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INTRODUCTION either model, are most closely related with the proper-

THE overwhelming majority of bands in absorption
spectra of molecular crystals correspond to simultane-
ous occurrence, under the influence of light, of elec-
tronic and intramolecular vibrational excitations
(vibronic bands). For this reason, the interpretation of
the spectrum of a molecular crystal is in fact interpre-
tation of its vibronic bands. Much experimental and
theoretical material has accumulated by now, and its
analysis makes it possible to formulate the main prem-
ises of the analysis of a vibronic spectrum.

The theoretical analysis of vibronic spectra is based
on two models, which will be considered here in detail.
In the first model (the model of coinciding configura-
tions), the vibronic states are described by the energy
spectrum of a single quasiparticle—a vibron, corre-
sponding to wavelike propagation of a molecular vibronic
excitation through the crystal. According to the second
model (the general dynamic model), each vibronic state
of an individual molecule in the crystal corresponds to
an aggregate of bound and dissociated states of a system
of quasiparticles (electronic and vibrational excitons)
interacting in accordance with a definite law. The larger
the number of vibrational quanta contained in the
vibronic excitation of the molecule, the larger the num-
ber of corresponding quasiparticles and the more com-
plicated the energy spectrum of such a system. The
vibronic- spectrum structure predicted by the dynamic
model is richer and more interesting than that of
the model of coinciding configurations.

To establish the experimental laws governing the
construction of vibronic spectra, the initial sections of
the vibronic spectra were considered for crystals of
benzene, naphthalene, and anthracene, which have been
classified long ago, with respect to the properties of the
electronic states, as pertaining to weak, medium, and
strong resonant interactions. The difference between
these crystals extends also to the vibronic spectra, On
the basis of the concepts of bound and dissociated states,
a connection was established between the resonant prop-
erties of electronic states and the properties of vibronic
spectra. This connection has explained the variety of
vibronic spectra of molecular crystals.

The properties of vibronic states of a crystal, in
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ties of the vibronic excitations of free molecules, and
are determined by the mechanism whereby the elec-
tronic and vibrational excitations interact in the mole-
cule and by the symmetry of the vibrational states. The
essence of this connection will be shown below. We
therefore begin the review of vibronic states with a
brief examination of the main mechanisms of electron-
vibrational interaction and their influence on the
vibronic spectra of a free molecule.

1. VIBRONIC STATES OF A MOLECULE

The question of the vibronic spectrum of a poly-
atomic molecule is very extensive and has been consid-
ered in a large number of original papers and mono-
graphs (see, for example,l'™*1). This is precisely why
we shall dwell below only on the principal questions that
pertain directly to the problem of interest to us. We
confine ourselves also to the case of discrete molecular
spectra.

In the approximation of Born and Oppenheimert®s®],
the dependence of the total energy of the electrons on
the displacement of the nuclei from the equilibrium
position is that adiabatic potential which determines the
vibrational motion of the nuclei and connects its proper-

“ties with the properties of the electronic motion. Since

the displacements are small in magnitude, the adiabatic
potential can be expanded in terms of this quantity. The
optical vibronic spectra of complex molecules can be
interpreted well in the harmonic approximation, so that
in the simplest case the dependence of the adiabatic po-
tential on the displacement of the nuclei in the f-th elec-
tronic state is given by
f

WHRY =W (RD+ g (Gr)_ (R— R (1)
where R‘f, is the equilibrium position of the nuclear con-
figuration in the f-th electronic state, and

a2f
k= (—aHT)Rzk{,

is the force constant that characterizes the quasielastic
force. In turn, Kt = u(uf)z, where (. is the reduced mass
of the vibrating particles and uf the oscillation fre-
quency. In complex molecules having N vibrational de-
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grees of freedom, Wf(R) is a function of N coordinates.
However, after introducing normal coordinates, relation
(1) can be considered for each normal oscillation or for
their aggregate.

The dependence of the force constant kf and of the
equilibrium position RE on the number of the electronic
state indicates that the equilibrium position of the
nuclear configuration and the frequency of the normal
vibrations are altered by electronic excitation of the
molecule.

Let us consider the expression for the adiabatic po-
tential in greater detail. We introduce the dimensionless
displacement of the nuclei from the equilibrium position
q = RvViiv (we use h =1 throughout) and assume that the
equilibrium position of the moflecule in the ground state
corresponds to g5 = 0. Then q, will denote the displace-
ment of the equilibrium position of the nuclear con-
figuration upon excitation of the molecule to the f-th
state. Under these conditions, the expressions for the
adiabatic potential in the ground and f-th excited states
are

WO (g) = W (0) + + Vg2 (22)

and

W (q) =W/ () + 5V (g —a)*- (2b)

The expression for Wf(q) is conveniently rewritten in
more detailed form
W/ (g) = W' (g0) 4+ (gl)* —Vala+ 3 v'e% (2¢)

Here Wf(qz) corresponds to the energy of the purely
electronic excitation; ¥ yf(q‘f))2 is the displacement of the
minimum of the potential-energy curve as a result of
the displacement of the equilibrium position following
electronic excitation. This quantity is called the Franck-
Condon energy, which will henceforth be designated
FC - of _ it f

e value of the energy defined by AW™ = W(q,)
+epC— W°(0) corresponds to the maximum transition
probability in the electron-vibrational spectrum, since
it corresponds to a vertical transition from the equili-
brium position in the ground state. Consequently, e pC
multiplied by two corresponds to the Stokes loss on
radiationt®®], The change of the interaction between
the electronic and vibrational motions in the ground and
f-th electronic states, according to (2a) and (2b), is de-
termined by an electron- vibrational interaction operator
of the form

AW (g) =vglg+ 5 Avg?, (3a)
or, using the expression for epg, we can rewrite the
operator (3a) in the form

AW (9)= V 2Vepcq+ % Avg®. (3b)
The first term of this expression characterizes the en-
ergy of distortion of the molecule as a result of the
change of the equilibrium position of its nuclei following
electronic excitation. It is sometimes called the dis-
tortion energy of the molecule. We shall therefore
designate it ¢4"J. The distortion energy at low tem-
peratures (kT < uf) determines the width of the elec-
tron vibrational spectrum. The second term is connec-
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ted directly with the change of the vibration frequency.
The vibration frequency defect is &, = v — /.

In the harmonic approximation considered by us, the
shift of the equilibrium position and the change of the
vibration frequency following electronic excitation are
the two principal mechanisms of the electron-vibra-
tional interaction. The contribution that each of these
mechanisms makes to the vibronic state taken separ-
ately is determined primarily by the symmetry of the
oscillation. The shift of the equilibrium position follow-
ing excitation of the vibronic transition with a non-fully-
symmetrical (n.s.) vibration should be accompanied by
a change in the symmetry of the molecule. Yet it is
known that the molecule retains a symmetrical config-
uration for nondegenerate states upon excitation of n.s.
vibrations (the Jahn- Teller effectl*)). For this type of
oscillation there is therefore no shift of the equilibrium
position, and the interaction between the electronic and
vibrational motions is determined only by the change of
its frequency. The frequency defect is not small, and
in many cases amounts to several tens of cm™ (10—-20%
and more of the magnitudes of the vibration). Fully
symmetrical (f.s.) vibrations are characterized primar-
ily by a shift of the equilibrium position, although elec-
tronic excitation also changes their frequency. As
already noted, a shift of the equilibrium position leads
to a renormalization of the energy position of a purely
electronic transition and determines the width of the
vibronic spectrum. The latter characteristic is most
closely connected with the probabilities of the vibronic
transitions, which we shall consider below.

The intensity of the vibronic transition is propor-
tional to the square of the matrix element of the dipole
moment of the transition, which for transitions from the
ground vibration-free state is given by

Moo, m= | Mo (RYU* () X[ () dR, (4)
My — 5 @ (r. B M (r) ¢’ (r, R)dr,

where {r} and {R} are the aggregates of the electronic
and nuclear coordinates. Here ¢(r, R}, U(R), X (R) are
the wave functions of the electronic state and of the
zeroth and m-th vibrations, respectively. The indices 0
and f pertain to the ground and f-th excited electronic
states. The wave functions of the electron depend
parametrically on the nuclear coordinates, and deter-
mine by the same token the dependence of the matrix
element of the dipole moment of the electronic transi-
tion My(R) on the position of the nuclei. In the adiabatic
approximation, it is legitimate to expand this matrix
element in terms of the small displacement of the nuclei
from the equilibrium positiont®J, so that

My; (Ry=M{; (R)+ M (RY(R—R)H ..., (5)

where R} is the equilibrium position of the nuclei in the
ground state, and the coefficient M'}’(R9) describes the
effect of mixing of the wave functions of the considered
electronic state with the wave functions of the other
electronic states, and by the same token determines the
degree to which other electronic zeroth-approximation
states take part in the excitation of the f-th electronic
state.

The zeroth approximation of the expansion (the
Condon approximationl®®]y describes satisfactorily a
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large number of vibronic transitions in which f.s.
vibrations take part in spectra with allowed purely elec-
tronic transitions. In this case the matrix element of
the dipole moment of the electronic transition is deter-
mined at the equilibrium position of the nuclei, and the
total matrix element of the dipole moment of the
vibronic transition is

M == MEY (RO Eoo, smus (6)

where
Ban. m = | UO* (R) X[, (R) dR.

The spectrum intensity distribution among the different
vibronic transitions within a single electronic transition
is determined, in accordance with this expression, by
the values of the superposition integrals of the vibra-
tional functions £, ¢p, (the Condon integrals) in the
ground and f-th electronic states. In order for the
Condon integral not to be an orthogonality integral upon
variation of the vibrational quantum number m, it is
necessary that the wave functions U°(R) and Xfm(R) be
solutions of different equations. This condition is satis-
fied if electronic excitation shifts the equilibrium posi-
tions or changes the vibration frequencies of the nuclei.
If the relative change of the vibration frequency is small
(Av/v < 1), then the intensity of the vibronic transi-
tions, which is governed by the change of the vibration
frequency, is lowt'®J and consequently the principal role
is played in the Condon approximation by the shift of the
equilibrium position of a nuclear configuration. In this
case the Condon integral takes the form
Eap. ym = | U9 (R—RY) XL, (R~ RI)dR, (62)

and it differs from zero in the case of a vibronic transi-
tion with change of the vibrational quantum numbert! 4],

Vibronic transitions with participation of n.s. vibra-
tions are forbidden in the Condon approximation and are
allowed only in first order of the expansion of the
electronic-transition matrix element in terms of the
nuclear displacementl®] (the Herzberg- Teller effect!'*]),
In this case the total matrix element of the dipole mo-
ment of the vibronic transition is equal to

]”un m 1‘”(1) (RU/ R(‘ﬂ fms (7)

where
Bo, jm = | U** (R) [R— R] 7, (R— R}) R, 8)

and M‘ (R) is the coefficient of the linear term of the
expans1on in (5).

Expressions (6) and (8) are the basis of the principal
laws governing the construction of the vibronic mole-
cular spectrum and connected with the different mech-
anisms of interaction between the electronic and vibra-
tional motions for the two types of vibrations. Let us
consider some of these laws.

1. The intensity of a vibronic transition with {.s.
vibration is connected with the intensity of the purely
electronic transition through the Condon integral (see
(6)). To the contrary, the intensity of a vibronic transi-
tion with n.s. vibration is not determined by the intensity
of this purely electronic transition, but depends, through
the matrix element M} (RJ), on the intensity of other
symmetry-allowed electronic transitions. This circum-
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stance leads to two distinguishing features of vibronic
transitions with n.s, vibrations. First, the absolute
intensity of such transitions is always small, since the
total matrix element of the dipole moment of the transi-
tion is a quantity of first order of smallness, owing to
the large energy difference between the two mixing
electronic states. The oscillator strengths of vibronic
transitions with n.s. vibrations, accordmg to the experi-
mental data, do not exceed 10 =10, Second, the condi-
tion that the matrix element M&’ (Ro) differ from zero
limits the number of symmetry types of the n.s. vibra-
tions that can take part in the vibronic transition. The
maximum number of symmetry types of the n.s. vibra-
tions that are active in a given electronic state is equal
to the number of symmetry types of the electronic tran-
sitions in the molecule other than the transition under
considerationt?®*1%3,

2. An essential feature of a vibronic transition is
the intensity of the multiquantum vibrational transition.
Among the transitions with n.s. vibrations, the most in-
tense, as follows from (7), are the single-quantum tran-
sitions. The transition intensity decreases sharply with
increasing vibrational quantum number, like a power
function of the ratio Ay/v, which, as already mentioned,
is much smaller than unity. For transitions with f.s.
vibrations, the intensity of their multiquantum replicas
is determined in accordance with (6) by the Condon in-
tegrals, which depend primarily on the displacement of
the equilibrium position of the nuclear configuration.
The integral can reach large values and can determine,
in contrast with the results of the frequency change, a
large number of replicas. It is easy to show in the case
of harmonic vibrations that the ratio of the intensity
Jtm of a m-quantum vibronic transition with f.s. vibra-
tion to the intensity I, of the band of the purely elec-
tronic transition is given by

L= im0 V" _{S0sn 9)
Jro Vim — mb T B, s0l? 7

here vg and vgp, are the frequencies of the purely elec-
tronic and vibronic transitions, o, fy and £, f, are
the Franck-Condon integrals for the fm-th vibronic and
vibration-iree electronic transitions, respectively, and
v is a quantity that plays an important role in the theory
of electron-vibrational interactions; it is called the
coupling constant between the electronic and vibrational
motions and is expressed in terms of the distortion en-
ergy of the molecule as follows:
V.

Figure 1 shows a theoretical plott'"J of the ratio I
against the value of y. It is seen from the figure that
the existence of a long progression of vibronic transi-
tions calls for large values of y. The points on the fig-
ure denote the experimental values of I, for the series
of vibronic transitions of a number of aromatic mole-
cules. The deviations of the positions of the points from
vertical are small if it is recognized that in these tran-
sitions preference was given to only one f.s. vibration,
and the others were disregarded.

3. The f.s. and n.s. vibrations behave differently in
compound vibronic transitions. Such transitions are
produced when different numbers quanta of different f.s.

(10)
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FIG. 1. Theoretical dependence of the intensity ratio I, = Jgm/Joo
form=1, 2, 3, 4, and S on the electron-vibrational coupling constant
7. The points denote the experimental values of Iy, for the vibronic
transitions of the following molecules: a—benzene, 26004 transition
(A,g vibration, » = 920 cm™ ); b—naphthalene, 2900A transition (A g
vibration, ¥ = 1400 cm™); c—anthracene, 3900A transition (A g vibra-
tion, » = 1400 cm™); d—naphthalene, 42004 (triplet-triplet) transition
(A g vibration, v = 1400 cm™) ["].

vibrations are superimposed on single-quantum transi-
tions. The compound transition in which only {.s. vibra-
tions take part can contain in this case overtones of
each of these vibrations, as well as a sum of different
vibrations, In the aggregate, such vibronic transitions
constitute a spectrum that proceeds from the purely
vibrational transition. The distribution intensity in this
spectrum is determined by the displacements of the
equilibrium positions for different vibrations. Similar
regularities in the intensity distributions also occur in
compound vibronic transitions based on single-quantum
transitions with participation of n.s. vibrations. Since
this single-quantum transition always has an outstanding
intensity and distinct symmetry properties in the spec-
trum, it plays the role of the frontal transition in the
sequence of compound transitions. Naturally, the abso-
lute intensity of the compound transitions of this
sequence is small. To determine this intensity it is
necessary to replace the matrix element M(‘)}” (R9) in (6)
by the matrix element of the dipole moment of the
single-quantum transition M\ ¢/ (RJ) from expression
. ’

Let us illustrate the general laws governing the con-
struction of a vibronic spectrum using as an example
the spectra of a number of simplest molecules, which
have become classical examples of the spectroscopy of
molecules and crystals.

