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I. INTRODUCTION

OTRONG electric fields produce a great variety of
effects in semiconductors. They alter basically the
quantum states of carr iers and their energy spectrum.
This gives rise to dependences of the macroscopic prop-
erties of semiconductors on the applied field E. Exam-
ples of such effects are: the dependence of the complex
permittivity on E, resulting from the possibility of fun-
damental absorption of photons whose energy is less
than the forbidden band width (the Franz-Keldysh ef-
fect); the tunnel current in a degenerate p-n junction
(the Esaki effect), etc.

The application of strong electric fields can give rise
to states in semiconductors which are far from thermo-
dynamic equilibrium. Such states appear when sound is
amplified or generated by carriers drifting in piezo-
electric and nonpiezoelectric semiconductors. These
problems have been reviewed by Gurevich t l ] and
Pustovoit. [ 2 : l

" H o t " electrons in semiconductors are another ex-
ample of a nonequilibrium state. The term " h o t " elec-
trons has been suggested by Shockleyc 3 ] for a nonequi-
librium state of carriers in a semiconductor in which
their average kinetic energy is increased by an external
electric field so that it can be described by an effective
temperature Te(E) which exceeds the lattice tempera-
ture T. Such heating of carriers by an electric field al-
ters considerably many physical properties of semicon-
ductors and gives rise to new effects, in particular, to a
dependence of the electrical conductivity on the electric
field, nonlinear galvanomagnetic effects, S-type and N-
type current-voltage characteristics and associated in-
stabilities of various types. The experimental and the-
oretical investigations of hot electrons were reviewed

by Conwell t 4 ] (the Russian translation of this review
was supplemented by numerous editorial comments and
by references to newer studies). Physical effects which
are observed in semiconductors with S- and Ν-type
current-voltage characteristics were reviewed in detail
by Volkov and Kogan.c 5 ]

The successful generation of strong magnetic fields
has made it possible to investigate experimentally hot
electrons under conditions of quantization of their orbi-
tal motion. The magnetic fields in which this motion is
quantized are usually called the quantizing fields. Such
fields alter significantly the energy spectrum of car-
riers and they are responsible for the appearance of
discrete energy levels (the Landau levels). These ef-
fects give rise to a magnetic-field dependence of the
rates of relaxation in the electron and phonon subsys-
tems of a semiconductor. Thus, an experimenter can
now use—in addition to the temperature—a new macro-
scopic parameter (a quantizing magnetic field) to "con-
trol" the characteristic relaxation frequencies in a sys-
tem by altering the relationships between them.

The most important effect of a quantizing magnetic
field is a strong reduction of the ratio of the frequency
of electron-electron collisions vee to the frequency of
electron-phonon collisions i/ep· Consequently, nonde-
generate electrons fill preferentially the lowest Landau
level, whereas all the other levels contain exponentially
small numbers of electrons (it is assumed that the en-
ergy of a carrier cyclotron quantum is ΚΩ » T e ) .

Under these conditions the frequency of collisions
between electrons belonging to different Landau levels
becomes exponentially small. Collisions between elec-
trons within the main group located at the lowest Lan-
dau level become elastic because of the one-dimension-
al nature of their motion. This means that such colli-
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sions do not alter the state of the system and, naturally,
make no contribution to electron-electron relaxation
processes.

On the other hand, the relaxation frequency asso-
ciated with the interaction between electrons and pho-
nons, which is proportional to the product of the volume
of the phase space of the momentum of those phonons
which interact with electrons and the density of elec-
tron states, increases as the square of the magnetic
field intensity (if we ignore quantum oscillations).
Therefore, in contrast to the classical case, the ratio
of the collision frequencies in a quantizing magnetic
field is given by

The suppression of the electron-electron scattering
process by a quantizing magnetic field reduces strongly
the efficiency of the redistribution of electrons over
their quantum states and this alters considerably the
nature of the carrier distribution function.

A quantizing magnetic field has also a strong influ-
ence on the relaxation frequency of long-wavelength
phonons (Tp"e) whose momenta are Rq άΚλ" 1 =KqB
< T/s =fiqT [λ = (cK/ | e | B ) 1 / 2 is the magnetic length or
the quantum Larmor radius, s is the velocity of sound]
and which interact with electrons. According to the law
of conservation of momentum, only these phonons can
interact with electrons. The long-wavelength phonons
can also relax at a characteristic frequency Tpp by in-
teracting with short-wavelength thermal phonons whose
momenta are T/s. A quantizing magnetic field can alter
the relationship between Tp"e and Tp~p and, therefore,
such a field can be used to investigate the phonon-phonon
relaxation frequency Tpp. In fact, when Tpe » Tpp, the
"bottleneck" (whose cross section is proportional to
Tpp) in the energy relaxation of the hot electrons is the
transfer of energy from the long- to the short-wave -
length phonons (the thermal reservoir). Finally, in very
strong magnetic fields characterized by qg > qx the
energy of hot electrons may be transferred first to non-
equilibrium phonons and from them—by collisions with
the boundaries of a sample—to the surrounding medium
(the reservoir in which the whole sample is located).
These very strong magnetic fields can be used to inves-
tigate the energy relaxation frequency of phonons inter-
acting with the boundaries of a sample.

Thus, a quantizing magnetic field affects the relaxa-
tion processes and alters considerably the conditions
for electron heating and for the appearance of "over-
heating" instabilities.

The present review discusses the work done on the
problems outlined in the preceding paragraphs.*

*We shall not consider the first theoretical investigations I6'9 ] in
which a reduction in the mean free path of carriers due to heating has
been predicted. This prediction has been confirmed experimentally in
later studies. [10"12 ] The role of the electron-electron scattering has
been investigated in [13" ls].

Π. HEATING OF ELECTRONS IN CROSSED
ELECTRIC AND QUANTIZING MAGNETIC
FIELDS

1. Quantitative Estimates of Electron Heating

The principal approximations in the theory of hot
electrons can be considered by making qualitative esti-
mates on the basis of the laws of conservation of energy
and momentum.

We shall assume that the inequality Ωτρ » 1 is sat-
isfied (Ω is the cyclotron frequency and T r is the mo-
mentum relaxation time). An external electric field E,
applied at right-angles to a magnetic field B, does the
following work on electrons per unit time:
β 2ηβτΓΕ 2/ηι(Ωτ 1.) ζ (ng is the electron density and m
is the effective mass of an electron). The Hall field is,
for the time being, assumed to be zero.

The energy balance is of the form

tin.
2 _ (e* —e)ne (1.1)

where e and e • are the equilibrium and nonequilibrium
values of the mean energy of an electron and T e is the
energy relaxation time.

It follows from Eq. (1.1) that

E . = i r r 1 4 4 ( i ^ \ V j , 6 ~ X (1.2)

In the absence of a magnetic field the expression for
the energy of hot electrons is of the same form as Eq.
(1.2) but the Larmor radius RL is replaced by the mean
free path.

In a quantizing magnetic field, when "e « ΗΩ (the
quantum limit), we have to replace R L with the magnetic
length λ = (cfi/lelB)1/2 (known also as the quantum Lar-
mor radius). We must also make allowance for the de-
pendence of the inelasticity parameter δ on B. If elec-
trons are scattered quasielastically, i.e., if δ~\Β) is
large, the heating of electrons may be strong even if the
parameter eE\/¥ is small. We shall estimate δ(Β) as-
suming, for the time being, that the energy and momen-
tum are dissipated in electron-phonon collisions. The
order of magnitude of δ(Β) is the same as that of the
ratio of the energy transferred by an electron to the
lattice in one collision to the characteristic energy of
an electron. The probability of emission of a phonon of
momentum Kq and frequency oOq, calculated per unit
time, is proportional to (1 + Nq) and the probability of
absorption is proportional to Nq. The total number of
collisions of an electron with phonons is ~(1 + 2Nq).
The energy transferred to the lattice in one collision is
Δ€~[(1 +Nq)-Nq]Kojq(l + 2Nq)"\ Electrons interact
with phonons whose momentum is Rq ~Ηλ~\ At mod-
erately low temperatures Nq » T/RsX"1 (s is the veloc-
ity of sound and Τ is the lattice temperature). Using
these estimates, we find that the inelasticity coefficient
is

δ~^ = - (1.3)

It follows from this formula that the scattering of elec-
trons by phonons remains quasielastic in a wide range
of temperatures and magnetic field intensities. Substi-
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tuting Eq. (1.3) into Eq. (1.2), we obtain the following
estimate for the temperature of the hot electrons:

tic changes to a rise. In this way, the characteristic
acquires the N-type shape.[16'17:

In the quantum region we can use the smallness of

If the elastic electron-impurity scattering is also
important, we find that

(1.4) the parameters (eE\/e) and (ΩτΓ)~ to establish a re- _
lationship between the diagonal f and the nondiagonal f
elements of the density matrix (in the Landau represen-
tation):

