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1 . T h e G i b b s p a r a d o x h a s f o r m a n y d e c a d e s b e e n t h e

o b j e c t of g r e a t a t t e n t i o n of p h y s i c i s t s a s w e l l a s p h i l o s o -

p h e r s . U n f o r t u n a t e l y , owing t o a n u m b e r of h i s t o r i c a l

a n d p s y c h o l o g i c a l r e a s o n s , a n e x t r a o r d i n a r y c o n f u s i o n

h a s a r i s e n i n t h e e x t e n s i v e l i t e r a t u r e d e a l i n g wi th t h e

p a r a d o x ; t h e r e e x i s t s a m u l t i p l i c i t y of v i e w - p o i n t s e v e n

i n r e s p e c t of t h e de f in i t ion of t h e c o n t e n t of t h e p a r a d o x

i tse l f . T h e r e i s a n e v e n g r e a t e r l a c k of c o o r d i n a t i o n i n

t h e a t t e m p t s to s o l v e i t . T h e r e f o r e , in o r d e r t o u n d e r -

s t a n d t h e e s s e n c e of t h e m a t t e r a n d s e p a r a t e out t h e

m a j o r p o i n t s , it i s n e c e s s a r y t o b e g i n wi th a br ie f e x p o -

s i t i o n of w e l l - k n o w n t h i n g s . We s h a l l r e s t r i c t o u r s e l v e s

i n t h i s t o t h e a n a l y s i s of only the t h e r m o d y n a m i c s i d e of

t h e q u e s t i o n .

T r a d i t i o n — n o t too w e l l - f o u n d e d , a s wi l l be s e e n

b e l o w — a s s o c i a t e s t h e G i b b s p a r a d o x wi th p e c u l i a r p r o p -

e r t i e s of e n t r o p y . If we a r e i n t e r e s t e d i n only c h a n g e s

i n t h e v o l u m e , i . e . , i n i s o t h e r m a l p r o c e s s e s , t h e n t h e

e n t r o p y of a r a r e f i e d i d e a l g a s , c o n s i s t i n g of a t o m s of

one t y p e , c a n be w r i t t e n in t h e f o r m

S = klVlnV + Sa, (1)

where Ν is the number of atoms and k is the Boltzmann

constant. It is important to emphasize that the quantity

So is a constant only for a given working medium; on

changing to another working medium, it may change.

How do we find the form of the function So = S0(N)?

For this purpose, let us divide the volume V into two

p a r t s Vi and V2 = V— Vi, containing Nj and N2

( N = Ni + N2) molecules, respectively. F r o m the

thermodynamic meaning of the concept of entropy a r i s e s

its additivity with respect to the indicated division, i.e.,

This equality should be satisfied provided N1/V1 = N2/V2.

It is easy to derive from the express ion (2) a general

express ion for the entropy.

where f is an a r b i t r a r y function.

In the special case of a rarefied ideal gas, which i s

of interest to us, f(z) = k In ζ and (3) becomes

(4)

i.e.

kNs\n](V/N)·*),

-kJVloN.

Let us assume that the volume V contains a mixture

of Μ and Ν atoms of the two different gases A and B. It

*It should be especially emphasized that the presence of Ν under the
logarithm sign plays a fundamental role in all the cases when processes
with a varying number of particles are considered (see in this connection
Chap. 8 of I 1 ] , as well as the original work of Gibbs [ 2 ] , p. 206).
Strictly speaking, we must add to (4) a term β Ν with the coefficient β
not depending on N. This term does not play any role below and we
drop it.

i s w e l l known* that s u c h a m i x t u r e c a n be s e p a r a t e d

into i t s c o m p o n e n t g a s e s wi th t h e a id of a r e v e r s i b l e

a d i a b a t i c p r o c e s s involv ing t h e p a r t i c i p a t i o n of a s e m i -

p e r m e a b l e m e m b r a n e . T h e t e m p e r a t u r e of e a c h of t h e

g a s e s wi l l not c h a n g e in the p r o c e s s a n d e a c h wi l l o c -

c u p y the s a m e v o l u m e V a s b e f o r e . It fo l lows f r o m t h i s

t h a t t h e e n t r o p y of t h e m i x t u r e i s e q u a l to the s u m of

the e n t r o p i e s of t h e g a s e s A and B:

kM In {V/M) J-MV In {V/N). (5)

