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I. INTRODUCTION

STRONG electric fields produce a great variety of
effects in semiconductors. They alter basically the
quantum states of carriers and their energy spectrum.
This gives rise to dependences of the macroscopic prop-
erties of semiconductors on the applied field E. Exam-
ples of such effects are: the dependence of the complex
permittivity on E, resulting from the possibility of fun-
damental absorption of photons whose energy is less
than the forbidden band width (the Franz—Keldysh ef-
fect); the tunnel current in a degenerate p-n junction
(the Esaki effect), etc.

The application of strong electric fields can give rise
to states in semiconductors which are far from thermo-
dynamic equilibrium. Such states appear when sound is
amplified or generated by carriers drifting in piezo-
electric and nonpiezoelectric semiconductors, These
problems have been reviewed by Gurevich!') and
Pustovoit. [’

‘‘Hot”’ electrons in semiconductors are another ex-
ample of a nonequilibrium state. The term ““hot’’ elec-
trons has been suggested by Shockley!®? for a nonequi-
librium state of carriers in a semiconductor in which
their average kinetic energy is increased by an external
electric field so that it can be described by an effective
temperature Te(E) which exceeds the lattice tempera-
ture T. Such heating of carriers by an electric field al-
ters considerably many physical properties of semicon-
ductors and gives rise to new effects, in particular, to a
dependence of the electrical conductivity on the electric
field, nonlinear galvanomagnetic effects, S-type and N-
type current-voltage characteristics and associated in-
stabilities of various types. The experimental and the-
oretical investigations of hot electrons were reviewed
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by Conwel} £*2 (the Russian translation of this review
was supplemented by numerous editorial comments and
by references to newer studies). Physical effects which
are observed in semiconductors with S- and N-type
current-voltage characteristics were reviewed in detail
by Volkov and Kogan,®?

The successful generation of strong magnetic fields
has made it possible to investigate experimentally hot
electrons under conditions of quantization of their orbi-
tal motion. The magnetic fields in which this motion is
quantized are usually called the quantizing fields. Such
fields alter significantly the energy spectrum of car-
riers and they are responsible for the appearance of
discrete energy levels (the Landau levels), These ef-
fects give rise to a magnetic-field dependence of the
rates of relaxation in the electron and phonon subsys-
tems of a semiconductor. Thus, an experimenter can
now use—in addition to the temperature--a new macro-
scopic parameter (a quantizing magnetic field) to ‘‘con-
trol’’ the characteristic relaxation frequencies in a sys-
tem by altering the relationships between them.

The most important effect of a quantizing magnetic
field is a strong reduction of the ratio of the frequency
of electron-electron collisions vge to the frequency of
electron-phonon collisions vep. Consequently, nonde-
generate electrons fill preferentially the lowest Landau
level, whereas all the other levels contain exponentially
small numbers of electrons (it is assumed that the en-
ergy of a carrier cyclotron quantum is hQ >> Tg).

Under these conditions the frequency of collisions
between electrons belonging to different Liandau levels
becomes exponentially small. Collisions between elec-
trons within the main group located at the lowest Lan-
dau level become elastic because of the one-dimension-
al nature of their motion. This means that such colli-
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sions do not alter the state of the system and, naturally,
make no contribution to electron-electron relaxation
processes.

On the other hand, the relaxation frequency asso-
ciated with the interaction between electrons and pho-
nons, which is proportional to the product of the volume
of the phase space of the momentum of those phonons
which interact with electrons and the density of elec-~
tron states, increases as the square of the magnetic
field intensity (if we ignore quantum oscillations).
Therefore, in contrast to the classical case, the ratio
of the collision frequencies in a quantizing magnetic
field is given by

v~ (%) oxp (—72) -

The suppression of the electron-electron scattering
process by a quantizing magnetic field reduces strongly
the efficiency of the redistribution of electrons over
their quantum states and this alters considerably the
nature of the carrier distribution function.

A quantizing magnetic field has also a strong influ-
ence on the relaxation frequency of long-wavelength
phonons (75g) whose momenta are hig S ix™* =Hqp
< T/s =hqT [r» = (ch/ |e|B)'/? is the magnetic length or
the quantum Larmor radius, s is the velocity of sound]
and which interact with electrons. According to the law
of conservation of momentum, only these phonons can
interact with electrons. The long-wavelength phonons
can also relax at a characteristic frequency TE_)IIJ by in-
teracting with short-wavelength thermal phonons whose
momenta are T/s. A quantizing magnetic field can alter
the relationship between 7pe and Tp, and, therefore,
such a field can be used to investiga?e the phonon—?honon
relaxation frequency 7pp. In fact, when Tpg >> Tpp, the
‘‘pottleneck’ (whose cross section is proportional to
Tﬁf)) in the energy relaxation of the hot electrons is the
transfer of energy from the long- to the short-wave-
length phonons (the thermal reservoir). Finally, in very
strong magnetic fields characterized by q > qr the
energy of hot electrons may be transferred first to non-
equilibrium phonons and from them—by collisions with
the boundaries of a sample—to the surrounding medium
(the reservoir in which the whole sample is located).
These very strong magnetic fields can be used to inves-
tigate the energy relaxation frequency of phonons inter-
acting with the boundaries of a sample.

Thus, a quantizing magnetic field affects the relaxa-
tion processes and alters considerably the conditions
for electron heating and for the appearance of ‘‘over-
heating’’ instabilities.

The present review discusses the work done on the
problems outlined in the preceding paragraphs.*

*We shall not consider the first theoretical investigations [¢°] in
which a reduction in the mean free path of carriers due to heating has
been predicted. This prediction has been confirmed experimentally in
later studies. ['®!2] The role of the electron-electron scattering has
been investigated in [ 3715},
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. HEATING OF ELECTRONS IN CROSSED
ELECTRIC AND QUANTIZING MAGNETIC
FIELDS

1. Quantitative Estimates of Electron Heating

The principal approximations in the theory of hot
electrons can be considered by making qualitative esti-
mates on the basis of the laws of conservation of energy
and momentum,

We shall assume that the inequality Q7p >> 1 is sat-
isfied (2 is the cyclotron frequency and 7, is the mo-
mentum relaxation time). An external electric field E,
applied at right-angles to a magnetic field B, does the
following work on electrons per unit time:

e’ ne 7rEY/m(Q7,) (ng is the electron density and m
is the effective mass of an electron), The Hall field is,
for the time being, assumed to be zero.

The energy balance is of the form

ey o g (Et—fine (1.1)

m@r, ) T

where € and ¢* are the equilibrium and nonequilibrium
values of the mean energy of an electron and 7. is the
energy relaxation time.

It follows from Eq. (1.1) that

o= [145 () s], s=om (L.2)

In the absence of a magnetic field the expression for
the energy of hot electrons is of the same form as Eq.
(1.2) but the Larmor radius Ry, is replaced by the mean
free path.

In a quantizing magnetic field, when € << HQ (the
quantum limit), we have to replace Ry, with the magnetic
length A = (chi/|e|B)*/? (known also as the quantum Lar-
mor radius), We must also make allowance for the de-
pendence of the inelasticity parameter 6 on B. If elec-
trons are scattered quasielastically, i.e., if 6"B) is
large, the heating of electrons may be strong even if the
parameter eE)/€ is small. We shall estimate 6(B) as-
suming, for the time being, that the energy and momen-
tum are dissipated in electron-phonon collisions. The
order of magnitude of 6(B) is the same as that of the
ratio of the energy transferred by an electron to the
lattice in one collision to the characteristic energy of
an electron. The probability of emission of a phonon of
momentum lqg and frequency w,, calculated per unit
time, is proportional to (1 + Ny) and the probability of
absorption is proportional to Ny. The total number of
collisions of an electron with phonons is ~ (1 + 2Nq).
The energy transferred to the lattice in one collision is
Ae~[(1 + Ng) — Ng]hwy (1 + 2Ng)™". Electrons interact
with phonons whose momentum is hig ~ir~, At mod-
erately low temperatures Ng ~ T/fisA™* (s is the veloc-
ity of sound and T is the lattice temperature). Using
these estimates, we find that the inelasticity coefficient
is

