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DOES AN ELECTRON FALL IN A METALLIC PIPE?

Sh. M. KOGAN

Usp. Fiz. Nauk 105, 157~

THE question posed in the title may be restated as:
With what acceleration does an electron move inside a
vertical pipe far from the ends of the pipe or inside any
cavity enclosed by a metallic shield if the whole system
is situated in a gravitational field? In other words, does
any force besides the gravitational force mg act on the
electron under these conditions? This question first
arose in connection with the setting up of experiments
to observe the free fall of elementary particles in the
gravitational field (the ultimate aim of such experiments
was to verify that antiparticles possess normal gravita-
tional properties). On the electron scale the free fall
acceleration g = 980 cm/sec® is very small: the same
acceleration is imparted to the electron by a field of
magnitude mg/e (m is the mass of the electron and e is
the absolute value of its charge), i.e., only 5.6

x 10" V/cem. The random electric fields in an instru-
ment for the observation of the free fall of electrons
can be by many orders higher. Therefore the trajectory
of the falling electron should pass through a region en-
closed by a metallic shield, e.g., inside a long metallic
pipe. It is important to know whether besides gravity
another force is exerted on the charged particle inside
the pipe by the electric field which arises because the
shield itself is also located in the gravitational field.

This electric field was first calculated by Schiff and
Barnhilll*1*, They arrived at the following general con-
clusion: an electrostatic field equal to mg/e arises in a
shielded region of space. It is directed downwards and
acts on an electron (negative charge) with a force which
balances gravity exactly, so that the acceleration of the
electron is equal to zero. A positron should by the same
token fall with an acceleration of 2g.

However, Dessler, Michel, Rorschach and
Trammell®] have drawn attention to the fact that Schiff
and Barnhill groundlessly neglected in their calculation
of the electric field the deformation of the metal under
the action of its own weight. They show that this
deformation leads to the appearance of a field which is
larger than mg /e by several (roughly five) orders of
magnitude. In order to understand their idea better, let
us first consider a simpler problem: let us find the field
inside the metal itself.

Electrons in a metal fill all the energy levels up to
the Fermi energy n. Deformation of the metal changes
the magnitude of this energy (see below). But a deforma-
tion arising under the action of gravity is non-uniform:
it varies with height. For example, if a metallic rod is

*We must make a qualification here. In [!] the field outside the
metal was investigated for the first time; the analogous field arising in-
side the metal under the influence of acceleration or gravitation has,
however, been known for a long time. It was considered in connection
with the experiments by Tolman and his co-workers on the observation
of the electron-inertial effect. We shall briefly touch upon this question
below.
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clamped at the lower end and the upper end is free, then
the compression decreases with height, and this leads to
the appearance of a vertical gradient in the electron
Fermi energy. Electrons overflow from the region of
larger Fermi energy to the region of smaller one, as a
result of which the upper end of the metal becomes
charged relative to the lower end and an electric field
appears in the metal and decreases, as it grows, the
current generated by the deformation. The field attains
just a value that neutralizes the effect of the gradient
and reduces the electric current to zero.

To understand the possible mechanism underlying
the change in the Fermi energy in a deformation and
estimate the magnitude of the effect, let us consider the
simplest model according to which the metal is a de-
generate electron gas in the field of a homogeneous
positive charge. The Fermi energy of such a gas is de-
termined by the electron concentration n and is propor-
tional to n®”. Since the relative change in volume as-
sociated with a deformation is equal to dV/V =—dn/n,*
the derivative in this model of the Fermi energy with
respect to deformation is found to be equal to du/(dV/V)
=—(2/3)i. In the general case the Fermi energy changes
further, owing to the fact that the deformation modifies
the intracrystalline field in which the electrons move.
However, the characteristic absolute value of the effect
remains the same as in the simplest model. If we de-
note the strain tensor by vy, then the derivatives xik
= au/auik (they are strain potentials averaged over the
Fermi surface) are, in absolute value, of the order of
the Fermi energy 1., or, which is the same thing, of the
order of the atomic energy ez/a, where a is the inter-
atomic distance, i.e., one—ten electron volts.

