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.M.OST phenomena occurr ing in a metal with suffic-
iently large electron mean free path depend substantially
on the character of the interaction between the conduc-
tion e lectrons and the boundaries of the s a m p l e . This
interaction is usually described purely phenomenolog-
ically with the aid of the so-called specularity coeffi-
cient p, defined in such a way that the fractions of the
electrons reflected from the boundary specularly or
diffusely a r e equal to ρ and 1 - p, respectively. Since
the wavelength of the conducting electrons coincides in
order of magnitude with the interatomic distance, and
the character i s t ic dimensions of the roughnesses of the
boundary a r e much la rger than this quantity, it has
been customary to assume that the coefficient ρ is
close to zero or , what is the same thing, that the e lec-
tron reflection is close to diffuse.

Recently, however, many phenomena have been ob-
served indicating clearly that the reflection of the e lec-
t r o n s , at least in some c a s e s , is not diffuse. The most
outstanding example a r e the oscil lations, f irst observed
by Khaik in [ 1 ] , of the surface impedance of a metal in
weak (on the order of 1—10 Oe) magnetic fields. As
shown by Nee and P r a n g e [ 2 ] , these oscillations can be
explained only by assuming that the electrons respons i-
ble for the oscillations a r e reflected practically spec-
ularly from the boundary. The splendid agreement be-
tween theory and experiment ( see f 3 ] ) confirms this a s -
sumption. Another example is the observation^4 1 of
cyclotron resonances corresponding to electron motion
along t ra jector ies and accompanied by reflection from
the surface of the meta l . We note also that, as shown
by Sharvin and F i s h e r [ 5 ] , it is possible to produce and
focus beams of conducting e lectrons in a meta l .

The most significant fact is that possibil it ies a r e
opening up presently for a quantitative experimental
investigation of the r e a l law governing the reflection of
conduction electrons from the surface of a metal . This,
in turn, will make it possible to proceed to study the
propert ies of the metal surface itself from a principally
new viewpoint. The point is that usually the s t r u c t u r e
of the surface is investigated with the aid of scat ter ing
of light, x-rays , or e lectrons incident on the surface
from vacuum. The study of the scat ter ing of conducting
electrons (or other short-wave excitations) has, as we
shall show below, a number of fundamental advantages
connected with the fact that in this case we a r e dealing
with scat ter ing of quasiparticles of the crysta l itself,
which " s e n s e " the crys ta l symmetry much bet te r .

b)

FIG. 1

1. REFLECTION FROM A PERFECT SURFACE

The law of reflection of conduction electrons de-
pends, natural ly, on the s t ructure of the metal boundary
and on the shape of the roughnesses . It is necessary to
distinguish here between roughnesses that a r e inherent
in a perfect surface (i.e., one in thermodynamic equili-
br ium), and random roughnesses connected with im-
perfection of the crys ta l .

We consider first the case of a perfect sur face. Let
the function ξ(ρ) define the t rue shape of the crys ta l ,
i .e., the distances of the " e x t r e m e " atoms from the
plane represent ing the median surface of the sample,
ρ being a two-dimensional vector lying in this plane.
The law governing the reflection of the e lectrons is
closely related to the propert ies of the t ranslat ional
symmetry of the function ξ(ρ) .

Let us explain the situation first for the s implest
case of a two-dimensional quadratic crysta l la t t ice . We
assume that the median plane of the sample surface (in
this case a straight line) is perpendicular to the ( 1 1 )
direct ion. Figures l a and lb show two possible s u r -
faces of this crys ta l with specified direction of the
median l ine. It can be stated that in case l a the surface
has a natural translat ional symmetry of the given
median direct ion. Indeed, all the crys ta l propert ies a r e
periodic on a straight line paral le l to the ( 1 1 ) d i r e c -
tion, with a period equal to the diagonal of the unit cel l
(square). In the case of Fig. l a , the crystal surface,
and part icularly the function ξ(ρ), has a t rans lat ional
symmetry with the same period. To the contrary, in
the case of the surface shown in Fig. l b , the symmetry
of the function ξ(ρ) is lower than the symmetry of the
median line of the surface. The period of the function
ξ(ρ) is twice as large as the diagonal of the s q u a r e . A
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lowering of the crystal symmetry occurs in this case
on the surface.

