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J r O R the past few y e a r s the in teres t of physicists who
a r e involved with the theory of e lementary par t ic le s has
been at t racted by the model proposed by Gabriele
Veneziano'-1-'. In a mathematical ly amazingly simple
form this model ref lects the concepts which have been
developed over the past few y e a r s regarding the charac-
t e r of the strong interact ions of e lementary par t ic les .
Although in i t s pr imit ive form the model runs into con-
siderable difficulties, due mainly to attempts to take
unitarity into account, the many positive character i s t ic s
of the model lie at the bas is of the conviction that i t s
further development is full of p r o m i s e s .

In this brief review it is impossible to touch upon all
the direct ions related to the Veneziano model.* We dis-
cuss the fundamental and character i s t ic features of the
Veneziano model, as well a s i ts consequences and the
degree of agreement with experimental data.

Before describing the model one must discuss the
experimental and theoret ical concepts which have led to
its introduction. We shall pay par t icu lar attention to the
concept of " duality"^ 2 > 3^, which immediately preceded
the Veneziano model and was to a large degree respon-
sible for it. At the same t ime, the mathematical and
physical meaning of the duality concept was clarified
through the study of the Veneziano model.

I. THE RESONANCE SPECTRUM AND REGGE POLES

1. The Resonances

In the region of not very high energies the physics of
strong interactions is resonance physics. A character-
is t ic feature of practical ly all experiments car r ied out
with e lementary par t ic le a c c e l e r a t o r s i s the presence of
resonance peaks in the effective m a s s spectrum of the
par t ic les formed in strong interactions (i .e., in the quan-

2 2 ] l / 2
tity Μ =

g ( ,
+ E 2 + ... + E n ) 2 - ( P l + P2 + ... + p n ) 2 ]

he q
2 ] l / 2 )

These resonances correspond to unstable par t ic les which
decay during nuclear t ime intervals τ = ( l / r )
~ 10"2 4 sec, where Γ is the width (in energy) of the
resonancet . At the present time approximately 50 boson
resonances and about as many baryon resonances a re

*The list of references contains only a small fraction (~5%) of the
huge number of papers dedicated to this problem which have appeared
over the past three years.

t We use a system of units with h = c = 1.

known, and thei r l ist seems far from being completed 1 ^.
The resonances, a s well a s the p a r t i c l e s which a r e
stable under strong interact ions (i .e., the proton p, the
neutron n, the pion JT, the kaon K, etc.) a re character-
ized by definite values of conserved quantum numbers
like the baryon number, s t rangeness (hypercharge),
parity, spin, isospin, etc. (cf., e.g., the review by Gell-
Mann, Rosenfeld, and Chew^ 5 ]). The spectrum of known
part ic les and resonances exhibits definite regular i t ies ,
which lead to a simple classification of the resonances.
For the sequel it will be essent ia l to note that:

a) Among the well-established p a r t i c l e s and reson-
ances there a re no so-called " e x o t i c " s tates , i .e.,
boson resonances with e lect r ic charge |Q| > 1 and
baryon resonances with positive s t rangeness and charge
|Q| > 2. In group-theoretical language this signifies
that the par t ic le s a re classified according to the sim-
plest representat ions of the SU(3) group: the singlets
and octets for the bosons, and singlets, octets and deci-
mets (decuplets) for the baryons (for the SU(3) classi-
fication of e lementary p a r t i c l e s cf., e.g., the review
papers C 6 " 8 : l ) .

b) If one constructs a graph for par t ic les differing
in thei r spin values, but having the other internal quan-
tum numbers identical, such that the horizontal axis i s
calibrated in values of the square of the m a s s M2 and
the vert ical axis in values of the spin J (the Chew-
Frautschi p l o t ^ ) , then the l ines which join the points
representing the par t ic le s turn out to be pract ical ly
straight (Fig. 1,2). Such a line is called a Regge (pole)
tra jectory.* Poles with noninteger (and in general com-
plex) values of the angular momentum J have first been
introduced by Regge^10^ in the context of nonrelativist ic
quantum theory of scatter ing and then generalized to the
case of relat ivist ic scattering^ 9 ' 1 1 ^; they a re a natural
extension of the concept of resonances with integer val-
ues of J to noninteger spin values. In o r d e r to clarify
the relation between Regge poles and resonant s tates we
recal l the description of integer spin resonances in the
theory of e lementary par t ic les . We shall discuss the
scatter ing p r o c e s s a + b — c + d o f spinless part ic les in
t e r m s of the amplitude A(W, Θ), where W i s the center-
of-mass energy of the par t ic les , θ i s the scatter ing

*In reality, in relativistic theories a Regge trajectory joins only res-
onances with even (or odd) values of J for bosons, or of the quantity
J—Vi for baryons.
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FIG. 1. The baryon trajectories Δ and Ν in the Chew-Frautschi plot.

The triangles correspond to the Δ-trajectory, the circle to the Νγ-trajectory. The

two upper lines represent Re a, the two lower ones represent Ima. The resonances,

for which the quantum numbers are well established [ 4 ], have been underlined.

«ι S, • i, f S * lmcc(s)
5 10 s--M',GeV

FIG. 2. The boson trajectories: Ο denotes the p-trajectory, Π de-

notes the R-trajectory.