Under conditions of thermodynamic equilibrium the
electrochemical potential of the electrons which is
equal to the sum of their chemical potential (the Fermi’
energy) u and their potential energy in the electric and
gravitational fields should be constant throughout the
metal:

f{r) —eq; (r)—mgr = const.

(1)
In this formula ¢;(r) is the potential of the macroscopic
electric field inside the metal. From the equilibrium
condition (1) follows that the field inside the metal is
equal to

(2
Let us choose a system of coordinates with the OZ
axis directed vertically upwards. The field produced by

the deformation is equal to

1 du U5 duy
F T T T (3)

E;= —grad ;= -;— (mg-—grad p),

*It must be borne in mind that neutrality is not destroyed inside the
metal. Charge can appear only in a thin surface layer, whose thickness
in a metal is of the order of the interatomic distance.
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Let us determine the derivatives auik/az with the aid of
the equations of elastic equilibrium. As is well known,
in an elastically isotropic metal, located in the gravita-
tional field,

Juzz _ PE Duyy _ My __ 5 4
0z~ Ey’ 0z 9z Eypg’ ( )

where p is the density of the metal, Ey Young’s modu-
lus, and o the Poisson coefficient. The density p is of
the order of M/a®, where M is the mass of the nucleus
of an atom of the metal. Young’s modulus is Ey

~ 10* dynes/cm?, i.e., of the order of e°/a* (this literal
estimate follows from the fact that a strain of the order
of unity would give rise to a stress of atomic magni-
tude). It follows from (3) and (4) and the estimates we
have just made that the field produced by the deforma-
tion is

L jgrd L 2 Ot (5)

This field is stronger than the one we would obtain if no
allowance were made for the deformation of the metal,
i.e., stronger than mg/e by roughly a factor of M/m

~ 10°. Notice further that the field is determined not by
the strain itself but by its derivative with respect to
height and does not therefore depend on where the metal
is clamped—at the upper or lower end.

Before proceeding to find the electric field outside
the metal, let us recall how the work function for an
electron in a metal is related to the Fermi energy in
the metal. Let us denote by ¢g the potential of the elec-
tric field outside the metal. The difference ¢, — ¢j is
equal to the discontinuity of the potential across the
surface double layer. Such a double layer (dipole mo-
ment) exists even on a perfectly clean metallic surface
owing to the fact that the ‘““center of gravity’’ of the
charge of the electrons in the first (from the surface)
primitive cell of a metal does not necessarily lie in the
plane passing through the nucleus. The jump in the po-
tential e — @ can vary with adsorption of different
molecules, with changes in the occupation of the surface
electronic states (e.g., in an oxide film). If the density
of the double layer were constant, the change in the
work function AW would be equal to minus the change
in the Fermi energy —Au. In the general case

AW = —Ap—el (o — ¢ 5)- (6)

In a state of thermodynamic equilibrium the sum of
the work function W and the potential energy of the elec-
tron taken with the opposite sign should be constant over
the entire surface of the metal:

Wet-eqy (r) - mgr = const. (7)

This condition follows from (1) and (6). It follows from
this condition that the field outside the metal (outside
the double layer) is equal to

E.= —grad ‘Pu=m7g+%grad w. (8)

The variation of the work function of a metal with
height and the corresponding field (grad W)/e (this field
was first considered infzj) are due to the deformation of
the metal under the action of gravity. This field is
similar to the one that develops in the neighborhood of
the surface of contact between two bodies having differ-
ent work functions. Formally, the only difference be-

tween them is that the nonuniformity in the work funec-
tion, which gravity gives rise to, is much smoother.

It is not possible to estimate the field (grad W)/e
outside the metal with the same degree of definiteness
as we can the field inside the metal, because it is not
known how the surface dipole moment (or the discon-
tinuity in the potential on crossing the surface @q(r)
—4(r)) varies with the strain. Naturally, the field out-
side the metal can attain roughly the same magnitude as
the field inside it (~ Mg/e), but it can also be much
smaller. It is known that the contact fields near the
interfaces between different bodies and near the edges
of crystals whose surfaces have different work func-
tions, are usually compensated by the fields of adsorbed
ions, by a redistribution of the electrons in the surface
states, etc. The field produced by deformation may be
neutralized in exactly the same way.

