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We d e s c r i b e the s t a t u s of the p r o b l e m of the e l e c t r o n s t ructure of superheavy a t o m s with nuc lear
charge Ζ > Z c ; here Z C R J 170 is the cr i t ical value of the nuclear charge, at which the energy of the
ground state of the l S 1 / 2 e lectron reaches the l imit of the lower continuum of the solutions of the
Dirac equation (e = - m e c 2 ) . We discuss the dependence of Z c on the nuclear radius R and on the
c h a r a c t e r of the distribution of the e lectr ic charge inside the nucleus, and also the form of the wave
functions at Ζ close to Z c . Owing to the Coulomb b a r r i e r , the state of the electron r e m a i n s localized
at Ζ > Z c , in spite of the fact that its energy approaches the continuum. An analysis of the polar iza-
tion of the vacuum in a strong Coulomb field shows that a bare nucleus with supercr i t ica l charge Ζ
> Z c produces spontaneously two pos i t rons and, in addition a charge density with a total of two units
of negative charge in the vacuum. The distribution of this density is localized in a region of dimen-
sion r ~ R / m e c a t t h e nucleus. The possibility of experimentally observing the effect of quasistatic
production of pos i t rons in the collision of two b a r e uranium nuclei (i.e., without e lectrons) is d i s-
cussed. A brief review is presented of work on the motion of levels with increasing depth of the
potential well in other relat ivist ic equations (Kelin-Gordon, Proca, etc.) .
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1. FORMULATION OF PROBLEM AND DISCUSSION answer within the framework of the theory of e lectrons
OF RESULTS and pos i t rons .

_ The history of the problem is divided into three
J.HE question of the electron s t ructure of the atom at s tages . In the f irst , Dirac has shownC 4 1 (see also i5'n)
Z a > 1, and especially when the nucleus has a super- that in a Coulomb field of a point charge Ze the solu-
cr i t ica l charge Ζ > 170, is of great fundamental in ter- tion becomes singular at Ζ = 137. For example, the en-
est . The quantum theory of e lectrons, posi trons, and ergy of the lower level 1 S J / 2 of the d i scre te spectrum is
electromagnetic field cannot be regarded as complete , . ... .
until this question is made completely c lear . ει = Ι /1 — ζ2, ( • )

It is not very likely that atoms with such large Ζ can where ζ = Ze2/n~c = Z/137.* At £ = 1, the energy e x

be synthesized and studied, at least in the n e a r e s t future, reaches z e r o and the e = e(f) curve t e r m i n a t e s there
The boldest assumptions concerning the existence of (Fig. 1). The expression (1.1) has a square-root singu-
islands of nuclear stability do not go beyond the magic lar i ty at the point ζ = 1; a formal continuation of (1.1)
values Ζ = 114 and 126 (see the reviews E 1 " 3 ] ) . In p r i n - to the region ζ > 1 leads to imaginary values of e^ It
ciple, however, the effect of spontaneous quasistatic
positron production at Ζ > 170, predicted by the theory, ~ j ~ . , t , „ ., . , . ,

, , . „ . . , * Here and throughout we use a system ot units with h= c = η ν = I,
c a n b e o b s e r v e d in the c o l l i s i o n of two b a r e uranium w h e r e i s t h e d e c t r o n m a s s T h e e ) e c t r o n e n e r g y e j n d u d e s t h e r

e

e s t

n u c l e i ( i . e . , h a v i n g no e l e c t r o n s ) . In any c a s e , t h e diff i- e n e r g y > s o t h a t e = , corresponds to a free electron at rest and e = 0
c u l t i e s in the p e r f o r m a n c e of the c o r r e s p o n d i n g e x p e r i - corresponds to a binding energy m e c 2 = 1. The boundary of the lower
m e n t s do not e l i m i n a t e the need for obtaining a d is t inct continum e = -1 corresponds to a binding energy 2m e c 2 .
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F I G . 1 . T h e e n e r g i e s o f t h e l o w e r l e v e l s w i t h a n g u l a r m o m e n t u m j =

1 / 2 ( f = Z / 1 3 7 ) : a ) f o r a p o i n t - c h a r g e p o t e n t i a l V ( r ) = - Z e 2 / r ; b ) w i t h

a l l o w a n c e f o r t h e f i n i t e d i m e n s i o n s o f t h e n u c l e u s .

is therefore frequently stated that the Dirac equation
has no solution at Ζ > 137 (this, however, i s incorrect) .
In fact, the solution of the Dirac equation in the poten-
tial V(r) = - ξ/τ is possible also when ζ > 1, but the
problem is incorrect ly stated without the choice of the
boundary condition on the wave function at z e r o . The
physical meaning of this condition is simply that the
problem must be solved with a potential that is cut off
at r < R.

Taking the finite dimensions of the nucleus into a c -
count, Pomeranchuk and Smorodinskii 1 8 1 have shown that
for an extended nucleus the solution exists from ζ - 0,
e = l t o £ = £ c , e = - l , and that the singularity of for-
mula (1.1) at ζ = 1 d i sappears . The value of Z c = 137£ c,
at which the energy of the ground state reaches the limit
of the lower continuum e = — 1, will be called the cr i t ica l
charge of the nucleus. Z c was calculated in C 8 ] by an ap-
proximate method that has low accuracy in the region of
r e a l values of the nuclear radius R ~ 10"1 2 cm. Conse-
quently, the values of Z c given there a r e too high (thus,
for R = 1.2 χ 10" 1 2 cm the value given in C 8 1 i s Z c = 200,
whereas exact calculation yields Z c = 170). We note that
at Ζ ~ Z c the e lectrostat ic potential at the center of the
nucleus r e a c h e s a value V(0) = 3£/2R « 6 0 m e c 2 at a nu-
c lear radius R ~ 0.03 (in units R / m e c = 3 · 8 6 x 1 0 " U c m >
i.e., R = 1 . 2 x 1 0 " " cm).

During the next stage, a more detailed investigation
was made of the situation near Ζ = Zc, when the lower
electron level l S 1 / 2 m e r g e s with the continuum. Ger-
shtein and ZeFdovich t 9 ] proposed that when Ζ > Z c the
b a r e nucleus Ζ emits spontaneously two posi trons, after
which the effective (renormalized, observable) charge
of the bare nucleus d e c r e a s e s by two units, correspond-
ing exactly to a filling of the Κ shell . The difference b e -
tween the supercr i t ica l atom and the ordinary one l ies
in the fact that at Ζ < Z c these e lectrons should be taken
from the outside. It is possible, for example, to produce
two p a i r s 2e~ + 2e* by photons having a frequency ω,
after which the e lectrons land on the Κ shell, and the
pos i t rons go off to infinity. The pair-production t h r e s h -
old is equal to

cothr = l + e,, (1.2)

where e x i s the energy of the l S 1 / 2 level, i .e., pair p r o -
duction at Ζ < Z c cal ls for the expenditure of energy.
At Ζ = Z c it is possible to produce a pa i r on a b a r e nu-
cleus by a photon of a r b i t r a r y low frequency. At Ζ > Z c ,
pa i r production is manifest a s the production of posi-
t rons by the Coulomb field and the decrease of the nu-
c lear charge proceeds spontaneously. According to the

Pauli principle, only two electrons can be located at the
I S level, i .e., only two posi t rons will be emitted spon-
taneously, and it must not be assumed that the ent ire
excess charge (Z - Z c ) will be compensated or screened.
However, in addition to the foregoing c o r r e c t p r e m i s e s ,
Gershtein and Zel 'dovich t 9 1 made the erroneous s t a t e -
ment that the wave function becomes delocalized when
the state energy e approaches the lower continuum.

Popov's invest igat ions C l o " 1 2 ' e 5 ] of the Dirac equation
at Ζ close to Z c has c leared up the situation. Deferring
the exact mathematical re su l t s to Sees. 2 and 4, we p r e -
sent here an intuitive interpretat ion of the phenomena at
Ζ ~ Z c . The Dirac equation for the e lectron has formal
solutions also at negative e < — 1 (the lower continuum).
The proper t ies of these solutions a r e determined by the
fact that near e = — 1, at dis tances r > fi/mec from the
nucleus, we deal in essence with posi trons that a r e r e -
pelled from the positively-charged nucleus. The wave
function has therefore a form c h a r a c t e r i s t i c of the non-
relat ivist ic problem of a potential well with a Coulomb
b a r r i e r . * It follows therefore that, owing to the b a r r i e r ,
the wave function is localized in the well (i.e., the d i s-
tances from the nucleus a r e smal ler than the Compton
wavelength of the electron), and this localization i s r e -
tained even as Ζ — Z c (e — — 1), when the energy gap
Δ = 1 + e between the bound state and the continuum
tends to z e r o .

An analysis of the single-particle solutions of D i r a c ' s
equation leads to the following r e s u l t s . The d i screte
level IS reaches the continuum boundary e = - 1 at Ζ
= Z c and then vanishes (at Ζ > Z c , the d i screte spec-
trum does not contain a solution that would continue the
IS level without interruption; the levels that follow the
ground level, 2 P 1 / 2 , 2S 1 / 2 , etc. , a r e located at a finite
distance from the continuum and have no singularity
whatever at the point Ζ = Z c ) . At Ζ > Z c , however, a
strong perturbation of the functions of the lower con-
tinuum φζ(τ) takes place and i s due to the appearance
of a pole in the scattering matr ix at the point Ε = e 0

- (iy/2)(e0 < 1)· T n e perturbation of the functions Ψ £ ( Γ )
i s concentrated mainly in the energy band | e - e 0 | %. γ,
and in coordinate space it leads to the appearance of an
additional charge density p o (r) of the vacuum. This den-
sity is localized at distances r » K/m ec from the nucleus
and c a r r i e s a total charge - 2e. In the region (Z - Z c )
<IC Z c , the p a r a m e t e r s e 0 and γ depend on Ζ — Z c in the
following manner :

e o = - l - a ( Z - 2 c ) , γ ~ exp { - b ]/ ^ ( 1 . 3 )

w h e r e a , b > 0 a r e c e r t a i n c o n s t a n t s . t

W h e n s p e a k i n g o f c o n t i n u i n g t h e I S l e v e l i n t o t h e

t r a n s c r i t i c a l r e g i o n , a d i s t i n c t i o n m u s t b e m a d e b e t w e e n

t w o p o s s i b i l i t i e s . I f t h i s l e v e l i s u n f i l l e d a t t h e i n i t i a l i n -

*When we speak of a well with a barrier, we have in mind not the
initial potential V(r) that enters directly in the Dirac equations (V(r)
corresponds to attraction; e.g., V(r) = -f/r), but a certain "effective"
potential U(r). The latter arises when the system of the two Dirac equa-
tions (2.9) is reduced to a single second-order equation such as the
Schrodinger equation. In the nonrelativistic case U « V; on the other
hand, when e -* - 1 , the difference between the potentials U and V be-
comes quite significant. For details see Sec. 2 (particularly Fig. 2).

+ The exponential smallness of γ is due to the small penetrability of
the Coulomb barrier in the effective potential (2.15) for slow positrons.
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stant of t ime (a b a r e nucleus with Ζ > Z c was produced
somehow), then its continuation is the Breit-Wigner pole
Ε = e 0 - (iy/2), i.e., the unfilled IS level goes over into
the quasic lass ical s ta te . Consequently, a b a r e nucleus
with Ζ > Z c is unstable in vacuum. It can be stated that
its Coulomb field produces in vacuum two e lectron-posi-
tron p a i r s , the e lectrons of which land on the Κ shell and
the posi trons go off to infinity after a t ime t k, 1/y. The
positron emiss ion leaves a stable atom-like system
( " s u p e r c r i t i c a l a t o m " ) consisting of a nucleus Ζ plus
the vacuum charge density po(r) on the Κ shell. The
charge distribution p o (r) is close in its physical p r o p -
e r t i e s (average radius etc.) to the charge density p(r)
= - e | i / ) 0 ( r ) | 2 on the Κ shell in the ordinary atom with Ζ
< Z c , although the density p o (r) no longer corresponds
to a s ingle-part icle wave function.

Unlike the ordinary nuclei, a b a r e nucleus with Ζ
> Z c produces itself e lectrons that sit on the Κ shell .*
On the other hand, if the Κ shell at Ζ < Z c is filled with
electrons, then addition of severa l protons to the nucleus
t r a n s f e r s the system direct ly to the supercr i t ica l s tate,
and no posi t rons a r e emit ted. t

The vacuum charge cloud p o (r) i s a ra ther unusual
object. F i r s t , the density p o ( r ) is localized in space
(po(r) - ^ O a s r - » ) , but p o (r) does not coincide with
the square of the s ingle-particle wave function of the
di scre te spectrum, but is smeared out over the continu-
um (to be sure , when Ζ i s only slightly larger than Z c ,
the effective width of the energy band in the lower con-
tinuum, which contributes to the density p o (r), is of the
o r d e r of y, i.e., is exponentially small) . Further , an
atom with a supercr i t ica l charge (or the corresponding
ion with a charge le s s than Ζ — 2), should have a c u r i -
ous singularity in positron scatter ing. When an external
positron is scat tered from such an atom, a narrow r e s o -
nance is observed, and can be i l lustratively described
a s follows: The positron penetra tes through the Coulomb
b a r r i e r and experiences nonradiative annihilation with
the e lectron located at the IS " l e v e l . " This re su l t s in
a b a r e and unstable nucleus with a hole in the IS shell;
after a t ime t Ζ 1/y it produces spontaneously a positron
and r e t u r n s to the initial s tate. This p r o c e s s is analo-
gous to excitation of an atom by a photon followed by
spontaneous emiss ion of a photon at the same frequency
(within the l imits of the line width y). The positron
scat ter ing c r o s s section i s described by the Brei t-
Wigner formula. Independently of this i l lustrative de-
scription, the resonant scat ter ing of positrons affords,
in pr inciple, a possibil ity of determining direct ly by ex-
per iment the p a r a m e t e r s (real and imaginary p a r t s of
the energy Ε = e 0 — (iy/2), via the position and width of
the resonance) of the quasistat ionary exponentially-de-
caying state which i s a continuation of the d i scre te level
at Ζ > Z c .

~As follows from (1.3) the time of transformation of a bare nucleus
with Ζ > Z c into a supercritical atom depends exponentially on Z—Zc

and is large compared with the time fi/mec
2 = 1.3 Χ 10"21 sec which is

characteristic of electrodynamics (at least so long as Z—Zc < Z c).

tOf course, the total charge of the supercritical atom need not neces-
sarily remain equal to Z—2. Electrons coming from the outside can fill
the next shells (with level energies e > -1), thereby decreasing the charge
further, producing even a neutral atom. In this respect there is no dif-
ference from the filling of the shells in an ordinary atom with Ζ < Zc.