The upper lines represent Re a, the lower points represent Im a.

a n g l e i n t h e s a m e r e f e r e n c e s y s t e m . T h e s q u a r e o f t h e

absolute value of the amplitude determines the probabil-
ity of the p r o c e s s under discussion. If there i s a reson-
ance of m a s s M r , spin J and width Γ , then for W values
close to M r the amplitude has the usual Breit-Wigner
form

A(W, 0) = (2J~ j (cosθ)

(cos 6)

2M, (Λί ρ -Κ')-(ίΓ/2)(1)

h e r e P j ( c o s Θ) i s a Legendre polynomial, which origin-
ates from the fact that scatter ing occurs only in a state
with orbital angular momentum 1=3. Thus, the ampli-
tude A(W, Θ) (as well as the part ia l wave amplitude
Aj(W)) has a pole in the variable W at the point W = M r

- ί(Γ/2) which i s removed from the rea l axis by a dis-
tance determined by the width of the resonance. Usually,

FIG. 3. A diagram representing resonant
scattering.

the resonances occurring in sys tems of strongly inter-
acting par t ic les (hadrons) have widths Γ ~ 100 MeV.
One can associate a diagram (Fig. 3) with the expres-
sion (1) for A(W, Θ), with the interpretat ion that the
colliding par t ic les a and b first form a resonance in the
intermediate s tate, which la t ter decays into the part i-
cles c and d. The probability amplitude for the p r o c e s s
a + b — M p i s character ized by the quantity gu and the
probability for the decay M r — c + d i s character ized
by the constant g2; these constants a re called " v e r t i c e s "
or coupling constants.

2. Regge Poles

Before describing the Regge poles we dwell briefly
on the kinematics of the p r o c e s s discussed above and
on the concept of cross ing symmetry in relat ivist ic
quantum theory.

In the relat ivist ic theory it is convenient to descr ibe
the amplitude in t e r m s of invariant var iables, which can
be formed from the four momenta pj of the par t ic le s
participating in the reaction. One u s u a l l y ^ chooses
the following invariants :

S=(Pa + Pb)2, t^(Pa-Pc)1, "• =(Pa —Pd)*- (^)

C o n s e r v a t i o n of t h e t o t a l 4 - m o m e n t u m i n t h e r e a c t i o n ,

i . e . , t h e c o n d i t i o n p a + p b = p c + p j , i m p l i e s t h a t t h e

t h r e e q u a n t i t i e s s , t, a n d u a r e n o t i n d e p e n d e n t a n d a r e

r e l a t e d b y t h e s i m p l e e q u a t i o n *

2 2 2 2 f "i\

It i s e a s y t o d e r i v e a r e l a t i o n b e t w e e n t h e i n v a r i a n t

variables and the center-of-mass quantities W, θ ^ 1 2 ] :

where ej and p^ denote respectively the energy and mo-
mentum of the i-th part ic le in the center-of-mass sys-
tem. These can be expressed in t e r m s of the quantity s
and the part icle m a s s e s . When all four m a s s e s a re
equal to m, we have:

In relat ivist ic quantum theory the absorption of a par-
ticle of 4-momentum (— pj), i .e., with negative energy, is
equivalent to the emiss ion of an antiparticle of
4-momentum p ^ Therefore the same amplitude A(s, t, u)
descr ibes the scatter ing p r o c e s s a + b — c + d a s well as
the annihilation p r o c e s s e s a + c — b + d and a + d — c
+ b (Fig. 4). However, the ranges of variat ion of the in-
variant quantities s, t, and u a re different for the three
p r o c e s s e s . Indeed, in the p r o c e s s a + b — c + d (the so-
called s- channel) the physical region corresponds to
s > 0 , t < 0 , u < 0 (| cos Θ | < 1), whereas for the r e a c -
tion a + c — b + d (the t- channel) the physical region
corresponds to the values t > 0, s < 0, u < 0, and for
a + d — c + b (the u- channel) u > 0, s < 0, t < 0. The
asser t ion that a single analytic function A(s, t, u) des-

*We have chosen the metric so that p\ = m?.
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FIG. 4. The processes a + b-*c + d, a + c->b + d, a + d->-c + b
which are described by the same amplitude A(s, t, u).
The values of the variables s, t, u corresponding to physical regions are also indicated.

cribes in different regions of variation of the variables
all three processes is called crossing^5'12^. If one of the
particles participating in the reaction, e.g., b, is the
antiparticle of one of the others, say c (or d), i.e.,
b = c (or b = d), then the s- and t- channels of the reac-
tion (or the s- and u-channels) are identical and the am-
plitudes A(s, t, u) must be symmetric under the substi-
tution s r t ( o r s r u). This property of the amplitude
is called crossing symmetry.

Analyticity and crossing are the fundamental proper-
ties of relativistic scattering amplitudes. They are es-
sential in the construction of the Regge pole model. In
the framework of this model the amplitude of the proc-
ess a + b—-c + d a t very high energies s 3> m2 and
fixed momentum transfer t = - q 2 <C s is determined by
the poles of the partial wave amplitudes Aj(t) of_the
crossed t-channel (i.e., of the reaction a +Έ — b + d) in
the complex angular momentum plane J, and can be ex-
pressed in the forni 1 1^

A (s, t)» 2 Pi (ο ι («ι (0)^α, (*()« 2 Ρ' (Οξ^ «) ( f Γ ' "

- Z J s i n „«,(<) I V*o) - M " ^ Γ

(5)

w h e r e « i ( t ) i s t h e " t r a j e c t o r y " of t h e i - t h R e g g e p o l e

( o r R e g g e t r a j e c t o r y ) , 0 ( t ) and /3(t) a r e t h e r e s i d u e s of

t h e p o l e — i n g e n e r a l u n k n o w n f u n c t i o n s of t ; s 0 and u 0 a r e

c o n s t a n t s h a v i n g t h e d i m e n s i o n s [ G e V 2 ] , i n t r o d u c e d t o

m a k e t h e e x p r e s s i o n s d i m e n s i o n l e s s , | ( « j ( t ) )

= (1 ± e ~ i i r Q f i ( t ) ) / s i n Tra^t) i s t h e s o - c a l l e d s i g n a t u r e

f a c t o r , w h i c h h a s i t s o r i g i n i n t h e n e e d f o r c o n s i d e r i n g

s e p a r a t e l y two f u n c t i o n s A^(t) in t h e r e l a t i v i s t i c t h e o r y ,

c o r r e s p o n d i n g t o ( - 1 ) J = ± 1 , r e s p e c t i v e l y . T h e r e f o r e

t h e R e g g e p o l e s of t h e a m p l i t u d e s A j ( t ) a r e c h a r a c t e r -

i z e d b y a new q u a n t u m n u m b e r : t h e s i g n a t u r e . T o p o l e s

with signature σ = ± corresponds the appropriate sign
in Eq. (5), and the amplitude Aj(s, t) exhibits a definite
symmetry under the substitution s j u .

