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This was sometime a paradox,
but now the time gives it proof.

W. Shakespeare

a reference system at rest to take on the shape of an
ellipsoid with semiaxes R(l - j32)l/2, R, and R when it is
in motion ( - , p. 18). Apparently Einstein has in mind
a Lorentz contraction in the direction of motion and
constancy of transverse dimensions. Six years later,
in a polemic with Varichak, Einstein answers two ques-
tions at the same time (cf.,'-2-', p. 187).

1. "The question of whether the Lorentz contraction
is real or not has no meaning. The contraction is not
real, since it does not exist for an observer who moves
together with the body; however, it is real, since it can
be in principle proven by physical means for an obser-
ver not co-moving with the body."

2. "We obtain in a reference system Κ the shape of
a body moving with respect to this system by determin-
ing the points in the system Κ with which at a given
instant of time t material points of the moving body
coincide. Since the concept of simultaneity utilized in
carrying this out is so defined that on the basis of this
definition a demonstration of simultaneity by an experi-
mental method is in principle possible, the Lorentz
contraction is also in principle observable." This, of
course, exhausts that aspect of the problem which is
based on principle.

But returning to the problem of the measurement of
the Lorentz contraction of a rod, it must be said that if
the measurement of the length is carried out in accord-
ance with the rules of the theory, i.e., if one records
the coordinates of both ends of the moving rod simul-
taneously in the system with respect to which the length
is being measured (for this two observers or two pieces
of apparatus are required situated at two points of the
reference system) then the expected result of the ex-
periment (contraction) is not in doubt.

But now fifty years after the creation of the theory of
relativity a somewhat different question has arisen:
could one discover the Lorentz contraction by photo-
graphing a rapidly moving body or visually observing
it? Of course, we are speaking only of thought experi-
ments. Therefore, setting aside the physiology of vis-
ion, one need not make a distinction between visual ob-
servation and photography. The problem posed above,
of course, does not touch upon the principles of the
theory, but it is useful to have a clear and unambiguous
answer to this problem because a photograph, which
could qualitatively and quantitatively demonstrate the
Lorentz contraction, would be a direct proof of the

I N the history of any science, along with the fundamen-
tal problems which determine the essential advance of
the science at times, problems, or questions arise
which are by no means of a front rank or fundamental
nature. At first no attention is simply paid to these
problems, but on one fine day they unexpectedly elicit
interest and a series of papers appears; different au-
thors give different answers, and sometimes these
answers turn out to be diametrically opposite. This
evokes considerable surprise, since questions of this
kind have long ago fallen behind the advancing frontier
of the science and lie in the domain where, in the opin-
ion of many, everything is clear. Thus, peculiar para-
doxes arise. As is the case in any paradox, the de-
cipherment and the solution lie in the elucidation of the
incorrect statement of the problem. Two problems of
this type which have given birth to quite a number of
articles in different physics journals (the number of
such articles continues to increase) will be dealt with in
the present article.

1. THE APPARENT SHAPE OF RAPIDLY MOVING
BODIES*

In 1892 Lorentz formulated an unexpected assertion
which enabled him to explain the result of the Michelson
experiment. Lorentz supposed that all bodies moving
with respect to a universal ether, which was regarded
as a kind of a medium, undergo a contraction in the
direction of motion. An analogous statement is also due
to Fitzgerald, so that in the literature there are fre-
quent references to the Lorentz-Fitzgerald contraction
(concerning the role played by Fitzgerald cf.,1-1-1).

After the special theory of relativity was formulated
the contraction of the length of a scale in the direction
of its motion became a direct consequence of the
Einstein postulates; in particular, it is an elementary
consequence of the Lorentz transformation: the con-
traction is observed when one measures the length of a
scale moving with respect to an observer who carries
out a measurement of the length of the scale.

The first paper of Einstein contains in connection
with this the following statement: " . . . A body, which in
a state of rest has the shape of a sphere, is seen from

"Throughout we are dealing with relative motion with relativistic
velocities, i.e., with velocities of the order of the velocity of light in
vacuo. All the systems of reference under discussion are inertial.
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real i ty of the contraction (in the sense of which Einstein
spoke; cf., above). However, the answer to the question
posed above has turned out to be not so simple, while
the direct proof of the contraction of time intervals be-
tween events has already been known for a long t ime:
the increase in the lifetime of unstable par t ic les (for
example, of π and μ mesons) in a system with respect
to which they a r e in motion has been established experi-
mentally.