It fo l lows from the a b o v e - d e s c r i b e d p r o p e r t i e s of the
electron cloud p o (r) that at Ζ > Zc we have in principle
a many-body problem. This constitutes the third stage
of the investigation of the Ζ > Z c situation, and has not
been completed as yet. In an exact formulation, it i s
necessary to consider the equations of the electron-
positron wave field with creat ion and annihilation oper-
a t o r s , and to use the second-quantization formal ism.
The solutions of the one-electron problem (the Dirac
equation in a specified external field V(r) a r e needed
h e r e as an intermediate step in the analysis of the en-
t i r e many-part icle problem. We have drawn physical
conclusions above and we have predicted the resu l t s of
r e a l o r hypothetical experiments on the b a s i s of a con-
sideration of s ingle-particle solutions. In a r igorous
approach such conclusions and predict ions require a
justification, which can be obtained only from the exact
many-body theory. The expected change in the resu l t s
consis ts of an additional shift of Z c by an amount ~ a Z c

« 1, which will henceforth be neglected.

Let us turn to more concrete aspects of our problem.
The total spectrum of the single-particle s tates consist
of a certa in set of d i scre te levels with — 1 < e n < 1, an
upper continuum e > 1, and a lower continuum e < — 1.
At any Ζ (both Ζ < Z c and Ζ > Z c ) , the field of the nu-
cleus deforms the wave functions of the continuum in a
definite manner. The energy boundaries of the continu-
um (e = ±1) a r e natural ly not a l tered thereby, since the
potential of the nucleus at infinity is equal to zero .

It is well known that a change in the wave functions
leads to a renormalizat ion of the charge and to polar i-
zation of the vacuum. Let us refine these concepts.*
The charge density of the vacuum contains a t e r m p '
cc V V , i-e., proportional to the charge density p e x t of
the nucleus producing the potential: p ' ( r ) = (l/47r)
χ (1 — Ζ ^ 3 ) ν 2 φ (or, in the momentum representat ion,
pk ~ k2</>k)· This t e r m is eliminated by introducing the
renormal ized charge density

Pfi = Pext "I" P' = Z3"
2Pext (1.4)

and subst itut ing subsequent ly in the equat ions PR(r) for
P e x t ( r ) · Exper iment y i e l d s p r e c i s e l y Jpj^dV, or the
c h a r g e c o r r e s p o n d i n g to one or s e v e r a l protons . On the
other hand, the quant i t ies P e x t ( r ) a n d Z 3 a r e unobserv-
able and drop out f rom a c o m p a r i s o n of the theory with
e x p e r i m e n t . Th is i s fortunate, s i n c e Z 3 i s e x p r e s s e d
by a diverging integral, t The renormalizabi l i ty of e lec-
trodynamics indeed consis ts in the fact that the com-
par ison of theory with experiment turns out to be inde-
pendent of the cut-off p a r a m e t e r Λ when Λ 2> m e .

However, even in the first perturbation-theory order
in φ , there a r e t e r m s of higher order in the wave vec-
tor k (in the l inear theory it is convenient to use the
Fourier expansion of the potential):

*We do not pretend to make any general formulations below, and
consider only the static case A = 0, with Ao = φ(τ) independent of t.

+ The divergent part of the induced charge density p'(i) is exactly
proportional to the external charge p e x ((r) . Consequently the renormali-
zation procedure completely eliminates the divergences from the theory.
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or

(see, e.g., C 1 "; here « = e2/Kc = y i 3 7). Besides p'(r), an
additional charge density, which does not reduce to a
renormalization of the charge, arises in the electron-
positron vacuum perturbed by the external field. The
quantity p"(r) is customarily called the polarization of
vacuum.

Let us note the general properties of p"(r). First,
fp" dV = 0, since the integral over the entire volume
corresponds to the Fourier component of p£ with k = 0,
and the expansion (1.5) begins with k4 (if we start from
φ) or with k2 (if we start from p R ) . Thus, the polariza-
tion of vacuum does not change the total charge (and
the field at infinity). So long as we stay within the frame-
work of the linear theory, we can assume this to be a
consequence of the definition of the renormalized charge,
i.e., of the foregoing subdivision of the effect into charge
renormalization and vacuum polarization. We note fur-
ther that if we confine ourselves to expansion of p£ in
powers of k2, then the charge density p"(r) differs from
zero only where PR(r) * 0. Actually, however, the com-
plete expression for p£ is not described by the series,
since it does not converge at |k 2 | > 4m| . Related to this
mathematical circumstance is the fact that p"(r) differs
from zero also in the region where p e xt( r ) = 0. In par-
ticular, even in the approximation linear in Ζ the charge
density induced in vacuum by a point-like charge differs
from zero (see Sec. 4 below). As is well known, the first
term ~kVk in (1.5) makes a contribution of — 27 MHz to
the Lamb level shift, as is fully confirmed by experi-
ment.

The polarization of vacuum in the general case should
also contain terms of higher order in the potential φ(τ)
or in the electric field. They could be ignored in the ini-
tial theory of the Lamb shift in the hydrogen atom, but
we are interested in the case of nuclei with large charges,
where the expansion parameter £ = Τ,α is of the order of
unity. The calculations of the polarization of vacuum in
higher orders in the parameter ζ becomes unusually dif-
ficult and cumbersome (they were carried out up to ξ3;
see C 1 5 1 ) . Experiment shows that in this case the polari-
zation of vacuum likewise does not change the total
charge.*

The question arises of how to verify that the theory
actually agrees with experiment in the most important
prediction Jp"(r)dV = 0. The analogy with dielectrics
can be useful here. The main similarity between these
problems lies in the fact that the dielectric, like the
vacuum, has a gap between two continua.t

Besides the charge density p", we introduce the
charge displacement P: p" = - div Ρ (we shall not use
here the term "polarization," to avoid confusion with
the polarization of vacuum). In a weak and slowly vary-
ing field in a dielectric we have Ρ = fΕ, where the con-
stant f is connected with the dielectric constant: e = 1
+ 4ττί. In a strong field Ρ = f (Ε2) Ε, and f is no longer a
constant independent of the field. However, owing to the
divergent connection between p" and P, the change of f
makes no contribution to / p " dV, since this integral is
identically equal to the limit

lim ί Ρ (R) = lim 4πΛ2/ ( № E=
R->oo

( 1 . 6 )

*L. P. Pitaevskil has correctly remarked that we can get along here

without reference t o experiment; the fact that the renormalization is

independent of the charge is a profound property of the theory, con-

nected with charge conservation and gauge invariance. When consider-

ing a hypothetical experiment of "assembling" a lead nucleus consisting

of 82 p r o t o n s and 126 neutrons, gauge invariance leads t o t h e result that

the field at infinity remains unchanged. A change by an integer times e

is possible if real electrons or positrons go off t o infinity.

t The roles of the upper and lower cont inua are played here by the

valence and conduct ion bands. Deep levels in semiconductors are cus-

tomari ly defined as those whose binding energy is comparable with the

In e x a c t l y t h e s a m e w a y , t h e d i s p e r s i o n , n a m e l y t h e d e -

p e n d e n c e o f t h e f u n c t i o n f o n t h e w a v e v e c t o r k, m a k e s

n o c o n t r i b u t i o n . T h e t o t a l c h a n g e of t h e c h a r g e i s d e -

t e r m i n e d b y o n e n u m b e r — t h e s t a t i c d i e l e c t r i c c o n s t a n t ,

o r m o r e a c c u r a t e l y b y t h e l i m i t i n g v a l u e of f a s E 2 — 0

and k2 —- 0. In other words, all that matters is the dis-
placement Ρ far away (in the limit as r — °°), where the
field Ε is small and is almost constant.

The situation is apparently similar for the polariza-
tion of vacuum, the only difference being that the "di-
electric constant" of vacuum is included in the renor-
malization concept. It seems to us that there has never
been a complete analysis of the polarization of vacuum
outside the framework of perturbation theory,*although
there is no doubt of the final result.

The known results pertaining to the case Ζ < Z c were
described above perhaps too pedantically, in order to ex-
plain better the features of the new situation arising
when Ζ > Zc· In this case, after the lower level IS
merges with the continuum (at Ζ = Z c), a quasistation-
ary state with complex energy Ε = e0 - (iy/2) is pro-
duced in the single-particle problem (e0 < — 1). Although
such solutions do not enter in the new set of orthonor-
malized solutions of the Dirac equation (in the "spec-
t rum" of this equation), their existence does not fail to
affect the functions of the continuous spectrum. At the
real energy e close to the pole (i.e., at | e - eo | & γ),
the wave functions of the continuous spectrum experi-
ence characteristic changes, namely: at a given normal-
ization at infinity (Xk(r) « V2/ir sin(kr +6)), a strong in-
crease takes place in χ£(0) ~ y[(e - eo)2 + (γ2/^)]'1.

Thus, an additional term appears in the integral of
the charge density over the continuous spectrum. The
localization of this term follows the intrabarrier den-
sity x2(r) of the quasistationary state. It is this addi-
tional charge density which corresponds effectively to
two bound electrons. A formal proof of this statement
will be given in Sec. 4.

The analysis of the relativistic case is made compli-
cated by integration over infinite momentum space. How-

distance between the bands (such levels are produced near multiply-
charged impurity centers, vacancies, etc., and play an important role in
semiconductor physics). The theory of deep levels is reminiscent in
many respects of the relativistic problem with a potential (see the paper
byKeldysh[16]).

*With the exception of the simplest case of fields Ε and Η that are

homogeneous in space and constant in time [ 1 7 i l 8 ](see also the recent

paper[ 1 9 ]) .
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ever, the region ρ 3> m e c actually does not contain a
specific dependence on Ζ — Z c , and therefore its con-
tribution vanishes after the renormalizat ion. An impor-
tant fact for the ent i re analysis i s that the sum of the
squares of the wave functions

(1.7)

(over the d i scre te levels and the continuum) experiences
no singularity whatever (e.g., a discontinuity in p(r) or
in i t s derivative) at the instant when a d i s c r e t e - s p e c -
t rum level appears or vanishes while the depth of the
potential is smoothly varied (see t 2 0 ] and also [ 2 1 - M ] ) .

We apply these considerations to nuclei with large
Z. When Ζ < Z c there is a d i scre te level l S 1 / 2 above
the continuum. If it is filled with e lectrons, then there
is no doubt that the charge of the system is Ζ - 2. For
the r e a s o n s stated above, this quantity cannot change
on going through Ζ = Z c . The difference between the
cases Ζ > Z c and Ζ < Z c i s that when Ζ < Z c the den-
sity of the electron cloud is equal to p o (r) = - eipl(r),
where ipo(r) is the wave function of the lower level, and
when Ζ > Z c this density does not correspond to any
wave function of the single-particle approximation (the
K-shell wave function becomes a mult i-part ic le one).
The density p o (r) at Ζ > Z c i s a perturbation of the
wave functions of the lower continuum Ψ € ( Γ ) , concen-
trated in a narrow band | e - e o | ~ y.

The spatial dependence of p o (r) does not experience
any sharp changes at the point Ζ = Z c .

So long a s the level l S ^ has not yet merged with the
lower continuum, the wave functions of the continuum
Xe(r) a r e orthogonal to the function x o(r). After the
merging, the wave functions x e ( r ) in the vicinity of the
resonance (| e - e o | & y) a r e s imilar to xo(r), if r i s not
too large (under the b a r r i e r ) .

It is important, of course, that we a r e dealing here
with fermions and that the Pauli principle holds. Light
charged bosons (if such were to exist in nature), taken
in place of e lectrons, could be produced virtually in a r -
b i t r a r y amounts and could screen spontaneously the en-
t i r e excess charge Ζ — Z c (this question was considered
in detail recently by A. B. Migdal : 2 5 : '). On the other hand,
electrons, as a result of the Pauli principle, screen only
two charge units. Therefore the picture of the phenom-
ena at Ζ > 170, obtained in the s ingle-particle approxi-
mation, remains valid also in the mult i-part icle prob-
lem (the greatest change introduced by the mult i-part ic le
analysis may cause the statement made above for a certain
Ζ to turn out to be valid also for a nucleus with charge
Ζ' = Ζ + ΔΖ, where ΔΖ ~ a Z c ~ 1).

This is the general picture of the phenomena at Ζ
~ Z c . Let us make a few r e m a r k s concerning the accu-
racy of the calculations of Z c .

At Ζ < Z c , allowance for the vacuum polarization
makes the potential well deeper (the corresponding level
shift Δ Ε " is always negative, and for hydrogen it makes
a contribution - 27 MHz to the radiative shift of the lev-
els 2S 1 / 2 and 2 P 1 / 2 ) . Therefore the polarization of the
vacuum d e c r e a s e s the value of Z c by an amount ~ a Z c .

On the other hand, allowance for the electronic self-
energy d iagrams (interaction of electron with photon
vacuum) r a i s e s the level. The calculation of this par t

of the Lamb shift (which we denote by ΔΕ') for heavy
atoms is the subject of c a >~ 2 9 ]. At Z a <S 1 the following
est imate is v a l i d " 0 ' 3 1 1

4α (Za)«
( 1 . 8 )

At Z a ~ 1 we should expect Δ Ε η Θ ~ a m e c 2 , i.e., the r a -
diative shifts can change Z c by an amount on the o r d e r
of a Z c .

Let us l ist the main conclusions concerning the b e -
havior of atoms and nuclei with large Ζ:

1) At Ζ > Z c a b a r e nucleus, after emitting two posi-
t rons , surrounds itself by the Κ shell and is t ransformed
into a supercr i t ica l atom. Its charge, determined from
the e lectrostat ic field at dis tances r > R / m e c . i s equal
to Ζ - 2.

2) A character i s t ic feature of this problem is the
existence of a Coulomb b a r r i e r for an electron with
negative energy e « — 1. Because of this b a r r i e r , the
wave function at Ζ = Z c does not become localized, the
discrete level IS in the b a r e nucleus has a continuation
in the form of a resonance Ε = e 0 — iy/2, and the proba-
bility of emission of positrons at Ζ > Z c vanishes expo-
nentially at the threshold.

3) When the charge of the nucleus is ra i sed to Ζ
> Z c > an atom with a filled Κ shell goes over directly
into the supercr i t ica l state, without emitting pos i t rons .

4) The proper t ies of the outer shells of the atom
(which determine, in par t icu lar , the Mendeleev p e r i o -
dicity of the chemical propert ies) continue in regular
fashion into the t ranscr i t i ca l region.

There is a certa in analogy between positron produc-
tion by a nucleus at Ζ > Z c and pai r production in a
homogeneous e lectrostat ic field.