In Eq. (5) use has been made of the fact that u « - s
in the region of s and t under consideration and that for
the cosine of the scattering_angle in the center-of-mass
system of the reaction a + c — b + d w e have cos flj
s z t « e/(2|P a)|pbl) » 1; thus P a ( t ) ( z t ) ~ z?(>
ss s a ( ). In the region of negative t = — q2, i.e., in the
physical region of the s-channel, the amplitude (5) des-
cribes scattering of the particles at high energies. For
t > 0 (the unphysical region), whenever aj(t) passes
through an integer n, which is even or odd according to
the signature of the amplitude, the expression (5) corre-
sponds to resonant scattering in the t-channel, des-
cribed by Eq. (1) with the replacement of W2 = s by t
and cos fls Ξ z g by cos θ(. Ξ ZJ.. Indeed, for t close to
t «(t) can be represented in the form

FIG. 5. Diagram corresponding to a resonance in the t-
channel.

FIG. 6. Diagram corresponding to the Regge pole
a(t) in the t-channel.

We have taken into account the fact that for t > 4 μ2 (the
threshold for production of particles) the trajectory
ai(t) has an imaginary part. If Im aj(tn) < 1 (which
shall be seen below to agree with the experimental
situation), then (5) takes near the point t n the form

A(s,
2β( —l

(„) l ( ' n - ' ) - i Im a/(!n)/a'j (!„)]
( 7 )

corresponding to a resonance in the reaction a + c — b
+ d (Fig. 5) with angular momentum (spin) J = n, mass
M"n= t n and width Γ η = Im «i(tn)/ai(tn)Mn.

Consequently, the contribution of a Regge pole to the
scattering amplitude (5) describes in a unified analytic
form all the t-channel resonances situated on the trajec-
tory o(t), and we shall describe it by the diagram of
Fig. 6, where the wavy line describes a state of non-
integer (in general even complex) angular momentum
J = a(t) (this is sometimes described as a "reggeon
exchange"). We note that owing to the presence of the
factor (1 ± e~iira(t)) in Eq. (5) the resonance denomina-
tor occurs only at even integer values of a(t) for trajec-
tories with positive signature and at odd integer o(t) for
trajectories of negative signature.

Thus, the Regge pole model makes use of the analy-
ticity and crossing properties of the scattering ampli-
tudes to establish a close relation between scattering at
high energies and the particle and resonance spectrum.
Information about the behavior of the Regge trajectories
can be derived in the region t < 0 from data on high-
energy scattering reactions, and in the region t > 0 from
the data on masses, widths and quantum numbers for the
resonances. Figures 1 and 2 illustrate the best known
baryon and boson trajectories (for more detailed in-
formation on the properties of known Regge trajectories
cf., e.g., the reviews^1 3 '"3).

The following facts call themselves to our attention:
a) With good accuracy, all trajectories are straight

lines with approximately the same slope a' « 0.9 GeV"2.
b) The p-trajectory (on which the p-resonance with

mass mp ss 750 MeV and quantum numbers J = 1" is
situated^ and the R trajectory (which passes through the
resonance A2 with m^ « 1300 MeV and J p = 2+), which

2
have opposite signature, almost coincide.

c) Im a^t) <iC Re a^t); thus Im otA m Im
« (1/7) Re a^

(the Δ trajectory carries the nucleon

i (ί) = η + a- ((„) (t — tn) + i Im at («„). (6)

i s o b a r Δ 3 3 of m a s s mA = 1236 MeV a n d J p = 3/2 + ; t h e

f i r s t i s o b a r on t h e Ν t r a j e c t o r y i s N' wi th mjq'

= 1520 MeV and J p = 3 / 2 - ) * .

"The fermion Regge trajectories corresponding to isobars with
isospin I = 3/2 are usually denoted by Δ, and the trajectories with I =
1/2 are denoted by N. The best known among these are Δ 3 3 , Ν γ , and
Ν α which passes through the nucleon m p = 939 MeV, J p = Vz*.
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d) Im « Λ , Ν also deviates only little from a l inear

b e h a v i o r 1 ^ (the situation regarding the ρ and R trajec-

tor ie s is l e s s c lear, since the widths of the higher-lying

resonances a re not well determined).
One cannot escape the impress ion that a purely l inear

approximation for the Regge t ra jec tor ies is a good one.
Therefore one often a s s u m e s that the t ra jector ies of all
Regge poles (excluding the Pomeranchuk pole, vide
infra) can be written in the form

It is assumed that this form of the Regge t ra jector ies is
valid for all values of x, including χ — «, i.e., that the
t ra jec tor ie s a r e infinitely r is ing. This is one of the
basic assumptions of the models we shall d iscuss in the
sequel. On such r is ing t ra jec tor ies there is an infinite
number of resonances, for which the spins a r e l inear in
the squares of their m a s s e s :

•fn=OLi(0)+alM'n. (9)

S i n c e t h e i m a g i n a r y p a r t of t h e t r a j e c t o r i e s i s n e g l e c -

t e d i n t h e a p p r o x i m a t i o n u n d e r d i s c u s s i o n , a n d s i n c e t h e

i m a g i n a r y p a r t i s p r o p o r t i o n a l t o t h e w i d t h of t h e r e s o n -

a n c e s , a l l t h e r e s o n a n c e s a r e i n f i n i t e s i m a l l y n a r r o w . I t

i s c l e a r t h a t s u c h a p i c t u r e c a n o n l y b e a r o u g h a p p r o x i -

m a t i o n t o r e a l i t y .