We can now formulate the essence of the Gibbs para-

dox. Let us imagine two equal volumes V separated by

an impermeable membrane; the volumes a re filled with

different gases A and B, the t e m p e r a t u r e s and p r e s s u r e s

of the gases a re equal. Then the entropy of the whole

system

Λ "~~ '' (6)

where Ν is the number of atoms of each of the gases.

The removal of the partit ion resu l t s in an increase in

the entropy due to i r revers ib le diffusion. After equili-

brium has been established, each component occupies a

volume 2V, its entropy

S\ = S"B = kN In (2K//V),

(6')

and the t o t a l e n t r o p y

S" = S\ + S-B = 2kN In (2VIN).

T h e i n c r e a s e in t h e e n t r o p y

AA' = 2A-.Vln2

d o e s not d e p e n d on t h e n a t u r e of the m i x e d i d e a l g a s e s .

On t h e o t h e r h a n d , if both v o l u m e s a r e o c c u p i e d by

one and t h e s a m e g a s , t h e n t h e w i t h d r a w a l of the p a r t i -

t i o n d o e s not c h a n g e the t h e r m o d y n a m i c s t a t e of the s y s -

t e m a n d s h o u l d not g ive r i s e t o a c h a n g e in e n t r o p y .

U s i n g the e x p r e s s i o n (4), we c a n e a s i l y v e r i f y t h a t t h i s

i s i n fact what one o b t a i n s . We s h o u l d h e r e t a k e in to a c -

count the fact t h a t wi thout t h e p a r t i t i o n t h e n u m b e r of

a t o m s i s 2N and t h e v o l u m e i s 2V.

T h u s , no m a t t e r how s i m i l a r two d i f f e r e n t g a s e s a r e

i n t h e i r p r o p e r t i e s , t h e i r t o t a l e n t r o p y i n c r e a s e s by one

and t h e s a m e v a l u e (7) w h e n t h e y a r e m i x e d , w h e r e a s f o r

i d e n t i c a l g a s e s t h e r e i s no i n c r e a s e in t h e e n t r o p y . It i s

t h i s d i s c o n t i n u i t y AS i n b e h a v i o r on going f r o m s i m i l a r

t o i d e n t i c a l g a s e s t h a t c o n s t i t u t e s t h e G i b b s p a r a d o x t .

It s h o u l d be n o t e d t h a t t h e e n t r o p y of a n i d e a l g a s i s

s o m e t i m e s ( s e e , f o r e x a m p l e ^ 3 ' 5 - 1 ) , w i t h o u t any founda-

t i o n , w r i t t e n in the f o r m

*See, for example, [ 3 ] , Sec. 16.
tThe indicated formulation can, for example, be found in the works

of Schrodinger ['] and Tamm ["]. It is, however, in essence, given by
Gibbs [ 2 ] .
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S = kN In V,

i .e., the t e r m So = —kN In Ν is dropped. Then, the re-
moval of the partit ion leads to the increase (7) in the
entropy not only for different, but also for identical
gases, although the thermodynamic state of the system
in the l a t t e r case does not change. It i s precise ly this
resul t that is called the Gibbs paradox in the cited
works.

It s e e m s to us that the question here i s not one of a
paradox, but ra ther one of a misunderstanding which
can be resolved by using the c o r r e c t expression (4) for
the entropy.

2. Some physicists thought that the Gibbs paradox
was not resolvable in the framework of thermodynamics.
Later , another point of view appeared in the l i te ra ture* .
In our opinion, there is a grain of truth in it, and we
shall d i scuss it in a somewhat g rea ter detail than has
hitherto been done.