Figure 2 shows schemes depicting the main features
of vibronic spectra of several aromatic molecules (the
numerical data on the vibrations are gathered in
Table I); the spectra are so arranged that the intensity
of the purely electronic transition increases in the
downward direction. In benzene, which is the most sym-
metrical of all these molecules (Fig. 2a), the purely
electronic transition (IAlg — 'B,,, group Dy,) is sym-
metry-forbidden and is not observed in the spectrum.
Accordingly, all the related vibronic transitions with
f.s. vibrations are also forbidden. Consequently the
relatively intense transitions in the spectrum of the
molecule are single- quantum transitions in which two
n.s. vibrations of symmetry E,_take part, namely

v, (520 cm™) and v (1480 cm™ )!*®] | The choice of
vibrations of precisely this type of symmetry is due to
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FIG. 2. Schemes of principal transitions of absorption spectra of
aromatic molecules. a) Benzene ['8]. The theoretical position of the
pure electronic transition is » = 38 089 cm™. b) Naphthalene, position
of pure electronic transition » = 32 020 cm™ ['*?!]. ¢) Anthracene [??],
frequency of purely electronic transition v = 27 560 cm™.

the fact that the nearest electronic state of symmetry
E y becomes mixed with the electronic state B, under
consideration in accordance with the Herzberg- Teller
effect. Each of these vibronic transitions is the start of
a series (A] and E;, respectivelyl*®]) of compound
vibronic transitions with participation of a ‘‘breathing’’
f.s. vibration v, (923 cm™). The laws governing its ap-
pearance in the spectrum point to a large displacement
of the equilibrium position upon excitation of this vibra-
tion. The coupling constant, as shown in Fig. 1, is

y = 1.2, The corresponding displacement, determined
from (8a), and also estimated theoretically in an inde-
pendent manner, is close to 0.087 Al'7],

In naphthalene vapor (Fig. 2b), a pure electronic
transition (*A,g — 'B,y, group D,p), albeit very weak, is
observed in the spectrum{'®], Simultaneously, equally
weak vibronic transitions with participation of f.s.
vibrations are observed. The transitions having the lar-
gest relative intensity in this series are those with par-
ticipation of the vibration v, (702 cm™), which gives a
series of replicas. A considerable fraction of the os-
cillator strength of the spectrum in the region of the
first electronic transition lies in the vibronic transi-
tions with n.s. vibrations of symmetry B ,, namely,
vz (438 cm™) and v; (876 cm™). Their appearance in the
molecule spectrum is due to the mixing of the upper
electronic state B, with the electronic state B,;. The
vibration v, develops these vibronic transitions into
series. The displacement of the equilibrium position for
this vibration is estimated from the values of I, of the
relative intensities of the bands in the series to be
0.070 A0'73,

In the anthracene spectrum{®7 (Fig. 2¢) the pure
electronic transition is allowed with a large oscillator
strength. It is accompanied by intense replicas, prin-
cipally with the aid of f.s. vibrations p; (400 cm™) and
v: (1400 cm™). The summary oscillator strength of
these transitions is 0.16. Naturally, alongside such
strong transitions it is difficult to observe transitions
with n.s. vibrations, the oscillator strengths of which, as
in the preceding cases, do not exceed several thous-
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Table I. Main characteristics of molecular vibrations

and principal vibronic transitions of the absorption
spectra of the benzene, naphthalene and
anthracene molecules

Characteristics of vibrations
Oscillator
. , N
Molecule | Transition strength c::‘] C::‘_,l a, m 7! otes
Bcnzene[‘J 00 0

00 v, 0 992 | 923 { —69 " "

00--v, 0.001 606 | 520 | —86 1 0 Initial transition of
series AJ [ %]

00+vs 0.001 | 1596 | 1480 |—116 | 1 {0 Initial transition of

series E; [1¢]
00-+-vo-bmvy| 0.005%) | 992 | 923 | —69 | 4 | 0,087 Transition scries AY
Naphtha- | 00 0.0001
lene [**72']| 00+ mvy 0.00015 { 760 | 702 | —58 2 ? Shift of equilibrium
position not de-
termined

00+, 0.001 509 | 438 | —T71 1 0

[LIESA 0.001 935 | 9l | ~-24 1 ]

00+vo-Fmvy| 0.0015%)| 760 | 702 | —58 3 0.070

Anthra- | 00 0.07 %)
cene [2]| 004-mv, | 0.08%) | 1400 | 1400 ol 5 |0.09%

00 +-mvy 0.01 %) 400 | 400 0 2 ? Shift of equilibrium
position not de-
termined

*The indicated oscillator strength pertains to the entire aggregate of the compound
vibronic transitions.
**The oscillator strengths were calculated in accordance with [?*] at a summary
oscillator strength 0.3 of the first electronic transition for three directions of light prop-
agation.

Table II. Shifts of the equilibrium positions of the
nuclei following vibronic transitions with f.s.

vibrations
S Shift of equili-
Molecule Transition Vibration | yium position
frequency, cm R{ LA*
Benzene Cuera.-cunrt., 2600 A 923 0.087
Naphthalene Singlet-singlet, 32004 A 700 0.070
Singlet-singlet, 2900A A 1400 0.105
Singlet-singlet, 2200A A 1400 0.065
Triplet-triplet, 4200A A 1400 0.054
Anthracene Singlet-singlet, 39004 1400 0.095
Singlet-singlet, 25004 1400 0.060
Triplet-triplet, 4450A . 1400 0.043
*The shift of the equilibrium position R‘f) was determined from
the ratio of the intensities of the vibronic bands of the corresponding
transition.

andths, in the spectrum of the molecule. The ‘‘breath-
ing’’ vibration y, predominates in the vibronic spectrum
and is characterized by a large value of the coupling
constant ¥ = 1, and accordingly by a large shift of the
equilibrium position, the magnitude of which is

0.095 AC173,

In spite of the fact that the spectra of the benzene and
anthracene molecules are quite different, owing to the
different nature of their initial bands, nonetheless a

common picture, due to the f.s. vibrations, is observed
in their construction. Namely, the f.s. vibrations impart
a common feature to all the discrete molecular spectra,
since the laws governing the development of the indi-
vidual transitions in the series with the aid of the f.s.
vibrations do not depend on the nature of the initial
transition, but are determined by the size of the dis-

placement of the equilibrium position of the nuclear
configuration. Table II lists the shifts of the equilibrium
positions for the well known transitions of the benzene,
naphthalene, and anthracene molecules.

II. VIBRONIC STATES OF BINARY MOLECULES AND
DIMERS

1. Formulation of Problem. Classification of Types of
Bonds

The interpretation of vibronic spectra of free mole-
cules is based essentially on the separation of the elec-
tronic and nuclear motions, considered in the preceding
section in accordance with the scheme of Born and
Oppenheimer. Does this also obtain in the case of sys-
tems of weakly bound molecules, such as binary mole-
cules with weak conjugate bonds, dimers, or molecular
crystals? This question has been under discussion for
the last 10—15 years in a number of papers and is
presently the most urgent problem of molecular quan-
tum theory and experiment. The difficulty of the prob-
lem consists in the fact that the solution of the problem
of vibronic states of a system of molecules calls for
simultaneous consideration of two types of interaction:
intramolecular interaction between the electronic and
vibrational motions, and intermolecular resonant inter-
action., It follows from experiment that the energies of
the two interactions can be comparable, as a result of
which the problem of vibronic states of a system ceases
to be a problem with a single small parameter, and in
this general case the separation of the electronic and
nuclear motions does not take place. There exist, how-
ever, two limiting cases when one can speak of such a
separation,
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If the intramolecular interaction predominates, then
separation of the electronic and nuclear motions, which
is realized in an individual molecule, also remains in
force for a system of molecules, in which connection
individuality of the molecular vibronic state of the mole-
cule in the system of molecules remains in force. The
second limiting case takes place if the intermolecular
resonant interaction greatly exceeds the intramolecular
interaction between the electronic and vibrational mo-
tions. Under these conditions the separation of the
electronic and nuclear motions is possible only for the
entire system as a whole. Thus, before we proceed to
solve the problem of the vibronic states of a given
system, we must establish the limiting case to which it
belongs and determine the necessary numerical criteria.
The first to deal with this problem were Frenkel in
1931L%*] and Peierls in 1932**] | in connection with an
analysis of the interaction of electronic excitations of a

.crystal with the lattice vibrations. Quantitative criteria
for the two limiting cases were given by Frenkel in
1936[%°] in an analysis of the free and ¢‘trapped’’ exci-
tons, on the basis of a comparison of the time of dis-
placement of the electronic excitation through the crys-
tal (744,) and the time of development of local deforma-
tion of the lattice in the region of the excited site (74q¢)-
For a free exciton 74,. < 74ef, and for a ‘‘trapped”’
one Ty, > Tdef* The same limiting cases were consid-
ered in 1938 by Frank and Teller!®®] in connection with
a study of migration and photochemical action of the ex-
citation energy in a crystal. In 1951, Davydovt®*"»®2 con-
sidered from the same point of view the question of free
and localized excitons, and in 1957 Simpson and Peter-
sont®*] extended the qualitative aspect of the criterion
to include vibronic states of a system of molecules,
replacing only the relations for the characteristic times
by the relation between the corresponding energies of
the resonant and electron-vibrational interactions, and
introducing the terms weak and strong coupling. In
parallel, the concepts of strong and weak electron-
phonon coupling were introduced into the microscopic
theory of the solid state by solving the problems of the
electron-phonon interactions (see, for example, the re-
view(*']), Aithough it might seem that one deals with
the same subject in both groups of phenomena, the strong
and weak coupling in the terminology of Simpson and
Peterson differ significantly from the strong and weak
coupling in the theory of electron-phonon interactions,
In the former case the type of coupling is established by
comparing the energy of the resonant interaction with
the energy of the electron-phonon interaction. In the
latter case, the dimensionless coupling constant y,
comparison of which with unity determines the type of
coupling, is determined by the ratio of the energy of the
electron-phonon interactions to the vibration energy.

By way of illustration of the difference between the
terminologies, we present the example of Frenkel’s

““trapped’’ exciton. From the point of view of electron-
phonon interactions, it pertains to the strong coupling.
But with respect to the resonant interactions this is a
weak coupling. To avoid a misunderstanding in the expo-
sition that follows, the coupling to which the classifica-
tion of Simpson and Peterson pertains will be called
resonant. In the most general case, the criteria for a
resonant coupling can be written in the form:
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1) Weak coupling, Epog < Eg

2) Intermediate coupling, Eyeg ~ Eg. v,

3) Strong coupling, E.g > Eg v

Concrete expressions for E..g and R,  will be given
in the analysis of the individual problems.

The general approach to the problem of vibronic
states can be used both for molecular aggregates and
for molecular crystals. In binary molecules, dimers,
and other molecular aggregates with a limited number
of molecules, however, the interacting molecules are
coupled by a point-group symmetry operation, whereas
in a crystal the molecules are coupled by space-group
operations. This circumstance leads to an essential
difference between the concrete analysis of the different
systems, and they will therefore be considered separ-
ately.

2. Vibronic States of Binary Molecules

Investigations of the vibronic states of binary mole-
cules were made by McClurel**!], By way of an exam-
ple, he considered a molecule consisting of two weakly
coupled benzene rings. The electronic and vibrational
excitations of the entire molecule are described with
good approximation by the corresponding excitations of
one ring. Consequently, the electronic interaction be-
tween the rings can be regarded as a small parameter.
The other energy parameters of the system are the en-
ergy of the electron-vibrational interaction, defined by
McClure in terms of the defect A, of the vibration fre-
quency of one ring, and the vibration frequency itself.
Within the framework of these parameters, McClure
considered qualitatively the vibronic states of a binary
molecule.

The main physical advantage of the model is allow-
ance for two types of vibronic configurations, which
differ from each other by the method of placing the
electronic and vibrational excitations. The first con-
figuration (henceforth called the coinciding vibronic
configuration) corresponds to a situation wherein the
electronic and vibrational excitations are on a single
ring of the binary molecule. In this case the vibrational
motion of the molecule is determined in the f-th elec-
tronic state and is characterized by a frequency . The
second type of configuration corresponds to placing the
electronic and vibrational excitations on different rings.
The vibrational motion occurs in the ground electronic
state. Such a configuration will henceforth be called
separated.

In the case of a weak resonant coupling, defined by
the relation Epog < A < v, the binary molecule has
two vibronic states—bound and dissociated, correspond-
ing to separated and coinciding vibronic configurations.
The energy difference between these states is equal to
the frequency defect of the vibration A, in electronic
excitation of the ring (Table III)*. At an extremely small
value of E.._ ., a single-photon optical transition is
allowed only to the bound state. A dissociated vibronic
state can be excited by two photons that produce inde-
pendently electronic and vibrational excitations of the

*The description represented in Table III should be regared as only
qualitatively explaining the physical meaning of the states under con-
sideration.
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Table III. Wave functions, energies, and dipole moments of transitions for the cases of weak and
strong resonant couplings in binary molecules

States Symmetry Wave functions First-order energy Dipole moments of
- transitions
Ground N (y(; nngt{U g 0
f-electronic i } 1/‘|/2—(q,f1q‘g1/r{b-g + (PQ‘FQU‘IUQ) E' e B My = M)/ VT
Extremely weak coupling, N 5 (it o0 v Syt foy0m e f 0
f-electronic plus m-vibrational A } V2 UG 2 ey XU ) EN4-vI™ & E peg 10
s UV (e SN0 2 ofeduixi™) ELpv™ £ B g {(My =2 M) Sy VE
Strong coupling, f-electronic Tl ol L ol (SO Sn _ xSmy S0 oS | 8m M, LM,) S
phus m-vibrational N ] 1V 2y s - rs) (U NG - XU ST) E® |- (M M) Sy
A j YV E ey — b U X"+ X031 A (My—My) Sym
f—f-th excited electronic state of one ring; m—m-th vibration of molecule, Eges—energy of resonant electronic interaction, Ef—energy of f-th
electronic state of ring; M—dipole moment of f-th transition in ring; Sy, —Franck-Condon overlap integral for m-th quantum of oscillation in one
ring. The symbols for the wave functions are given in the preceding section.

two rings. With increasing Epeg, @ single-photon tran-
sition to a dissociated vibronic state also becomes
allowed, as a result of mixing of its wave functions with
the wave functions of the bound state. This decreases
the probability of single-photon transitions to the bound
vibronic state. This property becomes most clearly
manifest when A, = Epag = b, This interval of param-
eter variation was called by McClure the case of inter-
mediate resonant coupling. Thus, at not too large Egg,
the vibronic spectrum of a binary molecule consists of
a doublet of bands Ef + of + Eypes of bound states and a
doublet of bands Ef + 1° + Eyeg of the dissociated states,
located in the region of high energies, since, as a rule,
v > f I E oo ~ 8, the intensity of all four bands is
approximately equal and is determined only by the
orientation of the moments M; + Mz and M; — Mz. Ac-
cording to McClure, when E.q varies irom 4, up to

v', no significant changes should occur in the intensities
of the four bands.

The inequality E g > ! was defined by McClure as
the criterion of transition to strong resonant coupling.
In strong coupling, the electronic excitations of the in-
dividual rings lose their individuality. The same thing
also happens with the vibrational states, which are now
determined under conditions of electronic excitation of
both rings. The wave functions and the energies of the
vibronic states are given in Table III for this limiting
case, The optical spectrum should present two doublets,
widely spaced owing to the large E,qg, With the intensity
of one of the components depressed in each case.