II . D U A L I T Y

1. D e f i n i t i o n of D u a l i t y

W e c o n s i d e r t h e c o n s e q u e n c e s of a s i m p l e p i c t u r e of

t h e i n t e r a c t i o n , w h e r e i n a l l t h e r e a c t i o n c h a n n e l s

( s , t , u ) c o n t a i n o n l y r e s o n a n c e s ( p o l e s ) s i t u a t e d o n

l i n e a r l y r i s i n g R e g g e t r a j e c t o r i e s . I n t h i s a p p r o x i m a -

t i o n t h e s c a t t e r i n g a m p l i t u d e A ( s , t ) c a n b e r e p r e s e n t e d

e i t h e r a s a s u m of r e s o n a n c e s i n t h e s - a n d u - c h a n n e l s ,

o r a s a s u m o v e r a l l t h e R e g g e p o l e s i n t h e t - c h a n n e l ,

i . e . , o v e r a l l t h e r e s o n a n c e s of t h e t - c h a n n e l . T h i s

p r o p e r t y of t h e a m p l i t u d e i s w h a t i s c a l l e d " d u a l i t y . "

W e i l l u s t r a t e i t u s i n g a s a n e x a m p l e t h e a m p l i t u d e f o r

t h e p r o c e s s Km* — Km*, w h i c h h a s n o k n o w n u - c h a n n e l

resonances (i.e., in the react ion Km~ — Κ~π~: such
resonances would have Q = 2 and would be exotic). By
assumption the s-channel contains an infinite number of
very narrow resonances (poles in the l imit Γ -— 0), and
the amplitude of the p r o c e s s can be written in the form
of a sum over all such resonances (the amplitude has
no other s ingularit ies in the complex s-plane):

(10)

Σ -n-n*X) = Σ MO ξ< («I (0) Pat (*<) = Σ * = (̂12)

η η

A c c o r d i n g t o E q . ( 1 ) t h e r e s i d u e s o f t h e s e r e s o n a n c e s

a r e f u n c t i o n s o f c o s 6> o r t . I n E q . ( 1 0 ) w e h a v e u t i l i z e d

t h e l i n e a r r e l a t i o n b e t w e e n s a n d t h e t r a j e c t o r y a ( s ) o n

w h i c h a l l s - c h a n n e l r e s o n a n c e s a r e s i t u a t e d . O n t h e

o t h e r h a n d A ( s , t ) c a n b e e x p r e s s e d a s a s u m o v e r a l l

t h e r e s o n a n c e s i n t h e t - c h a n n e l , a n d a c c o r d i n g t o w h a t

w a s s a i d a b o v e , a s a s u m o f a l l t h e R e g g e p o l e s :

The duality relation is i l lustrated graphically in Fig. 7.
This i s the so-called strong, or local, form of duality.
We note that for rea l s the imaginary part of the ampli-
tude in Eqs. (10) and (12) has i ts origin in the infinitesi-
mal imaginary t e r m s in the resonance denominators.
Since I m ( l / ( s n - s - ie)) = πδ(8- s n) for t — 0 and
e > 0, in the limit of vanishing widths of the resonances
the imaginary part of the amplitude has the form of a
superposition of delta functions. In the case where a
p r o c e s s can have resonances not only in the s-channel,
but also in the u-channel, the left-hand side of (12) must
also take into account the u-channel resonances . In the
physical region of the s-channel these resonances con-
tribute only to the rea l part of the amplitude. The imag-
inary part of the amplitude is always determined by the
resonances in " i t s own" channel (in the case under dis-
cussion, the s-channel). This corresponds to the usual
physical conceptions based on the unitarity condition,
according to which the imaginary par t of an amplitude
in the physical region of the s-channel owes its existence
to the existence of real intermediate s tates in the
s-channel. If one integrates the imaginary par t of (12)
over s from zero to some value Si > m 2 , we obtain the
weak, or global, form of the duality relation

βί (0 ( 1 3 )

w h i c h c o r r e s p o n d s i n f o r m t o t h e f i n i t e e n e r g y s u m

r u l e s ^ 1 5 ^ a n d c a n b e d e r i v e d ( f o r Si ^ > m 2 ) b y m e a n s of

d i s p e r s i o n r e l a t i o n s b a s e d o n t h e w e a k e r a s s u m p t i o n s

t h a t t h e a s y m p t o t i c b e h a v i o r of t h e a m p l i t u d e i s d e t e r -

m i n e d b y t h e R e g g e p o l e s a n d t h a t t h e p r i n c i p a l r o l e i n

t h e s - c h a n n e l i s p l a y e d b y t h e r e s o n a n c e s . O f c o u r s e ,

E q . ( 1 3 ) c o n t a i n s f a r l e s s i n f o r m a t i o n t h a n E q . ( 1 2 ) .

D u a l i t y r e l a t i o n s a n a l o g o u s t o E q . ( 1 2 ) c a n a l s o b e

d e r i v e d f o r p a r t i c l e p r o d u c t i o n a m p l i t u d e s . T h u s , f o r

t h e t h r e e - p a r t i c l e p r o d u c t i o n a m p l i t u d e t h e d u a l i t y r e l a -

t i o n i s g r a p h i c a l l y i l l u s t r a t e d i n F i g . 8 .

E q u a t i o n s ( 1 2 ) a n d ( 1 3 ) m e a n , i n p a r t i c u l a r , t h a t t h e

r e s i d u e s c ( s ) ( t ) of t h e s - c h a n n e l r e s o n a n c e s a r e n o t

a r b i t r a r y , b u t h a v e t o b e s e l e c t e d i n s u c h a m a n n e r t h a t

t h e a s y m p t o t i c b e h a v i o r (5) i s s a t i s f i e d , c o r r e s p o n d i n g

t o t h e " e x c h a n g e " of R e g g e p o l e s i n t h e t - c h a n n e l .