(1.5)

where ι>βρ and vei are the momentum relaxation fre-
quencies in the case of interaction with phonons and im-
purities, respectively, and Eq. (1.4) becomes:

v.Jil. (1.6)

Similar expressions for the electron temperature
were first obtained by Kazarinov and Skobov. l l 6 ]

In the experiments on hot electrons it is usual to
employ conditions under which there is no current in the
Hall direction (I y = 0) but the Hall field is E y * 0. The
preceding discussion can be easily extended to this case.
For this purpose we shall use the condition I y = axxE y

+ σνχΕχ = 0 to express the Joule power of hot electrons
ΙχΕχ in the form

Ά - Γ ΐ + ( ^ % τ Π σ » ( Γ . ) « 1 · (1·7)

It follows from this formula that an allowance for the
Hall field in Eq. (1.6) can be made by the simple re-
placement of E 2 with [1 + (tfXy/axx(Te))2 ] E x . We then
obtain the following relationship:

Γ . - ' { « + Τ ( ^ - ) 1 [ » - ( ^ Γ Π ( Η - ^ Γ ) } · (1.8)

This equation, which gives T e in terms of Τ, Β, and
E, does not always have real positive solutions for T e .
The nature of the solution depends primarily on the
carrier relaxation mechanisms which determine the
dependence of σχχ on T e . Thus, for example, if the
main contribution to σ χχ is made by the elastic scat-
tering on neutral impurities, it follows that σ χ χ

cc Tg / 2 . Therefore, it follows from Eq. (1.7) that the
Joule power during heating increases proportionally to
iyz, whereas the power Ρ transferred by electrons to
phonons decreases with increasing T e . Consequently,
in fields E x exceeding a certain critical value E c r the
energy balance is no longer possible. The system be-
comes unstable through heating, which destroys the or-
bital quantization of electrons by the magnetic field and
transfers them to the classical region (ΚΩ< T e ) , where
different dependences of ΙχΕχ and of Ρ on T e ensure
that a stable stationary state is formed. In this situa-
tion the current-voltage characteristic is of the S-type.

However, if the Hall field vanishes (E y = 0), the ef-
fective electron temperature is given by Eq. (1.6) and
can be expressed directly in terms of T, B, and E x .
Substituting this equation into σ χ χ ^ (T/T e ) 3 / 2 , we can
easily show that the current-voltage characteristic is
initially (in the ohmic region) linear, rises to a maxi-
mum, and then begins to fall. However, in strong elec-
tric fields when the heating destroys the quantization
(hTi < T e ), this fall in the current-voltage characteris-

Like the symmetrical part of the distribution function
in the classical case, the diagonal element of the den-
sity matrix f makes no contribution to the transport of
charge and energy. Such transport is determined com-
pletely by the nondiagonal element f, which is the quan-
tum analog of the asymmetrical part of the classical
distribution function. Since f « f, the relationship be-
tween f and f is the same as in the linear form of the
quantum transport theory. The principal difference be-
tween the theory which makes allowance for the heating
of electrons and the linear theory is the dependence of
f on the electric field through T e . This is why the
Joule power can be represented in the form of Eq. (1.7)
with σχχ dependent on T e . In the linear theory f is the
thermodynamic equilibrium form of the density matrix.

This analysis of the heating of electrons by a strong
electric field is based on the assumption that we can in-
troduce the concept of an effective electron temperature
T e . In view of this, we shall consider the strength of
the electron-electron scattering processes. It follows
from general considerations that the electron-electron
collision frequency increases with increasing electron
density and it can exceed the frequency of the collisions
between electrons and phonons. The energy acquired by
electrons from the external electric field is redistrib-
uted rapidly between them because of the high frequency
of the electron-electron collisions. The temperature of
the electron system rises because the transfer of energy
from electrons to phonons (to the lattice) is slow. Since
the drift momentum of electrons usually relaxes much
faster than their energy, frequent electron-electron
collisions under drift conditions ensure that the distri-
bution function remains Maxwellian but the effective
electron temperature Te is, generally speaking, not
equal to the lattice temperature.

A consistent analysis of the cases of high and low
carrier densities can be carried out if we can establish
a quantitative criterion which divides these two cases.
This requires an estimate of the effective frequencies
of the electron-phonon and electron-electron collisions.

2. Characteristic Frequencies of Electron-electron and
Electron-phonon Collisions

In the classical (nonquantum) theory an analysis of
the electron-electron and electron-phonon collisions in-
tegrals leads to the concept of a critical electron den-
sity n c r

 Lla2 at which the frequencies of the electron-
electron and electron-phonon collisions are equal. A
consistent analysis of this problem, based on the Boltz-
mann equation, was given by Dykman and Tomchuk. [ 1 5 a : l

According to these authors,
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(2.1)

where i e p = jrp0ti*s2(C^m2T)~1 i s the mean free path of
electrons scat tered by phonons in the absence of a mag-
netic field; p 0 is the density of the semiconductor under
investigation; Co is the deformation potential constant;
b ~ e 2 / T e is the minimum value of the impact p a r a m e -
ter , defined a s the distance in which the kinetic energy
of the colliding e lectrons becomes comparable with the
energy of interaction between them; rj) = (T e /47m e e 2 ) 1 / ' 2

is the Debye radius . At e lectron densit ies η > η ^ the
electron-electron coll is ions predominate over the
electron-phonon events and we may introduce the con-
cept of an effective e lectron t e m p e r a t u r e .

A quantizing magnetic field reduces the importance
of the e lectron-electron collisions and displaces s t rong-
ly the value of n c r toward higher electron d e n s i t i e s . C 1 9 ]

It follows from E q . (A.I) that those collisions between
electrons a t the same Landau level which a r e not a c -
companied by transi t ions to other levels have no influ-
ence on the distribution function because the collision
integral associated with them vanishes for any depend-
ence of fn,, on p^. This happens because the collisions
between e lectrons a t the s a m e Landau level {nv< = n^i
= nv = ημ) a r e one-dimensional and elast ic and, conse-
quently, they do not a l t e r the microscopic s tate of the
electron sys tem. A nonzero contribution to the e lectron-
electron collision integral can be made only by the col-
l is ions between electrons belonging to different Landau
levels . If ΚΩ » e, only the low Landau levels with η = 0
and 1 a r e important. We can easily demonstrate that
the principal contribution to the collision integral Ij)e(f)
is made only by the t e r m s with nv =nv< =0 and η μ
= η μ ' = 1. All the other t e r m s , a p a r t from those just
given, make an exponentially smal l contribution e i ther
because of the large values of η (in this case, nv>
+ η μ ' — η ^ — η μ = 0 , pz ~ VmT e ) o r because of the
large value of k z necessary for the t rans fer of a p a r -
ticle to a higher Landau level (in this case, nv> + ημ '
— % — η μ Ψ 0). The collisions involving a smal l t r a n s -
fer of the momentum fikz become important because of
the infinite radius of the Coulomb interaction. T h e r e -
fore, Iy®(f) can be expanded a s a s e r i e s in K k z / p z . The
m o r e important t e r m s of this expansion a r e of the
f o r m : : 1 9 ]

dpz V> dpz

dh
dVt

(2.2)

(y 0 = 1.781 is the Euler constant).
Equation (2.2) has been derived ignoring the e m i s -

sion o r absorption of p lasma oscil lation quanta (plas-
mons). The approximation corresponds to a negligible
frequency dispers ion of the longitudinal permitt ivity. It
has a lso been assumed that λ / r o « 1. We shall go
over to dimensionless var iables in Eq. (2.2) by applying
the following t rans format ions :

V2mTefn(pz)Zfl ' " v ' (2.ιλ)ί η

nc, (re) = n0 exp (— n1iQ/Te),

_ 1
(2.3)

where η,, is the density of e lectrons a t the Landau level
η = 0 which is pract ical ly equal—at sufficiently high
values of Ri2/T e—to the e lectron density n e ; T e i s a
formally introduced p a r a m e t e r which becomes identical

with the effective electron temperature a t electron den-
s i t ies exceeding n c r . The function Ψ η (χ) is subject to
the normalization condition

In dimensionless var iables Eq. (2.2) becomes

h e r e ,

(2mTe)'

(2.4)

(2.5)

(2.6)

Let us now consider the electron-phonon collision
integral I e P ( f ) . At moderately low latt ice tempera-
t u r e s , when collisions of electrons with phonons a r e
quasie last ic, we encounter a smal l p a r a m e t e r Ks/λΤ
= ( m s 2 / T ) 1 / 2 ( R i 2 / T ) 1 / 2 « 1. The collision integral of
Eq. (A.2) can be expanded as a s e r i e s in t e r m s of this
p a r a m e t e r . If the e lectr ic field i s weak so that it does
not affect the energy spectrum of e lectrons, the expan-
sion becomes

/,,.(ε)-Με)-
(2.7)

where e = e n p z = RS2(n +%) +γ>ζ

ζ/2τα, g n(e)

= 2νϋϊη7(2ττλ)2η(ε - ΚΩ(η + %)] ~1/2 i s the density of
states of energy e corresponding to the quantum num-
b e r n.

