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1. INTRODUCTION

FOR a long time, study of atomic collisions has been
restricted to elucidating the fundamental features and
mechanisms of elastic and inelastic processes, such as
transport phenomena, charge transfer, excitation, and
ionization. The task of the theory has consisted mainly
in calculating the total cross-section from known (or
assumed) potentials, and in calculating the kinetic
coefficients of processes of physical and chemical
kinetics. Attempts to interpret the macroscopic guan-
tities in terms of molecular constants have always en-
countered the difficulty that many details of the inter-
action were obliterated in the averaging process. Thus
it has proved practically impossible, and often even
unnecessary, to give a microscopic description of the
collision process.

As the technique of physical experimentation has
developed, the necessity arose of describing the
processes more exactly: of fixing the initial and final
states of the colliding particles. New experimental
methods (kinetic spectroscopy, crossed and overtaking
molecular beams, analysis and separation of colliding
particles with respect to their states in strong electric
and magnetic fields, and selective excitation of states
with a laser beam) have stimulated development of the
theory of collisions in the low-energy range, from
fractions to thousands of electron volts. Many unsolved
problems have arisen unexpectedly, even in well-
developed fields, e.g., such as the elastic scattering of
heavy particles. Fundamentally, these problems arose
in connection with the possibility that has arisen of
‘‘unfolding’’ many processes in terms of energy and
scattering angle. These unfoldings, which are the dif-
ferential cross-sections for inelastic scattering at
different kinetic energies, and with given quantum states
of the particles, are reminiscent of spectrograms.
Their structure contains a mass of information on the
fine details of the mechanism of the process. To obtain
such information and to interpret it already constitutes
an entire field in the physics of atomic collisions, and
it is commonly called collision spectroscopy.

Study of collisions of electrons with atoms and
molecules (electronic collision spectroscopy) at low
energies has made it possible to discover a number of
new resonance phenomena, When supplemented by in-
formation about the angular distribution of the elec-
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trons, the energy characteristics of the resonances
then give information on the quasistationary states of
molecules that suffices for constructing models of the
multielectron systems, Consequently, the problem of
the theory of scattering of electrons by molecules have
proved to be closely related with those of the theory of
the electronic structure of molecules, which tradition-
ally belong to quantum chemistry.

An even closer merger of physics and chemistry
appears in the field of atomic and molecular collision
spectroscopy, in particular, in studying very simple
chemical reactions in molecular beams, The signifi-
cance of these studies for applications is evident.
However, the difficulties that one generally encounters
along this line, both experimental and theoretical, are
very large. Among the entire set of collision problems
only one (atomic collision spectroscopy) is in such a
state that the vast experimental material can be classi-
fied and discussed from a single viewpoint. This is
exactly why we shall restrict ourselves to treating only
atomic collisions, with the hope that the presented
methods will prove useful also in other fields of colli-
sion spectroscopy.

In line with this, the task of the theory is to inter-
pret the experimentally observed complex structure of
the cross~sections, and to obtain the quantitative char-
acteristics of the interaction potentials of the particles
from the scattering data. The energy terms (potentials)
of a colliding pair can be obtained in two ways. The
first is a non-empirical (ab initio) calculation of the
properties of the molecular electronic states as a
function of the internuclear distances, with subsequent
solution of the problem for comparison of the predicted
and observed cross-sections. These calculations are
very laborious and expensive, so that the number of
systems amenable to such a study is as yet very re-
stricted, Hence, together with the first approach, a
second approach in the theory in this field seems very
valuable, namely, to develop general principles and the
most general models for the characteristic types of
interactions. On the basis of the latter, we can inter-
pret the experimental data and derive from them the
specific parameters of the interatomic interactions.

This review will treat the fundamental methods of
the second approach in particular, to which too little
attention has been paid in the recently published books
on collisions.!”% We should note the recently
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published reviews!”**) on analogous topics. As com-
pared with!”*?} we shall allot more attention in our
review to the theory of inelastic processes, obligatory
pseudo-crossings, and threshold phenomena related to
them,

Our presentation begins with general methods of
describing elastic and inelastic processes at energies
and scattering angles such that the potential can be
treated in a certain sense as a perturbation (Chap. 2).
This so-called ‘‘high-energy’’ approximation proves to
be applicable even for relatively slow-collisions. In this
regard, we shall make it the basis of the subsequent
discussion, since this is precisely the case in which
one can get the most reliable experimental data and
handle them in the simplest form. Then we shall treat
interference phenomena in the elastic scattering of
atoms having a typical interaction potential (attraction
at large distances and repulsion at small distances)
(Chap. 3). These phenomena are due to addition of
amplitudes of de Broglie waves scattered at the same
angle by different regions of the potential. It turns out
that one can draw an analogy here, first, with many
optical phenomena in the atmosphere (halos, rainbows),
and second, with certain interference phenomena in
inelastic processes. The first point involves the fact
that the wavelength of the particles and the parameters
of the potential are related qualitatively in a way that
permits an analogy with the relation between the wave-
length of light and the parameters of droplets. The sec-
ond analogy is based on the fact that scattering of waves
by different regions of a potential in a certain sense re-
sembles scattering of a wave by different potentials be-
tween which there is a more or less localized coupling.

Then we shall discuss resonance processes (Chap.
4), for which there is no coupling between the adiabatic
potentials, and the inelastic process is described by
interference of two independent waves. Each of these
waves in turn now carries memory of the structure of
the corresponding potential,

Finally, we shall discuss inelastic processes with a
localized coupling between terms (Chap. 5), i.e., the
case in which the non-adiabatic interaction between
different energy states proves to be localized within
relatively narrow ranges of variation of the inter-
nuclear distance. In this situation, in order to find the
scattering matrix, it suffices to solve the problem of
non-adiabatic transitions in these regions alone, and
to link this solution with the adiabatic (transitionless)
quasiclassical solution outside these small regions, It
is precisely this circumstance that permits us in
many cases to avoid solving the quantum problem of
multichannel scattering.

The last part of the review will be devoted to the
theory of anomalies in differential cross-sections near
the threshold of an inelastic process. Here we should
make the reservation that we take ‘‘threshold’’ phe-
nomena to mean phenomena at energies and scattering
angles near to the experimental threshold of an in-
elastic process. Under conditions of classical atomic
collisions, this means that a large number of partial
waves contribute to the cross-section of the process in
the region of interest to us near the threshold. This is
to be distinguished from threshold and resonance phe-
nomena in nuclear physics, which are usually deter-

mined by the behavior of a single partial wave alone,

The fact that the conditions of quasiclassical colli-
sions can be satisfied has determined the methodologi-
cal style of presentation: we have attempted in all pos-
sible cases to describe the interference phenomena in
terms of quantities associated with motion along clas-
sical trajectories. Such an approach simplifies compar-
ison of the quantum theory with the classical, which is
currently widely used in molecular collision spectro-
scopy. The cited experimental data are adduced only
to illustrate the overall situation, and make no pre-
tense at completeness.

2. CHARACTERISTIC PARAMETERS AND GENERAL
FORMULATION OF THE PROBLEM OF ATOM
SCATTERING AT LARGE ENERGIES

In classical mechanics, the deflection angle y of the
trajectory of a particle in a potential field U(R) as a
function of the impact parameter b and the energy E
of the system is determined by the well-known equation

%[“*X(b’ B) = g AR
e (= 72)
Here R, is the turning point of radial motion, which is
the largest root of the radicand in (1). Figure la shows
a typical form of the function x(b). In distinction from
the deflection angle y(b), which changes sign as a func-
tion of the sign of the potential (positive for repulsion,
negative for attraction), the observed scattering angle
6, which by definition is measured in the interval
(0, m), is

1)

0- min}y— 2an| (2)

and it is shown in Fig. 1b, In general, the inverse re-
lation b = b(g) of the impact parameter to the scatter-
ing angle is multivalued. For example, the single
scattering angle ¢’ in Fig. 1b corresponds to three
different trajectories having impact parameters by, b,,
and bs. Correspondingly, the classical cross-section
equals the sum of contributions of all branches of the
scattering at the angle g:

x
= a
\ b,’ )
FIG. 1. Typical relations of: s
a) the deflection angle x; b) the
scattering angle 8; c) the phase z b
§; d) sin? 8, as functions of the o
impact parameter b for an inter- ra N\ 7}\
atomic potential having a mini- AR 2, b
mum. The subscripts 1, 2, and 3 )
indicate the different branches of s
the function b(#). / ¢
z
% s b
. 7 by 1 b
sin“d*
/ -+ J S
‘W d
b
by 4
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Equation (3) assumes that the contributions from dif-

ferent branches of the function b = b(g) are independent.

However, when one examines the scattering in more
detail, even in purely elastic scattering, the possibility
arises immediately of quantum interference of the
contributions from different trajectories. This leads

to a complex oscillatory structure of the cross-section.
The problem is complicated by the fact that the theory
of inelastic scattering accompanied by excitation of the
atoms, charge transfer, etc., does not reduce to the

theory of potential scattering of structureless particles.

Rather, it includes also the theory of electronic transi-
tions upon collision of heavy (atomic) particles.

The overall formulation of the problem of elastic
and inelastic atomic scattering is well known,[**]

In the simplest semiclassical formulation of the
problem, the wave function of the system is expanded
over a certain complete set of electronic functions ¢p:

Yie, 1) Yo, () @alr, R(D)), 4)

while the motion of the nuclei is considered to proceed
over a single classical trajectory R = R(t), which
corresponds to some potential averaged over the elec-
tronic states.

The variation in the coefficients cn(t) is deter-
mined by the Schrodinger equation

ih 5 SV (R) -+ RP ] e (1), (5)
where Upm = (¢nl| ﬁell ¢m) is the potential-energy
matrix, and Py, = -ifi{@pn|98/8R|¢m ) is the matrix
of the non-adiabaticity operator. The conditions for

t =+« determine the initial state and the result of
collision.