The Gibbs paradox amounts to the discontinuity in
behavior of the quantity AS during a continuous approach
of certain p a r a m e t e r s character iz ing mixed gases. An
important question, however, a r i s e s : Is such a continu-
ous approach actually possible; does it not contradict
the laws of physics? If the answer is yes, the paradox
remains . If it i s no, i .e. , if the differences between
gases can only vary discretely, the paradox disappears :
there is nothing surpr is ing about the fact that during a
discontinuous variat ion of the p a r a m e t e r s , the proper-
t ies of the mixture also vary discontinuously.

The point of view being discussed i s based on the as-
sert ion that it i s the second type of situation that obtains
in real i ty. Indeed, when we speak about different gases,
we usually imply that their atoms differ from each other
in some discrete and conserved quantum number
(charge, number of nucleons, etc.). Under these condi-
tions the p a r a m e t e r s , defining the difference between
the gases, cannot vary continuously. The indicated
difference in the d i screte quantum numbers may turn
out to be in some respects unimportant, but it i s p re-
cisely this difference, in the sense of interest to us now,
that is of fundamental importance. Indeed, the definition
of the concept of entropy itself presupposes the possibil-
ity of a revers ib le separation and mixing of gases, and
this possibility may be related only to those proper t ies
of gases in respect of which they differ from each other.

The expounded approach to the Gibbs paradox is limi-
ted to only those cases when the mixed gases cannot
change into one another, and the p a r a m e t e r s determining
the difference between them vary discretely. If these
p a r a m e t e r s could vary continuously, we should have had
to consider the discontinuity in behavior AS as indeed
paradoxical. It is important to emphasize that such a
behavior of the "difference p a r a m e t e r s " is, physically,
fully realizable, but, as will now be demonstrated, the
quantity AS then also var ies continuously and does not
undergo any discontinuity in the transit ion from s imi lar
to identical gases. The indicated circumstance is , in
our opinion, the final solution to the paradox. The dis-
cussion of the causes which make (or do not make) the
jump AS paradoxical is replaced by an asser t ion about
the absence of any jump'-7'8-'.

Let us begin with the simplest case. Let us suppose
that each of the considered volumes V is occupied by
different mixtures of the gases A and B, the mixtures
differing from each other only in the relative concentra-
tions (one volume contains M t atoms of the gas A and Nj
= Ν - Μχ atoms of B, the other volume—M2 a toms of A
and № = N— M2 a toms of B). It is c lear that from the
thermodynamic point of view, both these mixtures
should be considered as different—in their p r o p e r t i e s -
working media. It i s also c lear that the degree of like-
ness between them depends only on the ratio of the con-
centrations and can be continuously varied. The maxi-
mum difference corresponds to the case when one of the
volumes is occupied by the pure gas A, and the other
volume—by B. The absence of a difference (coincidence
of all the propert ies) is attained when the relative con-
centrations of A and Β in the two volumes a re equal.

In the general case, the removal of the partit ion leads
to an additional intermixing and increase in entropy.
Applying the relation (5) first to two volumes V, and
second to one volume 2V, we obtain

*See, for example, Sec. 13.

— [ί'ΛΊ In (Ι-'/Λ-,)-f fcU, In (V/M,)-\-l,K2 In (Γ/;Υ,) -rl,M2 In (V/.W2)|.

A s c a n e a s i l y b e s e e n , t h e q u a n t i t y A S a p p r o a c h e s z e r o

c o n t i n u o u s l y a s Ni — N 2 a n d M x — M 2 ; if M i = N2 = 0 ,

o r M2 = N i = 0 , t h e n ,

AS —2fr.'V In 2.

F o r a r b i t r a r y c o n c e n t r a t i o n s

0 Λί'<2λ·ΛΊη2. (9 )

L e t u s t u r n t o t h e m o r e i n t e r e s t i n g s i t u t a t i o n , w h e n t h e

a t o m s of t h e g a s h a v e s o m e i n t e r n a l d e g r e e of f r e e d o m .

W e s h a l l , f o r d e f i n i t e n e s s , s p e a k of s p i n , a l t h o u g h a l l

t h e r e s u l t s t h a t f o l l o w h a v e a g e n e r a l m e a n i n g . L e t t h e

s p i n j = y 2 , w h i c h c o r r e s p o n d s , i n p a r t i c u l a r , t o a 3 H e

g a s .