The word " o b s e r v a t i o n " in the ar t ic le of Einstein
quoted above could be interpreted a s visual observation
or, perhaps, as photography. Such an interpretat ion,
apparently, is the one that led to the unanimous convic-
tion that by observing (photographing) a moving sphere
we would observe an ellipsoid in the photograph. For
quite a long t ime the fact was not real ized that a deter-
mination of the shape and the dimensions of a body as a
simultaneous position of all the points of i t s surface,
and the image of the body obtained on a photograph is,
generally speaking, by no means the same thing. Here
we should note two points. Suppose that we a r e making
a photograph with an infinitesimally short exposure
time. Then the plate will be reached by r a y s which
arr ived at the objective lens simultaneously. But if the
different points of the body are situated at different
distances from the objective lens, then the r a y s emitted
from these points—owing to the finite velocity of propa-
gation of l ight—require different t imes to reach the ob-
jective lens . Consequently, if the body is emitting light
continuously, then the plate will be reached at the s a m e
instant by r a y s emitted by different points of the body
at different instants of t ime. For a body which is at
r e s t with respect to the c a m e r a this c ircumstance will
not affect the image obtained. In the case of a moving
body the image obtained will differ from the image ob-
tained in photographing a stationary body. This effect
is due simply to the finite velocity of the propagation of
light and has no relat ion to the Lorentz contraction.
This is the first point. The second point consists of the
fact that when one speaks of the apparent shape of an
object one usually has in mind the image obtained on the
plane of a photographic plate or (with certa in l imita-
tions) on the ret ina of the eye. But such an image r e p r e -
sents the projection of the body on a plane. If we r e t u r n
to the problem of photographing the body whose Lorentz
contraction we wish to observe, then it is required to
" c a p t u r e " this contraction on a two-dimensional projec-
tion of the body. The points mentioned above demon-
s t ra te the sources of the non-unique interpretat ion of
the image obtained on the photograph. F i r s t of all, it i s
c lear that from a single photograph it would be impossi-
ble to determine anything at all without having additional
information. F o r example, having a single photograph of
a rod (one-dimensional body) moving against a homo-
geneous background we can say nothing about its length,
and on the bas i s of a single photograph of a three-
dimensional extended body it is impossible to reproduce
i t s shape. It should be emphasized that the second point
also i s not re lated to " re la t iv i s t ic ef fects"; however,
they were noted in connection with the discussion of the
outward appearance of a rapidly moving body, the grea-
test in teres t being aroused by the question a s to the
manner in which the Lorentz contraction affects the ap-
parent shape.

The discussion began with the publication in 1959 of
the art ic le by Penrose " T h e Apparent Shape of a Rela-
tivistically Moving Body"1-3-1. P e n r o s e ' s ar t ic le was by
no means tr ivial; it investigated for the first t ime the
conformal proper t ies of the Lorentz transformation. In
part icular , in this paper it was shown that a moving
sphere will not differ from a stationary one in t e r m s of
its two-dimensional projection on a photographic plate,
or, more accurately, in t e r m s of the shape of i ts con-
tour. The physical explanation of this resul t follows
from the art ic le by T e r r e l l . T e r r e l l solves the prob-
lem quite radically, as is evidenced by the title of his
ar t ic le "Invisibil ity of the Lorentz Contract ion." It i s
just after these ar t ic les that the problem arose as to
whether one can in general by any method whatsoever
observe or photograph the change in the dimensions of
a body as a resul t of the Lorentz contraction*. In o r d e r
to avoid misunderstandings we repeat that the physiology
of vision makes the photographing of a body and i ts
visual observation essentially different procedures .
Speaking of visual observation, we shall have in mind
an eye possessing ideal p r o p e r t i e s close to the proper-
t ies of a photographic plate.