Going over, a s in Eq, (2.2), to the dimensionless
var iables of Eq. (2.3), we obtain this formula for the
quantum l imi t :

where

Van -~ '

(2.8)

(2.9)

The coefficients vee and F e p in E q s . (2.5) and (2.8)
a r e the character i s t ic frequencies of the e lect ron-
electron and electron-phonon coll is ions. The cr i t ical
electron density can be found from vee = ΰβΌ. The r e -
sult i s t l Q 3

T.
(2.10)

3. High Electron Densit ies

The t r a n s p o r t equation which defines the diagonal
element of the density matr ix is of the form (see Ap-
pendix):

CsC/) + J&{/) + /~(/> = 0 (3.1)

[κ = (nK, p z ) ] . At high electron densities n e > η, , Γ , de-
fined by Eq. (2.10), the e lectron-electron collisions b e -
come dominant and, therefore, the t e r m s
[IfP (f) + I f\(i)] in Eq. (3.1) can be ignored compared
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Θβ
w i t h I - - ( f ) . A n a s y m p t o t i c s o l u t i o n o f E q . ( 3 . 1 ) , c o r r e -

s p o n d i n g t o t h e s p a t i a l l y u n i f o r m d i s t r i b u t i o n , c a n b e

r e p r e s e n t e d i n t h e f o r m :

/-(Γβ) = β χ ρ ί ( ζ - £ ( κ ) ) ^ } , (3.2)

where T e is the effective tempera ture of hot e lect rons .
Substituting the solution given by Eq. (3.2) into the r e -
jected p a r t of Eq. (3.1), we obtain the relationship

Γ-"- [/ (Te)] + Γ— lf(Te)] = 0, (3.3)

which can be used to express T e in t e r m s of the e lec-
t r ic field E. In fact, multiplying Eq. (3.3) by E(/c) and
summing over K, we can find the energy balance equa-

t i o n . [ 2 9,21,67]

Ex -- P, (3.4)

where

Eq. (3.6) contains the term eExzqy> which acts as the
inelasticity parameter in the scattering by impurities
and which contributes an additional inelasticity in the
case of scattering by acoustical phonons. Therefore,
the logarithmic divergence in σχχ is truncated by one
of the p a r a m e t e r s (eXE/e), (fi/re), and (Ks/λε).

The energy balance equation (3.4) makes it possible
to express the effective electron temperature in t e r m s
of the external fields Ε, Β, and the lattice temperature
T . We shall use this c i rcumstance in the calculation of
the Joule power. This power depends on the boundary
conditions. We shall consider two c a s e s : Ey = 0 and
Ey Φ 0. The case Ey = 0 may be real ized in infinite
sys tems with the Hall current Iy = c e n e E x / B , or in
conductors with the same number of holes and electrons,
o r in special situations such as that in the Corbino disk.

I n a l l o t h e r c a s e s , t h e H a l l f i e l d i s E y Φ 0 . H o w e v e r , i f

E y = 0, it follows that (IE) = σ χ χ Ε 2 , whereas if E y # 0
and | a X y | » σχχ, we obtain

= -χ Σ

{.ν,

i s the power t r a n s f e r r e d by e l e c t r o n s to the l a t t i c e , and
the Joule p o w e r i s

(IE) =-- ~ - r'^Z'h I -1 (?· «. v) i2 ά {Ε (κ) - Ε (ν) - Jio>,, - eE}:%)

(3.5) In the absence of the Hall field the solution of the en-
ergy balance equation (3.4) in the quantum l imit for
EeA/T e and n w q « T e gives Eq. (1.6) for the effective
electron t e m p e r a t u r e . This expression is identical with
that found by Kazarinov and Skobov 1 · 1 6 1 on the a s sump-
tion that the e lectron-electron scat ter ing can be ig-

/„„ . nored completely. However, if Ey Φ 0 the energy bal-
Ni (~7")j ance equation in the quantum limit is of the f o r m C 2 8 ]

-E(V)-L-E/J-<I,J) ?E^y'(i --.,). (3.7)

(3.6) where

h e r e , Nq(fiwq/T) is the Planck distribution function
and Nj is the impurity concentration. The express ion
for the e lectr ical conductivity σχχ was deduced from
the above equations by Kalashnikov and P o m o r t s e v [ 2 1 ]

and l a t e r by C a l e c k i , l 2 2 j E l e s i n , [ 2 3 ] and B u d d . [ 2 4 ] The
expression for the scat ter ing by impurit ies was given
by Adams and H o l s t e i n . [ 2 5 ] If e E A / T e « 1, the ex-
p r e s s i o n for the e lectr ical conductivity reduces to the
well-known Titeica formula in the following two c a s e s :
1) an i sothermal system with T e = T; 2) quasielast ic
scattering, (Bs/λΤ) < 1, of hot e lectrons ( T e * T) by
phonons.

It is worth noting that Eqs . (3.5) and (3.6) r e m a i n
valid also in the case of degenerate c a r r i e r s but, in this
case, fj,(Te) must be as sumed to be the F e r m i function
at all points.

This is a convenient point for considering the role of
the t e r m eX2Eq v in the argument of the function 5. It is
known from the l inear t r a n s p o r t t h e o r y [ 2 5 : l that a loga-
rithmic divergence occurs in σχχ when the Born a p -
proximation is applied to the scat ter ing of e lectrons by
impur i t ies . This divergence may be removed by the
broadening of the Landau levels o r by the inelasticity
of the e lectron scat ter ing. The truncation p a r a m e t e r s
of this divergence a r e (Β/τε ) and (fis/λε) (Κ/τ is the
width of the Landau level and Ks/λ is the c h a r a c t e r i s -
tic frequency of the acoustical phonons interacting with
electrons) . Another way of removing this divergence is
suggested in the nonlinear theory of galvanomagnetic
e f fec t s/ 2 6 ] In fact, the argument of the function δ in

P j 3 " =
 4 T \ sll I axx (T, 11) v t p (Γ, IS) '

4,-tK-e2 Τ

""•••-Ε"' ^ = 1 7 •

The negative solution of Eq. (3.7) can be ignored be-
cause it has no physical meaning. If β-£ <<L 1, which
corresponds to small values of E, we can have two p o s -
itive solutions Χι ~ 1 — βΕ and x2 «* V βΕ· The f irst so-
lution descr ibes the heating of e lectrons which occurs
when Ε is increased, whereas the second solution leads
to T e — °o as Ε —• 0. The la t ter solution is a conse-
quence of the reduction in the ra te of t ransfer of heat
from hot e lectrons to the lattice which occurs when T e

is increased and it demonstrates that the energy bal-
ance is disturbed if e lectrons a r e heated strongly
(Fig. 1). When T e is increased, the Joule power in-
c r e a s e s a s Tg/2 and the power t rans fe r red to the lat-
tice increases as ( T e — T) only if the heating is weak,
i.e., if ( T e — T) « T; under strong heating conditions
this inequality is not obeyed and Ρ decreases with in-

Current-voltage characteristics for El
Β after allowance for the Hall field. The
characteristics are plotted for three dif-
ferent lattice temperatures (h£2 > T).
The dashed parts of the curves show the
region of transition of the characteristics
from the quantum limit to destruction
of the qunatization.
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creasing electron heating as Tg 1 / 2 . It follows that there
is a field E c r at which the stationary state of a system
is still possible (P = I E c r ) but if Ε > E c r the expres-
sion Ρ = I E c r is no longer obeyed and IE > P. When
the field Ε is increased the two solutions come closer
together and they become identical for β% = 0 E = 4/27,
where x c r = 2/3. The critical electric field in which
the electron temperature reaches the value T e = 3/2T
is given by the formula

, B). (3.8)

In fields Ε > E c r the energy balance is disturbed and
the electron system becomes unstable. In fact, accord-
ing to Volkov and Kogan,c 5 ] the instability occurs in the
region where the differential conductivity ad = dl/dE is
negative and the current-voltage characteristic has an
S-type bend. The differential conductivity is negative
(σ^ < 0) if the following conditions are satisfied:

i^IA->0. (3-9)

dlaa(re)
dT.

d\nP(Te)
dTe

(3.10)

In our case, σ = ρ^χ. The conditions of Eqs. (3.9) and
(3.10) are satisfied if T e > % Τ . The possibility of ob-
servation of an S-type current-voltage characteristic in
a quantizing magnetic field was first pointed out by Ko-
gan.C 2 9 ] Figure 1 shows the current-voltage character-
istics corresponding to different lattice temperatures
in the case represented by Eq. (3.7).