W e c a n , a s i s w e l l k n o w n , o b t a i n w i t h t h e a i d of

" o p t i c a l p u m p i n g , " a c o n s i d e r a b l e p o l a r i z a t i o n of 3 H e ,

w h i c h i s p r e s e r v e d f o r a l o n g t i m e ( s e e , f o r e x a m p l e , 3 ) .

Let the volume V be occupied by Ν 3He atoms which a r e
completely polarized in some fixed direction, and the
second volume—by the same number of 3He atoms polar-
ized in another direction. There i s no doubt that these
are two different—in their propert ies—gases . The de-
gree of the difference between them depends on a con-
tinuous parameter—the angle θ between the direct ions
of polarization. It is to be expected, therefore, that
when the gases a re mixed, there will be an increase AS
in the entropy which will continuously depend on Θ. We
shall assume that the spin relaxation time is many
t imes longer than the character i s t ic diffusion t ime.
Then, it i s c lear that the gas, after mixing, will be
polarized along the bisector of the angle between the
directions of the initial polarizations; the degree of i ts
polarization

P = cos 0/2. (10)

To calculate the entropy of such a gas, we must deter-
mine the number of atoms whose spins a re oriented
along and opposite the direction of polarization
(Ni = 2N(1 + p)/2, N2 = 2N(1 - P)/2), and apply the rela-
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tion (5) to the volume 2V. If we take into account the
fact that the entropy of the system before mixing was
2kNln(V/N), then we obtain for the quantity AS the ex-
pression

ρ =!(,-,<<<> :-ρ<»>). ( 1 4 )

It is easy to see that from (11) again follows the inequal-
ity (9). The extreme values are attained for θ = 0 (the
initial gases are identical, the spin wave functions of the
atoms coincide) and θ = π (the initial gases are com-
pletely distinguishable, the spin wave functions are
orthogonal). If the wave functions do not coincide and
are not orthogonal, the quantity AS takes on intermed-
iate values, which vary continuously with cos(9/2).

Of fundamental importance is the fact that in the
deviation of the relation (11), we considered a gas with
polarization Ρ as a mixture of two gases completely
polarized along and opposite the vector P. The point is
that if we adiabatically separate, with the aid of a semi-
permeable filter, a partially polarized gas into just
such components, the entropy of the gas after the separ-
ation will not change. It is this fact that gives us the
right to apply formula (5) to a mixture of two unlike
gases. When any other filters are used, however, an
irreversible change in the spin state of the gas takes
place, as a result of which the entropy increases.
Formula (5) will then not yield the true value of the en-
tropy of the gas before separation.

3. For an arbitrary statistical ensemble, a detailed
justification of the procedure for calculating the entropy
was given by von Neumann (see'-10-', Chap. 5). According
tcf-10^, the entropy of an ideal gas with spin density ma-
trix ρ can be represented in the form

here, Spp In ρ =

,S=-A/VSppliip ; i/Vlnf;

i = 2j +1

(12)

Pi In Pj, where j is the spin,

and pj are the eigenvalues of the density matrix ρ. Ac-
cording to (12), the entropy S is the sum of the entropies
of (2j + 1) gases whose spin states are described by the
eigenfunctions of the matrix p. The von Neumann
inequality

Spplnp> ^ p ; j Inpi,. (13)

where pjj are the diagonal elements of the density ma-
trix in an arbitrary representation (the equality sign
corresponds to p ^ = pj), is then valid. It follows
directly from the relation (13) that the entropy of a gas
does not change during its measurement only in the case
when the eigenfunctions, characterizing the measuring
instrument (filter), coincide with the eigenfunctions of
the density matrix. If, however, such a coincidence
does not exist, then the entropy will certainly increase
during the measurement.