We explain T e r r e l l ' s resul t . If one observes a mov-
ing body with a luminous surface, the photographic plate
r e c o r d s in the case of an infinitesimally short exposure
time the simultaneous signals (photons) emitted by dif-
ferent points on the surface of the body. Since different
points on the surface of the body, generally speaking,
a r e situated at different dis tances from the photographic
plate, the plate r e c o r d s the positions they had at differ-
ent instants of t ime. The fact that the plate r e c o r d s or
the observer " s e e s " at a given instant of t ime different
port ions of the surface of the moving body in those posi-
tions which they occupied at different t imes, leads to a
curious resul t which can be i l lustrated by a simple ex-
ample.

We imagine a luminous cube moving along a straight
line paral le l to one of i t s edges flies past a photographic
c a m e r a (or an observer) . The photography or the ob-
servation occurs at the moment when the center of the
cube reaches the normal drawn from the point where
the photographic c a m e r a i s situated to the direction of
motion. Of course we must know beforehand that the
moving body has the shape of a cube in its own refer-
ence system.

At a given instant of t ime the plate will be reached by
all photons emitted simultaneously in the reference sys-
tem of the plate along the line AD, and the photons emit-
ted by the point Β e a r l i e r by a time interval l/c (I i s the
length of the cube edge). But at this instant the point Β
was situated in the position B'. The simultaneous de-
termination of the positions of points A and D in the
reference system of the plate leads, in accordance with
the usual rule for the measurement of length, to the
Lorentz contraction: I' = 1(1 - /32) l / 2. On the other hand
BB' = (Z/c)v = βΐ.

F r o m Figs, lb and c one can deduce that the picture
that would be seen by a stationary (idealized) observer
in observing a moving cube coincides with that observed
when a stationary cube i s rotated through an angle φ .

*Soviet readers are acquainted with an exposition of Terrell's results
in Weisskopf s article [5 ], a translation of which was published in Usp.
Fiz. Nauk84, 183(1964).
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The angle is determined by the relation sin φ = β. This
is a particular case of a more general result due to
Terrell: every three-dimensional moving body is seen
at a given instant as having been rotated. The angle of
rotation for the situation shown in Fig. 1 is determined
by the equation φ = arc sin β. But if the cube is situated
with respect to the observer in such a way that at best
it would be seen at an angle i' with respect to the x'
axis, then the angle of rotation will be different. If the
cube is sufficiently far away from the observer, then
the light coming from it can be assumed to be a parallel
beam. When this beam is observed in the system K, then
for an observer in Κ it is propagated at an angle t? to the
χ axis, while the angles & and y are related by the equa-
tion

cos 0 = (cos # ' + β)/(1 + β cos θ')-

The change in the d i rec t ion of the front of a plane wave

in go ing o v e r f r o m one coordinate s y s t e m to another

(which are in r e l a t i v e mot ion with r e s p e c t to one

another) i s none other than the aberrat ion of l ight. A s

far as the i m a g e obtained on a plate (or an idea l i zed

v i s i b l e image) i s concerned, it c o r r e s p o n d s to a cube

(observed in Κ at an angle Λ) rotated through an angle
«> — !>'. Now it is no longer difficult to understand
Penrose's result: a rotation of the sphere does not alter
the shape of its contour. The central point in the inves-
tigation of Terrell is that in fact he investigated for the
first time the visible shape of a three-dimensional body.

Thus, the combination of a "contraction" with the
finiteness of the velocity of light can lead to an apparent
rotation. Therefore the question arose whether it is
possible in general to distinguish from the visible pic-
ture w between a contraction and a rotation. Such a
statement of the problem is simply incorrect. The re-
construction of a three-dimensional body from a plane
photograph requires additional information, and this
circumstance has no relation whatever to the Lorentz
contraction.

Returning to the example involving a cube, it is evi-
dent that knowing how the cube moves one can always
establish by a "direct observation" or by photography
that it is in fact a contraction and not a rotation that
takes place. For this one must simply have two obser-
vers or two photographs made from two positions situa-
ted along normals to two perpendicular edges of the
cube (parallel to the motion). If the change in shape of
the cube on the photographs is to be interpreted as a
rotation, two different axes of rotation will be found.
But both observers will interpret the observed picture
without contradiction as a contraction of the dimensions
in the direction of motion.

