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1. INTRODUCTION

OINCE M. von Laue discovered x-ray diffraction,
various methods of x-ray study of the s t ructure and
propert ies of crys ta l s have been developed and have
gained widespread pract ical application. Until recently,
al l these methods were based on the simplified so-
called kinematical theory of scat ter ing. The lat ter
a s s u m e s that the regions of coherent scat ter ing of
x-rays in the crys ta l a r e so smal l that the pr imary
x-ray beam is only slightly perturbed, and that we can
neglect multiple scatter ing, interference of scat tered
beams, and attenuation of the pr imary beam. The
successes of x-ray diffraction studies using the kine-
matical approximation in s t ructura l a n a l y s i s / 1 1 in
studying various crysta l de fec t s/ 2 1 in determining
internal s t r e s s e s / 3 1 in studying electronic spect ra by
x-ray spectroscopic m e t h o d s / 4 1 and in analyzing the
t h e r m a l vibrations of a t o m s f 5 ] have become firmly im-
planted in modern solid state physics and physical
m a t e r i a l s sc ience.

Nevertheless, the bases of the dynamical theory
were laid even in the first theoret ical studies on x-ray
diffraction/ 6 1 This theory did not at al l assume the
crys ta l to be imperfect, but conversely, t reated it as
being ideal and possess ing an absolutely regular lattice
and serving as a resonator for the incident x-ray beam.
Since the intensity of the coherently scat tered beams is
not considered smal l in comparison with the pr imary
beam, al l these beams in the dynamical theory a r e
given equal weight, and the field in the crysta l is found
by solving the Maxwell equations for a system of self-
consistent oscillating dipoles (the Ewald method).
Alternatively and equivalently, they a r e solved for an
inhomogeneous medium whose polarizability depends
periodically on the coordinates (the Darwin method).
The renewed interest of recent years in the dynamical
theory of x-ray scat ter ing has involved appearance of
new ways of applying crysta ls in science and technology
that require continually more perfect single crys ta l s ,
and that have given r i s e to new methods of studying the
quality of c r y s t a l s . X-ray diffraction study has p r o -
gressed from analyzing the shapes of l ines in powder
patterns or spots in Laue pat terns to x-ray photographic
methods that give an image of the internal s t ructure of

a crysta l in a given Laue reflection with a resolution
that makes it possible to revea l and identify individual
d i s l o c a t i o n s / ' " 9 a i

New needs and new experimental potentialities have
hastened the development of the dynamical theory of
x-ray scatter ing. The effect of anomalous t ransmiss ion
of x-ray through a perfect crys ta l set in an exact Bragg
position (the Borrmann effect r i o a ' n l ) has been studied
in detai l . A theory of x-ray scatter ing has been de-
veloped that takes account of t h e r m a l vibrations of
a t o m s / 1 2 1 In part icular , the la t ter permi t s one to
analyze inelastic diffuse scat ter ing under conditions of
dynamical s c a t t e r i n g . [ 1 3 ] The problem of formation of
a dynamical x-ray image of a crys ta l containing defects
of various types has been studied intensively. Here the
problem has proved to be especially complex, and the
theory has lagged markedly behind experiment.

Various methods of x-ray topography have already
become widespread in the pract ice of studying the
actual s t r u c t u r e s of semiconductor, ionic, or metallic
crys ta l s . They a r e highly sensitive to defects in the
ideality of the crystal s t ructure , and they allow one to
get information on the volume distribution of defects
without harming the integrity and quality of the speci-
men. In part icular, these methods have already been
in use for several years in the semiconductor industry
for factory control of perfection of c rys ta l s . However,
the lack of a theory of formation of the image of an
actual c rys ta l leads to loss of the r ich information ob-
tained experimentally, and it puts x-ray topography at
a disadvantage with respect to the optical and electron-
microscopic methods of studying crys ta l s . Fur ther , it
is the chief obstacle to effective application of x-ray
topography in the pract ice of industr ial and scientific
laborator ies .

Just as in interference optical microscopyf"· 1 and
diffraction electron m i c r o s c o p y / 1 5 ' 1 6 1 the image in
topograms a r i s e s from the phenomenon of phase con-
t r a s t : the x-ray wave field in an inhomogeneous crysta l
proves to be spatially modulated in phase as well as in
amplitude. The specifics of x-ray diffraction image
formation, in contrast to optical and e lec t ron-micro-
scopic image formation, is determined by the relation
between the wavelength λ of the radiation and the inter-
atomic distance d. While λ ^> d in optics, and λ <S d
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in electron microscopy, λ/d < 1 for x- rays , and cor-
respondingly, the diffraction angle proves to be of the
order of unity. Consequently, not only regions of the
crys ta l that extend in the direction of illumination
part ic ipate in forming each detai l of the x-ray image,
but also those that extend in the perpendicular d i r e c -
tion. While in electron microscopy the image can be
considered to consist of points, each of which depicts
the s t ructure of the specimen along the direction of
illumination (the columnar approximation f l e i ), in x-ray
topography the image should ra ther be considered to be
streaked, in that each point in the crys ta l corresponds
to a s t r i p having a length of the o r d e r of the specimen
thickness . Overlap of the geometrical and diffraction
images, which is ra re ly found in optics and electron
microscopy, proves to be the general case in x-ray
topography.

Various approaches have been proposed in recent
years in the l i terature for solving the problem of x-ray
image formation, the opportunity has a r i s e n of analyz-
ing the accumulated resu l t s and of planning methods of
theoret ical analysis of image formation that a r e very
promising for pract ical u s e . This ar t ic le will discuss
a dynamical theory of formation of x-ray images that
is based on represent ing the x-ray field in the form of
two spatially-inhomogeneous wave packets. Chapter 2
will d iscuss a homogeneous wave field in an ideal
crysta l , a s determining, in part icular , the image of the
surface relief and shape of the specimen. Chapter 3
will study an inhomogeneous wave field in an ideal
crys ta l , and Green ' s functions will be constructed that
descr ibe the propagation of a local perturbation, and
the images of s l i t s , s c r e e n s , and smal l volume inclu-
sions will be analyzed. In Chap. 4, a general theory of
image formation of a crysta l having a known distortion
field will be constructed, and special cases will be
pointed out that allow simple analytical e s t i m a t e s . The
resu l t s of numerical calculation of images of complex
distortion fields caused by dislocations will be com-
pared with approximate es t imates obtained by using
Green ' s functions. Chapter 5 will discuss geometrical
x-ray optics . An analogy will be established between
ray t ra jector ies and the motion of charged part ic les in
an e lectr ic field. Conditions will be derived for reflec-
tion and refraction of rays on passing through a phase
boundary. Chapter 6 will develop a general method of
constructing the analytic solution of the equations for
the wave field in the crys ta l in the geometrical-optics
approximation. As an example, the image of a disloca-
tion perpendicular to the surface of the specimen will
be constructed. The r e s u l t s will be compared with
numerica l calculation on a computer of the image of a
dislocation and with experiment. An asymptotic method
of image calculation is developed for a two-dimensional
distortion field that simplifies analysis of the image for
a thick crysta l and that p e r m i t s one directly to take
account of effects of total internal reflection, waveguide
formation, shadows, e tc .

2. THE WAVE FIELD IN AN IDEAL CRYSTAL

We shal l descr ibe the x-ray field in the crysta l by
using the electr ic field vector Ε ( ω , r ) . This vector
satisfies the Maxwell equation

rot rot Ε (ω, r) = κ2ε (ω, r) Ε (ω, r), (2.1)

where κ and ω a r e the wave vector and frequency of
the incident wave, and e(u), r ) is the dielectr ic constant.
The lat ter differs little from unity, so that the polariza-
bility of the crys ta l χ(α>, r ) = e(cu, r ) - 1 is a smal l
quantity.

In an ideal crys ta l , the function χ ( ω , r ) depends
periodically on the coordinates, and it can be expanded
in a s e r i e s in the reciprocal- lat t ice vectors Kh:

Χ (ω. r) = Sx^(O)e i K" r . ( 2 ·2)
h

The Bloch waves a r e solutions of Eq. (2.1):

Ek (r) = β*'Σ Ehe
iK"', (2.3)

h

w h e r e t h e v e c t o r k s a t i s f i e s t h e d i s p e r s i o n e q u a t i o n .
T h e l a t t e r i s o b t a i n e d by s u b s t i t u t i n g (2.3) in to (2.1)
a n d s e t t i n g t o z e r o t h e d e t e r m i n a n t of t h e m a t r i x

A n

]

h , = { [ ( k + K h ) 2 - ^ ] 5 i j 5 h h ' - ( k + K h ) i ( k + K h ) j 6 h h '

- K 2 x h - h ' 6 i j } t h a t r e l a t e s t h e c o m p o n e n t s of t h e v e c -

t o r s Eft.
a ) T h e t w o - w a v e a p p r o x i m a t i o n . T h e c a s e of g r e a t -

e s t p r a c t i c a l i n t e r e s t i s t h a t in w h i c h t h e c r y s t a l i s
o r i e n t e d c l o s e t o one of t h e B r a g g p o s i t i o n s , e . g . , t o a
p o s i t i o n h a v i n g t h e r e f l e c t i o n v e c t o r K i . H e r e o n e c a n
r e s t r i c t t h e e x p a n s i o n in (2.3) t o two t e r m s h a v i n g
amplitudes E o and Εχ. The lat ter correspond to the
t ransmit ted and diffracted waves (the two-wave ap-
proximation):

E k = e o £ o e i k r

(2.4)

h e r e e 0 and d a r e uni t v e c t o r s t h a t a r e p e r p e n d i c u l a r
t o t h e v e c t o r s k a n d k i = k + K 1 ; r e s p e c t i v e l y (we c a n
n e g l e c t t h e s m a l l d e p a r t u r e of t h e e l e c t r o m a g n e t i c
field in t h e c r y s t a l f r o m t r a n s v e r s e o r i e n t a t i o n ) . T h e y
l ie e i t h e r in t h e s c a t t e r i n g p l a n e k, k i o r p e r p e n d i c u l a r
t o i t . T h e a m p l i t u d e s E o a n d E i s a t i s f y t h e fol lowing
m a t r i x e q u a t i o n a r i s i n g f r o m ( 2 . 1 ) :

-Xf a-Xo/ \E,

iE,
= 0, (2.5)

w h e r e C = 1 for t h e c o m p o n e n t s of t h e wave field
p o l a r i z e d in t h e s c a t t e r i n g p l a n e , but C = c o s 26 f o r
t h e c o m p o n e n t s p o l a r i z e d p e r p e n d i c u l a r l y t o t h i s p l a n e ;
θ = kki/2 is the Bragg angle.

The dispersion equation corresponding to (2.5)

[(4» _ tf)x-* _ χο] \(k\ _"x»)x-» _ χο] = cV.ft

descr ibes a surface of revolution with two branches
having its axis paral le l to the vector Ki. Since we can
t r e a t the dispers ion surface a s an isoenergetic surface
in rec iproca l space, analysis of i ts shape differs in no
way, e.g., from the usual analysis of the shape of a
F e r m i surface near the boundary of a Brillouin zone.