The interaction of an electromagnetic field with a
vacuum of charged par t ic le s leads to the appearance of
nonlinear increments to the Lagrangian of the e lec t ro-
magnetic field L ;

C 3 2 ' 3 3 : I and pair production is only one
aspect of the phenomena connected with these nonlin-
ear i t ie s . Namely, the probability w of pa i r production
by an external field is determined by Im L (see t l 7 ] ) .
In the case of fields Ε and Η that a r e constant (in t ime
and in space), an exact solution of the problem is p o s -
sible; it was obtained by Schwinger U 7 ] for sca lar and
spinor electrodynamics and in t l 8 : l for charged vector
bosons with a gyromagnetic rat io g = 2. In par t icular ,
the following expression was obtained in these papers
for the pair-production probability in a constant e lec-
t r ic field E:

(see also C 3 4 : ) . Here R = c = 1, s and m a r e the spin and
m a s s of the par t ic le s produced by the field E, βΤί = (— I ) 1 1 " 1

for bosons and j3n = 1 for fermions; the probability w is
measured in units of m4c5/h"4 (which corresponds to the
number of p a i r s produced in the volume (K/mc)3 after a
t ime K/mc2). The argument of the exponential in (1.9)
is of the form n ^ E c / E , where E c = m V / e K = 1.3 x i o l e

V/cm for e lectrons (since E c ~ m 2 , the character i s t ic
intensity E c for other charged par t ic les is even la rger ) .
So long as Ε < E c , the probability w is exponentially
small and its suffices to retain in the sum (1.9) the first
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term with η = 1, corresponding to the quasiclassical ap-
proximation.*

Pair production ceases to be a small effect at Ε ~ E c .
We note now that in the Coulomb field of the nucleus Ζ
the intensity Ε = Ze/r2 Is comparable with E c when r
~ r c = £1/2K/mc, with | V(r c ) | = £ 1 / 2 mc 2 . At m = m e and
ζ > 1, there is a region r i r c near the nucleus, in which
pair production is possible (in this case the static field
must satisfy the condition |V(r)| > 2m ec

2), after which
the electron is bound to the nucleus, and the positron
goes off to infinity through the Coulomb barrier. This
intuitive (albeit not rigorous) reasoning establishes the
connection between the phenomena in the Coulomb field
at Ζ > Z c and the Schwinger formula (1.9). Of course,
one cannot expect here literal coincidence of the formu-
las for the probability w, since (1.9) is valid only for a
homogeneous field, and the Coulomb field is strongly in-
homogeneous at small distances.

In concluding the introductory "bibliographic" part
of the review, we wish to say a few words concerning
the estimate of the position occupied by this phenome-
non in science. Views are sometimes expressed, that
sciences can be classified in accordance with the scale
of the phenomena investigated in them. In this case,
priority goes immediately to the astronomers, who study
explosions of stars, bursts of quasars, and the "big-
bang" expansion of the universe as a whole.

The progress in astrophysics, however, would be
impossible without the development of the theory of ele-
mentary particles, which is of tremendous cognitive
significance, and furthermore, without explaining the
fundamental processes in this theory it is impossible
to make progress also in other branches of science.
There is no doubt that a clear and thorough understand-
ing of all the details of polarization of vacuum and pair
production is a necessary albeit partial stage in the de-
velopment of the theory of elementary particles.

It is curious that the correct answer to the question
of the significance of the theory of the structure of mat-
ter was given half a century ago by Russian poets.

Recently, it became fashionable to contrast physi-
cists and lyricists. That the artist has lost close con-
tact with scientific progress is clearly evident. Yet at
one time, in the 20's the theory of relativity and the
structure of the atom have greatly inspired the imagi-
nation of all thinking persons. Valerii Bryusov in me-
tered verse drew a picture of the planetary system of
the atom/ 3 7 1 anticipating certain modern ideas concern-
ing the structure of particles. But an even more re-
markable awareness of the close connection between
the theory of the microworld and the cosmos is ex-
pressed in a two-line poem of Velemir Khlebnikov:

The host of heaven is far, powerful, and mighty,
but to understand it, know the atom's constitution. 1"

*In this case it is possible to develop a quasiclassical method of cal-
culating w, connected with the calculation of the action S along the
sub-barrier trajectories with imaginary time [3S]. This method is effective
for a large class of time-variable fields. For certain fields of special form,
an exact solution of the Dirac equation was recently obtained and exact
formulas were derived for the probability w [19·36].

t Researches by Ya. B. Zel'dovich.

2. LEVELS OF SINGLE-PARTICLE DIRAC EQUATION

2.1. As is well known, C 5 ' l 3 ] the Dirac equation for an
electron in the Coulomb field of a point-like charge Ze
can be solved exactly, and the level energies are equal
to

r.eni= 1 -1- (2.1)

here ζ = Ζα = Ζ/137, η is the principal quantum number
(n = 1, 2, 3, . . .) and — κ is the eigenvalue of the Dirac
operator Κ = β (1 · σ+ 1), which is the integral of motion
in any field with spherical symmetry:*

for j = l±i/2. (2.2)

For light atoms, formula (2.1) can be expanded in
powers of f2:

(2.3)

In the nonre lat i v i s t ic approximation (£ <C 1), E n j d o e s

not depend on j and (2.3) g o e s over into the ordinary e x -

p r e s s i o n for the s p e c t r u m of the hydrogen a t o m : E n

= — £2/2n2. The level En has here a degeneracy multipli-
city 2n2 (j = ya, % , . . . , (n-1)/2, and the number κ as-
sumes values κ = ±1, ± 2 , . . . , ±(n— 1), —n).

We shall be interested, however, in the opposite case
of large Z, when ξ ~ 1. Formula (2.1) remains mean-
ingful so long as ξ < \ κ\ = j + ya. As ζ — | κ\, it ac-
quires a root singularity

(2.4)

where Ν = Vn2 — 2 | κ |η + 2κ2, η > |κ | . Further contin-
uation of (2.1) into the region ζ > | « | causes the energy
enj to become complex, which is physically meaningless
(for the states of the discrete spectrum in the single-
electron problem!).

This difficulty is explained by the fact that the effec-
tive potential U(r), which arises when the Dirac equation
is squared, behaves for a Coulomb field V(r) = — ξ/r as
r -— 0 in a singular manner: U(r) « (j (j + 1) — £2)r~2,
i.e., the so-called "falling to the center" appears when
S > j + 'Λ·"8"403 In this case, to determine the level en-
ergies, it does not suffice to specify the potential V(r)
at 0 < r < «>, but it is also necessary to impose a bound-
ary condition at zero; only then does the problem be-
come mathematically correct (for details see CS8»*°3.)

2.2. The assumption that the Coulomb potential be-
comes infinite at r = 0 is an idealization. Actually, for
various reasons (finite dimensions of the nucleus, po-
larization of vacuum, etc.), the formula V(r) = - ζ/τ
becomes modified in some manner or another when r
— 0. However, so long as ζ < j + %, the level energy
e depends little on the concrete form of V(r) at small r,
and it is therefore permissible to go to the limit of a
point Coulomb field. On the other hand, if ζ >: j + l/2,

*We recall that for a relativistic electron in a field V(r), only the
total angular momentum j = 1 + σ/2 is conserved, and the orbital angu-
lar momentum 1 has no definite value. By / and I' we shall denote the
orbital angular momenta corresponding to the upper and lower compo-
nents of the Dirac bispinor (/ + /' = 2j). States having the same j but dif-
ferent signs of κ have different parity [ 1 3 · 1 4 ] .
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then the dependence of € on the type of cutoff of V(r)
becomes significant, a feature characteristic of all
problems with "falling to the center."

In the region £ ss j + % it is necessary to cut off
the potential of the point-like charge and make it finite
at zero:

for r>B,

for
(2.5)

From the mathematical point of view, such a proce-
dure is a regularization that makes the problem unique,
and from the physical point it takes into account the
finite dimensions of the nuclei.

The form of the cutoff function at f(x) depends on the
distribution of the electric charge over the volume of
the nucleus (x = r/R, 0 < χ < 1, with f(l) = 1). Thus,
f(x) = (3 — x2)/2 corresponds to a constant volume den-
sity of the charge, and the simplest choice f(x) = 1 cor-
responds to concentrating the entire charge on the sur-
face of the nucleus.

Such a formulation of the problem is due to Pomer-
anchuk and Smorodinskii,t83 who gave a (qualitatively)
correct description of the phenomena at Z » 137,
namely, with increasing Ζ the levels continue to drop,
until the lower level of the discrete spectrum lS 1 / 2

reaches the boundary e = — 1 at a certain "cr i t ica l"
Ζ = Z c >137.

We shall show first that any cutoff of the potential
V(r) eliminates singularities of the type (1.1) at the en-
ergies en j, and that the curve of the level e = e(£) con-
tinues smoothly to e = — 1.

This property of the solutions of the Dirac equation
is valid not only for the potential (2.5), but also in the
general case. Indeed, let us consider an arbitrary at-
traction potential V(r) = -£v(r), where v(r) > 0 is a
fixed function of r, and let us vary the coupling constant
ζ. With respect to v(r) we assume, first, that it is
bounded, i.e., max v(r) < C, where C is assumed con-

o<r<°°
stant, and second that v(r) —· 0 as r —· °°. Assume that
at a certain value of £ there is a bound level with en-
ergy e and wave functions G = G(r; f) and F = F(r; £)·
Here and below G = rg(r) and F = rf(r), while g(r) and
f(r) are radial functions for the upper and lower bi-
spinor components defined in accordance with C1S]. The
normalization condition is

f (G2 -!- F>) dr = f (?

2 + /*) r*dr = 1. (2.6)

After calculating by perturbation theory the change of
the level energy following an infinitesimally small deep-
ening of the well, we get

(2.7)

(this formula i s e x a c t if G and F a r e the e x a c t wave
functions of the l e v e l with e n e r g y e). Since 0 s v ( r )
< C, we get

- C < g < 0 . (2.8)

This m e a n s that any l e v e l drops monoton ica l ly with
increasing coupling constant ζ, and the e = e(f) curve

has no singularities (the derivative 3e/3f is finite
everywhere). Consequently, it cannot be cut off (like
(1.1) or (2.1)) without reaching the limit e = - 1 of the
lower continuum.*

We note that the situation is not so simple for other
relativistic wave equations (with the exception of the
Dirac equation)—see Sec. 5.

2.3. We proceed to a more detailed study of the be-
havior of the level and of the properties of the wave
functions near e = — 1. To this end, it is convenient to
reduce the system of equations for the functions G and
F

dG
dr '

(2.9)

to a single second-order equation having formally the
same form as the nonrelativistic Schrodinger equation
(with a certain effective potential). To this end we
eliminate from (2.9) the function F:

and then, using the substitution G(r) = [1 + e - V(r)] I / 2

x χ(τ), we reduce (2.10) to the self-adjoint form

X ' T * ! « X - 0 ; (2.11)

here k2(r) = 2(E- U), Ε = (e2 -1)/2, and it is convenient
to break up the effective potential U(r) into two parts,
U = Ui + U2, where Ui coincides with the effective poten-
tial in the Klein-Gordon equation t

(2.12)

and U 2 i s due to spin e f f e c t s :

/-(1 + e —Γ) / ·

This expression becomes much simpler at e = - 1 . For
a qualitative analysis we can confine ourselves to this
case, for when e is close to — 1 the dependence of U2 on
e is weak (for an attraction potential V(r) s 0 the de-
nominator 1 + e — V never vanishes, so that we can go
through the boundary e = — 1). We put also κ = — 1, cor-
responding to the ground state (in this case the centrif-
ugal barrier in Uj(r) vanishes). Then (e = κ = - 1 )

u. (2.14)

where u(r) = V '/2V (the potent ia l s U and V a r e m e a s u r e d
in units of m e c ). At s m a l l d i s t a n c e s , the r e l a t i v i s t i c
t e r m - V 2 /2 p r e d o m i n a t e s in U x (r ) and l e a d s to a t t r a c -
t ion ( r e g a r d l e s s of the s ign of the init ial potential V).
On the other hand, a s r — °° we have U x (r) « eV(r),
i .e . , the s ign of the " t a i l " of the ef fect ive potential i s
i t se l f dependent on the s ign of e. In part icular, if V(r)
< 0 and e < 0, then U x (r) at l a r g e d i s t a n c e s c o r r e s p o n d s
to repu ls ion. It i s s e e n f rom (2.14) that Ui has a m a x i -
mum of height m e c 2 / 2 at the s a m e point r = r m where

*In the case of a point-like charge we have, in accordance with (1.1),
3e,/df = -°°at ? = 1. This also agrees with (2.7) if it is recognized that
here v(r) = r"1, and the functions G and F at f = 1 are finite at zero (for
the ground state at f = 1 we have g = -f = e"r/r, i.e., the radial functions
g(r) and f(r) become singular at the point r = 0). Any cutoff of the poten-
tial V(r) = -f/r a s r ^ O eliminates this singularity and makes 3e,/3f finite.

t\Ve note that κ(κ+ I) = 1(1+ 1), i.e., U,(r) includes the centrifugal
energy /(/ + l)/2r2. It is important that in the nonrelativistic problem
(2.11) the values e « -1 correspond to energies Ε close to zero.
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FIG. 2. The potential V(r) and the
effective potential U(r) for the Cou-
lomb problem at Ζ -* Z c and e = - 1 .

V ( r m ) = - 1 , and that at V(ro) = - 2 we have U^ro) = 0.

We a r r i v e at the conc lus ion that at e f» — 1, in an e f fec-

t ive potent ia l U(r), unlike in V(r), there i s a suff iciently

high potent ia l b a r r i e r . Th i s c o n c l u s i o n r e m a i n s the

s a m e a l s o if the sp in t e r m U 2 i s taken into account.

Thus, in the case of a Coulomb field V(r) = - ζ/τ we
obtain

U(r)-,Ut
(2.15)

where η = ζ2 — κ2 + (1/4). To obtain more accurate re-
sults at small r, we add to U(r) also the term l/8r 2

(this is a correction well known from the quasiclassi-
cal theory," 9 1 due to Langer" 1 ' 4 2 1, and reduces to a
replacement of j(j + 1) by (j + %)2), after which we have
η = ζ2 — κ2. The connection between the potentials V and
U is shown in Fig. 2. At the point where U(r) has a max-
imum we have

r = r m = ^ i , c/m a x = > £ - i r > 4 (for;>x). (2.16)

Other characteristic points (see Fig. 2) are r 0 = r m / 2
and r t = r m / 4 . In the region r < r , we have U < V, i.e.,
the effective potential U(r) corresponds to a deeper well
than V(r). For κ = - 1 (ground state) and £ = 1.25 (the
real value of tc for a nucleus with radius R ~ 10"12 cm)
we obtain r m = 0.45K/mec = 1.7 χ 10"11 cm and U m a x

= 1.4mec
2.

Thus, for an electron in a state with energy e » - 1
there is a broad Coulomb barrier, the penetrability of
which is exponentially small as e — - 1 . This circum-
stance is important for everything that follows. The
wave function with energy e has an asymptotic form
(r — «)

/"(;•)« —4i/T^ee-*V*trt· (2.17)

(λ = VI — e 2 ; the constant A is determined from the
normalization). The factor r e £ A is due to the Coulomb
interaction of the electron with the nucleus, which
greatly distorts the wave function at large distances.
As e — +1 there is no barrier in U(r), ef/λ -—+«>, and
the maximum G2(r) + F2(r) goes off to large distances —
delocalization of the bound state takes place. Such a be-
havior of the states adjacent to the edge of the continu-
ous spectrum is well known from nonrelativistic quan-
tum mechanics.* As e — — 1 , an entirely different pic-
ture is produced, namely, e£/X — - », the factor r e f A
decreases more rapidly than any finite power of r, and

*For example, for a hydrogen atom in a state with principal quan-
tum number n we have Xn/(r) ~ e ' r / n r n as r -»•«>, i.e., the average radius
is r ~ n 2 .

the e l e c t r o n r e m a i n s l o c a l i z e d near the n u c l e u s . The

asymptot ic form of the wave functions in the c a s e e

= — 1 can be obtained from the fol lowing c o n s i d e r a t i o n s .