In principle, it suffices to know the matrices Upm
and Ppp, to solve the problem for any basis ¢pn. How-
ever, in order to get concrete results, one usually
limits the treatment to a finite and often very small
set of functions ¢p. This is precisely the stage at
which the problem arises of correct choice of a basis
that minimizes the errors involved in omission of the
infinite set of states.

One of the important special cases is an adiabatic
basis, in which the ¢, are defined as the eigenfunc-
tions of the Hamiltonian ﬁel for fixed R. The physical
argument for choosing this basis!*®) is based on the
possibility of approximate separation of nuclear and
electronic motion (the adiabatic approximation). Since
the velocities of the atoms (even at energies
E ~ 10° eV) are small in comparison with the velocities
of electronic motion, the state of the electrons can
adjust to a given position of the nuclei,

On this basis, the potential matrix Upp, is diagonal,
and the mean electronic energy U, in the state n (the
electronic term) plays the role of the potential energy
for adiabatic motion of the nuclei. The electronic
states are coupled only by the non-adiabaticity opera-
tor (the second term in square brackets in (5)). Here
the order of magnitude of the probability of a transi-
tion between two electronic states is determined by the
non-adiabaticity parameter or the Massey parameter

Ya. OVCHINNIKOVA

§—or—AVma AR (6)
which equals the product of the characteristic fre-
quency w =min(Upy - Upypm /B of the transition by

the time 7 for passage through the non-adiabaticity
region.

For values ¢ > 1, the transition probability is ex-
ponentially small (~exp (-2r¢)). Consequently, in fact,
the electronic transitions occur in relatively narrow
ranges (AR < a,) in which the adiabatic terms ap-
proach, or in regions where the functions of the adia-
batic basis become rearranged (for different types and
models of non-adiabatic transitions, seel***!), A
typical situation of such an approach {quasi-crossing)
occurs when the terms U2,(R) and U%(R) calculated
in some crude approximation (neglecting the interac-
tion component) intersect at the point R,. Only when
we take into account the omitted interaction U do the
adiabatic terms shift apart by the amount 2| U],
where U} is the matrix element of interaction between
the states 1 and 2 of the chosen basis. In this case, the
functions of the truly adiabatic basis (the eigenfunctions
of the complete Hamiltonian Hel) are related at the
intersection point only by a differential coupling. In the
region of intersection it has a maximum value of
fiv/AR, where v is the velocity of the nuclei, and the
dimension AR of the transition region can be estimated
to be

AR = |Uby (Ry) |5 (Ul — Ubdncr,- (1)

Another basis that is opposite to the adiabatic basis is
the so-called ‘‘diabatic’’ basis ¢p, which lacks the
differential non-adiabatic coupling Py,

= (<an('ih%)¢ﬁ) =0, while the entire coupling is

effected by the potential-energy matrix Uy, .

One can construct such a basis from the adiabatic
basis!'” if one knows the matrix Ppp, in the adiabatic
basis and if one assumes that Py, — 0as R— =,
However, there is a difficulty that amounts to the fact
that the matrix Py, does not vanish as R —«, but is
of the order of magnitude of fiv/a, (a, is the atomic
dimension). This is because the adiabatic functions do
not give a correct asymptotic form for the separating
atoms, Hence, one can construct a diabatic basis from
the adiabatic basis only to an accuracy of terms in
fiv/a,. The latter are not substantial in comparison
with the maximum value hv/AR of the non-adiabatic
coupling in the transition region only under the condi-
tion that the dimensions of this region are small: AR
& ag. One can eliminate this difficulty partially by
using an expansion over non-orthogonal moving atomic
orbitals.['® %]

Figure 2 shows a typical form of the terms in a
quasi-crossing region on diabatic and adiabatic bases.,
A study of an exactly-solvable model (see Chap. 5, the
Landau-Zener model) of such a quasi-crossing implies
that the system follows the adiabatic terms at low
velocities with a probability close to unity. However,
at high velocities the motion follows the smoothed
diabatic terms (see Fig, 2). This is just why the dia-
batic potential curves and the functions derived in the
independent-particle approximation (i.e., in the molec-
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FIG. 2. Coupling of electronic terms on the diabatic and adiabatic
bases. a) Elements of the potential matrix on the diabatic basis; b) the
terms and the matrix element of the non-adiabaticity operator on the
adiabatic basis.

ular-orbital approximation) without account of the
correlation energy of the electrons play a large role
in interpreting scattering phenomena at high ener-
gies.[ 16,20)

Let us proceed to discuss the collision problem,
bearing in mind mainly high-energy scattering at small
angles.

In the semiclassical treatment, this means that the
mean classical trajectory of motion of the atoms
closely approximates a linear trajectory:

R (t) = [B2 + v22] 2, (8)

where b is the impact parameter, v is the velocity of
the atoms, which is independent of the electronic state
of the system at high energies (E >» Up — Up). The
transition probability Ppm(b) as a function of the im-
pact parameter is found by solving the equations (5)
with the trajectory R(t) from (8). Here the small scat-
tering angle ¢ corresponding to a given b is deter-
mined from the formula for classical scattering in a
certain mean potential U(R):

S

Equation (9) is a special limiting case of Eq. (1) for
large energies for which

ES>TU@®R). (10)

Now we shall use this condition for a quasiclassical
formulation of the problem of inelastic scattering at
small angles (the so-called high-energy approxima-
tion;'*?% for an overall formulation, see!**'?*1), The
Hamiltonian of the system equals the sum of the kinetic
energy of the nuclei and the electronic Hamiltonian:

He — (11)

he
75 S+ Ho (1, R)

At large energies, the interaction of the atoms is
treated as a perturbation that slowly modulates the
incident wave. Correspondingly, the wave function of
the system can be sought in the form

¥ (r, R)= ™ A4, (R)ei x4 (r, R), (12)
where Ap(R)is a function that varies slowly in com-
parison with exp(iknz). If we substitute (12) into the
Schrddinger equation and omit the second derivatives

of the functions Ay with respect to R (the condition of
slow modulation), we get equations for the amplitudes
An:

(13)

. R2ky, ()A fiZk
4 —n _|‘ 2 UnmAm+ E im <q:'?x

(p',’,l> A, =0.

oz

We can easily see that the equations (13) coincide with
the parametric equations (5) with the rectilinear tra-
jectory of (8) with the substitution z = vt. Here

v =hk/u is the velocity of the atoms, which is inde-
pendent of the level n at large energies (E > Up

- Upy)-

The equations (13) must be integrated under boundary
conditions that ensure the presence of only one elec-
tronic state q)n in the incident (z — —«) wave:

11m A(x,y, 2) = bnn,- Let us denote the amplitudes

deﬁned under these conditions as Apn (x,y,2). In

particular, for elastic scattering in a potent1a1 U(r)
(a one-electron state), integration of (13) gives (the
subscript n, is omitted):

A(rx, y, 2)==cxp {—ﬁ S Uz, y, z)dz}.

(14)

We can easily find from the form (12) of the wave
function the amplitude (6 ) of scattering by the system
at the small angle #(¢ < 1) in a given electronic state
‘Pn To do this, it suffices to take the corresponding
Fourier com ponent having momentum k' =k + q(q
= k@) from the projection of the function

¥ (r, R) —e**8, (r, R)

onto the electronic state ¢ (r, R) that we are inter-
ested in, Thus we get(®*] the following expression for
the scattering amplitude:

oo

i (0) == — 2tk { B b [Ayong (B) — Sl /o (knb0), (15)
Here J, is a Bessel function, and the amplitudes
Anno(b), which are equal to

Apng (b) == hmA,mo( ¥, 2), b=l (16)

are found by solving (13) with the initial conditions
An(x,y,2 — =) = 6nn,. For potentials that decline
faster than 1/R, the amplitudes Ann, differ from zero,
and they oscillate rapidly (seel™) for b < bg and they
decline rapidly for b > bg. Here we can estimate the
characteristic dimension bg from the relation

00

= S U (b, 2) dz =26 (bs) ~ 1.

—o0

1)

The expression (15) describes both quantum scattering
(diffraction) at small angles for which kbgé < 1, and
classical scattering at values of 9 such that kbgg > 1.
In the latter case, if we use the asymptotic expansion
of Jo(x) for x> 1, we get the final expression for the
scattering amplitude at high energies at small

(6 < 1) but classical (kbg6 > 1) scattering angles:

fa (0) l/ﬁl;ij VG db (A, (b)_(snnul[eikb() ,-ii:‘t—_e——xhb() 1— . (18)
Ul

In the very simple case of purely elastic scattering in
a potential U(R), the amplitude is, according to (14):

A (b) = exp [2i8 (b)],

where the phase is

8(b)-= — L \ U (R)ds.

20y
—

(19)

If we take account of the rapid oscillation of the inte-
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grand in (18), we can easily relate the scattering am-
plitude f(9) with the quantities that characterize the
classical trajectories of motion in the potential U(R)
(see the next chapter). However, even in simple poten-
tial scattering, the cross-section cannot always be
reduced to the classical form (3). This is because in-
terference has the result that the measureable quanti-
ties prove to be not only the moduli, but also the phases
(19) of the scattering amplitudes. The rest of this
review will be concerned with discussing the experi-
‘mentally observed effects due to this interference, and
with interpreting them.

In concluding this chapter, we note that the approxi-
mation discussed here, which is often called the
‘‘impact-parameter approximation’’ is a very simple
variant of the so-called ‘‘eikonal approximation,’’ or
three-dimensional quasiclassical treatment, which has
been developed recently in a number of studies!**?%
as applied to atomic collisions,

3. INTERFERENCE PHENOMENA IN ELASTIC
SCATTERING

Phenomena of elastic scattering of atoms are ex-
plained to a considerable extent by classical mechanics,
However, a number of important features of scattering
require a quantum-mechanical interpretation. Discus-
sion of these phenomena at high energies, in particular,
is the topic of this chapter.