Figure 1 i l lus t rates the c r o s s section of the disper-
sion surface in the scat ter ing plane. OH = Ki is the
reflection vector. The Bragg condition k = ki = κ (OM
= HM = κ) corresponds to point M, and the incident
wave to point L. When the deviations from the Bragg
conditions a r e large, the branches of the dispersion
surface t ransform into the spheres T o and TJJ having
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FIG. 1. Cross-section of the dispersion surface in the scattering
plane.

centers at the points Ο and_H (Fig. l(a)), which are
separated by the distance OH = Ki. When the deviation
is small, they transform into hyperbolic cylinders
(Fig. l(b)). The radius of the spheres is κ(1 +χο)1 / 2·
This corresponds to propagation of waves in a homo-
geneous medium having a refractive index of
(1 + χο)1/2 « 1 + (χο/2). (Since χ0 < 0, the crystal is a
less dense medium than a vacuum for x-rays). The
line of intersection of the spheres corresponds to point
M'. Near this point, the spheres To juid T H differ
little from planes perpendicular to OM' and HM', and
the dispersion surface is close to the hyperbolic
cylinder

[ίΜ*Ό - κ2 (1 + χο)1 [k,M% - κ2 (1 + χ»)1 = (2.6)

The planes To and T H serve as asymptotes for the
latter (both χ_ι and χι are negative, and hence the
right-hand side of (2.6) is positive). The dispersion
surface for polarization in the plane of incidence dif-
fers from that for polarization perpendicular to the
plane in the greater length of the real axis of the hy-
perbola, which determines the minimum splitting of
the dispersion surface

Afrmin « Y.C (χ . ,χ,) ι / ! sec Θ. (2.7)

When κ «* 108 cm"1 and | χ | » 10"5, the splitting turns
out to be of the order of 103 cm"1.

b) Bloch functions. The different branches of the
dispersion surface correspond to Bloch functions of
different types. The first branch (the lower one in
Fig. 19b)) corresponds to negative values of the two
brackets on the left-hand side of Eq. (2.6). As we see
from (2.5), Eo and Ei have the same sign in this case.
Hence the antinodes of the Bloch functions pass near
the lattice sites. The second (upper) branch of the dis-
persion surface corresponds to opposite signs for E o

and Ε ι, and to antinodes of the Bloch functions lying
between the lattice sites. In the symmetrical case (at
the vertices of the hyperbolas), the vectors Eo and Ei
are equal in absolute value, and the Bloch functions for
polarization in the plane of incidence, when eo = e t ,
take on the simple form

Ek (r) = 2eo£0 exp [£ (k -f 0,5K,) r] cos (K,r/2)

for the first branch, and

Ek (r) = ~2ie0E0 exp [£ (k + 0,5K,)r] sin (K,r/2) (2.8)

for the second branch of the dispersion surface. In the
former case, the nodes of the Bloch functions lie ex-
actly between the lattice nodes. In the latter case, they

lie in the reflecting atomic planes, and pass through
the lattice nodes as the wave propagates. As we know,
an analogous situation for the electronic wave functions
occurs in the case of splitting of energy levels near the
boundary of a Brillouin zone due to strong reflection of
electrons/ 1 7 1

The noted difference between the Bloch functions
proves to be very substantial when we take account of
x-ray absorption. Photoelectric absorption gives rise
to a small imaginary component in the polarizability
χ(ω, r). Correspondingly, the coefficients χ^ are com-
plex quantities: xh = Xh + *χίί> w h e r e ° < Xh < ~Xh·
The mean refractive index of the crystal (1 + χο)1//2

« 1 + (χό/2) + ϊ(χό'/2) corresponds to photoelectric
absorption with an absorption coefficient μ = κχ'ό.
When χΊ w x'-i, Eq. (2.6) gives the following expression
for the absorption coefficient of the Bloch waves of the

• first type with E o « Ei:

μ, = (μ/cos θ) [1 + (CI2-Q (χ! + χ!,)Ι.

Analogously, for Bloch waves of the second type having

μ2 = (μ/cos θ) [1 - (CI2-Q (t\ (2.9)

In both c a s e s we have taken account of the fact that the
d i rect ion of propagation of the studied Bloch w a v e s
forms the angles θ with the vectors k and ki. When
C = 1 and χ'/ » χΙΊ » χό, we get μ ι * 2μ/οοβ θ and
μ 2 ^ μ ι · That i s , Bloch waves of the different types
a r e absorbed to substantially different extents . Here
the Bloch waves of the type of (2.8), which a r e polar-
ized in the reflecting plane and which propagate along
the reflecting planes in such a way that their nodes run
along the atomic planes, show anomalously weak ab-
sorption as compared with the usual photoelectric ab-
sorption. This B o r r m a n n t l o a i effect of anomalous
t ransmiss ion of x-rays permi t s one to use perfect
crys ta l s as col l imators with an angular divergence of
the o r d e r of x(i .e. , of the o r d e r of s e v e r a l seconds of
angle) and as polar izers with a degree of polarization
of the order of 1 - β χ ρ ( - δ μ ί ) . Here t is the thickness
of the crystal , while δμ « μ ( 1 - C)sec θ is the dif-
ference as defined by (2.9) between the minimum ab-
sorption coefficients for waves of differing polar iza-
tion, which character izes the x-ray dichroism of the
crys ta l .

c) Excitation of the wave field in the crys ta l . In the
general case, an external x-ray beam incident on a
crys ta l excites in it an ent ire series_of Bloch waves.
Let a plane wave of wave vector K ( L O in Fig. 1)
s t r ike a plane face of a crysta l set almost exactly at
the Bragg position. Then, for each polarization, two
Bloch waves having the wave vectors LnO and L2O in
Fig. 1 a r e excited in the c rys ta l . They correspond to
two points Lu and L 2 on the different branches of the
dispers ion surface that a r e related to the point L by
the condition of continuity of the tangential component
of the wave vector : at the surface of the crys ta l :

[κη] = [k<«n] = [Kn>n], (2.10)*

Here η is the normal to the entrance surface of the

*[κη] =κ X n.
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crys ta l . The condition (2.10) implies that the points L,
Li, and L 2, which a r e the ends of the wave vectors
κ = LO, kW = LTO, and k(H) = L 7 O , lie on a single line
paral le l to the vector η (see Fig. 1). The intersection
L' of this plane with the asymptote T o defines the wave
vector ΐ 7 θ (where | L ' 0 | = κ' = (1 + χ ο ) 1 / 2 ) for the
wave that would have propagated in a crysta l having the
homogeneous polarizability χ = χ0.

The Bloch waves having the s imi lar wave vectors
kW and k^O propagate independently in the crys ta l .
Their superposition resu l t s in an overal l wave field
that beats spatially with the wave vector Ak
= Ο . δ ^ 1 ) - k ( n ) ) (the Pendel lbsung,t 1 8 a ] which is
analogous to the case of coupled pendulums in mechan-
ics) . Energy t rans fer from the t ransmit ted to the dif-
fracted wave, and vice versa, occurs within the d i s-
tance I = ir/| Ak| in the direction normal to the entrance
face. In the exact Bragg position, which corresponds to
the minimum distance (2.7) between the branches of the
dispers ion surface, the distance I attains its maximum
value Λ = 2τΓ(Οκ)~ 1(χιχ-ι) 1 / 2 cos θ, which is called the
extinction distance. According to (2.5), the relation be-
tween the amplitudes E o and Ei in each of the Bloch
waves is defined by the proportion

= C X . ,/[(k 2 - κ') κ- 2 - χ ο 1. ( 2 . 1 1 )

Apart from correct ion factors of the o r d e r of χ 0 (i.e.,
neglecting correct ions for the mean refraction), the
amplitudes of the Bloch functions can be found from
the condition of continuity of the electromagnetic field
at the surface of the c r y s t a l : the sum of the Bloch
waves of (2.4) for the vectors kOO and k № (and for
both polarizations) must give values at the entrance
face for the electr ic field strength and its normal
gradient that match the field of the wave incident on
the crys ta l .

A number of monographs and reviews 1 ] give the
detailed solution of the boundary problems in the
dynamical theory of scat ter ing of plane waves. We
shall give as an example only the expression for the
overal l wave field polarized in the scat ter ing plane for
the case η ·ΚΧ = 0 (symmetric Laue diffraction):

(r) = e0£0 (z) eixr + e,£, (z) (2.12)

where
£ „ (z) = exp {i [(χοΧζ/2 cos Θ) -

- (ακζ/4 cos Θ)]} {cos [(χ,κζ/2 cos Θ) [1 + (α/2χ,)211 / 2] +

+ (ια/2χ,) sin [(χ,κζ/2 COS Θ) [1 + (α/2χ,) 2] 1 ' 2] [1 + ( α ^ χ , ) 2 ] - 1 ^ } ,

( 2 . 1 3 )
£Ί (ζ) = i exp {; [(χοκζ/2 cos θ) — (ακζ/4 cos θ)]} x

Χ sin {(χ,κζ/2 cos θ) [1 + (οβχ,)'] 1/»} [1 + ( α β χ , ) 8 ] - 1 / ! ;

( 2 . 1 4 )

Here ζ = r ·η is the distance from the entrance face of
the crys ta l , we have assumed for simplicity that χι

= x-i (which is valid for a centrosymmetr ic crystal),
and the p a r a m e t e r α = [ (κ + Κι)2 - κ 2 ] / κ 2 is deter-
mined by the deviation of the direction of the incident
wave from the exact Bragg conditions: a deviation by
the angle φ corresponds to a = 2ψ sin 2Θ. (In Fig. 1,
the distance LM = φκ= ακ/2 sin 2θ.)

As we see from (2.13) and (2.14), the intensit ies of
the t ransmit ted and diffracted waves a r e spatially
modulated with the period I = Λ/[1 + ( α / 2 χ ί ) ] 1 / 2 . If we

take account of the absorption, the oscillation in inten-
sity ceases at a depth of the o r d e r of h « μΫ[1
+ ( α / 2 χ Ί ) 2 ] ν 2 , and when ζ 3> h, a Borrmann wave
field is formed. Extinction modulation ceases at a
depth of the o r d e r of

lt = cos θ-^Ικ)- 1 [1 + (allufYl' « (μ,/2)-* [

t h a t c o r r e s p o n d s t o a b s o r p t i o n of t h e B l o c h w a v e of t h e

f i r s t t y p e . O n l y t h e B l o c h w a v e o f t h e s e c o n d t y p e i s

propagated in the region ζ > h (the Borrmann effect).
This wave shows relatively weak absorption, and
vanishes at a depth of the order of

= κ-1 cos

When Ι α I <C | χ Ί | , the Borrmann field extends to the
maximum depth l2 ~ μΐ1. The value of h declines
rapidly with increasing deviation from the Bragg
angle. When \a | > | χ Ί | ,

h « /,/{[l + (a/2X;)2l1/2 - 1} « (μι/2)-'/{1 - [1 +

When the rat io | α / χ Ί | becomes severa l t imes unity
(here the deviation of the incident wave from the exact
Bragg direction amounts to about 10—15 seconds of
angle), U approaches l u and the Borrmann effect
vanishes completely.

d) Imaging of the surface relief and shape of a
crys ta l . If the exit face of a crys ta l is not paral le l to
its entrance face, the extinction modulation of (2.13)
and (2.14) gives r i s e to extinction fringes in the x-ray
image of a crysta l whose thickness does not exceed lt.
These bands a r e analogous to the equal-thickness
fringes known in optics. In the diffracted-wave image
they correspond to specimen thicknesses of half-inte-
gral numbers of periods of the extinction modulation
t = l(n + y2) (n = 0, 1, 2 , . . . ) . A very s imple example
is the image of a wedge-shaped crys ta l in which the
fringes a r e paral le l to the apex of the wedge, and a r e
arranged with a spacing of l/ip, where ψ is the wedge
angle. The sys tems of interference fringes for the dif-
ferent polarization direct ions a r e superimposed. Beat-
ing a r i s e s here in the image of the wedge, with the
period V = 2Z(1 - C). These beats a r e well marked
when /' < It.

Figure 2 shows an x-ray diffraction photograph of a
silicon crys ta l (111 reflection; equal-thickness extinc-
tion fringes can be seen along the edges of the speci-
men, and dislocations and macroscopic defects of the
crys ta l a r e seen in the centra l par t) . The contours of
the equal-thickness fringes pictorially convey the
pyramidal shape of the crys ta l . By using a photograph

FIG. 2. X-ray photograph of a silicon crystal. ["]
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like Fig. 2, one can determine the extinction distance
Λ and the value of χ\ from the spacing between the
extinction fringes. The attenuation of the fringes gives
the distance h and, correspondingly, the absorption
coefficient of the Bloch waves of the first type and the
value of X l " . As we see from (2.13) and (2.14), the ex-
tinction fringes correspond to constant values of the
product t [ ( x l / 2 ) 2 + ( a / 4 ) 2 ] 1 / 2 . Hence, equiinclination
interference fringes corresponding to contours having
α = const, can arise in an equal-thickness plate ir-
radiated by a divergent x-ray beam. Fringes of this
type also arise upon bending thin crystal plates, and
they permit one to determine the shape of the specimen.

