then Ly &y, and ¢, satisfy
the equations (in what follows we take into account one
harmonic)

(4.13)

;x = — 6§y - wsin (DH.CZY

: (4.1)
&= 8L+ weos @8,

tz = —0sin V,f, - cos O,L,.

In the right-hand part of this system there are only the
low frequencies 6 and w (the variables ¢y, gy, and ¢,
are slow). In this situation it is appropriate to use
Bogolyubov’s method of averaging,['*) which consists of
averaging the coefficients of the small parameters (in
our case the frequencies) over time* (i.e., the zero
terms in the Fourier series expansions are retained).
Carrying out this averaging, we have

sin @, = sin @, + 0scoS Py, } 415
m = (9 COS ), — O SIN Py, ( ‘ )
where
W= CuS P,, ©Oy=wSsinPp. (4.16)
Choosing the phase ¢, so that
sin g, = g’- , COSQ, = —% Y e (4.17)
we obtain
wsind, =0, wcosh,= —w,. (4.18)
After averaging (4.18), Eq. (4.14) acquires the form
tx = —Bny
ty=8te—wul E=I[gul, (4.19)
%z = wply.

These equations formally coincide with the equations of

*The discarded oscillator terms are taken into account in the higher
approximations of the averaging method, which we will not discuss here.
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motion in a magnetic field whose vector lies in the (X, z)
plane: u=1u(-wy, 0,-5). To obtain a solution for a
constant frequency difference 6, we can introduce a sys-
tem of coordinates whose z axis coincides with u, in
which the solution has the obvious form

2=V 1—ztcos (0pt - @),

2=V T— 2% sin (wpt + @),
Z3 ==z == const,

(4.20)

where wp = [uf = «/cun2 + 6%, and the phase @4 is given by
the injtial conditions. For transformation to the x, y, z
coordinate system it is necessary to carry out rotations

Cx Sfop, 0 wu/ep 2z
: :( o 1 )()
g — /0, 0 d/w, z3

and substitute the results obtained into (4.13).

The results obtained have a simple intuitive meaning.
The spin vector slowly precesses around the axis u,
whose direction is determined by the interaction between
wy and 6. If & > w,, the vector u is directed almost
along the z axis, so that we reach a nonresonant case:
the vector u precesses around the z axis, and the spin
vector slowly precesses around u, all precession angles
being small. However, the situation changes for § < W
when the vector u is directed at a large angle to the z
axis. Then the precession angles of the vector { around
u can be large (see Fig. 2, where 2 corresponds to a
polarization initially directed along the z axis (3) and
the vector u in turn precesses rapidly around the z axis.
Since 6 is the magnitude of the frequency difference (the
distance from resonance), it is natural to assume as an
effective width of the resonance 6 = wp. If the spin vec-
tor falls inside the resonance, it is strongly deflected
from its initial position. In view of the fact that differ-
ent particles are deflected by different amounts (and can
have different phases), depolarization of the beam can
occur.*

c) Rapid traversal of a resonance. A real situation
is the crossing of a spin resonance by a particle, i.e.,
when the precession frequency © varies, at a certain
moment Q(t) = £, (6 = 0) (see (4.11) and (4.12)). This
situation is realized in acceleration of polarized parti-
cles, and also in oscillations of the energy in a storage
ring. v

We will first discuss the case of a rapid traversal,
in which the frequency difference 6 changes rather

(4.21)

*We note, however, that the dynamic mixing (dynamic depolariza-
tion), both in motion near a resonance and in the cases discussed below
of traversal of a resonance, as a rule does not give {3 = 0. For complete
disappearance of the polarization, the stochastic mechanism must play
in the problem (see Sections 4.1e and 4.2).
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rapidly and the terms containing w in Eq. (4.14) can be
considered as a perturbation and we can apply to them
the Bogolyubov method of averaging.['*] Then in the
zero approximation

L=l cos(S 8dt+@r).
L=tisin (fodite),

Lz=Cp=const, {4 =) 1—0C,

(4.22)

so that the spin projection on the 3 axis does not change,
g;‘w = g;m. Applying this method of averaging (see
Eq. (4.18)) to Eq. (4.14), we obtain in the first approxi-
mation of perturbation theory the correction to ¢;:

oo

t
8% (o) =Uiwn | drsin[ {80 di+a],

(4.23)
—0 1]
where
0
W= [ 8dt+oy (4.24)

The expression (4.23) obtained is universal for rapid
traversal through a resonance. In order to obtain
specific results, it is necessary to provide a definite
model §(t). For the simplest case § = I'ot, I’y = const,
we have

L= =L7=48%; (o0), (4.25)
where
e Tgt2
8 (00) =tl0n | sin (§=+ea) dt (4.26)

=28 Y/ ZR sin (g -+ n/4).

1t is evident that the main contribution to the integral is
from the region t ~ 1/VT,, while the time of spin rota-
tion (in the ‘‘slow’’ variables (4.14)) is ~ 1/w,. The con-
dition of applicability of the approximation used is:

1/VT, & Vo, (4.27)

This also is the condition for rapid passage through the
resonance, and in this situation the spin is not able to
rotate during the time of passage. If the passage in-
volves a change in energy, then 'y = wo(dy/dt). The
strong dependence of the result (4.23) and (4.25) on phase
has a clear physical meaning—a perturbation of ~ w is
superimposed on the main motion (4.22) and shifts {; as
a function of the phase of the main motion (and the en-
countered phase). We will again find an addition of the
first approximation to the transverse components of
(4.22). Carrying out this calculation accurately as in
(4.22)—(4.26), we obtain

Ty

ok (4.28)

185 () [ &

d) Slow passage through resonance. Now we will dis-
cuss passage through resonance when the inequality in-
verse to (4.27) is satisfied*:

V Ty € . (4.29)

In this case, during the time of crossing, the spin com-

V*The general case of passage through a resonance (including the case
/Ty ~ wp) has been discussed by Derbenev et al. ['3]
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pletes many revolutions around the u axis, i.e., we can
assume that the spin precesses at each moment of time
about the instantaneous axis u, but the precession axis
itself rotates by an angle of order 7. At any given mo-
ment in the zero approximation we can use the expres-
sions (4.20) and (4.21) obtained above, which were ob-
tained on the assumption that 6 = const. In rotation of
the u axis by an angle 7, the spin adiabatically follows
the u axis, i.e.,