T h u s , d u a l i t y , w h i c h i s a c o n s e q u e n c e of t h e a s s u m p t i o n

b

FIG. 7. Diagrammatic form of the duality relation for the transition

amplitude of two particles into two particles.

Therefore, we can write finally the duality relation in
the form

FIG. 8. Diagrammatic representation of the transition ampli tude of

two particles into three particles.
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of linearly rising trajectories, ties closely together
the resonances in the direct (s) channel and the Regge
poles in the crossed (t) channel of a given reaction.

2. Daughter Trajectories

Let us consider in more detail the properties of Eq.
(12). It is very important that (12) can be satisfied only
because the numbers of resonances and Regge poles in
the two are infinite. Indeed, a finite number of terms in
the sum over i cannot lead to divergences for s — sn,
since each term exhibits a power-law dependence on s.
Therefore, the poles at the points s n can appear only as
a result of a divergence of the series in i at these points.
And conversely, only an analytic continuation of the in-
finite series with respect to η can lead to an asymptotic
behavior (s/so)0^) in the region a(t) > 0 for s —• °°. The
fact that the number of resonances is infinite is natural,
since the Regge trajectories rise indefinitely. However,
an infinite number of Regge trajectories situated in the
J-plane to the left of the principal trajectory a(t) is a
new circumstance for us. The occurrence of such tra-
jectories, which are usually designated as "daughters,"
is a general feature of amplitudes in the Regge pole
model. Even before the concept of duality was intro-
duced it was found^16·' that in order to ensure that the
analytic properties of the scattering amplitude hold at
t = 0 it is necessary that in addition to the main trajec-
tory a(t) there exist "daughter" trajectories situated
for t = 0 at integer intervals from it. In order to ensure
duality (12) it turns out that it is necessary for this
property to hold for all values of t, i.e., that the daugh-
ter trajectories be strictly parallel to the main trajec-
tory at(t). The importance of the "daughter" trajector-
ies for the construction of a dual amplitude can also be
understood if one makes use of the following simple
physical considerations. For large values of s the am-
plitude has the Regge form (5) and it is known^11-1 that in
the s-channel it is described by the partial wave ampli-
tudes Aj(s), where the important values of the angular
momentum are I ~ |p a |R ~ (s«'ln(s/s o)) l / 2; for large
values of I the Aj are exponentially small. At the same
time, the resonances in the s-channel, which are situa-
ted on the main trajectory, will have for the same s
values spins J = a(s) « »'s, and consequently cannot
guarantee the required asymptotic regime. The asymp-
totic behavior (5) is realized only due to the presence of
daughter trajectories, which carry the resonances with
all spins J from 0 to J m a x ~ ot's, and in particular with
J ~ (sa'ln(s/so)) . Thus, the existence of daughter
trajectories (in addition to the main trajectory), parallel
to the main trajectory for all t(s), is a necessary condi-
tion for the existence of dual models.

3. The Interference Model

There arises a natural question: is duality preserved
if one recognizes that in reality the scattering ampli-
tudes have not only poles, but also branch points corre-
sponding to the thresholds for the production of real
particles, and when the resonances have finite widths?
In this case duality cannot be proved. Moreover, in the
presence of branch cuts one can construct examples^17-'
of the so-called "interference" model, where the am-
plitudes are represented in the form

A(s, t)+G,(s, t), (14)

where the function G s has only resonances in the
s-channel and is an entire function of the variable t, and
the function Gj- has only resonances in the t-channel and
is an entire function of the variable s, i.e., the ampli-
tude is a sum of resonances in the s-channel and Regge
poles in the t-channel. By its character such a model
is the opposite of the dual model. Therefore the prob-
lem which of the two models, dual or interference, are
a better approximation to reality, can at present be re-
solved only experimentally.

4. The Pomeranchuk Trajectory

A special role in the Regge pole model is played by
the Pomeranchuk pole and its trajectory, which passes
through the point J = 1 at t = 0. This pole was introduced
into the theory in order to produce the experimentally
observed constancy of the total interaction cross sec-
tions in the high-energy region, and at t = 0 its trajec-
tory is the Regge trajectory situated farthest to the
right in the complex J-plane^11^. We show that this pole
does not fit manifestly into the dual model^18^1. Indeed,
the Pomeranchuk pole has a positive signature*, i.e.,
according to Eq. (5) its contribution to A(s, t) is sym-
metric under the interchange of s and u, and therefore
it leads to identical (and for t = 0, purely imaginary)
amplitudes for the scattering of particles and of anti-
particles. Thus, the contribution of the Pomeranchuk
trajectory to A(s, t) is independent of the s-channel
quantum numbers: the baryon number (the contribution
is the same for pp- and pp-scattering), strangeness
(K+p and K"p), etc., i.e., they do not depend on whether
or not there are resonances in the s- channel. Conse-
quently, the Pomeranchuk trajectory is not related to
s-channel resonances, and cannot satisfy the duality re-
lation (12). At the same time, the Pomeranchuk pole that
describes diffraction scattering seems to be related with
the production of a large number of real particles at high
energies, i.e., with cuts in the s-plane. Therefore, the
dual approach is usually applied to all Regge poles with
the exception of the vacuum (Pomeranchuk) pole, i.e., to
the trajectories p, R, ω, f, Δ, Ν, etc. which are known to
be almost rectilineart.