Let a space of volume V contain Ν atoms of a gas in
a spin state of density matrix p(•"), and let another
space of the same volume, separated from the first by
an impermeable membrane, contain Ν atoms of the
same gas in a spin state of density matrix p' ' . After
complete mixing, the density matrix of the gas in the
volume 2V will have the form

T a k i n g ( 1 2 ) i n t o a c c o u n t , w e c a n w r i t e t h e c h a n g e i n

t h e e n t r o p y a f t e r m i x i n g i n t h e f o r m

S = *.V {sp (ρ<Λ> Lp<«)) h, ( P ^ J i ' "

- Sp ρ(·1Ίιιί ( Λ>- Spp"!> In ρ<«>}*>.

(15)

Let us cons ider the important part icu lar c a s e , when

A and Β correspond to pure ensembles of spin wave
functions ψ(Α) and ^ ( B ) . For pure states one of the
eigenvalues of the density matrix is equal to unity while
the rest vanish. Consequently, we should in formula
(15) set Spp(A) lnp(A) = Spp(A) l n p ( B ) = 0. Solving
further the standard problem of the determination of
the eigenvalues of a Hermitian density matrix ρ, we ob-
tain

(16)
Ρ2=γ(1- |<ν Λ ) ΙΦ ( Β ) ) | , P 3 = p 4 = . . . = p 2 W = 0.

To the e i g e n v a l u e s p x and p 2 c o r r e s p o n d the eigenfunc-
t ions

V ;

where

Substituting (16) into (15), we a r r i v e at the re lat ion

When 1(ψ(Α)\φ(Β)) | = 1, the quantity AS = 0; in the case
when the wave functions are orthogonal, the quantity AS
= 2kNln2. For intermediate values of |<ψ(Α)|ψ(Β)> |, the
inequality

0 < AS < 2kN In 2.

is fulfilled. We emphasize that the expression (18) is
valid for any value of the spin (and, in general, for in-
ternal degrees of freedom of any nature). If the spin is
equal to %, then \(φ^\ψ^)\ = cos (β/2) and the rela-
tion (18) is equivalent to (11).

Let us return to the general expression (15). It is
easy to see that in the case of commuting density ma-
trices, we obtain a formula of the type (8). For identical
gases,

ρ ( Λ ) = ρ ( Β ) (19)

and the quantity AS = 0. The condition for complete d is-

t inguishabi l i ty of the g a s e s i s the fulf i l lment of the

m a t r i x equal ity

ρ·(Α)ρ·(Β> = 0_ (20)

In th i s c a s e the change in the entropy A S = 2 k N l n 2 .

It can be showi i 8 ^, that the change in the entropy AS,

*In the case of spin Vi,

where σ is the Pauli vector operator, p(A) and P(B) are the polarization
vectors of the gases and Ρ = '/2(P(A) + p(B)). And if |P(A)| = |P(B)| = 1,
then from the general formula (15) follows at once (11).
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determined from the formula (15), always satisfies the
inequality (9). The above-stated conditions for the
attainment of the minimum and maximum values of AS
are then not only sufficient, but necessary as well.

Thus, we can state that the traditional approach to
the Gibbs paradox is defective, since the mixed gases
a r e considered in all cases e i ther as totally different,
or completely identical. It is accordingly assumed that
ei ther the gases can be totally separated, or their
separat ion is absolutely unfeasible. No intermediate
situations a r e considered. Such a view-point does not
correspond to the facts, since there exist s tates which
only part ia l ly differ from (or coincide with) each other.
In par t icu lar , if the atoms of the gases under considera-
tion a r e described by superpositions with respect to
some internal quantum number, then the m e a s u r e of the
difference is just the degree of nonorthogonality,
| ( ψ ( Α ) | ψ ( Β ) ) |. Under these conditions, " s e p a r a b i l i t y "
of the gases also ceases to be absolute: any filter that
s e p a r a t e s out one of the s ta tes , " s e i z e s , " to an extent
determined by the degree of nonorthogonality, a toms of
the second type (see a l s o c l o : ] , Chap. 5).