And still, is it possible to photograph a body which
has undergone a Lorentz contraction? As we have
demonstrated, observation of moving three-dimensional
bodies presents definite difficulties in the interpreta-
tion of the photograph obtained. But Lorentz contraction
can be established by observing a one-dimensional ob-
ject, and one can make use of this. The contraction will
become obvious and evident if one compares the length
of a moving one-dimensional rod with its proper length.
In the already mentioned Einstein's argument concern-
ing a sphere the role of a comparison scale was played
by the diameter of the sphere perpendicular to the direc-

Β' ΒΓ
Light

ΑLight ι Light

Photographic plate

a : Λ

FIG. 1. Visual observation of a cube flying past an observer, a) Rela-
tive situation of the observer and the cube for δ = 0; b) The visible pic-
ture of a cube flying past; c) a possible interpretation of the visible pic-
ture by one observer: rotation of the cube through an angle φ = arcsin
β; d) observation of a cube flying past made at an angle ΰ.

t ion of motion. It would be v e r y convincing to photograph

a moving rod against the background of i t s proper length

marked off in the o b s e r v e r ' s s y s t e m .

For this the observer in Κ (the rod is at rest in K')
must know beforehand that the rod is moving along a
given direction, and the proper length of the rod. Then
in his own system Κ he constructs a replica of the
moving rod and photographs the moving rod against the
background of its proper length. Before we discuss how
it is possible to realize this—even by means of a thought
experiment—we note that we make use of yet another
assumption.

It is not possible to take two identical scales checked
out in one system and then transfer one of them into a
moving reference system, because then there can always
arise the question of the change in the length of the scale
as a result of it being accelerated. But it is possible to
obtain identical scales in systems in a state of relative
motion even without a transfer of scales. One should
merely utilize quantum ideas regarding the identical
nature of microparticles. We assume that the wave-
length emitted by atoms of a given kind, say by cadmium
atoms, in any system in which they are at rest or, more
accurately, where they move with nonrelativistic veloci-
ties, is always the same. This means that in any arbi-
trary inertial system one can choose identical lengths
as scales. This naturally also applies to time scales.
Thus, if one wishes, one can provide all inertial sys-
tems with rods of strictly identical proper length.

The simplest arrangement for photographing a rod
undergoing a Lorentz contraction might be the following
(Fig. 2). The rod is parallel to the χ axis and moves
along that axis. The observer is situated along a normal
to the χ axis, and this normal passes through the middle
of the rods replica which is at rest in the system K.
When the middle of the moving self-luminous rod coin-
cides with the normal, a mechanism is activated which
opens the shutter of the camera at the instant when it is
reached by light emitted by points of the rod at the in-
stant when its middle coincides with the normal. It is of
course possible to photograph the stationary replica
whenever one wishes. A more deMiled discussion of
this question is given in-7-'. It is shown there, in par-
ticular, that one can photograph, say, a meter rod mov-
ing with a relativistic velocity as being contained in a
match box if the camera is at rest in the system Κ of
the match box. In the same article there is given a dis-
cussion of the interesting question (if one does not for-
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0'

fi-0

\P
Photographic plate

FIG. 2. A scheme which in principle permits making a photograph
of the Lorentz contraction of a moving rod. When the midpoint of the
rod O' turns out to lie on the line PO a device is activated which opens
(momentarily) the shutter in Ρ in such a manner that it accepts rays

emitted by the points of the rod at the instant when the point O'

crosses the line PO.

get the equ iva lence of s y s t e m s ) a s to what wi l l be found

on a photograph made at exact ly the s a m e point and at

exactly the same instant where the camera in Κ was
situated by a camera from the rod's system K'. It turns
out that in this photograph the rod no longer fits inside
the box. This is due to a distortion of the length as a
result of the oblique perspective. Nevertheless, in any
reference system will contain one point, a photograph
taken from which at an appropriate moment shows that
the rod fits completely inside the box.