Let us trace the relation between the quantum and
classical descriptions of elastic scattering.

The quantum -mechanical formula for the scattering
cross-section is well known:

o (8)==17(6)],

F(8) = e 3 (2041) (¥ — 1) Py (cos 6), (20)
=0
Here k = (1/8)V2uE, & is the phase of the scattering
in the [th partial wave, and Pj is the Legendre poly-
nomial. Under conditions of atomic scattering, a great
number of waves (I < lg > 1) contribute to the scat-
tering amplitude f(9). Also, the phase §; of the scat-
tering, for which we can use a quasiclassical expres-
sion, is a smooth function of ;, Hence, the summation
in (20) can be replaced by integration over [ or over
the impact parameter b = x (] + 72). Also, in the region
of angles that are not too small: 9 > l/ls = x/bg (see
the discussion of (17) in Chap. 2), we can replace the
polynomials P; by their quasiclassical expression:

P:(0059)=[T1, (l»% %) ﬂSillG]_‘/ZSi]l[(l + %) 9*%]

Thus we get the well-known!*"»**} formula for the
quasiclassical scattering amplitude:
F(0) = — l/% g VB db {eis*®, 0, E) _ gis-s, 0, B, (21)
U]
Here the action S*(b, 9, E) can be represented as a
sum of radial and angular components:

(22)

The radial component 25(b, E) is the quasiclassical
limit of the quantum phase 25; for [ >> 1, and it
equals the difference of radial actions for motion with
and without the potential U(R):

§%(b, 0, E) = 26(0, E) &= kb0 2= -

Ya. OVCHINNIKOVA

R — —— S
5, E):girzk{éf ]/1—%—%#%_?’/1 AR} - (23)
0 b

In order to relate (21)—(23) to the classical scattering
formulas (1)~—(3), we must take into account the fact
that the integrand in (21) is a rapidly oscillating func-
tion, Therefore, only neighborhoods of the stationary-
phase points bj contribute to the amplitude of (21). For

these points, the rate of variation of phase vanishes:
a2 (b, E) (24)

o ’b:bi:e, mod 27,

[ X

We can easily convince ourselves that this relation
coincides with the definition of the classical scattering
angle in terms of the deflection angle y.

Summation of all the contributions to the scattering
amplitudes from the neighborhoods of the possible
points bj gives the expression for the scattering
cross-section

0 (8, B)=[1(8)2=| Toi* @, £) N 2 .51 (25)
Here oi(e, E) are the classical contributions of the
different branches to the total cross-section, and the
Sk(6, E) are the quasiclassical actions over the cor-
responding classical trajectories. The phase constants
vi that arise upon summing the amplitudes over the
small region Abj near bj(¢, E) depend on the sign of
dbj/dg. Here the quantities Abj, which are the dimen-
sions of the regions that are essential in the integra-
tion in (21), are of the order of: Abj = (xb)Y¥ V2,
Figure 3 shows the relation between ¢(g, E) and the
functions ok(6), bk(6), and Sk(8).

Thus, even in simple potential scattering, quantum
interference can occur between the fluxes that arise
from classical trajectories that have different impact
parameters, but which are scattered at the same angle
g . Here, according to (23) and (24), the action
S(b, 6, E) not only serves as the generator of the de-
flection function g(b) or its inverse function bj(6), but
it also determines the observable fine structure of the
scattering when interference exists in (25).

The quasiclassical approximation (25) cannot be
applied whenever the actions or action differences are
so small that the Abj become comparable to the by
(small-angle scattering), or whenever two regions of
Abj begin to overlap (scattering near an extremal de-
flection angle gy, or rainbow scattering). These angu-
lar regions, which are marked in Fig. 3c, must be
treated in more detail, with account taken of the over-
lap of different regions of Abj that contribute to scat-
tering at the same angle 9.

As is well known,!™ the final value of the total
cross-section

G{E) = 3' [f(®)dQ - 2n \ bab!eiser — L2 =Sa { bavsins ) (26)
is ultimately due to interference of the wave scattered
at a small angle [the amplitude 10D (26)] with the
unscattered wave [the amplitude 1 in (26)]. If the
potential declines rapidly enough, then a rough esti-
mate of q(E) can be obtained by the random-phase
approximation.!*®! It replaces the scattering by the true
potential by the scattering by an equivalent rigid sphere
of radius bg (see (17)), or by the Landau-Lifshitz-
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Schiff approximation,!™ which takes correct account of
the diffuse edge of the scattering boundary. The first
of these corresponds to averaging exp (2i5(b)) for
b < bg, where this function oscillates rapidly, and re-
placing exp(2i5(b)) by unity when b > bg, where the
phase is small. These approximations qualitatively
correctly describe the interference effects in region
I in Fig. 3¢, where the action S is small, Here the
approximate expression q(E) for the cross-section is
a monotonically-declining function of the velocity that
contains information only on the region of the potential
U(R) that corresponds to distances R ~ bg (an optical
analog of this is diffraction from an opaque screen).
However, when attraction and repulsion occur, the
small-angle scattering corresponds also to a region of
finite impact parameters (region II in Fig. 3c) near
b = bg, for which 6(bg) =0, in addition to the region
b ~ bg. Hence, the way to make the cross-section
more exact consists in taking account of the interfer-
ence of the wave diffracted into the shadow region with
the wave scattered at a small angle with b ~ bg, and
which corresponds to diffraction from a circular slit
of radius bg. Mathematically, this means that we must
take account in the integral of (26) over the inner
region b < bg of the contribution from the point bg.
The latter is the stationary-phase point of the function
exp| 2i6(b)] where the phase §(b) passes through a
maximum (see Fig. 1d). Thus, we derive the following
cross-section q(E), which describes the so-called halo
effect:

1(E) = q(E) - Aq.
g = 2ab,

dzd | -1 N ac
—_— ;12 Y-
db2 Ib;bg) cos [ 20 (£) % ) :

Ag —hadivh, ( (27)
Here §,(E) = G(bg, E) is the maximum phase of the

scattering, and Aq is assumed to be small in compari-
son with q. When E varies monotonically, the correc-

S ey

FIG. 3. Scattering functions, cross-
sections, and quasiclassical actions for a
2 potential having a minimum. a) The dif-
ferent branches bi(6) (k = 1, 2, 3) of the
scattering function obtained by inversion
of the function 8 = 6(b) given in Fig. 1b;
b) the dotted curves (1, 2, 3) are the
contributions from the different branches
to the classical differential cross-section;
the solid curve is the quantum cross-sec-
tion; c) the quasiclassical section as a
function of the scattering angle. The
cross-hatched areas indicate the regions
in which the quasiclassical description
fails. The scattering in the region I is
equivalent to diffraction from the edge
of a screen, and that in region II is
equivalent to diffraction from a circ-
ular slit.

tion Aq proves to be an oscillating function of the
energy.

A detailed review on the halo effect in atomic colli-
sions is given in'*®*1, Figure 4, which is taken from'*!
shows the oscillations in the total cross-section for
scattering of Cs atoms by Hg. Analysis and interpre-
tation of the oscillations become especially simple in
the high-energy approximation {see below), in which
the maximum phase proves to be inversely propor-
tional to the velocity. That is, 6g =7/v. Hence we
find on the basis of (27) that

= & - o8 [ﬂ~—2— ‘ = —cos[a (2N (E) D, (28)
Here the experimentally-determined function N(E)
takes on integral values at the maxima of Aq, and
half-integral values at the minima of Aq., Figure 5
illustrates the relation of N to 1/v for the Cs-Hg
system for which the total cross-section is shown in
Fig. 4. In full agreement with (28), N proves to be a
linear function of 1/v having the ordinate 3/8 at the
origin. Measurement of the total cross-section makes
it possible to determine the parameters of the long-
range part of the potential (from the absolute value of
q and the dependence of g on E), the ‘‘volume”’ of the
potential well (from the frequency of oscillation of

Aq), and a lower bound of the number of bound states in
this well (from the number of extrema of aq).[*?

The differential scattering cross-sections contain
even more information on the potential.

Hoyt[‘”] first pointed out that one can reconstruct
the potential U(R) from the classical differential
cross-section. However, this method®"! required a
knowledge of the cross-section 0(¢, E) at different
energies E. Firsov!*! first showed that one can obtain

1 " J I L I J
4 a5 08 0 4 3
v, 10%m/sec
FIG. 4. Velocity-dependence of the total cross-section for scattering
of Cs by Hg. The cross-section is in relative units. [3°]

FIG. 5. Analysis of the oscillations
of the total cross-section for scattering
of Cs by Hg in the high-energy approx-
imation. Circles: experimental results
without account of the finite angular
resolution. Triangles: the result of
taking account of the finite resolution.
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the potential function from differential cross-section
data at a fixed energy. Ideally, with absolutely accurate
measurements, it suffices to know the cross-section
o(s, E) at all angles 0 < ¢ < 7 for a single value of
the energy E. Actually, however, we know the cross-
section (and with limited accuracy) only in a limited
region, most often at small angles. This is because of
the sharp decline in the intensity of the scattered flux
with increasing angle. In such a situation, it is conven-
ient to treat the experimental data directly in an ap-
proximation that corresponds to scattering for large
energies at small and medium angles, In this case, the
solution of the inverse problem takes on an espec1a11y
simple form.[%?

In this regard, let us turn to the limit of high ener-
gies. We shall treat a transition from the overall
quasiclassical description given by Eqgs. (20)—(25) to
the high-energy ‘‘impact parameter’’ approximation
presented in Chap. 2. To do this, it suffices to retain
the larger term in the expansion of the scattering
functions (22), (24), and (25) in terms of the parameter
U(R)/E (a systematic expansion has been carried out
in(®®%]) Here the radial action (19) equals

U (R)dR T
Vl( e TOUE)
It proves to coincide with the phase (18) of the ampli-
tude A(Db) in the impact-parameter method. It will be
convenient henceforth to transform to new variables,

the reduced angle 7 and the reduced cross-section p,
according to the formulas

28 (b, E) - if (29)

(30)
(1)

©=FE®9,

p(t, £)--0sinba (8, E).