G- . (4.30)
Thus, for slow passage through resonance, the spin flips.
We can find nonadiabatic corrections by means of per-
turbation theory applied to Eqs. (4.19) with the zero ap-
proximation solutions (4.20) and (4.21). If we take into
account that the increase in the precession angle cos 3

= 6/wp is

icosﬁ -

dt T g -Ti2 sinf,

(4.31)
then from (4.19)—(4.21) we have in the first approxima-
tion of perturbation theory

t

+oo i}
80, = —% ( %cos [5 Vm,i—# Ti2dt+ (p,-J, (4-32)
b

where

(¢
(== 5 0y, dt 4 @s. (4.33)
The main contribution to the integral in the argument of
the cosine in Eq. (4.32) is from the interval of t where
this argument is ~ 1, i.e., t ~ 1/w, < 1/VT,. However,
then T'it" < I'c < w3 and the argument of the cosine is
wpt. Calculating the integral (4.32) we obtain (Fig. 3)
G 5= T cosgr, (4.34)
where w?, /T’ > 1. The exponentially small value of the
nonadiabatic corrections is due to the symmetric pass-
age (the velocities of traversal 'y before and after the
crossing are the same). In the opposite case we obtain
a power-law smallness.

e) An example of intentional depolarization of the
beam. In the experimental study of the degree of polar-
ization of a beam, and also in the performance of ex-
periments with polarized particles, it is desirable to be
able to depolarize the beam. From the discussion pre-
sented above it follows that there are several means of
dynamic polarization (with participation of the stochas-
tic mechanism (see the footnote to the preceding page):
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1) setting the average frequency of spin motion
near a resonance (4.11);

2) repeated rapid passage through resonance, (4.25)
and (4.26), with mixing in phase;

3) slow passage through resonance with mixing in
phase (4.34) and in the time of traversal.

It is also possible to shift artificially to a resonance
by introduction of an external electromagnetic field or
to introduce an external depolarizing electromagnetic
field. We will discuss an example of the latter.

Let us introduce an external field H) in a length [
(the length of the orbit is 2L):

H\ = H{sin oy, (4.35)

where

©p = 0 1+ do sin Qp¢.

(4.36)

The frequency w% can be adjusted to the spin frequency
(compare (4.11)):

. =
Wp == — noy,

(4.37)

where 6w sinQt is the detuning, which changes sign
with the frequency Q,,. Modulation of the frequency as-
sures multiple traversal of the resonance.

The frequency w (B.17) is

@==(g/2) 0 L i L gin oyt (4.38)
The frequency wy, is calculated from Egs. (4.16) and
(4.17):

m, sin (nn—%)
"~ Bm

fotore (439

Bl

W, =

[SIEN

g
For rapid traversal it is necessary that, in agreement
with (4.27), we satisfy the inequality

8 (t == 0) = 86Qpm > 2. (4.40)

For a single traversal, if the initial phases of the
spin are not correlated, we have (see (4.26))

=0 "“’ﬂ. (4.41)

Taking into account that the time of a single passage
through the resonance is T,. = 7/Qpy and that the devia-
tions add quadratically (which means that the spin aver-
aged over the ensemble (¢) is scattered), we obtain
from (4.41) for the depolarization time

b (0) 18 1 .
T > Tr nmz'm—m=FoTt‘H.°._z“z' (4.42)
(72
if we choose 6w/w ~ 107, H} /H, ~ 107, and 1/ 24

~ 1073, then the depolarization t1me is several seconds
under typlcal electron-storage-ring conditions.

4.2, Stochastic Depolarization:’?

In addition to the depolarization mechanisms dis-
cussed above, there is a specific mechanism associated
with the stochastic nature of the radiation process.

This mechanism also acts only in nonuniform fields, but
fulfillment of the resonance conditions (4.11) is now not
essential. The effect is due to the fact that the jumps in
energy, angle, and so forth, associated with the quantum
nature of the radiation process (or any other stochastic
process, for example, scattering in a gas), when expan-

ded in a Fourier integral, contain, in particular, har-
monics which provide resonance (4.11). Therefore, the
basis of the effect is a resonance with the unpleasant
feature that, generally speaking, it cannot be avoided by
selection of parameters (energy ¢, field H, and so forth).

We will consider the stochastic depolarization proc-
ess far from the dynamic resonances (4.11). Then the
spin motion is described to first order in w/Q by Egs.
(4.8). Construct

L= G L 2L L, }

-2t (4.43)

The quantities ¢3 and ¢ are constant for constant en-
ergy. The quantity {5 and ¢ | are instantaneous projec-
tions of the spin on the 3 axis and on the plane perpen-
dicular to it; ¢$ and ¢ are averages about which os-
cillations ¢3 and £, occur (see Sec. 4.1).

In radiation of a photon, the electron energy under-
goes a jump Ae, while the relative probability of spin
flip in a radiative transition is of order y* (see Sec. 2)
and is negligibly small in comparison with the probabil-
ity of a radiative transition without spin flip. Therefore
the values of {3 and ¢ | do not change at the moment of
radiation. However, at the moment of radiation a dis-
continuous change occurs in the value ¢ in Eq. (4.43),
which is proportional to the energy jump Ae. Since ¢;
and ¢, do not change th1s means a discontinuous change
in the averages ¢35 and ¢° |- Compensation of the loss by
radiation returns y 4 (more accurately, the amplitudes
in (4.43)) to the initial values. However, a set of such
jumps leads to a stochastic buildup of ¢% and g , and
therefore of ¢; and ¢, (spin diffusion).

The same reasoning can be applied to angular jumps
during radiation, and also to any other stochastic mech-
anism (for example, multiple scattering in a gas) in
which the relative probability of a transition with spin
flip is small in the individual events.