In the general case, possible surface structures can
be classified in accordance with whether there exists a
natural translational symmetry of the given median
plane or not, in the following manner. We consider the
aggregate of all the possible Bloch functions of the
crystal unfcexp (ik -r), the functions realizing the
representations of the corresponding space group.
Here k is the quasimomentum and η is the aggregate
of the remaining quantum numbers. Any function of the
coordinates in the crystal can be expanded in Bloch
functions. The Bloch functions with zero value of the
quasimomentum constitute the complete set of functions
having the natural translational symmetry (periodicity)
of the crystal. The presence of a nonzero quasimomen-
tun, generally speaking, removes the natural symmetry
of the function, but does not violate it in a plane perpen-
dicular to the direction of the quasimomentum. It is
therefore clear that if the crystal boundary has a
natural median-plane symmetry, then the function
ξ(ρ) should be expandable in Bloch functions with zero
projections of the quasimomentum on the median plane:

) = Σ1 (1)

where the summation is over all values of η and over
all k such that the tangential components relative to
the median plane kt vanish; Ank

 a r e certain constants.
If the boundary of the crystal does not have a natural

symmetry, then the expansion of the type (1) will also
include terms with nonzero tangential components of
the quasimomentum. The set of these quantities kti,
kt2, . . . constitutes in this case one of the most important
characteristics of the surface structure of the crystal.

We now proceed directly to an explanation of the
laws governing the reflection of conduction electrons
from the boundary. First, reflection should leave the
electron energy unchanged. This follows from the fact
that for electrons located near the Fermi surface, at
sufficiently low temperatures, the reflection problem
is a single-particle problem, i.e., the electron is a
good quasiparticle during the entire process of inter-
action with the surface. Indeed, the single-particle
character of the problem could be violated only by
processes wherein the quasiparticle in question
decayed into other excitations (at zero temperature). It
is known that for electrons in the interior of a crystal
the probability of such processes is arbitrarily small
if the electron energy is sufficiently close to the Fermi
energy. The proof of this statement is obtained by us-
ing only the energy conservation law and the Pauli
principle, both of which also remain valid in the pres-
ence of a surface (only the momentum conservation law
drops out). It is therefore clear that the presence of a
surface does not violate the single-particle character
of the problem.

Let i/>inc be the wave function of an electron incident
on the surface, and $ r ef the wave function of a reflected
electron. In the general case they are connected with
each other by a relation of the type

, (2)

where F(p) is a certain linear operator that depends

FIG. 2

on the coordinate on the median plane. If the surface
has a natural symmetry of the median plane, then this
operator has an expansion in Bloch functions of the type
(1), containing only functions with kt = 0. But this
means that the wave functions of the incident and re-
flected electrons have the same values of the tangential
components of the quasimomentum. We have thus ob-
tained a conservation law for the tangential quasimo-
mentum, completely analogous to the conservation law
for the tangential momentum in the reflection of ordi-
nary particles from a level surface. It is important to
bear in mind, however, that this law is valid not for any
perfect surface, but only for one having a natural sym-
metry. Thus, kt is conserved for the structure shown
in Fig. la but not for the structure of Fig. lb.

Using the conservation laws for the energy and the
tangential quasimomentum, we can easily determine all
the possible states of the reflected electron. Let us
draw the equal-energy surface corresponding to the
energy of the incident electron and let us repeat it
periodically over the entire reciprocal lattice (Fig. 2).
Let the point A correspond to the state of the incident
electron. We draw through the point A a straight line
parallel to the direction of the normal to the surface of
the crystal (this is the line kt = const, line FD in the
figure). The points B, D, E . . . are the intersections of
the line with the equal-energy surfaces and determine
the possible states of the reflected electron (the re-
maining intersection points C, F , . . . correspond to
electrons that move towards the surface and not away
from it).

If the normal to the surface has a certain random
(irrational) direction relative to the crystallographic
axes, then even for a surface having a natural sym-
metry the number of possible states of the reflected
electron is infinite, since all the points B. D, E , . . . are
in this case not equivalent. This fact is connected in
final analysis with the circumstance that for an ir-
rational direction even the most symmetrical surface
in the usual sense of the word does not have any
periodicity. If particles incident from vacuum were to
be reflected from such a surface, we would not obtain
any simple picture at all. For the conduction electrons
there is a simple criterion that distinguishes surfaces
with natural symmetry at any direction of the normal,
namely, all the states of the reflected electron can be
located on a definite straight line in the reciprocal
lattice.