Copious literature is devoted to the visible shape of
a moving body with various possibilities for the relative
position of bodies and the camera lens and of the nature
of illumination of the body. The most recent review
article "The Apparent Shape of Rapidly Moving Objects
According to the Theory of Relativity" is by McGill f 8 ]

(the same article also contains a list of references
among which we particularly note'·17-1). In this article,
in addition to a detailed discussion of the question of
measuring and photographing the length of a moving rod,
analytic methods are described for the construction of
the visible surface of moving bodies, and possibilities of
stereoscopic photography and of photography when the
object is illuminated by an instantaneous flash are
analyzed. From the more recent articles devoted to the
shape of moving bodies we call attention to^ in which
a discussion is given of the apparent shape of a moving
vertical straight line when observation is carried out
along a normal to the straight line. The apparent pic-
ture is obtained as the geometrical locus of points from
which light reaches the point of observation simultane-
ously. This picture changes as the straight line moves.
In1-10·1 the same method, utilizing digital computers, is
employed to investigate the apparent pictures for the
following cases: a) for the celestial sphere with certain
constellations; b) for a sphere on which circles of
parallels and meridians are drawn if its center passes
at a distance from the observer equal to the sphere
diameter; c) the motion of a number of cubes. We
reproduce two diagrams from this paper. Figure 3
shows the change in the visible picture of the celestial
sphere for a moving observer (cf., also'-18-'). Figure 4
shows the change in the visible picture of the surface of
a sphere on which meridians and parallels have been
drawn as the velocity of its motion is increased. The
cause of the distortion of the surface of a body when it

e s
FIG. 3. A picture of the northern celestial hemisphere, as seen by

an observer situated at the centre and moving towards the north celestial
pole. An observer at rest sees constellations shown in the figure: the
Giant Dipper, Cassiopeia, and Hercules. As the speed increases the field
of view already begins to contain Orion, a part of the constellation of
Aquarius and the Southern Cross.

θ =15

FIG. 4. The visible picture of a sphere approaching an observer with

different velocities. The centre of the sphere moves along a straight line

which passes at a distance from the observer equal t o one sphere diam-

eter. The direction from the point marked on the diagram by a circle

towards the observer makes an angle & = 45° with the direction of

motion. The sphere is so rotated that one of its poles is visible.

i s o b s e r v e d v i s u a l l y i s o b v i o u s . If t h e b o d y i s o b s e r v e d

i n a f i n i t e s o l i d a n g l e , t h e n t h e a n g l e o f a b e r r a t i o n

c o r r e s p o n d i n g t o d i f f e r e n t p a r t s o f t h e s u r f a c e o f t h e

b o d y i s d i f f e r e n t a n d t h e s u r f a c e o f t h e b o d y a p p e a r s t o

b e d i s t o r t e d .

T h e f i n i t e v e l o c i t y o f p r o p a g a t i o n of l i g h t c a n l e a d ,

i n t h e o b s e r v a t i o n of c e l e s t i a l o b j e c t s , t o t h e f a c t t h a t

t h e a p p a r e n t v e l o c i t y of m o t i o n o f c o s m i c o b j e c t s , f o r

e x a m p l e o f t h e s h e l l a f t e r a n e x p l o s i o n of a c e l e s t i a l

o b j e c t , c a n t u r n o u t t o b e g r e a t e r t h a n t h e v e l o c i t y o f

l i g h t 1 1 1 1 3 .

T h u s , t h e d e t e r m i n a t i o n of t h e t r u e s h a p e of a m o v i n g

o b j e c t r e q u i r e s , b e s i d e s a p h o t o g r a p h , a l s o a d d i t i o n a l
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information in order to make the interpretation unique
irrespectively of any relativistic effects. However, we
note in addition that an observer capable of reasoning
physically can not agree in any event with the result
that the moving object rotates*. From Fig. Id it follows
that the angular velocity dt?/dt of rotation of the cube,
and consequently also #', varies with time and more-
over non-uniformly. But if the object turns, and more-
over with a variable angular velocity, then a stationary
observer would argue that it must be acted upon by a
variable torque. But from where would come the forces
acting on a freely moving body if the whole discussion
is carried out in an inertial frame of reference? There-
fore an observer would have to recognize that an ex-
planation of the apparent shape of the body by means of
a rotation is simply wrong. Consequently, the statement
of the problem in the form "contraction or rotation" is
rather a logical trap than a physical question.