3. WAVE PACKETS IN AN IDEAL CRYSTAL

A spatially inhomogeneous wave field E(r) can be
represented as a superposition of the Bloch waves of
(2.3). In general, however, this requires an unlimited
choice of Bloch waves. It is more convenient to repre-
sent a spatially inhomogeneous field as a superposition
of two wave packets that correspond to the transmitted
and diffracted waves:

Ε (r) « E o (r) e*« + E, (r) ««*+*!>', (3.1)

where E 0 ( r ) and E i ( r ) a r e smooth ly vary ing functions

of the c o o r d i n a t e s .

Let us introduce the dimensionless Cartesian coordi-
nates χ = [(Κι·τ)/(κ·Κι)]κ2 and ζ = [((2*
+ Κι) · r)/(( 2κ + Κι) · κ)] κ2 in the scattering plane. Upon
substituting (3.1) into (2.1) and neglecting the small
longitudinal component of the electric field in the
crystal, we get in this coordinate system the following
system of equations for each of the two possible polari-
zation directions:

-xfi

The substitution E o —
converts (3.2) to the form

(3.3)= 0,

For the amplitudes Eo and Ei, this corresponds to a
telegraphic equation with constant coefficients:

(3.4:
a) Green's functions. The general solution of Eq.

(3.4) can be constructed by means of a Riemann func-
tion^0 3 that differs from zero in the region | x | £ z:
G (x, z) =

- 0 . 5 / , (0.5χ (ζ2 - ι2)1/.) β-ΐα(«-*)/4 9 (ζ) [Θ ( * + » ) - θ ( x - z ) ] ;

( 3 . 5 )

H e r e J 0 ( t ) i s t h e z e r o - o r d e r B e s s e l f u n c t i o n , a n d

0 ( t ) i s a s t e p f u n c t i o n : 0 ( t ) = 0 w h e n t < 0 , a n d 0 ( t )

= 1 w h e n t > 0 . L e t t h e v a l u e s o f t h e f u n c t i o n E j ( x , z )

a n d i t s n o r m a l d e r i v a t i v e 3 E j ( x , z ) / d n b e k n o w n o n a

contour L that intersects the characteristics ζ + x
= count in only one point. For every point (x, z) of the
triangular region formed by the contour L and the

characteristics drawn from its ends, the values of
Ej(x, z) are defined by the expression

E,(x, z)=^dl(dx'-dz')^E,(x', z')G(x-x', z-z')

dEi(x', ζ')

( 3 . 6 )

E q u a t i o n ( 3 . 6 ) s t e m s i n a n o b v i o u s w a y f r o m G r e e n ' s

t h e o r e m if w e c o n s i d e r t h e f a c t t h a t t h e R i e m a n n f u n c -

t i o n of ( 3 . 5 ) s a t i s f i e s t h e e q u a t i o n

D \G (x, z)] = -δ (x) 6 (z).

If we u s e (3.2) to e l iminate the d e r i v a t i v e s 8 E j / 3 n and
dE/dl f rom Eq. (3.6), we get

Eo (x, z) = £ (dx' _(- dz') Gol (x — x\ ζ — ζ') Et (xr, z')

(x' - dzd') Go o (x - x', ζ - ζ') Eo (x', z'),

Et (x, z) = j (dx' - dz') Gl0 (x - x\ ζ - ζ') Eo (x', z') + ^ 3 " 7 '

+ ^ (dx' + dz') Gn (x - x', ζ - ζ') Ε, (ζ', ζ');

H e r e

Go l (x, Ζ) = _(ίχ_,£74) e - ia (z-x)/4 Jo ( χ (22 _ ^2)1/1/2) θ (ζ) [θ (Χ + Ζ)

- Θ ( Χ - Ζ ) ) ,

G,o (Χ, ζ) =

= -(ix,C/4) β-'«(»-*)/«/„ (χ (ζ2 - x2)VV2) θ (ζ) [θ ( χ + ζ ) - θ (χ-ζ)\,

Go o (χ, ζ) = _ e-io(«-x)/4 { 6 (Ζ _ Χ ) _ 0 , 2 5 χ [(ζ +χ)/(ζ - χ)]1/'

Χ / , (χ (ζ2 - χ2)'/2/2) θ (ζ) [θ {χ + ζ) - θ (χ - ζ)]},

G,, (Χ, Ζ) = —e-ia (*-*>/4{fi (j _|_ ζ) _ ο,25χ 1(ζ — χ)/(ζ + χ)]'/ι

χ / , (χ (ζ2 - χ2)'/2/2) θ (ζ) [θ (χ + ζ) - θ (χ - ζ)]}.

( 3 . 8 )

T h e f u n c t i o n s o f ( 3 . 8 ) a r e t h e G r e e n ' s f u n c t i o n s t h a t

d e s c r i b e t h e p r o p a g a t i o n o f a l o c a l p e r t u r b a t i o n of t h e

w a v e f i e l d , a n d w h i c h p l a y t h e s a m e r o l e i n x - r a y

o p t i c s a s t h e f u n c t i o n r " 1 e x p ( i w ) d o e s i n l i g h t o p t i c s ;

a c c o r d i n g t o t h e H u y g e n s - F r e s n e l p r i n c i p l e , t h e l a t t e r

f u n c t i o n d e s c r i b e s t h e p r o p a g a t i o n of a p e r t u r b a t i o n

f r o m a n e l e m e n t a r y s o u r c e . T h e G r e e n ' s f u n c t i o n s o f

( 3 . 8 ) d i f f e r f r o m z e r o o n l y i n t h e s o - c a l l e d B o r r m a n n

d e l t a | x | < z .

T h e n a t u r e o f t h e p r o p a g a t i o n of a p e r t u r b a t i o n

w i t h i n t h e B o r r m a n n d e l t a d e p e n d s s u b s t a n t i a l l y o n t h e

x - r a y a b s o r p t i o n i n t h e c r y s t a l . In w e a k l y a b s o r b i n g

F I G . 3 . D i a g r a m o f t h e p r o p a g a t i o n o f a l o c a l p e r t u r b a t i o n .
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FIG. 4. Effect of absorption on the propagation of a local pertur-
bation.

(thin) crys ta l s having μ ί < 1, we can consider the co-
efficient χ to be r e a l . Then the Green ' s functions a r e
expressed in t e r m s of the Besse l functions J o and J i
of rea l argument, which oscil late with ever-declining
amplitude as the argument i n c r e a s e s . Correspondingly,
oscil lations a r i s e near the boundaries of the Borrmann
delta (near the character i s t ic s ) , and their number de-
pends on the distance from the perturbation s o u r c e .
We see from (3.8) that the functions G o o and Gn have
δ-type singularit ies at the c h a r a c t e r i s t i c s ζ = ±x,
respectively. These s ingularit ies can be interpreted
as direct geometric images of the source . Figure 3
shows schematically the variation of the Green ' s func-
tions for a nonabsorbing crysta l in exact Bragg or ienta-
tion (a = 0) when a) ίχ ι(χ, ζ) = i ^ G ^ x , ζ), and
b) G n ( x , z) = Goo(-x, z)·

In absorbing c r y s t a l s , we must take account of both
the r e a l (χ ' » ϋ(χΊχ1ι ) 1 / 2 ) and the imaginary

-0,5C [χ, + χΙ,

components of the coefficient χ = χ' + iy". (For the
indicated choice of signs χ' > 0 and χ' < 0.) Since
| χ" | «C χ' « | χ | , the spatial distribution of the per-
turbation differs little from the case of a nonabsorbing
crysta l for smal l values of ( z 2 - x 2 ) 1 / 2 (near the edges
of the Borrmann delta). We need only take account of
the overal l attenuation of the perturbation with depth
that follows the law e x p ( - x S z / 2 ) . However, as the
argument of the Besse l functions i n c r e a s e s , their
(absolute) value ceases to oscil late, and it begins to
increase exponentially. Consequently, the perturbation
is not localized at the edges, but in the centra l part of
the Borrmann delta. To i l lustrate the behavior of the
Green ' s functions G o i and G 1 0 , Fig. 4a gives a picture
of the modulus of the function J 0 ( p e i c P ) (the dotted line
corresponds to φ = tarT^y/x) = - 5 ° ) . We see from
Fig. 4a that the relief of the,function | J 0 ( x + iy) | in the
xy plane, where χ + iy = pei(P, i s a trough stretching
along the χ axis . It goes over into steep slopes with
increase in the imaginary component y of the argu-
ment. The rays φ = const, correspond to values
χ" = -\ χ ι sin φ . If we as sume that ρ = | χ | (z2 - x2)1/2/2,
we get the intensity distribution of the radiation within
the Borrmann delta for a point source, which is
schematically shown in Fig. 4b (the intensity distr ibu-
tion of the diffraction image of a narrow slit for | χί |
= 20 as a function of the absorption coefficient as con-
structed from the relief of Fig. 4a; the value of the
p a r a m e t e r φ is indicated on the curves) . If we use the
asymptotic representat ion of Besse l functions for large
arguments , we can convince ourselves that the t r a n s i -
tion from oscil lations to exponential growth of the
Green ' s functions in the centra l part of the Borrmann

delta occurs at ( z 2 - x 2 ) 1 / 2 <; - l / χ " . This corresponds
to attenuation of the Bloch waves of the first type and
appearance of a Borrmann wave field. In this region,
the perturbations due to the point sources a r e dis-
tributed according to the law ( z 2 - x 2)~ 1 / 2.
e x p [ - x " ( z 2 - x 2 ) V 2 ] . When | x | < z, this approaches
a Gaussian law having a half-width of the peak of the
o r d e r of ( ζ / χ " ) 1 / 2 . The intensity decline with depth for
the centra l part of the Borrmann delta is described by
the function ζ" 1 β χ ρ [ - ( χ £ + χ " ) ζ ], and it is determined
chiefly by the absorption of the Bloch waves of the
second type.

b) Image of a slit and a s c r e e n . The Green ' s func-
tions of (3.8) permit one directly to construct the wave
field for an a rb i t ra ry distribution of the incident wave
on the entrance surface of the crys ta l . For example,
let this surface coincide with the plane ζ = 0. If we
assume that E o = E 0 (x, y) and Ei = 0 for ζ = 0, we
obtain from (3.7)

£ 0 (x, y, z) = j Eo {x·, y) G00 (x - x', z) dxf,

ΕΊ (χ, y, z) = j Eo (x', y) G l o (x·- x', z) ax1.

When E 0 ( x ' , y, 0) = c o n s t . , w e o b t a i n by u s i n g t h e t a b u -
l a t e d i n t e g r a l :

f Jo ( χ (i» _ i«)»/./2) ew-dx

-' = 2 sin {ζ (χ«/4) + (α2/16)]1/ϊ}/[(χν4) + (aa/16)]'/«.

F r o m (3.9), a g a i n we get t h e w a v e f ield of (2.13) and
(2.14) for a n i n c i d e n t p l a n e w a v e . In t h e o p p o s i t e l i m i t -
i n g c a s e of a n in f in i te ly n a r r o w s l i t , i t s i m a g e i s g iven
d i r e c t l y by t h e funct ions G o o in t h e t r a n s m i t t e d w a v e
a n d G 1 0 in t h e d i f f r a c t e d w a v e . T h u s , F i g s . 3 and 4
c a n b e t r e a t e d a s b e i n g t h e i m a g e of a n a r r o w s l i t for
n o n a b s o r b i n g a n d a b s o r b i n g c r y s t a l s .