Ae _ hsh1 hsh-l

5~ Be . AME =

3 T : :(%)2<<1' (1.3)

It follows from this formula that the scattering of elec-
trons by phonons remains quasielastic in a wide range
of temperatures and magnetic field intensities. Substi-
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tuting Eq. (1.3) into Eq. (1.2), we obtain the following
estimate for the temperature of the hot electrons:

1 fcE\2]
re=T[t+5 (%) |-
If the elastic electron-impurity scattering is also
important, we find that

hog \ 2 Vep
8 (T) (vgp,ngi)'
where vep and vej are the momentum relaxation fre-

quencies in the case of interaction with phonons and im-
purities, respectively, and Eq. (1.4) becomes:

(1.4)

(1.5)

To=T {145 (&) 11+ @airvepl} (1.6)
Similar expressions for the electron temperature
were first obtained by Kazarinov and Skobov,! 13
In the experiments on hot electrons it is usual to
employ conditions under which there is no current in the
Hall direction (Iy =0) but the Hall field is Ey#0. The
preceding discussion can be easily extended to this case.
For this purpose we shall use the condition Iy = o xxEy
+ gyxEx =0 to express the Joule power of hot electrons
IxEx in the form

2 2
ke[ (g owtrom D)
It follows from this formula that an allowance for the
Hall field in Eq (1.6) can be made by the s1mp1e re-
placement of E? with [1 + (oxy/oxx(Te))® ]E%. We then
obtain the following relationship:

et {1 ()T () (30

This equation, which gives Tg in terms of T, B, and
E, does not always have real positive solutions for Te.
The nature of the solution depends primarily on the
carrier relaxation mechanisms which determine the
dependence of gxx on Te. Thus, for example, if the
main contribution to oxx is made by the elastic scat-
termg on neutral impurities, it follows that g xx
< Te . Therefore, it follows from Eq. (1.7) that the
Joule power during heatmg increases proportionally to
Ta/ 2 , whereas the power P transferred by electrons to
phonons decreases with increasing Tg. Consequently,
in fields Ex exceeding a certain critical value E, the
energy balance is no longer possible. The system be-
comes unstable through heating, which destroys the or-
bital quantization of electrons by the magnetic field and
transfers them to the classical region (iQ < Tg), where
different dependences of IxEx and of P on T ensure
that a stable stationary state is formed. In this situa-
tion the current-voltage characteristic is of the S-type.
However, if the Hall field vanishes (Ey =0), the ef-
fective electron temperature is given by Eq. (1. 6) and
can be expressed directly in terms of T, B, and Ex
Substituting this equation into ¢ xx < (T/Te)s/ we can
easily show that the current-voltage characterlstic is
initially (in the ohmic region) linear, rises to a maxi-
mum, and then begins to fall. However, in strong elec-
tric fields when the heating destroys the quantization
(B2 < Tg), this fall in the current-voltage characteris-

(1.8)

Y
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tic changes to a rise. In this way, the characteristic
acquires the N-type shape, [ ¥7!

In the quantum region we can use the smallness of
the parameters {(eEx/<€) and (er) to establish a re-
lationship between the diagonal f and the nondiagonal f
elements of the density matrix (in the Landau represen-
tation):

?N eEK

{1+ o)+ }7

Like the symmetrical part of the distribution function
in the classical case, the diagonal element of the den-
sity matrix T makes no contribution to the transport of
charge and energy. Such transport is determined com-
pletely by the nondiagonal element f, which is the quan-
tum analog of the asymmetrical part of the classical
distribution function. Since f << I, the relationship be-
tween f and f is the same as in the linear form of the
quantum transport theory. The principal difference be-
tween the theory which makes allowance for the heating
of electrons and the linear theory is the dependence of
f on the electric field through Te. This is why the
Joule power can be represented in the form of Eq. (1.7)
with oxx dependent on Tg. In the linear theory f is the
thermodynamic equilibrium form of the density matrix.

This analysis of the heating of electrons by a strong
electric field is based on the assumption that we can in-
troduce the concept of an effective electron temperature
Te. Inview of this, we shall consider the strength of
the electron-electron scattering processes. It follows
from general considerations that the electron-electron
collision frequency increases with increasing electron
density and it can exceed the frequency of the collisions
between electrons and phonons. The energy acquired by
electrons from the external electric field is redistrib-
uted rapidly between them because of the high frequency
of the electron-electron collisions. The temperature of
the electron system rises because the transfer of energy
from electrons to phonons (to the lattice) is slow. Since
the drift momentum of electrons usually relaxes much
faster than their energy, frequent electron-electron
collisions under drift conditions ensure that the distri-
bution function remains Maxwellian but the effective
electron temperature Te is, generally speaking, not
equal to the lattice temperature.

A consistent analysis of the cases of high and low
carrier densities can be carried out if we can establish
a quantitative criterion which divides these two cases.
This requires an estimate of the effective frequencies
of the electron-phonon and electron-electron collisions.

2. Characteristic Frequencies of Electron-electron and
Electron-~phonon Collisions

In the classical (nonquantum) theory an analysis of
the electron-electron and electron-phonon collisions in-
tegrals leads to the concept of a critical electron den-
sity ner [*#71 at which the frequencies of the electron-
electron and electron-phonon collisions are equal. A
consistent analysis of this problem, based on the Boltz-
mann equation, was given by Dykman and Tomchuk.[ 31
According to these authors,
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new=msT3 [ 4netl, T n (22) 7 (2.1)
where gy, = 1p, %% C2m®T) ™! is the mean free path of
electrons scattered by phonons in the absence of a mag-
netic field; p, is the density of the semiconductor under
mvestlgauon, Co is the deformation potential constant;
b ~ e®/Te is the minimum value of the impact parame-
ter, defined as the distance in which the kinetic energy
of the colliding electrons becomes comparable with the
energy of interaction between them; rp =(Tg/ 41mee2)1/ 2
is the Debye radius. At electron densities n> ngp the
electron-electron collisions predominate over the
electron-phonon events and we may introduce the con-
cept of an effective electron temperature.

A quantizing magnetic field reduces the importance
of the electron-electron collisions and displaces strong-
ly the value of ngp toward higher electron densities.[?
It follows from Eq. (A.1) that those collisions between
electrons at the same Landau level which are not ac-
companied by transitions to other levels have no influ-
ence on the distribution function because the collision
integral associated with them vanishes for any depend-
ence of fy, on pY. This happens because the collisions
between electrons at the same Landau level (ny’ =ny’
=n, =n,) are one-dimensional and elastic and, conse-
quently, they do not alter the microscopic state of the
‘electron system. A nonzero contribution to the electron-
electron collision integral can be made only by the col-
lisions between electrons belonging to different Landau
levels. If i >> ¢, only the low Landau levels withn =0
and 1 are important. We can easily demonstrate that
the principal contribution to the collision integral 1£€(f)
is made only by the terms with n, =ny» =0 and ny
=ny’ =1, All the other terms, apart from those just
given, make an exponentially small contribution either
because of the large values of n (in this case, n,’
+np’—ny—ny =0, pz ~VmTe) or because of the
large value of ky necessary for the transfer of a par-
ticle to a higher Landau level (in this case, ny’ +ny
—ny—ny# 0). The collisions involving a small trans-
fer of the momentum hky become important because of
the infinite radius of the Coulomb interaction. There-
fore, I§5(f) can be expanded as a series in tiky /p,. The
more important terms of this expansion are of the
form:(1

N~

(2.2)

me‘ i

wn(5) o (=g
(v, = 1,781 is the Euler constant).