In terms of the new variables, the action (22) can be
written to an accuracy of the terms O(U/E), which
will be omitted henceforth, in the form

% (b, E, 0) =+ 58 (b, 1), (32)
Here the reduced action s (b, T) equals
siE(b. 1) - ‘\' v (H)b:[;n + 26110 % (33)

Equation (24), which defines the classical scattering
angle as a function of the impact parameter, will have
the form

roa
(b ,S T 'l/l—(bz ol (34)
It exactly coincides with the classical formula (9) for
scattering at small angles. By inverting (34), we find
that the impact parameter b is a function of 7 alone,

apart from higher terms in U/E:

b=b(1). (35)

Since 1/E = ¢/7, an expansion in terms of 1/E at
fixed angle can be treated in the same way as an ex-
pansion in the small angle at fixed energy.

One can easily show from the ordinary expression
(3) for the cross-section that the corresponding re-
duced cross-section has the form

P, B)=4 30 o (1) (36)

~O/E

E. E. NIKITIN and M.

Ya. OVCHINNIKOVA

This equation expresses a very important principle of
correspondence that was first formulated in'®*, It
states that the reduced cross-section becomes a func-
tion of only one variable 7 = E¢ in the limit of small
angles or large energies,

This means that experimental data obtained at dif-
ferent energies (from thermal energies to 500 keV)
can be fitted in terms of the reduced parameters p and
T to a single curve po(7), or to a family of curves
having a common envelope po(7). This substantially
increases the accuracy and reliability of the experi-
mental po(7) curve, which we can use in turn in a
simple way to solve the inverse problem.

In fact, if we have data over a broad enough region
of 7, then by integrating (36), we find

5= {o()dinv. (37)
However, the function 7,(b) that is the inverse of (37)
is directly related to the scattering potential U(R)
according to Eq. (34). from which we get directly

27w
U(R)_T;EWTO—RW' (38)
Equation (38) is a special case of the formula of

Firsov,!*! which corresponds to high energies. Thus,

" the procedure of obtaining the potential U(R) from

data on scattering at large energies reduces to (37)
and (38), and proves to be relatively simple,

As an example, we shall take up an analysis of
elastic-scattering data in the He*—Ne system[*°]
Figure 6 gives the reduced cross-sections for elastic
scattering (and quasielastic scattering at high ener-
gies) of He* by Ne, as obtained by different authors at
different energies and angles. The parameters of the
potential have been reconstructed!®) from these data;
it is described by a combination of Coulombic repul-
sion, which is shielded by the electron cloud of Ne,
combined with polarization attraction at large dis-
tances, We note another characteristic feature of the
elastic-scattering curves, which can be ascribed to

H 1
144 a0 a7 47 ol

44
log 7, eV-degree

FIG. 6. Cross-sections for elastic and quasielastic scattering of He*
by Ne in terms of the reduced variables p and 7 for different energies.
[35] 1 and 2 are the theoretical curves for different approximations of
the scattering potential.
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interaction between electronic states. This is the
oscillating structure superposed on the smooth varia-
tion of the cross-section. For any value of the energy,
it begins at a quite definite value of the reduced angle
7 = 1950 eV-degree. Hence, it is due to a process that
occurs at a quite definite internuclear distance b

= b(Tthr) = 1.9 2,. It was shown int*5:*¢] that these ano-
malies arise from the quasi-crossing at the point

R = b, of the ground and excited terms, and that the
point T = Tthr corresponds to the threshold of the in-
elastic channel, We shall return in Chap. 5 to a more
detailed discussion of this phenomenon in treating
inelastic processes., One can find other examples of
reconstruction of a potential from elastic-scattering
data, e.g., int®*"/%8,

The advantages and simplicity of the reduced impact-
parameter approximation are also manifested in an
analysis of the fine interference-structure of scattering
cross-sections at large energies, In fact, the phase of
the oscillations of the cross~-section in (25) is deter-
mined by the action difference AS between different
trajectories. For oscillations of the total cross-section
in (27), it is determined by the action at 9 = 0. How-
ever, at large energies, the relation of the action to
the energy at fixed 7 is determined by the coefficient
1/v =u/V2uE, according to (32) and (33). Hence, the
phase of the oscillations is a linear function of the re-
ciprocal of the velocity. That is, the period of oscilla-
tion of the cross-section as a function of 1/v is a con-
stant. The high-energy approximation also makes it
possible to derive relatively simple expressions for the
scattering cross-section at small angles, The approxi-
mation of an opaque screen containing a slit, while
satisfactory for calculating the total cross-section ac-
cording to (27), proves to be unsuitable generally for
calculating the differential scattering at angles
6 = X/bg: the diffuseness of the potential is important
in this region, but not substantial in the region of the
first diffraction maximum for 6 < x/bg. More detailed
treatment shows!™ that the oscillating structure of the
cross-section at 6 ~ x/bg, which might be expected by
analogy with diffraction by a screen, is completely
blurred out by the diffuseness of the potential, Thus
the first peak of the diffraction maximum with increas-
ing 6 smoothly goes over into the (6 ) function that
describes classical scattering at small angles. Experi-
mental study of this region makes it possible to deter-
mine the parameters of the long-range portion of the
potential. Figure T gives one of the few examples of
studying scattering in the small-angle region, including
the classical and quantum regions.

We shall now take up interference phenomena in
large-angle scattering. We see from Fig. 3 that inter-
ference occurs between three branches of the function
bj =bj(6) when § < 6r. However, one can resolve ex-
perimentally only the low-frequency oscillations due to
interference of waves from branches 1 and 2.* This
interference is analogous to that which occurs in rain-
bow formation, and the corresponding theory is a
special case of the theory of scattering of waves at an
extremal angle.

*High-frequency oscillations (interference from three branches of
the b(#) function) have recently been detected experimentally in the
differential cross-sections for scattering of inert-gas atoms. [ 18]
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FIG. 7. Scattering cross-sections (in relative units) of K by Ar and
by HCBr; at small angles.

When ¢ < @y (the bright side of the rainbow), the
classical differential cross-section of (3) increases
monotonically as § — fy, and it diverges like (6y
- 9)Y? near 6p. The quasiclassical description (25)
gives oscillations on the bright side of the rainbow,
However, it does not permit us to follow the transition
through the angle 6r, since the stationary-phase
method is inapplicable in this case.[?%**] A parabolic
approximation of the function 6 = §(b) near by, with
account taken of the merger of the two stationary-
phase points (the region 1—2, Fig. 3b) gives the follow-
ing expression for o(8) near 8y in terms of an Airy
function:[*’

0(0)=

2%b,
sin ©

— — Py
PP (ym -0, y=2 5|

(39)

This formula describes the exponential decay of inten-
sity on the dark side of the rainbow and the first
several oscillations on the bright side as well, Then
the quasiclassical asymptotic behavior of the Airy
function makes it possible to join (39) with the general
formula (25). The transition of rainbow oscillations
into oscillations at small, but classical angles that
correspond to the halo effect has been discussed in(*’,

Experimental study of scattering in the rainbow
region permits one to get information on the depth of
the potential well (from the size of the angle 6r) and
on the interatomic distance Rm that corresponds to
the potential minimum (from the frequency of oscilla-
tion of o(8) on the bright side of the rainbow),!*"
Figure 8 illustrates the possibilities of experimenta-
tion on resolution of rainbow structure.!*!

Finally we note another reason for oscillations of
the differential cross-section in scattering of identical

461

FIG. 8. Rainbow scattering of
Na by Hg. [*'] The cross-section a7
is in relative units.

45

1 1 1 )
/N 7
8, deg

L/



402 E. E. NIKITIN and M. Ya.

atoms, as predicted by Mott.[**] Since the waves cor-
responding to the impinging particle and the target can
interfere, the observed cross-section (which is evi-
dently symmetrical with respect to the angle 6 = 1/2)
is

o (8) = |f(8) £ F(n—0)f,

Here the sign + depends on the type of statistics of the
nuclei. Figure 9 shows the scattering cross-section

of *°Ne by *Ne for the energy E ~ 10°% ergs
(circles).[*®) The solid line shows the result of calcu-
lating o(@) for a Lennard-Jones potential, while the
dotted line is the scattering cross-section without ac-
count taken of identity, for which o(6) = | £(8)|%.

4. INTERFERENCE IN RESONANCE PROCESSES

Experimental study of scattering when several
channels exist (inelastic scattering) gives specimens
of a very rich interference pattern of the cross-sec-~
tions that is much more complex than in ordinary
potential scattering. A special place among inelastic
processes is occupied by resonance symmetrical
processes, such as spin exchange, excitation transfer,
and charge transfer. This involves the fact that the
result of collision can be described in terms of inter-
ference of waves scattered by different potentials, and
corresponding to different (even and odd) electronic
molecular states, without any transitions between these
states. In this sense, the two-level problem of a sym-
metrical process is a very simple generalization of
the one-level problem, and all the results of the last
chapter can be used directly to construct an appro-
priate theory.