The described concepts were used by McClure to in-
terpret the spectrum of the dibenzyl moleculet®). The
spectrum of the crystal was used for the analysis of the
molecular spectrum. It was assumed here that the
collective resonant effects in the crystal are small and
that its spectrum has a molecular character. For com-
parison, the spectrum of the toluol crystal was consid-
ered, for which the resonant effects were also assumed
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FIG. 3. Scheme of absorption spectra of crystals of toluol (a) and
dibenzyl (b) in polarized light. The oscillation frequencies were calcu-
lated from the frequency of the pure electronic transition indicated on
the figure at the start of the spectrum.

to be small. The spectra of both crystals, shown in Fig.
3, correspond to excitation of the optical electrons of
the benzene ring under conditions when the purely elec-
tronic transition is weakly allowed and the degeneracy
is lifted from the n.s. vibration of the benzene molecule,
E,eg, as a result of the lowering of the symmetry. A
comparison of the spectra can reveal the changes due to
the transition from the toluol molecule with its one ring
to the binary molecule of dibenzyl.

The pure electronic transition of dibenzyl is repre-
sented by a single band. Since the dipole moments of
both benzene rings are parallel to each other, the differ-
ence dipole moment, which determines the probability
of the transition to the asymmetrical state, is equal to
zero. In the region of the vibronic transition, made up
of the vibrations a; and b; produced upon spliiting of the

benzene n.s. vibration Ezg, which are well pronounced
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in the toluol spectrum (Fig. 3a), four absorption bands
are observed. The presence of four bands of comparable
intensity in place of two can be explained only as being
due to the fact in addition to the excitation of the bound
vibronic states, there appear in the vibronic spectrum
of the dibenzyl molecule also dissociated vibronic
states. A numerical analysis of the band frequencies
makes it possible to determine the energy of the inter-
action between the rings. It equals 2E .o = 45+ 14 cm™
and is comparable with the values of the defects of the
vibrational frequencies for both vibrations. The author
took no note of the complete similarity between the
spectra of toluol and dibenzyl in the region of the f.s.
vibrations at 757, 930-965, and 1178 em™, Since the
frequency defects of these vibrations are of the same
order as that of the vibrations a, and b,, one should in
general expect a doubling of the bands in this region of
the spectrum.

The notions developed by McClure for binary mole-
cules were used also by Ron and Schneppt®?) to analyze
the spectrum of the di-paraxylol crystal.

3. Vibronic States of Dimers

The problem of the vibronic state of binary molecules
is closely related to the analysis of the vibronic states
of dimers,* the quantitative theory of which has been
considered by many authors and has been sufficiently
well developed, The general premises of the theory of
vibronic states of dimers are as follows:

1. The electronic and vibrational motions of the free
molecule are separated in agreement with Born and
Oppenheimer,

9. The motion of the nuclei is limited to one normal
vibration.

3. This vibration is harmonic.

4. The interaction between the electronic and vibra-
tional motions in the molecule is described in terms of
the displacement of the equilibrium position of the
nuclear configuration.

Most authors have also assumed that the electronic
and vibrational excitations are always simultaneously
acting on one of the two molecules forming the dimer.

The foundation for the general theory of vibronic
states of dimers was laid by Witkowsky and Moffitt**],
who derived a general equation governing the nuclear
motion. Since the principal mechanism of the electron-
vibrational interaction is the displacement of the equili-
brium position, the energy used for this interaction of
the problem is the distortion energyt’], introduced
earlier in Sec. 1. At not too high temperatures, the dis-
tortion energy is equal to the width of the electron-
vibrational spectrum. Cases of weak and strong reson-
ant couplings are defined by suitable inequalities for the
energies of the resonant interaction between the mole-
cules in the dimer and the half-width of the vibronic
spectrum. The first investigations of the intermediate
coupling, which is frequently realized in experimental
systems, were first carried out for dimers by
McRay(*>®], Figure 4 shows the calculated-**) and the
experimentally observed *®] spectra of the monomer
and dimer of iodide-1, 1'-diethyl-2, 2'-pyridocyanine

*By dimers is meant a pair of identical molecules coupled by Van der
Waals forces.
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a) Monomer

b) Dimer

B 10 a A 22 23107y, cm™

FIG. 4. a) Absorption band of monomer of pyridocyanine dye; b)
absorption band of the dimer (solid curve). The vertical lines correspond
to the theoretically calculated spectra.

dye. Attention is called to the difference between the
intensity distributions in the absorption spectra of the
monomer and dimer in the region of the pure electrenic
transition. We shall return to this question later. The
case of intermediate coupling was considered also by
Merrifield*”), but the nondegenerate vibronic states of
dimers were considered most exhaustively and in grea-
test detail by Fulton and Goutermant®»*®J, who presen-
ted their results in terms of two dimensionless param-
eters

="t and = (&) AR, (11)
The first parameter describes the energy of the inter-
molecular interaction per unit vibration energy, and the
second is the coupling constant between the electronic
and vibrational interactions, which is already known to
us (see (10)), and characterizes the energy of the intra-
molecular interaction between the electronic and nuclear
motions, due to the displacement AR of the nuclear-
configuration equilibrium position following electronic
excitation, and referred to unit vibration energy. The
quantity y» determines the distortion energy and can be
obtained from the experimental spectrum as the width
of the electron-vibrational bands. The guantity y can be
determined independently from the ratio of the intensi-
ties of the vibronic and pure electronic bands in accord-
ance with (9).

Figures 5 and 6 show the computer- calculated ab-
sorption spectra of the dimers for different values of
g and y.* One of the most essential features of these
spectra is the law governing the variation of the inten-
sity of the set of vibronic bands for each polarization
as a function of the parameters 8 and y. Let us examine
Fig. 5, which shows the spectra for y = 1, 0 at different
values of 3. The case 3 =0 corresponds to the mono-
mer spectrum. At g different from zero, two spectra
are produced, with mutually perpendicular directions of
the dipole moments of the transitions. The values
8 =0.25 and 8 = 0.5 correspond to weak resonant
couplings. Each of the vibronic states of the monomer
splits into several components. It is essential to call
attention not to the overall band contour, but to the ver-
tical lines which represent the square of the matrix
element of the dipole transition. It is seen from the
figure that whereas the electronic state splits into two

*The §-function bands that follow from the theory are assigned a
Gaussian shape with half-width & = 0.2 in order to bring them closer to
experiment.

o
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Table IV. Main types of vibronic configurations of dimers
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quantum - Wave functions Note
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components, each vibronic state splits into 2(m + 1)
components, where m is the vibrational quantum num-
ber. This circumstance is connected with the possibility
of different allotments of the vibrational excitation to
the molecules of the dimer at a fixed position of the
electronic excitation, i.e., it is connected with the
formation of different separated vibronic configurations.
Following McClure, Fulton and Gouterman extended the
notions of two types of vibronic configurations to include
also the case of dimers. Table IV shows sets of such
configurations for several values of m.

Let us turn now to Fig. 5. The values 8 =1 and 0
correspond to the intermediate case. It is interesting to
note that the intensity distributions are different in the
negative and positive systems. Whereas in the negative
system the distribution of the intensity follows the
Franck-Condon principle, in the positive system the
maximum of the intensity shifts towards the short-wave
side of the spectrum, and the intensity of the pure elec-
tronic transition becomes much weaker. Since the tran-
sition to the negative system is symmetry-forbidden for

most dimers, a positive system of bands appears in the
spectrum, with a curious intensity distribution. The
values 8 = 1.5 and 8 = 2.0 correspond to strong reson-
ant coupling.

Figure 6 shows the set of spectra for fixedg =1, 0
and for a variable y. The upper spectra correspond to
the case of strong coupling; in the spectrum at 8 =1, 0
and y = 1, 0 is the limiting-one and corresponds to the
intermediate case; a weak coupling is represented in
the lower spectra.

In spite of the fact that the spectra depend very
strongly on the values of both parameters g and y, they
have characteristics that depend only on each of these
parameters. Thus, the distance between the centers of
gravity of the intensity in both systems of strongly
polarized vibronic bands of the dimer spectrum is equal
to 28 cosd for all the values of y. It is seen from Fig. 5
that this distance increases with increasing 8, and Fig.
6 shows that it is constant at different values of y. The
angle 6 is made up by the directions of the dipole mo-
ments of the transitions in both molecules of the dimer.
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Since in many cases 6 = 0° or 180°, one of the two sys-
tems of strongly polarized bands may be absent, and
difficulties arise in the experimental determination of 8
when using only the absorption spectrum of the dimer.
In this case it is convenient to use the same theorem of
Fulton and Gouterman, which relates the position of the
centers of gravity of the dimer and monomer spectra,
namely, the distance between the values of the corre-
sponding frequencies is equal to £+3cosf. In turn, y de-
termines the width of the vibronic spectrum for all
values of 8. This irregularity can also be traced clearly
in Figs. 5 and 6. The first experimental absorption
spectra of the dimers were obtained for dyes, the spec-
trum of one of which is shown in Fig., 4, The general
character of the spectrum offers evidence that the mole-
cules forming the dimer are parallel to each other,
since the spectrum represents only one system of bands
of the dimer spectrum. The attenuation of the region of
the purely electronic transition and the shift of the in-
tensity to the interior of the vibronic transitions indicate
that this is a positive system of bands in the intermed-
iate case, when the energy of the resonant interaction
between the molecules and the molecule distortion en-
ergy are comparable. Dye molecules, however, are
poor models for the study of vibronic states, since
neither the monomer nor the dimer spectra have sharply
pronounced vibrational structures. In this respect,
spectra of aromatic compounds are much more conven-
ient. In 1966, detailed investigations were made of the
spectra of the dimers of anthracenel*J and substituted
anthracenest*'), and an analysis was made of their
vibronic structure. Since the regularities observed in
these spectra have a character that is common to all
aromatic molecules, it is advisable to stop to discuss
the results of the investigation of this group of substan-
ces in greater detail.

In the spectra of monomers and sandwich dimers
(6 = 0°) of these compounds, two electronic trangitions
were investigated: the first electronic transition
1Alg — 'B,, With the transition dipole moment oriented
along the short axis of the molecule, and the second
electronic transition ‘A, — leu’ with the direction of
the dipole moment along the long axis of the molecule.
The spectra obtained are shown in Figs. 7 and 8. Since
the molecules in the dimer are parallel to each other,
the absorption spectra of the dimers contain only posi-

MeA-MeA

FIG. 7. Absorption spectra of a num-
ber of sandwich dimers in the region of
the first electronic transition ('A,g ~
'B,y) at 77°K in methylcyclohexane.
A-—anthracene, CIA—9-chloroanthracene,
i BiA —9-bromoanthracene, MeA —9-meth-
i ylanthracene. The dashed curves corre-
=': spond to the absorption spectra of the
o monomers produced upon dissociation

i of the dimers when the glass becomes
'\| "i softened [*!].
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tive systems of the bands. On the other hand, if the
molecules are located at an angle (the authors oft*"]
succeeded in obtaining dimers with the angle 6 = 55°
between molecules), then the negative system of bands
also becomes allowed, and the absorption spectrum of
the dimer becomes much more complicated. The ob~
tained spectra were analyzed by the authors on the
basis of the theory of Fulton and Goutermant®®], and the
spectra were calculated theoretically in accordance
with their method for the dimers of anthracene. The
remaining spectra were analyzed by analogy. To estab-
lish the type of the resonant bond in the investigated
dimers, it was necessary to determine the values of 8
and y. Both quantities can be determined experimen-
tally. The parameter y determines the ratio of the in-
tensities of the vibronic transitions to the intensity of
the purely electronic transition, and can be determined
by using Fig. 1. It should be remembered here that Fig.
1 is suitable only for the case when the vibronic spec-
trum of the molecule is developed by only one vibration.
In the anthracene molecule in the region of the first
electronic transition, two f.s. vibrations are active:

v1 = 1400 cm™ and p; = 400 cm™ (see Fig. 2 and Table
II). The main fraction of the oscillator strength of the
vibronic spectrum goes, however, to vibronic transi-
tions with participation of the vibration vy, and therefore
one can consider, with a certain degree of error, the
vibronic spectrum based on this single vibration. It
follows both from the analysis of the anthracene-vapor
spectrum (see Table I) and from an analysis of the
spectrum of its solution that y = 1. The second elec-
tronic transition in the anthracene molecule contains
only one vibration, v, = 1400 cm™, and the intensity in it
is mainly concentrated in the region of bands of the
purely electronic transition, so that accordingly

v = 0.5—-0.6.

The energy Eppg of the resonant interaction between
the molecules of the dimer can be determined on the
basis of the theory of Fulton and Gouterman as the dif-
ference between the frequencies determining the posi-
tions of the centers of gravity in the spectra of the
monomer and the corresponding dimer. The values of
these quantities in cm™ (Ereg), referred to the vibra-
tion-quantum energy (B), are given in Tables V and VI
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Table V. Comparison of the spectrum characteristics and
of the constants of the intra- and intermolecular
interactions in the electronic transition ‘A, — ‘B,
of anthracene and its derivatives

“Position of

Position of ]
center of 3::“;“0? Energy of I . Distortion
Substance gravity of gravity of resonax:lt in‘- _ Eres * v energy
monomer dimer spec- | teraction, hv ed = vhy,
spectx_'\lxm, trum, om™ Eles cm™ cm™
cm ’
Anthracene 2800050 | 28250450 1250100 0.18 ~1 1400
9-chloroanthracene 27 50050 | 27 900-£50 [ 4004-100 0.29 ~1 1400
9-bromoanthracene 27 100-£50 | 27 500450 | 4004100 0.29 ~ 1| 1400
9-methylanthracene 27 30050 | 27 800450 | 300100 0.21 1 1400
*The vibration quantum energy is fw = 1400 cm™.

Table VI. Comparison of the spectral characteristics and
constants of intra- and intermolecular interaction
in the electronic transition *A , — 'B,, of anthracene
and its derivatives

Position [;f Position of En
. center of center of exgy of = Distortion
Substance gravity of gravity of [esonant in- p= RS v energy
monomer dimer spec- teraction, hv eq = vhy,
spectrum, | L o Epegcm™ cm™
cm >
Anthracene 39500-£50 | 41200450 | 1700100 1.2 0.5—0.6 | 700—840
9-chloroanthracene | 39230250 | 4080050 { 1500100 1.4
9-bromoanthracene| 4075050 | 3935050 | 14004100 1.0
9-methylanthracene; 39 20050 | 40 530+530 | 13504100 0.96
|

for both transitions and for all the investigated substan-
ces. An analysis of the quantities 8 and y shows that for
all the investigated substances in the region of the first
electronic tran: "“ion there is a weak resonant coupling,
based on a relatively low energy of resonant interaction
relative to the distortion energy of the molecule. At the
same time, for the second electronic transition the en-
ergy of the resonant interaction greatly exceeds the dis-
tortion energy, as a result of which the changes in the
spectrum correspond to the case of strong resonant
coupling. Figure 9 compares the experimentally ob-
served absorption spectra of the monomer and dimer of
anthracene with parameters 8 and y determined experi-
mentally and the spectra calculated by the Fulton-
Gouterman theory. The agreement between both types
of spectra is very good. It should be noted here that
such a successful agreement between the spectra calcu-
lated in accordance with Fulton and Gouterman and the
experimental spectra should be expected only for mole-
cular aggregates whose molecule vibrational frequen-
cies do not change when the electronic state is changed,
since the Fulton-Gouterman theory does not take into
account the vibration frequency defect under electronic
excitation. The frequency defect governs the shares of
intensity going to the coinciding and separated con-
figurations, since it gives rise to a difference between
the situations in which the vibration is applied to the
electronically-excited molecule and to the molecule in
the ground electronic state, since in the form.er case the
potential energy is changed by an amount A;,. The
Fulton-Gouterman theory pertains only to the particular
case 4, = 0, The contribution of the intensities of the
separated and coinciding configurations for anthracene
can be traced in this case by means of vertical lines
placed inside the envelope of the vibronic transition. It

2)
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FIG. 9. a) Absorption spectrum of b)
anthracene monomers at 77°K in meth-
ylcyclohexane, obtained following the =
softening of glass containing photo- : ]
chemically produced dimers, whose c) M
o/ .
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is obvious that for molecules with a noticeable fre-
quency defect, at the same values of the parameters 3
and y, the intensity distribution in the experimental
spectrum can differ greatly from that calculated by the
Fulton- Gouterman theory.