If U(r) = ζ/τ as r — °° (with ζ > 0), then the Schrodinger
equation has a solution that decreases at infinity, in the
form

X(r)~r»/4e-̂ 8Tr. (2.18)

On the other hand, to change over from the system (2.9)
to the SchrSdinger equation (2.11) in the case e = — 1 it
is necessary to make the substitution

It fo l lows there fore that for e = — 1 and r — °°

I2r\ 1/4I -ir I e~ (2.19)

We call attention to the behavior of the wave func-
tions, namely, G, F oc exp (- V 8£r ). This decrease of
G and F is none other than the damping under the Cou-
lomb barrier. We emphasize the difference between
the asymptotic form of (2.19) and the usual exponential
χ cc β" λ Γ which is valid for the indicated states in the
short-range potential (here λ = V—2E ). In the latter
case, at Ε — 0, delocalization is inevitable, whereas in
our problem, owing to the Coulomb barrier in U(r) the
wave functions at e = — 1 attenuate at infinity, although
in this case Ε = (e2 - l)/2 = 0 and λ = 0.

On the boundary of the upper continuum (e = +1) the
asymptotic behavior of the two functions is as follows:

δ),

F(r (2.20)

By virtue of the continuity it is clear that in the con-
tinuous spectrum the functions with energy ±e should
differ strongly from one another, particularly as | e|
-* 1. In the quasiclassical approximation

G, where (2.21)

When e > 1, we have p2(r) > 0 and the functions G and
F oscillate at all r. On the other hand, if e < - 1 , then
there is a turning point rn = 2 | e | t/(c2 - 1), which lies
far from the nucleus at values of e close to — 1. In the
classically-forbidden region r < rn the wave functions
contain, generally speaking, two exponentials exp (±V8£r),
and the oscillations* described are the asymptotic for-
mula (2.17) set in only at r > rn. An approximate form
of the wave functions near e = — 1 is shown in Fig. 3.

2.4. Having explained the quantitative aspects, we
now proceed to an exact solution of the problem. We
confine ourselves to a presentation of the main formu-
las, and refer the reader to tl0"12:l for mathematical
details.

In a field V(r) = - ζ/τ, Eqs. (2.9) for the functions G
and F can be solved exactly. The solution has a partic-
ularly simple form at e = — 1:

G (r) = Ktv (VSLr), ) = ±- (rG' -f xG); (2.22)

*When e < - l we have λ = ±ip = ± i i / e 2 - l and formula (2.17) takes
the form G, Fcoexp {±i(pr + e?/p In 2pr)}.
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FIG. 3. The wave function G(r) at e = -1 (f = fc = 1.25). The char-
acteristic distances (in units of h/mec are: R = 0.03 is the nuclear radius,
r0 = 0.225 is the radius of the well in the effective potential (2.15), and
f = 0.31 is the average radius of the given state.

here ν = 2V£ 2 -/c 2 , K ^ is a Macdonald function with
imaginary index (it is tabulated in i*3'1). The function
Ki[,(x) is rea l for rea l values of ν and χ and is even in
the index ν; it can be defined by the integral

Κ ι. ) ~ \ e~x c h ' cos \t at. (2.23)

which converges rapidly and is convenient for numerical
calculations. As χ — °°, the function Κί^,(χ) d e c r e a s e s
exponentially:

and as χ — 0 it has an infinite number of oscil lations

(2.25)

The solution (2.22) for the potential (2.5) is suitable
in the ent i re region r > R. In the internal region r < R
we can use the smal lness of the nuclear radius R com-
pared with the Compton wavelength of the e lectron.*
Changing over in (2.9) to the dimensionless variable χ
= r / R and discarding t e r m s of order R, we obtain

h e r e f(x) a r e cutoff functions from (2.5). At an arb i t rary
form of f(x), t h e s e equat ions can be s o l v e d numer ica l ly . t
To d e t e r m i n e the l e v e l s p e c t r u m and £ c it suf f ices to
obtain f rom (2.26) only one constant which we shal l
c h o o s e to be the logar i thmic der ivat ive of the function
G(r) at the edge of the n u c l e u s :

The quantity ξ depends on ζ, κ, and on the form of the
cutoff f(x) (but does not depend on the energy, as a r e -
sult of the approximation R <§T 1). For a rectangular
cutoff (i.e., f(x) = 1), the solution can be obtained ana-
lytically

for x - - l ,

The dependence of ξ on £ for two cutoff models is
shown in Fig. 4. Model I corresponds to f(x) = 1 (the

"Thus, for example, a radius R = 1.2 X 10"12 cm corresponds to R
0.03 (in units of h/mec).

t Actually, for a numerical calculation it is convenient to reduce
(2.26) to a single first-order equation (but a nonlinear one) (see Eq.

1 0

FIG. 4. Dependence of ξ on
f =Z/137. 1—IS level, cutoff
model I; 2-1S level, model II; 3 -
2Py2 level, model II.

W

0,5

entire charge is on the surface of the nucleus) and
model II corresponds to a uniform distribution of the
charge over the volume of the nucleus. With increasing
ξ, the p a r a m e t e r ξ always d e c r e a s e s , with ξ+(£) > ξ_(£).

Matching of the solutions on the edge of the nucleus
yields a transcendental equation for the cr i t ica l charge

"C ~~ *>C

ζ 4 ^ = 2ξ, (2.28)

where ν = 2VS2. - 1 , ζ = V8f cR and ξ = £(£ c ) . We have
put here κ 2 = 1, for in all other s tates , with the exception
of nS!/ 2 and n P 1 / 2 , the values of £ c a r e too large and at
ζ < 2 we can use for them formula (2.1), which per ta ins
to a point Coulomb field.

Let us investigate (2.28) qualitatively. The function
ψ,,(ζ) = zKij,(z)/Ki;,(z) is shown in Fig. 5, together with
a graphic solution of Eq. (2.28), which yields an infinite
sequence of roots ζ = ζ * (η = 1, 2 , . . . ) . The ground level
IS corresponds (at given R) to a minimal £ c , which is
equivalent to a maximum root Z\ (at fixed ζ). The r e -
maining roots z n , η > 2, correspond to those values of
ζ, at which the level n S 1 / 2 reaches the limit of the lower
continuum. The roots z n corresponding to ξ+ yield fc

for the levels n P 1 / i 2 . It can be shown that | + > ξ_ (see
Fig. 4); therefore the roots a r e arranged in the s e -

quence z x
It follows therefore that

(2.26) at a specified nuclear radius R the values of Z c for
s tates with j = % lie in the following o r d e r : l S 1 / 2 , 2 P 1 / 2 ,
3S l/2, 3Pjy2, . . . .

These conclusions a re fully confirmed by the n u m e r i -
cal solution of Eq. (2.28), the resu l t s of which a r e shown
in Fig. 6. Calculations of £ c were c a r r i e d out for two
cutoff models (models I and II, see above). The t r a n s i -
tion from model I to model Π increases the maximum
value of the potential V(0) at the same radius R by a
factor 1.5, as a resul t of which £ c d e c r e a s e s . However,
as seen from the figure, this decrease is smal l . If we
extrapolate into the region Ζ > 137 the relation R
= r 0 A 1 / 3 , assuming (as for heavy nuclei) that A = 2.5Ζ
and r 0 = 1.1F, and use model II, then we obtain* £ c

= 1.25 and Z c = 1.25 and Z c = 170 (for the lower l S 1 / 2

level). For the closest next s tates 2 P 1 / 2 and 2S 1 / 2 , the
values of Z c a r e 185 and 220, respectively. These val-
ues of Z c a r e quite stable against var iat ions of the r a -
dius R and of the form of the cutoff function f(r/R), as
follows from a comparison of curves I and II in Fig. 6.

We note that the " r a n d o m " degeneracy of the states
with respect to the sign of κ (see formula (2.1), which
contains only \κ\), which is character i s t ic of the Cou-
lomb field, is lifted when £ > 1. This is not surpris ing,

*The values of Z c are also given with good accuracy by the WKB
method I 4 4 ] .
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FIG. 5. Graphic solution of Eq. (2.28). The roots ẑ  correspond to
the levels nSi^K = -1) and the roots z* to the levels ηΡι^ (κ = +1).

since the potential V(r) in the region r < R differs in
principle from the " p u r e " Coulomb potential, and at
t > 1 the region of smal l r becomes significant (for
s tates with j = %).

2.5. Thus, the cr i t ica l charge of the nucleus Z c for
any cutoff model can be calculated relatively simply.
It is more difficult to obtain an idea of the character of
the ent ire d i screte spectrum at Ζ > 137, since the exact
express ions for the wave functions at € * ±1 contain
Whlttaker functions and a r e quite cumbersome.* To
simplify the situation, we assume that R — 0; then a
" l a rge logar i thm"

A = m - L > l (2.29)

appears in the problem. Although numerically at R
~ 10"12 cm the pa ramete r A is sti l l not very large
(A = 3.5), to obtain a qualitative picture of the level
motion such an approximation is sufficient.* We p r e -
sent f i rs t of all consideration favoring the fact that the
small pa rame te r in this problem is indeed A"1.

1) Let f i rs t ζ < 1. In the field of a point-like charge
Ze the energy for the ground state is c = e x = V I - £ 2 ,
and the wave functions a r e

F(r)=- j ;G(r) (2.30)

(the constant A is determined from the condition for the
normalization of (2.6) and is equal to A

2 y ) , y =
Calculating the level shift due to the cutoff of the po-

tential in (2.5) by perturbation theory, we obtain (at R

« 0

The c o r r e c t i o n Ae c e a s e s to be s m a l l when R2!>/

= exp (- 2yA) becomes of the order 1, i .e., at (1 - ξ)
~ A'2.

2) Let us es t imate the energy of the ground state at
ζ = 1 (such a value of ? is cr i t ical for a point-like
charge). In this case the functions G and F have a loga-

* See formulas (12)—(14) of [1 0]. An equation determining the level
energy for model I is given in [1 0], and in the case of arbitrary cutoff in
["].

tA numerical calculation of the level motion was carried out in [4 5].
The values of Zc obtained therein are in good agreement with those
calculated from (2.28).

IS

FIG. 6. Critical charge of the nucleus (fc = Zc/137) for the first
level with angular momentum j = 1/2. The numbers I and II at the
curves correspond to the cutoff models I and II (see the text).

r l thmic singularity at z e r o : G(r)
— 0, whence

r e = 1 + e In r as r

(Λ + ξ - (2.32)

Since Λ > 1 and ξ = 0(1], it follows that e t ~ A"1 at
ξ = 1. The difference from the value e l = 0, which c o r -
responds to a point-like charge, is quite appreciable.
Thus, a numerical ca lculat ion^· 1 for R = 10.2F yielded
ex = 0.238, which agrees well with the foregoing es t i -
mate .

3) At ζ > 1 the wave functions for the problem with
the point Coulomb potential have at zero a singularity
character i s t ic of the "falling to the c e n t e r " :

G, F c/3 sin(glnr),
0)

(2.33)

where g = Vf2 — 1 .

Since the wave function of the ground s tate has no
nodes, the l S 1 / 2 level can exist only when gA < π. The
maximum possible values of g and £ correspond to van-
ishing of this level in the lower continuum:

1X2 (2.34)

It is c lear from the foregoing that the p a r a m e t e r A
determines both the width of that region about the point
ξ = 1 in which allowance for the finite dimensions of the
nucleus is essential, as well as the dependence e = e(f)
itself in this region.

Let us determine the type of the wave functions near
ζ = 1 (we confine ourselves for simplicity to the ground
state). By analogy with (2.30) we put

' '

(p = 2\r, λ = VI — e 2 , e, g — 0; we c a r r y out the calcu-
lations accurate to t e r m s quadratic in e and g). Substi-
tution of the expansions (2.35) in (2.9) yields equations



E L E C T R O N S T R U C T U R E OF SUPERHEAVY ATOMS 633

for the correc t ions ^ and | 2 , and their solution (which
d e c r e a s e s at infinite) is of the form 1 1 2 1

(2.35')

(here ξ 1 ) 2 κ In 2 p/2 as ρ — 0).
In the region of r such that r « l and g In (1/r) <C 1

we have

; l + e l n r —-5-| (2.36)

On the other hand, when r ~ R we have G(r)
= C sin (g In r + j3).

The phase β i s determined from the condition of
matching on the boundary of the nucleus:

fi = gA + sxgtg(g/l)(zgA ( f o r A » l ) .

In the region R < r < 1 we therefore obtain G(r)
= C sin β(1 + g cot β In r ) , which should coincide with
(2.36). This yields

(2.37)

(g = V£2 - 1 ). Unlike (1.1), this expression has no sin-
gularity at £ = 1. At ζ < 1 it i s necessary to replace g
by i y :

, = 7cthAV (2.37')

In the region ξ < 1, the function coth Ay tends r a p -
idly to unity and already at (1 — £)Λ 2 £, 1 the energy e x

pract ical ly coincides with (1.1) and does not depend on
the cutoff of V(r) inside the nucleus (Fig. 7). At ζ > 1,
the function (2.37) has a fictitious pole at g = g c = π/Λ.
In fact, of course, e = - 1 at £ = £ c , and not at - °°. The
point is that the approximate expansions (2.35) cease to
valid when e is not smal l . Taking (2.37) into account we
obtain for the coefficient in front of the correct ion t e r m s

(2.35)

for ζ < ΐ ,

As ξ —- t c , w e n a v e ( e 2 + g2) ~~* °°> a n d therefore the
expansion (2.35) becomes meaningless . The functions
G and F a r e then no longer close to (2.30). For exam-
ple, at ζ = 1 for

if = 0,
-V2rKl(\f8r)}, if ε = - 1

(2.38)

(here c 2 = 1 2 / 5 ; the functions G and F a r e n o r m a l i z e d
in a c c o r d a n c e with (2.6)).