5. Duality and Experiment

We now consider the total cross sections for the
interactions of different particles. The unitarity condi-
tion relates the total cross section to the imaginary part
of the elastic scattering amplitude in the forward direc-
tion via the optical theorem:

"tot(s)= Im A («. 0) (15)

In the reactions of elastic pp-, pn-, K+p-, and K"n-
scattering (in distinction from pp-, pn-, K"p- and K"n-
scattering) there are no resonances in the s-channel,
and therefore the total contribution to the imaginary

•If the Pomeranchuk trajectory had a negative signature, the total
interaction cross sections of particles and antiparticles would have op-
posite signs, which is absurd.

tAt present it is not known whether there are any resonances on
the vacuum (Pomeranchuk) trajectory.
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FIG. 9. Total cross sections for the interactions: K + p [ 1 9 ] , K + n [ 2 0]
P P [ 2 ° ] , p n [ 2 1 ] , K - p [ 1 9 · 2 2 ] a n d p p [ 1 9 · 2 2 ] .

p a r t of t h e a m p l i t u d e f r o m a l l the R e g g e p o l e s , with t h e
e x c e p t i o n of t h e P o m e r a n c h u k p o l e , m u s t v a n i s h , a c -
c o r d i n g t o t h e r e l a t i o n (12). C o n s e q u e n t l y , t h e i m a g i n a r y
p a r t of t h e a m p l i t u d e s of t h e s e r e a c t i o n s i s , a l r e a d y f o r
r e l a t i v e l y low e n e r g i e s , d e t e r m i n e d only by t h e c o n t r i -
b u t i o n of t h e P o m e r a n c h u k ( v a c u u m ) p o l e , and t h e t o t a l
c r o s s s e c t i o n s m u s t b e c o m e i n d e p e n d e n t of t h e e n e r g y
and c h a r g e s t a t e of t h e c o l l i d i n g p a r t i c l e s , i . e . ,

"tot (S) ~ °tot (S) ~ C ° n S t ' <7tOtI'(S) = < J tOt"( S ) = = C O n S t · ^ )

E x p e r i m e n t a l l y , t h e s e r e l a t i o n s a r e w e l l v e r i f i e d ( F i g .
9). F r o m t h e s t a n d p o i n t of R e g g e p o l e s the e q u a t i o n s
(16) r e p r e s e n t t h e s o - c a l l e d " e x c h a n g e d e g e n e r a c y " of
t h e v a r i o u s p a i r s of t r a j e c t o r i e s

__ a R R ft /1 r7\

I n d e e d , c o n s i d e r , f o r i n s t a n c e , t h e i m a g i n a r y p a r t of
t h e d i f f e r e n c e of t h e a m p l i t u d e s for p p - a n d p n - s c a t t e r -
ing, w h i c h a t h igh e n e r g i e s i s d e t e r m i n e d only by t h e
c o n t r i b u t i o n s of t h e R e g g e p - a n d R- t r a j e c t o r i e s . T h e
d u a l i t y r e l a t i o n i m p l i e s t h a t t h i s c o n t r i b u t i o n v a n i s h e s :

T h i s l e a d s t o t h e e q u a l i t i e s (17) f o r p- and R - t r a j e c t o r -
i e s . S i m i l a r l y one c a n d e r i v e the r e l a t i o n s b e t w e e n t h e
ω- and f- t ra jector ies . As noted above, such a behavior
of the t ra jector ies is in good agreement with the ob-
served resonance spectrum (cf. Fig. 2).

ΠΙ. THE VENEZIANO MODEL

1. Fundamental Properties of the Veneziano Model

An important role in the development of the dual
models was played by Veneziano's paper^ 1^, where he
proposed an explicit form for the function A(s, t) , ex-

h i b i t i n g t h e p r o p e r t i e s of a n a l y t i c i t y , c r o s s i n g - s y m m e -
t r y a n d d u a l i t y .

Let us consider the totally crossing- symmetr ic am-
plitude for the reaction π°π° —• Λ ° . In addition to the
Pomeranchuk trajectory, the f-trajectory contributes to
this amplitude. The f-trajectory p a s s e s through the
f-meson of m a s s m^ = 1250 MeV and J* 5 = 2% and i s
taken to have the l inear form (8). Then all reaction
channels will have resonances situated on the f-trajec-
tory. V e n e z i a n o ^ has proposed the following represen-
tation for the amplitude of such a p r o c e s s :

y)= - * , 1 - » ) .

where

A(s, t) =•••£• [V(a(s), a { i ) ) t V ( i ( » ) , a(t))-\ V(a(s), a(u))\,

Γ(χ) is the Gamma-function, B(x, y) is E u l e r ' s beta
function, and β i s a constant. Let us recal l some proper-
t ies of the Gamma-function:

Γ ( ζ + 1) = ζΓ(ζ) .

When ζ i s a positive integer η, Γ(η) = (η— 1 ) ! . The func-
tion Γ(ζ) has simple poles for negative integral values
of ζ and ζ = 0. The formula Γ ( 1 — ζ) = (π/sin ττζ)Γζ r e -
lates the values of the function for negative and positive
values of z. It shows, in part icular , that at the poles
ζ = - n the res idues of the gamma function a r e ( - l ) n / n ! .
When |z | — « and |arg z | < π, Γ(ζ)
^ (27T)l/2exp{(z - y2)ln ζ - ζ} (Stirl ing's formula).
This implies that for |z | — <*> Γ(ζ)/Γ(ζ + a) « z ~ a .

The representat ion (18) of the amplitude A(s, t) has
the following proper t ie s :

a) Analyticity and crossing symmetry.
b) Poles at the points α(χ) = η (n = 1, 2, ...) coming

from the poles of the gamma functions in Eq. (18). They
correspond to the resonances which lie on the f-trajec-
tory and its daughters. The res idues at these poles a r e
polynomials of degree η in the other independent var ia-
ble. Indeed, V(«(s), «(t)) can be represented in the form

l — α (!) — " ) ( » — l )—«)
V(a(s),

(19)

where Cn(t) i s a polynomial of degree η in the variable
t. One can write V(a(s), a(u)), V(a(u), «(t)) in a s imi lar
form. Taking into account that the cosine of the scatter-
ing angle ζ = cos 0 S is, according to (6), l inearly re la-
ted to the variables

2u
t, u: z = 1

s — 4 μ 2

w e d e r i v e t h a t t h e r e s i d u e a t t h e p o l e » ( s ) = n , C n ( t )

+ C n ( u ) , i s a p o l y n o m i a l i n t h e v a r i a b l e z :

\C'n(z), η even;
C » ( 0 + C » ( « ) = | C ; _ I ( I ) I n o d d _

Expanding Cn(z) in t e r m s of Legendre polynomials, in
order to obtain express ions for resonances with definite
spins, cf. (1), we find that for o(s) = η there a re reson-
ances with all even spin values, ranging from 0 to η and
situated on Regge t ra jector ies . The s t ructure of the
resonances is represented in Fig. 10.

c) Regge asymptotic behavior in the whole complex
plane, with the exception of the rea l axis. We show that
for [s| — °°, | arg s | > 0 the amplitude (18) has the form
(5), corresponding to the exchange of a Regge pole
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FIG. 10. The structure of the
resonances for the ποπ" -* π°π°
amplitude in the Veneziano model.