For rational directions of the surface, the number
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of possible states of the reflected electron is finite, for
in this case there exists only a finite number of non-
equivalent intersection points. Thus, for a normal
parallel to the line PL on Fig. 2 there are two such
points (G and H). The points O, L , . . . are equivalent
to the point H, and the points K, P, . . .to the point G.

If the surface does not have natural symmetry, and
is characterized by the aforementioned set of two-
dimensional vectors kt^ k t 2 , . . . , then the expansion of
the operator F(p) in Bloch functions has the following
form:

Σk,=0
-f 2 •γ

k,=k,.

w h e r e f n

0 ^, f ^ , i { V a r e c e r t a i n o p e r a t o r s t h a t d o n o t -

d e p e n d o n p . I t i s s e e n f r o m ( 2 ) t h a t i n t h i s c a s e , b e -

s i d e s r e f l e c t i o n w i t h c o n s e r v a t i o n o f k t , a c h a n g e o f

t h e t a n g e n t i a l q u a s i m o m e n t u m , e q u a l t o t h e v e c t o r s

k t i ; k t 2 , , i s p o s s i b l e . E a c h o f t h e s e v e c t o r s c o r r e -

s p o n d s t o i t s o w n s t r a i g h t l i n e p a r a l l e l t o t h e l i n e k t

= c o n s t . T h e p o i n t s o f i n t e r s e c t i o n o f a l l t h e l i n e s w i t h

t h e e q u a l - e n e r g y s u r f a c e s d e t e r m i n e t h e p o s s i b l e s t a t e s

o f t h e r e f l e c t e d e l e c t r o n s . T h u s , i f t h e s t a t e o f t h e i n -

c i d e n t e l e c t r o n i s r e p r e s e n t e d b y t h e p o i n t A i n F i g . 2

( t h e n o r m a l t o t h e b o u n d a r y i s p a r a l l e l t o t h e l i n e s F D

a n d M N ) a n d t h e r e i s o n e n o n v a n i s h i n g k ^ , t h e n t h e

reflections at Μ, Ν, a r e possible in addition to the
reflections at B, D, Ε

An experimental study of the law governing the r e -
flection of conduction e lectrons thus makes it possible
to determine directly the set of vectors kti> kt 2, ,
which determine the s t r u c t u r e of the sur face. It should
be noted that one and the s a m e crys ta l can have a sur-
face with natural symmetry for some directions of the
n o r m a l , and without such symmetry for other d i r e c -
t ions . In addition, when the tempera ture or the p r e s -
s u r e is changed, unique phase transi t ions a r e possible,
wherein nothing happens in the inter ior of the crys ta l
and only the symmetry propert ies of the surface change.
All such s ingularit ies can be easily explained if the law
governing the electron reflection is known.

We note that we a r e considering throughout ref lec-
tion of conduction e lect rons, although everything said
h e r e pertains to al l other short-wave excitations of the
crys ta l , and part icular ly to Debye phonons.

2. GLANCING ELECTRONS

The problem of calculating the angular dependence
of the reflection coefficient can be solved in the general
case for any surface (perfect or not) in the important
case when the velocity of the incident electron is a l-
most paral le l to the surface (glancing e lectron). This
problem is analogous in many respect s to the well
known problem of scat ter ing of slow part ic les in quan-
tum mechanics ( see f 6 1 ) . We emphasize that inasmuch
as the quasimomentum does not have the s a m e d i r e c -
tion as the velocity, the direction of the quasimomentum
of a glancing electron is perfectly a r b i t r a r y .

If the reflection of the glancing electron occurs with
conservation of the tangential quasimomentum, then one
of all the possible s tates of the reflected electrons has
a quasimomentum close to that of the incident e lectron.
Indeed, s ince the velocity is n o r m a l to the equal-energy

s u r f a c e , it i s c l e a r t h a t t h e s t r a i g h t l i n e kt = c o n s t i s
a l m o s t p e r p e n d i c u l a r t o t h i s n o r m a l and c r o s s e s t h e
e q u a l - e n e r g y s u r f a c e a s e c o n d t i m e a t a c l o s e p o i n t . T h e
t r a n s i t i o n of t h e e l e c t r o n t o t h i s point upon r e f l e c t i o n
c o r r e s p o n d s to s p e c u l a r r e f l e c t i o n with a s m a l l c h a n g e
of t h e q u a s i m o m e n t u m . It i s p r e c i s e l y s u c h a r e f l e c t i o n
w h i c h o c c u r s wi th o v e r w h e l m i n g p r o b a b i l i t y , a s we
s h a l l s h o w , for a g l a n c i n g e l e c t r o n r e f l e c t e d f r o m a n
a r b i t r a r y s u r f a c e of t h e m e t a l , w h e n , g e n e r a l l y s p e a k -
ing, t h e r e i s no c o n s e r v a t i o n of k t .