It is essential that the example discussed by Penrose
is free from the difficulty indicated above—the rotation
of a homogeneous sphere is unobservable. If one marks
the sphere by drawing on it for example parallels and
meridians, then the observer will immediately convince
himself that there is no rotation of any kind^7*. There-
fore in stating paradoxes and in discussing them one
should not deprive the observer of reason.

At the same time the question of rotation of a moving
body and of an equation describing such a rotation is
far from being simple. Euler's equation is known in a
system in which the center of inertia of the body is at
rest. One can write down Euler's equations if the body
moves with a nonrelativistic velocity. But an extension
of the very same arguments to relativistic velocities
leads to new paradoxes one of which will be stated
below.

2. TRANSFORMATION OF FORCES AND TORQUES
IN A STATE OF EQUILIBRIUM ON GOING FROM
ONE REFERENCE SYSTEM TO ANOTHER

Although the transformation law for the vector of a
three-dimensional force follows directly from the defi-
nition of the Minkowski four-dimensional force, this
law has recently become the subject of discussion " 1 4 .
The discussion arose in connection with the following
example. Let a rectangular plane frame ABCD be at
rest in a system K° (the proper reference system for
the problem) and let an elastic thread be stretched along
the diagonal AC and pull in two directions a sphere
whose rest mass is equal to m (Fig. 5a). In the system
K° the direction of the thread is determined from the
triangle ABC. If one introduces the notation AB = a0,
and BC = b0, then tan a0 = bo/ao. In the K° system the
elastic forces are directed along the thread and there-
fore one can also write that

tg a0 - V«o = F\JF\y, (1)

Where Fi denotes a force directed towards the vertex C
(similar relations are also valid for F2).

We now go over to the system Κ with respect to
which the system K° moves with the velocity V. We as-
sume, as usual, that the axes x° and χ coincide, while

Β i,, C e t c

a b e

FIG. 5. A rectangular frame along the diagonals of which elastic
threads are stretched which pull on the sphere m. a) The picture in the
"proper reference system" K° ; b) this is the appearance of the same pic-
ture from the point of view of the system K; c) if instead of a sphere we
take a dumbell, then from the point of view of Κ a torque acts on it.

the a x e s y°, y and z° a r e r e s p e c t i v e l y para l le l . In a c -

cordance with the formulas for the transformat ion of

lengths and f o r c e s we obtain if we u t i l i ze the notation*

Β = V/c:

a = a0, b --- fc0 (1 _ B')1", (2)

Flx = Flx, Fiy = F\y (1 - B')V*. (3)

From this it can be seen that Eq. (1) is no longer
valid; in the system Κ the angle determining the direc-
tion of the thread, and the angle determining the direc-
tion of the forces are by no means equal to one another:

tg a ' = b/a = (60/a0) (1 -

tg a." = FJFiv -

= T^bM = tg αο/Γ, (4)

= TF°1X/F°1U = Γ tg a 0. (5)

A l t h o u g h t h e s u m of t h e f o r c e s r e m a i n s e q u a l t o z e r o

as before, nevertheless the forces in the system Κ are
directed at an angle to the thread (Fig. 5b). This cir-
cumstance appears at first glance to be surprising.
Indeed, what will happen, for example, if one cuts the
thread along the segment 2. In the K° system accelera-
tion at the initial instant must be parallel to the direc-
tion of the force (this is a clearly nonrelativistic case
and the usual Newton's law is entirely applicable), i.e.,
it is directed along the thread. In the system Κ it would
appear that the acceleration should be directed at an
angle to the thread, since the direction of the thread
and the direction of the force Fi do not coincide. In con-
nection with this example it was even proposed to
give up the rule for the transformation of forces (3).
However, the paradox resolves simply: in relativistic
dynamics the acceleration, generally speaking, does not
coincide with the direction of the acting force and, even
though the force acts at an angle to the direction of the
thread the acceleration is directed along the thread.
The paradox itself represents a useful illustration of
the peculiarities of the relativistic equation of dynamics.