A second limitation of the Fulton- Gouterman theory,
by virtue of the assumption made, is that it is utterly
unsuitable for the description of vibronic spectra with
n.s. vibrations, for which the distortion energy is equal
to zero.

The general laws established for vibronic spectra of
dimers remain in force also for other molecular aggre-
gates with finite numbers of molecules. In 1967, Perrin
and Gouterman(**] considered the vibronic states of a
trimer comprising a trigonal system with a threefold
symmetry axis. The main premises on which the calcu-
lation was based were the same as for dimers. The en-
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ergy parameters in the system were the previously de-
fined dimensionless quantities g and y. As expected, the
results turned out to be similar to those for dimers.
Figure 10 shows the vibronic-absorption spectra of the
chosen model of the trimer as functions of the param-
eters 8 and y. Just as in Figs. 5 and 6, the horizontal
lines separate the spectra for two mutually orthogonal
directions of light polarization. Cases (a) and (b) per-
tain to strong resonant coupling, case (c) to intermed-
iate coupling, and case (d) to weak coupling. The dis-
tance between the centers of gravity of the individual
components of the spectrum was equal to 33 in each of
the cases. The quantity y describes the width of the
spectrum. At present there are no known experimental
investigations of trimers.

IIl. VIBRONIC STATES OF MOLECULAR CRYSTALS
(THEORY)

1. Introduction. Theoretical Models

Research on the vibronic states of molecular crys-
tals has developed independently of that on vibronic
states of molecular aggregates, and its start dates back
to 1948, when, owing to the work of Davydovi?¥27»?8]
the exciton theory of Frenkel and Peierls came into
intensive use for the interpretation of spectra of mole-
cular crystals. In the model proposed by Davydov, the
vibronic states are described by a wave of intramolec-
ular vibronic excitation that moves through the crystal
under the influence of the resonant forces. It is possible
to associate with this wave the quasiparticle which has
recently come to be called the vibron. This model was
developed by different workers(**™**J as applied to
vibronic states with vibrations of different symmetry. It
made it possible to explain the general similarity of the
spectra of crystals and of the free molecule, to obtain a
correct quantitative description of such characteristics
of the vibronic spectrum as the values of the Davydov
splittings in individual transitions and their integral
intensity. Because of its simplicity and clarity, the
Davydov model remained until 1966 the primary basis
for the interpretation of vibronic spectra of crystals
(see the reviewst®°21) although McRay pointed out in
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his first papers, as early as in 1960, the need for taking
into account, when constructing the vibronic states of a
crystal, the possibility of separate placement of the
electronic and vibrational excitations on the molecules
of the crystal, in accordance with the concepts of coin-
ciding and separated vibronic configurations introduced
by McClurel®*J, McRay reached the conclusion that in
those cases when the resonant coupling is strong, the
vibronic energy spectrum of the crystal comprises a
broad spectral region determined by the energy of the
electronic resonant interaction. The crystal states
corresponding to this region are described by two
quasivectors k. The analysis was based on an intra-
molecular transition which in general has p quanta of
vibration. Under these assumptions, one of the vectors,
k,, describes a wave of vibronic excitation with m quanta
of vibration in the sense indicated above, and the second
describes a wave of n-quantum vibrational excitation
over the crystal molecules that are not electronically
excited, with m + n = p. It is easy to see from this
representation that McRay’s vibronic states are in es-
sence two-particle states. These concepts were subse-
quently extended by McRay to include also the case of
weak resonant couplingl*+**], However, the perturba-
tion theory used by them cannot be regarded as suffi-
ciently correct,* as a result of which many important
results were left unobserved. In 1966, Rashbal*®) pro-
posed a general dynamic model of vibronic states of a
crystal, according to which the exciton and the phonons+
are regarded as stable quasiparticles with a definite
interaction between them. Different vibronic states of
the crystal are defined as bound and dissociated states
of this aggregate of quasiparticles. If the crystal con-
tains only one phonon, the bound states correspond to
correlated motion of the electronic and vibrational ex-
citations, are described by a single value of the quasi-
momentum, and accordingly are single-particle states.
To the contrary, the associated states corresponding to
independent motion of the electronic and vibrational
excitations are characterized by two values of the
quasimomenta and are consequently two-particle states.
We see that the single-particle states in the general
dynamic model have much in common with the vibronic
states in the Davydov model. The difference between
them lies in the fact that in the Davydov model the elec-
tronic and vibrational excitations are always on the
same site, whereas in the general dynamic model in the
bound state, the electronic and vibrational excitations
spend only part of the time on one site, moving relative
to each other in a limited region of space. We shall
therefore henceforth call the Davydov model the model
of coinciding configurations., The dynamic model, which
uses the concepts of two types of vibronic configura-
tions, is more general, and the spectrum resulting from
it has a richer and more interesting structure than that
in the model of coinciding configurations. Nonetheless,
the model of coinciding configurations exerted a strong
influence on the development of the ideas concerning the
quantitative characteristics of vibronic states and led to

*A critical review of McRay’s work can be found in [?7].

TBy phonon branches of the spectrum are meant here and below the
branches resulting from intramolecular vibrations. Intermolecular pho-
nons will be taken into account separately.
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a number of correct conclusions in the interpretation of
the crystal spectra; we shall therefore consider the
main premises of this model.

2. Model of Coinciding Configurations

In developing a general theory for the exciton states
of a crystal, Davydov proposed that, regardless of the
type of excitation, the intramolecular excitation retains
in the main its individuality in the crystal, while inter-
molecular excitation is only a small perturbationl?7:%1,
As applied to vibronic states, this assumption corre-
sponds to the case of weak resonant coupling. Accord-
ingly, Davydov proposed to determine the main charac-
teristics of the energy and optical spectra of a crystal
separately for each state. By using the same assump-
tions, Craig and Hobbins(**] and later Bingell**1 exten-
ded Davydov’s theory to include vibronic states of a
crystal. In these first papers, they considered vibronic
states with participation of f.s. vibrations. Since the
resonant interactions, which are in this case the prin-
cipal object of the study, depend strongly on the charac-
teristics of the optical transitions in the free molecule,
the consideration of vibronic states with f.s. vibrations
could not be the general case, since the optical charac-
teristics of the vibronic transitions with participation of
n.s, vibrations obey entirely different laws. This cir-
cumstance was taken into account by Craig and
Walsmleyl*:*?] | and consequently the theoretical con-
cepts developed by them remained until recently the
most complete ones. We shall not, however, follow the
Craig and Walsmley scheme in developing a theory for
single-particle vibronic states, but consistently consider
the properties of the vibronic states of a crystal, making
use of the fundamental results of Davydov’s theory and
the results of Sec. 1.

According to Davydov’s theoryl?""®] | the value of the
energy in the exciton band 7 I™(k) of the vibronic state
is determined by sums of the type

ZIR0) = S M petvn; (12)
here o, 8 =1, 2, ..., ¢ indicate the position of the mole-
cule in the unit cell, and the vector n numbers the cells
of the crystal*, Mﬁm ne is the matrix element of the

resonant interaction between the molecule 03, which is
in the vibronic state fm, and the molecule no, which is
in the ground state. The expression for M£m no is
K
M{;E ny = S X?é'Uﬁ;X’,;‘O{Ugﬂ Y CPGEfP?.;an, nacpg‘;(p,ﬂadr, dig.  (13)

The integration is carried out over the electronic and
nuclear spaces of the molecules 03 and na. The inter-
action-energy operator M is the sum of all the electro-
static interactions of the electrons and nuclei of one
molecule with the electrons and nuclei of the other. In
calculating its matrix elements in molecular crystals

*In a number of cases of practical importance, involving two mole-
cules per unit cell (for example, monoclinic crystals of symmetry Cyh),
each nondegenerate vibronic state of the molecule corresponds in the
crystal to two bands of single-particle excitation [?%:2%]. In this case

3% (k)= 2T (k) = 21 (k)

for wave-vector directions perpendicular or parallel to the symmetry
planes of the crystal.
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one usually employs the pointlike-multipole approxima-
tion. In this approximation, the matrix element of the
resonant interaction is determined by the values of the
multipole moments of the optical transitions in the free
molecule. In the simplest case, when the optical transi-
tion is dipole-allowed and sufficiently strong, the extent
of the energy band is determined by the same param-
eters as the intensity of the corresponding transition in
the molecular spectrum, and the problem of determining
the widths of the exciton bands of the vibronic states in
the energy spectrum of the crystal is analogous to the
problem of the distribution of the intensities in the
vibronic spectrum of the molecule.

Let us consider expression (13); we are interested
only in that part of this expression which is connected
with the quantitative characteristics of the optical spec-
trum of the molecule. As expected, the quantities
Mﬁ%‘ ng Will be determined by different expressions for
vibronic states with participation of f.s. and n.s. vibra-

tions(?*%:%%] | In the former case
M, o= MES S (RY)  Boo, m P (14)
For n.s. vibrations
ﬂ'[{)';, na'_—M{)%,(xll)a(Rg) I Ry, tm |Z- (15)

00, fm and Roo,fm have the same

meaning as in (6) and (8), namely, the additional super-
ior index of M£°B’ no indicates the order of the expansion

of the matrix element of the dipole moment of the tran-
sition in powers of the nuclear displacements at which
the corresponding optical transition is allowed in the
free molecule (see, for example,t®7).

The sums of the resonant integrals, which determine
the values of the energy in the exciton band, can now be
written as follows:

The matrix elements £

LR (k)= &o0, ym |2 ; MO0, (16)
for vibronic states with participation of f.s. vibrations.
If we recall that, in accord with (8),

[Eoggm 2 _ yim

formula = i
| 00, 70 |2

m! !
then the connection between the exciton band 2 ©(k),

defined by |£, f, 1727/ M(f,‘;g naelkn, of a purely elec-
’ n s

tronic state, and the band 3 fm(k) of the vibronic state
with participation of m quanta of f.s. vibration is ex-
pressed as follows:
m m 17
9! (k):%a'o (k). an
In turn, for vibronic states with n.s. vibrations, the sum
of the resonant integrals has the following form:

LI = | Rop, g2 3 MIBBhe™™ (18)
1t is easy to note that the properties of the exciton
bands of the vibronic states are determined by the type
of vibration. Thus, exciton bands with participation of
f.s. vibrations are analogous to the band of the purely
electronic state. The absolute value of the energy in the
vibronic band is determined by the corresponding
Franck-Condon factor, and in the approximation con-
sidered there is a correlation between the dimensions of
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the exciton band of the vibronic states and the oscillator
strength of the corresponding molecular vibronic tran-
sition. Allowance for the second order in perturbation
theory in the intermolecular interaction (the contribu-
tion of the interactions in other electronic states to the
characteristics of the resonant interaction in the con-
sidered state—the Craig effectl**™**J_does not disturb
this correlation).

As to the vibronic states with n.s. vibrations, their
exciton bands are not coupled with the band of the pure
electronic states, and as a result of the Herzberg- Teller
effect they are quantities of first order of smallness and
are determined by the bands of other higher pure elec-
tronic states. This conclusion is valid only in the case
when the mixing of the electronic wave functions in the
Herzberg- Teller effect does not affect the ground state.
This is usually always the case, since the distance from
the ground electronic state to all the excited states is
much larger than the distance between the nearest exci-
ted states. It is precisely this difference between the
properties of the bands of vibronic exciton states with
participation of f.s. and n.s. vibrations that was first
pointed out by Craig and Walsmleyt*#*°1,

The validity of these relations is illustrated by the
connection between the intensities of vibronic transitions
in which vibrations of different symmetries take part
and the values of the Davydov splitting in them for crys-
tals with several molecules per unit cell. Numerous
examples of this type are given in the reviewt*¥?%1,

3. General Dynamic Model

The dynamic model proposed by Rashba is a valid
extension of the ‘“many-particle’’ approach of solid-
state theory to include vibronic excited states of mole-
cular crystals. On the basis of the notion that the solid
is a system of quasiparticles, the vibronic states are
represented in the dynamic model by a system consist-
ing of one exciton interacting with one or several
phonons. It follows from the most general formulation
of the problem that the vibronic states of the crystal
correspond to an aggregate of dissociated and bound
states describing its quasiparticles. The originator of
such an approach to composite excited states of a crys-
tal was Bethel®”], who considered the two-magnon states
of a linear crystal as bound and dissociated states of
two interacting magnons. We can also consider the
structure of the spectrum of electron-hole states from
the same point of view. Dissociated states of this pair
of quasiparticles are the basis for the band scheme of
solids, and the bound states due to the electron-hole
interaction are Wannier- Mott excitons[®®*), The major
computational difficulties, and also the absence of inter-
est on the part of the experimentors have caused this
problem to be neglected for a long time. Some impetus
was provided in 1960 by the requirement for explaining
the complicated structure of the rotational-vibrational
spectrum of the parahydrogen crystalt®®l, which could
not be explained from the traditional exciton point of
view. The theory of treating the rotational-vibrational
states of a crystal as bound and dissociated states of a
rotational exciton and phonon was developed by
Van Kranendonk in 1959—1960L%%:%13 and a quantitative
interpretation of the spectrum of the crystal was devel-

497

oped as a result. The development of a many-particle
theory of composite states of a solid, which began in the
early Sixties and has been developing at an accelerated
rate, can be attributed to improvement of the computa-
tion techniques and especially to the introduction of
field methods in solid-state theory. These include two-
magnon states of three-dimensional crystals
(Wortist®®], 1963) vibronic states of molecular crystals
(Rashbal®**] 1966 and 1968), exciton- magnon states in
antiferromagnecic crystals (Laudonl®> and Freeman
and Hopfield *], 1968), exciton-phonon complexes
(Toyozawa and Hermansonl®®J, 196821, polaron-phonon
complexes (Mel’nikov and Rashbal®®%], 1969, Levin-
son(®P3 1970), two-phonon complexes (Cohen et al.[%¢],
1964), and multiphonon states of molecular crystals in
the region of overtones of intramolecular vibrations
(Agranovicht®J, 1970)*, These theoretical papers
stimulated a large number of experimental investiga-
tions and uncovered new aspects of spectral properties
of solids, namely, vibronic states of molecular crys-
talst™ "] exciton- magnon states of antiferromagnetic
crystalst™®°] exciton- phonon complexes in a number

of jonic crystalst®®*] absorption in the region of over-
tones of vibrations of molecular crystals®%,

The unified approach to the different phenomena and
the possibility of carrying the quantitative calculations
to their conclusion in a number of cases now make the
many-particle analysis of the excited states of crystals
most promising.