Equation (2.2) has been derived ignoring the emis-
sion or absorption of plasma oscillation quanta (plas-
mons). The approximation corresponds to a negligible
frequency dispersion of the longitudinal permittivity. It
has also been assumed that A/rp << 1. We shall go
over to dimensionless variables in Eq. (2.2) by applying
the following transformations:

2 ——
» “ (7) )J;\')g 7 VZWLTe fn (pz)

ne(n) = ng exp (— nhQ/T,),

=

1
1 ’mT g {n) * (2-3)

where n, is the density of electrons at the Landau level
n =0 which is practically equal—at sufficiently high

values of 1Q/Tg—to the electron density ne; Teis a
formally introduced parameter which becomes identical
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with the effective electron temperature at electron den-
sities exceeding n¢p. The function ¥,(x) is subject to
the normalization condition

w oo

2 5 dr¥, (2) = (2.4)
n=0 —x
In dimensionless variables Eq. (2.2) becomes
L5(1) 2 Vo { W) 22—y 2 22} (2.5)
here,
Vop m TrREEL ln( ) ex ( 12 2
ee (ZmTe)3/2 Yu“ P _T) . ( .6)

Let us now consider the electron-phonon collision
integral Iep (f). At moderately low lattice tempera-

tures, when collisions of electrons with phonons are
qua.s1e1ast1c we encounter a small parameter Hs/AT

= (ms%/T)Y 2(1’19/T)1/2 < 1. The collision integral of
Eq. (A.2) can be expanded as a series in terms of this
parameter. If the electric field is weak so that it does
not affect the energy spectrum of electrons, the expan-
sion becomes

f) = 2020052 n-mé- . dfnﬁ(s) N l,— 1
i ( Ezg (){ dez 7 a~hs2(n'—}—-%) de

Frr (&) 4 fn (8) frr (€)—1n (€)
o [s——m (» '%)J T o ¥ (2.7)

where € =enpz=h9(n + 1) +py/2m, gyle)

= 2vV2m/(2 7A)°h(e — BQ(n + %)] 7'/% is the density of
states of energy € corresponding to the quantum num-
ber n.

Going over, as in Eq. (2.2), to the dimensionless
variables of Eq. (2.3), we obtain this formula for the
quantum limit:

d].n’ (8)

d

EED =% g7 {5 [ Vo 53 | Yo @ (2.8)
where
Vep = o (2mT 9" () (2.9)

The coefficients Jge and Jgp in Egs. (2.5) and (2.8)
are the characteristic frequencies of the electron-
electron and electron-phonon collisions. The critical
electron density can be found from Jge = Jep. The re-
sult igl 1?7

In (r},/52)
In(r}ipore) °

e (32 o (42) 2.10)

"3. High Electron Densities

The transport equation which defines the diagonal
element of the density matrix is of the form (see Ap-
pendix):

LN+ TE N+ 155 (=0 (3.1)

[ = (n®, p)]. At high electron densities ng > n¢y, de-
fined by Eq. (2.10), the electron-electron collisions be-
come dominant and, therefore, the terms

[Igg ) + I %i?(f)] in Eq. (8.1) can be ignored compared
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with Ig; (f). Anasymptotic solution of Eq. (3.1), corre-
sponding to the spatially uniform distribution, can be
represented in the form:

frT)=exp {C—E ()7} (3.2)
where Tg is the effective temperature of hot electrons.

Substituting the solution given by Eq. (3.2) into the re-
jected part of Eq. (3.1), we obtain the relationship

ZU TN+ LT =0, (3.3)
which can be used to express T, in terms of the elec-
tric field E. In fact, multiplying Eq. (3.3) by E(&) and
summing over K, we can find the energy balance equa-
tiOnl[zg’ 21, 671

[xEx = Pv (3.4)

where
P=22 3 hog|d(g % %) O (E (M —E (x) - hag
(q, %, v)

B L)~ () [N () N, (B2)) (3.5)

is the power transferred by electrons to the lattice, and
the Joule power is

UB)y=2% S ity | (g, %, v) P O(E () — £ (V) — hoy — eEi2q,}
(9, %, V)
) L oy -elhlg, ho,
-y (3 () (52
9 — -
NG S g B |Vi(g % MESE () — E () —cElg,)

(q, %, V)

A Y -1 (Tl (3.6)
here, Nq(hwq/T) is the Planck distribution function
and Nj is the impurity concentration. The expression
for the electrical conductivity oxyx was deduced from
the above equations by Kalashnikov and Pomortsev[?'
and later by Calecki,'®! Elesin,'®1 and Budd.‘®? The
expression for the scattering by impurities was given
by Adams and Holstein.!*®! If eEx /Ty << 1, the ex-
pression for the electrical conductivity reduces to the
well-known Titeica formula in the following two cases:
1) an isothermal system with Te = T; 2) quasielastic
scattering, (iis/AT) < 1, of hot electrons (Te # T) by
phonons.

It is worth noting that Egs. (3.5) and (3.6) remain
valid also in the case of degenerate carriers but, in this
case, f,(Te) must be assumed to be the Fermi function
at all points.

This is a convenient point for considering the role of
the term eAZqu in the argument of the function 4. It is
known from the linear transport theory[25] that a loga-
rithmic divergence occurs in oyxy when the Born ap-
proximation is applied to the scattering of electrons by
impurities. This divergence may be removed by the
broadening of the Landau levels or by the inelasticity
of the electron scattering. The truncation parameters
of this divergence are (/7€) and (fis/A€) (/7 is the
width of the Landau level and hs/A is the characteris-
tic frequency of the acoustical phonons interacting with
electrons). Another way of removing this divergence is
suggested in the nonlinear theory of galvanomagnetic
effects.!®! In fact, the argument of the function & in

Eq. (3.6) contains the term eEAzqy, which acts as the
inelasticity parameter in the scattering by impurities
and which contributes an additional inelasticity in the
case of scattering by acoustical phonons. Therefore,

the logarithmic divergence in gyxx is truncated by one
of the parameters (eAE/€), (f/7€), and (fis/A€).

The energy balance equation (3.4) makes it possible
to express the effective electron temperature in terms
of the external fields E, B, and the lattice temperature
T. We shall use this circumstance in the calculation of
the Joule power. This power depends on the boundary
conditions. We shall consider two cases: Ey =0 and
Ey # 0. The case Ey =0 may be realized in infinite
systems with the Hall current Iy = cengEy/B, or in
conductors with the same number of holes and electrons,
or in special situations such as that in the Corbino disk.
In all other cases, the Hall field is Ey # 0. However, if
Ey =0, it follows that (IE) = oxxE®, whereas if Ey # 0
and |oxy| >> o0 xx, we obtain

(IE) = -;f'— E.

In the absence of the Hall field the solution of the en-
ergy balance equation (3.4) in the quantum limit for
Ee)/Te and hwgq << Te gives Eq. (1.6) for the effective
electron temperature. This expression is identical with
that found by Kazarinov and Skobov!*? on the assump-
tion that the electron-electron scattering can be ig-
nored completely, However, if Ey # O the energy bal-
ance equation in the quantum limit is of the form[®!

Br=at(l—.). (3.7)

where

B b ( ck 2 w?,
R W] ) Ouex (T BYyvep (T, BY’
4ange? _r

(v)‘“?, - —_ —_—
o m T,

The negative solution of Eq. (3.7) can be ignored be-
cause it has no physical meaning. If g << 1, which
corresponds to small values of E, we can have two pos-
itive solutions x, ~ 1 — 8g and x, ~v 8g. The first so-
lution describes the heating of electrons which occurs
when E is increased, whereas the second solution leads
to Tg — « as E — 0. The latter solution is a conse-
quence of the reduction in the rate of transfer of heat
from hot electrons to the lattice which occurs when Tg
is increased and it demonstrates that the energy bal-
ance is disturbed if electrons are heated strongly

(Fig. 1). When T, is increased, the Joule power in-
creases as Ty/® and the power transferred to the lat-
tice increases as (Tg — T) only if the heating is weak,
i.e., if (Te — T) << T; under strong heating conditions
this inequality is not obeyed and P decreases with in-

r

Current-voltage characteristics for E L
B after allowance for the Hall field. The
characteristics are plotted for three dif-
ferent lattice temperatures (h2 > T).
The dashed parts of the curves show the
region of transition of the characteristics
from the quantum limit to destruction
of the qunatization.