7 8 x, GeV1

( " r e g g e o n " ) a(t) i n t h e t - c h a n n e l . U t i l i z i n g t h e f a c t t h a t

Γ(ζ)/Γ(ζ + a) ==· (z) a for | z | —- «=, |arg z | < π, we find
that for fixed t and | s | — °°

Als t)
sin πα (f) n TO (i) [ Λ s0 / ' \ u0 I J '

where 0(t) = β/Γ(α(ΐ)), s 0 = u 0 = (a')'1.
Making use of the asymptotic behavior of the

Γ-function one can also derive that the amplitude (18)
does not have Regge behavior for s — « along the rea l
axis:

' \ «o /

+ ctgπα(,) + ( J - )

sin ;ια (ί)

rjaU))aU)) -.
— a(s) — a(u))J'

( 2 0 )

I n p a r t i c u l a r , t h e r e a p p e a r s t h e t e r m c o t ira(s) w h i c h

l e a d s t o t h e e x i s t e n c e of r e s o n a n c e s f o r a ( s ) = n. I t w a s

n a t u r a l t o e x p e c t s u c h a b e h a v i o r , t a k i n g i n t o a c c o u n t

t h a t I m o ( x ) = 0 a n d t h a t t h e r e s o n a n c e s a r e i n f i n i t e l y

n a r r o w , i . e . , p o l e s o n t h e r e a l a x i s .

d) D u a l i t y . T h e p a r t i a l a m p l i t u d e V ( a ( s ) , a ( t ) ) c a n

b e r e p r e s e n t e d a s a s e r i e s o v e r t h e r e s o n a n c e s i n t h e

s - c h a n n e l o r t h e t - c h a n n e l :

V(a(s),
a(t) — k

S i m i l a r r e l a t i o n s hold for the other t e r m s of Eq. (18).
In the present case the situation i s somewhat more com-
plicated than in the case of Κ"π+-scattering which we
have discussed e a r l i e r , since the u- channel also con-
tains resonances and Regge poles . However the essence
of duality manifests itself clearly in the Veneziano
model.

It should be r e m a r k e d that the enumerated proper-
t ies a)—d) do not determine the amplitude uniquely. A
sum of t e r m s of the form

V PV>. " ' Γ (m — a (.)) Γ (n —a (Q)

where m, n, and I sat i s fy the condit ions

« > 1 , m > l , Z>min{m, n), l<m+ n, C?'n = C?'m,

h a s the s a m e p r o p e r t i e s a s the e x p r e s s i o n (18). One
can showt 2 3^ that for l i n e a r Regge t r a j e c t o r i e s any dual
amplitude c a n be r e p r e s e n t e d a s a s u m of t e r m s of the
type of (21).

2. Allowance for the Unitarity Condition

The fundamental shortcoming of the Veneziano model
i s the violation of the unitarity condition. This manifests
itself most clearly in the fact that the resonances have
z e r o widths, although they can decay into l e s s massive
part ic les (e.g., f° — 2v°). This c ircumstance is also re-
lated to the absence of threshold cuts in the amplitude
(18), and the non-Regge behavior (20) for real s.

The simplest way to el iminate these contradictions
i s to introduce Im a(x) * 0, corresponding to a finite
width of the resonances situated on the tra jectory or(x).
This p r e s e r v e s the analyticity and cross ing symmetry
of the expression (18). Cuts will appear in the (s, t, u)-
plane start ing at the point s = 4 μ 2 , and the resonances
situated on the Regge t ra jector ies acquire nonzero
widths. In addition, if Im o(x) — °o for χ — «° (but in
such a manner that Im a(x)/Re a(x) — 0), the first two
t e r m s in Eqs. (18), (20) yield the correct Regge asymp-
totic behavior for all s, a l so on the r e a l axis*:

Some difficulties a r i s e with the third t e r m in Eq. (18).
It turns out that it d e c r e a s e s as | s | — «° only for a defin-
ite character of the behavior of Im a(s) a s s ^ » . Thus,
this t e r m d e c r e a s e s exponentially with the growth of s,
if Im a(s) ~ s/(ln s)v, ν > 1, as s — «C 2 4 : . Such an
almost l inear growth of Im a(s) does not contradict the
experimental data. If this is t rue , then the width of the
resonances increases a s their m a s s increases , and the
sum of the contributions of these wide, overlapping,
resonances leads to a smooth (Regge-type) behavior of
the amplitude for large s.

A shortcoming of this approach i s the fact that for
Im a(x) * 0 the res idues at the poles Re a(s) = η a r e no
longer polynomials in t, i.e., s tates with all possible
orbital angular momenta now contribute to the ampli-
tude.

However, the part ia l waves with Ζ > η will be con-
siderably smal ler (by a factor ~ Im α/(τι Be a) ~ 10~2,
compared to I « n.