The generality of the approach does not, of course,
exclude specific singularities of any concrete system of
quasiparticles, so that the detailed theory of vibronic
states differs substantially, say, from the theory of
exciton- magnon interactions. A manifestation of this
difference is a separate operator of the interaction be-
tween quasiparticles for each problem, and requirements
imposed on this operator in connection with the conser-
vation of the number of quasiparticles in the investiga-
ted problem. Only when this last condition is satisfied
is it possible to carry out a real investigation of the
complete Hamiltonian of the system and obtain a general
solution in a number of cases. Rashbal®®®*] succeeded
in satisfying these requirements for the construction of
vibronic states, by considering for these states a dy-
namic model whose gist will be described below.

The Hamiltonian of excitons and phonons that do not
interact with one another can be represented as the sum
of two terms

FHon = E [¢'¢atae + V" XfaXnal, (19)
no

O%pca = E’ [ My, mﬁ(ﬁtaq’nﬁ - Una, mﬁX:\-aXnﬁ]; (20)
no, mf

here ¢p, and Xp, are respectively the operators for

*For the sake of completeness, mention should be made of a num-
ber of papers on cooperative exciton states {¢3-7°]. These are also many-
particle states. However, unlike the paper cited above, in which the ratio
of the quasiparticle interaction energy to the sum of their kinetic ener-
gies can be practically arbitrary, the theory of cooperative states, based
on perturbation theory, pertains to the limiting case when the first of
these quantities is much smaller than the second. This circumstance im-
mediately leads to a loss of the bound states and therefore limits the ap-
plication of the theory of [%6-7°] only to problems involving two-and
many-electron excited states of a crystal.
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the production of an exciton and a phonon at the site na,
€' and 1° are the terms of electronic and vibrational
excitations of the crystal, and Mpy mg and upg mp

are the resonant integrals which determine the probabil-
ity of transfer of the corresponding excitation from site
to site. In the harmonic approximation, the exciton-
phonon interaction operator is

Hint = H B+ HB = E PratPuo [2 (X + Xne) + b (Xio -+ Xne)?2] - Hiy.
no (21)
The first term ina‘I{,’i‘;’t describes the displacement of the
equilibrium position of the intramolecular oscillators
following electronic excitation, while the second term
describes the change of the vibrational frequencies upon
excitation. &%) includes exciton-pheonon interaction

terms descrit)n

ing different types of electron-vibrational
motion through a crystal and therefore containing in-
dices of different sites.

Owing to the practically infinite number of molecules,
it is impossible to obtain a solution for the problem in
general form with an interaction Hamiltonian in the form
(21). Rashbal*®**®*] therefore separated limiting cases
that can be investigated rigorously. The simplification
proposed by him was based on the fact that the main
feature of phonons produced from intramolecular vibra-
tions is the relatively large value of their average fre-
quency +° at a small value of the dispersion. In many
cases of practical importance, ° exceeds the width of
the exciton band 2 fo "Sometimes even the strong
inequality 1° > 3 fo js satisfied with high accuracy.
When this inequality is satisfied, the transfer of an ex-
citon from site to site proceeds with conservation of the
number of phonons, since the matrix elements of all the
processes connected with the change of the number of
phonons enter with large energy denominators. Thus,
the phonon turns out to be a stable particle, and the
problem of the electron vibration spectrum of the crys-
tal can be reduced to the dynamic problem of investigat-
ing the mutual motion of several stable quasiparticles,
namely an exciton and one (or several) phonons.

Thus, assuming that Mnoz, mg’ Hna, mg> and the fre-
quency defect of the vibration, which can be commensur-
ate, are also much smaller than the phonon frequency
v°, and carrying out a canonical transformation that
eliminates the linear terms determining the change of
the number of phonons ing# Y, Rashbal®*] obtained a
dynamic Hamiltonian that permitted a rigorous investi-
gation of the general solution:

1 r .
Hint= 5 2 Uapys (k, Ky, Ka) @kiaXik—1:p Xk koy Pzt
k, ki1, k2
afvd

(22)

Here ¢ is the number of cells in the main region, and
the indices o, 8, ¥, 8 indicate the number of the mole-
cule in the unit cell; k, k, and k; correspond to the
quasimomenta of different motions, and the matrix
Uaﬁyo(k, k,, k2) is given by

Uk, ky, kp)=J (k) + K (ky+ ko ~k)+ T (k) + T* (ky),  (22a)

where
Jaﬂvﬁ (k) = Juv (k) 60.56\;6'
KanG (k) = Kaﬂ (k) Bavaﬂév
Taﬂvb (k) =Tqs (k) 6aﬁ6a7y
Tiows (k) = T8 (k) 8psbvs.
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The quantities J 0”,(k) etc. are resonant sums of the type

Jav (k) = Z Jno:, m~,ve—ik (na-mv) ete.
n—m

The matrix element Jy,, py, is equal to the change Av

of the vibration frequency following electronic excita-
tion when no = my, and is determined by the probability
of simultaneous transfer of an exciton and phonon from
site to site when no = my. The expression for Jpa, my
is -

Jna, my = (‘P;ax;m(vavaNf(Pnaxnm(Pranrnﬁ; (23)

here M is the operator of the intermolecular resonant
interaction, It is easy to verify that the expression for
Jna, my coincides fully with expression (13) for the
matrix element of the resonant interaction in the
vibronic state in the model of coinciding configurations.

The matrix element X o, mB is determined by the
probability that an exciton and a phonon located at dif-
ferent sites will exchange places, and thus characterizes
the exchange-resonant interaction. The expression for
the Kna, mg 18

Kna, mg= ((P;axna(PmBXrnﬁM(PnaXrtaq’;iﬁxmB)- (24)
. * .
The matrix elements Tna, ms and Tnb, mo determine

the influence of the phonon on the probability of exciton
displacement, and describe the decay of a coinciding
vibronic configuration (Tna, ms) and coincidence of a
separated configuration (T ). They correspond to

_cont 16, mo
the following integrals:

Tnoc, mé = «Paaxlﬁaq}méxmOAM(PuaX:;a(p;lGXmé):

. S . 25
T:b, mo = ((Pnb?\Ka(PKmXumePEGXKe(P.mXnm)~ ( )

In the derivation of (22a) it was assumed that the motion
of the phonon can be neglected, corresponding to the
case Mna,mﬁ > Mno, mg: In most cases of practical
importance this condition is rigorously satisfied. Thus,
in the dynamic model of vibronic states there exist
different effective-interaction mechanisms. The simp-
lest of them is connected with a decrease of the vibra-
tional frequency upon excitation of a molecule, and
corresponds to ‘““contact’’ attraction of the exciton and
phonon (the integral J . . .). The quantity A, plays the
role of the potential enex"gy, and this interaction is the
only local interaction that follows from o%il) in (21). The
remaining exciton-phonon interactions are essentially
nonlocal and are determined by the simultaneous dis-
placement of the exciton and phonon in the coincident
configuration (J ay(k))’ by interchange of positions of an
exciton and a phonon (KaB(k)), and by the decay and
coincidence of vibronic configurations (T, 5(k) and

T% (k). These nonlocal interactions are the conse-
quence of the shift of the equilibrium of the nuclear
configuration following electron excitation and therefore
play the principal role for f.s. vibrations. For n.s.
vibrations, to the contrary, the principal role is as-
sumed by the ‘‘contact’’ interaction term. In accordance
with the difference in the vibration symmetry, different
relations are realized between Jna, my’ Kna, mg’

Tha,mé: and Mpy mp. For f.s. vibrations
(26)

Jna, mpg = Klm, mp = — Tna, mp = Yszi&fﬂrzlae—vz
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(see expression (17)*); here y is the intramolecular
coupling constant, Mx:o(zm is the matrix element of the

b

total electronic resonant interaction, and the factor
exp(—y %) reflects renormalization, ‘‘dressing,” of the
electronic resonant integral, due to the interaction with
the virtual phonons. For n.s. vibrations we have in ac-
cord with (15)

| oo, 1112 470 (1)
{00, 0 M. m:

thz, mﬂ] > ‘ Tna,, mp |;
stands for the resonant interactions in

Jnoc, mB=Kna, mf =

(27)

here Mﬁ’&‘:m 8
the upper excited states and enters in (27) with a large
energy denominator.

The total dynamic Hamiltonian of a system in a
vibronic excited state is a sum of the operators ¢y (in
the form (19)), ., (in the form (20)), and#; 4 (in the
form (22)). Thus, the problem of vibronic interactions
in a system with an infinite number of particles has
been reduced to a problem of two stable quasiparticles
with definite effective interaction between them.

Such a problem is best investigated by quantum field
theory methods, introducing the Green’s function of the
system. Using the clear-cut physical meaning of the
Green’s function, Rashbal®®*®] succeeded in analyzing
the problem of exciton-phonon interactions in a crystal
in general form, and solved it rigorously in a number
of cases.

The Green’s function for a problem containing an ex-
citon interacting with a phonon is described by the usual
two-particle function

Fnlal, n202, 1303, Na0y (t - t’) = —1 <P(Pnl(!1 (t) Xngﬂ: (t) (P;-ada (tl) X:;‘[u (t,))

28)
and is the amplitude of the probability that if, at the in-

stant t, the molecule n,;0, was electronically excited in
the system and the molecule n:0, was in the vibrational
state, the state of the system at the instant t’ will coin-
cide with the state obtained for the same system by
shifting the electronic excitation to the molecule n;o;
and the vibrational excitation to nyo4. Thus, the function
F describes propagation of two excitations through the
crystal. The indices n; indicate the number of the cell,
and o; number the molecules in the cell.

The energy spectrum of the system described by the
function F contains, at any energy of interaction between
the exciton and the phonon, a region of the energies of
two-particle states constituting, neglecting small cor-
rections, the eigenvalues of the operator #oo +Hpeg in
expressions (19) and (20). The center of gravity of this
region corresponds to the sum of the electronic and
vibrational terms ef + 1° of the crystal, and its width is
determined by the sum of the widths of the exciton and
phonon bands 3£ and 7.

But the large set of functions F also includes func-
tions of the type

Fna, mB (t_ t,) = —1 <P(Pna(t) Xna (t) (P:-nﬁ (t,) X;rﬁ(t’»v (29)

which describe the propagation of the electron-vibra-
tional excitation as a unit through the crystal. Just like
the complete function F, such a function corresponds to

*The quantities J;,5 g and Ko ;g are equal to each other only if
the absorption and luminescence spectra have symmetry, which in the
general case may be violated [35-8%]. They can readily be calculated,
however, on the basis of the properties of molecular spectra.
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the region of two-particle states in the energy region
f +1°, and poles outside this spectrum, These poles
denote the presence in the system of interacting parti-
cles of a bound state corresponding to a new quasiparti-
cle—a vibron. The energy corresponding to the pole can
be interpreted as the vibron energy. The existence of a
pole depends critically on the energy of the exciton-
phonon interaction. The optical properties of the crystal
are described completely by the function F. This is
connected with the fact that in the Heitler- London ap-
proximation the optical properties of a crystal are de-
termined by the optical excitation of one molecule.
Consequently we shall henceforth refer, in the analysis
of the vibronic spectra, to the function Fna, ma*
Returning to the analysis of the dynamic Hamiltonian,
we note that even with the simplified excited- phonon
interaction operator in the form (22a) its investigation
in general form is still quite complicated. We shall
therefore use the dependence of the terms contained in
&int On the symmetrical properties of the phonons, and
consider vibronic states for the f.s. and n.s. phonons
separately.

4. Vibronic Spectra of a Crystal with Non-fully- symme-
trical Intramolecular Vibrations

The main simplifying assumption used in the analysis
of the vibronic spectrum with an n.s. phonon is that the
term Jpo, na = A, predominates in the operator of the
exciton-phonon interaction %, in the form (22a). All
the remaining terms do not exceed several cm™ owing
to relations (27), which follow from the intramolecular
Herzberg- Teller effectt™3, and can be omitted in com-
parison with A, which amounts to several times
ten cm™. Neglect of these terms means neglecting all
the effects connected with the displacement of the phonon
either alone or in conjunction with the exciton. Under
these conditions, the problem of vibronic states reduces
to a problem with a local potential. The vibrating
molecule is transformed into a ‘‘trap’’ for the exciton
with a potential-well depth A,. In most known examples,
A, <0, and therefore the coincidence of the exciton and
phonon on the same site is accompanied by a gain in the
potential energy. Qualitatively, this singularity of
vibronic states with n.s. vibration was pointed out by
Nieman and Robinsont®J on the basis of a study of the
electronic spectra of impurity systems. When reduced
to a problem with local interaction, the problem of the
vibronic spectrum of a crystal with n.s. vibration can
be solved exactly.

The retarded exciton-phonon Green’s function (its
Fourier transform) is described in this case by the re-
lation
G (v—v0)

FO= 30—’

(30)
here G(v — 1°) is the Green’s function of the unperturbed
exciton statel®®], In accordance with (30), the energy
spectrum of two-particle vibronic states is the exciton
band shifted in frequency by an amount equal to the
vibration frequency »° in the ground state. Outside this
band, under the condition

1—AG (v—v)=0 (31)

there can exist bands of single-particle states. It is
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FIG. 11. Green’s function
G(¥) calculated on the basis of
relation (30) using p(») as repre-
sented by the dashed curve.

G(vY)
Gmin ]

—_———— e —

well known from the theory of impurity electronic
statest® %] that in three-dimensional crystals Eq. (31)
does not have an isolated solution at all values of 4,,.
Figure 11 shows a typical form of the real part of the
function G(v) for a bell- shaped spectral distribution of
the density of states in the exciton spectrum p(v). The
maximum and minimum of the function G(v) correspond
to (Amax) ™ and (Apin)~', respectively. At 8, < Apay
or A, > Apin, Eq. (31) has no solution. The values of

G(vo) and G( 3% + 1°) determine Ay, and ALy, respec-
tively, which are limiting for the existence of 2 real
singie-particle state outside the interval (v°, .2 oy %.
When 8pax < Ay <Agp OF Apiy > 4, > ALy, One can
speak of the existence of virtual single-particle vibronic
states. Notice should be taken here of the patent inade-
quacy of the coinciding- configurations model, according
to which the bound vibronic state is assumed to exist at
all times.

The absorption spectrum of the crystal is determined
by the imaginary part of the function F(v). At A, < Agy
and A, > A, it consists of two parts. The first part
corresponds to a 6-like band of single-particle absorp-
tion and is described by the relation
r §(v—rg
AT v—vo]
where v, is the position of the single-particle band,;
here o(v) is the conductivity tensor of the crystal and r
is the oscillator strength of the intramolecular transi-
tion. The two-particle absorptmn band has a spectral
distribution in the region (1°, XU %) that is given by
the formula

(32)

o(v)=

o (v)
[1— &y Re G (VEF niAZ,p (v °

where 3l (33)

[t ~
Goy= § sy v, 6> 0%,
[

o(v)=

The reference point is the red boundary of the exciton
band, shifted by v°. The integral intensity of the single-
particle absorption, I,, is equal to

L=rlap=r[M% MJI;

v dv
here |a|® is the square of the modulus of the wave func-
tion of the exciton at the site at which the vibrating
molecule is located. The integral intensity I of the two-
particle absorption is equal to I» = r(1 — jal’). Thus, the
ratio of I and I» is

(39)

Iy _lef®

PR ErIE, (35)

At a fixed width of the exciton band and a fixed dis-
tribution of the density of states in the band, the value of
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jaf® depends strongly on 4, and changes from 1 to 0
with variation of this parameter.