We a r e i n t e r e s t e d in t h e p r o b a b i l i t y of s p e c u l a r r e -
f l e c t i o n o n l y . We c o n s i d e r , a c c o r d i n g l y , t h e e l e c t r o n
wave function φ describing the " m i r r o r reflection
channel , " in analogy with the introduction of a wave
function describing the " input c h a n n e l " in the theory
of inelastic scatter ing ( s e e [ 6 ] ) . The process of ref lec-
tion into any other state a r e analogous in such a de-
script ion to inelastic p r o c e s s e s .

We regard the electron energy e(k) as a function of
k x = k (the χ axis is normal to the surface of the
metal , which in turn occupies the region χ < 0 at a
fixed kt equal to the value of the tangential momentum
of the incident e lectron. Since the incident electron is
glancing and the reflection is accompanied by a smal l
change of momentum, an important role is played by
the smal l region of values of k near a certa in value k 0

corresponding to zero velocity component normal to
the surface

Expanding the energy e in powers of (k - k 0), we ob-
tain

ι · / . / , ι 2 / Ο \
e = sa(k,) + H* " ' - * " ' ' t ( o )

w h e r e m i s a c e r t a i n e f f e c t i v e m a s s .

T h i s i s t h e f o r m t h a t t h e e l e c t r o n e n e r g y t a k e s f a r

f r o m t h e b o u n d a r y . O n a p p r o a c h i n g t h e b o u n d a r y , t h e

p o t e n t i a l e n e r g y U o f t h e i n t e r a c t i o n b e t w e e n e l e c t r o n

a n d t h e b o u n d a r y b e c o m e s i m p o r t a n t . I f i t i s a s s u m e d

t h a t t h e c h a r a c t e r i s t i c d i m e n s i o n o f t h e r o u g h n e s s e s i s

o f t h e o r d e r o f t h e i n t e r a t o m i c d i s t a n c e a , t h e n f o r

j x | ^ > a t h e i n f l u e n c e o f t h e r o u g h n e s s e s b e c o m e s

s m o o t h e d o u t a n d t h e p o t e n t i a l e n e r g y d e p e n d s o n l y o n

x . T h e e l e c t r o n e n e r g y i s t h u s e q u a l t o

and we can write the following equation for the x-de-
pendent part of the wave function:

Introducing a new unknown function ψ = i/)exp(-ikox),
we t ransform the last equation into

(4)

where fiq = V2m(e - e 0 ) = m v x , and v x is the inci-
dent-electron velocity component normal to the surface.
The condition qa ^C 1 is satisfied for a glancing e lec-
t r o n .

In the region 1/q ,» | χ | . » a we can neglect the
two last t e r m s of (4). If this is done we get, in fact,

ψ(χ)=--Α + Βχ, (5)
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where A and Β are constants that depend on the struc-
ture of the metal boundary.

If we now regard the discarded terms as a perturba-
tion, we readily see that the first of them makes a con-
tribution of the order of (qx)2 -C 1, and the second of
the order (a/| x | ) n ~ 2 , if U ( x ) ~ l x | " n . This contribu-
tion is also small if the potential energy decreases
more rapidly than x~2, a condition always satisfied in
practice.

It is important that the ratio of the constants A and
Β at small values of q is independent of q. This is
clear from the fact that even when | χ | « χ 0 , where
x0 is given by the equation h2q2 ~ mU(xo)(xo ^ a), we
can neglect the term q2 in (4) compared with the poten-
tial energy. The quantity q does not enter in the equa-
tion at all at such values of x, and all the more when
| x | ~ a.