The reasoning presented above permits us to obtain
general formulas characterizing stochastic (quantum)
depolarization. Let a parameter £ (energy, angle, and
so forth) undergo a discontinuous change. Then

A\ps——d—‘bs—AE (dg Smsmd)odt) A%; (4.44)
here the values of ¢ and 51: i.e., the angle of inclina-
tion of the spin vector (tan g = ¢ / ¢9), undergo jumps,

and from (4.43) it follows that
Ay, = AO. (4.45)

Then the time of depolarization (the time of spin drift by
an angle of order unity) is

d(a02 _ (_d—\p_s)z (LI ( dwg

o 2 )G "3 [ @arraw e, (4.46)

1/Tgep &

where dW(A¢) is the probability per unit time of a tran-
sition with a given parameter jump A£.

As an example* we will consider stochastic depolar-
ization as the result of energy jumps Ae in magnetic
bremsstrahlung during forced oscillations along the 3

*A number of examples of stochastic depolarization (spin diffusion)
for the specific conditions of storage rings have recently been discussed
by Derbenev and Kondratenko. [3]
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axis for motion of the electron in an axially symmetric
magnetic field*. In this case ¢4 (4.7) has the form

z3
‘th = - ‘2‘_1‘;‘ k27\

yﬂfﬂ‘—;\’“‘ﬂ + nonresonant terms, (4.47)
where we have taken the perturbation term with the k-th
harmonic, and x°), is the oscillation amplitude; in Eq.
(4.47) we have explicitly written out only the resonance
term providing the main contribution. Substituting (4.47)
into (4.44) and (4.46), we obtain

1 W V2 kny )4 1 d(Aey?
tran= 3 () [0 | &
R
_ hrg 5 kny 14 ( 28k
- 192-‘/3 RV Z(/L—TIY] ( I ) !
where 1o = e®/47him = 2.8 x 10™*® ¢m is the classical

electron radius. The mean-square energy fluctuation is
calculated as follows:

(4.48)

A =2+:25(ﬁm)2dW(0,m)- % roh

Bys AT (4.49)

where dW(4, w) is the probability of radiation of a pho-
ton per unit time.[!/%]

It is evident from (4.48) that the stochastic depolar-
ization effect depends in the strongest way on energy,
and depends strongly on the number of the nearest
resonance harmonic, on the distance to the resonance
(k — ny), and on the amplitude xgk. We will estimate the
effect for definite parameter values: energy € = 6 BeV,

R=3x10°cm,k-ny =1/2,k = 14, 15 and x% = 0.1 cm.

Then 744, = 25 sec (under these same conditions the
polarization time is T = 190 sec).

Thus, in the situation considered it is necessary to
take special measures to preserve the polarization (to
suppress resonant forced oscillations).

Let us make another estimate of the depolarization
in motion near a spin resonance, where the role of the
stochastic mechanism is played by radiative damping of
the oscillations. Substituting in Eq. (4.7) for 4 the
harmonic w closest to the spin resonance (frequency
difference 6 (4.12), frequency wy, (4.17)), we obtain from
(4.46)

1/tgep & (Ahs)*/AL ¢ (0a/8) (4.50)

Tp is the radiative damping time. This formula can be
used to evaluate the width of the resonance.

In order to make simple estimates of the influence of
depolarizing effects of the stochastic type on the degree
of radiative polarization, we will introduce a depolariz-
ing term (of the diffusion type) into the equation for ¢;
(3.24) for w = 0:

i = — G+ 85V 3) — Ltaes. (4.51)

The solution of this equation has the form

e { = (&

GO =150 - &«

)t} + (), (4.52)

where

*The spin motion is extremely sensitive also to jumps in the vertical
angle, especially with coupling of the z and r oscillations, when the
jumps are proportional to the quantum fluctuations of energy.
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It is obvious that in the presence of depolarizing effects
the degree of radiative polarization decreases.

fi(o0)=—

4.3. Other Depolarizing Effects

In addition to the effects discussed above, it is neces-
sary to take into account depolarization in scattering by
residual gas atoms, bremsstrahlung on residual gas
atoms, scattering of particles inside the beam, and so
forth. However, elementary estimates show that all
these effects are negligibly small. This is due to the
fact that the spin flip probability, for example, in scat-
tering or bremsstrahlung at a small angle is suppressed
by a factor 32

As an illustration we will give the time of depolariza-
tion due to internal scattering of electrons inside the

beaml®]:

courd
1/Tdep = V.Vzu

1
lne—0 ; (4.53)

V is the volume of the beam, 6, is the minimum scat-
tering angle, and Ny is the number of particles in the
beam.

For the VEPP-2 installation, Tdep ~ 10° sec (see the
table).

5. MEASUREMENT OF ELECTRON POLARIZATION

The polarization arising as the result of extended
motion in a magnetic field must be measured and con-
trolled experimentally. Below we will discuss methods
of measuring the transverse polarization of high-energy
electrons and positrons moving in a storage ring, which,
as will be shown below, have a number of specific fea-
tures.

5.1. Measurement of Polarization in Experiments on
Interaction of High-energy Particles

The cross sections for two-particle reactions are
extremely sensitive to electron and positron polariza-
tions. We will give below the cross sections for these
reactions for transversely (and antiparallel) polarized
electrons and positrons in the center-of-mass system.

The cross section for production of a pair of pseudo-
scalar particles (7'7", K'K", K] K%) in annihilation of
transversely (and antiparallel) polarized electrons and
positrons has the forml*®7*

d02p=d0'gp[1+|§1|[gz‘(25i“2(9"1)]r (5.1)

where |£,]| and |f:| are the degrees of polarization of
the positrons and electrons, ¢ is the angle between the
plane of production (the plane passing through the mo-
menta of the initial particle p and the final particle q)
and the plane perpendicular to the spin direction (the
plane of the orbit), dogp is the cross section for un-
polarized particles:

dogl,—;%a—dsnrﬁ]]’ (4e?) |2 42, (5.2)
where q = Ve? — mp2 , F(s) is the form factor, r, = o/m is

*In all cross sections we will discard terms of order 1/y2.
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the classical electron radius (ro = 2.82 x 107*° cm), ¢ is
the angle between p and q. If the initial particles are
completely polarized, |£1] = [{2] =1, then do,, (¢ = 0)

= 0 (the production plane coincides with the orbit plane)
and do,p, (¢ = 1/2) = 2dogp (the production plane is per-
pendicular to the orbit plane, so that the spin vector
lies in the production plane). The exclusion of ¢ = 0 is
the consequence of conservation of parity in annihilation
of transversely polarized particles. From considera-
tions related to parity conservation, conservation of
helicity in electromagnetic interactions at high energies
(with accuracy to order 1/y), and the one-photon nature
of the channel in annihilation of transversely polarized
electrons and positrons, a number of other exclusions
follow.['"’**] In particular, three pseudoscalar mesons
(37, KKn°) cannot be produced in the plane in which the
spin vector lies. In a real situation the polarization is
partial: for a time t >> T (see Eq. (3.17)) dozp (¢ =0)
= 0.14 o, do,; (¢ = 7/2) = 1.86 doy, (compare Eq.
(3.26)).