Expressions (31) and (34) are perfectly analogous to
the expressions in the electronic theory of an impurity
crystal with isotopic impurity, if 4, is replaced by the
difference of the electronic terms of the impurity mole-
cules and of the host matter, and |a|® is taken to mean
the square of the amplitude of the wave function of the
exciton at the impurity sitel™?%%*J, Thus, the single-
particle band, as well as the impurity level, will be re-
pelled from the boundary of the spectrum of the two-
particle states at small values of |A,|, in accord with
(31). At the same time, it is possible to introduce for
single-particle vibronic states, in analogy with impurity
states, the concept of the radius of the states in accord-
ance with the quantity |al?. If |a|® = 1, then the electronic
excitation is on the vibrating (impurity) molecule and
the corresponding single-particle vibronic (1mpur1ty)
state is a small-radius state. The equahty ja® =1 is
satisfied when |4, > %o, when [a® <1, the electronic
excitation Spends some of the time on molecules that
are neighbors of the vibrating (impurity) molecule, and
the corresponding state is characterized by a large
radius. To satisfy this inequality it is necessary to have
ALl ~ [Bgrl- When &, < Agp and 8, > A, the
vibronic single- partlcle band (1mpur1ty level) is not
splitt off from the continuous spectrum. Let us examine
the general form of vibronic absorption spectra of a
molecular crystal with n.s. vibration in three cases,
which exhaust in practice all the possible situations in
crystal.

1. The energy spectrum of the crystal contains no
single-particle states. In this case there is observed
in the interval (°, 519 + 1°) a broad absorption band
satisfying the selection rule

(36)

The spectral distribution of the intensities in this band
obeys relation (33). The integral absorption intensity is
equal to the total oscillator strength of the intramole-
cular transition.

2. The energy spectrum of the crystal contains
single-particle states, but such that |aj®> < 1. The ab-
sorption spectrum of the crystal should reveal two ab-
sorption bands. The single-particle band is located in
the region v ~ 7, corresponding to a pole of the function
(27) at a given A,,. The optical transition causing this
band satisfies the selection rule

Kexc+ kphon = q phot -

(37)

The frequency v is shifted relative to v, to the extent
that the level with k = q is shifted in the single-particle
vibronic band relative to its center of gravity. The two-
particle absorption band is described by (33), and its
integrz:l intensity in oscillator-strength units is equal to
1- jal®.

3. |aj® ~ 1 for single-particle states. The vibronic
single-particle states are small-radius states. The ab-
sorption spectrum should contain only a single-particle
band. In this limiting case, the optical spectrum has the
properties that follow from the coinciding- configuration
model.

If the crystal contains several molecules per unit
cell, then the polarization properties of the spectrum

kyibr =q phot .
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FIG. 12. Absorption spectrum of monoclinic crystal with two mole-
cules per unit cell in the regions of pure electronic and vibronic transi-
tions with participation of n.s. vibration. vf—crystal vibration frequency

in the f-th excited state.
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become important. Let us consider the most widespread
case of a monoclinic crystal with two molecules per unit
cell. The optical spectrum of such a crystal is shown
schematically in Fig, 12. When constructing the optical
spectrum in the region of the vibronic transition, the
case of a single-particle state of large radius was selec-
ted.

The pure electronic transition is represented by two
sharply polarized bands A; and B, located in different
components of the spectrum with corresponding transi-
tions to the points k.. = Qphot of two exciton bands.
Both exciton bands are in contact in k- space at the boun-
dary of the Brillouin zone for all vectors k perpendicular
to the monoclinic axis b, which is a two-fold screw sym-
metry axis{®2. As a result, both bands are represented
in the figure by a continuous energy spectrum. The fre-
quency v, denotes the crystal electronic-excitation term
serving as the center of gravity of the exciton spectrum.

The shaded region in the vibronic region of the spec-
trum was obtained by shifting the exciton spectrum by
an amount equal to the vibration frequency in the ground
electronic state, »°, and represents the spectrum of the
two-particle states. If the condition al® < 1is chosen,
the single-particle state band exists and is located to
the left (4, < 0) of the two-particle spectrum. It is
shifted away from the position of the term of the coin-
ciding vibronic configuration v,, as shown by the wavy
arrow. In the case of crystal absorption, two absorption
bands appear in the two principal components of the
spectrum: the M band of the single-particle spectrum
and the D band of the two-particle spectrum. The polar-
ization properties of both bands are in accord with the
oriented-gas model. The squares of the amplitudes [a|®
are equal in both components of the spectrum, so that
the ratio of the total intensities of the M and D bands in
both components satisfies relation (35). The shapes of
the M and D bands are described by relations (32) and
(33).

In the limiting case of large |A,|, only the M band
remains in the absorption spectrum. On the other hand,
if |a,] < |Agy|, only the D band will be observed in the
absorption spectrum. Thus, the foregoing description
shows how closely interrelated are the characteristics
of the exciton and vibronic spectra in the case of n.s,
phonons. An important role is played in the analysis of
this connection, and also in the quantitative interpreta-
tion of the vibronic absorption spectra, by a number of
integral relations derived in the dynamic theory.
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1. The total intensity of absorption in the M and D
bands is equal to the total oscillator strength of the
vibronic absorption in the crystal. As a result we have,
in oscillator-strength units,

go(v)dv:-_-L

g

(38)

At the same time, the polarization ratios in the M and
D bands are determined by the oriented-gas model.
The center of gravity of the vibronic absorption

Vg =

Vo (v)dv'

(39)
(the 0 region of integration includes the M and D bands)
coincides with the term of the coinciding vibronic con-
figuration in the crystal, defined by

Vo =Yp -+ V0—|- Ava

(40)

where v, is the center of gravity of the density of states
of the exciton spectrum. Relation (38) is the conserva-
tion law for the zeroth moment of the absorption bands,
while relations (39) and (40) establish the connection be-
tween the first moments of the curves o(v) and p(v — »°).
Supplementing these conservation laws is also the
equality of the second moments of the curves o(y) and
p()™I:

5te

(o —voporyay = [ (v —vp@)av.

u

(41)

Relations (38)--(41) make it possible to indicate qualita-
tively the changes occurring in the shape of the D band
when A, varies and at a known value of v,. Besides ex-
pression (33), which connects the spectral distribution
in the two-particle absorption band with the distribution
of the density of states, it is possible to establish an
inverse relation with which to determine p,, from the
known o(v) dependencel™]. This is possible only for
n.s. phonons, since it is essentially connected with the
fact that, in accordance with (30), the functions F(v) and
G(v — 1) are defined perfectly symmetrically, apart
from the sign preceding A,. By virtue of this, we obtain
for p(v — +°) a formula analogous to (33)

~ 5 (v) .
PO =Y = T R FE T mav (F * (42)
here )
P [ 222, 0

o

The integration extends over the region of the M and D
bands.

Formula (42) thus makes it possible to reconstruct
the density of states in the exciton band from the spec-
tral distribution in the vibronic D band. This method of
determining p(v) has a fundamental advantage over other
existing methodst®], since it makes it possible to use
experimental data at arbitrarily low temperature, when
the band structure becomes most distinct.

The external intermolecular phonons were completely
excluded from the foregoing reasoning. Actually, how-
ever, the theoretically-predicted’®*] shape of the bands
of single- and two-particle absorption in real crystals
will be distorted. Acoustical phonons broaden the ab-
sorption bands (transforming, for example, 6-function
peaks of single-particle absorption into curves of the
Lorentz or Gauss type). Optical phonons, in conjunction
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with single-particle transitions, can yield an additional
structure of the spectrum in the high-energy region.
Consequently, phonon replicas of single-particle bands
can appear in the region of the two-particle energy spec-
trum in a real absorption spectrum. In addition, the
true structure of the two-particle absorption can also
be distorted by external phonons. Since it is impossible
at present to take the influence of the phonons into ac-
count theoretically, it is necessary in the analysis of
the real spectrum of a crystal to search for experimen-
tal ways of separating the exciton-phonon spectrum
from the spectrum of the two-particle states. This is a
complicated problem and must be solved individually
for each crystal.

Included among the problems with a contact interac-
tion potential of two quasiparticles are the already
mentioned problems concerning the vibrational-rota-
tional spectrum (the role of A, is played by the change
of the rotational frequency following vibrational excita-
tion of the molecule)-*’%*1 and problems concerning
two-quantum vibration spectra (the role of A, is played
by the change of the molecule vibration frequency fol-
lowing two-quantum excitation as a result of anharmoni-
city)t®"1, The results obtained for the energy spectra of
these systems, and the laws governing the distribution
of the total intensity in the optical spectra, are similar
in many respects to the results for vibronic states with
n.s. phonons.

5. Vibronic Spectra of a Crystal with Fully Symmetrical
Intramolecular Vibration

For fully symmetrical vibrations, the principal role
in the exciton-phonon interaction is played by the non-
local interaction described by the terms Jg,, (k), Ko B(k)
Ty 5(K) and Tga(k) in the Hamiltonian &, (22a)(%%%],
The role of these terms increases with increasing intra-
molecular electron-vibrational coupling constant v, i.e.,
with increasing ratio of the intensity of the vibronic
replica to the intensity of the purely electronic transi-
tion. This regularity reflects the value of the shift of the
equilibrium position of the nuclear configuration follow-
ing electronic excitation in electron-vibrational inter-
action, Although this mechanism of interaction with f.s.
vibrations is predominant for most vibrations, many
molecules have f.s. vibrations for which there is prac-
tically no shift of the equilibrium position of the nuclei
(for example, the 750 cm™ vibration in toluolt®3,

610 cm™ in phenanthrenel®®], etc.). Such vibrations are
as a rule genetically related to the n.s, vibrations in
more symmetrical molecules, with respect to which the
present molecules are derivatives (these molecules can
be regarded as derivatives of benzene and naphthalene).
Such f,v. vibrations in the vibronic spectrum of a crystal
should be regarded in the same manner as n.s. vibra-
tions, and all the deductions and laws of the preceding
section remain in force for them, We shall discuss be-
low those f.s. vibrations for which the shift of the equili-
brium position of the nuclear configuration is apprecia-
ble.

The energy spectrum of the system is determined
from the equation for the poles of the Green’s function
F, which has the following form for a crystal with one
molecule per unit celll®®]

E. F. SHEKA
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(43)

Here N is the number of crystal cells and Z(k, w) is the
complete irreducible self-energy part and represents a
sum made up of the guantities Jay(k), Kaﬁ(k)’ etc.
Unlike the case with n.s. phonon that was considered
above, in this case knowledge of the density of states in
the exciton band is no longer sufficient for the solution
of (43), and it is necessary to have information on the
dispersion laws for the excitons and phonons and on the
dispersion relations of the energy of the nonlocal exci-
ton-phonon interaction (J 4, (k), Ky 4(k), etc.). From the
point of view of theory, the most complicated is the
exchange-resonant interaction K, B(k)’ which does not
make it possible to obtain an explicit solution of the
problem in the general case. This solution can be ob-
tained only for some simple models, which will be dis-
cussed somewhat later.

In spite of the difficulty in obtaining a general solu-
tion, some properties of vibronic spectra with f.s.
phonons can be deduced also on the basis of Eq. (43).
At fixed k, the roots of (43) will occupy an energy inter-
val defined by the sum 3(k) + u(k — k;). In this part of
the spectrum, the exciton and phonon are not bound to
each other, and therefore it corresponds to the spec-
trum of two-particle states. The center of gravity of
this spectrum is determined, just as in the case with
n.s. phonons, by the sum of terms el +1°. On the other
hand, nothing can be said concerning the existence of
isolated roots outside the region of the two-particle
states without solving (43).

In a crystal with two molecules per cell, the function
F is transformed intol®¢]

F(0)= ; Fr(@)kki*,  A=1, 2 (44)
here k{ are the matrix elements of the quasimomentum
for the intramolecular vibronic transition. The vectors

f are oriented along the symmetry elements of the
crystal. Accordingly, a system of independent equa-
tions, in which all terms have the index A, is obtained
for the determination of the poles of the function f‘(w).
The general form of the equations is much more com-
plicated than (43). Each isolated root of this system
corresponds to a narrow absorption band (and, in the
energy spectrum, to a single-particle vibronic band)
with a polarization determined by the corresponding ki.
It should be noted that, inasmuch as the equations for
different values of A can differ greatly (as in the case
of probabilities for transferring vibrational excitations
comparable with the probability of transferring the elec-
tronic excitation), some of them may not have any iso-
lated roots at all. Therefore the electron-vibrational
multiplets can be incomplete, unlike the electronic
Davydov multiplet-*’*?®1 in which the number of bands is
determined exclusively by the number of molecules per
unit cell and by the selection rules. In this respect, the
results of the dynamic model differ significantly from
the coinciding configuration model, according to which
the multiplets of the vibronic transitions with f.s. vibra-
tions are completely analogous to the electronic multi-
plets, and differ from them only in the magnitude of the
Davydov splitting,
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FIG. 13. Scheme showing the absorption spectrum of a monoclinic

crystal with two molecules per unit cell in the region of purely elec-
tronic and vibronic transitions with participation of f.s. vibration.

The independence of the formation of the absorption
spectrum in the two components of the spectrum leads
to a strong difference between the spectra at different
polarizations of the light. This difference is manifest
in the fact that the number of single-particle bands, the
shape of the two-particle bands, the distribution of the
intensities among the single- and two-particle bands
(the values of |a|*) should all be different in the two
components of the spectrum.

As a result, the polarization relations of the separ-
ately-taken single-particle or two-particle bands will
not satisfy the oriented-gas model, in contrast to the
case with n.s. phonon. The oriented-gas model will be
satisfied only for the total absorption over the compon-
ents. The indicated properties of the vibronic spectrum
do not depend on the possibility of solving Eq. (43), and
are a reflection of only the general properties of these
equations. On the basis of the foregoing, the spectrum
of the vibronic absorption of the crystal with f.s. phonon
can be descrlbed by the scheme represented in Fig. 13.
The region (0, 0 °) corresponds to two contiguous exci-
ton bands, optical transitions to which are allowed at
the point Koy = kphot and are represented by the bands
Al and B,. In the vibronic region, the interval
w°, 2 ERCIY ) corresponds to a two-particle spectrum.
The Dp and Dp bands correspond to two-particle bands
in two components of the spectrum. The A; and B: bands
are sharply polarized bands of single-particle absorp-
tion. Owing to the non-equivalence under the conditions
of splitting of two single-particle bands, the produced
summary spectrum of the single-particle states is nar-
rower than the spectrum predicted in the model of coin-
ciding configurations.

Among the common properties of the vibronic spec-
trum is also the definition of the center of gravity of the
summary vibronic absorption. According tol®*], the
center of gravity of vibronic absorption with f.s. phonon
is defined by

Vo=V + V' Ay + Jap (q). (45)
For crystals with two molecules per unit cell we have
J as(q) =2 () = L1 (a),

where 4: (q) and z (q) have the meaning of the resonant
sums in the model of coinciding configurations (see
(12a)). Thus, the centers of gravity vy differ in the two

*A similar statement was made by Merrifield with respect to the
total vibronic spectrum, without the condition for the conservation of
the number of phonons. [%¢]
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components of the s;%ectrum and the difference between
them is equal to 2|713(q)|,* i.e., it coincides with the
Davydov splitting of the vibronic transition in the coin-
ciding- configuration model. This circumstance leaves
a unique imprint on the form of the absorption spectrum
of the crystal. On the basis of Fig. 13 we can visualize
the absorption spectrum in limiting cases. If [af®*~ 0 in
both components, the absorption spectrum consists of
two-particle absorption bands Da and DR, whose centers
of gravity are separated by a distance equal to the
Davydov splitting. If |a® ~ 1 in both components the
main absorption intensity is concentrated in the A; and
B: bands of the single-particle absorption, the distance
between which coincides with the Davydov splitting. In
both cases this quantity is equal to y*(vpg, — ¥4 ). The
different cases will be illustrated below in the analysis
of the experimental spectra of a number of crystals.