———
7
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creasing electron heating as Tg'/?. It follows that there
is a field E;; at which the stationary state of a system
is still possible (P =IE.y) but if E > Ecr the expres-
sion P =IEqp is no longer obeyed and IE > P, When
the field E is increased the two solutions come closer
together and they become identical for Sg = B%r =4/27,
where Xer =2/3. The critical electric field in which
the electron temperature reaches the value Tg =%T

is given by the formula

Eq="1 2T, B)ven(T, B). (3.8)
In fields E > E; the energy balance is disturbed and
the electron system becomes unstable. In fact, accord-
ing to Volkov and Kogan,® the instability occurs in the
region where the differential conductivity og = dI/dE is
negative and the current-voltage characteristic has an
S-type bend. The differential conductivity is negative
(0q <0) if the following conditions are satisfied:

06 (Te) . 3.9

TT‘T>0' (3.9)
lno(T,) 9ln P (Tg)

o, > (3.10)

In our case, ¢ = p;{;{. The conditions of Egs. (3.9) and
(3.10) are satisfied if Te > % T. The possibility of ob-
servation of an S-type current-voltage characteristic in
a quantizing magnetic field was first pointed out by Ko-
gan. ' Figure 1 shows the current-voltage character-
istics corresponding to different lattice temperatures
in the case represented by Eq. (3.7).

Table I gives information on the dependence of E.
on the lattice temperature and on the magnetic field B
for various mechanisms of the momentum relaxation of
electrons in the case when their energy is transferred
to the acoustical phonons. It is evident from Table I
that the dependence of E;, on B and T can have a
great variety of forms but E;, always decreases with
increasing T. This happens because, in all the momen-
tum relaxation mechanisms, the Joule power always in-
creases with T faster than does the power transferred
by the electrons to the acoustical phonons. If the elec-
tron heating is sufficiently strong so that the quantiza-
tion condition T > K is violated, the system may re-
vert to a stationary state (Fig. 1). If 7y7¢ < (Te)? we

find that the energy balance equation for p < 1 has a
single-valued solution, whereas for p = 1 the solution
is not single-valued and an ‘‘overheating’’ instability
may be observed. For example, if the electron momen-
tum and energy are transferred to the acoustical lattice
vibrations in the classical (nonquantum) range of strong
magnetic fields, the system considered will be in a sta-
tionary state and the effective temperature of the
strongly heated electrons will be given by

A N (3.11)
Vi3msigh(n

where
@)= 5 daebit (a);

here, Tak(e /T) is the momentum relaxation time of an

electron whose energy is € and which interacts with the
acoustical phonons (see, for example,*°), Table I
gives also information on the influence of the tempera-
ture on the critical field in various scattering mecha-
nisms.,

Table II gives data on the dependences of Tg and of
the transverse magnetoresistance on the lattice temper-
ature T and the electric field E in the classical re-
gion. The electron energy is transferred to the acous-
tical or piezoacoustical phonons. The transverse mag-
netoresistance may increase or decrease with increas-
ing E and may even be independent of E; the actual
behavior is determined by the relaxation mechanism of
the electron momentum.

Concluding this subsection, we must point out that
the results obtained are within the limits of the validity
of our theory, In particular, E; defined by Eq. (3.8)
satisfies the inequality eEx << T. In fact, it follows
from Eq. (3.8) that

cEg y2 Q2 i
( B ) Ve (T, Byvop (T, B) ~qp S <8 (3.12)

Since the energy of the phonons interacting with elec-
trons satisfies the inequality Hiwy << T and H&y ~hsx™’,
it follows that

, T T

SSw T (3.13)

It follows from Eqs. (3.12) and (3.13) that

Table I Dependences of E, on T and B for various
mechanisms of electron momentum relaxation (energy
is transferred to acoustical phonons)

Momentum relaxa- V(T, T, B)
tion mechanism
Acoustical 32117*8—3/2
phonons
Neutral Bzror:ﬂl 2
impurities s
lonized BoroT - /2
impurities s
Piezoacoustical Byt
phonons .
Optical phonons Bnror;* x
Optical phonons BT T:slz
(T > op)

E. (T, B) <TH(T, Te)>
B2 71Tl
B2T-1 o7
B1T-1 ToTeJ/z
ptlep—tiz TxT:llz
B¥ep—3aX TBTO %
() | o 29)
Bilap—tiz gyl
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L ae Q2
(eE o 1) ERTAAE ey o T &I,

This inequality means that the work done by the Hall
field (and, consequently, by the external field) over a
distance equal to the magnetic length A is small com-
pared with T,

4, Allowance for Phonon Heating!*!

We have assumed that the phonon system is in the
state of equilibrium with a reservoir whose tempera-
ture is T. However, this assumption is not always jus-
tified. The energy acquired by electrons from the elec-
tric field is transferred in electron-phonon collisions
to the long-wavelength phonons (electrons interact only
with these phonons). The long-wavelength phonons then
transfer the energy to the short-wavelength (thermal)
phonons. We recall that the long-wavelength phonons
are those whose momentum is in the range hg <Hha™*
= hqp. The characteristic momentum of the thermal
phonons is of the order of T/s =HqT. Therefore, the
division of phonons into the long- and short-wavelength
groups has meaning only if g << qT. The behavior of
the long-wavelength phonon system is determined by
the relationship between the characteristic relaxation
times of the interaction of these phonons with the elec-
trons, 7pe(q), and with the thermal phonons, Tpp(q). If
the long-wavelength phonons collide more frequently
with the electrons than with the thermal phonons, the
relaxation times obey the inequality Tpe(q) >> Tia(q).

In this case, the state of the long-wavelength phonons

is determined primarily by the electron subsystem and
their temperature is equal to the electron temperature
Te. If the opposite inequality Tﬁé(Q) << Tpplq) is satis-
fied, the state of the long-wavelength phonons is deter-
mined by the state of the thermal phonons (the reser-
voir) and the temperature of the former is equal to the
reservoir temperature T. We have assumed implicitly
that the second case, i.e., the thermal equilibrium be-
tween all phonons, applies. At low temperatures Tﬁf,(q)
decreases proportionally to T, whereas Tpelq) in-
creases when T is lowered and when the magnetic field
B is increased. Therefore, at sufficiently low tempera-
tures T and in sufficiently strong fields B the first in-
quality -rr')é(q) >> TI;;)(q) may be satisfied. In this case,
the heating of electrons gives rise to the heating of the
long-wavelength phonons and temperatures of the ther-

Table IO, Dependences of Te and of the
transverse magnetoresistance on T and
E in the classical (nonquantum) region
(energy is transferred to acoustical or
piezoacoustical phonons)

Momentum; @) (ac) (pac) (0009
i a
relaxation | TINT, E) | %, p) | 1P, By | P2, )
mechanism
Acoustical | 7l2g1 7382 T-1E2 7yzgL
phonons
4
Neutral Tog*/s TOE® TOE4 T0E0
impurities
Piezo- T-152 73/2p-1 . -
acoustical
phonons

+
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mal and long-wavelength phonons are no longer equal.
This effect is due to the slowing down of the transfer of
the energy, acquired by the long-wavelength phonons
from the hot electrons, to the thermal phonons and is
known as the ‘‘phonon bottleneck.”’