T h e i m a g e of a s e m i i n f i n i t e s c r e e n a r i s e s f r o m (3.9)
with E 0 ( x , y) = 8 0 ( x ) . T h e c h a r a c t e r i s t i c s p a s s i n g
t h r o u g h t h e e d g e of t h e s c r e e n d i s s e c t t h e i m a g e i n t o
t h r e e c h a r a c t e r i s t i c r e g i o n s ( F i g . 5a) , T h e field i s
t o t a l l y a b s e n t in t h e r e g i o n x < - z (the u m b r a r e g i o n
I). In the region x > ζ (the fully illuminated region II),
the wave field does not depend on x, and is defined by
Eqs . (2.13) and (2.14). An interference image of the
s c r e e n a r i s e s in the transit ion region | x | < ζ (the
image of the edge of the screen, or region ΙΠ), which
we cannot generally t rea t as a penumbra region.
Figure 5b gives a diagram of the image of a slit
(region IV) that is analogous to Fig. 5a. In this case,
E 0 (x, y) = 8[9(x + a) - θ(χ - a)], where a is the
half-width of the s l i t . In regions I—III, the image coin-
cides with the corresponding portion of the image of a
s c r e e n . In region IV, the interference images of the
two s c r e e n s that form the slit a r e superimposed. In
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2a

FIG. 5. Diagram of the images of a semi-infinite screen (a) and of a
slit (b).

FIG. 6. Diffraction images of a slit and of a semi-infinite screen.

this region, the effect of the slit width on the nature of
the image mainly influences the extinction modulations
near the boundaries of the region: as compared with
the image of an infinitely narrow slit, the extinction
fringes that are situated at distances smaller than the
slit width vanish. A calculation of the images of a
screen and of a finite slit of varying width for non-
absorbing and absorbing crystals is given in r2X>22] As
an illustration, Fig. 6a gives a photograph of a narrow
slit t 2 3 1 [the slit width 2a = 10 μΐη, the Si crystal is of
thickness t = 0.42 mm, (224) reflection; ΜοΚώ].
Figures 6b—d give typical examples of calculation of
images of a screen (b) and a slit (c, d). (In b, the edge
of the screen is at a = 0, and χί = llvr:, in c and d, the
slit has, respectively, a/t = 0.625 and a/t = 0.125; we
assume that a = 0 and χί = 16ττ; the curly brackets
mark the region | χ - 11 < a.)

One can analyze the images of screens and slits
qualitatively by analogy with the method of Fresnel
zones known in optics. In order to do this, one must
distinguish in (3.9) the contribution from the regions
corresponding to different signs of the Green's func-
tions. In particular, when a = 0, these regions are
strips that lie between consecutive zeros of the Bessel
functions. For example, let us arrange a zone plate on
the surface of a plate of thickness ζ that consists of a
series of opaque screens that cover the intervals be-
tween the odd and the following even zeros of the func-
tion J0(x(zS - x 2)V 2/2). Then a brightly illuminated
strip will appear on the exit face of the crystal near
the line χ = 0. This band can be used as a line source
of x-rays. The intensity of such a diffraction slit in-

creases in proportion to the square root of the thick-
ness of the crystal.

The wave field that arises when a beam of plane
waves of different wave vectors is incident on a crystal
can be reduced to the above-discussed case of a plane
wave: the distribution of the plane waves over their
wave vectors κ is equivalent to their distribution over
the parameter a . A change of the wave vector by δκ
corresponds to a change in the parameter α by δα
= 2/Γ2Κι· δκ. This is equivalent to introducing an ad-
ditional spatial modulation of the wave packet by the
coefficient exp[-i(6a/4) (x - z)]. Thus, angular
divergence of the x-ray beam can be replaced by an
equivalent spatial diffuseness of the wave packet.

In the case of an incoherent divergent beam, the
waves having different values of a do not interfere
with each other, and the integrated intensity of the
image is determined by the sum of intensities of the
images for waves of all directions. For an infinitely
narrow slit, the wave field with full account of the
phase does not depend on the parameter a at all.
Owing to this fact, determination of the structural
parameters from the interference pattern of a narrow
slit proves to be more reliable (the relative accuracy
of determining the parameter χ is as good as
10" 3 -10" 2 r 2 4 ' 2 S b ' e ] ) than in the case of the equal-thick-
ness fringes mentioned in Sec. d of Chapter 2. For a
coherent divergent beam, the amplitudes of the dif-
fracted waves corresponding to different values of a
are added, rather than the intensities. Now, the rela-
tion of the Green's function of (3.8) to the parameter
α reduces to the appearance of the coefficient
exp[i(a/4)(z - x)]. Therefore, in convoluting the ex-
ternal field with the Green's functions, one can inte-
grate over the orientations of the incident waves inde-
pendently of integrating over the surface of the en-
trance face. The equivalence of the angular and spatial
distributions of the waves in the wave packet permits
one to vary the choice of representation of the same
packet, depending on the concrete problem.

For example, let the amplitude and phase of the
plane waves in a broad wave packet be independent of
α in the range where this parameter is small. This is
the only essential range for the excitation of the field
in the crystal (a cylindrical wave can serve as a partic-
ular illustration). Introduction of the form factor
Jexp[i(a/4)(z - x)]da constricts this packet into a
narrow ray that is equivalent to a thin slit on the en-
trance surface of the crystal. Each plane wave of the
wave packet excites in the crystal a wave field of the
type of (2.12)-(2.14). Superposition of these fields then
gives the field described by the Green's functions of
(3.8). In fact, if we integrate the relations (2.12)-(2.14)
over the parameter a [taking account of the dependence
on a of the wave vector κ that enters into Eq. (2.12),
which g i v e s A C T = κ ο τ + 0 . 2 5 ( α - α 0 ) ( ζ - χ ) ] , and
u s e the tabulated integra l

- { 0, 0 < » < | i | ,
), 0 < | x |

we get e x p r e s s i o n s that g ive the G r e e n ' s functions Goo
and Gio for κ = κ0 and a = a0, after transforming to
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dimensionless coordinates . Thus, the Green ' s func-
tions can be constructed not only by the wave-packet
method, as was first done i n r 2 1 ] and independently i n [ 2 e ] .
They can also be derived by superposition of plane
waves (which was t reated even in the c lass ica l studies
on the dynamical theory of scattering) or by direct
study of the diffraction of a cylindrical wave emitted
by a source that is placed on the surface of the crys ta l
and is equivalent to a narrow sl i t .

The last-mentioned method is very s imi lar to that
of [ 2 5 a i, which is based on t reat ing a field excited in a
crys ta l by a source of diverging spherical waves that
is separated from the entrance surface of the specimen
by some distance z 0 . An intense wave field in the
crys ta l a r i s e s only in a smal l region close to the c o r -
rect Bragg orientation. In this region, the spherical
wave can be replaced by a wave packet having an
amplitude proportional to r" 1 exp(i/cr - i/ t-r) . Here
κ is the wave vector corresponding to exact satisfac-
tion of the Bragg condition, and r is the radius vector
connecting a point on the entrance surface with the
s o u r c e . We can neglect the variation of the coefficient
multiplying the exponential, and take account only of the
spatial phase modulation of the wave packet. In the
plane of incidence y = 0 near the point χ = 0 that cor-
responds to the exact Bragg condition, the phase dif-
ference Δψ var ies according to the law

Δψ = Y.T — xr = κ l{zl sec2 θ -f 1z& tg θ + ζ 2) 1 '" — z0 sec θ — χ sin θ]
« (z2/4z0) cos» Θ,

o r , in d i m e n s i o n l e s s c o o r d i n a t e s ,

Δψ as z2 sin2 2θ/16ζ0.

Convolution of the amplitude ε ΐ Δ Ψ of the wave packet
with the Green ' s functions of (3.8) gives the wave field
in the crys ta l . The nature of this field is determined
by the extent of the stat ionary-phase region where
| Δψ| -C 1, as compared with the width of the Borrmann
delta. Plane waves of the type of (2.12)-(2.14) a r i s e
beneath the stat ionary-phase region, and they penetrate
into the inter ior of the crysta l to a distance of the
o r d e r of Zo/2 (in dimensionless units). In the opposite
limiting c a s e , the wave field at distances greatly ex-
ceeding the extent of the stat ionary-phase region r e -
sembles the image of a thin slit, and it is described by
functions of the type of GOo and Gi 0 (this resul t was
obtained in the original s t u d y [ 2 5 a i by resolving the
spher ical wave into plane waves and approximately
summing expressions like (2.12)—(2.14)). The effective
slit width proves to be of the o r d e r of the extent of the
stat ionary-phase region. This leads to a correspond-
ing b lurr ing of the oscil lations of the field at the edges
of the Borrmann delta and of the edges themselves . We
should note that a number of studies (see, e.g. [ 2 1 )
have actually used under the name "spherical-wave
approximat ion" only the limiting case mentioned above,
which corresponds to the Green ' s function approxima-
tion. It is not surpr i s ing that these studies have often
noted the satisfactory agreement of theory and experi-
ment.

c) Images of defects that cause a local perturbation
of the wave field. The Green ' s functions of (3.8) permit
one to find the fundamental features of the pattern of
images of bulk defects of a crysta l whose dimensions

i n t h e s c a t t e r i n g p l a n e a r e s m a l l in c o m p a r i s o n w i t h
t h e e x t i n c t i o n d i s t a n c e . Such d e f e c t s c a u s e l o c a l d i s -
t o r t i o n s of t h e w a v e field ( l o c a l a t t e n u a t i o n of t h e field
for a n a b s o r b i n g i n c l u s i o n o r a l o c a l p h a s e shift for
p o r e s and p r e c i p i t a t e s ) . T h e f u r t h e r p r o p a g a t i o n of
t h e s e p e r t u r b a t i o n s i s d e s c r i b e d by l i n e a r c o m b i n a t i o n s
of t h e f u n c t i o n s of (3 .8) . As we s e e f r o m F i g . 3, t h e
p e r t u r b a t i o n i n t h e t r a n s m i t t e d w a v e g i v e s a s y m m e t r i -
c a l i n t e n s i t y d i s t r i b u t i o n , whi le t h a t in t h e d i f f r a c t e d
w a v e g i v e s a s h a r p l y a s y m m e t r i c i n t e n s i t y d i s t r i b u t i o n
in t h e d i f f r a c t i o n i m a g e . H e r e t h e l o c a l d i s t o r t i o n t h a t
g i v e s t h e k i n e m a t i c a l ( " d i r e c t , " in A u t h i e r ' s [ 9 a ]

t e r m i n o l o g y ) i m a g e of t h e d e f e c t i s p r o p a g a t e d a l o n g
the character i s t ic s χ + ζ = const. In general, the dif-
fracted wave is attenuated at the opposite edge of the
Borrmann delta, and this gives a dynamical shadow
image of the defect, while the intensity osci l lates in
the intermediate region in correspondence with the
oscil lations in the functions Gi 0 and Gu. At a distance
corresponding to the photoelectric-absorption distance
11, the cited image details vanish, and the perturbation
i s concentrated in the centra l part of the Borrmann
delta.

For example, let a smal l , strongly-absorbing inclu-
sion that extends 2l0 <K l / | χ | in the direction of the
reflection vector be situated at a distance z 0 from the
plane entrance face of the crys ta l . The waves E o and
E i ar r iv ing at the inclusion a r e practically completely
absorbed by it. According to the complementarity
principle, the wave-field distortion here can be r e p r e -
sented as a field generated at ζ = z 0 by the local per-
turbation Ej = - E j ( z 0 , x). [ 0 ( x + lo) - 0(x - lo)],
where χ is measured from the center of the inclusion.
According to (3.7) and (3.8), the contribution of the in-
clusion to the diffracted wave for \alo\ "C 1 and
χ ( ( ζ - ZoJio)1^2 < 1 is given by the expression
6£, (*, z, z0)
« (χί,,/2) exp [-i (a/4) (z - z0 - x)\ {iE™ (z0, 0) Ja (χ [ ( ζ - * , ) · - * · ] 1 ' · / ^

- (2/χί0) E[m (z0, 0) [Θ ( i + i0 + ζ - z0) - θ (χ - ί0 + ζ - Zo)]
+ Ef (z0, 0) [(z - z0 - z)/(z - z0 + J)I 'V, (χ [(ζ - z0)

2 - χψ/»/2)},

(3.10)
and in t h e t r a n s m i t t e d w a v e by t h e e x p r e s s i o n

δΕ0 (χ, ζ, ζ0) •

as (χϊο/2) exp [-ι (α/4) ( z - z o - x ) ] {•(£«" (z0, 0) /„ (χ [(ζ-ζ ο)*_χψ/ν2)

- (2/χί0) El" (z0, 0) [θ (χ + I, - ζ + ζ0) - θ (χ - 10 - ζ + *„)!