Table I gives information on the dependence of E c r

on the lattice temperature and on the magnetic field Β
for various mechanisms of the momentum relaxation of
electrons in the case when their energy is transferred
to the acoustical phonons. It is evident from Table I
that the dependence of E c r on Β and Τ can have a
great variety of forms but E c r always decreases with
increasing T. This happens because, in all the momen-
tum relaxation mechanisms, the Joule power always in-
creases with Τ faster than does the power transferred
by the electrons to the acoustical phonons. If the elec-
tron heating is sufficiently strong so that the quantiza-
tion condition T e > ΚΩ is violated, the system may re-
vert to a stationary state (Fig. 1). If T J T £ CC (Te)P we

find that the energy balance equation for ρ < 1 has a
single-valued solution, whereas for p > l the solution
is not single-valued and an "overheating" instability
may be observed. For example, if the electron momen-
tum and energy are transferred to the acoustical lattice
vibrations in the classical (nonquantum) range of strong
magnetic fields, the system considered will be in a sta-
tionary state and the effective temperature of the
strongly heated electrons will be given by

eE (3.11)

where

here, Ta, (e /T) is the momentum relaxation time of an

electron whose energy is e and which interacts with the
acoustical phonons (see, for example/ 3 0 3 ). Table I
gives also information on the influence of the tempera-
ture on the critical field in various scattering mecha-
nisms.

Table Π gives data on the dependences of T e and of
the transverse magnetoresistance on the lattice temper-
ature Τ and the electric field Ε in the classical re-
gion. The electron energy is transferred to the acous-
tical or piezoacoustical phonons. The transverse mag-
netoresistance may increase or decrease with increas-
ing Ε and may even be independent of E; the actual
behavior is determined by the relaxation mechanism of
the electron momentum.

Concluding this subsection, we must point out that
the results obtained are within the limits of the validity
of our theory. In particular, E c r defined by Eq. (3.8)
satisfies the inequality eEX « T. In fact, it follows
from Eq. (3.8) that

Γ, B)v«,p(Z\ U)

L
10

( 3 . 1 2 )

Since the energy of the phonons interacting with elec-
trons satisfies the inequality Kcoq « Τ and KuJq ^
it follows that

—
HI '

(3.13)

It follows from Eqs. (3.12) and (3.13) that

Table I. Dependences of E r on Τ and Β for various
mechanisms of electron momentum relaxation (energy

is transferred to acoustical phonons)

Momentum relaxa-
tion mechanism

Acoustical
phonons

Neutral
impurities

Ionized
impurities

Piezoacousticalphonons
Optical phonons

(T «e (JD)

Optical phonons
(T > ΘΌ)

ν < Γ , Te, Β)

mT1T-3/2

e

Β®Τ®Τ~ ' 2

BlTiT~ >2

B1T0TJ1 X

χθχρ(_^ϋ)

BITirf"

E c r (T, B)

B2X-1

•t

Β / 2 j — /:

B'hf-3/4 χ

i r ' i r , Te)>

Τ1Τ'ί2
C

y o j — /2

e

T°T°X

x e x p / _ ^ 0 \

7-12--V2
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ν - α · ν V e ( r ? /s)Vi.p{T, B) ^ ' •

T h i s i n e q u a l i t y m e a n s t h a t t h e w o r k d o n e b y t h e H a l l

f i e l d ( a n d , c o n s e q u e n t l y , b y t h e e x t e r n a l f i e l d ) o v e r a

distance equal to the magnetic length λ is smal l com-
pared with T.

4. Allowance for Phonon Heating 1 4 1

We have a s s u m e d that the phonon system is in the
state of equilibrium with a r e s e r v o i r whose t e m p e r a -
ture is T. However, this assumption is not always j u s -
tified. The energy acquired by electrons from the e lec-
tr ic field is t rans fer red in electron-phonon collisions
to the long-wavelength phonons (electrons interact only
with these phonons). The long-wavelength phonons then
transfer the energy to the short-wavelength (thermal)
phonons. We recal l that the long-wavelength phonons
a r e those whose momentum is in the range nq < η λ - 1

= fiqB· The character i s t ic momentum of the thermal
phonons is of the o r d e r of T/s =RqT· Therefore, the
division of phonons into the long- and short-wavelength
groups has meaning only if qB « qT· The behavior of
the long-wavelength phonon system is determined by
the relationship between the character i s t ic relaxation
times of the interaction of these phonons with the e lec-
t rons , Tpe(q), and with the thermal phonons, T p p ( q ) . If
the long-wavelength phonons collide more frequently
with the e lectrons than with the thermal phonons, the
relaxation t imes obey the inequality T p e ( q ) ^i> Tqi(q).
In this case, the state of the long-wavelength phonons
is determined pr imar i ly by the electron subsystem and
their temperature is equal to the electron temperature
Te. If the opposite inequality Tp e(q) « Tpp(q) is s a t i s -
fied, the s tate of the long-wavelength phonons is de ter-
mined by the state of the thermal phonons (the r e s e r -
voir) and the temperature of the former is equal to the
r e s e r v o i r temperature T. We have as sumed implicitly
that the second case, i .e., the thermal equilibrium be-
tween al l phonons, appl ies . At low t e m p e r a t u r e s T p p (q)
decreases proportionally to T 4 , whereas T p e ( q ) in-
c r e a s e s when Τ is lowered and when the magnetic field
Β is increased. Therefore, at sufficiently low t e m p e r a -
tures Τ and in sufficiently strong fields Β the f irst in-
quality r " e ( q ) » Tpp(q) may be satisfied. In this case,
the heating of e lectrons gives r i s e to the heating of the
long-wavelength phonons and t e m p e r a t u r e s of the t h e r -

Table Π. Dependences of T e and of the
t r a n s v e r s e magnetores is tance on Τ and
Ε in the c lass ical (nonquantum) region
(energy is t rans fe r red to acoustical o r

piezoacoustical phonons)

Momentum
relaxation
mechanism

Acoustical
phonons
Neutral
impurities
Piezo-
acoustical
phonons

T<ac)(T, E)

Γ-1/2£1

TOE1''

J-iE2

pfC)(T,E)

7--'/4£l/2

T«E«

7'3/2£-l

Τ (Τ, Ε)
e

Γ-1£2

T°E*

(pac) Ej
1

mal and long-wavelength phonons a r e no longer equal.
This effect is due to the slowing down of the t ransfer of
the energy, acquired by the long-wavelength phonons
from the hot e lectrons, to the thermal phonons and is
known a s the "phonon bott leneck."

We shall now consider the phonon bottleneck mecha-
nism. We shall introduce the distribution of functions
(the diagonal elements of the density matrix) of the
long-wavelength phonons Nq and of the short-wave-
length phonons N^ (k is the wave vector of a shor t-
wavelength phonon). The electrons will be described,
a s before, by a Maxwellian distribution function with an
effective e lectron temperature T e . Since the thermal
phonons a r e in thermodynamic equilibrium with the
r e s e r v o i r at the temperature T, it follows that their
distribution is described by the PlancMan function. We
have to find the distribution function Nq. We shall a s -
sume that Nq is isotropic in the phase space of q.
This is possible at velocities of ordered electron drift
which do not exceed the velocity of sound and under
conditions such that the momentum of the long-wave-
length phonons is dissipated mainly at the boundaries
of a sample and not in the phonon-phonon and phonon-
electron collisions, i .e., if the following inequality is
obeyed:

τ^1 ~ — > max (τ},],, T.J,!),

w h e r e L i s t h e c h a r a c t e r i s t i c d i m e n s i o n o f a s a m p l e

and τβ is the character i s t ic relaxation t ime of the
long-wavelength phonons at the boundaries of a sample.
Under these conditions the distribution function is of the
f o r m [ 6 7 ]

(7V) Tji!i (7. , Τ)

and in the quantum l imit we have

, 2 8mTe ) '

( 4 . 1 )

( 4 . 2 )

A - CV'

T h e e x p r e s s i o n f o r t h e r e l a x a t i o n f r e q u e n c y o f t h e l o n -

g i t u d i n a l l y p o l a r i z e d p h o n o n s i s o f t h e f o r m 1 3 3 ' 3 4 ]

τ"1 ίη T) ~ ! l—Vfi (4.3)

If the tempera ture of the r e s e r v o i r is sufficiently low
and the electron heating not too strong, so that

!„(£)*« (-£•)(£)(-£)' (4.4)

(έ>£) is the Debye temperature , N a is the number of lat-
tice atoms p e r unit volume, and a is the lattice con-
stant), we find that T p e ( q , T e ) « T p p (q, T); it then fol-
lows from Eq. (4.1) that the temperature of the long-
wavelength phonons is equal to T e and they a r e de-
scr ibed by the Planckian distribution function.