A more thorough investigation shows that near ζ
= fc there is a narrow region (£c - £) ~ Λ"3, in which
formula (2.37) for ex(£) is not valid. We shall not pre-
sent here the corresponding expression for the energy
ex of the level (it can be found in C 1 2 ] ) . We shall only
indicate that at ζ = fc the level lS 1 / 2 does not cling to
the boundary e = 1, but enters into the lower continuum,
having a finite derivative 3e/3£:

e , (£)=-i+- |Hr(k-£). (2.39)

A similar behavior is exhibited also by all the re-

FIG. 7. Energy of ground state IS near Ζ = 137. Curves 1-4 cor-
respond t o A = 3.5, 5, 10 and °° (cutoff radius R = 12, 2.6, 0.18 F and
R= 0, respectively).

maining l e v e l s of the d i s c r e t e s p e c t r u m . Thus, for the
e x c i t e d s t a t e s n S ^ and n P 1 / 2 we have

(2.40)

Although a t n > l these s tates lie already in the non-
relat ivist ic region e « + 1 , they a r e also sensitive to the
cutoff of the Coulomb potential at short dis tances. Since
e n + 1 — e n ~ n"3, the shift of the level e n a s a resul t of
the finite dimensions of the nucleus is much smal ler
than the distance between the neighboring levels, so
long as gA < π. On the other hand, when g — g c = ττ/Λ,
the energies e n vary rapidly with increasing ζ. As ζ
= fc the levels l S 1 / 2 and 2 P 1 / 2 go over into the lower
continuum,*and for the remaining s tates with j = %
the picture is the same as if the principal quantum num-
ber η were to be decreased by unity (see Fig. lb) . With
further increase of ζ, these phenomena repeat . The
cr i t ica l values £c f ° r the levels n S l / 2 and n P x / 2 a r e
equal to, accurate to t e r m s ~A~3,

t'J" = l ·<-1^ (g'cm - - f - ) , (2.41)

i.e., they increase rapidly with increasing n.
2.6. Let us dwell also on the question of the dimen-

sions of the bound s tate . We take the lower level IS. So
long as £ < 1, we can use the wave functions (2.30) for a
point Coulomb potential, which yields

(2.42)

Calculation of f for ζ > 1 becomes much more com-
plicated. We therefore present only the final result. c l 0 ]

At e = - 1 (Z = Zc) we have for κ = - 1

0.3£g) (2.43)

In accordance with the statement made above (see for-
mulas (2.17) and (2.19), the average radius f at e = — 1
remains finite (thus, at £ c = 1.25 we get r = 0.3), i.e.,
the bound state is not delocalized as Ζ — Z c . This oc-
curs in spite of the fact that the exponential exp (— Xr),
which leads to the damping of φ (r) as r — °° for bound

*In the asymptotic formulas (2.37) and (2.40) we have left out
terms of the order of unity compared with Λ. In this approximation,
the energy e n does not depend on the form of the cutoff of the poten-
tial inside the nucleus (all that matters is the cutoff radius R), and the
values of Q n ) for the levels nS,/2 and nP,/2 coincide (in fact, Hf c ~ A"3

for these states).
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FIG. 8. Average radius r for the ground state in the Coulomb field
(2.5) in the case Λ > 1. Curves 1 and 2 correspond to particles with spin
s = 1/2 and 0. Fis measured in units of h/mc.

FIG. 9. Average radius r of the ground state 1S at e = - 1 , and well
radius r 0 in the effective potential U(r).

s t a t e s in ord inary a t o m s , i s not e f fect ive in th is c a s e
(λ = V l - e 2 = 0 at e = - 1 ) . The reason for the localiza-
bility of the wave functions at ζ = £c and e = - 1 is the
Coulomb barrier in the effective potential U(r). Fig-
ure 8, which is taken from t w l , shows how the average
radius of the ground state IS varies when the level deep-
ens from e = l t o e = - l . A comparison of r with the
well radius r 0 = (£2 - l)/2£ in U(r) is shown in Fig. 9,
from which it is seen that at e = — 1 the electron spends
a considerable fraction of the time under the barrier,
i.e., in the classically inaccessible region (r > r 0 ).

The analytic expressions for r in the intermediate
region 1 < ζ < £ c are very cumbersome,"0 3 but do not
lead to anything unexpected. As ζ increases from 1 to
£ c , the bound state of the electron continues to contract
(see Fig. 8), and the point ζ = tc itself is not a singular-
ity for the function r = r(£).

The other characteristics of the level, for example
the magnetic moment, behave in similar fashion. [47]

3. PERTURBATION OF CONTINUOUS SPECTRUM
BY A NEARBY LEVEL

To understand the situation at Ζ > ZC ) it is necessary
to determine first what happens to the wave functions of
the continuous spectrum when a discrete level approaches
this spectrum. This question, which is of interest in it-
self, will be analyzed first using nonrelativistic quantum
mechanics as an example.

3.1. If the system has a level (real or virtual) with
low energy, then the wave functions X]j(r) of the continu-
ous spectrum should experience a certain perturbation
as k — 0 (k is the momentum, and the point k = 0 corre-
sponds to the boundary of the continuous spectrum).
This question was considered by Zel'dovich and Rabino-
vich [2c: l as applied to a degenerate Fermi gas,* and was
investigated recently in detail in I 2 3> 2 4 ].

The result of t 2 0 ] reduces intuitively to the fact that
the entire aggregate of the levels below a given energy
€f (i.e., the aggregate of electrons filling the levels be-
low the Fermi boundary) constitutes an entity, perturba-
tion of which occurs near the boundary e = ef. The dis-
tribution of the total electron density in coordinate space

r e m a i n s unchanged when var iat ion of the potential re l ie f
(of the function V(r)) g i v e s r i s e to the appearance or to
the vanishing of l e v e l s of the d i s c r e t e s p e c t r u m . But
th i s i s p o s s i b l e only when the appearance or vanishing
of the d i s c r e t e l e v e l i s accompanied by a rea l ignment
of the wave functions of the continuous s p e c t r u m , which
c a n c e l s the contribution of th i s l e v e l . We now formulate
th i s r e su l t m o r e accurate ly .

F ir s t , it i s e a s y to obtain an integra l c h a r a c t e r i s t i c
of the perturbation of the functions Xk(r). T O t h i s end,
following c2o], we use the completeness theorem. Let ν
be a quantity determining the depth of the potential, *
and let the first bound level arise at ν = v c . Writing
down the completeness relation for v t < v c and v2 > v c

'; yf) = 6(r-r ' ) ,

Xo(r)Xo(r')+ j dk%i(r; υ,) χ,, (r'; w2) = 6 ( r - r '),

subtracting one equation from the other, and then putting

r ' = r, we obtain

) = ]dk{\Xk(r; *,) | 2-1
ο

(3.1)

h e r e xi^(r) a r e t h e w a v e f u n c t i o n s w i t h o r b i t a l a n g u l a r
m o m e n t u m I n o r m a l i z e d t o 6 ( k — k ' ) :

Xk(r) « y — sin \kr γ+ 6J , W · ^ ;

δ = 6;(k) is the scattering phase. The wave function of
the level xo(r) corresponds to the usual normalization
of the discrete spectrum (at ν > v c)

]%l{r)dr=i. (3.3)
ο

L e t u s s e e n o w w h a t h a p p e n s t o ( 3 . 1 ) a s v 2 — v c a n d

w h e n r i s f i x e d .

It i s n e c e s s a r y t o d i s t i n g u i s h h e r e b e t w e e n t w o c a s e s ,

d e p e n d i n g o n t h e b e h a v i o r o f t h e p o t e n t i a l V ( r ) a s r — °°.

If / = 0 a n d V ( r ) < 0 a t s u f f i c i e n t l y l a r g e r ( t h e c a s e o f

a t t r a c t i o n ) , o r e l s e if t h e s i g n o f V ( r ) i s a r b i t r a r y , b u t

l i m r V f r ) = 0, t h e n d e l o c a l i z a t i o n o f t h e w a v e f u n c t i o n

of the bound state takes place: xo(r) ~ ν ^ ε " λ Γ , and
λ — 0 as v2 — v c . In this case the bound state "swells
up" and the wave function xo(r) at the instant of vanish-
ing of the level can no longer be normalized in accor-
dance with (3.3). As the normalization condition we can
choose here

Hmx.(r, = l. (3.4)

On the other hand, if V(r) has at infinity a barrier of
the Coulomb type,

(ζ>0, ( 3 . 5 )

(and a l s o i n t h e c a s e I > 1, w h e n t h e r e i s a c e n t r i f u g a l
b a r r i e r I (I + l ) / 2 r 2 ) , t h e n t h e f u n c t i o n x o ( r ) = x c ( r ) d e -
c r e a s e s r a p i d l y a s r — °° a t t h e i n s t a n t of o c c u r r e n c e
of t h e l e v e l (v = Vc) , a n d t h e r e f o r e t h e n o r m a l i z a t i o n

*See also [ 2 2 ] , p. 205. A mathematical justification for the results
obtained in [ 2 0 ] is given in [ 2 1 ] .

*See, for example, formula (2.5), where the parameter ν coincides
with ζ. For what follows, however, it is not at all necessary that ν enter
in V(r) only as a common factor.
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- Γ " * .

( 3 . 3 ) r e m a i n s i n f o r c e f o r i t . F o r e x a m p l e , in t h e c a s e

of g r e a t e s t p h y s i c a l i n t e r e s t , t h a t of a C o u l o m b " t a i l "

(V(r) « ζ/τ (ζ > 0), we have

Xc(r)~A(r/2t)l">e-V1^, (3.6)

and if l im r'Vfr) = 0 but I > 1, then x ) n ) ( r )

There exists h e r e a l imit l im x_(r; v) = x-(r), and
v-*vc

at the instant when the level appears the function x c ( r )
is square-integrable.

Different behaviors of the wave function x c ( r ) as
r -* °o corresponds also as a different course of the en-
ergy of the level e as a function of the p a r a m e t e r ν that
determines the depth of the well. It is obvious that the
derivative de/dv is proportional to the probability that
the par t ic le will stay inside the well, i.e., to the quan-

R
tity / x 2 ( r ) d r (for details see C 2 2 ] , p . 20). In the deuteron

case, owing to delocalization, we have x 2(r) ~
so that de/dv ~ V- e and therefore e = - c ( v - v c

where c > 0 is a cer ta in constant. The curve e = e(v)
touches the abscissa axis at ν = v c , and the level deep-
ens in proportion to the square of ν — v c .

In the case of a potential with a Coulomb b a r r i e r , the
derivative 3e/Sv is finite at ν = v c and therefore the
level deepens l inearly: e = - c ' ( v - v c ) . When ν < v c ,
the e = e(v) curve goes off at a finite slope to the con-
tinuous spectrum, where it r e p r e s e n t s the resonance
energy. At smal l (v c - v) we have

(this integral converges by virtue of the boundary con-
dition (3.4)). For an attract ion potential V(r) s 0 we
have x c ( r ) < 1 and therefore r 0 ~ R > 0. On the other
hand, if there is a b a r r i e r in V(r), then r 0 can r e v e r s e
sign (for this reason, the very designation "effective
r a d i u s " becomes somewhat a r b i t r a r y h e r e ) . For a
broad b a r r i e r r 0 « - R / ξ , where ξ is the penetrability
of the b a r r i e r (ξ <C 1). Then κ > 0 and is exponentially
small (κ ~ ξ), and k 2 can have any sign, with k 0 = 0 at
the instant when the rea l level appears (the scattering
length a — °°).

The p a r a m e t e r s k 2 and κ determine the positions of
the S-matrix poles that a r e close to z e r o . If k 2 < κ2,
then the poles lie on the imaginary ax i s : k = ίλ,

λ = V-2

-Vnf,

e-=c' (vc — v),
( const-exp ( •• " ] f o r ν < i-c,

B=H V Vvc-v I
o for

(3.7)

w h e r e b = 2 7 r f / V 2 c ' .

F r o m r e l a t i o n ( 3 . 1 ) , i n w h i c h v x a n d v 2 a r e c l o s e t o

v c , we see that at ν < v c one particle already " s i t s , "
as it were, in the continuous spectrum, and the density
of the perturbation of the functions Xfc(r) has the same
spatial localization as the function x c (r). The connec-
tion between x^(r) and x c(r) can be written in greater
detail in the form

•Ak(r)^VK{ic)7.c(r). (3.8)

As k — 0, this relation is valid in the wide region
0 < r <C k"1, including everywhere under the barrier.
The factor A(k) changes strongly in the resonant energy
region. Let us consider first potentials with finite bar-
rier penetrability at k = 0, when delocalization of the
bound state takes place and the normalization condition
for Xc(r) must be taken in the form (3.4). It can then be
shownC23] that (/ = 0)

(3.9)

where we have introduced the p a r a m e t e r s k 2 and κ:

/(1 = 2!ιγι, κ = — l/r0 (3.10)

(a i s t h e s c a t t e r i n g l e n g t h a n d r 0 t h e e f fect ive r a d i u s ) .

In t h e r e g i o n of i n t e r e s t t o u s n e a r r e s o n a n c e w e h a v e

I a | 2> R, a n d a > 0 f o r a r e a l l e v e l a n d a < 0 f o r a v i r -

t u a l o n e (R i s t h e e f fect ive r a d i u s of t h e p o t e n t i a l ) . T h e

q u a n t i t y r 0 c a n b e e x p r e s s e d d i r e c t l y in t e r m s of t h e

oo
w a v e funct ion X c ( r ) ( s e e [ 3 9 > 4 8 ] ) : Γ ο = 2 / d r [1 - x

2 ( r ) ]

λ, = 1/V - Ι ξ - κ , λ2 = - (1/κ*- k\ + κ). (3.11)

When k2 < 0, the first pole corresponds to a real level,
and the second to a virtual one. At k2 = 0, the real level
vanishes, going over to the lower half-plane Im k < 0.
In the interval 0 < k2 < κ2 the poles are virtual; they
collide at k2 = κ2 and go off to the complex plane:

(3.12)kU2 = ±Vk\ — x* — ix.

Finally, at k2 3> κ2 these poles correspond to the Breit-
Wigner resonance Ε = e0 - (iy/2), where e0 = k2/2, and
y = 2«:k0 (e0 ^> y). Formula (3.9) then assumes a formC49]

typical of the quasistationary level (Lorentzian line
shape):

Δ (λ) y /η i o \

Expression (3.9) is more general than (3.13), and
covers all locations of the poles on the complex k plane.

F r o m the point of view of analyticity, the pole motion
described above is quite n a t u r a l . l s n In the case when
there is no b a r r i e r , however, the collision of the poles
occurs far from z e r o (at | k | ~ R"1), and can t h e r e -
fore not be described within the framework of the low-
energy expansion for the S matr ix . This is the situation,
for example, in the case of the d e u t e r o n : [ 5 1 > 5 2 ] | a | ^> R,
r 0 ~ R > 0. An important feature of a potential with a
broad b a r r i e r is the fact that at \i — 0 the virtual level
k 2 = ίλ 2 i s also exponentially close to zero, by virtue of
which the two p a r a m e t e r s k 2 and κ2 suffice to descr ibe
all the phenomena connected with the collision of the
poles.

Formula (3.8) shows the appearance of the per turba-
tion of the wave functions xk(r) when a level goes off to
the continuous spectrum. At an arb i t rar i ly chosen en-
ergy, the Xjj(r) attenuate exponentially in the interior of
the b a r r i e r , so that Xk(R)/Xk(L) ~ £ < 1.* In the n a r -
row region | e - e o | ~ y, however, the function Xjjr) has
a form s imilar to that of x o(r), i .e., a strong increase
takes place in the probability of the par t ic le staying in-
side the well (r < R). To descr ibe this perturbation of
the functions Xk(r), we introduce the concept of the ef-
fective part ic le number N, to which the entire continu-
ous spectrum is equivalent (in a certa in sense). To this
end we change over from x o(r) to the approximate wave
function x o(r), for which the normalization integral (3.3)

*Here R is the radius of the internal well, L is the end of the bar-
Λ

rier ( the turning point) , and £ = e.\p \— 2 \ | ρ (r) | dr} < l.
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converges. The transition is carried out as follows:12"

7Ar) = \^{xl(r)-\Y12 (3.14)

(at r not too close to the edge of the barrier L we have
Xo(r) » 1 and therefore xo(r)jind xo(r) are proportional
to each other). The function 'xo(r) describes a particle
state localized inside the barrier. Realizing (3.8) at
r < L in the form xk(r) = Vv(k) χο(ΐ·), we obtain

N= \\(k)dk = (3.15)

At λΧ ^> κ we have Ν <§C 1; the number Ν becomes of the
order of unity when the level energy approaches zero.
As soon as the level enters the continuous spectrum
(k2 > 0) we have Ν = 1.