+ Ε«> ( ζ 0 , 0 ) [(ζ - ζ 0 + χ)Ι(ζ - ζ 0 - χ)]1/' 7 , ( χ [(ζ - ζ 0 ) 2 - χ>]ι''/2)}

( w e h a v e a s s u m e d f o r s i m p l i c i t y t h a t X l = x _ ! = - x ,

a n d C = 1 ) .

I f o n e u s e s e x p e r i m e n t a l l y a b r o a d s l i t , a n d t h e i n -

c l u s i o n o c c u r s i n t h e f u l l y i l l u m i n a t e d r e g i o n ( r e g i o n

I I i n F i g . 5 b ) , t h e n t h e f u n c t i o n E j ° ' ( z o , 0 ) c a n b e f o u n d

b y s o l v i n g t h e o r d i n a r y d y n a m i c a l p r o b l e m f o r p l a n e

w a v e s ( s e e ( 2 . 3 ) a n d ( 2 . 1 4 ) ) .

T h e c o n t r a s t i n t h e i m a g e d e p e n d s o n t h e d i s t a n c e o f

t h e i n c l u s i o n f r o m t h e e n t r a n c e f a c e o f t h e c r y s t a l . F o r

w e a k l y - a b s o r b i n g c r y s t a l s , t h e c o n t r a s t d e p e n d s

p e r i o d i c a l l y o n t h e d i s t a n c e z 0 i n a g r e e m e n t w i t h t h e

f o r m u l a s ( 2 . 1 3 ) a n d ( 2 . 1 4 ) f o r t h e a m p l i t u d e s E j o > ( z o ) .

I n c a s e o f a n o m a l o u s t r a n s m i s s i o n w h e r e z 0 > li, t h e

c o n t r a s t c e a s e s t o d e p e n d o n z 0 , b u t i t c o n t i n u e s t o

d e p e n d o n t h e d i s t a n c e o f t h e i n c l u s i o n f r o m t h e e n -

t r a n c e f a c e . H e r e t h e o s c i l l a t i o n s i n t h e i m a g e o f t h e
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defect remain as long as the Green's functions continue
to oscillate, i.e., until the distance from the entrance
face, in turn, exceeds Zi·

If one uses experimentally a narrow slit (sectional
topography), the image of a defect depends on its posi-
tion in the Borrmann delta formed by the slit. In this
case we must use as the function Ei o )(z o, 0) the func-

a J
tions J Gjo(-xo - x', zo)dx', where x0 is the coordi-

-a
nate of the center of the slit, and a is the half-width of
the slit. Apart from details of extent greater than a
and Zo, the contribution of the inclusion to the diffracted
wave is given by the formula

6E, (x, z, zo, Zo) « —8 Walji) exp l-i (a/4) (z + x0 - x)]
χ {(4ί/χ) 6 (2 + χ - zo) /„ (χ (ζ\ - x*)W/2) -

- i [(z-z o -i )/(z-z 0 -Ht)]" 2 /, (X (zj -xiy* 12) Λ (χ \(z-zof -
+ (4ί/χ) δ (ζ0 + χ0) /„ (χ [(ζ - ζ0)

2 - *2]"2/2) -
- ι Ι(ζο - ΐο)/(ζο + *ο))"2 -Ό (X [(ζ - 2ο)2 - ΧΨ'2/2) Jt (χ ( ζ ; -

(3.11)

We note that the function 6E(x, ζ , z 0, x 0) is invariant
except for phase with respect to the substitution
χ ^ x 0 , ζ - Zj ^ z 0 . That is , the contribution of the
inclusion to the image does not change when we inter-
change the center of the entrance slit and the observa-
tion point (the reciprocity principle).

If the dimensions of an inclusion or pore a r e not
smal l in comparison with the extinction distance, then
we cannot consider the field to be fixed over the con-
tour of the inclusion. In this case , application of
Green ' s theorem to a doubly-connected region s u r -
rounding the inclusion gives by analogy with (3.6) a
relation in integral form between the value of the field
in the crys ta l and the field values on the contour of the
inclusion. Determining the values of the field on the
contour of the inclusion requi res that we study the
nature of propagation of the wave field within the inclu-
sion. In the case of a cavity (and also for a strongly
distorted region like a dislocation nucleus, in which
one is allowed to neglect diffraction s c a t t e r i n g [ 2 7 a i ) ,
the amplitudes E o and E x within the " i n c l u s i o n " a r e
transmit ted along the corresponding c h a r a c t e r i s t i c s .
Consequently, the problem of determining the field on
the contour of the inclusion i s reduced to stepwise
solution of the integral equations for regions in which
we know the value of one of the amplitudes, E o or E i .

The obtained resu l t s can be directly t rans fer red to
the case of defects whose axis intersects the scat ter ing
plane in a single point. The image of the defect on the
exit face will fill a t r iangular region having its vertex
Ρ at the point of emergence of the defect at the surface
of the crys ta l . Its la tera l s ides PQ and PR will be
formed by the character i s t ic s passing through the axis
of the defect. In the symmetr ica l Laue case, the slopes
of the rays PQ and PR a r e , respectively,
( c o s 2 ^ - s in 2 <^) 1 / 2 /(s in^ ± sin φ tan θ). Here φ and ψ
a r e the angles that the axis of the defect makes with the
reflecting plane and with the exit face of the crys ta l .
The angle QPR is a maximum when ψ = 0.

If we substitute the equation of the axis of the defect,
( x 0 - x p ) c s c ψ = (y 0 - y p ) / ( c o s 2 ^ - Sin 2<p) 1 / 2

= ( z 0 - z p ) c s c φ , into Eq. (3.10) or (3.11), we can
find the image of the defect on the exit face ζ = z p of
the c rys ta l . In part icular , when z 0 < h, (3.10) implies

that an overal l periodic variation in contrast in the
image should be observed, which is related to the ex-
tinction periodicity of the amplitudes E i 0 ) . Owing to
the factorthe factor

{[Zp — Z0 — (Χ — Z 0) Ctg — Z0 + (X — X0) Ctg 9]}V«

t h e m o s t i n t e n s e i m a g e i n t h e d i f f r a c t e d w a v e a r i s e s

i n a r e g i o n a d j o i n i n g t h e k i n e m a t i c a l i m a g e P Q o f t h e

d e f e c t . T h e f u n c t i o n J i p r o v e s t o h a v e t h e d e c i s i v e i n -

f l u e n c e o n t h e n a t u r e o f t h e c o n t r a s t . S u p e r p o s i t i o n o f

t h e o s c i l l a t i o n s o f E o 0 1 o n t h e o s c i l l a t i o n s o f J i l e a d s

t o a d i s c o n t i n u o u s e x t i n c t i o n s t r i a t i o n o f t h e i m a g e :

f r i n g e s o f h y p e r b o l i c s h a p e c o r r e s p o n d i n g t o t h e

m a x i m a a n d m i n i m a o f J i a r e m o d u l a t e d w i t h t h e

p e r i o d

&y = 21 cosec <p (cos2 ψ — sin2 φ ) 1 / 2 . (3.12)

In the c a s e z 0 > l u which c o r r e s p o n d s to observ ing
the defect by the Borrmann method, ext inct ion s tr iat ion
a l s o a r i s e s in the reg ion z p - z 0 < lu and it invo lves
in ter ference between E j 0 ) and E i ° ' ( z p ) . The inter fer-
e n c e f r inges modulated with the period of (3.12) again
form hyperbola-shaped c o n t o u r s . A s in the c a s e
z 0 < Ι χ, the brightest fringes a r i s e near the kinematical
image of the defect: the general pattern of the image in
this image resembles the above-discussed case in
which z o < h. When z p - z 0 > h, the extinction
fringes disappear, and the pattern of the image
gradually acquires a simple form, and is composed of
the shadow of the defect bordered by fringes of in-
creased intensity (black-white-black c o n t r a s t ^ 1 * ' see
also Sec. a of Chap. 5). When the defect is situated at
a depth z p - z 0 > l2, the image finally b lurs and
vanishes. Figure 7 i l lus t rates schematically the d i s-
cussed features of the image of a l inear defect. The
axis of the defect intersects the exit face at the point
P , and the line PQ corresponds to the kinematical

FIG. 7. A diagram of the image of a rectilinear defect constructed
by using the Green's functions.
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FIG. 8. Photograph of an inclined 72° dislocation in silicon. [28]

image. The regions of increased image intensity a r e
indicated by cross-hatching. The positions of the
maxima of the functions | J i ( 0 . 5 x ( ( z 2 - x 2 ) 1 / 2 ) | a r e
shown by the dotted lines (a is for a thin crysta l ( z p
< Zi); b is for a thick crys ta l ( Z p > Zi); the image
for the region z p - z 0 < h resembles case a) . Figure
8 shows a typical photograph of an inclined dislocation
with the character i s t ic extinction str iat ion of the image
in the region adjoining the direct image of the defect
(Si c rys ta l in the (220) reflection, MoKa).

The presented t reatment has dealt with a case in
which the defect causes a local perturbation of one
given sign. If the perturbation at the wave front con-
s i s t s of two neighboring peaks of opposite signs, the
overal l picture of the image is given in the first ap-
proximation by the derivatives of the Green ' s functions
of (3.8) with respect to x. An inclined edge dislocation
or one paral le l to the surface of the crys ta l gives r i s e
to an image of the first or second type, depending on
whether its Burgers vector is paral le l or perpendicular
to the reflection vector.

4. THE WAVE FIELD IN AN INHOMOGENEOUS
CRYSTAL

In a r e a l crysta l , owing to lattice distort ions, the
polarizability χ(τ) c e a s e s to be a s t r ict ly periodic
function of the coordinates, and it depends on the
displacement field u ( r ) . For a smooth displacement
field, the distort ions 8ui/3xk a r e smal l , and we can
assume that the inner electron clouds that a r e r e -
sponsible for x-ray scat ter ing remain undistorted, and
a r e only shifted along with the a t o m s . That i s , the
variation in the polarizability reduces to a change in
the argument of the function x ( r ) by the amount of the
displacement vector u ( r ) . In this case , χ η on the
right-hand side of (2.2) becomes x h e x P [ ~ i K h *u( r ) ] ,
while Eq. (3.2) takes on the form

The substitution E o —• E o e x p ( i x o z / 2 ) , E !
— Ε ! θ χ ρ [ ί ( χ ο ζ / 2 ) - iKi -u(r)] puts (4.1) into the
canonical form

Ι β , δ \
x-fi

xfi
= 0, (4.2)

a s w a s f i r s t p o i n t e d o u t b y T a k a g i . [ 2 9 a i I t d i f f e r s f r o m

( 3 . 3 ) i n t h e d e p e n d e n c e o f t h e p a r a m e t e r a o n t h e

c o o r d i n a t e s :

a ( r ) = a - 2 ( - ^ - — ^ ) K , u ( r ) . ( 4 . 3 )

T h e s u b s t i t u t i o n u s e d i n d e r i v i n g ( 4 . 2 ) h a s n o e f f e c t o n

t h e b o u n d a r y c o n d i t i o n s f o r t h e a m p l i t u d e s E o a n d E 1 (

w h i c h m a i n t a i n t h e s a m e f o r m a s f o r a n i d e a l c r y s t a l .

According to (4.3), the effect of the distortion field
on the wave field is determined by the displacements of
the reflecting planes alone. Hence, in part icular, edge
dislocations paral le l to the reflection vector and screw
dislocations perpendicular to this vector will give no
x-ray image.