The power t rans fer red by the long-wavelength pho-
nons to the thermal phonons is given by the formula

Ρ,,,ΛΤ, Τί)-^'Σ,Λως[Ν,(Γ)-Ν,(Τβ)]τ^(9, Τ). (4.5)

If Kwq « Τ, we can use Eq. (4.3) to f ind C 3 1 ]
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PPP{T, (4.6)

In deriving Eq. (4.6) we have taken account of the fact
that the long-wavelength phonons which a r e in equilib-
r ium with electrons have maximum momenta ( f i q j j m

~ Κλ"1 and (fiqz)m ~ V2mT e in a plane orthogonal to
the magnetic field Β and directed along B, respectively,
and that ( q j . ) m ~ λ"1 » ( q z ) m . Since the maximum en-
ergy of the long-wavelength phonons emitted by e l e c -
trons is of the o r d e r of Ks/λ and is independent of the
electron temperature , it follows that when Ks/λ < Τ the
thermal phonon subsystem can always be regarded a s
the thermal r e s e r v o i r . This is not true in c lass ical
(nonquantizing) magnetic f i e l d s . C 3 2 :

An allowance for the heating of the long-wavelength
phonons reduces the r a t e of r i s e of the Joule power (in
the presence of the Hall field) with increasing electron
tempera ture below the ra te of r i se of the power t r a n s -
ferred to the lattice (it is assumed that the momentum
and energy a r e t rans fe r red to the acoustical phonons):

V 1/2
ν,.,, (Γ, Β)

(4.7)

Therefore, in the quantum limit a stationary state of
the electron-phonon system is not disturbed by any field
Ε and we can easily show that

(4.8)

where the character i s t ic e lectr ic field Ε is

Ε --•
( ι » Γ ) " - ν 8 ρ ( Γ . B)xp'p(qm, Γ)-ι 1/2

3 V 2 xlie'Wne -I
( 4 . 9 )

H o w e v e r , t h e e n e r g y b a l a n c e e q u a t i o n m a y b e d i s -

t u r b e d b e f o r e t h e o r b i t a l q u a n t i z a t i o n i s d e s t r o y e d i f

t h e s c a t t e r i n g o f e l e c t r o n s b y n e u t r a l o r i o n i z e d i m p u r i -

t i e s i s i m p o r t a n t . I n t h e q u a n t u m l i m i t t h e s c a t t e r i n g b y

n e u t r a l a n d i o n i z e d i m p u r i t i e s i s d e s c r i b e d b y t h e f o l -

l o w i n g e x p r e s s i o n s :

T h e J o u l e p o w e r ( I E ) i n c r e a s e s w i t h t h e e l e c t r o n

t e m p e r a t u r e a s T e ^ 2 . T h i s l a w i s a l s o o b e y e d b y t h e

p o w e r t r a n s f e r r e d t o t h e l a t t i c e ( t h e r m a l p h o n o n s ) , P p p .

A n " o v e r h e a t i n g " i n s t a b i l i t y a p p e a r s w h e n t h e e l e c t r i c

f i e l d r e a c h e s E c r . W e c a n e a s i l y s h o w t h a t E c r i s

identical with Ε defined by Eq. (4.9) if we replace
^ep(T, B) with the momentum relaxation frequency in
the case of scatter ing by impuri t ies . When Ε = E c r
the e lectron heating is rapid and it may destroy the
magnetic quantization of the orbital e lectron motion if
the impurity scat ter ing during heating is not suppressed
by the acoustical scat ter ing (this ensures a stationary
state of the e lectron system under quantization condi-
tions). Table ΠΙ gives information on the dependence of
E c r on Τ and Β for var ious scatter ing mechanisms.
This table gives data on the dependence of E c r on Τ
and Β in the case when the energy acquired by the
long-wavelength phonons from hot electrons is t r a n s -
ferred not to the thermal phonons but directly to the
boundaries of a sample. This occurs when Tpp » τ̂ ,
(τ);, is the energy relaxation time a t the boundaries of
the sample). We can easily show that ( E b ) c r is

We note that when an allowance is made for the heating
of the long-wavelength phonons, the value of E c r always
increases with increasing Τ because of the rapid in-
c r e a s e in the power t rans fer red to the r e s e r v o i r but it
decreases when the electron density is increased. When
no allowance is made for the heating of the long-wave-
length by e lectrons, the value of E c r always decreases
with increasing Τ but is independent of the electron
density. Experimental investigations of such depend-
ences should make it possible to determine the role of
the phonon bottleneck effect in semiconductors .

The quantization of the cyclotron orbits is destroyed
by the strong heating of e lectrons . Under the phonon
bottleneck conditions a stationary state of electrons is
established for any momentum relaxation mechanism,
whereas in the absence of this effect the scatter ing by
ionized impurit ies does not ensure that the electron
system is in a stationary s tate . Table IV gives infor-
mation on the dependence of the e lectron temperature
and of the t ransverse e lectr ical resist ivity p± on Τ, Ε,
and ne·

The phonon bottleneck effect may occur in semicon-
ductors if the temperature is sufficiently low. For ex-
ample, when η-type germanium is subjected to a field
Β = 105 Oe at Τ = 15° Κ, the cyclotron orbits a r e found
to be quantized (λ as 0.8 χ 10"6 cm, q j = T/R s

« 7 x l O " 6 c m " 1 ) and the inequalities necessary for this
effect [ q m < qx and that given by Eq. (4.4)] a r e sa t i s-
fied.

Gluzman, Lyubimov, and Tsidil 'kovskii t 3 5 > 3 6 ^ m e a s -
ured the e lectr ical resist ivity of η-type germanium with
n e = 8.6 χ 1014 c m " 3 at Τ = 16.6°Κ in strong electr ic
(up to 50 V/cm) and magnetic (up to 140 kOe) fields. The
momentum and energy of the long-wavelength phonons
were dissipated at the boundaries of a sample and,
therefore, the cr i t ical field at which an instability was
observed was given by Eq. (4.10). The dependences
P i ( I ) obtained in magnetic fields Β = 28, 42, and 56 kOe
indicated a reduction in the resist ivi ty caused by e lec-
tr ic fields Ε of about 3-4 V/cm, which was evidently
due to the destruction of the quantization of the cyclo-
tron orbi t s . These values of Ε were close to the val-

Table ΙΠ. Dependences of E c r on Β and
Τ under phonon bottleneck conditions in
various momentum relaxation mechanisms
(the last column gives the values of E ^ r

for energy t ransfer not to the thermal pho-
nons but directly to the surrounding
medium via the boundaries of a sample,

> Tb, where Tb is the energy re laxa-
tion t ime at the boundaries)

Momentum relaxation
mechanism

Acoustical phonons
Neutral impurities

Ionized impurities

Piezoacoustical
phonons

Optical phonons

Ε η
L c r n e

β 7 / 4 7 , 5 / 2

5

7 / 4 r 2

β 3 / 2 Γ 2

7Ϊ Τ *e

h n v>
cr e

B°/2TV2

j53/2j-o

B l / 2 7 0

£ l J . l / 2
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Table IV. Dependences of the e lectron temperature T e

and t r a n s v e r s e resist ivity p± on Τ, Ε, and the e lec-
tron density ne in c lass ical (nonquantum) region

Momentum
relaxation
mechanism

Acoustical
phonons

Neutral
impurities

Ionized
impurities

Piezoacoustical
phonons

Optical phonons

TPP«Tb

Te(T, E, ne)

V ,*'/.,-·/. x

Pj_(T, Ε , nt)

n 7 2 E - V

ne '>E l»T2

r P P * T b

nc-E Τ

n*hE'hTu χ

B ; / , £ . / V O

» 7 " « i - » r «

" e ' E / 2 f

^ ' ί 0 ? - 0 χ

X r " " " r

ues of ( E b ) c r calculated from Eq. (4.10). In s t ronger
fields Ε the fall in the resist ivi ty was masked by a
strong r i s e which was attr ibuted to the " t r a n s v e r s e
b r e a k d o w n . " t 3 7 ] The s a m e effect was observed in n-
type Ge subjected to strong e lectr ic fields by Suzuki . C 3 8 J

It would be desirable to repeat these experiments at
different r e s e r v o i r t e m p e r a t u r e s because this would
give information on the heating of the long-wavelength
phonons.