We shall now consider the phonon bottleneck mecha-
nism. We shall introduce the distribution of functions
(the diagonal elements of the density matrix) of the
long-wavelength phonons Ny and of the short-wave-
length phonons Np (k is the wave vector of a short-
wavelength phonon). The electrons will be described,
as before, by a Maxwellian distribution function with an
effective electron temperature Tg. Since the thermal
phonons are in thermodynamic equilibrium with the
reservoir at the temperature T, it follows that their
distribution is described by the Planckian function. We
have to find the distribution function Ny. We shall as-
sume that Ny is isotropic in the phase space of q.
This is possible at velocities of ordered electron drift
which do not exceed the velocity of sound and under
conditions such that the momentum of the long-wave-
length phonons is dissipated mainly at the boundaries
of a sample and not in the phonon-phonon and phonon-
electron collisions, i.e., if the following inequality is
obeyed:

L - -
T~ == max (Trps The)s

where L is the characteristic dimension of a sample
and Ty is the characteristic relaxation time of the
long-wavelength phonons at the boundaries of a sample.
Under these conditions the distribution function is of the
form!®71

No(To) 15t (0. Te) -+ Ng () 15p (0, T)

No= o5 @ T+ 15h @, T) ’ (4.1)
and in the quantum limit we have
T m2s? PE n2g?
T[—hx (q' Te) — V2“ mn -’241’30"0’12 ex ( . gl _ iq_z) s (4.2)

h(mT* (g, | 2 8mT,
Cih
200V "

A ac

The expression for the relaxation frequency of the lon-
gitudinally polarized phonons is of the form?!33 341

T (g, T) :ﬁ (%)4@ (4.3)
If the temperature of the reservoir is sufficiently low
and the electron heating not too strong, so that

4 " 2
10 ()< () () (8)
(8p is the Debye temperature, Ny is the number of lat-
tice atoms per unit volume, and a is the lattice con-
stant), we find that 7pelq, Te) << Tpplq, T); it then fol-
lows from Eq. (4.1) that the temperature of the long-
wavelength phonons is equal to Te and they are de-
scribed by the Planckian distribution function.
The power transferred by the long-wavelength pho-

nons to the thermal phonons is given by the formula

(4.4)

Puy(T, To)= ; hog [Ng(TY— Nq (Tl 135 (g, T). (4-5)

If iwg << T, we canuse Eq. (4.3) to find!s1}
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7312 Vim T5h (qm) O
e

32k (4.6)

Pop(T, T ~ (1—-TT:)

In deriving Eq. (4.6) we have taken account of the fact
that the long-wavelength phonons which are in equilib-
rium with electrons have maximum momenta (iq | )y
~%a"' and (figz)m ~ V2mTe in a plane orthogonal to
the magnetic field B and directed along B, respectively,
and that (q )y, ~ X' >> (4z)m. Since the maximum en-
ergy of the long-wavelength phonons emitted by elec-
trons is of the order of fis/x and is independent of the
electron temperature, it follows that when fis/x < T the
thermal phonon subsystem can always be regarded as
the thermal reservoir. This is not true in classical
(nonquantizing) magnetic fields,[321

An allowance for the heating of the long-wavelength
phonons reduces the rate of rise of the Joule power (in
the presence of the Hall field) with increasing electron
temperature below the rate of rise of the power trans-
ferred to the lattice (it is assumed that the momentum
and energy are transferred to the acoustical phonons):

By =200m () 5ty (7)™

B (4.7)
Therefore, in the quantum limit a stationary state of
the electron-phonon system is not disturbed by any field
E and we can easily show that

T.=T (1 +(E/EV], (4.8)

where the characteristic electric field E is
& D) v (7. BY T (gme T) (12 4.9
E- I’ 3V 2 ahethln, _] ’ ( * )

However, the energy balance equation may be dis-
turbed before the orbital quantization is destroyed if
the scattering of electrons by neutral or ionized impuri-
ties is important. In the quantum limit the scattering by
neutral and ionized impurities is described by the fol-
lowing expressions:

vo o< BT, v oc BT,

The Joule power (IE) increases with the electron
temperature as Ti/°. This law is also obeyed by the
power transferred to the lattice (thermal phonons), Ppp.
An ““overheating’’ instability appears when the electric
field reaches Ecr. We can easily show that Ecyp is
identical with E defined by Eq. (4.9) if we replace
uep(T, B) with the momentum relaxation frequency in
the case of scattering by impurities. When E =Eer
the electron heating is rapid and it may destroy the
magnetic quantization of the orbital electron motion if
the impurity scattering during heating is not suppressed
by the acoustical scattering (this ensures a stationary
state of the electron system under quantization condi-
tions). Table II gives information on the dependence of
Eer on T and B for various scattering mechanisms.
This table gives data on the dependence of Eop on T
and B in the case when the energy acquired by the
long-wavelength phonons from hot electrons is trans-
ferred not to the thermal phonons but directly to the
boundaries of a sample. This occurs when Tpp >> 7p
(Tp is the energy relaxation time at the boundaries of
the sample). We can easily show that (Ep)cp is

A. M, ZLOBIN and P. S. ZYRYANOV

(mT)3/2 TB‘V (T, B) ] 1/2

27/ \2heZh2n, (4 10 )

(Eb)cr = [
We note that when an allowance is made for the heating
of the long-wavelength phonons, the value of Eqr always
increases with increasing T because of the rapid in-
crease in the power transferred to the reservoir but it
decreases when the electron density is increased. When
no allowance is made for the heating of the long-wave-
length by electrons, the value of E; always decreases
with increasing T but is independent of the electron
density. Experimental investigations of such depend-
ences should make it possible to determine the role of
the phonon bottleneck effect in semiconductors.

The quantization of the cyclotron orbits is destroyed
by the strong heating of electrons. Under the phonon
bottleneck conditions a stationary state of electrons is
established for any momentum relaxation mechanism,
whereas in the absence of this effect the scattering by
ionized impurities does not ensure that the electron

" system is in a stationary state., Table IV gives infor-

mation on the dependence of the electron temperature
and of the transverse electrical resistivity p, on T, E,
and ne.

The phonon bottleneck effect may occur in semicon-
ductors if the temperature is sufficiently low. For ex-
ample, when n-type germanium is subjected to a field
B = 10° Oe at T = 15°K, the cyclotron orbits are found
to be quantized (A ~ 0.8 x 10~ cm, qT = T/hgq
~Tx 107 cm™") and the inequalities necessary for this
effect [qm < qT and that given by Eq. (4.4)] are satis-
fied.

Gluzman, Lyubimov, and Tsidil’kovskii t3% 3¢} meas-
ured the electrical resistivity of n-type germanium with
ne = 8.6 x 10 em™ at T = 16.6°K in strong electric
(up to 50 V/cm) and magnetic (up to 140 kOe) fields. The
momentum and energy of the long-wavelength phonons
were dissipated at the boundaries of a sample and,
therefore, the critical field at which an instability was
observed was given by Eq. (4.10). The dependences
p 1 (I) obtained in magnetic fields B =28, 42, and 56 kOe
indicated a reduction in the resistivity caused by elec-
tric fields E of about 3-4 V/cm, which was evidently
due to the destruction of the quantization of the cyclo-
tron orbits. These values of E were close to the val-

Table III. Dependences of E,p on B and
T under phonon bottleneck conditions in
various momentum relaxation mechanisms
(the last column gives the values of Etgr
for energy transfer not to the thermal pho-
nons but directly to the surrounding
medium via the boundaries of a sample,
Tpp > Ths where Tp is the energy relaxa-
tion time at the boundaries)

Momentum relaxation E n” EP %
mechanism cre cr e
Acoustical phonons plapsiz Bil2pl/e
Neutral impurities B2 B/270
Ionized impurities Bl27e Bl/270
57475 /2 1/2
Piezoacoustical BT N Br ho
phonons _ hoo __ oo
Optical phonons BPirtla, 2T BTt 2T
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Table IV. Dependences of the electron temperature Tg
and transverse resistivity p;, on T, E, and the elec-
tron density ne in classical (nonquantum) region

Piezoacoustical

p2sptsr—2
n
phonons

(T <op)

Momentum o "pp > b
relaxation
mechanism Te(T, E, ny) pi(T, E, np) T, (T, E, ng) 0L(T, Ey np)
| ,

Acoustical n2/sgtisy—2iv \p—t/ap2lay—4/s g 2r0 Wl/2p3/ap0
phonons e

Neutral ni,/"’EQ/“T“‘/’ n;“EOTO n:[;,El/‘x,T(] w—1g070
impurities e

Ionized n*3p*/ay—-4is n2E—2T4 nip2re nSl2g=370
impurities

ne—“/sE—z/sT2

Optical phonons | 3B T3 x| n71EOTY x
 eftn/3T X e—hwo/T

nzlelT—llz ng—slaE—lizT—Sh

ni/sﬁ;‘/srd %
X gtho/.’)T

ny EOTO %
Xe”'h“"’/T

ues of (Ep)cp calculated from Eq. (4.10). In stronger
fields E the fall in the resistivity was masked by a
strong rise which was attributed to the ‘‘transverse
breakdown.’’ 371 The same effect was observed in n-
type Ge subjected to strong electric fields by Suzuki. !
It would be desirable to repeat these experiments at
different reservoir temperatures because this would
give information on the heating of the long-wavelength
phonons.