Thus, the influence of the real level on the continu-
ous-spectrum function x k(r) exists in a very narrow en-
ergy region (| e j ~ κ2) and vanishes rapidly when this
level becomes deeper. On the other hand, if the level
goes off to the continuous spectrum, then the functions
Xk(r) exhibit rises at small r near the resonant energy
c = e0. This increase of | Xk(r)|2 is equivalent to one
particle situated in the state xo(r).

In the limit of a very broad barrier (and all the more
for a potential with a Coulomb barrier) Ν is transformed
into a step-like function: Ν = 0(kz). The function xo(r)
coincides with xc(r), while the factor A(k) vanishes when
k2 < 0 and has the Lorentz form (3.13) at k2 > 0. So long
as the level is real (k2 < 0), its influence on the functions
Xk(r) is in this case practically nonexistent.

3.2. We proceed to the relativistic case. It was shown
in Sec. 2 that a barrier is produced in the effective po-
tential U(r) of the Dirac equation at e » - 1 , as a result
of which the wave function remains normalizable at e
= — 1 (there is no delocalization). Owing to the spin
term U2(r) of (2.13), this barrier has a zero penetrabil-
ity at k = 0, even if the initial potential V(r) does not
contain a Coulomb repulsion " t a i l . " Thus, if V(r)
« - α η " η (η > 2) as r — °°, then it follows from (2.14)
that

U(f) [ (*+ 2 ) ~ i\ (3.16)

i.e., a barrier of the centrifugal type appears in U(r).
If V(r) » - ae"M r, then the wave function attenuates ex-
ponentially. Thus, the function G(r) always remains
square-integrable at e = - 1 . Therefore at ζ < £ c the
distortion of the wave functions of the lower continuum
by a discrete level approaching the continuum is negli-
gibly small, and at ζ > ζc the functions Gk(r) and Fk(r)
increase rapidly in the subbarrier region r (its en-

FIG. 10. Qualitative form of the lower continum at Ζ > Z c . a) In the
energy and |e-e o l ~ " r ; b ) a t \e-eo\>y. Here r 0 = 2f |e |/(e 2 -l) is the
turning point.

FIG. 11. Spectrum of levels in a box (k 0 , k,,. . . are the continuum
levels).

At r <C k"1 we can wr i te

), Fh(r)--=VK{k)Fc(r), (3.17)

w h e r e G c and F c a r e the wave functions for e = - 1 , n o r -

m a l i z e d in a c c o r d a n c e with (2.6), and the factor A(k) i s

g iven by (3.13) .

The factor izat ion of x k ( r ) in the form (3.8) i s v e r y

convenient in the ca lcu lat ion of the matr ix e l e m e n t s ,

for e x a m p l e

j dk dk'f (ft, k') Ι (χ,, VXo) ψ = | Vw |* j dk dk'f (k, k') Δ (ft) Δ (k').

(3.18)

hancement takes place, of course, only in a narrow
energy band near the resonance e= e0; see Fig. 10).
Relations of this kind have turned out to be quite useful
for the calculation of the probability of two-proton de-
cay, M e : for the solution of the problem of two interacting
particles in a potential well, etc.

Finally, we note a paradox that appears when a sys-
tem i s placed in a "large box" of radius R, when the
spectrum changes from continuous to discrete.* Since
the wave functions x n (r) are real, the number of the
level η now coincides with the number of nodes of the
radial function xn(r) (we confine ourselves for simpli-
city to an S-wave, I = 0). Let us see what happens if a
potential well V(r) with a barrier is placed in the cen-
ter of the box, and the depth ν of the well varies (v
= - V(0) > 0). We begin with the situation of a deep
well (v > v c ; see region I in Fig. 11). Here we have
a "truly discrete" level D which has no nodes; the
"continuum" begins with a wave function with one node,
etc.t We decrease the depth of the well v. At ν = v c, a
value €t is reached and the "truly discrete" level van-
ishes. At ν < v c the spectrum consists only of closely
lying levels with e > 0 (Δε = e n + 1 - e n ~ R"2). Which
level of the continuum in region Π is a continuation
("successor") of the lower level D in the left side of
Fig. 11 ? The formal answer is that this "successor"
is the lower level k0 on the right—it is just as much a
" z e r o " level, and has likewise no nodes, as is the level
D on the left.

However, singularities of the resonant type are ob-

*It is quite natural by itself to desire to reduce the less intuitive con-
cept of the continuum (including normalization to a δ function, the con-
cept of measure in the continuous spectrum, and other complications)
to the simple case of a discrete spectrum, where the levels can be counted
on the fingers—first, second, etc.

tFor a system in a box, the terms "truly discrete level" and "con-
tinuum" are used, so to speak, in the Pickwickian sense [ 6 4 ] , indicating
the levels that replace them when R -* <*>.
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served for scattering not by this level, but by the levels
marked by the crosses, which precisely form in the re-
gion e > 0 the function e = e(v) which contains the curve
D for the "truly discrete" level. It is precisely these
levels, which slide when ν is varied, which a r e the t rue
continuations of D.

An analysis of a hypothetical experiment with a p a r -
ticle bound in a state D and of its behavior when the
depth of the well v a r i e s with t ime, ν = v(t), shows that
the part ic le is emitted from one of the levels marked
by a c r o s s in Fig. 1 1 . * As applied to the Coulomb prob-
lem with Ζ > Z c , it can be stated that the wave functions
G e ( r ) and F e ( r ) , at Ζ > Z c and at e close to - 1 (it is
immater ia l whether e < — l o r e > — 1), a r e not at all
s imi lar (in the region r ~ 1) to the wave functions G c ( r )
and F c ( r ) of the IS level at the cr i t ica l point Ζ = Z c . On
the other hand, in the narrow energy band of the lower
continuum | e — e o | %, γ, the relation (3.17) is satisfied,
from which it is c lear that the analytic continuation of
the 1S 1 / Z level in the t r a n s c r i t i c a l region should be taken
to be precise ly the set of continuous-spectrum states
with energy e near the Breit-Wigner pole Ε = e 0 — (iy/2)
(at least so long as 11 + e o | -C 1 and the width γ is smal l) .

What is the cause of the temptation to erroneously
regard just the lower level Ko a s a continuation of D?
Let us reca l l the universally known picture of the inter-
section of two d i scre te levels in the theory of molecular
spectra (Fig. 12a). Everyone knows that an arb i t rar i ly
small interaction moves the levels apart and causes the
intersect ion to vanish (Fig. 12b). In the case of a small
interaction and a finite r a t e of change of the p a r a m e t e r ,
however, this divergence remains purely formal, the
system readily jumps through the gap, and moves in the
manner shown by the a r r o w s .

In our example, the introduction of the box turned out
to be that smal l interaction which caused the vanishing
of the intersect ion of the level with the continuum and
gave r i s e to the e r r o r .

Is it worthwhile to examine in such detail the poss i -
ble e r r o r ? We cite in this connection the words of Nils
Bohr: " A special is t is not one who worked much in a
given field. A specialist is one who knows certain rough
e r r o r s in a given field and is able to avoid t h e m " (cited
from Heisenberg 's b o o k 1 " 3 ) .

4. POSITRON PRODUCTION AND POLARIZATION
OF VACUUM AT Ζ > Z c

Let us proceed to discuss the phenomena occurr ing
direct ly at the " c r i t i c a l p o i n t " Ζ = Z c .

4 .1 . We expand the field operator ψ(χ) in t e r m s of
the exact solutionst of the Dirac equation in the Cou-
lomb field of the nucleus Z:

ψ (χ) = Σ ο»ψ» (χ) + Σ (4.1)

*It is curious that analogous situations occur also in the seemingly
remote region of atomic and ionic collisions; the role of the parameter
v(t) is played there by the distance R(t) between the colliding nuclei
[55,56] \ye confme o u r s eives here to an indication of the similarity be-
tween the kinetics of the process of detachment of the electron at finite
velocity of the atoms to the kinetics of the production of positrons
when two subcritical nuclei collide.

tThe functions ψ η (χ) include a time dependence, i.e., ψ η (χ) = Ψ Π ( Γ )
exp (-ient).

£ <

FIG. 12

Here (+) denotes the sum over the electronic s tates (i.e.,
the sum over the s tates of the d i scre te spectrum — 1
< e n < 1 and the integral over the upper continuum e
> 1), and (-) denotes the sum over the positron states
(lower continuum, e < — 1). All the levels with energy
— 1 < e n < 1 a r e classified as electronic s tates , for
when Ζ is adiabatically decreased they r e t u r n to the
upper continuum. It is important that when Ζ < Z c

there is no entanglement of the electronic and posi-
tronic s t a t e s : as follows from (2.7), any level of the
di scre te spectrum appears from the upper continuum
and drops monotonically with increasing Z. For p a r t i -
cles obeying the Dirac equation, there a r e no levels
that go from the lower continuum (i.e., there a re no
bound s tates for the antipart ic les at a given sign of the
potential V(r) < 0, in spite of the effective attraction
Ueff V2/2 at small distances, which takes place for
both par t ic les and antipart icles) . We note immediately
that this property of the solutions is typical precise ly
of the Dirac equation (in other relat ivist ic equations
the levels come from both the upper and the lower
continuum).

Let us consider the Heisenberg c u r r e n t operator

/ μ Μ = —-g-ΙΨΜ, TVt(*)]. (4.2)

where — e i s the c h a r g e of the e l e c t r o n (e > 0). The
mean value of jo(x) in an a r b i t r a r y state φ determines
the charge density

P (r) = (φ Ι ;Ό (χ) Ι φ>

- - e Σ ΛΓ+ | ψ (r) |2 + e Σ Ν. | ψ (Γ) |2+ •§• { Σ ΙΨ Μ Ι2- Σ Ι * <Γ) Ι2}
(+) (-) (+) ' (-)

(4.3)

where N+ = (anan) and N_ = (b^bn) are the occupation
numbers (the spatial part of the current j(x) gives zero
when averaged over the stationary state φ). The last
t e r m in (4.3) is obviously the charge density of the
vacuum*

Pvac(r) = -r- { Σ ΙΨη(Γ) Ι 2 — Σ Ι *" (Γ' Ι*! ' (4.4)
(+) C-)

We call h e r e the state with N+ = N_ = 0 the vacuum
state (in the language of the initial Dirac theory this
corresponds to a completely filled lower continuum).
It is convenient to retain this definition, which is obvi-

* Strictly speaking, it would be necessary to add to (4.4) also the term
term [s8]

j αν | Σ ΐ ψ η ( ο ΐ 2 - Σ ι Ψ* (ο ι2} •
<+) <)

which corresponds to regularization of the polarization operator IlR(k2)
= n ( k 2 ) - n ( 0 ) - n ' ( 0 ) k 2 . This term makes no contribution when r > 0,
and we shall omit it.
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ous when Ζ < Z c , also in the region of supercritical
Ζ > Z c . For a three-particle (Z = 0), the density \ipe(r)f
does not depend on the sign of e, and therefore p v a c ( r )
= 0.

In the field of the nucleus Z, the wave functions cease
to be symmetrical with respect to the sign of e. The re-
sultant distortion \ipe(r)\2 - li/).e(r)|2 determines the
charge density induced in the vacuum (i.e., the polariza-
tion of the vacuum). So long as Ζ < Z c , the total charge
of the vacuum remains equal to zero

: = jPvac( (4.5)

This fact is immediately obvious if the system is
placed in a large box of dimension L (L — °°). Then the
spectrum becomes discrete (Δε ~ L~2 when | e | > 1), and
can trace the motion of each level. Since the wave func-
tions ψη(τ) are normalized to unity over the volume of
the box L3 and the total number of levels remains un-
changed with increasing Z, in the expression for Qv a c

at Ζ < Z c a mutual cancellation of the contributions
from the electronic and positronic states takes place
(just as in the case of Ζ = 0).

If we substitute in (4.4) the exact Coulomb functions
and carry out the summation, we can calculate in this
way the polarization of the vacuum in a strong Coulomb
field. Unfortunately, these calculations (if the param-
eter ξ = Ζ α is not assumed small) turn out to be exceed-
ingly cumbersomeC15] and are not sufficiently complete
to provide an easy-to-understand answer. It can be
shown, however,* that when f < l formula (4.4) leads
to the well known Uehling potential :C 5 9 > e o ]

^ } , (4.6)

where

Let us analyze the polarization of vacuum in this ap-
proximation (f <C 1). It follows from (4.6) that

(4.7)

When r ~^> fi/mec = 1, the po lar izat ion of vacuum g i v e s

exponent ia l ly s m a l l i n c r e m e n t s to the Coulomb potential

<po(r) = Ze/r , and when r <?C 1 the deviat ion from Cou-

l o m b ' s law c h a n g e s with d i s tance logar i thmica l ly .

Taking into account the identity

.-μι·
(Λ _ μ 2) = — 4.ιδ (r),

we obtain the charge density corresponding to (4.6)

(4.8)

The charge distribution has the following form: a
point-like positive charge (1 + γ) Ze at the center r = 0,
and a cloud of negative charges (adding up to — yZe),

smeared out over a distance r ~ 1 from the nucleus.
The total charge of the system is Ze, as follows for-
mally from the identity

(y is actually infinite, since it is given by the logarith-
mically-divergent integral y = /σ(μ)άμ). In the region
I/a 3> In (1/r) ^> 1, the density of the induced charges
is equal to

p v a c ( r ) 5 : i _JL.i | . (4.9)

It is easy to show that this quantity is determined mainly
by the contribution of the continuous spectrum in formula
(4.4), and that the effective region of integration with re-
spect to ρ extends to ρ ~ 1/r S> 1. Therefore at r <C 1
the contribution of the discrete spectrum (where | p |
= VI - e2 < 1) to Pvac( r) c a n b e neglected.

Expression (4.6) for the additional potential δφ leads
to a shift of the s-levels of hydrogen-like atoms; this
shift is equal to (at ζ = Ζα < 1)

\E"ni = {nl\b<f\ nl)— — -^-3 δ;ο. ( 4 . 1 0 )

In t h e n o n r e l a t i v i s t i c a p p r o x i m a t i o n t h e U e h l i n g p o t e n -

t i a l e x e r t s a n i n f l u e n c e o n l y o n t h e s - s t a t e s ; i n p a r t i c u -

l a r , i t l o w e r s t h e 2 S 1 / 2 l e v e l o f t h e h y d r o g e n a t o m b y 1.1

χ 10"8 eV = 27 MHz in comparison with the 2 P l / 2 level.
This shift amounts to ~ 3% of the main part of the radi-
ative corrections ΔΕη;, due to the interaction of the
electron with the photon vacuum, where ΔΕη; and Δ Ε ^
have opposite signs (the total shift of the levels 2S1/2

and 2Px/2 in hydrogen is equal to ΔΕ = ΔΕ'+ ΔΕ" = 1058
MHz). Since the theory agrees presently with experi-
ment to within 0.15 MHz (see W 2 ] ) , this is direct evi-
dence that vacuum-polarization effects are real and are
correctly described by the theory.*

4.2. Let us turn now to a situation arising when ζ
= Ζ α > 1 and the charge of the nucleus Ζ passes through
the critical value Z c . Assuming

where g e(r) and f e (r) are radial functions for the energy
e, we have

(4.11)

It will be convenient for us to denote the quantities per-
taining to the cases Ζ < Z c and Ζ > Z c by the indices —
and +, respectively. At Ζ ~ Z c , abrupt changes are ex-
perienced only by wave functions with energy close to
— 1, namely:

*See [15]; for a short-range potential (square well) the polarization
of vacuum is considered in a recent paper [61].