When | χ | >> a, we can neglect in (4), generally
speaking, only the last term. The solution can then be
written in the form

«* + Ve,-lqx (6)

where V(q) is the sought reflection coefficient. From
the condition for "joining" formulas (5) and (6) at qx
< l , w e get

V=-l+aq, (7)

where α = 2iA/B =a + i a " .
The probability of specular reflection is determined

by the square of the modulus of the reflection coeffi-
cient

mvx

η

Its deviation from unity is thus proportional to the first
power of the velocity νχ, or, equivalently, to the first
power of the small angle between the electron velocity
and its projection on the plane of the metal boundary.
For a boundary with atomic-size roughnesses, the
parameters a and a" have the same order of magni-
tude as the interatomic distance.

It is important to note that the derivation of (7) was
based essentially on two assumptions, first the exist-
ence of a channel for specular reflection with a small
change of the quasimomentum (small q), and second
the possibility of expanding e(k) in a power series.
The first assumption is satisfied not only by glancing
electrons but also by electrons belonging to small
groups, i.e., in the case when one deals with a small
closed section of the Fermi surface. If the function
e(k) is analytic in the corresponding section of k-space
(the small group has in this case a quadratic spectrum),
then even the reflection of nonglancing electrons is
described by formula (7). In the opposite case, for ex-
ample in the case of bismuth, a special analysis is
necessary, with allowance for the concrete form of the
singularity. The special sensitivity of the problem to
the analytic properties of the function e(k) is connected
with the presence of a classical turning point V(x0)
= e near the surface.

We assume now that the metal boundary has, besides
the atomic roughnesses, also random macroscopic ir-
regularities. In the calculation of the influence of the
latter on the electron reflection coefficient, we can
neglect the small quantities aq connected with the

atomic-size roughnesses. It is then seen from (6) and
(7) that the boundary can be considered purely macro-
scopically, and we can write for it in the condition
ψ = ψ =0 . We emphasize that such an approach is
valid only for glancing electrons or for small groups
with a quadratic spectrum. In the general case the
atomic-size roughnesses, which always accompany the
macroscopic irregularities, cannot be disregarded.

The boundary condition φ = 0 was used to investi-
gate the interaction of conduction electrons with a
rough metal boundary by Greene and O'Donnellt7],
Chaplik and Entin [ 8 ], Kaner, Makarov and Fuks [ 9 ],
Fal'kovskiif1 0·1 1 1, Singhal [ 1 2 ], and Makarov and Fuks [ 1 3 ] .

If the amplitude of the irregularities is not too large,
then their influence on the motion of the electron can be
accounted for by perturbation theory. Let the function
χ = ξ(ρ), where ρ = (y, z), describe the surface of a
metal with random macroscopic irregularities. Choos-
ing the average surface as the χ = 0 plane, we can
always make the average of the random quantity ξ(ρ)
equal to zero. The statistical properties of the surfaces
are described by the binary correlation function

w h e r e d = V | 2 i s t h e r m s h e i g h t o f t h e i r r e g u l a r i t i e s ,

a n d w ( p ) i s - a c o r r e l a t i o n f u n c t i o n s a t i s f y i n g t h e c o n d i -

t i o n w ( 0 ) = 1 a n d d e c r e a s i n g s i g n i f i c a n t l y a t d i s t a n c e s

I o n t h e o r d e r o f t h e c h a r a c t e r i s t i c " w a v e l e n g t h " o f

t h e i r r e g u l a r i t i e s .

We rewrite the boundary condition ψ(ξ, ρ) = #>(ξ, ρ)
= 0, by expanding in powers of ξ accurate to terms of
second order inclusive:

» f W . L ' | i E ! , o ) = 0 . (9)

where all the quantities are taken at χ = 0.
In the zeroth approximation in ξ, the wave function

takes, in accord with (6), (7), and (8), the form

where hq(kt) = mv x is a function of the tangential mo-
mentum kt at a fixed energy. In the next-higher ap-
proximations, the wave function contains reflected
waves with different values of the tangential momen-
tum. However, by virtue of the fact that ξ(ρ) changes
little over atomic distances, the momenta of the inci-
dent and reflected electrons should be close to each
other. Transitions to other sections of the Fermi sur-
face are therefore impossible, so that the connection
between the normal and tangential quasimomenta is
determined by one and the same function q(kt). We
seek the wave function in the form

w h e r e F ( k t ) i s a n unknown f u n c t i o n . S u b s t i t u t i n g (10)