The heating of the long-wavelength phonons under
similar conditions but in the absence of the Hall field
was studied also by Gurevich and Gasymov. {**1

5. Very Strong Magnetic Fields

When the magnetic field intensity B is increased the
maximum momentum of the phonons interacting with
electrons increases as h/x., When is/x 2 T practically
all the phonons interact with electrons, i.e., all the pho-
nons apparently acquire long wavelengths and the number
of the short-wavelength phonons with momenta exceeding
hi /» becomes exponentially small. The thermal reser-
voir, which is formed by the short-wavelength phonons
when 3! =qp < qT = T/Hs, disappears when the in-
equality qp > gt is obeyed. The medium surrounding
a sample then acts as a reservoir. The energy acquired
from the hot electrons by the whole phonon system is
then transferred across the boundaries of the sample to
the surrounding medium (the reservoir). In this case,
we encounter a new characteristic (in addition to the re-
laxation times characterizing the electron-phonon Tpe
and phonon-phonon Tpp interactions), which is the re-
laxation time of the phonons interacting with the bound-
aries of a sample, 7. The analysis of the heating of
electrons can be simplified by considering the asymp-
totic solutions corresponding to different relationships
between these three relaxation times.

When T, is the shortest of the three characteristic
relaxation times, the phonons acquire energy from the
hot electrons and transfer it immediately to the bound-
aries of the sample without coming into collision with
other phonons. In this case, we can analyze the weak
heating of electrons corresponding to the inequality qT
< gp and the strong heating when the opposite inequal-
ity is satisfied. It is shown in [*7 that in the electron

temperature approximation, when Tpp >> Tpe, We have
T.cc BY(TY E1, (5.1)

if the momentum is dissipated by interaction with ion-
ized impurities, and

Teoc BT E! (5.2)

if the momentum is lost by scattering on neutral im-
purities.

An ‘‘overheating’’ instability appears in strong fields
E > Ecp. The dependence of E¢pr on the parameters of
the system considered here has been determined by the
present authorst* 1 and can be given by the following
formulas:

when Tpp > 1 < Tpe(qB, Te)

41Ko (1))%/ (mve (T, B) 54 (a5, 1) V' ImT]'/2 (5.3)
anl (5) 3 (5) [harl* Ko (ar/qp) [Bneezhd} />

where Ko(x) is the Macdonald function, I'(t) is the gam-

ma function, £(x) is the Riemann zeta function, and

ve(T, B) is the momentum relaxation frequency which

occurs in the electrical conductivity oxx; when Ty

>> 1p >> TpeldB, Te) we obtain

E.~

2nT)3/3 Vep (T, B /2

Ecr:[(_Z(;mzhn%Ji . (5-4)
It follows from the above formula that Ecp < BY?(T)°
for ionized impurities and Eqp o B*/*T)° for neutral
impurities.

We shall now consider the third limiting case, when
Tp >> Tpp > Tpe, i.e., when T is the longest relaxa-
tion time. Under weak heating conditions (qT < qB) the
phonons emitted by electrons have energies hsqp > T.
However, since Ty >> Tpp, these phonons split into two
(each of which has an energy ~ Tg) before transmitting
their energy to the medium surrounding a sample. After
a characteristic time! 32!

(# is a numerical factor which is ~2 for Si and Ge)
these phonons reach equilibrium with other phonons and
the hot electrons and then they transfer their energy
across the boundaries of the sample to the ambient me-
dium. Under these conditions the energy reaching the
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boundaries of the sample increases proportionally to
qu and, therefore, the system is stable. Under strong
heating conditions (qTe > qp) the energy of the phonons

emitted by the electrons is hisqg < Tg. Therefore, the
emitted phonons become thermalized by merging proc-
esses because Tp, < Ty, i.e., they reach equilibrium
with the electrons and the other phonons whose temper-
ature is Tg; next, the energy is transferred by the pho-
nou system to the boundaries of the sample. The char-
acteristic time for the process of merging of two pho-
nons with momentum %x~! can be deduced by means of
Eq. {25) given in [3*] where the upper limit of the inte-
gral must be replaced with A™%, In this way, we obtain

- A
Top {98, To) & Ty 91, (5.5)

The energy balance equation now predicts stationary
states of the system. Under strong heating conditions
Te « (T)°B°E*/, if the electron momentum is dissipated
on ionized impurities, and Tg o (T)°B™*/°E*/® if the mo-
mentum is dissipated on neutral impurities. The corre-
sponding dependences of the current on the electric and
magnetic fields and on the temperature are, respec-
tively,

I. o (T)° B°E22, (5.6)

I, (TP B~*12E22, (5.7)
6. Other Mechanisms of Energy Dissipation by Hot
Electrons

The energy of hot electrons can be transferred not
only to acoustical but also to optical and piezoacoustical
phonons, If a semiconductor contains several groups of
carriers with strongly differing masses, the energy of
the lighter hot carriers may be transferred by colli-
sions to the heavier carriers and then to the lattice.

The dissipation of the energy of hot electrons by in-
teraction with piezoacoustical phonons was first consid-
ered by Kogan,'?1 who used the electron temperature
approximation. It is evident from Table I that the ratio

of the frequencies of electron relaxation by acoustical

and piezoacoustical phonons is Vep/ ué%ac} «B. There-

fore, the dependence of EL‘}“’ on B and T in the case

of scattering of hot electrons by the piezoacoustical

phonons is, in accordance with Eq. (3.19), of the form

E;gac) o Eg.C)/B. Dividing the values of Eg (T, B)

of Table I by B, we obtain the dependences EF2C'(T, B)
applicable to different momentum relaxation mecha-
nisms, The dependence of the electron temperature on
the electric field E is then given by an equation simi-
lar to Eq. (3.7) in which vep is replaced by Uépam. In
the case of interaction with the acoustical and piezo-
acoustical phonons, the coefficient 8,, which is associ-
ated with the quadratic (in the electric field) correction
to the transverse electrical conductivity o = p;{;{, has
the following dependences on B and T:[2!

87 < T2B=, B o T2p1,

The relaxation of the energy of hot electrons by in-
teraction with the optical phonons was considered in
the electron temperature approximation by Pomortsev
and Kharus.!*v %23 An interesting consequence of their
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investigations is the prediction of an oscillatory depend-
ence, on the magnetic field, of the power transferred by
the electrons to the optical phonons. Every time the
parameter A = wy,— MQ (w, is the frequency of the op-
tical phonons and M is an integer) is made to vanish
by the application of a magnetic field, the power tends
to infinity as In (Te/A). Such singularities are due to
the contribution of the electrons with zero values of the
z component of the momentum. The heating of the opti-
cal phonons suppresses the divergence of the power
transferred to the lattice as A — 0 and, moreover,
such heating destroys the power resonance if the relax-
ation frequency of the electrons interacting with the op-

tical phonons u(ggt’ is considerably higher than the non-

electron relaxation frequency of the optical phonons,
(opt)
“pp

If the electrons lose their momentum by interacting
with impurities or with the acoustical lattice vibrations,
it is found that the electrical resistivity p; is a mono-
tonically decreasing function of the electron tempera-
ture. Therefore, at the points corresponding to the res-
onance emission of the optical phonons (A = 0), the elec-
tron temperature should have minima and p, should
have maxima.

The electrical resistivity p, is an oscillating func-
tion of B even in the absence of electron heatingt®?
but the conditions for the direct observation of this ef-
fect are extremely stringent. This is because at low
temperatures, necessary to ensure the existence of the
Landau levels, the resonance scattering of the electrons
by the optical phonons is accompanied by other nonres-
onance’ scattering mechanisms (ionized and neutral im-
purities, acoustical and piezoacoustical phonons) which
suppress the resonance scattering effect. In sufficiently
strong electric fields which ensure Tg > T the loss of
energy by the electrons in the emission of the optical
phonons becomes considerable.(**? Therefore, in the
nonohmic region we may expect the appearance of os-
cillations of the magnetoresistance when B is varied.