It should be noted that Schiff and Barnhilll!? calcula-
ted the field in a screened region of space by a different
method. They proceeded from a general expression they
had obtained relating the difference A [¢(r1) — @(rz)]
between the electrostatic potentials at two points caused
by gravity to the change in the mass moment
My = fz;)(r)dV of the system (p(r) is the mass density)
when a test charge g moves from one point to the other
(AgMz)1 —2. Indeed, if (AF); . g is the change in the
free energy of the system when the test charge moves
from r, to rz, then

3. (r) =, t‘gzﬂ) _ [ 92 (AFYyy
§-=0

A (P — ¢ =
¢l ()= ()] = g ( = e

On the other hand, the change in the mass moment
linear in q is equal to
. g (O(AM), L {PAF) Ly ’
(Aqu)f.zfq ( aq )q:()— ( 7 :}gl )g:;qf;[) .
Comparing the two equalities, we find that the electric
field induced by gravity is equal to

Eo=—22 (\ M, 9

The two expressions for the field Eg ((8) and (9)) fol-
low from the general conditions of thermodynamic
equilibrium and should therefore follow from each other,
as Herring has proved in his very excellent papexis]. He
also very graphically demonstrates in this paper how
the linear—in q—deformation of the lattice of the metal
arises under the action of a test charge ¢ located near
its surface. That part of the change in the mass moment
of the metal AMy when the test charge moves, which is
connected with the drift of the deformation produced by
the charge (it was neglected inf*J), makes a contribution
to the right hand side of (9) exactly equal to (grad W)/e.
The other part is connected with the motion of the image
charge and makes a contribution equal to mg /e, since
this charge is produced by electrons only.

Let us suppose that an electron falls from a height h
and that part of its path passes through a metallic pipe.
The total increase in its kinetic energy is, of course,
equal to mgh, independent of the magnitude of the elec-
trostatic field which is established inside the pipe: the
change in the potential in the ‘‘interior’’ part of the pipe
is canceled by the changes in the potential near its ends.
However, the field influences the time of flight of the
electron.
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It would be interesting to compare now the conclu-
sions of the theory with experiment. A very important
and difficult experiment was performed by Witteborn and
Fairbank'*], They measured the force that acts on an
electron moving in a vacuum inside a vertical metallic
pipe. The distribution of electrons emitted from a
cathode was directly measured in terms of their times
of flight through the whole pipe and from it the force ac-
celerating the electrons inside the pipe was found. To
increase the accuracy of the experiment a small voltage
was applied to the pipe (a weak current was passed
through it), which produced an additional field E, inside
it. The total force accelerating the electrons was meas-
ured as a function of the auxiliary field E,, which was,
in particular, allowed to go to zero. It turned out that
the total force acting on an electron inside the pipe was
not greater than 0.09 mg (of course, in the absence of
the auxiliary field). This means that within the limits
of the accuracy of the experiment the weight of an elec-
tron is balanced by the field existing inside the pipe.
Thus, to the question posed in the title of the present
review, the Witteborn-Fairbank experiment gives the
answer: no it does not fall; it moves by inertia.

The result of the experiment is in good agreement
with the original conclusion drawn by Schiff and Barn-
hilll'J. The electric field, which the deformation of the
metallic shield gives rise to and which is roughly by
five orders of magnitude stronger than mg/e inside the
metal, is, for some reason, smaller than 0.09 mg/e out-
side the metal.