Charge transfer is apparently the most fully studied
of all the symmetrical processes. It has been studied in
the following atomic systems: H'—H,!**%
He'—He,""* Li*—Li,*” Ne*—Ne.[®"! Hence, for the
sake of concreteness, we shall treat this type of pro-
cesses in particular,

In the very simple case of charge transfer of an s
electron, one should describe the physically observable
situation, in which the charge is localized on one of the
particles before and after scattering, by a linear com-
bination of an even g and an odd u state. Here the
probability P(b) of charge transfer for a straight-line
trajectory with an impact parameter b is determined
by the difference of phases in (19) incurred as a result
of collision in potentials Ug and Uy, respectively:

RdR

VR

This expression, which corresponds to the high-energy

} -sin? [A6 (b, E)]. (40)

P(b, E) - sin® [,,Ll S‘D( U.)
b

=
S

« 6(8)sind

I

FIG. 9. Oscillatory structure
of the scattering cross-section of
Ne* by Ne arising from identity
of the atoms. [#3]

OVCHINNIKOVA

approximation, predicts (in full analogy with the halo
effect in elastic scattering) that the total charge-trans-
fer cross-section will be oscillatory in nature if the
phase difference of elastic scattering in the even and
odd states passes through an extremum.[’>®) A calcu-
lation of the total charge-transfer cross-section q¢ t,,
with account taken of the region of slow probability
oscillations, gives

g =2 S bdbP (b, E) =g.--Aq_,

0

Here q is the monotonic component of the cross-sec-
tion, while Aq is the oscillating additive term:

=5 b

X €08 [2A8 — n/4]. (41)
The impact parameters bg and by are determined by
the conditions

Ad(bs) =1,

dAd
B fpmpy, 0,

We can make the first condition more precise by per-
forming the stated integration over b with account
taken of the correct asymptotic form of Ug - Uy, in-
stead of using the random-phase apprommatlon near
the charge-transfer boundary.!®®! Figure 10 shows the
energy-~-dependence of the total charge-transfer of some
alkali-metals.[*®] This dependence has been used in!®}
to determine the parameters of the proposed analytical
expression for AU(R).

The formula (40) for the charge-transfer probability
permits one to give a qualitatively correct descrip-
tion[*® even of the oscillations of the differential cross-
section for scattering with charge transfer. To do this,
we make 6 (the scattering angle in the mean potential
T = 7(Ug + Uu)) correspond to the impact parameter
accordmg to Eq. (9). Figure 11 (from!*®l) shows a dia-
gram of the maxima of the charge-transfer probability
P(6, E) for He*'—He, as obtained experimentally and
as calculated by Eq. (40), It was shown in the same
study(*® that, as we should expect from (40), the ex-
perimental phases of the oscillations 2aN(7, E) for
fixed values of the reduced angle 7 = E provel*»*¥ o

o o, Rb*-RB

FIG. 10. Velocity-dependence of @
the cross-section for resonance charge
transfer q¢.t. of Rb and Cs atoms. (%]
The straight lines describe the mono-
tonic component of q¢_¢. The cross-
sections and the velocity are in atomic
units.
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iy

0

FIG. 11. Diagram of the probabil-
ity maxima for charge transfet of He*
with He as a function of the scattering
angle and the energy. [*®] Solid lines:
experimental data; dotted lines; theo-
retical calculations.

be linear functions of 1/v. (However, they do not vanish
as 1/v — 0 as Eq. (40) would require.) Here the
slopes of the lines for large enough 7(b— 0) do not
depend on 7, and they give the value of the integral at
b=0

g

10)=2{ W~V dR. (42)

For example, the experimental value I(0) = 63.7 eV-A
for charge transfer of H* with H*] proves to be close
to the value 70.2 eV-A calculated from the potentials
of H} known from'®™. The situation has been somewhat
more complicated in interpreting the oscillation period
in the He'—He system. In order to explain the ob-
served value of I(0), Lichten!'®! suggested that motion
in the z‘z‘,g state does not follow the lower adiabatic
term, for which an independent estimate of I(0) has
given a much lower estimate. Rather it follows the
adiabatic 2T, term, which in the one-electron approxi-
mation corresponds to the configuration (log)( 10y)? of
the He} system. Figure 12 (from!*®)) shows the terms
of this system. When R < 2a,, the diabatic term
loglof1 crosses the terms of the same symmetry, and
when R < 1.3 a,, the state becomes autoionizing. How-
ever, the excellent agreement of the observed inter-
ference pattern with Lichten’s predictions!*®! shows
that we can neglect the interaction that gives rise to

UI{
o Bett He**+ He'*
3
-218e"(2p) A He™™ + He'(15)

He**+ He(fs)?
He™ (1s)+He"(1s)
He (fs)2s) +He' (1s)
He (Is)+He* (15}

418" 28

1 Beriy?
_y B )
Be*(15)42s)
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FIG. 12. Correlation diagram of the terms in the He, system during
transition to the united ion Be*. [!6] Energies and distances in atomic
units.

transitions at the crossings of the o terms at high
velocities, and the motion actually occurs along the
stated diabatic term.

However, this description could not explain a num-
ber of observed phenomena, first of all, the damping
of the oscillations, i.e., the fact that the experimental
oscillations in the cross-section do not go to zero.
Hence, a stricter quasiclassical description was pro-
posed in(®®°% that is valid also at small energies.

The quantum cross-sections with or without charge
transfer are!®!

0L (8. E) ==, (0, E) & £, (8, E)[%, (43)

where fg y are the scattering amplitudes in the poten-
tials Ug y, respectively. If we use the quasiclassical
expressions for the amplitudes, we get the cross-
sections o4 in the following form (we assume for
simplicity that there is no rainbow scattering from the
lower term at the given 6 and E):

04 (8, B)=|0}/2(8, E) eiSstha, 0.B) bivg o g1/ (9.1) ¢tSuttn 0 By riva [.(44)

Here the action S and the impact parameter b are
related to the potential at a given E and 6 by Eqgs.
(22) and (23), and ¢ and oy are the elastic-scattering
cross-sections in the fields Ug and Uy.

Thus, trajectories corresponding to different im-
pact parameters by and by from each of the two
terms contribute to interference at the given angle 6.
Since ¢g and oy differ, the cross-section of (44), which
oscillates between the envelopes |0Y?+0¥?|* has a
finite (non-zero) value at the minima, in contrast to the
results of Eq. (40). The maxima and minima of the
oscillations in the cross-section are approximately the
extrema of the function

(45)

Here N(E, 60) is the previously-discussed experimental
function that takes on integer values at the maxima, and
half-integer values at the minima of the cross-section.
The derivative of this function with respect to 6 at a
fixed energy is related to the period A8 of the oscilla-
tions with respect to angle,

1740 = (%)r’

cos (Sg— Sy~ Ay) = cos 2n N (E, 9),

(46)

In view of the relation b =x8s/9 6, it can be used to
get an important characteristic, namely, the difference
Ab = bg — by between the two impact parameters that
contribute to interference:

onk AN mv dAS (47)

A= v 80 2 dt°

Since S~ s{T)/v, then, at large energies, the quantity
in (47) depends only on one variable 7, or on the im-
pact parameter, and it does not depend on the energy
at fixed 7.

The stated quasiclassical description substantially
improves the agreement with experiment, especially at
low energies.!®»®! Figure 13, which is taken from!®
compares the theoretical and experimental curves of
the differential cross-section as a function of the scat-
tering angle for He"'—He at 300 eV. It demonstrates
the effects of the nuclear symmetry, which are analo-
gous to those described in Chap. 2 for Ne, (see Fig. 9),
and which lead to additional oscillations in the system
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FIG. 13. Differential cross-sections for charge transfer of 4 He* with
“He and 3He* with *He. [%%]

of identical nuclei *He’—‘He, as compared with the
system *He'—°He.

However, an interpretation of experiments on sym-
metrical resonance charge transfer in the two-state
approximation does not permit one to explain a certain
effect: the small systematic variation in the phase of
the oscillations. According to (40) or (45), the two-
level approximation predicts that the phase should be
proportional to the reciprocal of the velocity, Hence,
the phase should approach zero as 1/v — 0. Neverthe-
less, extrapolation of the phase to 1/v — 0 gives a
finite value in experiments both for H'—H,!**! and for
He'—He.[*""*®! Detailed study of this problem for the
H*—H charge transfer shows'®] that Coriolis interac-
tion of the electron with the rotating molecular axis
becomes very substantial at large velocities and small
impact parameters. One must get outside the frame-
work of the two-level approximation to describe this
effect. This interaction is especially effective for those
molecular states of different symmetries that corre-
late with the same atomic state in the united-atom
limit, which is just what happens in the H; system.
One of the terms participating in charge transfer
(namely, the term °%, and the term "), which cor-
responds as R —« to excitation of an H atom, proves
to be degenerate in the limit R — 0. This is because
the corresponding states in this limit are two compon-
ents (p¢ and pn) of the 2P state of the united atom
(He"). A general theory of such a Z—II non-adiabatic
couplirg is given in!®°%, This coupling both makes
possible inelastic transitions (and hence it is also the
reason for damping of the oscillations), and it shifts
the phase of the oscillations in the elastic channel.
Scattering calculations in the H*—H system ' with
account taken of the large number of states give a
theoretical curve fully agreeing with the data of Ever-
hart (see!*]), both in amplitude and in phase of the
oscillations (Fig. 14). While the data'**! contained no
information on the excited states of the products,

P
1

R
E, keV
FIG. 14. Comparison of the theoretical [%] (solid line) and experi-
mental [*] (points) probabilities for charge transfer of H* with H.
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nevertheless the phase of the oscillations proved to be
so sensitive that it permitted a prediction of an appreci-
able probability of inelastic scattering in the 2S state.
This prediction has been recently confirmed experi-
mentally®) by measuring the differential cross-sec-
tion for scattering of excited atoms in collisions of H
with H'.