Stradling and Wood! %! observed such oscillations in
n-type GaAs and found that the maxima of p; were
shifted, relative to the magnetophonon resonance points,
toward weaker magnetic fields. Stradling and Wood at-
tributed this effect to electron transitions to impurity
levels rather than to the zeroth Landau level.

7. Low Electron Densities

Kazarinov and Skobov! 1 were the first to solve the
problem of the heating of electrons in crossed (orthogo-
nal) strong electric and quantizing magnetic fields.
Kazarinov and Skobov ignored the electron-electron
scattering. They showed that, if the electric field is
sufficiently weak so that it does not affect the energy
spectrum of electrons and if the scattering by phonons
is quasielastic (eEx/& << 1), the energy balance equa-
tion for electrons of the €, ¢ + de group obtained in the
quantum limit is of the form:

2P (&)~ -2 (I () E). (7.1)
The electron distribution function satisfies a first-
order differential equation. The effective temperature
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Te can be introduced if the electrons are scattered by
impurities and acoustical phonons; in this case, the tem-
perature is given by Eq. (1.6). This is associated with
the fact that the ratio vej/vep is independent of the
electron energy €. A reduction in the transverse resis-
tivity due to an increase in the electron temperature has
been observed experimentally,l, 473

The nonlinear electrical conductivity in the absence
of electron-electron scattering was also considered by
Calecki.!® His approach is basically applicable to
‘‘warm electrons,’”’ i.e., to weak electric fields
E << (s/c)B. Zlobin!*1 extended Kazarinov and Sko-
bov’s theory of nonlinear galvanomagnetic effects to the
case of relaxation of the energy of hot electrons by the
interaction with optical vibrations.

In contrast to Pomortsev and Kharus,!*" **J whose
work was considered in the preceding subsection,
Zlobinf#] considered the case of low electron densities
when the concept of the effective eleciron temperature
could not be introduced a priori.

Collisions of electrons with the optical phonons are
strongly inelastic and, therefore, an integral equation
for the diagonal element of the electron density matrix
cannot be reduced to a Fokker—Planck differential equa-
tion. However at low temperatures T < fiwg [w
= wy (11— a?® q ?) is the frequency of an optical phonon
when the dispersion is allowed for]| we can also intro-
duce the concept of quasielastic scattering but only in
relation to the double process of absorption-emission
of an optical phonon.!®! When the two lowest Landau
levels are considered in the quantum limit the equation
for the differential energy balance can be represented
in the form

N (e) i (#)

€T 5 T 5t | 172 o Ve )
<] v%% V’T(lv\i\ A)r B (7.2)
where

M f(e), %i(e), Ty(e), and M ,(e) are known functions of
the energy.t*1
The solution of Eq. (7.2) is of the form

e

f(e)- exp {—S de’ 1 (7.3)

Tt hgE )’
and the electron ‘‘temperature’’ depends on the energy
€. However, there are limiting cases when one can still
introduce an effective electron temperature which is the
same for all electrons, irrespective of their energy.

It is shown in £*8] that in the range of energies €
<< Q2 the concept of an electron temperature has mean-
ing in the quantum limit (@ > w, >>> €) as well as in the
magnetophonon resonance region if w,~ @ < T/h and if
Q >> wTe ~ T(1 +2yg). At the magnetophonon reso-
nance point the electron temperature Tg has a maxi-
mum,

When the energy and momentum of carriers are dis-
sipated on the optical phonons at low temperatures
(T << KQ, Hw,), we have gyxyx = Tg' and, therefore, the
heating of electrons results in a minimum of oxx at the
resonance point w, = MQ (M is an integer). However,

vl
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the density of the electron states has a singularity at
the resonance point and this increases oxx. This effect
is a consequence of the linear theory of transport in
weak fields and is not related to heating. Therefore,
when carriers are heated the reduction in the conduc-
tivity oxx at the resonance point may be the dominant
effect and it may give rise to a minimum, as predicted
by the linear transport theory. Aksel’rod et al.™1ob-
served conductivity minima associated with hot elec-
trons in n-type InSb at temperatures of 16-30°K, in
magnetic fields up to 100 kOe, and in electric fields up
to 12 V/cm (see also [%61),

Yamada and Kurosawal®®! investigated experimen-
tally and theoretically the behavior of electrons in n-
type InSb subjected to crossed fields. They replaced
the solution of the transport equation which included an
allowance for the scattering on the optical phonons by a
simpler approach in which the diffusion equation was
solved in the energy space. Their results also yielded
a conductivity minimum at the magnetophonon reso-
nance point. However, one should stress that Yamada
and Kurosawat®®1 did not actually derive the diffusion
equation with a collision integral for the interaction be-
tween electrons and optical phonons and, therefore, it
is difficult to determine what approximations were
made.

We shall now consider the limitations of the method
in which the diagonal elements of the density matrix are
found from the differential energy balance equation
I(e)E = P(e). This method is based on the assumption
that a diagonal element of the density matrix depends on
n and pz only via the energy E(n, pz). This is strictly
true only in the quantum limit when the average energy
of electrons is Te << h2 and the lowest Landau level
with n =0 is practically filled. In this case, we can ig-
nore all the diagonal elements of the density matrix
corresponding to n # 0 since these elements are expo-
nentially small for large values of hQ2/Te. Therefore,
the problem reduces to finding only one diagonal ele-
ment of the density matrix corresponding to n =0,
which depends only on one variable py.

If the parameter To/BQ is not small, it is necessary
to make allowance for electrons occupying several Lan-
dau levels. In this case, the density matrix can be found
only by solving a complex system of differential equa-
tions. We can show that the transport equation for the
diagonal elements of the density matrix for electrons
interacting with the acoustical phonons and with short-
range impurities is of the form:

Z {g %’ g”()(/‘ /(&) !‘_0/,:3'5(5))]}

o B g @) o= fule| (14525 g+
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Ln1~n>{gu © 5 [ 84 (@

(7.4)

where gp(€) is the density of the electron states corre-
sponding to the Landau level n and located in the energy
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range €, € +de; fi is the highest Landau level which is
still within the range of the energy €. In deriving Eq.
(7.4) it has been assumed that the scattering of elec-
trons by the acoustical phonons is almost elastic and
the shift of the Landau levels by the electric field is
negligible. An equation of this type was derived also by
Inoue and Yamashital®!3 (their phonon collision integral
has two terms less than the integral given above).

In the quantum limit Eq. (7.4) has the form of an
equation of continuity in the energy space (7.1) and the
distribution of electrons is characterized by an effec-
tive temperature Te defined by Eq. (1.6). It must be
stressed that when Te/HQ is not small the transport
equation does not reduce to the differential form of
Eq. (7.1) and the electron distribution usually becomes
oscillatory.

Rigorous allowance for the scattering by the optical
phonons complicates the problem even more.

I, HEATING OF ELECTRONS IN PARALLEL
STRONG ELECTRIC AND QUANTIZING
MAGNETIC FIELDS

In this section we shall assume, as in Sec. II, that
the work done by an external field on an electron in the
time separating two consecutive collisions is smalll
compared with its characteristic energy €. When E||B,
the electric field does work eE] in a distance equal to
the mean free path I, whereas when E L B the work
done is eE). Therefore, the criterion of weak electric
fields in the E |B case is of the form eEl/€ << 1, This
criterion differs from that for E L B by the factor I/2
~ Q7VT/hQ, which should be greater than unity even in
the quantum limit (2 >> T). The effective electron
temperature for E||B is still given by

ro~T 1 (i’—’) 5T, B,

which follows from the energy and momentum balance
equations.

A more detailed study of the dependence of Tg on
the parameters of a system in the case of different en-
ergy and momentum relaxation mechanisms can be made
made only if we adopt the microscopic approach to the
derivation of the balance equations.