*We note here that expression (4.10) for Δ Ε ^ can be obtained also
without using the exact formula (4.6) for the Uehling potential. To this
end it suffices to take into account the first term of the series in (1.5),
δφ(τ) = -(<*/15π m^ )Δφ0, which in the case of a Coulomb potential ψ0

(r) = Ze/r yields δφ(τ) = (4 a Ze/ml )5(r). At Ζα < 1, this expression
for δφ is equivalent to (4.6) in the sense that both give the same value
for Δ Ε ^ . The replacement of (4.6) by a δ function is possible because
the Uehling potential is short-range (compared with the Bohr radius). In
other cases, when the average radius of the state is comparable with
h/mec, it is necessary to use formula (4.6)(this is the situation, for ex-
ample, in the case of μ-mesic atoms [ 6 3 · 6 4 ]) .
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1) At Z < Z c the sum over the states of discrete
spectrum contains a term Px(r) corresponding to the
level IS, and at Ζ > Z c this term vanishes from the
complete set of the single-particle functions.

2) On the other hand, when Ζ > Z c , the lower-con-
tinuum functions with angular momentum j = % experi-
ence strong perturbations (they increase sharply at
small r) ; this perturbation is quantitatively described
by the formula*

(4.12)

and p c (r)here Δ(ρ) is given by (3.13), ρ =
= I gc I + I fc th e square of the wave function at Ζ
= Z c and e = - 1 (see formula (2.22)).

For all the remaining states, the point Ζ = Z c is not
distinguished in any way, and these states produce in
Pvac( r) a background that varies slowly with Ζ - Z c .

Thus, the change of Pv a c on going through Z c is
equal to

Ρίαο « - p;ao (r) = - ~ [2pc (r) + 2 J dp Δ (ρ) pc (r)] = - 2epc (r)

(the factor 2 takes into account the double degeneracy
with respect to the spin projection).

When Ζ > Z c , the vacuum becomes charged. The
total charge of the vacuum is equal to — 2e, and therefore
for an external observer the effective charge of the nu-
cleus Ζ decreases to Ζ - 2. If we have at Ζ < Z c an un-
charged vacuum (a bare nucleus whose IS level is not
occupied by electrons), then spontaneous emission of
two positrons occurs when several protons are added
to the nucleus, and the vacuum acquires two units of
negative charge in accord with the electric-charge con-
servation law.

To avoid misunderstandings, let us make a stipula-
tion with respect to the term "charged vacuum." When
Ζ > Z c , as well as when Ζ < Z c , we define as the vac-
uum the lowest energy state* in the field of a nucleus
with charge Z. So long as Ζ < Z c , it corresponds to a
bare nucleus with unfilled shells. On going through Ζ
= Zc, the bare nucleus becomes metastable and a re-
alignment of the vacuum takes place (by emission of
two positrons). The instability of the "old" vacuum at
Ζ > Z c is due to the fact that three curves e = ej(Z),
i = 0, 1, 2, intersect at the point Ζ = Z c (i = 0 corre-
sponds to the energy of the vacuum at Ζ < Z c , and i
= 1 and 2 correspond to the energies of the states with
one and two pairs, respectively).

When Ζ > Z c , the e2(Z) curve goes below the eo(Z)
and ex(Z) curves. The additional charge density po(r)
= Pvac( r) ~~ Pvac(r)> which occurs in the vacuum when
Ζ goes through Z c , gives the mathematical description
of the Κ shell in the supercritical atom (see Sec. 1).
We note that the approximations (4.12) and (4.13) are
valid only at (Z — Z c) «C Z c . In principle, however,
the use of formula (4.11) with exact Coulomb functions

*We note that the perturbation p+—p'e is well localized in space. On
the other hand, neither of the functions p* (r) tends to zero as r -* °°,
since g^r) and fe(r) are states of the continuous spectrum. All that is
localized is the difference p£(r)-pj(r) integrated over the continuous
spectrum.

*Among the states having a total charge Ζ (with allowance for the
particles that go off to infinity).

makes it possible to find the charge density po(r) of the
Κ shell also at larger values of Ζ - Z c .

The charge density Pvac(r) at r <C 1 is determined
mainly by the contribution of the states of the continu-
ous spectrum with ρ £. 1/r 3> 1, which are insensitive
to Ζ — Z c . Consequently, the polarization of the vacu-
um at small distances does not experience any changes
at the point Ζ = Z c . On the other hand, at r » 1, the
initial Coulomb field is small (E(r) «C E c = m|c3/eR),
as the result of which the polarization of the vacuum
attenuates exponentially (see (4.7)). The entire change
of the charge of the vacuum at the point Ζ = Z c is dis-
tributed in space in the same manner as p c (r), i.e., is
localized in the region r ~ 1 (see Figs. 3 and 9).

Thus, were it possible to combine (at least tempo-
rarily) two bare uranium nuclei and produce a nucleus
with supercritical Ζ = 184 > Z c , then one could expect
spontaneous emission of two positrons to occur. Their
kinetic energy at infinity is proportional to Ζ — Z c (so
long as (Z — Z c) ^C Z c) and tends to zero as Ζ — Z c .

The threshold behavior of the probability of positron
production w is determined by the Coulomb barrier.
Apart from a pre-exponential factor, w coincides with
the penetrability of the barrier:

til C" Ι λ Λ Α \
w ~ — | — e x p ( — 2 i i t c / p ) , ( 4 . 1 4 )

where ρ = Ve2 — 1 is the momentum of the emitted pos-
itrons (it is assumed that ρ <?C 1). When the nuclear
charge Ζ exceeds Z c only slightly, the resonance Ε
= e0 — (iy/2) is extremely narrow and practically all
the positrons are emitted with the same energy:

Β - — ε0 •--= ΐ - Γ β ( ζ — ζ0), ρ= Vtl— I w h e r e β •= — (ϋξ) ζ_., ·

In t h i s c a s e t h e e x p o n e n t i a l i n w c a n b e r e p r e s e n t e d i n

t h e f o r m c l l ]

•exp I - i (4.15)

3 approximation Λ » 1 we have β = 3Λ3/5ττ2 and b
\.-*'2 (Λ = - In R). In the real region R ~ ΚΓ12 cm,

In the
= 18Λ"
this asymptotic formula for the coefficient b is inaccu-
rate, and a numerical calculation is necessary. The re-
sults of such a calculation are shown in Fig. 13 for the
simplest model of a rectangular cutoff of the potential
inside the nucleus (the dependence of b on the form of
the cutoff of V(r) at r < R is quite weak).

For Z c = 170 we find b = 1.73, so that at Ζ = Z c + 1
the exponential in (4.15) is of the order of 10"10. The
strong dependence of w on the excess of the charge Ζ
over Z c can be seen from the fact that the w increases
by three orders of magnitude on going from Ζ = Z c + 1
to Ζ = Z c + 2.

We note also the following fact: at the instant (Z = Z'c
= 185) when the 2P 1 / 2 level reaches the boundary of the
continuum e = — 1, the first level of lS 1 / 2 penetrates

FIG. 13. The coefficient b in formu-
la (4.15) as a function of fc = Zc/137.

W 1J V 4».
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deeper Into the lower continuum by an amount 11 + eo |
~ m e c 2 , which is comparable with the height of the bar-
rier in (2.16). The probability w(lS) then ceases to be
exponentially small.

4.3. The positron production process can be de-
scribed in greater detail by turning to some concrete
formulation of the experiment whereby Ζ > Z c is ob-
tained, for example in the collision of two heavy nuclei.
[9,es: H V o l s № β v e l o c i t y o f t h e n u c l e l a t i n f i n i t y a n d R

is the distance of their closest approach, then Mv2

= (Ze)2/R, whence

Table I

(4.16)

(£ = Z/137 and R i s m e a s u r e d in units of K / m e c ) · A t £

« % (for uranium nucle i ) and R > 0.1 we have v 0 < 0.03,

i .e . , the mot ion of the nucle i can be regarded a s non-

r e l a t i v i s t i c .

The c h a r a c t e r i s t i c c o l l i s i o n t i m e i s

τ^ΛΛν,^ΟΓ1''2/*3'2, (4.17)

where TC 3> 1 at R > 0.1. For motion of a bound elec-
tron in an internal well (r < r 0) the period is T 0 ~ r/v;
as e — - 1 we have f = 0.3, ν = 1 (the state does not be-
come delocalized), and therefore T C 3> τ0. Consequently,
the electron energy levels can be determined in the
adiabatic approximation by considering the coming to-
gether of the nuclei as a quasistatic process. This
gives the same curve e = e(R) as for nuclei at rest.

When two nuclei with charge Ζ < Z c each come to-
gether until the distance between them is R < 1, a field
is produced, which for electron differs little from the
field of a point-like charge 2Z, although the nuclei have
by far not yet coalesced. We shall assume that the (bare)
nuclei have come together a distance such that the lower
level of the electron acquires an energy* e^R) < — 1.
At the instant when ty = - 1 , this (unfilled) level corre-
sponds to two holes in the lower continuum, i.e., to two
positrons. Owing to the Coulomb barrier in the effective
potential U, these positrons are localized near the nu-
cleus (their wave function is close to (2.22)).

In principle, the given positron-production mecha-
nism is not connected in any way with the frequency of
the electric field wc ~ 1/TC, and is possible when the
nuclei approach each other very slowly. We estimate
the number of produced positrons n p by starting from
the formula ή = - y(t)n, where η = n(t) is the number of
bare nuclei at the instant t, and y(t) is the instantaneous
probability of positron emission (corresponding to a
distance R(t) between nuclei). Hence

_ j y{t)dt}. (4.18)

So long as the excess of the effective charge Zeff
= Zeff(R) over Z c is small, we have np = w ^ - » ) , where
w, = Jy(t)dt <C 1. The probabilities of production of one
pair (wx) and of two pairs (w2) in this case are as fol-

*For quantitative predictions it is necessary to know the dependence
of Zc on R for the two-center problem. In the relativistic case, the vari-
ables in it do not separate, but the value of ZC(R) can be found by a
variational method [6S]. Such calculations are presently being carried
out; preliminary results were published in [66].

F

8
10
12

in units of

0.0207
0.0259
0.0311

I

1.248
1.271
1.201

2Pi/2

1.35
1.38
1.41

2Si/2

1.72
1.78
1.83

II

is,/2

1.224
1.243
1.260

2Pi/s

1.31
1.34
1.365

Columns I and II pertain to two cutoff models in formu-
la (2.5): I) f(x) = 1, charge on the surface of the nucleus;
II) uniform distribution of charge over the volume of the
nucleus.

lows: w2 ~ Wj <SC Wj <C 1. The positrons are produced
mainly at the instant of the closest approach of the nu-
clei and have an energy very close to the energy of the
level eo(R) at the closest approach.*

With further increase of Zeff (or, equivalently, with
decreasing R), an instant sets in when /y(t) dt ~ 1 (this
occurs when the IS level deepens into the lower contin-
uum by an amount ~ m e c 2 , comparable with the height
of the Coulomb barrier). Here w2 ~ 1, i.e., practically
all the nuclei produce two positrons each. This con-
cludes the process of positron production as a result
of the IS level.t Positron production becomes possible
again only at values of R such that the boundary e = — 1
is crossed by the following levels: 2P 1 / 2, 2S1/2, 3P i / 2 ,
etc. To this end, just as in the case of one nucleus of
radius R, it is necessary to have an appreciable in-
crease of Zeff (see Table I, which gives the values of
fc = Z c 137 for the first three levels).

When the nuclei move apart, the electrons remain
as a rule bound on the moving nuclei with Ζ < Z c . On
these nuclei, the binding energies are lower, since
ex(Z) > - 1. There is apparently little likelihood that
the process will return adiabatically in the direction
of the pair annihilation with increasing distance be-
tween nuclei. It is easy to see that the overall energy
balance is not violated: on the whole, the energy neces-
sary for pair production is drawn from the kinetic en-
ergy of the nuclei. As a result of the smaller charge
(Z - 1), the nuclei move apart with a kinetic energy
lower than the initial one.

In a more accurate calculation of the probability wx

and w2, of the momentum spectrum of the positrons,
etc., it is necessary to consider the dynamics of tunnel-
ing of the positron with allowance for the finite velocity
of the nuclei.ί Such calculations can be carried out by
using, for example, the method of imaginary time in sub-
barrier motion (see C 8 7 ] and also : 2 2 ] , p. 225); they will

*Here e 0 is the real part of the Breit-Wigner pole Ε = e 0 -(17/2),
which is an analytic continuation (see the preceding section) of the 1S
level at Ζ > Z c .

tThe average positron energy e is determined by the position of the
resonant level e 0 W for a distance R such that /7(t)dt ~ 1. As the nuclei
come closer together, when /7(t)dt becomes much greater than 1, the
positrons are no longer produced in practice and the energy e remains
unchanged.

t The time of tunneling through the Coulomb barrier U(r) = f/r is
equal to rt = /0

r°dr|p(r)r1//2 = Trfp'3, where r 0 = 2f/p2 is the turning point
and ρ is the momentum of the positron at infinity. As ρ -*• 0, the tun-
neling time is very large. Comparison of T( with r c(see (4.17)) shows
that the tunneling process can be regarded as adiabatic at ρ ^ v0, where
v0 is the velocity of the nuclei at infinity.
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Table II

R

1
0.5
0.1

0.012
0.033
0.37

become necessary when the corresponding experimen-
tal data become available.

The process competing with that considered above
is pair production as a result of the frequency of the
variation of the electric field or via excitation of the
nuclei upon collision. However, owing to the large
mass of the nuclei, their motion (at not too small val-
ues of R) is so much slower that pair production as a
result of the Fourier components of the electric field
with frequency ω > 2 m e will be negligibly small (see
Table Π, which shows the values of the frequency uic

= 1 / T C in units of m e c 2 for ζ = %, corresponding to
collision of uranium nuclei; R is the shortest distance
between the nuclei in units K / m e c ; T C is the c h a r a c t e r -
istic collision t ime (see (4.17)). In principle, this makes
it possible to separate the quasistatic mechanism of
positron production (as a resul t of the excess of the
summary charge 2Z over Z c ) from other possible
mechanisms.