We verify that in both systems the acceleration of
the sphere is directed along the thread. It is convenient
to write the relativistic equation of motion in the
form C l 5 ]

md-ildt = γ" 1 IF — (v/c2) (F v)l;

h e r e m i s the r e s t m a s s , F i s the ordinary three-d imen-

*It is rather strange that we have found no mention of this matter
in the literature.

*We denote by V (and Β = V/c) the relative velocity of the inertial
systems, and by ν (and correspondingly β = v/c) the velocity of the
body with respect to K°.
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dimensional force acting on the sphere, ν is the velocity
of the body, γ = (1 - β2)'1/2, where β = v/c.

In the system K° at the instant t = 0 when the thread
2 is cut:

mdyO/dt = FJ,

or in components:

mdifjdt = F\x, m dv°Jdt = F°Ly.

The direction of motion at the initial instant (we divide
both s ides of the f irst equation by the second) is deter-
mined by the relation

dv'Jdvl = F°JF% = tg a0.

According to (1) this direction—the direction of ac-
celeration—coincides with the direction of the thread,
as it should. Thus, in K° the forces and the accelerat ion
a r e paral le l and the motion at the initial instant is
directed along the thread.

We now go over to the system K. In this system the
body is a lready moving with a velocity coincident with
the velocity of the reference system K°, i .e., V. There-
fore γ = Γ and the components of accelerat ion here
will be written as follows:

m dvjdt = lFlx — (V/c2) FixVVT = Fix:T
3, (6)

m dvjdt = FiyIT; (7)

h e r e it has been taken into account that the velocity of
the sphere coincides with that of the system K, i .e. , it
i s equal to V and has the components (V, 0, 0); F 1 X and
F a r e the components of the force in the system K*.
In o r d e r to find the direct ion of the accelerat ion in Κ we
divide (6) by (7):

dvjdvy - (FJFly)IV* = Γ-tg α ο / Γ 2 = tg α ο /Γ = tg a', (8)

w h e r e we h a v e u t i l i z e d r e l a t i o n (5) i n t h e t h i r d l i n k i n

t h e c h a i n of e q u a t i o n s , and r e l a t i o n (4) i n t h e l a s t l ink .

But from (8) it can be seen that the accelerat ion in Κ at
the initial instant i s also directed along the threads and
no paradox a r i s e s .

However let us suppose that instead of a sphere,
which is implied to point-like the threads would be pull-
ing on a solid, for example a dumbbell. Then in the sys-
tem Κ a couple would be acting on the ends of the dumb-
bell (Fig. 5c) and the dumbbell would rotate with respect
to the diagonal of the framef.

But in the proper system it is evident that the axis
of the dumbbell coincides with the diagonal of the frame.
Here of course we meet a paradox. And we know that the
paradox a r i s e s because we have tr ied to descr ibe from
the point of view of the system Κ a phenomenon about

*It is not difficult to note that (6) and (7) correspond to two ex-
ceptional cases of the relativistic equation, when the force and the ac-
celeration are parallel; the corresponding masses in this case were pre-
viously called the "transverse" and the "longitudinal" masses. At pres-
ent these, generally speaking, unfortunate terms have been practically
dropped, although they give not a bad impression of the tensor nature
of the relation between force and acceleration in relativistic mechanics.

tof course, one cannot say that the dumbell rotates in one system
and remains at rest in the other. Indeed, let us place a glass of water
near the dumbell. If the glass is broken when the dumbell turns then
this fact cannot be a relative one.

which we know precisely how it occurs in the proper
system K°. It i s c lear that the e r r o r is hidden in our
arguments concerning the system K.

The paradox involving the dumbbell is a variant of
the well-known lever paradox . We briefly recal l
this paradox. We assume that in K° there exis ts at r e s t
a crank-like lever made of two rigid rods attached at
the point 0 which serves as the axis of rotation of the
lever. The r o d s a r e perpendicular to one another
(Fig. 6).

To the end of the first rod there i s applied a force
F? (the length of the rod is /?), and to the end of the sec-
ond rod of a length 1° there is applied a force F°. It is
given that the lever is in equilibrium, and this means
that the torques in K° a r e equal: F?Z? = F°/g.