5. SPECTROSCOPY OF INELASTIC PROCESSES

In contrast to resonance processes, such as the
above-discussed charge transfer, the total cross-
sections of inelastic processes as functions of the
velocity show a characteristic broad maximum at some
velocity vm. From a description of such a behavior of
the total cross-sections, it has been possible to reveal
an important parameter on which the cross-sections of
inelastic processes depend: the adiabaticity or Massey
parameter £ =w7, It is equal to the product of the
characteristic frequency « of the transition by the
characteristic time 7 of the transition. An inelastic
process occurs with an appreciable probability only
when ¢ = 1. If we write this criterion in the form

g2 0y, (48)
where AE is the energy of the inelastic transition and
a is the characteristic atomic dimension, then we can
easily convince ourselves that most inelastic processes
should occur with an appreciable probability only in
the kilo-electron-volt range of energies. Nevertheless,
numerous experiments show that excitation processes,
as a rule, have large cross-sections at much lower
energies than are predicted by the simple criterion of
(48). These energies sometimes nearly approach the
energy threshold of the process in question. As an ex-
ample we shall point out that ionization can occur at an
energy below 100 eV, even in such a system as Na*,
Ne,[™ where the atomic shells resemble those of an
inert gas.,

The reason for such a seeming contradiction con-
sists in the fact that the actual transitions occur in
regions of approach or quasi-crossing of the terms,
Therefore, the crude criterion of (48) should be re-
placed by a more refined criterion involving the
Massey parameter as determined by Eq. (6). If here
the energy gaps to the other terms are large enough
(the corresponding Massey parameters are large),
then the inelastic process can be described on a basis
of two electronic states.

Upon limiting ourselves to the two-state approxima-
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tion, we shall assume that the adiabatic functions
¢i(r, R) are given. Then, by a linear transformation,
we can unambiguously construct two functions ¢ (r) of
the diabatic basis from the condition { ¢2|8/0R|¢3)
= 0, with the supplementary condition that ¢ {(r)
= Rlim ¢i(r, R). The overall wave function of the

—+ 00

colliding atoms can be represented in the form of an
expansion*

1

V(e R) =N 5 Yim () 002 () 02075 (B (49)

Lm
The total cross-section and amplitude of the differential
scattering cross-section in either given state n{n =1,
2) for the initial state n, are expressed by summations
over the angular momenta /. As usual the latter can be
replaced by integrals over the impact parameters

g

Tnng (E) =21\ b dbpnno (b)7 pnm) o= I Snno - annu P‘: (50)
q
g 1 N . X
e 2 E b, (B [ E 4T (B
Fon 0. B) = = 1 TS, )] 5 7S, (51)

Here Snno(b) is the transition matrix, whose elements
for a given partial wave are determined by the

asym ptotic behavior of the radial wave functions

Xn,, at large distances:

A (R) ~ “1}_1 [Bnnge R L SpmpethRin], (52)
At finite R, these functions obey the Schrodinger
equation
@ o
-ZTIFI?TX"J(R"“ (53)

S [ (B~ 2552) Sumct Unn (B | . 1(28) = 0.
are=t, 2

One can show (see, e.g.”"]) that at high energies and
large values of | that satisfy the condition

E > Unm(b),

the amplitudes Spp, determined by Egs. (52) and (53)
coincide with the amplitudes App, found by solving the
first-order high-energy equations (13). This limiting
case corresponds to small-angle scattering.

Thus, in contrast to elastic scattering, one must
solve the equations (53) to find the amplitudes of the
transitions, or the equations (13) in the special case of
high energies. These solutions depend substantially on
the nature of the terms that characterize the given two
states. In many cases, inelastic processes can success-
fully be described in terms of a quasi-crossing model
or the so-called Landau-Zener model and its generali-
zations.

b—1il,

*The form of this representation assumes that the angular momen-
tum with respect to the motion of the atoms is conserved. Together
with limiting the coupling between the two states, this means that the
expansion in (49) is applicable, strictly speaking, to describing inelastic
processes that involve only s electrons. However, the two-level approxi-
mation can actually be applied successfully also to processes that change
the orbital angular momentum of the electron. To do this, one must
consider individual regions of non-adiabaticity, and construct the total
scattering matrix by merging the solutions inside and outside these re-
gions.

Figure 15 shows a typical pattern of terms that
illustrates the model. In the vicinity of the quasi-
crossing, the terms of the system U3 (R), U%(R) that
are calculated in a certain ‘‘zero-order’’ approxima-
tion (i.e., upon neglecting some interaction) intersect
at the point Rp. We shall consider the zero-order ap-
proximation basis that corresponds to them to coin-
cide with the diabatic ¢ (r). Taking account of the in-
teractions that are omitted in the ‘‘zero-order’’ ap-
proximation, which we can consider to be constant in a
small neighborhood of Ry, leads us to a model Hamil-
tonian on the diabatic basis:

AR (L4 1)
DuRe

2 (§ L —_ —R 14
U (R)+ Iy R (4-1) "l"( Fy(R—Rp) 12 )‘

Vay —Fy (R—Rp)

(54)
It is valid in the small neighborhood of the quasi-
crossing. Here the slopes of the terms Fyp include the
centrifugal force and Up = UL(Rp) = ng(Rp). The
adiabatic potentials

Ul.z(R) — Up_f#(]{_ Rp):t (‘_ﬁgi(R_Hp)Z_‘rV%Z]L"Z (55)

naturally obey the rule of no crossing of terms of like
symmetry.

A solution of the system of equations (53) or (13)
with the potential matrix of (54) has been derived by
Landau,[™! Zener,!™! and Stueckelberg'®’ for the
case in which the energy ER of radial motion in the
crossover region is substantially greater than the
minimum splitting of terms:

En=E—U,—2M+0 (56)

pRE
and it varies little throughout the transition region AR
~ (2V/AF):
dU(l

Ex>AR—p . (57)
These conditions are equivalent to the possibility of
introduction in the transition region of a single tra-
jectory for both terms R(t) = Ry — vg(t - to) having
the constant velocity vR = v 2ER )751. . With the Hamil-
tonian of (54), this gives a model that can be achieved
exactly. By studying this model, the probability

P=¢™ (58)
of transition from one adiabatic term to the other
during a single passage through the non-adiabatic
region has been found.!”>"***! The parameter

_ 2V (59)

T RopAF
is the Massey parameter of the given model
(w= 2Vyp/h, T~ AR/VR = V;;/AFvR). We see from

yin)

FIG. 15. Parameters of the
Landau-Zener model.
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(58) that the motion mainly follows the adiabatic terms
at low velocity (5 >> 1), but the diabatic terms at high
velocity (6 < 1).

The total transition probability (with two passages
through the point Rp) is

Pz (b, B)=2P (1— P)(1—cos ). (60)

The phase ¢ of the probability oscillations is approxi-
mately equal to the difference between the quasiclassi-
cal actions for the two transition paths upon double
passage through the quasi-crossing region:

Rp Rp

¢=2 5 kydR—2 5 ko dR+yr—yi, ki= V3 [E (1_£) _ UgJ‘”
"

h
Rz

(61)
Figure 15 explains the meaning of the points Rj. The
angular displacements [ and yJ1 are additional phase
changes in the transition region., They were studied
in!"™)_ where they also found the total matrix App, of |
the transitions. The possibility that is reflected in
(60) of treating independently the transitions as the
atoms approach and as they fly apart requires the con-
dition that the value of the phase ¢ should be large:

@ > 2m. (62)

In calculating the total inelastic cross-section of
(50) in the expression (60) for the transition probability,
we must average over the large phase ¢. Consequently,
the relation of the inelastic cross-section to the energy
of the atoms shows a characteristic maximum at a
velocity v~ 2,34 -27V%,/aF.!%) This behavior is char-
acteristic of many cross-sections for non-resonance
charge transfer, excitation, etc,

However, even within the framework of the same
system of intersecting terms, the Landau-Zener
formula (60) proves to be inapplicable at small ener-
gies (E < Up), or at large impact parameters
(b2 Rp). In fact, the crossover point then proves to be
close to the turning points in the radial motion, This
involves violation of the conditions (56) and (57) for
uniformity and classical nature of motion in the
transition region as well as the condition (62) for
independence of the transitions during forward and
reverse passage through the transition region. Hence,
the total inelastic cross-section of a process having a
high energy threshold, i.e., having a large value of the
potential Up at the crossing point, begins to deviate
from that predicted by the Landau-Zener theory at
energies E close to Up. Apparently, such a deviation
has been found in!™! for excitation processes in the
Cs'—He system, and it is shown in Fig. 16.* In just
the same way, the Landau-Zener theory is inapplicable
also for describing differential scattering cross-sec-
tions at angles close to threshold scattering angles.

All that we have said indicates that the theory must
be extended to the case of small energies ER in the
transition region, in which the crossing point is close

*It was emphasized in [?] that there can be another reason for de-
viation of the observed relations from those predicted by the Landau-
Zener theory, in addition to the effect of closeness of the turning point
to the crossing point. This is the existence of several (more than two)
channels for the process, if the thresholds of these processes are close
together.

E. E. NIKITIN and M.
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FIG. 16. Threshold behavior of the total
cross-section for excitation of Cs* in collisions
with He. Points: experimental data; [®%] solid ol

line: calculated by the Landau-Zener formula
with parameters that make the theory agree
with experiment at high energies.
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to the turning points of radial motion. Hence, we need
a quantum description of the radial motion. We shall
present briefly the resuits of such a study, which was
performed in!"*®!, In'"®  the quantum equations (55)
were studied for the functions y,(R) for radial motion
in the model (56) of linear terms for an arbitrary
energy ER = E - Up - [R*(7 + 72)2/R2p] of radial mo-
tion at the crossing point. It turns out that when F,F.
> 0 (the slopes of the terms have the same sign), the
problem of quantum transitions in the system of (56) is
exactly equivalent to the problem!” of transitions in
the semiclassical formulation with a defined selection
of a trajectory R = R(t). Namely, the probabilities and
amplitudes of transitions can be calculated for the
system of equations

P L ()= (TR0 Vig (63)

el Vay —Fy R (‘)—Rp]) (C: ) !

if we define the trajectory as being the trajectory of
motion in a homo§eneous potential field having the
force F = (F,F2)Y?, i.e.,

R() = Rp+ 5 4 5. (64)

One can easily show from (64) and (63) that the

probability #(b) of the transition is a function of only
two dimensionless parameters

Wiz ) 42
[AFF]

_ EgAF WV (
E=or' """

(65)

and it can be studied analytically in the limiting cases
of large (np > 1) and small (5 < 1) splittings of the
adiabatic terms for any energies Eg (or for any values
of the dimensionless parameter €). In the former case,
in which n > 1, the transition probability is an ex-
ponentially small quantity (see also!™):

$ — B (e) ea(®, (66)

Figure 17 shows the function A(€ ). A calculation of
the inelastic cross-section!!®”] with account taken of the
deviation of the probability in (66) from (60) explains
the deviation depicted in Fig. 16 of the experimental

4(e)

FIG. 17. Graph of the function A(e)
that determines the value of the expo-
nential factor of the transition probabil-
ity in the adiabatic region (n > 1) (solid
curve). Dotted curve: Landau-Zener ap-
proximation.
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cross-section from that depicted by the Landau-Zener
theory at energies near the threshold of the inelastic
process in the Ca’—He system.