The cross section for production of a pseudoscalar

meson and photon (7°(n) + 1) has the formf*®]
40y = doty [ 14181 8ol (1 —2sinr ) Pt |5 (3:3)

d (1]
here crpy

G (he?)

2
G (0) a2,

(5.4)

2 (49)\®
dojy == Terd (?) (1-+cos* 1) I

where 7 is the lifetime for decay of the meson into two
photons, m, is the meson mass, q/e = 1 — m§/4¢® and ¢
is the emission angle of the final particles. For com-
pletely polarized particles dop, (4 = /2, 0 =1/2) =0
(final particle momentum directed along the spin direc-
tion), dopy ($=1/2, ¢=0)= 2d0(1')y (final particle mo-
mentum perpendicular to spin direction).

The cross section for production of a pair of ferm-
ions with spin 1/2 in annihilation of transversely
(antiparallel) polarized electrons and positronst'®) has
the form

2
a %{2“’14‘!“1?2]2

oy = o7

(5.5)
—(2) sz 0 [| £y S 2] 1|8l Bl (252 0 — 1]} a9,

where F, and F; are the electromagnetic form factors,
and p is the anomalous magnetic moment. For produc-
tion of a pair of muons (F, = 1, F; = 0) we have

dom = g L {2 Lsint 0 14§yl @sinto— 1)1} 0. (5.6)
For relativistic muons, g/e ~ 1, and we have for com-
pletely polarized particles do,, (3 = 7/2, ¢ = 7/2) =0
(muon momentum directed along the spin) and
do,, (¢ =1/2, ¢ = 0) = 2dg,,, (muon momentum perpen-
dicular to the spin). In pro&fxction of a pair of baryons
the polarization effects are distorted by the form fac-
tors.

The cross section for two-quantum annihilation has
the form

dogy = g (L 008t 0+ [ 8] Gal sin® 0 (1—2sin? )}, (5.7)

4y (1 —v? cos®
where v is the initial-particle velocity. For completely
polarized particles we have do,, (4 =7/2, ¢ =7/2) =0,
o,y (8 =1/2, ¢ = 0) = 2do3,,.

is the cross section for unpolarized particles:

V. N. BAIER

It must be kept in mind that for the case of produc-
tion of a pair of pseudoscalar mesons, the exclusions
exist for planes (do not depend on the production angle
of the final particles), while for all remaining reactions
they exist only if the final particle momentum is per-
pendicular to the momentum of the initial particles.['"]

We will give for reference the cross section for elas-
tic scattering of transversely (antiparallel) polarized
electrons and positrons:

dov e (Toq) [1+ g (- 2sin )] (5.8)
For this process the azimuthal asymmetry is also maxi-
mal for ¢ = 7/2, but the degree of asymmetry is apprec-
iably smaller than for the processes discussed above,
since the term depending on spin orientation enters with
an additional factor 1/9.

5.2. Internal Scattering Effects and Polarization
Measurementt*®’

We have discussed means of polarization measure-
ment based on measurement of the interaction cross
section at high energies. However, we must keep in
mind that in this case:

a) The electron spin is in the additional field of the
colliding beam and the depolarizing effects associated
with this must be investigated (by the methods set forth
in the preceding chapter).

b) In one form or another the question may arise of
the origin of observed effects which are assigned to
polarization. Therefore it is desirable to have indepen-
dent means of measuring the polarization of each of the
beams. We will discuss such means below,

We will begin with a method utilizing the interaction
of particles inside the beam. It is well known that an
important cause of the loss of particles in storage rings
with high intensity is elastic scattering of electrons
inside the bunches.[*®1 If this scattering occurs into a
sufficiently large angle and is such that particles with a
large transverse momentum and small longitudinal mo-
mentum (in the rest system of the beam) acquire a large
longitudinal momentum, then in conversion to the lab-
oratory system the longitudinal momentum is subject to
the relativistic transformation and can turn out to be
larger than the permissible value. As a result the par-
ticles are lost. Under some conditions the lifetime of a
beam in a storage ring is determined by just this effect,
which is sometimes called the Touschek or ADA effect.
Internal scattering effects depend on the particle polar-
ization, since the electron-electron scattering cross
section at the large angles which determine the internal
scattering effect depends substantially on electron
polarization, and in particular the cross section for
scattering of identically and completely polarized elec-
trons by an angle /2 goes to zero in the nonrelativistic
limit, This dependence of the internal scattering effect
on polarization can in principle be used to measure the
polarization of electrons in a storage ring:

a) by analysis of the dependence of the lifetime (for
the condition that it is determined by internal scattering
effects) on polarization;

b) by analysis of the dependence of pairs of particles
knocked out of the beam on polarization.
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Let us find the lifetime of a beam of polarized parti-
cles against internal scattering effects. Here, as
usually,[*°*?] we will assume that:

1) all particles in the beam have the same energy
(the spread in energy is appreciably less than the per-
missible value);

2) 69, < 69 (6qy and 6q are the mean-square mo-
menta of the vertical and radial oscillations, respec-
tively).

In considering the general case in which the energy
of the transverse oscillations is relativistic, it is im-
possible to use in the calculations the so-called small
angle approximation (in which only the sin™ 8 terms are
retained), since it is not sufficiently accurate (10—30%),
and the polarization- dependent terms have a structure
which cannot be determined in this approximation.