in t h e c o n d i t i o n (9) a n d u s i n g s u c c e s s i v e a p p r o x i m a -

t i o n s , we o b t a i n i n t h e s e c o n d a p p r o x i m a t i o n

F (kj) =- - 2iq (k() ξ (k, -k',) + 2q (kt) q (ki) I (k,-kl) ξ (kj-k',);

here £(kt) is the Fourier component of the function

Up):
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To calculate the wave function averaged over the
ensemble of functions ξ, we substitute (11) in (10) and
average the t e r m s quadratic in ξ in accordance with
(8). The l inear t e r m s vanish upon averaging. As a r e -
sult we obtain

where the reflection coefficient is equal to

F(k,)= - i + - ^ r ? ( k ( ) j d%;?(k;)№(k;-k,), (12)

w(kt) is the Four ier component of the corre lat ion func-
tion, which determines the distribution of the inhomo-
geneities over the "wavelength" and is normalized by
the condition

j g j ^ ( k , ) = i . (13)

A formula s imi lar to (12) for the formally identical
problem of scat ter ing of electromagnetic waves by an
uneven surface was obtained by Bass [ 1 4 ] .

Since the inhomogeneities in question have c h a r a c -
ter i s t ic dimensions greatly exceeding the interatomic
distance, the function w(kt) differs from zero only at
s m a l l values of the argument. Therefore, if q(kt) is
not too smal l , namely q(kt) 2> ( i a ) " 1 / 2 , we can replace
w(kt) in formula (12) by (27r)26(kt). We then have

V= —l+2(qd)2. (14)

In the inverse limiting case q(kj) <C (la.)'1' , we can
put q(kt) = 0 when calculating the integral in (12). The
dependence of q on k{ can easily be determined by ex-
panding the quantity e o (kt) in (3) in powers of k{ - kt,
i .e. , by putting €0(k() = nvt(kt - kt), where vt is the
tangential component of the incident-electron velocity.
As a resul t we obtain

Tig (k'() = |/2roBv((ki —k,).

Substituting this in (12) and carrying out the simple
integration, we obtain the reflection coefficient (the
function w is assumed to be isotropic) :

(15)

where Γ ( χ ) is the gamma function; we have introduced
in place of w the corresponding dimensionless func-
tion ί(κ) = (2ν12)~1ψ(κ/ΐ) of the dimensionless argu-
ment κ, so that the integral in (15) is of the o r d e r of
unity.

Formula (15) shows that for extremely glancing
electrons the probability of nonspecular reflection, in
accord with the general formula (7), is proportional to
the f irst power of the n o r m a l velocity component. Com-
parison of formulas (15) and (7) also shows that the
constant a, which c h a r a c t e r i z e s the macroscopic in-
homogeneities of the boundary, is of the o r d e r of
d 2 /(Za) 1 / 2 . Thus, if the macroscopic inhomogeneities
a r e such that d /l >> a 3 , then they make the main con-
tribution, and the reflection coefficient is determined
by formula (15). In the opposite limiting case , a tomic-
s ize roughnesses, which a r e always present on the
macroscopical ly uneven boundary, become more sig-
nificant, and the reflection coefficient is determined by
formula (7) with a ~ a.

As shown above, formula (12) can also be used for

nonglancing e lectrons, if one deals with the reflection
of electrons belonging to smal l (regular) groups. For
i r regu lar i t i e s with character i s t ic "wavelength" I much
larger than the inverse parameter ( 2p0) of the F e r m i -
surface section corresponding to the group under con-
siderat ion, formulas (14) and (15) remain valid as be-
fore, the former holding when q » (po/i) 1 / 2 , and the
latter when q <C (ρο/ί) 1 / Ζ · Since p 0 is much smal le r
than the rec iproca l interatomic distance, the inequality
p o i <C 1 may be real ized for the macroscopic i r regu-
l a r i t i e s . We then obtain from (12) the following expres-
sion for the reflection coefficient (the effective m a s s
m is assumed for simplicity to be i sotropic) :

*J*V (16)

The probability of nonspecular reflection is determined
mainly by the r e a l part of the coefficient V. Compari-
son of (16) with (7) shows that in this case the contribu-
tion of the atomic roughnesses to the indicated proba-
bility can be neglected if d V ĵ> a/po.