The discrepancy between experiment and the theory
of Dessler et al.l*] has stimulated experimenters to set
up direct experiments to measure the effect of deforma-
tion on the work function of metals. In the instrument
constructed by Beams®? a metallic cross- shaped rotor
revolved at 650 rps, so that the acceleration at the peri-
phery of the rotor attained a value of 10° g. The poten-
tial differences at various points of the revolving rotor
were measured with the aid of capacitive probes located
above the rotor at different distances from the axis. The
idea was that the radial tensile strain caused by the ro-
tation increased with distance from the axis and there-
fore a contact potential difference should arise between
the axis of the rotor and its periphery. Although Beams
does not quote quantitative results, he indicates that the
observed magnitude of the effect agrees with the theory
of Dessler et al.l*],

Craigt®l as well as French and Beamst” measured
(by the vibrating-electrode method) the variation of the
work function of a number of metals and metallic alloys
as they were uniformly stretched or compressed. In the
region of elastic deformations the work function in all
the cases decreases during compression and increases
during extension by an amount of the order of
107°~107° eV per kg/cm®. This means that under the
conditions of the experimentsf®”] the change in the work
function is of the same order as the change in the Fermi
energy inside the metal. It is interesting to note that in
the region of elastic deformations the sign of the effect
turned out to be as expected on the basis of the simplest
model of a metal as a homogeneous degenerate gas.

Thus, the result of the Witteborn- Fairbank experi-
ment, i.e., the fact that no field produced by the vertical
gradient of the work function was observed, has not been
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explained to date. A number of hypotheses has been put
forward**®*1  but not one has yet been validated.
Furthermore, attention is drawn in the literature to the
differences between experimental setup by Witteborn
and Fairbank, on the one hand, and the setup of the sub-
sequent experimentst®J on the other. Thus,
Harrisonl Y thinks it significant that in the first ex-
periment the deformation was nonuniform (in contrast
to the experimentst®7”J) and very small (in contrast to
the deformation in Beam’s experiment[®]). Attention
should also be drawn to the fact that under the condi-
tions of the experiment':"j, i.e., after cooling the whole
apparatus to the temperature of liquid helium, the fields,
usually due to junctions of facets of metal crystallites
having different work functions (the metal of the pipe was
a polycrystal) practically completely vanished on the
axis of the metallic pipe in which the beam of moved.
But had these fields not been neutralized (as the authors
off*] suppose, by the adsorption of residual gases), they
would have been even stronger than the field which
gravity could have produced. Evidently, the investiga-
tions aimed at the elucidation of the Witteborn- Fairbank
experiment will prove to be useful for the physics of
metallic surfaces.

There is an obvious analogy between the above-con-
sidered problem of the electric field which arises in a
conductor under the action of a gravitational field of ac-
celeration g and the problem of the field in an accelera-
ted conductor. As is well known, the acceleration gives
rise to a current in the conductor, and this effect or its
inverse—the acceleration of the conductor when the cur-
rent flowing through it is varied—is observed in the so-
called electron-inertial experiments. For their analysis
an extraneous field, which would produce the same cur-
rent and acceleration, is introduced. It is well known
that the extraneous field (the Tolman- Stewart field) is,
irrespective of the type of conductor, equal to Eqg
= (m/e)a, where a is the acceleration, and m and —e
are the mass and charge of the free electron (see, for
example,['**]), But this expression was derived with-
out making any allowance for the deformation of the
conductor which inevitably arises when the conductor is
accelerated. The role of the deformation has been in-
vestigated by V. L. Ginzburg and the present authorf**],
It turns out that although the deformation during ac-
celeration does produce a field Eé” = e™'VAy 0y, Which
in the general case exceeds Epg roughly by a factor of
M /m, this field does not, in virtue of its potential char-
acter, make any contribution to the emf which arises in
a circuit of an accelerated metallic conductor, and does
not, therefore, affect the current in the circuit, which is
just what is measured in electron-inertial experiments.
A current can be excited by only the other part of the
‘‘deformation’’ field, which is, in contrast to Ea”, de-
termined by the rate of change of the deformation not
only in space, but also in time, It is interesting to note
that in those experiments in which the effect is associa-
ted with the nonuniform rotation of a circular ring or
coil (and only such experiments have, thus far, been
done), the contribution of the deformation is either equal
to zero (in the original Tolman-Stewart experiment in
which they varied the total charge which flowed through
the circuit during the whole period of deceleration of the
metallic ring), or it is small in comparison with the
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