The heating of the long-wavelength phonons under
s imi la r conditions but in the absence of the Hall field
was studied also by Gurevich and G a s y m o v . 1 3 9 3

5. Very Strong Magnetic Fields

When the magnetic field intensity Β is increased the
maximum momentum of the phonons interacting with
electrons increases as η/λ. When fis/λ £ Τ practical ly
all the phonons interact with e lect rons, i .e., all the pho-
nons apparently acquire long wavelengths and the number
of the short-wavelength phonons with momenta exceeding
Κ Λ becomes exponentially smal l . The thermal r e s e r -
voir, which is formed by the short-wavelength phonons
when λ"1 = q e < qT = T /R s > disappears when the in-
equality q g > q x is obeyed. The medium surrounding
a sample then acts as a r e s e r v o i r . The energy acquired
from the hot e lectrons by the whole phonon system is
then t rans fe r red a c r o s s the boundaries of the sample to
the surrounding medium (the reservo i r ) . In this case,
we encounter a new character i s t ic (in addition to the r e -
laxation t imes character iz ing the electron-phonon T p e

and phonon-phonon τ ρ ρ interactions), which is the r e -
laxation t ime of the phonons interacting with the bound-
a r i e s of a sample, τ^. The analysis of the heating of
electrons can be simplified by considering the asymp-
totic solutions corresponding to different relationships
between these three relaxation t imes .

When Tb is the shor tes t of the three character i s t ic
relaxation t imes , the phonons acquire energy from the
hot e lectrons and t rans fer i t immediately to the bound-
a r i e s of the sample without coming into collision with
other phonons. In this case, we can analyze the weak
heating of e lectrons corresponding to the inequality q-p
< qg and the strong heating when the opposite inequal-
ity is satisfied. It is shown in [ ω : that in the electron

tempera ture approximation, when τ ρ ρ » τ ρ β , we have

Te oc Β" (Γ)° Ε1, (5.1)

if the momentum is dissipated by interaction with ion-
ized impuri t ies , and

TeccB-l(T)»El (5.2)

if the momentum is lost by scatter ing on neutral im-
pur i t ies .

An " o v e r h e a t i n g " instability appears in strong fields
Ε > E c r . The dependence of E c r on the p a r a m e t e r s of
the system considered h e r e has been determined by the
present a u t h o r s t 4 0 ] and can be given by the following
formulas:

when T p p » T b « T p e ( q B , T e )

ηΒ, Τ)

3π1· (5) ζ (5) \ U T \ X A ' O (VT/'I

( 5 . 3 )

where Ko(x) is the Macdonald function, r ( t ) is the gam-
ma function, ζ(χ) i s the Riemann zeta function, and
y e (T, B) is the momentum relaxation frequency which

occurs in the e lectr ical conductivity
» Tb » Tp e(qB> T e ) we obtain

when τ
ρ ρ

2 ( 2 π ) 2

T, B) , m

).2 J
( 5 . 4 )

It follows from the above formula that E c r ex B 1 / 2 (T)°
for ionized impurit ies and E c r oc B 3 / 2 (T)° for neutral
impur i t ie s .

We shall now consider the third limiting case, when
Tb » τρρ » τ ρ β , i .e., when T b i s the longest relaxa-
tion t ime. Under weak heating conditions (qx < q s ) the
phonons emitted by electrons have energies Rsqg > T.
However, s ince τβ » τ ρ ρ , these phonons split into two
(each of which has an energy ~ T e ) before transmitt ing
their energy to the medium surrounding a sample. After
a character i s t ic t i m e C 3 2 ]

(γ is a numerical factor which is « 2 for Si and Ge)
these phonons reach equilibrium with other phonons and
the hot electrons and then they t ransfer their energy
a c r o s s the boundaries of the sample to the ambient m e -
dium. Under these conditions the energy reaching the
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boundaries of the sample increases proportionally to
T e and, therefore, the system is stable. Under strong
heating conditions (qf > qjj) the energy of the phonons

6
emitted by the e lectrons is Ksqg < T e . Therefore, the
emitted phonons become thermal ized by merging p r o c -
e s s e s because Tpp < τ^, i.e., they reach equilibrium
with the e lectrons and the other phonons whose t e m p e r -
ature is T e ; next, the energy is t rans fer red by the pho-
non system to the boundaries of the sample . The char-
acter i s t ic t ime for the process of merging of two pho-
nons with momentum Κλ" 1 can be deduced by means of
Eq. (25) given in C 3 4 ] where the upper l imit of the inte-
gral must be replaced with λ" 1. In this way, we obtain

Ι-ΜΙΒ,Τ.)* * , ι , , . (5.5)

The energy balance equation now predicts stationary
states of the sys tem. Under strong heating conditions
T e °c (T)°B°E 4 / 5, if the electron momentum is dissipated
on ionized impuri t ies , and T e <x ( T ) ° B ' 4 / 5 E 4 / 5 if the m o -
mentum is dissipated on neutral impur i t ie s . The c o r r e -
sponding dependences of the c u r r e n t on the electr ic and
magnetic fields and on the tempera ture a r e , r e s p e c -
tively,

Ixoz(T)°BW, (5.6)

Ixoz(TfB-3liE^. (5.7)

6. Other Mechanisms of Energy Dissipation by Hot
Electrons

The energy of hot e lectrons can be t rans fer red not
only to acoustical but a lso to optical and piezoacoustical
phonons. If a semiconductor contains several groups of
c a r r i e r s with strongly differing m a s s e s , the energy of
the l ighter hot c a r r i e r s may be t rans fe r red by colli-
sions to the heavier c a r r i e r s and then to the latt ice.

The dissipation of the energy of hot e lectrons by in-
teraction with piezoacoustical phonons was first consid-
ered by Kogan, C 2 9 ] who used the electron temperature
approximation. It is evident from Table I that the ratio
of the frequencies of e lectron relaxation by acoustical

and piezoacoustical phonons is ^ep/^ep c c-^· T h e r e -

fore, the dependence of E C r on Β and Τ in the case

of scat ter ing of hot e lectrons by the piezoacoustical

phonons is , in accordance with Eq. (3.19), of the form

E ^ C ) cc Epr C ) /B. Dividing the values of E £ C ) ( T , B)
of Table I by B, we obtain the dependences E ^ a C ) ( T , B )
applicable to different momentum relaxation mecha-
n i s m s . The dependence of the e lectron temperature on
the e lectr ic field Ε is then given by an equation s i m i -
l a r to Eq. (3.7) in which uep i s replaced by u^ac). I n

the case of interaction with the acoustical and'piezo-
acoustical phonons, the coefficient β±, which is a s s o c i -
ated with the quadratic (in the e lectr ic field) correct ion
to the t r a n s v e r s e e lectr ical conductivity σ χ = Ρχ Χ , has
the following dependences on Β and T : : 2 9 ]

The relaxation of the energy of hot e lectrons by in-
teract ion with the optical phonons was considered in
the e lectron temperature approximation by Pomortsev
and K h a r u s . 1 4 1 ' 4 2 3 An interest ing consequence of their

investigations is the prediction of an oscil latory depend-
ence, on the magnetic field, of the power t rans fer red by
the electrons to the optical phonons. Every t ime the
p a r a m e t e r Δ = ω 0 — ΜΩ (ω,, is the frequency of the op-
tical phonons and Μ is an integer) is made to vanish
by the application of a magnetic field, the power tends
to infinity as In ( Τ β / Δ ) . Such singularit ies a r e due to
the contribution of the electrons with zero values of the
ζ component of the momentum. The heating of the opti-
cal phonons suppresses the divergence of the power
t rans fer red to the latt ice a s Δ — 0 and, moreover,
such heating destroys the power resonance if the re lax-
ation frequency of the electrons interacting with the op-
tical phonons fSjj* ' is considerably higher than the non-
electron relaxation frequency of the optical phonons,

(opt)
PP

If the electrons lose thei r momentum by interacting
with impurit ies o r with the acoustical latt ice vibrations,
it is found that the e lectr ica l resist ivi ty ρ χ is a mono-
tonically decreasing function of the e lectron t e m p e r a -
t u r e . Therefore, at the points corresponding to the r e s -
onance emission of the optical phonons ( Δ = 0), the e lec-
tron temperature should have minima and ρ χ should
have maxima.

The e lectr ical res is t iv i ty ρ χ is an oscil lating func-
tion of Β even in the absence of electron heat ing 1 · 4 3 ]

but the conditions for the direct observation of this ef-
fect a r e extremely str ingent. This is because at low
t e m p e r a t u r e s , necessary to ensure the existence of the
Landau levels, the resonance scatter ing of the e lectrons
by the optical phonons is accompanied by other nonres-
onance scatter ing mechanisms (ionized and neutral im-
puri t ies , acoustical and piezoacoustical phonons) which
suppress the resonance scat ter ing effect. In sufficiently
strong electr ic fields which ensure T e > Τ the loss of
energy by the e lectrons in the emiss ion of the optical
phonons becomes c o n s i d e r a b l e . [ 4 4 ] Therefore, in the
nonohmic region we may expect the appearance of o s -
cillations of the magnetoresis tance when Β is var ied.

Stradling and Wood C 4 5 : observed such oscil lations in
η-type GaAs and found that the maxima of ρ χ were
shifted, relative to the magnetophonon resonance points,
toward weaker magnetic fields. Stradling and Wood at-
tributed this effect to e lectron transi t ions to impurity
levels r a t h e r than to the zeroth Landau level.