Equation (4.2) is equivalent to the following te le-
graphic equations with variable coefficients for the
amplitudes E o and E t :

(4.4)

A s i n t h e c a s e o f c o n s t a n t c o e f f i c i e n t s , t h e g e n e r a l

s o l u t i o n o f t h e s e e q u a t i o n s 1 ^ 0 1 h a s a f o r m r e s e m b l i n g

( 3 . 6 ) . H o w e v e r , h e r e t h e R i e m a n n f u n c t i o n s

G 0 ( z , x , z ' , x ' ) a n d G i ( z , x , z ' , x ' ) a r e , r e s p e c t i v e l y ,

t h e G r e e n ' s f u n c t i o n s f o r t h e c o n j u g a t e e q u a t i o n s

U" ' o l — L &'· " & ' 2 " ~2~~ \ dz' + ~W)

h* ,η ι Γ d2 β2 ία ( Γ ' ) / 8 , a \ , ϊ 2 Π r, ι, , ,, t , ,.
β ϊ IC'J - Ι.ΊΪΤ ""δτ ^(-ay + HF-i+W0^-^*-*)^*-*

As in the case of (3.8), the Green ' s functions differ
from zero only in a t r iangular region (the Borrmann
delta) bounded by the c h a r a c t e r i s t i c s ζ + x = const.

The representat ion of the wave field in an inhomo-
geneous crysta l in t e r m s of Riemann functions has
been discussed in detail in [ ] . However, this r e p r e -
sentation is only a formal way of writing down the
solution, since the Riemann function in an inhomogene-
ous crys ta l no longer shows translat ional symmetry,
and it depends in a complicated way on al l four argu-
ments x, x', z, and z ' .

This explains why it has not been possible in any of
the studied pract ical cases to establish the explicit
form of the Riemann functions.

A number of examples of x-ray images of crys ta l
defects that give r i s e to known distortion fields have
been calculated numerically with a computer from
Takagi 's equations. Taupin [ 3 0 ] and Authier and his
associates 1 ^ 8 ' 3 1 1 have calculated various cases of
images of screw and edge dislocations lying paral le l
and inclined to the surface of the crys ta l . I n [ 3 2 1 they
calculated the image of an edge dislocation perpendicu-
lar to the surface of the specimen. Figure 9 shows
character i s t ic examples of the calculated image for
edge dislocations having different orientations (a is an
edge dislocation paral le l to the surface of the crys ta l ; ' 3 0 1

b is a mixed dislocation inclined to the surface of the
c r y s t a l ; r 2 8 ] and c is an edge dislocation perpendicular
to the surface of the c r y s t a l ^ 2 1 ) . Contour lines for the
intensity distribution of the image in the diffracted
wave a r e shown in planes respectively paral le l (a) and
perpendicular (b and c) to the scat ter ing plane. The
coordinate net is plotted in Fig. 9a in units of 2Α/τι.
If we compare Figs . 9a and b with Fig. 7, we can con-
vince ourselves that the fundamental details of the
image often depend weakly on the type of l inear defect
being observed, and a r e fixed mainly by the Green ' s
functions. A common feature of Figs . 9a, b, and c is
the deflection of the diffracted radiation away from the
strongly distorted region to distances that greatly ex-
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FIG. 9. Examples of calculated dislocation images.

FIG. 10. Photograph of an edge dis-
location perpendicular to the surface of
a silicon crystal. ["]

ceed the dimensions of this region and that are deter-
mined by the cross-section of the Borrmann delta. This
effect is well marked on photographs of edge disloca-
tions perpendicular to the surface of the crystal (Fig.
10).

By analogy with the atlasses of electron-microscopic
images like r i e > 3 4 ], one could seemingly compile by
numerical calculation atlases of x-ray diffraction
images of characteristic defects for various orienta-
tion cases and various values of the dynamical-scatter-
ing parameters. Owing to the variety of different cases,
it is hard to say how effective this approach will be in
comparison with semiqualitative analytical study of
images by approximate solution of Eq. (4.2).

We can point out some special cases that simplify
analytical solution of Takagi's equations. In the sym-
metrical case of Laue diffraction with Ki-u(r) = f(z)
and uniform illumination of the crystal, the wave field
ceases to depend on the variable x, and the system
(4.2) reduces to a system of ordinary differential equa-
tions :

These coincide with the equations of the columnar ap-
proximation in the theory of the electron-microscope
image. [ 1 6 ] In order to analyze the image in this case,
one can use the results of studying electron-micro-
scope images of lattice defects with the appropriate
recalculation of the coefficients of the problem. In
particular, one can use these results to analyze the
images of dislocations parallel to the reflection vector
(a special defect position according to Elistratov [ 8 1 and
Shul'pina r35]).

In particular, study of dislocations parallel to the
reflection vector permits one to apply a rule for deter-
mining the sign of the dislocation that was developed in
diffraction electron microscopy. [1S1 It is based on the
difference between the images for the reflections (hkZ)
and (hkz). These reflections differ in the sign of the
vector Ki. According to (4.3), this corresponds to
changing the sign of the variable part of the parameter
a ( r ) , or to changing the sign of the dislocation while
the photograph is being taken with the same reflection.
Consequently, if we compare the contrast in the x-ray
image in the (hkz) and (Hk7) reflections on the two
sides of the dislocation, which arises in this case from
regions having distortions of opposite signs, we can
determine the sign of the Burgers vector of the dislo-
cation. r 3 e ] In sectional topography, the images of dislo-
cations parallel to the reflection vector also can be
derived by analogy with calculation of an electron-
microscope image. If we expand the wave field at the
surface of the crystal in a Fourier integral, we can
interpret each harmonic Ε (α) exp (-iax/4) as result-
ing from incidence of a plane wave having a changed
wave vector and the appropriate parameter a (cf.
Sec. b of Chap. 3). Just as in electron microscopy,
such a wave will give rise to a plane wave field (inde-
pendent of the coordinate x) and a certain reflection
Ej(y, a) of the dislocation on the exit face of the
crystal. The latter can be treated as a Fourier com-
ponent of the image in sectional topography. In fact,
sectional topography permits one to carry out inter-
ferometry of the distortion field. Fourier synthesis
permits one to reconstruct the sought image

CD
r (x, y) = j e-'

{y, a) (4.5)

and conversely, Fourier analysis of the sectional image
Ej(x, y) gives the image of a defect in a special posi-
tion in the case of illumination by broad parallel beams
having different wave vectors.

Another special case is a distortion field that does
not vary along the direction of the diffracted beam, i.e.,
the case in which Ki - u(r) = f(z + x). According to (4.3),
a then proves to be constant and the distortion field
does not affect the Bragg condition, nor does it affect
the wave field in the transmitted or diffracted wave.
Thus the image of the defect completely vanishes.

Finally, in the case Ki -u(r) = f(z - z), the substi-
tution Ej — Ej exp(iKi-u(r)) converts the system
(4.2) to the form (3.3), and the solution can be found in
explicit form under arbitrary boundary conditions. If
E0(x, y, 0) = # ( x , y), then E^x, y, z)
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= i ( x _ 1 C / 2 ) e x p [ i ( X o / 2 ) z - i ( a / 4 ) z + i K ! - u ( z - x)]

χ / Z + X J o ( x [ z 2 - (x - x ' ) 2 ] 1 / 2 / 2 ) e x p [ i ( a o / 4 ) ( x - x')
-z+x

- i K i - u ( - x ' ) ] d x ' . In part icular , dislocations lying
along the direction of the diffracted wave will give no
contrast , while (4.5) gives an exact analytic expression
for the images of dislocations lying along the direction
of the incident wave. Figure 11 i l lus t rates schematically
the discussed t h r e e cases of special locations of de-
fects (Ki-u(r) = f(z) (diagram a), or = f(z + x)
(diagram b), or = f(z - x) (diagram c)).

For very smooth distortion fields, the function a ( r )
depends weakly on the coordinates . If we assume that
a ( r ) = a 0 + a i ( r ) , where | a i ( r ) | « \ao\, we can t r a n s -
fer the t e r m s involving αλ in (4.4) to the right-hand
side, and t r e a t them a s a perturbation. According t o [ 2 0 ] ,
the solution of the telegraphic equation (3.4) having the
right-hand side

D [Ej] = -Fj (x, z)

is expressed in t e r m s of the Riemann function of (3.5)
as follows:

Ej(x, z) == \ (dx'-dz') j(x', z')G(x—x', z — z')

[ ' * '%· · '><?(»-„ ' , Z-V-

a ^ ^ . (4.6)

«<*-;;· —'> j

+ j j dx'dz'G(x — x', z-z')F}(x', z').

Here the t e r m that is new with respect to (3.6) is an
integral of the Riemann function over the Green ' s func-
tion region, i.e., over a t r iangle formed by the contour
L and the c h a r a c t e r i s t i c s passing through the observa-
tion point (x, z) . In our case the Riemann function is
determined by Eq. (3.5), with a replaced by o 0 , and
the right-hand side is given by the express ion:

Thus Eq. (4.6) gives an integral equation for the sought
function Ej(x, z) . In the first approximation (see ' 2 1 1 ) ,
we replace in Fj(x, z) the function Ej(x, z) by its un-
perturbed value E (. 0 )(x, z), which corresponds to the
solution of (4.2) for a = const, (see (2.13) and (2.14)).
Then we get the approximate solution E'.1', which cor-
responds to the well-known Born approximation in
scat ter ing theory. If we replace Ej by the function
E j 1 1 in Fj, we get a second approximation, e tc . A

second variant of constructing an approximate solution
of Takagi 's equations by using (4.6) has been pointed
out i n / 2 6 1 They propose that one should use the Kato-
Kambe solut ion r 3 4 1 a s the z e r o - o r d e r approximation
for the function Ej (see Chap. 5 below).

FIG. 11. Special positions of defects that simplify image calculation.

In the case of sharply localized distortion fields,
one can multiply the Green ' s functions of (3.8) by the
amplitude of the wave field at the site of the defect,
owing to the sign of the double integral in (4.6). If we
neglect the self-action and interaction of perturbations
ar i s ing from defects, and set the amplitude of the field
at the site of a defect to be equal to its value in the ab-
sence of defects, we again a r r i v e at the approximation
treated in Sec. c of Chapter 3.

Finally, if the localized distortion field proves to be
so strong that \a \ S> | χ | near the defect, then we can
neglect the quantity χ-i in Eq. (4.1) in comparison with
a . Then the inverse effect of the wave Ei on the wave
E o will vanish, and the image in the diffracted wave
will be determined by kinematical scat ter ing of the
transmit ted wave. Consequently, the phase of the wave
E x will be increased by Ki-6u, where 6u is the d i s-
continuity in the displacement field ar i s ing from the
local distortion. [In Eq. (4.1), passage through a region
of local perturbation does not change the two compon-
ents of the wave field.] The initial form of the local
distort ions of the wave field due to smal l defects is
reduced in this approximation to the perturbation
E (

x

0 ) [exp (iKi · 6u) - 1] in the diffracted wave, with no
perturbation in the t ransmit ted wave. Correspondingly,
the image of the perturbation is determined by the
Green ' s functions GOi in the t ransmit ted wave, and
Gn in the diffracted wave.

A character i s t ic example is the problem of the
image of a stacking defect. [ 9 b > 2 5 ] In this case the var i-
ation of the displacement field is exactly reduced to a
jump in the displacement field Su at the stacking de-
fect; ot(r) is described correspondingly by a boundary
δ-function due to the jump in the phase of Ei by
Ki • 5u. The image is now given not approximately, but
exactly by the Green ' s functions GOi and Gu. If the
stacking defect in tersects the Borrmann delta, super-
position of the contributions of each region of this de-
fect in the x-ray image leads to appearance of extinc-
tion fringes in the image that resemble equal-thickness
fringes.