Rashba succeeded in obtaining an exact solution of
the problem only for some simple models. Worthy of
special attention is the particular case ¥* = 1. In this
case the absorption spectrum consists of several
6-function bands with frequencies ¢ + v° + Jy. This
result is valid both when the absorption bands are out-
side the region of the two-particle states and in the
cases when they fall within this region. The physical
reason for this is that when 3* = 1 the matrix element
of the decay of the coinciding configuration is equal to
zero. Therefore the coinciding configuration produced
following the optical transition does not decay into an
exciton and a phonon even when this decay is energywise
possible, and forms a metastable (‘‘quasi- single-parti-
cle’’) state. A deviation from »? = 1 leads to a rapid
broadening of such bands.

For a linear chain in the nearest-neighbor-interac-
tion model it is possible to obtain an exact solution of
the problem in a large range of variation of the param-
eterst®], It is shown at the same time that, depending
on their values, the shape and width of the two-particle
band are radically altered and under certain conditions
it can have several maxima. In turn, the picture of the
single-particle states is also more complicated. In
many cases they correspond to several branches. It
must be assumed that, without doubt, some of these
singularities remain also in a three-dimensional crys-
tal. We note in conclusion that unlike the case with n.s.
phonon, the problem of occurrence of an exciton with
f.s. phonon is much more difficult to investigate, but
physically the picture is much more interesting and
richer.

The presence of the criterion 7 ° < 1° limits the
apphcablhty of the dynamic model to cases of weak
(3t < A, < 1°) and intermediate (&, < RO
resonant couphngs For this interval of values of 0f°
the conclusions drawn above concerning the general
character of the energy spectrum are rigorously cor-
rect. If the inequality 2 fo 10 is violated, then the ma-
trix U loses the structure determined by (22a), and be-
comes a general-type function of k, and k.. To deter-
mine its explicit form it is necessary to sum a pertur-
bation-theory series. If the series converges, the prob-
lem retains a dynamic character, and all the conclusions
given above are applicable to it. The series remains
convergent so long as the exciton remains a stable par-
ticle and cannot decay into an exciton-phonon pair. This
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Table VII. Main configurations of vibronic states of a crystal

Vibrational Type of Co ding exci
uantum Wave functions* : . . AE %+ TIeSpon exciton
C}" mbor 'ave functions' configuration Composition of configuration ) states of crystal
N s N o
p=0 ¢ I /1 X H: W‘t’ uo Coinciding Purely electronic excitation of Single-particle (electronic
1 1y i molecule I exciton)
p=1 tp{q\g X ( X’lU g Coinciding Vibronic single-quantum excitation of A, Single-particle (vibronic
" Oy { ol molecule I exciton)
x H‘ 2(“ i L UiXy *+**) Separated Purely electronic excitation of Two-particle (electronic and
i1, molecule 1 and vibrational excitation vibrational excitons)
of molecule IT**#*
p == 2 #EEE) .?L'fiU gU g Coinciding Vibronic two-quantum excitation of Single-particle vibronic
0y 0 molecule I exciton state
XiX,U, Separated Vibronic single-quantum excitation of | A, *****) | Two-particle (vibronic and
molecule I and vibrational excitation or vibrational excitons)
of molecule IT Ay,
<r{¢2¢(3' X X’;U g’(‘; » The same, but with participation of by, or ditto
w00 . motecule Il va
X “ o, U; U{Ulz’ "K'g » Purely electronic excitation of 2A, or Two-particle (electronic and
i%x1,2,3 n}olecple 1 and.two-quantum Avl+sz vibrational excitons)
vibrational excitation of
£ anlri0 molecule IIT
UiT,U, » The same, but with participation 2Ay or ditto
of molecule II A, +4,,
U {x‘._le; » Purely electronic excitation of 2A, or | Three-particle (pure electronic
molecule I and vibrational single- Av L -+ sz and two vibrational excitons)
quantum excitations of molecules I
and I
*The notation is the same as in Table IV.
**AE is the difference between the energies of the separated and coinciding configurations of the corresponding molecular states.
**¥The number of configurations of this type at a fixed position of the pure electronic excitation is N—1, where N is the number of mole-
cules in the crystal.
****+m = 2 represents arbitrarily two types of vibronic states: with participation of two quanta of the same vibration, as well as a sum of two
different quanta.
*kkxrA  and Ay, pertain to different vibrations, and in this case the described configuration characterizes two different vibronic excitations.

condition is also satisfied for the less rigorous relation
»° > D1e—7? where the factor exp(~y?) takes into ac-
count the polarizing action of the phonons. When

V< Hlog—y? , the exciton and phonon cease to be stable
quasiparticles. The foregoing description of the spec-
trum does not apply to this case of extremely strong
resonant coupling.

The complex and rich structure of the vibronic spec-
trum, which follows from the dynamic model, is ob-
served experimentally in spectra of molecular crystals.
An analysis of the spectra of three typical crystals that
differ in the magnitudes of their resonant interactions
will be given in the next section.

In concluding the review of the theory of vibronic
states, let us stop to discuss the problem of complica-
ted vibronic excitations with a large number of phonons.
It is easy to conclude that in this case the picture will
be extremely complicated. This can be seen already
from the extent to which the set of different vibronic
configurations increases and becomes more complicated
with increasing number of different placements of the
electronic and vibrational excitations on the crystal
molecules. Table VII lists by way of an example the
vibronic configurations corresponding to the quantum
numbers p = 0, 1, and 2. The last column of the table
indicates the possible exciton states of the crystal. The
total number of configurations is equal to 2(p + 1), and
only one of them is coinciding and responsible for opti-
cal absorption in the corresponding transition.

The first attempt to construct a theory of multiphonon
vibronic states is due to McRayt**], His theory, how-
ever, contained two serious limitations. First, it was
based on perturbation theory and therefore could not be
correctly applied to vibronic states. Second, out of the
large set (2p + 1) of separated configurations, only one

was taken into account, described by vibronic excitation
with m phonons of one molecule and n-phonon excitation
of the other (n + m = p). Philpott has recently attempted
to solve this probleml™], However, while overcoming
the first difficulty in McRay’s theory with the aid of the
variational and field methods, he retained completely its
representations concerning the construction of separated
configurations. There is still no theory of vibronic states
in which account is taken of the entire variety of the
vibronic configurations for the multiphonon vibronic
state.

1V. VIBRONIC ABSORPTION SPECTRA OF AROMATIC
CRYSTALS

1. Introduction

The picture of the absorption spectrum of a crystal
in the case when the energies of the intramolecular and
resonant interactions are comparable is very complica-
ted and shows little similarity to the spectrum of the
free molecule. The ‘““molecularity’’ of the spectrum,
which was frequently mentioned earlier, consists only
in a very general correspondence of the individual tran-
sitions in the spectra of the crystal and of the free mole-
cule. In light of the foregoing notions concerning bound
and dissociated vibronic excitations, the difference be-
tween the spectrum of the crystal and the spectrum of
the free molecule finds an explanation. The change of
the structure (nature) of the spectrum changes also our
approach to its analysis. Whereas in the analysis of the
molecular spectrum the main problem was to establish
the type of vibration participating in the vibronic transi-
tion, and to determine its frequency in the excited state
as the difference between the frequencies of the pure
electronic and vibronic transitions, in the analysis of the
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FIG. 14. Diagram of energy spectrum (a) and absorption spectrum
(b) of benzene crystal for light normally incident on the ac plane of the
crystal ['°!] (T = 20°K).

spectrum of a crystal the problems become much more
complicated. The question of the classification of the
vibronic bands, i.e., their separation into single- and
two-particle bands, becomes predominant. On the other
hand, to determine the characteristic energy parameters,
for example, the vibration frequency, it is now neces-
sary to carry out quantitative measurements of the ab-
sorption spectra and to determine their centers of grav-
ity in the set of bands pertaining to the given vibronic
transition.

The identification of concrete bands of the absorption
spectrum of a crystal with a given vibronic excitation
can be carried out by comparing its energy and optical
spectra. For reasons given at the end of the preceding
chapter, we confine ourselves for the time being, in the
analysis of the experimental spectra, to vibronic states
with one phonon. If the positions and dimensions of the
electronic and vibrational exciton bands and the values
of the vibration frequencies in the ground state are
known, one can construct the energy spectrum of the
two-particle excitations. By comparing this spectrum
with the optical-absorption spectrum and bearing in
mind that single-particle states can exist only outside
the region of the two-particle excitation spectrumt®® %1,
we can separate the observed single-particle absorption
from the two-particle one,

2. Benzene

The exciton spectrum of the energies of the benzene
crystal in the electronic state is represented by a con-
tinuous energy interval ~ 60 cm™ widel®®'®]. The red
boundary of the crystal corresponds to the position of
the maximum of the a-band of the exciton doublet of the
purely electronic transitionl'®], For f.s. and n.s. g-type
crystal vibrations, the widths of the exciton bands
amount to 1 cm™ for the A , vibrationl**?} and approxi-
mately 10 cm™ for the E,g Vibrationl ®J,

The energy spectrum of the two-particle excitations
in the region of the first vibronic transition of the ben-
zene crystal (Fig. 14a) is represented by the continuous
spectrum D,. Its width is equal to the sum of the widths
of the vibrational and electronic exciton bands, and the
red boundary is separated from the red boundary of the
pure exciton band by an amount equal to the E, vibra-
tion in the ground state (606 cm Y)*, In the region of the

*Such a treatment of the vibronic state does not take into account

the splitting of the molecular doubly-degenerate vibronic state E,q in
the crystal field; the maximum of this splitting is estimated at 9 cm™.
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v, cm™

2 7 )
FIG. 15. Bands of two-particle absorption of benzene crystal in the

region of the transitions 'A, g > *B,yEag {7*]. D—experimental band.
The vertical bars represent experimental errors. o(v)—calculated band.

second vibronic state, the spectrum of the two-particle
excitations D is located 900 cm™ away from the pure
electronic exciton spectrum.

A comparison of the energy spectra and the optical
absorption (Fig. 14b) in the region of these transitions
shows that the main absorption, which consists of the
M, az, and c; bands, lies outside the region of the en-
ergy spectrum of the dissociated states, and therefore
corresponds to excitation of single-particle states. The
corresponding exciton bands are shown in Fig. 14a on
the left side of the spectra of the two-particle states.
Only in a relatively small part of the spectrum, marked
by the vertical arrows in the figure, can one seek two-
particle absorption. It must be borne in mind here,
however, that a large fraction of the considered edge
absorption is apparently made up of satellites of the
corresponding single-particle bands, due to the partici-
pation of intermolecular phonons. This follows from the
activity of such phonons in the region of the pure elec-
tronic transition and from the similarity of the picture
of the spectrum in the region of the pure electronic
transition and in the region of the vibronic transitions.
To establish the magnitude and form of the two-particle
absorption it is therefore necessary first to determine
the form of the exciton-phonon spectrum. This could be
done so far only for the first vibronic transition with
n.s. vibrationl™], Use was made of the fact that the
properties of the single-particle vibronic absorption
are identical with the properties of the local vibronic
absorption of an isotopic impurity center, in connection
with which the exciton and impurity absorptions differ
only in intensity. Consequently, the exciton-phonon
structure of the spectrum was determined from the
phonon spectrum of the vibronic absorption in the same
transition of an admixture of benzene-dgs molecules in a
benzene-d, crystal. After subtracting the impurity
spectrum from the spectrum of the benzene-d, crystal
and suitably recalculating the concentrations, the result
was the spectrum of the two-particle absorption of the
benzene-d, crystal shown in Fig. 15. Its summary in-
tensity is 59 of the M,-band intensity, corresponding to
|]aj® = 0.95. Within the framework of the Rashba
theoryt®®J, a quantitative comparison was made of the
theory with experiment on the basis of relations (33),
using the density of states curve obtained for the benzene
crystal by Colson et al.l®]. The value obtained for the
position of the M; band was 7, = 38 356 cm™ (Vexp. av

=38 355 cm™); the calculated value of {a|® is 0.98.
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FIG. 16. Energy spectrum (a) and absorptibn spectrum of naphtha-
lene crystal in polarized light with the light incident normal to the ab
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These quantities agree well with the experimental data.
The situation is worse with the form of the D band.
Figure 15 shows the theoretical curve calculated in ac-
cordance with (33) for A, =86 cm ™1, Iis area dif-
fers by a factor of 2 from that of the experimental
curve, and the two have different shapes. This differ-
ence may be due to a large number of factors, which
are discussed in detail inl™], No such analysis has
been carried out so far in the region of the f.s. vibra-
tion.

It is seen from the foregoing analysis that in both
vibronic transitions the two-particle absorption consti-
tutes a small fraction of the intensity of the single-par-
ticle absorption. Consequently, both vibronic states of
the benzene crystal are ‘‘small-radius’’ states and per-
tain to the case of weak resonant coupling. These re-
sults agree with the fact that in both cases the vibration
frequency defects (—86 and —70 cm™, respectively) ex-
ceed the summary width of the two-particle spectrum.

3. Naphthalene

The electronic exciton energy spectrum of the naphth-
alene crystal is continuous in an interval of width
180—200 ¢cm™L*®™], Its red boundary coincides with the
position of the maximum of the A, band of the pure elec-
tronic transition.l'®] The widths of the vibrational ex-
citon bands do not exceed several cm™['®1,

In Fig. 16a, D, and D, denote the continuous spectra
of two-particle excitations of the first and second
vibronic states. The distances between the red boun-
daries of these spectra and the pure electronic spec-
trum are equal to the frequencies of the B, and A1
vibrations in the ground state (509 and 760 cm™, respec-
tively). The lengths of both spectra are determined with
high accuracy only by the width of the pure electronic
spectrum,

a) The state 00 + B,g. The interaction between the
electronic and vibrational motions in this vibronic state
is characterized by a vibration-frequency defect amount-
ing to A, =—86 cm™('®], There is no shift of the equili-
brium position of the nuclear configuration. The vibronic
absorption in this region is represented by two bands
(M, and D,{*®J), The first lies on the long-wave side of
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FIG. 17. Absorption band D, of
naphthalene crystal in the region of
two-particle states of the vibronic
transition 'A;; = 'ByyByg, and the
calculated o(¥) curve of two-particle
absorption. The Ao curve represents
the difference between the curves of
D, and o(») ["¢].
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the energy region of the two-particle excitations and
corresponds therefore to transitions to the single-parti-
cle vibronic-state band. The position of its maximum
determines the position of the M, band of the single-
particle excitations in the energy spectrum. The D,
band coincides in position and length with the region of
the spectrum of the two-particle excitations. The M,
and D; bands are weakly polarized, and the polarization
ratios of the intensities in both components of the spec-
trum are the same for them, while the summary intensi-
ties of these bands are practically equal. On the basis
of these properties, the D, band was interpretedl™> ™

as a two-particle absorption band. Recently, however,
it was possible to determine the density of states in the
exciton band of the naphthalene crystal, making it possi-
ble to interpret quantitatively, with best agreement, a
large number of various experimental results™], On
the basis of this function, using relations (33) of the pre-
ceding section, a quantitative interpretation was ob-
tained for the vibronic absorption of the naphthalene
crystal in the region of the M, and D, bandst™], It was
established that the calculated value of the center of
gravity of the M; band coincides exactly with the experi-
mental one, but the shape of the two-particle absorption
does not coincide with the D, band and has the form
shown in Fig. 17. Its intensity is only 60% of the ab-
sorption in the D; band (|a|® = 0.75). It was concluded
that the presence of excess absorption in the D; band,
shown by the dashed curve in Fig. 17, is connected with
other absorption mechanisms, chief among which is ap-
parently one due to the interaction with the external
phonons. No independent determination of the exciton-
phonon spectrum of the naphthalene crystal, similar to
that for benzene, has as yet been made.

b) The state 00 + A,g. According to the picture of the
molecular spectrum (see Fig. 2b and Table I), the intra-
molecular interaction between the electronic and vibra-
tional motions in this state is characterized by a vibra-
tion-frequency defect A, = —58 cm™ and by a noticeable
shift of the equilibrium position. In the energy spec-
trum of the crystal, the vibronic state is represented
primarily by the interval D; of two-particle excitations.
In the optical spectrum of the crystal there are observed
two sharply polarized absorption regions with complex
structure. A comparison of the absorption region with
the region of the energy spectrum shows that the princi-
pal part of the absorption, which includes the entire
spectrum in the b- component and a broad band in the
a- component, lies in the frequency region corresponding
to excitation of two-particle states. Thus, in spite of
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the fact that the structure of the crystal absorption in
the region of K, transition is similar to the absorption
structure in the region of the pure electronic K; transi-
tion, the bands A, and B: differ in nature. Out of the
entire vibronic spectrum in this region, only the A
band corresponds to excitation of single-particle states.
The sharp absorption polarization is a consequence of
the fact that the Davydov splitting is sufficiently large
in this transition. At the present time it is difficult to
indicate its exact value, since the lack of quantitative
measurements of the absorption in the entire region of
the spectrum in the b- component does not make it possi-
ble to determine its center of gravity. The distance

30 cm™ between the bands A; and Be, which has been
heretofore regarded as the Davydov splitting, is cer-
tainly too low.