F a l ' k o v s k i i [ 1 0 ] derived for the distribution function
of glancing electrons a boundary condition that de-
scr ibes their interaction with a rough metal surface,
and used the resul t to investigate the influence of the
surface propert ies on the high-frequency impedance of
a metal in the absence of a magnetic field. Under
strongly anomalous skin-effect conditions, when the
electron mean free path ( v r ) greatly exceeds the depth
δ of the skin layer, the main contribution to the im-
pedance is made, as is well k n o w n t l 5 ] , by the glancing
e lect rons . Since the law of reflection of glancing e lec-
t rons is close to specular, the surface impedance Ζ is
close to the known value Z o ( s e e [ 1 5 1 ) calculated for a
rigorously specular boundary, and differs from it by an
amount

when ντ/δ » (Z/a) 1 / 2 ln (Z/a) and

when ντ/δ < ( z / a ) 1 / 2 l n ( Z / a ) .
The surface impedance is connected in a s t r ict ly de-

fined manner with the surface character i s t ic s I and d.

3. WIDTHS OF MAGNETIC SURFACE LEVELS

The surface-impedance oscil lations of a metal in a
weak magnetic field, observed by Khaikin 1 · 1 1, a r e r e s o -
nances corresponding to t ransi t ions between different
magnetic surface levels t 2 ] . These levels appear for a
glancing e lectron moving n e a r the surface of a metal
in a magnetic field along a tra jectory of the type shown
in Fig. 3. The sections of t ra jector ies between succes-
sive collisions with the boundary a r e approximately
c i rc les with radius R = Vy/Ω, where Ω = eH/mc, m
is the effective mass that enters in formula (3), and
the magnetic field is directed along the ζ axis . The
a r e a of the segment shown shaded in the figure is equal
to ( % ) R 2 0 3 . According to the quasic lass ical quantiza-
tion ru le , the magnetic flux through this a r e a should
equal an integer number (n) of flux quanta
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FIG. 3

from which we obtain the possible values of the angle

ο,, - (17)

The energy levels are obtained by substituting in the
formula e = eo(kt) + n2q2/2m the values of q defined
by fiq = mvy θ :

Oscillations are observed in fields on the order of
1—10 Oe. According to (17), such values of the magnetic
field correspond to angles θ ~ ΙΟ"2—10"3, so that we
are indeed dealing with glancing electrons.

Perfectly defined values of (18) for the energy levels
were obtained assuming complete specular reflection
of the electrons from the boundary. Actually the elec-
tron always has a nonzero probability of nonspecular
reflection, and consequently the exact stationary levels
are transformed into quasistationary ones with a finite
decay probability, i.e., finite width.

The widths of magnetic surface levels for a metal
with a rough boundary were calculated by Prange and
Nee [ 1 β ] , Kaner, Makarov, and Fuks [ 9 ] , Fischbeck and
Mertsching1-171, and Singhal1 1 2 '. The most consistent
and complete theory was developed by Fal'kovskn [ 9 1,
and then by Makarov and Fuks [ 1 3 ] .

To establish a quantitative connection between the
width of the magnetic surface levels and the electron
reflection coefficient, it suffices to compare the wave
function Ve" l clx of the reflected electron with its value
_ e -iqx | n the case of total specular reflection, i.e., in
the case when the condition φ = 0 is satisfied on the
boundary. We see that as a result of a single reflection
the wave function acquires an additional factor (-V).
In a time t, the electron experiences Ν = t/T reflec-
tions, where Τ = 2θ/Ω is the time between collisions
with the surface, and therefore the additional factor in
the wave function is equal to

I T/\N _ Jfln(-V) ~ p-N(l+V) -_ ργη ί ί — Γ—Μ 4- ΙΛ 11
( _ Κ ) - e >~e - e x p j ι η[_2ιβκ π ']}

W e h a v e u s e d h e r e t h e f a c t t h a t t h e c o e f f i c i e n t V f o r
t h e g l a n c i n g e l e c t r o n s i s c l o s e t o - 1 . S i n c e t h e w a v e
f u n c t i o n i s p r o p o r t i o n a l t o e x p ( - i e t / f i ) ( e i s t h e
e n e r g y ) , i t f o l l o w s t h a t t h e a d d i t i o n a l f a c t o r i s e q u i v a -
l e n t t o t h e a d d i t i o n o f t h e c o m p l e x q u a n t i t y
[(ΕΩ)/(2ϊθ)] (1 + V) to the energy. Its imaginary part
determines the sought level width