The introduction of Im o(x) does not solve the prob-
lem of the unitarity condition, but only removes the
most flagrant contradiction. Let us show, for instance,
that in elast ic scatter ing p r o c e s s e s unitarity is violated
in the Veneziano model even for Im o(x) * o. The imag-
inary par t of the amplitude in the physical region of the
s-channel, i s determined, a s before, only by the contri-
butions from the resonances in the s-channel (duality is
preserved for Im a(x) •*• 0). Therefore in elast ic ir*ir*,
pp- and TT+K+-scattering, where no known resonances
occur, the amplitudes will be rea l in the physical region.
But this contradicts the theorem (15), since O(-Ot(s) * 0.
In the case under consideration this problem is closely
associated with the question on what place there is for
the Pomeranchuk pole in the framework of dual models.

Thus, at best, one can consider the Veneziano model
a s a first approximation to the rea l i s t ic amplitude, and
it becomes necessary to consider the correct ions which
ar i se from the unitarity condition. Since in relat ivist ic
quantum theory in a collision of two par t ic les the pro-

*For s ->o° along the real axis we have cot ioi(s) -
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duction of an arbitrary number of particles is possible,
one must take into account in the unitarity condition the
possibility of transitions into all multiparticle states
which are permitted by the conservation laws.

3. Generalizations of the Veneziano Model to
Multiparticle Processes

From this point of view, a considerable progress of
the approach was the generalization of the Veneziano
model to the production amplitude for an arbitrary num-
ber of particles^25^1. The representations derived exhibit
the properties of analyticity and crossing symmetry with
respect to all the invariant variables, and have poles
corresponding to the positions of the resonances lying on
Regge trajectories. Whenever the energy of any pair of
particles becomes large the amplitude exhibits Regge
asymptotic behavior. In addition, these amplitudes auto-
matically satisfy the duality requirement and correspond
to the bootstrap pr inciple^ : all particles may be con-
sidered as bound states of other particles. The con-
struction of a Veneziano amplitude for an arbitrary num-
ber of particles has raised hopes that a theory will be
created where this representation will play the role of
a first Born approximation and which will take into ac-
count all terms of a perturbation theory series, in the
unitarity condition—both the two-particle and many par-
ticle intermediate states. In this approach the Pomer-
anchuk pole should appear as a result of the summation
of the many-particle intermediate states in the unitarity
condition. A diagram technique has been developed
which is analogous to the usual Feynman technique, and
which might allow, in principle, to carry through such a
program^26^. However, considerable difficulties are
encountered in its practical realization (cf., e.g.,^27'28^).

In order to be able to consider the Veneziano repre-
sentation as a first approximation to the scattering am-
plitude it is necessary that it give a satisfactory des-
cription of the amplitude, i.e., that the corrections re-
lated to higher order perturbation in the Veneziano
model be small.

Since this question cannot at present be decided com-
pletely on a theoretical basis, let us see what corre-
spondence there is between the Veneziano model and the
experimental data. If the model describes well the ex-
perimental situation then it is reasonable to consider it
as a first Born approximation to the actual amplitudes.

4. Comparison with Experiment

The most detailed discussion of the Veneziano model
as applied to scattering processes is for scattering of
pseudoscalar mesons^29]. It turns out that the simplest
form of the Veneziano model (of the type of Eq. (18)),
which practically contains no free parameters, des-
cribes well the spectrum of known boson resonances
and the widths of the i r decays into ππ or KK. The only
exception is the resonance p' of m a s s ~ 1250 MeV, and
quantum numbers J ^ , I " = 1", 1", predicted by the model
to lie on the daughter of the p-tra jectory, and which up
to this t ime was not observed experimentally. It i s in-
terest ing to note that the relat ions between the m a s s e s
and the coupling constants of the resonances that appear
in this model a r e the same in the SU(6) group, or in the
quark model^18-1. In addition, the model reproduces many

of the resu l t s obtained e a r l i e r in current algebra. It
also turns out that in the general case of many-particle
production, there is a close relationship between the
quark model and Veneziano model^1 8^. Although quarks
may not exist physically, they a re nevertheless a con-
venient mathematical concept, which appears naturally
in the construction of dual amplitudes. This la t ter cir-
cumstance is quite important, since it indicates that the
internal symmetr ies of the hadrons (like SU(3), SU(6))
seem to be of dynamic origin, and could be to a large
extent determined by the duality requirement.

The pion-pion scatter ing amplitudes obtained in the
Veneziano model describe the totality of presently
known data on pion-pion scatter ing: the pion spect ra
in the decays Κ —• 3ττ, η — 3π, Κ — irirev, the reaction
πΝ — Ν near threshold, as well as the same reaction at
higher energies under the one-pion exchange assump-

n 2 9 3 1 ^
The situation i s l e s s c lear for the p r o c e s s e s of πΝ-

and KN- scattering, which involve resonances (Regge
poles) of the fermion type, i.e., with half-integer spins.
Until now there is no model which descr ibes well both
the data on baryon resonances and the scattering at low
and medium energies, as well as the data on forward
and backward scatter ing at high energies . It is conceiv-
able that this indicates the necessity to take into account
deviations from l inearity of the fermion t ra jector ies (in
distinction from the boson t ra jector ies , the fermion
tra jector ies may contain t e r m s proportional to χ ).

The Veneziano model does not describe badly the
angular and energy distributions of par t ic les which a re
formed in inelastic p r o c e s s e s , such as K~p —• ·π'η*Α^-32^,
K+p — K V p , K~p — K V p , 7T"p — K°Kp, etc. (for the
construction of the model for these amplitudes the au-
thors have neglected their dependence on the baryon
spin, i .e., have considered the baryons as spinless par-
t ic les) .

5. CONCLUSION

Thus, a comparison of the Veneziano model with ex-
periment indicates that (at least for scatter ing proces-
ses of pseudoscalar part icles) it can be considered as a
good first approximation to the scatter ing amplitude.
The success of this model in describing the experimen-
tal data is largely related to the duality property which
is proper to the Veneziano representat ion. Therefore
one might hope that further development of models
based on the duality principle will have important im-
plications for the theory of elementary par t ic les .
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