We list below the results of calculations carried out
by a well known methodl?1/*?] for the coefficient @ which
determines the beam lifetime 7 (7 is the time in which
the number of particles decreases by a factor of two):

(5.9)

where N, is the initial number of particles in the beam.
For a rectangular distribution of radial momenta of
the electrons in the beam we have

/1 =aN,,

2,
2nrfe

P . %
V(ap)2 Y 38q 1+-V14-6p?
+3;1n(6p+1/‘1“+"<6p>2)——*';—"—+7<3+ Le)}. (5.10)

{2 VIF OpF — 2t mZ —+In

where V is the volume of the beam in the laboratory sys-
tem, Ap is the maximum permissible deviation of mo-
mentum from the equilibrium value in the laboratory
system, Op is the maximum momentum of the distribu-
tion, which is related to the mean-square value by 6q

= 8p~N3, n = Ap/e, € is the electron energy in the labor-
atroy system, and y = §p/n; we have used the system of
units m = 1.

In derivation of this formula we have systematically
expanded all quantities in powers of 1/e*, n°, 1/y°, and
have retained only the leading terms of the expansion.
Under actual conditions 1 ~ 107, y varies over the
range 10—10° when the electron energy is 10°—10°. In
the nonrelativistic approximation §p <€ 1 we obtain

_ 2mnrgc 7 44 1 .
Ve Ve [my—z—22+ieitn)]. (511
In the ultrarelativistic limit
ke (91,38, 2__ &b
T Viap2V36q [2 V38 A +1“n s ] (5.12)

For a Gaussian distribution of radial momenta of the
electrons we have

2y arge {1 _____7___ Ci;z
1/8q

& VAR g
.
+2 1 mogetseor (14 Z(W sar) A— @R~V § e"’(l——(l)(z))dz} .

(5.13)

where ®(x) is the probability integral.
In the nonrelativistic approximation 6q < 1 we have

2Vt {1y (5.14)

VApZEdg
where C is Euler’s constant, C = 0.577...
In the ultrarelativistic limit

3+2f gty
)

b
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The value of o depends weakly on the shape of the mo-
mentum distribution, especially in the ultrarelativistic
limit (and also in the intermediate regionl?*); for this
reason it is possible to use for estimates the simpler
formulas for a rectangular distribution. This is due to
the fact that the main contribution to internal scattering
effects is from small scattering angles and the low-
velocity region in the distribution. From the same cir-
cumstance it follows that the relative contribution of the
constants in o (including those dependent on polariza-
tion) remains appreciable up to 6q ~ 1, and only when
the momentum of the majority of electrons becomes
relativistic, 6g > 1, does this contribution drop sub-
stantially.

We will estimate the contribution of the polarization-
dependent terms for the VEPP-2 installation at
Novosibirsk for an energy € = 700 MeV, at which the
characteristic time of radiative polarization is about
30 min (see Sec. 3), n ~ 107, 6q = 1 (5p = v3). Then the
relative contribution of polarization- dependent terms to
a for complete polarization of the electrons (Eq. (5.13))
is about 69,.

5.3. Measurement of Polarization by Means of Compton
Scatteringt®??

In Compton scattering of circularly polarized photons
by transversely polarized high-energy electrons, terms
in the cross section arise which depend on the electron
polarization vector. In head-on collisions of laser pho-
tons (with energy w,) with high-energy electrons, the
final photons are emitted mainly in a narrow cone with
an angle ~ 1/y relative to the initial electron direction
and have an energy

2eh

14-n2 1287 (5.16)

), =

where A = 2w,€/m’, and the photon emission angle is

=n/y < 1. To lowest order in € the cross section
has the form (see refs. 24 and 25)

do == do,--do,E, | §, | sin ¢, (5.17)

where doy is the cross section for unpolarized particles,
£ is the degree of circular polarization of the photons,
and ¢ is the angle between the plane perpendicular to
the vector {, and the scattering plane. We note that the
correlation term in (5.17) of the form £2(¢,kz) is the
only possible term from considerations of P and T in-
variance. The azimuthal asymmetry coefficient has the
form

_doy _

dao

2Ahn 1+ n)? .
TR (A FarF2A) (1 n)

& reaches an extremum Jo, & — 1/3forx~1,n~ 1.
For storage rings presently in existence and lasers,
A < 1; then

(5.18)

AU ey ndndy _ Srietdndg
dUn*-iﬁW—* do, ,—;’1——)— (5.19)
The maximal value of the asymmetry coefficient / max
is reached for n = 0.76 and is Pmax =—1.14x. The

asymmetry coefficient for cross sections integrated
over the scattering angle 0 = ¢ = 8¢ = no/y is Jo = —0.82
for no = 2 and 9 =—0.6y for n, > 1. Therefore it is
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necessary to use the shortest-wavelength photon sources
possible. The effect of asymmetry in Eq. (5.17) is maxi-
mal for ¢ = +7/2, i.e., when the vector ¢, lies in the
scattering plane, so that for £,(k,-{,) < O the cross sec-
tion is maximal and for £:(ks-{:) > 0 the cross section
is minimal.

If we use a krypton laser (photon energy w;
= 3.5 eVL?]) as the photon source, then A ~ 0.09 for
€ = 3.5 BeV, so that the up- down polarization asymme-
try for n, = 2 reaches ~ 149, For a laser power of
1 watt, a number of electrons in the storage ring Ng
= 10", a beam cross-section area s = 107 cm?®, and
A ~ 0.1, the number of final photons is ~ 10* sec™.