7. Low Electron Densities

Kazarinov and Skobov : m i were the first to solve the
problem of the heating of e lectrons in crossed (orthogo-
nal) strong e lectr ic and quantizing magnetic fields.
Kazarinov and Skobov ignored the e lectron-electron
scatter ing. They showed that, if the e lectr ic field is
sufficiently weak so that i t does not affect the energy
spectrum of e lectrons and if the scat ter ing by phonons
is quasielast ic (eEx/e <<C 1), the energy balance equa-
tion for e lectrons of the e, e + de group obtained in the
quantum l imit is of the form:

±P(e)-^(I(e)E). (7.1)

The electron distribution function satisfies a f i rst-
o r d e r differential equation. The effective temperature
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T e can be introduced if the e lectrons a r e scat tered by
impurit ies and acoustical phonons; in this case , the t e m -
p e r a t u r e is given by Eq. (1.6). This i s associated with
the fact that the ratio vei/vep i s independent of the
electron energy e. A reduction in the t r a n s v e r s e r e s i s -
tivity due to an increase in the electron temperature has
been observed experimental ly. 1 · 4 6 ' 4 7 ]

The nonlinear e lectr ica l conductivity in the absence
of e lectron-electron scat ter ing was also considered by
C a l e c M . [ 2 2 : i His approach is basically applicable to
" w a r m e l e c t r o n s , " i .e., to weak e lectr ic fields
Ε « (s/c)B. Z l o b i n t 4 8 : extended Kazarinov and Sko-
bov's theory of nonlinear galvanomagnetic effects to the
case of relaxation of the energy of hot e lectrons by the
interaction with optical v ibrat ions.

In contras t to Pomortsev and Kharus, C 4 1 > 4 2 ] whose
work was considered in the preceding subsection,
Ζ 1 ο Μ η [ 4 3 ] considered the case of low electron densit ies
when the concept of the effective e lectron temperature
could not be introduced a p r i o r i .

Collisions of electrons with the optical phonons a r e
strongly inelastic and, therefore, an integral equation
for the diagonal element of the electron density matr ix
cannot be reduced to a F o k k e r - P l a n c k differential equa-
tion. However, at low t e m p e r a t u r e s Τ < fiaiq [coq
= ω0 (1 — a 2 q 2 ) i s the frequency of an optical phonon
when the dispers ion is allowed for] we can also i n t r o -
duce the concept of quasielast ic scatter ing but only in
relation to the double p r o c e s s of absorption-emiss ion
of an optical p h o n o n . i 9 1 When the two lowest Landau
levels a r e considered in the quantum limit the equation
for the differential energy balance can be represented
in the form

' Λ Γ Λ I - V E ( F j--Λω0) 1/ε(ε + Δ;

ν | - » ° « " -•• » " " 1 - ' . ^ η ,
1 V E ( B ; Λω0) ' V r f f - i - A j J (7.2)

where

Δ-ΛΚ-Ω);

i i ? o ( e ) , 9* i (e) , 5 i o ( e ) , a n d 3i x (e) a r e known f u n c t i o n s of

t h e e n e r g y . 1 - 4 8 -1

T h e s o l u t i o n of E q . (7.2) i s of t h e f o r m

/(ε) ex,) {x,) { - (7.3)

and the electron " t e m p e r a t u r e " depends on the energy
e. However, there a r e limiting cases when one can st i l l
introduce an effective electron temperature which is the
s a m e for al l e lectrons, i r respect ive of their energy.

It is shown in c 4 8 : l that in the range of energies e
« ΚΩ the concept of an electron temperature has mean-
ing in the quantum l imit (Ω > ω 0 » e) a s well a s in the
magnetophonon resonance region if ω 0 — Ω ~ T/fi and if
Ω » ω 0 Τ θ «a T ( l + 2γ%). At the magnetophonon r e s o -
nance point the e lectron tempera ture T e has a maxi-
mum.

When the energy and momentum of c a r r i e r s a r e dis-
sipated on the optical phonons at low temperatures
(Τ « ΚΩ, Κω 0), we have σχχ <χ Tg 1 and, therefore, the
heating of e lectrons resu l t s in a minimum of σχχ at the
resonance point ω 0 = ΜΩ (Μ is an integer). However,

the density of the electron s tates has a singularity at
the resonance point and this increases σχχ. This effect
is a consequence of the l inear theory of t ransport in
weak fields and is not re lated to heating. Therefore,
when c a r r i e r s a r e heated the reduction in the conduc-
tivity σχχ at the resonance point may be the dominant
effect and it may give r i s e to a minimum, as predicted
by the l inear t ransport theory. AkseFrod et a l . C 4 9 ] ob-
served conductivity minima associated with hot e l e c -
trons in η-type InSb at t e m p e r a t u r e s of 16-30°K, in
magnetic fields up to 100 kOe, and in electr ic fields up
to 12 V/cm (see also [ 4 6 ] ) .

Yamada and K u r o s a w a [ 5 t n investigated experimen-
tally and theoretically the behavior of electrons in n-
type InSb subjected to crossed fields. They replaced
the solution of the t ranspor t equation which included an
allowance for the scatter ing on the optical phonons by a
s impler approach in which the diffusion equation was
solved in the energy space. Their resul t s also yielded
a conductivity minimum at the magnetophonon r e s o -
nance point. However, one should s t r e s s that Yamada
and K u r o s a w a 1 5 0 : did not actually derive the diffusion
equation with a collision integral for the interaction be-
tween electrons and optical phonons and, therefore, it
is difficult to determine what approximations were
made.

We shall now consider the l imitations of the method
in which the diagonal elements of the density matr ix a r e
found from the differential energy balance equation
I(g)E = P(e). This method is based on the assumption
that a diagonal element of the density matr ix depends on
η and p z only via the energy E(n, p z ) . This is s tr ict ly
true only in the quantum l imit when the average energy
of e lectrons is T e <$C ΚΩ and the lowest Landau level
with η = 0 is practical ly filled. In this case, we can ig-
nore all the diagonal elements of the density matr ix
corresponding to η Φ 0 since these elements a r e expo-
nentially smal l for large values of ί ίΩ/Τ θ . Therefore,
the problem reduces to finding only one diagonal e le-
ment of the density matr ix corresponding to η = 0,
which depends only on one variable p z .

If the p a r a m e t e r Τ6/ΚΩ is not small, it is necessary
to make allowance for electrons occupying several Lan-
dau levels . In this case, the density matr ix can be found
only by solving a complex system of differential equa-
t ions. We can show that the t ransport equation for the
diagonal elements of the density matr ix for e lectrons
interacting with the acoustical phonons and with short-
range impurit ies is of the form:

(7.4)

where g n ( O is the density of the electron s tates c o r r e -
sponding to the Landau level η and located in the energy



390 Α. Μ. Z L O B I N a n d P . S. ZYRYANOV

range e, e + de; ή is the highest Landau level which is
still within the range of the energy e. In deriving Eq.
(7.4) it has been assumed that the scattering of elec-
trons by the acoustical phonons is almost elastic and
the shift of the Landau levels by the electric field is
negligible. An equation of this type was derived also by
Inoue and Yamashita1 5 1 3 (their phonon collision integral
has two terms less than the integral given above).

In the quantum limit Eq. (7.4) has the form of an
equation of continuity in the energy space (7.1) and the
distribution of electrons is characterized by an effec-
tive temperature T e defined by Eq. (1.6). It must be
stressed that when Te/fe2 is not small the transport
equation does not reduce to the differential form of
Eq. (7.1) and the electron distribution usually becomes
oscillatory.

Rigorous allowance for the scattering by the optical
phonons complicates the problem even more.

ΙΠ. HEATING OF ELECTRONS IN PARALLEL
STRONG ELECTRIC AND QUANTIZING
MAGNETIC FIELDS

In this section we shall assume, as in Sec. Π, that
the work done by an external field on an electron in the
time separating two consecutive collisions is smalll
compared with its characteristic energy e. When E| |B,
the electric field does work eEl in a distance equal to
the mean free path I, whereas when Ε 1 Β the work
done is eEX, Therefore, the criterion of weak electric
fields in the Ε ||B case is of the form eEl/i « 1. This
criterion differs from that for Ε ι Β by the factor Ζ/λ
~ Ωτντ/ΚΩ, which should be greater than unity even in
the quantum limit (ηΩ » Τ). The effective electron
tempsi-ature for Ε || Β is still given by

which follows from the energy and momentum balance
equations.

A more detailed study of the dependence of T e on
the parameters of a system in the case of different en-
ergy and momentum relaxation mechanisms can be made
made only if we adopt the microscopic approach to the
derivation of the balance equations.