(19)

In addition, a change takes place in the real part of
the energy, i.e., a level shift by an amount

V). (20)

Substituting the reflection coefficient in the form (7),
in (19) and (20), we obtain

v = — - — Ω . δε = —J—Ω. \Λί>

from which we see that the roughnesses of the atomic
scale lead to a level broadening and shift proportional
to the first power of the magnetic field. The broadening
and shift due to the macroscopic irregularities, for suf-
ficiently weak magnetic fields Ω <g (&/ΐ)3/ζ(ίρ/ηϊι),
are also proportional to the first power of H. Indeed,
in this case, as seen from (17), the angles θ are small
compared with (a./l)^2 and we can use formula (15)
for the reflection coefficient. As a result we obtain

( 2 2 )

If Ω > (a/Z)3 / 2(er/nK), then substitution of the coef-
ficient V from (14) in (19) yields

Y = Q ' / ' ( ^ „.„.)·" «P. (23)

The level shift is in this case much smaller than the
width.

For formula (23) to be valid, it is actually necessary
to impose an additional upper bound on the field,
Ω <C (Kvtn/mZ3)1/z. The point is that when
Ω /<? (Rvtn/mZ3)1/2 the path vtT traversed by the elec-
tron between successive collisions with the metal sur-
face becomes of the same order as or smaller than the
correlation length I. The condition of statistical inde-
pendence of the different collisions of the electron with
the surface, assumed in the derivation of formulas (19)
and (20), is then violated. If there is a correlation be-
tween the.different collisions, then there is no direct
connection between the level width and the reflection
coefficient. Nonetheless, the width can be expressed
in terms of the correlation function of the irregulari-
ties f(«). In the limiting case Ω 5> (Rvtn/mZ3)1/2, cal-
culations (see [U>131) lead to the following formula:

(24)

Thus, when the field is increased, the level width
due to the macroscopic irregularities is at first pro-
portional to H, then to H 4 / 3, and finally to H2.

When it comes to the magnetic surface levels of the
electrons belonging to the small groups, for large-
scale irregularities (p0Z » 1) formula (22) is valid
when Ω C (B 2p 0/m 2/V) 1 / 2, formula (23) when
(n 2 p 0 /m 2 zV) V 2 < Ω <sC (E2

P on/m2Z3)1 / 2, and formula
(24) when Ω » (B2pon/m2Z3)1/2.

For small-scale macroscopic irregularities
(a < I « 1/Po), the level width and the shift are ob-
tained by substituting (16) in (19) and (20):

oo
y = i Ω (dl)* mvyplf (0), δε = Ω(Ζ2 ̂  j κ2/ (κ) άκ.

ο

(25)

In t h i s c a s e t h e width i s m u c h s m a l l e r t h a n t h e s h i f t .

A q u a n t i t a t i v e e x p e r i m e n t a l i n v e s t i g a t i o n of t h e

w i d t h of m a g n e t i c s u r f a c e l e v e l s w a s c a r r i e d out by

K o c h and M u r r a y [ 1 8 ] on g a l l i u m a n d t i n s a m p l e s . In

t h e r e g i o n of not t o o s m a l l v a l u e s of t h e m a g n e t i c f ie ld ,

t h e m e a s u r e d width of t h e r e s o n a n c e s v a r i e d q u a d -

r a t i c a l l y wi th t h e m a g n e t i c f ie ld , in full a g r e e m e n t wi th
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(24). In weaker fields, a weaker field dependence was
observed, also in agreement with the predictions of the
theory. In addition, a special investigation was made
i n f l 8 ] of the s tate of the surface (the p a r a m e t e r s I and
d were measured) . Unfortunately, the F e r m i surfaces
of gallium and tin have not been investigated with suf-
ficient thoroughness, so that measurements of the s u r -
face levels could lead only to es t imates of the p a r a m e -
t e r s of the energy spect ra of the electrons responsible
for the osci l lat ions. There exist, however, a number of
metals (for example, bismuth or copper), whose F e r m i
surfaces a r e fully known and for which oscillations in
weak fields have been observed. Measurements of the
level widths in such cases would lead to quantitative
conclusions concerning the surface s tate of the meta l .
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