It is essent ia l to emphasize the fundamental dist inc-
tion in the nature of the images of regions having
strongly localized distort ions and of those having weak
and smoothly-varying dis tort ions. In the former case,
diffracted radiation is deflected away from the dis-
torted region. Many details of the image depend weakly
on the nature of the source of perturbation. In part icu-
lar, the s ize of the image in the direction of the ref lec-
tion vector depends on the depth at which the defect is
located and the diffraction angle, ra ther than on the
size of the defect. In the la t ter case, the x-ray con-
t r a s t directly reflects the deformation field in the
given region. The equal-intensity lines and interference
fringes directly give the distribution of d is tort ions . If
in addition the parameter a ( r ) var ies weakly through
the thickness of the specimen, then according to Sec. b
of Chap. 3, the interference fringes correspond to
lines of constant | Ak |, and they can be interpreted as
equal-inclination or equal-deformation f r inges . r 3 7 ]

5. GEOMETRICAL X-RAY OPTICS

The mathematical difficulties that a r i s e in construct-
ing the x-ray field in inhomogeneous crys ta l s a re ana-



310 V . L . I N D E N B O M a n d F . N . C H U K H O V S K l i

logous to the well-known difficulties of constructing the
electromagnetic field when light and radio waves pass
through inhomogeneous media. The ray approximation
is widely used in optics for media having smoothly
varying character i s t ic s (the dimensions L of the in-
homogeneities must greatly exceed the wavelength λ).
The concept of rays and their t ra jector ies can be in-
troduced even in the case of an x-ray field. However,
the cr i ter ion for applicability of geometrical optics
will no longer be L > λ here (a condition that always
holds), but the more rigid condition L ^> Λ, where Λ
is the extinction distance.

Proceeding by analogy with geometrical optics, we
separate out in the amplitudes E o and E x the rapidly
varying phase factors

hi -π— z).
( 5 . 1 )

I n c o n t r a s t t o o r d i n a r y o p t i c s , w e h a v e i n t r o d u c e d

d i r e c t l y t w o p h a s e s ( t w o e i k o n a l s ) , S ( I ) a n d S W , w h i c h

c o r r e s p o n d t o t h e d i f f e r e n t b r a n c h e s o f t h e d i s p e r s i o n

s u r f a c e . I f w e s u b s t i t u t e ( 5 . 1 ) i n t o T a k a g i ' s e q u a t i o n

( 4 . 2 ) , w e g e t a n e q u a t i o n f o r d e t e r m i n i n g t h e a m p l i t u d e s

Ε (I) and β ( Π ) :

where
= 0,

\ i » e I dS 9S\ o(r)l '
\ 2 *'" \ dx ~oT) 2 /

( * + £ )

(5.2)

(5.3)

(5.4),11 t_\
\ dz Bx I '

In order that a non-trivial z e r o - o r d e r approxima-
tion should exist that satisfies the equation DsE = 0,
the determinant of the matr ix Ds must vanish. In
expanded form, this condition gives an equation for the
eikonals S ^ and sOT in f i r s t-order part ia l der ivat ives :

{H - [a (r)/4]}« - {P - [a (r)/4]}2 = χ'/4; (5.5)

Here we have introduced the symbols Η = -SS/az and
Ρ = 8S/8x, which permit us to t rea t the derived equa-
tion by analogy with the c lass ica l equations for the
action, the energy, and the generalized momentum. In
contrast to ordinary optics, Eq. (5.5) corresponds to
the Hamilton-Jacobi equation for part ic les having a
non-zero res t m a s s . The t ra jector ies of the rays
orthogonal to the surface of the wave fronts S = const.,
a r e analogous, for example, to the t ra jector ies of
charged part ic les of m a s s χ/2 in one-dimensional
motion along the x axis in some electr ic field. We
note that Eq. (5.5) contains the complex coefficient χ.
Hence, s tr ict ly speaking, it is a sys tem of two equa-
tions for the r e a l and imaginary par t s of the function
S = S' + i S " . However, the smal lness of the imaginary
part of χ makes the imaginary part S" of the eikonal
smal l in comparison with its r e a l part S'. Conse-
quently the equations of the t ra jector ies of the rays
for the eikonals S' and S" coincide. Thus, taking a c -
count of the complex nature of the polarizability is
reduced to taking account of the attenuation of the a m -
plitude along the tra jectory of the r a y s .

If we assume for simplicity that the coefficient χ in
Eq. (5.5) is rea l , we can interpret this equation as
being the equation of the dispersion surface for the

FIG. 12. Course of the weakly absorbed ray in coordinate space (a)
and phase space (b).

correct ion to the wave vector of the Bloch waves. At
different s i tes in the crysta l , this surface keeps a
constant orientation, but occupies different positions,
according to the local value of the parameter a ( r ) : the
center of the hyperbolas is shifted along the straight
line Ρ = Η, being situated at the point having coordi-
nates (a/4, a/4) . This is i l lustrated by Fig. 12b and
Fig. 15 to be discussed below. Each value of Ρ on the
dispersion surface corresponds to two values of H:

Η = (α/4) ± {(χ2/4) + [Ρ - (α/4)]»}. (5.6)

The upper s ign c o r r e s p o n d s to the upper branches of
the d i s p e r s i o n sur face in F i g . 12b and F ig . 15. If we
keep the numbering of the b r a n c h e s of the d i s p e r s i o n
sur face adopted in Chap. 2, we should c o n s i d e r the
upper branch to be f irst, and a s s i g n the eikonal S w to
it . When we take account of the imaginary part χ" < 0
in the parameter χ, the first branch corresponds to the
strongly absorbed Bloch wave, and the second (lower)
branch to the weakly absorbed one.

a) Ray t ra jec tor ie s . The ray-tra jectory equations
ar i s ing from (5.5) can be written in a form analogous
to the c lass ica l Hamilton-Jacobi equations of motion:

(5.7)

(5.8)

As is usual, (5.7) and (5.8) imply a law of variation of
the energy along the t ra jectory :

dx
dz ~

dP
dz ~

dH
IF'

dH
ax

dS _ aH . dH dP aH dx dH
dz ~ dz + dP dz ~1~~8T~ dz ΈΓ'

( 5 . 9 )

T h e r e l a t i o n s ( 5 . 7 ) — ( 5 . 9 ) e s t a b l i s h a s i m p l e c o n n e c t i o n

between the ray trajectory in the x, ζ coordinate
space and the wave-vector tra jectory in the Ρ, Η
phase space . If we a r r a n g e the coordinate axes a s
shown in Fig. 12 (with the Ρ axis paral le l to the x
axis and the Η axis antiparal lel to the ζ axis), then
the ray trajectory in coordinate space proves to be
para l le l to the normal to the dispers ion surface of
(5.5), while the wave-vector tra jectory in phase space
is antiparal lel to the gradient of H, and hence to the
gradient of a ( r ) . Shifting the ray from the level line
α = oii to the line α = α 2 corresponds to shifting the
wave vector from the dispersion surface α = αϊ to the
surface α = otz. As an example, Fig. 12a shows a
region of the tra jectory of the weakly absorbed ray,
which is t ravers ing this region as a ( r ) i n c r e a s e s . As
we see from Fig. 12b, the wave vector increases in its
component paral le l to the reflection vector.

Using the above-cited analogy of an x-ray tra jectory
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to that of a charged part ic le, we can write the equation
of the tra jectory in a form resembling the equation of
motion of a relat ivist ic e l e c t r o n . [ 3 8 ] Equations (5.6)
and (5.7) imply a relation of the " v e l o c i t y " dx/dz to
the ordinary momentum ρ = Ρ - ( α / 4 ) :

Ρ = ± (χ/2) {dx/dz)/H - (άχ/άζ)ψ'* (5.10)

(the s lopes of the c h a r a c t e r i s t i c s in our case a r e ± 1 ,
which corresponds to a unit "velocity of l i ght " ) . When
rewrit ten in t e r m s of the ordinary momentum, Eq. (5.8)
gives the tra jectory in the form

dpldz = g (i, z), ( 5 . H )

Here the force 8(x, z), which is equivalent to the ex-
t e r n a l e lectr ic field in the case of motion of a part icle
of unit charge, is determined by

iS(x, z) = — ^ - l - | - + —-1 α(ζ , ζ). \·>.1&)

Upon t a k i n g a c c o u n t of (4.3), we c a n d e r i v e f r o m (5.10)

- ( 5 . 1 2 ) t h e t r a j e c t o r y e q u a t i o n in t h e f o r m t 2 4 b l

(the u p p e r s i g n c o r r e s p o n d s t o t h e u p p e r b r a n c h of t h e

d i s p e r s i o n s u r f a c e , i . e . , t o t h e s t r o n g l y a b s o r b e d r a y s ) .

When 8 > 0, i . e . , when a ( r ) d e c l i n e s a l o n g t h e d i r e c -

t i o n of t h e t r a n s m i t t e d w a v e , t h e w e a k l y a b s o r b e d r a y s

a r e d e f l e c t e d in t h e d i r e c t i o n of t h e r e f l e c t i o n v e c t o r ,

w h i l e t h e s t r o n g l y a b s o r b e d r a y s a r e d e f l e c t e d in t h e

o p p o s i t e d i r e c t i o n . When a = a(x), t h e r e g i o n s h a v i n g

n e g a t i v e c u r v a t u r e of t h e funct ion a ( x ) a c t on t h e

w e a k l y a b s o r b e d r a y s l ike c o n v e r g i n g l e n s e s , b u t l ike

d i v e r g i n g l e n s e s on t h e s t r o n g l y a b s o r b e d r a y s ( such

l e n s e s c a n b e r e a l i z e d by r e g u l a t i n g t h e d i s l o c a t i o n

s t r u c t u r e of t h e s p e c i m e n ) . T h e r e g i o n s h a v i n g a p o s i -

t i v e c u r v a t u r e of a ( x ) e x e r t t h e o p p o s i t e effect on t h e

c o u r s e of t h e r a y s . H e n c e , a b s o r b i n g c r y s t a l s u n d e r

B o r r m a n n - e f f e c t c o n d i t i o n s s h o w p o s i t i v e c o n t a s t i n

r e g i o n s of t h e f i r s t t y p e , b u t n e g a t i v e c o n t r a s t in

r e g i o n s of t h e s e c o n d t y p e , a s c o m p a r e d wi th t h e o v e r -

a l l b a c k g r o u n d of t h e i m a g e . T h i s s i g n r u l e c a n b e

u s e d t o d e t e r m i n e t h e s i g n s of d i s t o r t i o n f i e l d s , and

c o r r e s p o n d i n g l y , t o d e t e r m i n e t h e t y p e of i n c l u s i o n s ,

t h e s i g n of t h e B u r g e r s v e c t o r of d i s l o c a t i o n s , e t c .

If t h e c o m p o n e n t u x of t h e d i s p l a c e m e n t f ield in t h e

d i r e c t i o n of t h e r e f l e c t i o n v e c t o r i s a q u a d r a t i c funct ion

of t h e c o o r d i n a t e s , t h e f o r c e 8 d o e s not d e p e n d on t h e

c o o r d i n a t e s . T h i s i s e q u i v a l e n t t o t h e w e l l - k n o w n c a s e

of m o t i o n of a c h a r g e d p a r t i c l e i n a d . c . e l e c t r i c f i e l d / 3 8 1

F o r e x a m p l e , let a c u b i c c r y s t a l u n d e r g o t h e r m a l d i s -

t o r t i o n c a u s e d by a u n i f o r m t e m p e r a t u r e g r a d i e n t a l o n g

the χ axis . Then the reflecting planes acquire a spher-
ical shape, and

ux = (1/2Λ) (za -f ff

a — x2), (5.14)

Here R is the radius of curvature of the reflecting
planes. According to (5.13) for the field of (5.14), the
force 8 = - K I R " V 2 K · 2 = const. Another example is
c i r c u l a r bending of the specimen about the y axis , in
which the reflecting planes acquire a cylindrical shape,
and u x = (/ 2R) ( z 2 + Ax2), where the coefficient A de-
pends on the orientation of the neutra l plane and the
elast ic constants of the crys ta l . In this case,
8 = - Κ ^ ~ ν 2 ; ί 2 ( ο ο 8 2 θ - A sin 2 θ).