Thus, the complete solution of the Gibbs paradox in-
volves a t ransi t ion from the " a b s o l u t i s t " view of the
nature of the identity and distinguishability of gases, to
a broader view, according to which these concepts re-
flect only the limiting cases of a general situation, when
the gases under consideration are part ial ly distinguish-
able and partial ly indistinguishable*.

4. In the majority of papers the Gibbs paradox i s ex-
plicitly or implicitly connected with peculiar proper t ies
of entropy. We hold the opposite view-point, and con-
sider that the Gibbs paradox is connected with entropy
mainly through history and can in fact be formulated
completely independently of this concept.

Indeed, the relation (3) derived above is obviously
applicable not only to entropy, but to any other additive
state function as well. In par t icular , we can also write
for the internal energy (for fixed temperature)

U = N<t(V/N). (21)

Therefore, if one of two equal volumes V is occupied by
Ν atoms of an ideal gas A, and the other—by the same
number of a toms of the gas B, then the internal energy
of the system before mixing is

U' = 2N<f(V/N).

After mixing, each of the gases occupies a volume 2V,
and the total internal energy of the mixture U" i s equal
to the sum of the internal energies of the components.
Therefore, in the case of an i sothermal mixing,

U"=2Nq(2V/N),

i .e., there i s a change

*It should be noted that a similar point of view has previously been
expressed in a number works of A. Lande (see, for example, [''"13 ]).
Unfortunately, these works contain physical errors pertaining to the
crux of the problem. In particular, A. Lande uses for the quantity AS
an incorrect expression, similar in form to (18) but containing
|<ι/ ((Α)|ψ(Β)> |2 ! i n s t e a d o f |<ψ(Α)|ψ(Β)>| ! a n d c o m e s t 0 t h e conclu-
sion that the concept of the entropy of a mixture has no meaning if
the quantities of the mixed gases are not the same, etc. In [ 1 4] the con-
tinuous behavior of AS is analyzed in the framework of the information
interpretation of entropy.

/Λ)-φ(·//7ν)}, (22)

w h i c h i s i n d e p e n d e n t of the d e g r e e of s i m i l a r i t y of t h e

m i x e d g a s e s . O n the o t h e r h a n d , i n t h e c a s e of i d e n t i c a l

g a s e s , t h e u s e of (21) l e a d s t o t h e e q u a l i t y

AU = 2«φ (2V/2N) — 2/Vcp (V/N) = 0.

L o g i c a l l y , t h e i n d i c a t e d s i t u a t i o n d o e s n o t d i f f e r i n

a n y w a y f r o m t h e G i b b s p a r a d o x , a l t h o u g h t h e c o n c e p t

of i n t e r n a l e n e r g y m a y b e f o r m u l a t e d i n d e p e n d e n t of e n -

t r o p y a n d i s n o t d i r e c t l y c o n n e c t e d w i t h t h e s e c o n d l a w

of t h e r m o d y n a m i c s . W e m u s t , t o b e s u r e , n o t e t h a t f o r

raref ied ideal gases the function ψ introduced by us is a
constant, and the jump in the value of the internal energy
Δ ϋ = 0. However, this c ircumstance is not important in
respect of what we a r e interested in now. If we go from
rarefied ideal gases to gases which are so dense that
quantum mechanical degeneracy begins to play a notice-
able role (see, for example,E1 5^, Sec. 55), then ψ * const,
and the quantity Δ υ turns out to be finite*.

As in the case of entropy, there is no discontinuity in
the variation of the internal energy as we go from iden-
tical to distinguishable gases if we introduce for the
gases a continuous s imilar i ty p a r a m e t e r , e.g., the de-
gree of nonorthogonality of the superpositions
| < ^ ( A ) | ^ ( B ) ) | . The formula for AU (analogous to formula
(18) for the change in entropy) will then have the form

, (23)

where

«!>> |.

It is easy to see that when χ = 1, the quantity Δ ϋ = 0,
while when χ = 0 the expression (23) coincides with (22).
In the interval 0 < χ < 1, the quantity ΔΙΙ takes on inter-
mediate values.