8. High Electron Densities

In this case, we can introduce the concept of an ef-
fective electron temperature T e . In order to find it we
shall derive the energy balance equation by equating the
Joule power

lzEz=--a-z(T, l'c, Β)Ε*<χτ(Τ, Tc, B) E\ (8.1)

to the power Ρ transferred to the phonons and given by
Eq. (3.5). The relaxation time τ(Τ, T e , B) in σ ζ ζ can
be calculated by means of the transport equation

eEzvt -==/νί('ρ)-|-/ν'ν(<Τ), (8.2)

in which the c o l l i s i o n i n t e g r a l s a r e found by m e a n s of
E q s . (A.2) and (A.4) with E x = 0, and the distr ibution
function f,, i s s e l e c t e d in the form

where f,,.(Te) is the Maxwellian distribution function
with an effective electron temperature T e which de-
pends on T, E z , and B, and

(8.4)

Multiplying the transport equation (1.2) by
ρζδ[Ε(ι^) - e] and taking a trace over v, we find that in
the elastic scattering approximation

(8.5)

where

(ε) ^ Σ Ι/ίμ Ρ (Λ?,)2 δ [£ (v) - ε] δ [£ (μ) -

/v=/v(Z'e)-t-<rv (8.3)

i ] { 2 ( j ) [ ( ) - e ] } " 1 . (8.6)
V

Hence, if follows that

σ « - - « = 2 (<ν)ί%.^τ(£(ν)) -•!£--τ (Γ, Τ., β)-ρ7· (8.7)
V

Table V gives information on the dependence of
T ( T , T e , B) on the arguments in the quantum limit. It i s
evident from this table that the Joule power increases
with increasing electron temperature more rapidly than
does the power defined by Eq. (3.15) and transmitted to
the lattice. Therefore, an "overheating" instability may
occur. This result was first derived by Kbgan [ 2 9 ] for
the case when the electron momentum is dissipated on
charged impurities and the electron energy on the acous-
tical and piezoacoustical phonons. The foregoing still
applies when the phonon system is in equilibrium.

The heating of phonons is important and must be al-
lowed for if the frequency of collisions between the
long-wavelength phonons and electrons exceeds the fre-
quency of collisions between the long-wavelength and
thermal phonons. In this case, the temperature of the
long-wavelength phonons is equal to the effective e lec-
tron temperature T e (the phonon bottleneck effect) and
the "overheating" instability does not appear for any
momentum relaxation mechanism with the exception of
that involving ionized impurities. Table V gives data on
the dependence of T e and the longitudinal resistivity
ρII in two cases: when the long-wavelength phonons
transfer their energy to the thermal phonons (Tpp
« Tb) and when they transfer their energy to the bound-
aries of a sample (Tpp » Tb). The data are given for
different momentum relaxation mechanisms. All the re-
sults given in Sec. Π.2 are applicable also to the case
E| |B if we replace everywhere ρ ι with pH.

9. Low Electron Densities

PomortsevC 5 2 ] was the first to consider the case of
low electron densities in the presence of a quantizing
magnetic field Β ||E on the assumption of thermodynam-
ic equilibrium in the phonon subsystem. The results ob-
tained by Pomortsev for all the quasielastic scattering
mechanisms indicated that the region of quadratic devi-
ation from Ohm's law was extremely narrow. This de-
viation can be explained by the fact that all the quasi-
elastic scattering mechanisms considered by Pomort-
s e v : 5 2 : give rise to the "runaway" of electrons toward
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Table V. Dependence of the relaxation time τ of the
longitudinal momentum of electrons on T, T e , and
Β in the quantum limit. Dependence of the effective
electron temperature T e and of the longitudinal elec-

trical resistivity on Τ and Β

Relaxationmechanism

Acoustical
phonons

Neutral
impurities

Ionized
impurities

Piezoacousti-
cal
phonons

Optical
phonons

Optical
phonons
(T < <9D)

t(T, Tp, IS)

7 . _ i r i / 2 / i _ i

γ\\γ·η>>Β\\

, - l , . . : „ „

TuT"ll" X

x t S | 1 ( r )

r P P « r b

TrfT, ):>

7-5-/,-5/2

7·-'·/;-ό/2

7-5/,-:'/:

7—>. '3/,- l χ

Γ»,3/?3,25

r i m ,'ij

Τ»ΙΙ» χ
/ Λ(ι) \

M l l ( V ) - < 0 V | ' l - - r j

T P P * T b

rc(T, r.)

7 - 1 « - 2

T-0/,-2

7 - l / i - i

7 - 1 / ( 1

x c x ' ' ( V )

i'L

2»/2/,2

7 0 / ; .

__

f'-H11-

7-:'.':/,'/2

7'0/i» /

/ //(ο \

When Γρρ < r^ the energy is transferred to the thermal phonons but when Tpp >

τ^ it is transferred directly to the surrounding medium through the boundaries of a HJ

sample.

higher values of the energy. At high energies the
strongly inelastic collisions become important and they
stabilize the distribution function of electrons heated by
a strong electric field.

We shall conclude this review by considering the role
of the drag effects and of the phonon emission by a su-
personic electron flux. This effect was investigated ex-
perimentally by Esak i [ 5 3 ] in very pure single crystals
of bismuth subjected to crossed fields (a quantizing
magnetic field B z and a strong electric field E x ) . At
carrier drift velocities v o y = c E x / B z lower than the
velocity of sound s in Bi the current-voltage charac-
teristics were linear. At the point v*v = s there was a
sharp kink and in higher fields E x the current again
increased proportionally to E x but the rate of rise was
faster than in the range E x < E* . Thus, the current-
voltage characteristics consisted of two linear regions
with a kink at the point corresponding to c E x / B z = s.
Similar experiments were carried out by Borisov et
al.i5il on bismuth in pulsed fields by varying the steep-
ness of the leading edge of the pulses. When the leading
edge was very steep, Borisov et a l . [ 5 4 ] observed an S-
type current-voltage characteristic. When the steep-
ness of the leading edge of the applied pulses was re-
duced the S-type characteristic transformed into that
observed by EsaM. [ 5 3 ]

Unfortunately, there is as yet no self-consistent mi-
croscopic theory of these effects, although there have
been attempts to develop such a theory. C 5 5 " 6 4 ; l

APPENDIX

1. The collision integral of Coulomb particles in a
quantizing magnetic field has been investigated by Ele-
onskii et a l . C 2 0 : and by Silin.C 6 5 3 In the case of nonde-
generate electrons and in the presence of polarization

effects, the collision integral can be written in the
form: [ 2 0 ]

/vv(/) -- „ (2'",,λ), Σ jl dkz άρ»Φ (ν, ν', μ, μ', kz)
"v'V'n -°°

X 6 {mfiii ( « ; + < - « , — n,,) -i- (hkj- -;- til·;, (fit — p»)]

where

Φ (ν, ν', μ, μ', ί·2)= [ dkxk±\'me?^№ (h^ -h,, ^ ) ] ~

η^ = min (n^, n'̂ ); L m (t) is a generalized Laguerre

polynomial; k^ = k x + ky ; ε(ω, kL, kz) is the longitudi-
nal permittivity of the electron gas.

2. The electron-phonon and phonon-electron colli-
sion integrals in a quantizing magnetic field Β = B z

perpendicular to a strong electric field Ε = E x can be
written in the following form (in the Born approxima-
tion for the electron-phonon interaction):1 1 6 6 ]

/'vv(j) = ̂ - -Ρ-) Ι Λ (?, *, ν) Ρ δ [£ (v) - £ (κ) + δω,

-r β λ 2 ? ^ ] {/χ (1 - /ν) (1 - -V,) - /ν (1 - /χ) Λ',},

+ /"" (Λ·5)=-χ 2 1 -4 (9 · κ ' ν ) Ι2 δ [ £ ( ν ) ~ Ε ( κ ) ~ Λ ω ' ϊ + β λ 2 ? ι / £ )

(Α.2)

χ{/ί,(1-/ϊ)(Λ·ϊ+1)-/ν(1-/Κ).ν,}, (Α.3)

where the operator Vm is used to make the substitu-
tion ν ^= κ, A(q, κ, v) = Cq(«|exp i q r k ) is the matrix
element of the energy of interaction between electrons
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and phonons, calculated from the wave functions in the
Landau approximation {ν = η, ρ ζ , χ,,); Ε is the total
field acting on an electron (including the Hall field).

3. The collision integral for electrons interacting
with impurities is of the following form (in the linear
approximation with respect to the impurity concentra-
tion Ni): t 2 73

Here, T(v, κ, q) =t(Ev){v\exp iqr|/c) is the scattering
amplitude of an electron of energy E,, interacting with
an isolated impurity center. In the Born approximation
we have

|Γ(ν, κ, <ζ)|! = |^Ν<ν| β "Ίχ>Ι ! ,

where Vq is the Fourier component of the impurity po-
tential.
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