But if the same system is discussed with respect to
the system Κ and if one defines the moment of force as
the product of the force by the moment a r m we arr ive
at a paradoxical resul t . The lengths contract only in the
direction of motion, so that h = Z°(l - B 2 ) l / 2 , while for-
ces a r e transformed only in a direction perpendicular
to the direction of motion; F x = F?(l - B 2 ) l / 2 , but l2 = 1°,
while F 2 = F°. Separately these formulas for the t r a n s -
formation of lengths and forces give r i s e to no doubts.
But the total torque in the system Κ is no longer equal
to zero : FxZi - F2Z2 = F?Z? (1 - B2) - gg 2 ? ?

2 ^

g
= - B2F?Z?

The paradox consists of the fact that although it is
known from the outset that the lever is stationary, in
the system Κ a torque act s on the lever and, conse-
quently, the lever should turn.

Laue'-16-' resolved this paradox by a very ingenious
method. The lever moves in the system Κ with the
velocity V, therefore the force F 2 per forms in a unit
time an amount of work F2V. Thus, into the end of the
lever 2 there flows an amount of energy F 2V which in-
c r e a s e s per unit t ime the mass at the end of the lever
by Am, such that Am = F2V/c2. The increase in momen-
tum at the end of the lever per unit t ime is equal to
Δρ = AmjV = F 2 B 2 , and consequently the change in the
moment of momentum per unit t ime is equal to
F 2 B 2 / 2 = F2B

2Z2. The increase in the moment of momen-
tum in Κ is exactly compensated by the torque and no
rotation occurs .

The origin of the paradox i s actually associated with
the fact that a torque cannot be transformed by means
of an independent transformation of the moment a r m s
and the forces. A torque is a three-dimensional vector
product, and its four-dimensional generalization cannot
be c a r r i e d out uniquely. A special feature of the prob-
lem of the lever i s the fact that the total torque is de-

ο ι!

Ζ Ifll

H-F!

α) β)

F I G . 6. T h e l e v e r p a r a d o x , a ) I n t h e s y s t e m K ° , w h e r e V\l% = F ? / ?

t h e l e v e r is in e q u i l i b r i u m ; b ) t h e s a m e l e v e r , if i t is t r e a t e d f r o m t h e

p o i n t o f v i e w o f t h e s y s t e m K : t h e t o r q u e s a c t i n g o n t h e a r m s o f t h e

l e v e r 1 a n d 2 a r e c l e a r l y u n e q u a l . F r o m t h e p o i n t o f v i e w o f a n o b s e r v e r

from Κ: β = β, γ = Γ.
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termined by two forces applied at different spatial •
points. Relativistic mechanics always encounters diffi-
culties when it goes over to a description of a system
consisting of many bodies. In such a case calculations
should always be carried out for static problems in the
rest system of the medium (in our case in the system
where the lever is at rest). But the transition to a
reference system with respect to which the medium
moves already requires transformation of quantities
utilized in the theory of elasticity, and we are forced to
introduce additional constants of the specific medium.
Incidentally, an attempt to carry out such transforma-
tions for an elementary case is contained i n [ " ] .

We note one additional result. We assume that up to
the instant t = 0 there are simply no forces acting on
the lever, while at the instant t = 0 the forces F? and F£
are "swithced on" simultaneously in K°. At each instant
of time equilibrium will hold in K°. But in Κ the forces
will no longer be switched on simultaneously and there
will exist a time interval during which the force Fi is
already acting, while the force F 2 is not yet acting.
Again a torque arises. The fact that it is precisely ap-
plied at different points of the body are important here
(paradoxes arise, naturally, in the discussion of solid
bodies) can be seen from a particularly simple example.
Let a solid body of length 1° lie on the x° axis in K°.
Until the instant t = 0 no forces are acting on it, while
at the instant t = 0 equal but oppositely directed forces
are applied on both sides. In K° equilibrium always
exists, while in Κ there is a time interval during which
the forces are not in equilibrium and, consequently, the
body must start moving. Is this really so?
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