8. High Electron Densities

In this case, we can introduce the concept of an ef-
fective electron temperature Te. In order to find it we
shall derive the energy balance equation by equating the
Joule power

LE =0..(T,Te, BE; <t (T, Te, B) E} (8.1)

to the power P transferred to the phonons and given by
Eq. (3.5). The relaxation time 7(T, Tg, B) in gzz can
be calculated by means of the transport equation

oF IZW\U e)

ok, = '7' (CORE (8'2)

in which the collision integrals are found by means of
Eqgs. (A.2) and (A.4) with Ex =0, and the distribution
function £, is selected in the form

I,

v =fy (o) -+, (8.3)
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where fu(Te) is the Maxwellian distribution function
with an effective electron temperature T, which de-
pends on T, E,, and B, and

— 21D S(E ). (8.4)

o= ""SEM

Multiplying the transport equation (1.2) by
pz0[E(v) — €] and taking a trace over v, we find that in
the elastic scattering approximation

Ble)= —Lar(y, (8.5)
where
() - 28 S L9 (hg) S [E (v) — €] 8 [E () — el
o
XA Calt Ny Golt Nid { 3, (p2 S 1E ) —e1} ™ (8.6)
Hence, if follows that
e = Bt Ll T (E () (1, Ty B) —p7. (8.7)

Table V gives information on the dependence of

7(T, Te, B) on the arguments in the quantum limit. It is
evident from this table that the Joule power increases
with increasing electron temperature more rapidly than
does the power defined by Eq. (3.15) and transmitted to
the lattice. Therefore, an ‘“overheating’’ instability may
occur. This result was first derived by Kogant?1 for
the case when the electron momentum is dissipated on
charged impurities and the electron energy on the acous-
tical and piezoacoustical phonons. The foregoing still
applies when the phonon system is in equilibrium.

The heating of phonons is important and must be al-
lowed for if the frequency of collisions between the
long-wavelength phonons and electrons exceeds the fre-
quency of collisions between the long-wavelength and
thermal phonons. In this case, the temperature of the
long-wavelength phonons is equal to the effective elec-
tron temperature Tg (the phonon bottleneck effect) and
the ‘‘overheating’’ instability does not appear for any
momentum relaxation mechanism with the exception of
that involving ionized impurities. Table V gives data on
the dependence of Ty and the longitudinal resistivity
p; in two cases: when the long-wavelength phonons
transfer their energy to the thermal phonons (7pp
<< 7p) and when they transfer their energy to the bound-
aries of a sample (7pp >> 7p). The data are given for
different momentum relaxation mechanisms. All the re-
sults given in Sec. II.2 are applicable also to the case
E ||B if we replace everywhere p ; with p).

9. Low Electron Densities

Pomortsev(®?] was the first to consider the case of
low electron densities in the presence of a quantizing
magnetic field B |E on the assumption of thermodynam-
ic equilibrium in the phonon subsystem. The results ob-
tained by Pomortsev for all the quasielastic scattering
mechanisms indicated that the region of quadratic devi-
ation from Ohm’s law was extremely narrow. This de-
viation can be explained by the fact that all the quasi-
elastic scattering mechanisms considered by Pomort-
sevl®¥] give rise to the ‘‘runaway’’ of electrons toward
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Table V. Dependence of the relaxation time 7 of the
longitudinal momentum of electrons on T, Te, and
B in the quantum limit. Dependence of the effective
electron temperature Te and of the longitudinal elec-
trical resistivity on T and B
Tpp<1b ‘(Pp>'\'b 1
Relaxation (T, T, 14
mechanism T T, 1) oy, T (T, I } oL
Acoustical APl pho gt 73,5032,25 =12 R
phonons
Neutrat poplizp=1 § p=ip=iie TIR2,%5 Tofg-2 T2
impurities ¢
lonized gtz - _ . —
impurities ¢
Piezoacousti- et |y Syt 73,503"/1 711 7t
cal
phonons B N
Optical Pty | PR 78,5574 7ol 7t
phonons
Optical Tt s |rSape X Top0 | TopTie s TOnY
phonons "o o o o o
(T<op) L exp (;(_'“) LoNp (—(;;—)”) ALexp (— I—;D) xexp(é%’{) eAp (— %)
When 7pp < the energy is transferred to the thermal phonons but when 75, >
Th it is transferred directly to the surrounding medium through the boundaries of a 4,
sample.
higher values of the energy. At high energies the effects, the collision integral can be written in the
g y s
strongly inelastic collisions become important and they  form:f®!
stabilize the distribution function of electrons heated by e
a strong electric field. I = s 2 [ dkdppo v v k)
We shall conclude this review by considering the role R i, S
of the c.lrag effects and of tl'le phonon em%ssmn.by a su- B (MAL (Rt Ryt — 1) < (h)? - s (pF — p)]
personic electron flux. This effect was investigated ex- (A1
perimentally by Esaki®7 in very pure single crystals KU Prom R} £ (pl— k) —fa (P2) fny (PR, -

of bismuth subjected to crossed fields (a quantizing
magnetic field Bz and a strong electric field Ex). At
carrier drift velocities vy = cEy/By lower than the
velocity of sound s in Bi the current-voltage charac-
teristics were linear. At the point v: =s there was a
sharp kink and in higher fields Ex the current again
increased proportionally to Ex but the rate of rise was
faster than in the range Ey < EX. Thus, the current-
voltage characteristics consisted of two linear regions
with a kink at the point corresponding to cEy5/B, = s.
Similar experiments were carried out by Borisov et
al.[%%] on bismuth in pulsed fields by varying the steep-
ness of the leading edge of the pulses. When the leading
edge was very steep, Borisov et al.!%*] observed an S-
type current-voltage characteristic. When the steep-
ness of the leading edge of the applied pulses was re-
duced the S-type characteristic transformed into that
observed by Esaki.[5%!

Unfortunately, there is as yet no self-consistent mi-
croscopic theory of these effects, although there have
been attempts to develop such a theory,t5575%)

APPENDIX

1. The collision integral of Coulomb particles in a
quantizing magnetic field has been investigated by Ele-
onskii et al,t?°) and by Silin.'%*? In the case of nonde-
generate electrons and in the presence of polarization

where

E..

Ov, v, p,p, k)= (dki/c_]_
b

()2 ()
S nlingt nt

g pr’\.~/nv\ }Vfﬁ/ri
( iy ( 2 )

exp (-— A2k%)

i (P 1
'Hu 2 ’

2 inlon 1ty 4
( N I‘L );nv Ayl g
)

0, = min (n,, n}); Lgl(t) is a generalized Laguerre
polynomial; kzl =k¥ + k§, ; €lw, k|, ky) is the longitudi-
nal permittivity of the electron gas.

2. The electron-phonon and phonon-electron colli-
sion integrals in a quantizing magnetic field B = By
perpendicular to a strong electric field E = Ex can be
written in the following form (in the Born approxima-
tion for the electron-phonon interaction):f¢¢}

FEN =23 (1= Puy 4, % VS (E (V) — E () + Raog
*®q
+el?q Bl {fu (1= (1 = Vo) — v (1 = 1) No}
T (N =22 1A (g % W S IE (4)— E (x) - kg +hiq,E)

nv (A‘z)

S A (L= fo) (Vg )= 3 (1= f) Vo), (A.3)
where the operator 131,,{ is used to make the substitu-
tion v ==k, Alg, «, v) = Cq (k|exp igr|v) is the matrix
element of the energy of interaction between electrons
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and phonons, calculated from the wave functions in the
Landau approximation (v =n, p,, X,); E is the total
field acting on an electron (including the Hall field).

3. The collision integral for electrons interacting
with impurities is of the following form (in the linear
approximation with respect to the impurity concentra-
tion Nj):f273

I =N 22 ST (4, v, @) P Ufu— 11 O 1E () —

®,q

E (v) —eEMNg,).

Here, T(v, k, q) =t(E,)(v{exp iqr|«) is the scattering
amplitude of an electron of energy E, interacting with
an isolated impurity center. In the Born approximation
we have

[T (v, %, @) P={Vq P (] [0 2,

where V,
tential.
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