5.4. Scattering In a Polarized Electron Target and
Measurement of the Polarization

An azimuthal asymmetry also exists in the cross
section for scattering of transversely polarized fast
electrons by a polarized electron targetl*’1:

do = doy+doy | §,] | §; | cos (29 +-¢), (5.20)

where do, is the Mdller cross section, |£z] is the de-
gree of polarization of the electron target, and the angle
@ is defined as in Eq. (5.17). The vector {: is chosen
in the plane perpendicular to the momentum vector of
the initial electron (then the asymmetry is maximal),

@1 is the angle between the vectors £, and §{., and dnc
is the element of solid angle in the center-of-mass sys-
tem. The greatest asymmetry occurs for 2¢ + ¢, =0
or 7. For example, for £, | £z (¢1 = 0) this corresponds
to ¢ = 0 (scattering plane perpendicular to the vector
¢.) and ¢ = 7/2 (the vector {, lies in the scattering
plane). The asymmetry coefficient & = do,/do, is maxi-
mal for a scattering angle 8 = v2/y (which corresponds
to a c.m.s. scattering angle ¢, = 7/2) and is given by
®max = 0-11. For cross sections integrated over scat-
tering angle,

doy=(r/32v) d.,

V 2y tg 0.2 8LV 2y ctg 8e/2,

the asymmetry coefficient is

sin2 &,

ﬂzm- (5-21)

&
For ¢, = 75° & = 0.1. The low value of the asymmetry
coefficient does not permit use as a target of magne-
tized ferromagnetic materials, where |£z| < 0.09, so
that the total up-down asymmetry is <2%. Obviously
it is desirable to use as a target atomic beams in which
the electron polarization can be raised to [{z| ~ 1 and
the total asymmetry for s, = 75° reaches 20%. For
known densities of polarized atomic beams
(n ~ 10" em™) for € = 700 MeV, N, ~ 10", a size of the
interaction region ~1 cm, ¢ _ = 75°, and A¢p ~ 0.1, the
number of scattered electrons is ~ 10 sec™".

The methods described above, from our point of view,
are most promising for determination of the transverse
polarization of high-energy electrons in a storage ring.
It should be noted that the relative contribution of terms
depending on the electron polarization increases with
energy for Compton scattering of laser photons (so that
the method is suitable at an energy of several BeV) and
decreases with energy for internal scattering effects
(so that the method is suitable at an energy of several
hundred MeV), and is independent of energy for scatter-
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ing by an electron target (i.e., this method is applicable
for any energy if the number of events is sufficiently
great).

5.5. Other Methods

We will discuss other methods of determining the
transverse polarization of high-energy electrons:

a) The cross section for scattering of transversely
polarized electrons by a polarized nuclear target, with
an accuracy to terms of order 1/y, does not depend on,
the electron polarization, a consequence of helicity con-
servation (see, for example, ref. 28).

b) The degree of circular polarization of a brems-
strahlung photon in electron scattering by a Coulomb
field depends on the electron polarization; for the cross
section integrated over final-electron emission angle,
the degree of circular polarization of the photon for
transversely polarized initial fast electrons under opti-
mal conditions does not exceed 109%;:*®) in addition, the
photon polarization measurement which is necessary in
this method is in itself a rather complex problem; the
bremsstrahlung cross section summed over final-parti-
cle polarization with inclusion of all Coulomb correc-
tions with an accuracy to 1/y terms has the same struc-
ture as the Born cross section, and consequently, does
not depend on electron polarization.[*?]

¢) Quantum corrections to the intenéity of synchro-
tron radiation, which depend on electron polarization,
are of order y = (H/H,)y and are extremely small,

Thus, the methods listed in this section are not very
suitable for determination of the transverse polarization
of electrons.

For determination of the transverse polarization of
electrons, a method with conversion of transverse
polarization to longitudinal polarization is also promis-
ing*. This can be accomplished, for example, as the re-
sult of precession of the electron spin relative to the
velocity in a magnetic field perpendicular to the spin
vector and the momentum. The rotation angle of the
electron in this field, in which the transverse polariza-
tion is transformed to longitudinal, can be found from
Eq. (B.6); it is

b

Aq)=2y_n' (5.22)
The same result is obtained if, instead of a magnetic
field, we use an electric field directed along the spin
vector with the condition that ny* >> 1., Measurement
of the longitudinal polarization obtained can be easily
carried out, for example, in experiments on scattering
in a polarized electron target (the contribution of polar-
ization-dependent terms is ~ 1) or in experiments on
scattering by a polarized proton target.

6. AN EXPERIMENT ON STUDY OF RADIATIVE
POLARIZATION

An experimental study of the radiative polarization of
electrons has been carried out recently in the storage
ring VEPP-2 in Novosibirsk.[**] The polarization meas-
urement was accomplished by the method described in
Section 5.2 which utilizes the dependence of internal

*See also Appendix C.
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scattering effects on the polarization of the electrons in
the beam.['®) For the energy chosen (e = 650 MeV) the
polarization time is T ~ 50 min and the theoretical de-
gree of polarization (3.27) during the experiment is
|£3(2T)| ~ 0.80. In this experiment it is extremely im-
portant to exclude the effect of depolarizing factors (see
Section 4). For this purpose it is necessary first of all
to be sufficiently far from spin resonances (4.11). The
result of a specific analysis of resonance harmonics for
the VEPP-2 storage ring is shown in Fig. 4, in which
the frequencies are given in units of wy

(v=ny =(8—2/2)y, v, = w,/wo = 0.8093, vy = wy /o

= 0.7614) and the order of the resonance is indicated.l’®
The depolarization time (height of the resonance) in
Fig. 4 was estimated (see Sec. 4.1b) on the assumption
that dynamical mixing occurs as the consequence of the
spread in amplitude of betatron oscillations, and that the
stochastic mechanism is radiative dampmg 1t is clear
that, if w,, (4.17) satisfies @, >> 75', then Tde ~ 75t

(compare Eq. (4.50)); and 1f wy K 7o', then 77

dep

~ wp(w,7To). This situation is described by the inter-
polation formula
1’deD_"';a u,z(_l):.rz (6.1)

The widths of the resonances in Fig. 4 (the ‘‘wings’’
the resonances) were evaluated on the basis of (4.50).
In Fig. 4 we have also shown the radiative polarization
times T and the radiative damping time 7,. It can be
seen from Fig. 4 that in the region below € = 500 MeV
the electron beam is practically unpolarized. We note
that with increasing energy 1/T increases rapidly, and
for higher energies we can expect that depolarizing fac-
tors will play a smaller role. In accordance with an
analysis which was made, the working point was chosen
at an energy ¢ = 650 MeV. When depolarizing effects
(4.53) are taken into account, the expected degree of
radiative polarization is ef2T)| ~ 0.66.