When the splittings of the terms are arbitrary (5
has any value), the same form (66) describes the ex-
ponentially small probability of a tunnel transition
whenever € < 0. In this case, only the form of the co-
efficient B(€) in front of the exponential is changed.

For small splittings of the terms (g < 1), the
transition probability can be found by the perturbation
theory from the interaction V,, between the diabatic
states (see also'®?), p. 390). It is determined by the
formula

ga:nnAIK(DZ(_SHZI:i), (67)
where ® is Airy’s function. When the value of the
argument is larger in modulus, Eq. (67) goes over into
the Landau-Zener formula (60) for € > 0, and into (66)
for a tunnel transition when € <0,

It is of interest to furnish an experimental proof of
this pattern of transitions that has been obtained by
methods of molecular (not collisional) spectroscopy.
Figure 18, which is taken from!®"), shows the probabil-
ity #(E) of predissociation, i.e., decomposition of an
O: molecule under the influence of a non-adiabatic
transition to the repulsive term U, (R) as a function of
the vibrational energy E in the initial stable term
U:(R) (the plotted points are taken from!®]), The solid
curve is calculated by Eq. (67) with adjustment of three
parameters (the scale in 7, the scale in €, and the
reference origin E). The dotted curve shows the quasi-
classical continuation of (67) by joining it with the cor-
rect asymptotic behavior to take into account the curva-
ture of the terms remote from the quasi-crossing
region, The good agreement of theory with experiment
makes it possible to reconstruct part of the unstable
term 1%

Up to now, we have been discussing the transition
probability #(b). However, in order to predict the
form of the differential cross-sections by Eq. (53), we
must know the transition amplitudes App(b), not only
in terms of moduli but also of phases. In the Landau-
Zener approximation, in which the transitions in for-
ward and backward flight Rp are independent, while the
total probability is given by Eq. (60), the transition
amplitudes App,(b) can be written as:

A=V P{T=P)exp{i (25+¢+v)} + exp (i (28— @+ v}
Ay =Pexp{i(28, 4 v:)} + (1 — P)exp {i (26, — 20+ va)};

Here ¢ is determined by Eq. (61), and 5j(b) (i =1, 2)
and &8(b) are given by:

(68)

8: (b) = Tkidh’, . V,f_“ [£(1—2) —vam]™,
5

i

S::%(é‘—{—éz). (69)
while the small phases Yk are the additional phase
shifts in the transition region that occur in the Landau-
Zener formula (61).

Each term in (68) corresponds to a definite transi-
tion path. Eq. (68) implies that the differential cross-
sections will arise from interference between the con-
tributions from different trajectories of the process

e
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FIG. 18. Square root of the probability of predissociation of the O,
molecule. {#] Circles: experimental data for different vibrational levels
having energies measured from the quasi-crossing point. Solid curve:
theoretical calculation.

corresponding to different values of b, but having the
same scattering angle 6.1% %] Here the phases of these
contributions are determined by the classical actions
along the corresponding trajectories with change of
terms at the transition point Rp. Thus, the cross-
sections for inelastic and elastic processes should
oscillate in a certain angular range. Moreover, the
properties of these oscillations at large energies (the
relation of the period to the energy, etc.) should re-
semble the properties of charge-transfer oscillations
(see Chap, 3).

Such oscillations of the cross-sections for inelastic
processes (often called Stueckelberg oscillations) have
actually been detected experimentally in many systems
(He*—He,'® He'—Ne,*®! Li*—Li,!®) 0" + Ne,[®)
He' + Ar,l®@ Na' + Ne, K' + Nel®!), Even earlier, the
occurrence in scattering of an inelastic process has
been indicated by anomalies observed in elastic scat-
tering in He*—He!*®! or He'—Ne, Ar'®! Figures 19
and 20 show typical structures of differential cross-
sections of inelastic processes in cases of pseudo-
crossing of terms. The most fully studied!®® process
of inelastic scattering of He* by Ne will be discussed
in detail below.

An important feature of the cross-sections of such
processes is their threshold nature. In particular, the
cross-section oscillates for values 7 > Ty, greater
than a certain threshold value Tthr, but declines
rather sharply at angles 7 < Tthr. Moreover, measure-
ments of the cross-section at different angles give the
constant value Tihr = E6 for the reduced threshold
scattering angle. In exactly the same way, oscillations
of elastic scattering (e.g., He* by Ne) caused by an
inelastic process begin at a definite value 7 = T?ﬁr,
independent of the energy. (The values of T¢hr and of
Tfhlr do not coincide, since they roughly correspond to
scattering in the differing potentials U,(R)and [U.(R)
+ Uz(R)]/ 2.

w7

S - e/ Z 3
SwhE
FIG. 19. Inelastic scattering I E
cross-section of He* by He with = F
formation of He (23 s). Cross-sec- "5\/”_ ”;
tions and angles are in terms of re- E
duced variables. I
gl ool e Lo b

g 05 w15 2 25 a0
7= E@, keV-degtee
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FIG. 20. Inelastic scattering cross-sections of He* by Ne at an energy
of 71 eV with excitation of Ne to the 2p° 3s state. Cross-sections and
angles are in terms of the reduced variables.

Thus, at large energies, the onset of the inelastic
process corresponds to quite definite values (7inp or
Tthr ) of the reduced angle, or, in view of the corre-
spondence principle, to quite deﬁmte values of the
impact parameter b, Thus, one can find the value b,
=b}|r=7€last from the scattermg function for the
first term bd(7), which is known from elastic-scatter-
ing data. Here the function b3(7) is monotonic for the
repulsive potential U;, so that larger b values corre-
spond to smaller angles, It has been thought on these
grounds'®®:*®) that the angle Teﬁr that characterizes
the onset (on the side of low TS of oscillations in the
elastic channel corresponds on the b3(7) curve to the
maximum impact parameter for which the trajectory
touches the crossing region. Hence it coincides with
the radius R, for crossing of the terms. However,
we shall show below that this is not true, since scatter-
ing functions influenced by a combination of two poten-
tials are not monotonic as bl(7) is. Hence, the value
be = b°(T ) does not coincide with Ryp, although it is
closely related

The table, which is taken from!'®), gives the values
of b, found in this way and the theoretically-predicted
crossing distances Ry, together with the assumed
symmetry of the intersecting terms for the different
systems.

Following™ %! we shall treat in more detail dif-
ferential scattering cross-sections in the presence of
an inelastic process. For simplicity, we shall restrict
ourselves to the high-energy approximation, for which
it is convenient to carry out the description in terms
of the reduced angles 7 and the cross-sections
pij(7, E).

The scattering amplitudes at the angle T are ex-
pressed in terms of the transition amplitudes App,(b)
by using (51). Each term in the expressions (68) for
App, corresponds to definite radial actions Ay(b):

AT = 25 + ¢ for inelastic scattering, and 25,, 25, - 2¢

. . R,
el b, atomic Signs of Probable P
System Tthy» €V degree units detection symmetry a‘:z’i"t';c
Het— He 1600 1,7 Oscillations 22; — 22; 1,5
1950 1,9 Losses in the 2T+ 23 *) 1,75
He* — Ne 2500—9500 1,4+-1,1 elastic channel 2y —23
etc.
870 2,9 Oscillations 2¥ 25 %)
Het— 1000—3000 2,4—1,9 | Losses in the 2y —23
elastic channel etc.
* According to the conclusions of a new study. [*]
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for elastic scattering. Hence, those impact parameters
by(7) will contribute to the scattering amplitudes at
the given angle 7 for which the total actions Sy(b)

= Ay + 2b7/v* are stationary in the variable b. Conse-
quently, the deflection functions by(7) or 7,(b) that
contribute to the process are:

T (b) =T (b) % ¢ (b), (70)

(1)

for inelastic and elastic scattering, respectively. Here
73(b) and T(b) are deflection functions in the potentials
UY(R) and T(R) = (U} + U3)/2, while the function t(b)
is determined in the high-energy approximation by the
expression

w0 (b), Te(b) =10 (b) — 2t ()

AUY =0 U,

If we take into account the root-type behavior of
t(b) near Rp:

t(b)=AFV 2R, (R,—b), b— R,

we can depict the form of the deflection functions that
contribute to elastic and inelastic processes by refer-
ring to the deflection functions 79(b), 73(b) and 7 (b)
in the potentials U$, U3, and U (Fig. 21). We see from
Fig. 21 that two impact parameters contribute to inter-
ference in the cross-section p,, for angles T larger
than a certain threshold value 7th, at which the func-
tion 7(b) passes through a minimum. Analogously, in
elastic scattering, either two impact parameters con-
tribute to interference in the cross-section when
T>Tp= Tl(Rp) or three impact parameters when
Tp<T< T . Here Tu} is the threshold of the ano-
malies in the elastic cross-section, which differs from
the threshold Tthr of inelastic scattermg, and is de-
termined by the minimum on the el (b) curve. When
T< Ttﬁr’ we have unperturbed scattering by the first
term.