4.4. So far we have considered b a r e nuclei. If the
level IS is filled with e lectrons, then on going through
Ζ = Z c no visible effects will occur. The electron cloud,
carrying a charge — 2e, is produced at Ζ < Z c by two
electrons at the lower (discrete) level, and at Ζ > Z c

it is produced by perturbation of the functions of the
continuum near the energy e = e0 < — 1. If we integrate
the charge density over the entire continuous spectrum,
then at Ζ > Z c we obtain (after renormalizat ion) p r e -
cisely an excess charge — 2e. Although formally the Κ
shell has vanished at Ζ > Z c (owing to the s ingle-par-
ticle solutions of the Dirac equation), its role is a s -
sumed by the continuous spectrum. Therefore, for ex-
ample, the e lectrons of the outer shells of the atom ex-
per ience no change whatever at the point Ζ = Z c in this
case .

Of course , the Κ shell in the supercr i t ica l atom has
certa in pecul iar i t ies compared with the Κ shell in the
ordinary atom with Ζ < Z c .

However, these differences a r e not connected with
the jump in the average radius of the Κ shell or with
the sharp change of the density of the electr ic charge,
and a r e more subtle (e.g., there is a resonance in the
scatter ing of the posi t rons by an atom with Ζ > Z c ; see
Sec. 1 concerning this subject).

In conclusion we note that the question of production
of p a i r s of par t ic le s and antipart ic les under the influ-
ence of a strong field has recently become very urgent
in cosmology. Pre l iminary es t imates show that pair
production may substantially influence the evolution of
the universe near a s ingular i ty . c e 8 ' e 9 ]

5. PROPERTIES OF RELATIVISTIC WAVE EQUA-
TIONS WITH POTENTIAL

In this section we discuss briefly the motion of lev-
els with increasing depth of potential for other re lat iv-

i s t i c equat ions. As i s we l l known, in the c a s e of f ree
p a r t i c l e s the ent i re mathemat ica l f o r m a l i s m of quan-
tum theory (wave equations, G r e e n ' s function, Feynman
d i a g r a m s , e t c . ) can be deve loped quite c o n s i s t e n t l y for
p a r t i c l e s having any spin ( s e e C 7 0 " 7 4 ]

i where further ref-
e r e n c e s can be found). When a (suff iciently s trong) p o -
tential i s turned on, however, the s ituation c h a n g e s . *

5 . 1 . We start with the c a s e of a s c a l a r ( s p i n l e s s )
p a r t i c l e . The Klein-Gordon equation with v e c t o r
coupling

Δφ + [(ε—V)2—1]φ==0 (5.1)

i s f o r m a l l y equivalent to the nonre la t i v i s t i c Schrodinger
equation χ" + 2 (E - U) χ = 0, where

£ = - (5.2)

However, the fact that the energy e e n t e r s in (5.1) quad-
ratically, changes the form of the orthogonality condition:

j (ίνφί(Γ){Βλ + ελ.-2ν(Γ)}φλ.(Γ) = ηΑν; (5.3)

h e r e ψχ(τ) and φχ'(τ) a r e the wave functions of the d i s-
c r e t e spectrum (— 1 < €χ, εχ' < 1), and ηχ = ± 1 . For
levels going from the upper continuum ηχ = 1, and for
levels going from the lower continuum we must put ηχ
= — 1 (the validity of this statement becomes obvious if
V(r) is excluded).

Unlike the Dirac case, the dependence of e on V is
not monotonic h e r e , and the curve e = e(V) can have an
inflection. This phenomenon was observed in C 7 5 ] with
s-s ta tes in a square well as an example.

Let us consider it in greater detail, without confin-
ing ourselves to the case 1=0. We put

V(r)=~v9{ro~r), v>0 (5.4)

( r 0 is the radius of the well; the depth of the well ν is
measured in units of me 2 ) . The wave function γι(τ) has
the same form as in the nonrelativistic problem:

XI W =
ί Vr^+ r<r0,

r>r0,
(5.5)

differing only in the values of the p a r a m e t e r s k and λ:

F r o m the condition for matching at r = r 0 we obtain an
equation for the level energy e

)
r,(lr0) •

λ vanishes at e = ±1 and Eq, (5.6) simplifies

(5.6)

',-i/2 «) = o, (5.7)

where ξ = k ± r 0 and k ± = Vv2 ± 2v for e = ± 1 .
Let %i the smal les t possible root of (5.7): ξ 0 = 7r/2,

41 = "•> ?2 = 1 · 4 2 π , . . . ; the ξ[ increases with /. Then at
the instant when the f irst level with orbital angular m o -
mentum I appears the depth of the well is (for e = ±1)

f! + i. (5.8)

*The electromagnetic interaction is introduced in minimal fashion
(9μ -> 8μ— ίβΑμ). The potential V(r) is regarded everywhere as the tem-
poral component of the 4-vector Α μ (χ): A = 0, V(r) = eA0. In addition,
we put m = 1, where m is the mass of a particle moving in a field V(r).
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ε

ν/////////////////.

-; ο

ν///////////////////////.
+7

χ.
χΐ

c r e a s e s exponent ia l ly at infinity in the potential V 0(r),

we obtain the l e v e l shift

FIG. 14. Levels of scalar particle in a narrow well (r0 = 0.3h/mc) as
a function of the depth ν of the well. The abscissas represent v—(£//r0).

Curves 1 - 4 correspond to the cases / = 0, 1,2, and / > 1.

In the c a s e of broad we l l ( r 0 ^> K/rnc = 1) we have

v\ = ξ\/2τ\ and vj = 2 + ξ|/2r;j, and for a narrow well
(r 0 <iC 1) we have v^ = ξ//Γ0 ψ 1 + O(r0). In the case of
a narrow well it is easy to determine not only the values
of v*, but also the entire e = e(v) curve. Expanding (5.6)
in powers of r0 > we obtain

υ — ν (e) =
f o r

( 5 . 9 )

A s s e e f r o m F i g . 1 4 , t h e e = e ( v ) c u r v e f o r t h e s -

s t a t e s t u r n s o u t t o h a v e a n i n f l e c t i o n , a n d a t I > 1 t h e

e n e r g y e d e c r e a s e s m o n o t o n i c a l l y w i t h i n c r e a s i n g v .

T h e s e c o n c l u s i o n s r e m a i n i n f o r c e a l s o f o r a b r o a d w e l l ,

b u t t h e i n f l e c t i o n i s i n t h i s c a s e l o c a t e d v e r y c l o s e t o t h e

b o u n d a r y e = — 1. T h e o c c u r r e n c e o f t h e i n f l e c t i o n o f t h e

c u r v e e = € ( v ) f o r t h e s t a t e w i t h I = 0 i s n o t h i n g p e c u l i a r

f o r a p o t e n t i a l i n t h e f o r m of a s q u a r e w e l l ( 5 . 4 ) . A s

s h o w n i n t u l , t h e s a m e p h e n o m e n o n t a k e s p l a c e f o r t h e

g r o u n d l e v e l i n a s h o r t - r a n g e p o t e n t i a l o f a n y f o r m . H o w

i s o n e t o e x p l a i n s u c h a s t r a n g e b e h a v i o r o f t h e s - l e v e l

energy ? At ν = v_ there appears in the well a bound
state e2 (the lower branch of the curve 1 on Fig. 14). The
physical interpretation of this state was indicated by

Mlgdal, [25 53] namely, e2 is the level for the antiparticles
(with potential -V), and not for particles. With further
increase of v, a value ν = v c , corresponding to the ver-
tex of the inflection, is reached.

At ν = v c the levels e± and e 2 collide and go off to the
complex plane. At ν > v c we have two solutions with
complex energies e and e, for which Re λ > 0, and there-
fore the wave function (5.5) remains square-integrable.
Thus, the single-particle Hamiltonian ceases to be a
Hermitian operator at ν > v c . This is an indication that
as ν — v c it is necessary in principle to take many-par-
ticle effects into consideration.*

The appearance of complex eigenvalues in a strong
field is a rather common property of the Klein-Gordon
equation. This can be seen from the formula of pertur-
bation theory for the level shift. Putting in (5.1) V = Vo

+ 5V and φ = φ 0 + δφ, where ψο(τ) is a solution that de-

δε = -
ε — V

( 5 . 1 0 )

T h e m e a n v a l u e s (V, 6 V ) a r e u n d e r s t o o d h e r e in t h e

u s u a l s e n s e :

F = jj d>rV(r) φ ; ( Γ ) / J d>r<(\ (r). ( 5 - 1 1 )

In t h e n o n r e l a t i v i s t i c l i m i t a s e - 1 w e h a v e _ V <C 1, a n d

e x p r e s s i o n ( 5 . 1 0 ) t a k e s t h e u s u a l f o r m 6 e = 6 V . On t h e

o t h e r h a n d , i n a d e e p w e l l t h e c o n d i t i o n e = V m a y b e

s a t i s f i e d . At t h i s p o i n t 3 e / 3 V = » , i . e . , t h e l e v e l e

= e ( V ) h a s a n i n f l e c t i o n . W i t h f u r t h e r d e e p e n i n g o f V ( r ) ,

t h e c o l l i d i n g b r a n c h e s e x a n d ez g o o v e r i n t o a p a i r of

s t a t e s w i t h c o m p l e x - c o n j u g a t e e n e r g i e s , * a n d R e e = V .

S i n c e t h e c o r r e s p o n d i n g p o l e s o f t h e S m a t r i x l i e o n t h e

p h y s i c a l s h e e t , w e a r r i v e a t a c o n t r a d i c t i o n t o u n i t a r i t y

( m e a n i n g t h a t t h e H a m i l t o n i a n i s n o t h e r m e t i a n ) .

F o r s - s t a t e s t h e r e e x i s t s a c e n t r i f u g a l b a r r i e r i n

U(r), and if lim Γ Ύ ^ Γ ) = 0, then the wave function \Jr)
r—oo _

becomes delocalized at e —• ±1. Therefore V = 0 at the
instant of occurrence of the level (the integral in the
numerator of (5.11) converges and that in the denomi-
nator diverges). Thus e - V is equal to ± 1 on the edge
of the upper and lower continuum, meaning that it van-
ishes at some intermediate point of the curve e = e(V),
which leads in accord with (5.10) to a collision of the
two branches of the curve e = e(V) and causes the en-
ergies ex and e2 to go off to the complex plane.

We note that this reasoning is not valid when I >: 1,
since x/(r) remains normalizable at e = ±1 because of
the centrifugal barrier (namely, at the instant of the
appearance of the level xj(r)_~ r"', r — °°). Therefore
we can no longer state that V = 0 at the edge of the con-
tinuum. This means a difference between the curves
with 1=0 and / > 1 on Fig. 14. The same pertains also
to the case of a Coulomb field, when the barrier in U(r)
as e — - 1 is even more impenetrable. At e = - 1 we
have here e - V = 2 > 0; there is no inflection, i.e.,
there is no large difference between the behavior of the
level for scalar and spinor particles in an unscreened
Coulomb field."0 '1 2 ]

5.2. We proceed to a spin s = 1. The question of the
level spectrum of a vector particle in a Coulomb field
has a history of 30 years behind it,C78>79] but it is still
not fully clear. A mathematically correct formulation
of this question is due to Case,C 3 8 ] who showed that the
roots of the difficulties arising here are the same as in
the nonrelativistic problems with "falling to the center."
In order to make the solution unique, it is necessary to
choose a suitable boundary condition for small r.

By considering the Proca equation with potential
V(r) that is singular at r — 0, we can show" 0 '"" that
the effective potential U acquires a stronger singularity
(for states with angular momentum j > 1):

1/(7·) « — (5.12)

*An attempt was made in [ 7 6 · 7 7] to consider a well with ν > v c

within the framework of the single-particle approximation, but the

authors had to introduce an indefinite metric. As shown by Migdal [ S 3 ],

when ν > v c there is virtual pair production and polarization of vacuum.

*From the conditions of generalized orthogonality (5.3) it does not
follow now that the eigenvalues ê  are real (unlike the Dirac and
Schrodinger equations), and all we get is the condition Re εχ = V for

solutions with complex energy



E L E C T R O N S T R U C T U R E OF S U P E R H E A V Y A T O M S 693

In particular, the Coulomb case V(r) = - ζ/τ corre-
sponds to U(r) « - ζ Vj(j + l )/2r 3 (see "·78]). The poten-
tial that serves as the limit between the regular and
singular potentials is now V(r) with a singularity as
weak as logarithmic: V(r) = ζ In r. At sufficiently small
ζ it is regular, and at | £| Vj(j + 1) > (j + V2)

2 it becomes
singular and requires cutoff in the region of small r.

5.3. Equations for particles with higher spins (s>:%)
were considered by many workers, starting with the
classical papers of Fierz and PauliC 8 0 ] and Rarita and
Schwinger. [8 l ] It is difficult to introduce the electro-
magnetic field in these equations because it is necessary
to ensure compatibility of the equations of motion with
the additional conditions that exclude smaller spins. The
customary procedure* consists of making the substitu-
tion 3 μ — 9 „ — ieΑμ in the Lagrangian of the free field.
i m It was noted however only recently1 8 2 3 that even in
this case there is a discrepancy with relativity theory,
namely, although the obtained equations are formally
Lorentz-covariant, their solutions can propagate with
superluminal velocity. This result is obtained from an
analysis of the characteristics of the relativistic wave
equations at s s %. The parameter that determines the
degree of violation of the causality is here the ratio

VH/Ho or E/Eo where Eo = Ho = and m is the
particle mass (the existence of electrons with m e < m
is ignored in the theory). Although in such fields the
quantum nonlinearities in the Lagrangian of the electro-
magnetic field already become significant, within the
framework of the single-particle approach it is neces-
sary to state that at present there are no good equations
for the local field ψ(χ) with spin s > % (such equations
can be written for the free field ip(x), but the difficulties
indicated above arise in a sufficiently strong external
electromagnetic field). Thus, the only relativistic equa-
tion for which the single-particle solutions in an exter-
nal electric field V(r) remain meaningful at arbitrarily
large | V| is the Dirac equation. On the other hand, it is
precisely in this case that there are physical objects
described by such equations (the light particles e+ and
μ ± in the field of a nucleus). It can be assumed that such
a coincidence is not accidental.

The authors are grateful to S. S. Gershtein, I. Yu.
Kobzarev, A. M. Perelomov, L. P. Pitaevskii, and M. V.
Terent'ev for interesting discussions. We wish to ex-
press special gratitude to A. B. Migdal and L. B. Okun'
for a detailed discussion of the entire group of problems
and for a number of useful remarks.

*Which makes it possible, in any case, to avoid direct algebraic con-
tradictions, since both the equations of motion and the additional con-
ditions are obtained by varying the Lagrangian L.

Notes added in proof. 1) It is reported in [83] that particles with
Ζ ~ 112 have been registered. This discovery, if confirmed, will un-
doubtedly increase the interest in phenomena occurring at Ζ > 137. 2)
The Lamb shift of levels in atoms with large Ζ (up to Ζ = 180) is esti-
mated in [ 8 4 ] . Allowance for this slyift raises the critical charge Z c for
the IS level by approximately 5 units. 3) It is stated in [8S.8«] that the
polarization of vacuum increases without limit as Ζ -
diets the conclusions of Chap. 4.
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