The measurements were made in the following way.
The electron beam in the storage ring was polarizead for
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a time t ~ 2T, and the particles leaving the beam as a
consequence of internal scattering effects were recorded
by two counters. Then the beam was depolarized by ap-
plication of an external longitudinal field (Sec. 4.1e) for
time (4.42) Tdep ~ 100 sec. In this case according to

(5.13) the rate of departure of particles from the beam
increases (i.e., the number of counts in the counters
increases). Figure 5 shows the experimental results for
an energy € = 638.8 £ 0.8 MeV, where a jump can be
seen in the counting rate (normalized to the square of
the current), occurring at the turning on of the depolar-
izing field*. From the size of the jump we can deduce
the following value of the degree of polarization of the
electron beam:

[£ex (27) | =0.52 = 0.13, (6.2)
which is consistent with the expected value of the degree
of polarlzatlon given above with inclusion of depolariz-
ing effects |, (2T)1 ~ 0.66, although it is somewhat
smaller. Thus we have obtamed the first experimental
indications of the existence of the radiative polarization
effect. Naturally, further experimental investigation of
this effect is desirable, in particular, removal of the
influence of depolarizing effects.

In conclusion the author takes pleasure in expressing
his sincere gratitude to V. M. Katkov and A. N. Skrinskif
for numerous discussions of the radiative polarization
problem and for valuable observations. The author is
grateful to V., M. Strakhovenko for discussions, and to
Ya. S. Derbenev, A. M. Kondratenko, A. N. Skrinskii,

G. M. Tumaikin, and Yu, M. Shatunov for making avail-
able their results prior to publication.

APPENDICES

A. CALCULATION OF (to|Re T:fto)

By definition {t;|{Tz]t,) is a scattering matrix element
of second order in the coupling constant e, taken between
single-particle states, i.e., the contribution of the self-
energy diagram. This contribution has been found (for
arbitrary y) in ref. 8. Taking into account that in Sec-

*In this fact we have a method for extremely accurate absolute
measurements of the electron energy in the storage ring, since the
(g—2)/2 factor of the electron is known very accurately. With the de-
polarization method used, the accuracy is determined by the band width
of the frequency modulation 6w (4.36).
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tion 3 we use a state vector which is a two-component
spinor, i.e., to) = ¢li), we have, using Eq. (2) of ref. 8,

Tl 9= = | TP +1) Crve) (A.1)
=t faqigDtiomygln,
where s = v/|v|,
am? v udu 2u i 2u
o= L [Lw(w)Jng"w (%) (a2

0
Ly )= 75 dz sin —%E- (3+'§) ;

K, (2) is the Macdonald function. A unique relation ex-
ists between the terms T{> and D, and between T$* and
D; therefore from T;” we can also determine D (the
term T{*’ (Do) does not contribute to Eq. (3.20) and
therefore is not given here). If we take into account
that

Fuypts’ 2 (GHR)
V leF;_gPa I X ’

(A.3)

Elvsh)=

where sV is the polarization 4-vector, uo = ¢/2m, F

= ¢4 ,agF*", and F*P is the external field tensor,

then Hg, the magnetic field in the rest system of the
particle, is found to be

H
Hp=1 [H—I—_L%-[\'E]]. (A.4)
From (A.1)—(A.3) we have
N oDl Moy, B2 2T wds 2u
gt oDyl —Lotp, Lo 22 i(i—i—u)“ Ly (31). (A.5)

The quantity ¢’ is the anomalous magnetic moment of
the electron to order €® in the interaction with the radia-
tion field and with inclusion of all orders in the external
field.L®] For y < 1, u'/io = (@/2m)(1 = 12x°Iny +...).
If we limit ourselves to an accuracy u'/uo = @/27, then
the result (A.5) can be obtained also by means of
Schwinger’s results,[*] as was done in ref. 10.

B. EQUATION FOR SPIN MOTION IN AN EXTERNAL
FIELD

In Sec. 3 we obtained in terms of quantum electro-
dynamics the equation of motion of the electron spin
(the average value of the spin operator in the rest sys-
tem). If we retain in this equation terms of order K%(x°)
(i.e., if we omit damping terms), this equation goes over
to the BMT equation. The latter does not contain
Planck’s constant i and can be obtained on the basis of
purely classical considerations as the direct relativis-
tic generalization of the equations of motion of the mech-
anical (spin) moment (for a given gyromagnetic ratio
© = (ge/2m)(¢h/2)) in a magnetic field in the rest sys-
tem of the particle:

Je= pH]. (B.1)
If we set J = (1/2)¢Hh, then
dg g
=i, (B.2)

We will introduce the 4-vector s* such that in the elec-
tron rest system s = (0, ¢). Obviously, if u* is the
velocity 4-vector u = (y, yV), then (su) = 0. Hence it fol-
lows that s = (8- V) and in the rest system
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d .
R=v.

(B.3)
The relativistic generalization of (B.2) and (B.3) is the
BMT equationt™

ds? ; —2 .
T A s () P}

(B.4)

here T is the proper time. Taking into account that
p(pb) _ _0
m

m(e-fm)’

-t (B.5)

So

we can convert from the equation for s (B.4) to an equa-
tion for {. We finally obtain (3.23) without damping
terms* (see (3.19) and (3.22)):

F=rr, F=2{(52) mntis]. (B.6)
Let us discuss the right-hand part of the BMT equation
in the form of (B.6). The magnetic moment is acted on
by the magnetic field Hy in the rest system of the par-
ticle, if the fields are H and E in the laboratory system.
However, it is necessary to keep in mind that increment
in the spin vector a{ = (d¢/dt)at consists of parts of
which one is due to rotation in the field Hg and the sec-
ond is kinematical and is due to rotation of the spin as
the result of the fact that the electron motion in the ex-
ternal field is accelerated (in other words, as a conse-
quence of the fact that the rest systems at the moments
of time t and t + At are different and that one is rotated
relative to the othert). The latter increment is easy to
calculate by means of the Lorentz transformation equa-
tion

(B0 =1e LR (B.T)
The total change of { (compare (B.6)) is
&_ e LBV _
E=?%[§HRH—V_-1W_ (B'B)

=< [e[ (§—1) Br+Ha+ ¥ (v (VI +(VED | | = 1%F).