The absorption spectrum in the region under consid-
eration is incomplete compared with the scheme shown
in Fig. 13. The spectrum does not contain the b com-
ponent of the single-particle states. It must apparently
be assumed that, owing to the proximity of the second
band of the single-particle states to the boundary of the
continuous spectrum, the split-off condition is not satis-
fied for it, and consequently this state is fully dissocia-
ted.

c) Naphthalene crystal subjected to tension. An ultra-
thin naphthalene crystal (d < 0.1 p) placed in optical
contact with a quartz plate and cooled to 20°K isin a
state of elastic tension, as a result of which the inter-
molecular distances increase. Naturally, this decreases
the integrals of the resonant interaction, leading to a
narrowing of the exciton band of the pure electronic
statel!®], As shown by a number of experiments, the
intramolecular characteristics of the naphthalene re-
main unchanged in this casel'®%°], Figure 17a shows
the continuous exciton energy spectrum of the pure
electronic state under the following assumptions: 1) the
width of the spectrum of the deformed crystal is smaller
than that of the free sample in the same ratio as the
values of the Davydov splittings of the bands of the pure
electronic transitions of both crystals; 2) the A; band of
the pure electronic transition corresponds as before to

Pure electronic
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FIG. 18. Energy spectrum (a) and absorption spectrum (b) of a de-
formed naphthalene crystal with the polarization of the incident light
directed along the b axis of the crystal ['°7] (T = 20°K, d = 0.1u). The
dashed lines in Fig. b indicate the positions of the bands A; and A, of
the spectrum in the a component.
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FIG. 19. Spectra of exciton luminescence, excited-state energy (a)
and absorption (b) of an anthracene crystal with light incident normal
to the ab plane of the crystal [''7] (T = 20°K, d = 0.075u).

the bottom of the lowest exciton band. A decrease of the
width of the exciton spectrum, and accordingly of the
energy spectrum of the two-particle excitations, by

80 cm™, decreases the radius of the single-particle
vibronic states, This enhances the single-particle ab-
sorption in the vibronic transitions. Figure 18b shows
the absorption curve of a deformed naphthalene crystal
in the b-component of the spectruml’®™J, An analysis of
the optical spectrum shows that the bulk of the absorp-
tion is concentrated in both vibronic states outside the
energy region of the dissociated states. The fraction of
the two-particle absorption in the region of the M; tran-
sition is decreased thereby to 8¢, and its properties
become analogous to the vibronic transitions of the
benzene crystal. In the region of the second transition,
the B: band as well as the A; band are now located out-
side the region of the D; spectrum, and correspond to
transitions to single-particle- state bands. Attention is
called to the strong narrowing of the absorption spec-
trum in the b component, owing to the change in the
nature of the B; band and to the decrease of the intensity
of the short-wave two-particle absorption.

4. Anthracene

The absorption spectrum of the crystal (Fig. 19b)
begins with two strongly polarized B and A bands, which
correspond to transitions into two electronic exciton
bands formed in the crystal from the nondegenerate

~ molecular level 'By;. The vibronic spectrum, like the

spectrum of the molecule, is constructed only with par-
ticipation of f.s. vibrations, thus explaining the similar-
ity of the absorption structures in all the transitions.
Attention is called to the large bandwidth and the rela-
tive simplicity of the absorption spectrum. For com-
parison, the upper part of Fig. 19 shows the exciton-
luminescence spectrum of the crystal at 4°KL*°1, Out of
the ten vibrations that appear in the luminescence spec-
trum in a region extending over 1600 cm™, only the most
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intense vibronic transitions, with participations of the
vibrations vy = 400 cm™ and v, = 1400 cm™, appear in
the absorption spectrum in the form of individual bands.
In comparing the two different spectra, it is necessary
to explain the following principal differences: 1) why
are the bands of the pure electronic transitions so
broad, and 2) why are the bands of the vibronic transi-
tions broad, while the vibronic absorption spectrum
itself is structurally poorer than the luminescence spec-
trum. Since the bands of the exciton-luminescence spec-
trum are narrow, the interaction of the excitons with the
acoustic phonons and the widths of the bands of the latter
are not the main cause of the broadening of the bands and
of the absorption spectrum. A second general cause of
the broadening of the absorption spectrum bands might
be the temperature stretching of the ultrathin crystal
placed in contact with the quartz platel*®J, Owing to the
exceedingly strong absorption of the anthracene crystal,
its absorption is investigated in very thin crystals

(d < 0.1 ), at which the tension effect might be sub-
stantial, However, investigations of the reflection of
thick anthracene crystalst*!*J have confirmed that un-
stressed samples also have absorption bands of large
width. Under these conditions, it is natural to attribute
the observed widths to broad exciton bands of the pure
electronic state.

Davydov and Myasnikovl**¥*™*%] calculated theoretic-
ally the dispersion and shape of the absorption bands in
pure electronic transitions for molecular crystals with
a broad exciton band in weak exciton-phonon interaction.
The model of the exciton-band structure was taken to be
the exciton spectrum calculated for an infinite anthra-
cene crystalt*él, The calculations have shown that
broadening of the absorption bands as a result of acous-
tic phonons is quite likely. On the basis of careful
measurements of the dispersion and reflection curves
in the region of the pure electronic transitiont**"J, good
qualitative agreement was obtained between the experi-
mental and the theoretical results. It was established
that the widths of the B and A bands are due to the open-
ing up of the exciton bands as a result of interaction
with acoustic phonons. Optical phonons, as shown by
measurements of the reflection spectra, are less pro-
nounced and play a smaller role.

Experimental investigations have made it possible to
limit the dimensions of the pure electronic exciton
bands only on the low-energy side. The red boundary
of the spectrum is determined by the frontal band of the
excited-luminescence spectrum at 4°K and corresponds
to a frequency w = 25 100 cm™[**%], Just as for the
naphthalene crystal, the two exciton bands of the crystal
come in contact on the boundary of the Brillouin zonel®],
as a result of which both bands form a continuous spec-
trum. The short-wave boundary of this spectrum is un-
known. However, the value of the Davydov splitting
(215 ¢cm™) under these conditions gives the minimum
dimension of the width of the total spectrum. At the
same time, there are grounds for assuming that actually
the total width of the exciton spectrum exceeds this
value, since according to theoretical calculationst**®l
the value of the Davydov splitting is smaller than the
total width of the bands. No great error will apparently
be incurred if a value 500 cm™ is assumed for this quan-
tity, as was done inf''"1,
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The vibrational exciton bands of f.s. vibrations v;
and v, in the anthracene crystal are narrow, and their
widths do not exceed 3—5 ¢m™, as can be determined
from the absence of Davydov splitting of these states in
the low-temperature spectra of Raman scattering of the
crystaltio®3, .

The two-particle spectra of vibronic states with par-
ticipation of the vibrations v; and v, (see Fig. 19a) were
obtained by shifting the pure electronic spectrum by an
amount equal to the vibration frequencies in the ground
state. Like the spectrum of the pure electronic state,
they are bounded only on the long-wave side. A com-
parison of the energy and optical spectra in the region
of the vibronic transitions shows that the observed
vibronic absorption in both transitions lies inside the
energy interval of the two-particle excitations. Thus,
we encounter in the anthracene crystal a situation
wherein the optical spectrum of the crystal does not
have single-particle vibronic absorption bands, meaning
the absence of corresponding states in the energy spec-
trum. The absorption structure agrees well with the
picture of the vibronic absorption with participation of
f.s. vibrations that was predicted for this limiting
casel®®], The absorption spectrum is represented by
the broad Dg and Dp bands of two-particle absorption,
and the distance between their centers of gravity agrees
well quantitatively with the value of the Davydov splitting
as estimated from the splitting of the pure electronic
transition, with correction for the ratio of the intensi-
ties of these transitions. The anthracene crystal is very
interesting in connection with this circumstance since
its spectrum demonstrates how difficult it is to estab-
lish the characteristics of the spectrum from its ex-
ternal form. Thus the Dy, and Dy, bands of the second
vibronic transitions form a doublet of strongly polarized
bands outwardly similar to the doublet of bands of the
pure electronic transition, so that their interpretation
as bands of single-particle absorption was previously
subject to no doubt., The vibronic states of the anthra-
cene molecules in the first electronic excited state are
characterized by the absence of a change in the vibra-
tion frequency (within 3—5 cm™)[*#~'%°] Their appear-
ance in the spectrum is due only to the shifts of the
equilibrium positions of the nuclear configuration fol-
lowing electronic excitation. Under these conditions, the
vibrational and electronic excitons can be connected
only because of the energy of the nonlocal interaction,
different terms of which depend on y2 For all the f.s.
vibrations of anthracene, with the exception of v;, we
have % < 1, and consequently the binding energy should
be small. As a result, the single-particle vibronic
states turn out to be fully dissociated. Only for the
vibronic transition with the vibration v, do we have
y% = 0.9L'#11, Under these conditions there can exist
metastable quasi- single-particle states within the en-
ergy spectrum of the two-particle statest®®2. One must
therefore assume that the relative simplicity of the ab-
sorption spectrum of the crystal, compared with the
luminescence spectrum, is due precisely to these cir-
cumstances. The absorption of the anthracene crystal,
even in the minima between the main bands, is exceed-
ingly strong. Apparently, it is due to broad-band absorp-
tion caused by excitation of two-particle states of the
vibrations of 627, 784, 1006, 1164, 1262 cm™, etc.
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Owing to the close values of the vibration frequencies
and the large width of the energy spectrum, broad bands
of individual transitions overlap, forming a continuous
absorption background. The only vibronic transitions
that stand out against this background are those whose
intensity is comparable with the intensity of the bands
of the electronic-transition frequencies.

Now that it has been demonstrated that the vibronic
bands differ in their character from the bands of the
pure electronic transition, the question is why they are
so similar. The half- widths of the most intense B-Dp,
bands differ only by a factor 1.5, although it might seem
that this difference could be larger, since the energy
spectrum of the two-particle excitations is broad and
the width of the Dpg, band is due to its opening up as a
result of the interaction with the vibrational exciton. It
is possible that the similarity of the bands in these
transitions is due to the fact that under conditions when
y? is close to unity the decay of the coinciding config-
uration produced upon absorption of the photon becomes
difficultt®J. Under these circumstances, the vibronic
state belongs to the two-particle spectrum, but the opti-
cal properties of the absorption are quasi- single-parti-
cle. In the general case the absorption band should in
this case become much narrower. The reason for its
broadening, just as for bands of the pure electronic
transition, may be the interaction with external phonons.
The observed shapes of the Dp, and Dy, bands are more

" readily connected with the simultaneous action of two
factors: 1) the influence of the exciton-phonon interac-
tion on the quasi- single-particle absorption, and 2) the
fact that the decay of the coinciding configuration is not
completely forbidden, unlike the case when %= 1, and
with participation of the vibrational exciton in the open-
ing up of the exciton spectrum. The final answer to this
question calls for additional experimental and theoreti-
cal research.

V. CONCLUSION

The absorption spectra described and analyzed above
for the three crystals are a splendid illustration of the
dependence of the form of the vibronic spectrum of a
crystal on the type of the resonant coupling. In the first
transitions considered, the benzene crystal is an exam-
ple of weak coupling, the naphthalene crystal an example
of intermediate coupling close to weak, and the anthra-
cene crystal an example of intermediate coupling close
to strong. It is important that outwardly, the simplest
picture is that of the vibronic spectra of benzene and
anthracene crystals, although in the former case the
absorption corresponds almost entirely to excitation of
only single-particle states, and in the latter to excita-
tion of only two-particle states. The picture of the
vibronic spectrum of the naphthalene crystal is more
complicated and reveals mixed absorption.

The dependence on the type of resonant coupling is
characteristic not only of pure crystals, but also takes
place in impurity vibronic spectra. The role of the
resonant energy is played in this case by the energy of
the electronic interaction of the impurity molecule with
the solvent molecules. The physical basis for the depen-
dence is the fact that the vibronic states of the impurity
system in the region of the impurity spectrum are also

represented by a set of bound and dissociated
statest®:"?1, The optical spectrum is determined by the
energy ratio of the inter- and intramolecular interac-
tions and, for a wide variation of this parameter, ranges
from the usual local absorption to the fully dissociated
one, in analogy with the situation illustrated in the spec-
tra of the three pure crystals. The closest to pure crys-
tals is the picture of vibronic absorption in isotopic-
impurity crystals. A strong change of the impurity
spectrum with changing type of resonant coupling was
accordingly observed in the spectra of deuteroben-
zenest™J and deuteronaphthalenesl™,

It should be noted in conclusion that the approach to
the analysis of the vibronic spectrum of the crystal
from the point of view of bound and dissociated states
yields extensive new information on the exciton proper-
ties of these systems, but the realization of this possi-
bility makes many demands on the experimentor. The
first is the need for obtaining a detailed quantitative
description of the experimental absorption spectrum.
The second pertains to independent investigations of the
exciton-phonon interactions. The question of separating
the effects due to interaction with external phonons has
possibly never been as acute in the entire history of the
interpretation of molecular-crystal spectra. When these
two conditions are met, the interpretation of vibronic
spectra with n.s. vibrations can be carried through to
conclusion, and this may yield new data on the pure
exciton spectrum. As to a quantitative interpretation of
vibronic states with f.s, vibrations, there is added to it
a third requirement, namely the determination of the
dispersion relations of the resonant interactions. It
can be assumed that this way offers promise of compar-
ing theory with experiment to find ¢‘fitting’’ parameters
with aid of which it will be possible, one hopes, to deter-
mine successfully the dispersion laws of exciton states.

Note added in proof (see page 503). Vibronic states with f.s. vibra-
tions for a one-dimensional crystal were recently investigated in detail
also by Davydov and Serikov ['??]. They calculated numerically the
form of the absorption spectrum of such a crystal for a large set of
values of the parameters y and A,,. Particular attention was paid to
quasi-single-particle vibronic states at ¥ = 1. The structure of the two-
particle absorption spectrum at y2 < 1 and A, ~ O is attributed to the
existence of unstable, metastable single-particle vibronic states.
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