For rea l gases, the internal energy will depend not
only on temperature (the kinetic energy of the atoms),
but on the mean distance between the atoms (potential
energy) as well. The la t ter part also includes the so-
called exchange energy, connected with an additional
quantum-mechanical interaction between identical atoms.

When even very s imi lar , but still distinguishable
atoms (e.g., isotopes), a re mixed, the mean distance
between identical atoms increases , and this leads to
changes in the exchange interaction and the internal
energy of the mixture. Therefore, in an adiabatic mix-
ing of gases, which a r e arb i t rar i ly close in s imilar i ty,
a jump in the temperature occurs, a jump which is ab-
sent when identical gases a r e " m i x e d . " Thus, we have
again a paradox s imi lar to the Gibbs paradox.

We could, if we wished, give a few more paradoxes of
the same sort . The most profound of them is , in gen-
e r a l , not connected with thermodynamics and may be
formulated for a system, containing only two par t ic les .
If the par t ic les a re identical, the wave function of the
system should be symmetrized; in the case of unlike
par t ic les , the wave function i s a rb i t rary . Whence, as i s
well known, it is concluded that the behavior of a system
of par t ic les , which a r e a rb i t rar i ly close in s imilar i ty,

*In essence, precisely this phenomenon is mentioned in one of
Einstein's papers (see [1 6], p. 488).
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differs sharply from the behavior of a system of identi-
cal particles.

All the indicated paradoxes are similar to the Gibbs
paradox. If the properties of the gases or particles
under consideration can vary only discretely, the situa-
tion cannot be considered as paradoxical: a discrete
change in causes leads to a discrete change in the
effects. We would have paradoxes if the behavior varied
discontinuously as the "similarity parameters" varied
continuously; however, in this case the behavior also
changes continuously. This was shown above for internal
energy. Concerning the jump in the temperature (and
pressure) when real gases are mixed, the same conclu-
sion follows from similar arguments. It seems to us
that the behavior of a system of two particles can also
be analyzed in similar fashion ' 1 7 1 9 ^ '
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SOME DEMONSTRATIONS IN WAVE OPTICS

PERFORMED WITH A GAS LASER

O. A. SHUSTIN, T. S. VELICHKINA, L. F. MIKHEEVA and I. A. YAKOVLEV

Moscow State University

Usp. Fiz. Nauk 105, 359-361 (October, 1971)

We describe below a few lecture demonstrat ions of
the principal interference and diffraction phenomena
using a gas l a s e r as the light source. The directionality
of a l a s e r radiation, i ts monochromaticity, and high in-
tensity allow u s to demonstrate these phenomena to a
large audience.

1. DEMONSTRATIONS OF THE INTERFERENCE
PHENOMENON FOR LIGHT REFLECTED FROM
THE BOUNDARIES O F A PLANE-PARALLEL GLASS
SHEET

We have found two ways of setting up such demon-
strat ions . The scheme of the first method is shown in
Fig. 1. A He—Ne l a s e r 1 i s placed facing the audience
in the auditorium and shielded from them by a screen 2
of dimensions 30 χ 30 cm. There is at the center of the
screen an aper ture large enough to p a s s the l a s e r light
beam. A converging lens of focal length 10 cm i s

placed opposite the center of the aperture in the screen
on the reverse side facing the la ser .

The diverging light beam from the focus of the lens
falls on a plane-paral lel glass plate 4 of diameter
100 mm and thickness 15 mm situated 2 m from the
screen. The non-paral lel ism angle between the faces of
the plate is of the order of one second. Its surface is
polished to within " o n e tenth of an interference fr inge."
The possibility of a fine adjustment of the plate, to set
the surfaces of the plate perpendicular to the axis of the
light cone incident on it, is provided for by i ts holder.
Figure 1 shows two interfering r a y s produced by reflec-
tion from the front and r e a r surfaces of the plate. These
rays may be conceived a s coming from two virtual im-
ages (Si and &) of a point light source S, which i s the
focal point of the lens used to produce the diverging
beam of rays . These virtual images a r e formed as a
result of the reflection of light from the two surfaces of
the plate, and are located on the axis of the system.