1-+y
Hence it is evident that the field Hg actually acts only
on the anomalous part of the moment, while the effective
tield Hp (B.6), (3.22), which can be considered as acting
on the intrinsic moment of the spinor particle, turns out
to be strongly attenuated in comparison with Hg at high
energies (y > 1). Just for this reason, although the
anomalous magnetic moment of the electron (in units of
eli/2mc) is extremely small, (g — 2)/2 = @/27 + ..., the
terms with it are extremely important, since they con-
tain an additional power of y.

Equation (B.6) (see (3.10) and (3.22)) involves the
fields H and E and the particle velocity, which is deter-
mined by these same fields. Therefore the form of
(B.6) is not always convenient. It turns out to be useful
to write Eq. (B.6) in such a way that only the independent
variables occur as coefficients in the right-hand part.
There are several sets of independent quantities; we

*If a vector A does not change with respect to some rotating system,
and its change with respect to a fixed system is due only to the rotation,
then A = Q X A, where Q is the angular velocity (frequency) of rotation.
Equation B.6) is of just this type. [t is clear that (§¢) = 0, {2 = const for
F = const, F X { = const, i.e., the vector { precesses about the axis F with
a frequency |F|.

+This fact is sometimes called Thomas precession.
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will choose the set v, v, H,, E, (H, and E | are the field
components along the velocity and perpendicular to the
velocity).

Taking into account that

By = {vE—2 0w} (B.9)
we obtain for the BMT equation (B.6)
=~<1+«mﬂ+%[ g BT (B.10)

where = (g/2)(e/2m), n = g/2 — 1. If we introduce the
unit vectors
v “?"L—'“”‘EL
el ——, e3=[eje;] (B.11)
! 1 YWVJ__— E_L‘
and expand the vector ¢ in these unit vectors:
L={1e1 Lo+ a3 (BIZ)

then the following system of equationst**] follows from
Eq. (B.10):

& _or
s ¥ (B.13)
Lo, +ata,
dzs ‘
_dllszgz, !
where the frequencies are
. 2uH
=l ~BE )|, o=t (B.14)
or
d
= el (B.15)
where the frequency u has components
u={0, ¢, —Q). (B16)

Thus, in the chosen system of unit vectors the spin vec-
tor moves around the e; axis with a frequency £ and
around the e; axis (the direction of the velocity) with a
frequency w.

If the electric field E = 0, then v = v, and the expres-
sions for the frequency take the form

vy 2wl H
Q=ny —v u)t"—(es‘) —1'——” li :nu-}-——\ﬂ{)

|
i ooy “ g (B
where for time-independent fields H= (v:V)H, and as
unit vectors we choose the vectors
¢ = v e, ‘. €
1=757 =T 3=
v ' 2 | B ‘ 3

LA (B.18)
[¥liv]
The first term in w (B.17) is extremely small in
comparison with  (their ratio is ~(1/y)(H,/H,), where
ordinarily H, < H,). Therefore in nonuniform fields the
principal role is played by the second term, which ex-
plicitly depends on the field nonuniformity. Under typical
storage-ring conditions the particles execute small os-
cillations with a frequency w,g and amplitude a. Then

© JUOUVIH | o (B.19)
This circumstance has been systematically utilized in
this work.

The equations of motion (B.13) determine the motion
of the spin vector relative to a fixed system, but just
this system is defined physically.

e
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C. EVOLUTION OF SPIN VECTOR IN PERIODIC
MOTION

In the case in which F(t) = F(t + T) in Eq. (B.6), par-
ticular interest is presented by the periodic solutions
of this equation, which mean that at a given point of the
trajectory there exists a stable direction of polariza-
tion, which is repeated every revolution.l**] We will
designate such solutions by

w(+7T)=n{), n?=1, n=|nF|.

(C.1)

Any solution of Eq. (B.6) can be expanded in the three
orthogonal solutions x,,, (m =1, 2, 3):

n(t):Enmxm (1), (C.Z)

where n,, are constants. Then the periodicity condition
acquires the form
3 tmxm ()= Ry X (24-T) (C.3)
or
N B rm— Anm) ne =0, (C.4)
where
Apm=xp () Xp (£ -+ T). (c's)
The system of Egs. (C.4) has solutions if
det (I —A)=0. (C.6)

This condition is always satisfied, since the constant
matrix A corresponds to a real rotation A A =1,
det A = 1 (a general existence theorem exists for
periodic solutions of uniform linear systems of differ-
ential equations with periodic coefficients; see, for ex-
ample, Lefshetzl*1). Since any two solutions of Eq.
(B.6) satisfy the condition d(gagb)/dt = 0, for an arbi-
trary initial spin direction (¢ - n) = const. Hence it fol-
lows that the spin vector rotates about the periodic solu-
tion n, which is fixed for a given azimuth, conserving its
projection on the n direction. The general solution of
Eq. (B.6) can be expanded in n and two vectors n in the
plane perpendicular to n. Let 27v be the angle by which
the solution transverse to n is rotated in a revolution;
in complex form this conditionis n(t + T) = e 2771”17(t)
Expanding 7(t) in x,(t), we have

});‘ (e—Zm"v

Oprn— Mpm) M =0, (C7)
so that it is necessary to find the eigenvalues of the
matrix

det (M —A)=0, A==e” 2TV, (C.8)

One of them, obviously, is A = 1, and the other two are
obtained from the conditions

3
k‘,_‘l Ap=SpA, Adghg=—det A=1, (Cg)

T T P AT WP e va:S—pl,ti-i— .

The corresponding eigen solutions n, 77, and n* are

orthogonal if cos 27y # 1. The general solution can be
written in the form

L(t)y=Epm | (C-IO)

en--c**),

e —

where ¢, = const, ¢ and c* = const. In the case of reson-
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ance (cos 2mv = 1) there is a degeneracy A1 =2z =23=1
and all solutions are periodic.

The existence of a stable periodic solution permits
any polarization to be produced at a given point of the
trajectory (for example, at the point where beams col-
lide in storage rings). For example, at high energies
such that 7/2ny < 1, by introducing into a straight
section of a storage ring a radial magnetic field in
which the angle of rotation is 7/2yn (see (5.22)), it is
possible to convert a transverse polarization to longi-
tudinal, and after the collision region to again convert
it to transverse. It is true that the degree of polariza-
tion in this case will be somewhat smaller than in a
uniform field, as the result of radiative polarization in
the radial field.
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