L

0(8)

b%lu_ Ry TE—T T b

FIG. 21. Scattering in a system of two intersecting terms. a) Form
of the deflection functions 7t(b) heavy lines) that contribute to the
inelastic process at angles above the threshold 7. The functions (),
79(b), and 7(b) correspond to scattering in the potentials U, U,, %(U, +
U, ); b) form of the deflection functions el (b) and 'r‘,’ (b) that contri-
bute to elastic scattering. The intervals marked out on the axis indicate
the regions in which the quasi-classical description fails.

*The sign of the second term corresponds to repulsion.
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Thus, the deflection functions are non-monotonic in
nature when an inelastic process occurs. As was shown
previously in!?®! the same non-monotonic behavior
occurs if there is any discontinuity of the potential, even
in the absence of an actual inelastic process (e.g., in
the case of a smoothed discontinuity of the adiabatic
terms). However, when there is a non-monotonic de-
flection function, interference effects like rainbow
scattering should be manifested,[”] and they will give
rise to peculiarities in the differential cross-sections.
The relation between the anomalies in the differential
cross-sections observed in close collisions of ions and
rainbow scattering has already been noted in!®") and it
was confirmed by detailed analysis in(®%, They showed
there that anomalies (peaks) will also characterize the
total (elastic and inelastic) differential cross-sections.

One can derive very simple expressions for the
cross sections at high energies for which the probabil-
ity of an inelastic transition is small. In particular, if
the energy exceeds the value Emgayx at which inelastic
scattering has its maximum amplitude, then the motion
of the system mainly follows the diabatic terms. Hence,
the cross-section can be treated in the lowest-order
perturbation theory of the interaction. Such a calcula-
tion gives the following quasiclassical expression for
the inelastic cross-section when 7 > Tthp:

b=V o T =P e+ i (T— P evs=iniz*, (72)

Here the reduced cross-sections

v}
(D=5 3Tat

correspond to the branches b,(7) and b.(7) (7 > Tthr),
which are inverse functions of 7¥(b); P(b) is the
ordinary transition probability of (58) for small V,,;

b2
”ﬂzvl/1 3

The phase difference of the two terms of (72) that de-
termine the experimental phase 27N(7, E) of the oscil-
lations of the cross-section p,; is

2nV3,

L—P(b)= 7AFog °

=8—85-5=2 S Ab(tydr, Ab=b,—b,,
T thr
That is, it is determined by the area of the cross-
hatched region in the diagram. At angles near the
threshold value, the quasiclassical expression (72) is
inapplicable, and it must be replaced with the quantum
expression. In full analogy with the rainbow phenome-
non (see’®), the cross-section p, is expressed as
follows in the vicinity of Tijr in terms of an Airy
function :[%%,94,9¢

ot E) = ——eeanr

2nN (v, E) (73)

8aV2,whine Ry
AL VR2 by
d2t- |

AT =T — Ty, %= (-d[’lethx) ”3.

For elastic scattering, the quasiclassical expres-
sions for the cross-section corresponding to the
branches 79 and 7€last of Fig. 21 are given in{®*!],

In the neighborhoods of the angles relast g Tp (see
Fig. 21) where the different branches of the scattering
function merge, the quasiclassical description is in-
applicable. In these regions, calculation leads to the
quantum formulas for the cross-section (they express
P11 in terms of an Airy function when 7 ~ Tfﬁ , and in

o (= 20wy,

(74)
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terms of a parabolic-cylinder function when 7~ Tp)
correctly merge with the quasiclassical expressions
outside these regions.

We note one important fact. The anomalies in the
elastic channel caused by the inelastic process begin
on the small-angle side at T~ ‘re1 (see Fig. 21b).
Here the value be = bi(7§) r) that corresponds to this

7 is identified with the crossing radius Rp to a rough
approximation'®*s*® but actually does not coincide with
it: be > Rp. Perhaps this explains the reason why the
experimental values of b, found from the onset of
anomalies in the elastic channel are higher than the
theoretical values of Rp (see the table above).

Thus one can gain information from the oscillations
of the inelastic and elastic cross-sections on the cor-
responding scattering functions T*(b) and 7€1ast(p),
which are defined by Eqs. (70) and (71), and then one
can find the parameters of the ground term UYR) and
the excited term U3S(R) of the system.

Now we shall take up an analysis of inelastic scat-
tering in the system He'—Ne, which has been most
fully studied experimentally, Figure 20 gives the in-
elastic cross-section for excitation of the 2p°3s con-
figuration of the Ne atom in collisions with He" ions,
as measured in'*®), In addition to the rapid Stueckel-
berg oscillations visible in Fig. 20, the cross-section
(7, E) (both in amplitude of the first peak and in
other characteristics) shows a slow modulation. The
authors oft®® ascribe it to the existence of a second
dissociation channel {Ne*—He(1s2s) of the excited
state that arises in the quasi-crossing region. How-
ever, we shall restrict ourselves here to discussing
only the properties of the rapid (Stueckelberg) oscilla-
tions, and in particular, to quantum effects in inelastic
scattering.

Beginning with about the second period of oscilla-
tions and beyond, in accord with the quasiclassical
formulas (72) and (73), the experimental phase of the
osc111at1ons 2aN(7, E) (N =1, 2,.,..at the peaks, and

3/2, /2, ...at the minima of p (7)) proves to be
proportmnal to EY2, so that the quantity

(15)

Ab = qp IV E)
at

AV
~ EV? l;_r = const

does not depend on E, and is approximately equal to
0.36 atomic units, However, as T — Tthr, the quantity

(76)

~ EME g

aN
~1/2 97
E Ny

T=Ty T2—T

(7N is the location of the Nth peak) depends on the
energy. In fact, if at large 7 (N =< 2) the period of the
oscillations in 7, which is equal to (dN/ dT)}‘N, is pro-
portional to EY?, then the period (7, — 7,) and the
half-period (73, = 7,) that follow first after the
threshold of the oscillations of the cross-section should
be linear functions of EY®, according to (74), with a
ratio of slopes of 1.69, as is observed experimentally
(Fig. 22). Analogously, the quantity in (76) as a func-
tion of the energy should be proportional to EY

whereas the quasiclassical theory makes this quantity
independent of the energy. The agreement of the theo-
retical relation with experiment confirms the necessity
of a quantum analysis (in distinction from the quasi-
classical analysis) of scattering near the threshold of
an inelastic process.
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o %% FIG. 22. Relation of the sizes of
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3 | ° 3 the inelastic scattering cross-section
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An analogous application of the analytic expres-
sions[® to handle the experimental data on elastic
scattering of He" by Ne near the threshold of the ano-
malies is complicated by the fact that in this system
the regions 7p~ Tﬁ}r and 7~ 7§l., in which the
quantum description is necessary, prove to be very
close together. In such a case, one must find the
cross-sections numerically. Figure 23 gives the re-
sult of such a calculation'® of the elastic cross-sec-
tion of the system He® + Ne. The theoretical and ex-
perimental curves show excellent agreement.

Up to now, we have been treating inelastic processes
arising from quasi-crossing of terms, However, there
are a large number of inelastic processes that cannot
be described by a quasi-crossing model. For example,
these include inelastic transitions having a small
resonance defect. We cannot take up in detail the other
types of non-adiabatic transitions and models to de-
scribe them,!'""*) ag well as the numerous experi-
ments concerned with these processes.

Analogously, we cannot throw any light on the entire
field of phenomena involving highly-excited atomic
states. The point is that we have been restricting our-
selves up to now in the discussion to examples of in-
elastic processes having a relatively low level of ex-
citation that involves only the outer shells of the atoms.
However, high excitations of atoms that involve the
inner shells are also of great interest. Such processes
have been widely studied, mainly in the work of
Afrosimov, Federenko, et al,!®®®" and of Everhart and
his associates,!'®! where they measured by coincidence
techniques both the energy losses and the charge states
of particles that had undergone close collisions, Here,
both the energy losses and the number of emitted elec-
trons increase sharply at quite definite critical dis-
tances (R =~ 0.5, 0.2 atomic units), which correspond
to overlap of the inner shells of the atoms, It turns out
that these results can be understood!*®*® by the same
methods as the processes of excitation of the outer
shells, in terms of quasi-crossing of the molecular
levels of the inner electrons, This possibility arises

FIG. 23. Theoretical and experi-
mental elastic scattering cross-sections
of He* by Ne. [%]

4 S
7,10% eV deg
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from the fact that the dimensions of the transition
region AR remains, as before, less than the charac-
teristic dimensions R, of the given atomic shell, in
spite of the increase in both the interactions and the
characteristic energy ranges. The phenomena observed
here are accompanied by emission of an inner electron,
with subsequent Auger transition with emission of
several electrons from the outer shell, Detailed de-
scription of this field of phenomena is undoubtedly
worthy of an independent review.

In conclusion, we shall mention another phase-inter-
ference effect, which is manifested in the fact that the
total (rather than only differential) cross-sections for
excitation and charge transfer show a complex oscilla-
tory structure in many systems: He'—Hel!%%
Na*—Ne,!*®] Zn*—Cd.!"™) One of the possible
models!1%:2%) of this effect assumes that the excited
term is split {e.g., into spin states). Then, in addition
to the region ( Rp) of transition from the ground term
to the excited multiplet, there is a region (R,) in which
transitions occur within a group of close excited levels.
Here the total cross-section for excitation of each in-
dividual line of the multiplet will oscillate with a phase
that depends on the splitting of the terms and the loca-
tion of the regions of Rp and R,. A detailed interpre-
tation of the observed oscillations of the cross-sections
will permit us in the future to elucidate the terms of
ion-atom systems and to understand the mechanisms of
various excitation processes.
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