We see from (5.11) that when 8 = const., the mo-
mentum ρ increases linearly with depth in the c rys ta l :

P=Po+$z. (5.15)

Equation (5.7) gives the following equation for the slope
of the r a y :

dx/dz = ±pllp* +

I n t e g r a t i o n of t h e l a t t e r wi th a c c o u n t t a k e n of (5.15)

g i v e s

8 (x-x,) = ± {(Po+ S2) 2 + (x2/4)]i'2 - lp\ + (χ»/4)]«/2},

t h a t i s , t h e t r a j e c t o r i e s of t h e r a y s a r e h y p e r b o l a s

h a v i n g t h e a s y m p t o t e s x = ± z + c o n s t . T h e w e a k l y

a b s o r b e d r a y s a r e b e n t in t h e s a m e d i r e c t i o n a s t h e

r e f l e c t i n g p l a n e s , whi le t h e s t r o n g l y a b s o r b e d r a y s a r e

b e n t in t h e o p p o s i t e d i r e c t i o n . H e r e t h e c u r v a t u r e of

t h e r a y s n e a r t h e v e r t e x of t h e h y p e r b o l a in t h e c a s e of

(5.14) e x c e e d s t h e c u r v a t u r e of t h e r e f l e c t i n g p l a n e s by

a factor of 2 tan 2 θ/χ, i .e.^by 4 - 5 o r d e r s of magnitude.

A number of a u t h o r s [ ' 3 9 ? have studied experi-
mentally the effect of curvature of x-rays in crys ta l s
undergoing elastic or t h e r m a l bending, and they have
shown that the experimental data agree well with the
theoret ical predict ions.

If the force 8 does not depend on ζ (e.g., the de-
formation field is planar, and it depends only on the
coordinates x and y), then Eq. (5.9) implies conserva-
tion of the " e n e r g y " of (5.6) along the ray t r a j e c t o r i e s .
In this case , the equation of the ray tra jectory acquires
the simple form

(dxldzf = 1 - {χ2/4 \H - (a/4)!2.}.

At the points a ( x ) = 4 Η ψ 2 χ , which correspond to the
turning points in the motion of a charged part icle, the
slope of the ray changes sign (it is " r e f l e c t e d " ) . Owing
to such relfections, bands having elevated values of
a ( x ) can serve as waveguides for the weakly absorbed
rays , while bands having depressed values of a(x) will
be waveguides for the strongly absorbed r a y s . In the
case of the Borrmann effect, this leads to positive con-
t r a s t in the regions having elevated values of a ( x ) .

If a distorted region having some distribution of
« ( r ) is smal l in comparison with the thickness of the
crysta l , then the rays deflected in this region will give
r i s e to a shadow in the image surrounded by a br ighter
halo. Figure 13 i l lus t rates such a case with the exampl·
of a dislocation paral le l to the surface of the crysta l
(anomalous-transmission case , μί = 35; the numbers
attached to the rays indicate the initial shape of the ray

FIG. 13. Deviation of the rays of the weakly absorbed wave near
edge dislocations. [40a]
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FIG. 14. X-ray image of dislocations observed under anomalous-
transmission conditions. [35 ]

FIG. 15. Reflection and refrac-
tion of x-ray waves at an internal
phase boundary between media
having different values of the para-
meter a.

with respect to the ζ axis) . The thickness of the speci-
men is assumed to be so great that one needs to a c -
count only for the weakly absorbed r a y s . Figure 14
shows a typical x-ray photograph of a crys ta l taken
under conditions of anomalous t ransmiss ion of x - r a y s .
The regions of dislocations that a r e separated from the
exit face by distances greater than the photoelectric-
absorption distance a r e imaged in the form of shadows
having a bright border, as is explaned by the course of
the rays shown in Fig. 13 (cf. also Fig. 7b).

b) Reflection and refraction of x - r a y s . We cannot
t r e a t the study of the course of the r a y s in the case in
which the p a r a m e t e r a ( r ) var ies discontinuously as
being the limiting case of trajectory curvature due to
a concentrated force. This is because we must con-
sider the possibility of immediate appearance at the
phase boundary of two waves, which corresponds to
splitting of the ray .

In o r d e r to derive the conditions for refraction and
reflection of x-rays at an internal boundary separat ing
regions having different values of the p a r a m e t e r a ( r )
(e.g., « i and a 2 ) , let us compare the dispersion sur-
faces for these values of a (Fig. 15). The condition of
continuity of the eikonal at the phase boundary implies,
in analogy to the case of (2.10), that the discontinuities
in the wave vectors of the reflected and refracted
waves (as compared with that of the incident wave)
occur only in the direction of the normal η to the
phase boundary. Correspondingly, only those points on
the dispers ion surfaces can be excited that lie on a
straight line paral le l to n. In general, each such line
inter sect s the dispersion surfaces having a = α ϊ and
a = a 2 in four points. One of these points corresponds
to the given incident wave. Of the other t h r e e , one cor-
responds to a second possible incident wave, and two to
actually appearing refracted waves (whenever the
normal l ies within the Borrmann delta) and reflected
waves (if the normal l ies outside the Borrmann delta).
Both possible variants a r e i l lustrated in Fig. 15 by

FIG. 16. Course of the rays upon passing through a phase boundary
between two media.

cases A and B). When the straight line paral le l to η
intersects only one dispers ion surface, total internal
reflection occurs , and only one reflected wave a r i s e s .
In contrast to light optics, total internal reflection can
occur in x-ray optics on both s ides of a phase boundary
(cases C and D in Fig. 15). Figure 16 i l lustrates the
course of the rays for al l the cited c a s e s . The number-
ing of the r a y s corresponds to the numbering of the
points in Fig. 15, and the directions of the rays a r e
paral le l to the normals to the dispers ion surfaces
drawn at the corresponding points.

For a given orientation η of the phase boundary, the
regions in which the different special c a s e s of reflection
and refraction of x-rays a r e real ized a r e divided in
phase diagrams like Fig. 15 by the tangents drawn
paral le l to the vector η (whenever the normal η l ies
outside the Borrmann delta), and by straight lines
paral le l to η passing through the vert ices of the hyper-
bolas (whenever the normal l ies within the Borrmann
delta). In all c a s e s , the points on the limiting lines
correspond to merged directions of pa i r s of r a y s .

The relation between the amplitudes of the incident,
reflected, and refracted waves at the phase boundary,
which in ordinary optics is described by the F r e s n e l
formulas, is established in x-ray optics by the condi-
tion of continuity of the electromagnetic field. In the
E o, Ei plane, this corresponds to the condition that the
vector sum of the amplitudes of the waves that a r i s e at
the phase boundary equals the vector amplitude of the
incident wave. Since the relation between the amplitudes
E o and Ei for each wave is unequivocally fixed accord-
ing to (2.11) by its wave vector, the problem is reduced
to resolving the known vector amplitude of the incident
wave into two components in the given direct ions .

As an example, let us consider reflection and r e -
fraction at a boundary perpendicular to the reflection
vector (η ιι Κι). In this case , only the Ρ component of
the wave vector shows a discontinuity at the phase
boundary, while the Η component is conserved. Let the
incident ray have the positive slope

k = dxldz = IP - (α,/4)]/[ΛΓ - (α,/4)];

Then the reflected ray having P i = (<*ι/2) - Ρ has the
negative slope ki = - k . For the refracted wave, Eq.
(5.5) implies

Pz = (a2/4) + {IH - (α2/4)Ι2 - (χ/2)2}'/2

= (α2/4) + {[(α, - ct2)/4) + (χ/2) (1 - fc2)-i/2p - (χ/2)2}»/2.

(5.16)
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When Η < (α 2/4) - (χ/2), a weakly absorbed wave
arises, but when Η > (χ/2) + (aa/4), a strongly ab-
sorbed refracted wave arises that has the positive
slope
*2 = (5.17)
[P2 - (a2/4)l/[ff - (a2/4)l = {1 - [((a, - «2)/2χ) + ( 1 - ^)-ι/2]-ζ}ΐ/2.

When | Η - ( a 2 / 4 ) | < x / 2 , (5.16) gives a complex
value for P 2 . This corresponds to total internal reflec-
tion (the straight lines Η = const, in Fig. 12b pass be-
tween the vertices of the hyperbolas a = a2). As one
moves away from the phase boundary, the wave field
decays according to an exponential law with the ex-
ponent

Im P2 = {(χ/2)2 - [((α, - α2)/4) + (χ/2) (1 - fc«)->/2]>}i/2.

A f t e r we t r a n s f o r m t o d i m e n s i o n l e s s c o o r d i n a t e s a n d

the variables Η and P, Eq. (2.11) gives the following
express ion for the rat io of the amplitudes E o and E i
in each wave:

£„/#! = X-iC/2 (P - H). (5.18)

Let the amplitudes E o in the incident, reflected, and
refracted waves be related as 1 : A i : A2. The condition
of continuity of the wave field at the phase boundary
gives

P-H
_ /X-,C72\

Pi-HJ- A'\p2-HJ'

Hence,

A, = (P2 - P)l(Pi - P2), A2 = (P. - P)l(Pi - P2). (5.19)

Equations (5.16), (5.17), and (5.19) permit one to ana-
lyze fully the problem of reflection and refraction of
x-rays for a rb i t ra ry values of the p a r a m e t e r s k, αϊ ,
and a 2 .

Reflection and refraction of x-rays at internal
boundaries that separate regions having different values
of the p a r a m e t e r s χι and χ_! (domains, twins, and in
part icular, inversion twins) can be reduced to the case
treated above by joining the solutions together by the
condition of continuity of the total wave field at the
phase boundary.

6. IMAGE FORMATION IN TWO-RAY X-RAY OPTICS

Construction of the x-ray t ra jector ies and their
corresponding wave-vector t ra jector ies allows one in
principle to reconstruct the eikonals s(I) and s№) for
the two systems of rays and to proceed to determining
the wave-field amplitudes E W and E № . Since these
amplitudes vary slowly, the intensity distribution in the
x-ray image is initially determined by the difference
between the eikonals S^) and s № , i.e., by the phase
relat ions of the waves that correspond to the two sys-
tems of rays (pure phase contrast a r i s e s ) . With in-
creas ing depj;h in the crys ta l , the variation of the
amplitudes E^) and EU1) influence the intensity of the
total field more and m o r e . Finally, the strongly ab-
sorbed field practically vanishes, and it ceases to con-
tribute to the x-ray image. Here the contrast does not
depend on the value of the eikonal, and is determined
by the amplitude of the weakly absorbed ray (pure
amplitude contrast occurs) ,

The noted overal l pattern of x-ray image formation

becomes complicated if the rays belonging to one given
system intersect and caustics a r i s e . Then the deter-
mination of each wave field requires accounting for
interference of all rays arr iv ing at a given point. Thus,
even when the strongly absorbed field completely
vanishes, the image intensity continues to depend on
the eikonal, which is a non-single-valued function of
the coordinates .

a) Determination of the amplitudes of the wave field
by the method of successive approximations. Using the

general m e t h o d / 2 0 1 we can seek the solution of Eq. (5.2)
by successive approx imat ions/ 3 2 1 Let us as sume for
each wave field that

£ = §£<·», (6.1)

Here the zero-order-approximation t e r m E < 0 ) satisfies
the equation

us [£<">] = 0, (6.2)

while the subsequent t e r m s satisfy the equation

Ds [£'n+1>] +D [£<"'] = 0.J (6.3)

Let us introduce the left-hand null vector Ϊ
= ( χ ι ϋ / 2 , Ρ - Η) and the right-hand null vector
r = (x-iC/2, Ρ - Η) of the matr ix D§Jthe relation be-
tween the components of the vector Ε ( 0 ) has been used
above inJ2.11) and (5.18)]. According to (6.2), the
vector E ( 0 ) can differ from r only by some sca lar
mult ipl ier . If we as sume that E < 0 ) = σ(χ, z ) r , and
multiply Eq. (6.3) for η = 0 on the left-hand side by
the vector I, we get the " t r a n s p o r t equat ion"

ID lor] = 0, (6.4)

The lat ter permits us unambiguously to determine the
variation in the field amplitude along the tra jectory in
the z e r o - o r d e r approximation if we know the initial
values of E o and El at the entrance surface of the
crys ta l . Moreover, Eq. (6.3) permits us to determine
in succession all the t e r m s of the expansion in (6.1).

The " t r a n s p o r t equat ion" (6.4) for the field ampli-
tude in the z e r o - o r d e r approximation is fully equivalent
to the law of conservation of energy flux of the wave
field in a non-absorbing crystal , which was first de-
rived by K a t o f 2 5 C ] and K a m b e [ 4 o i > ] :

div J = 0, J = xEl + (κ + Κ,) Ε',.

The t ransport equation implies that the density of
energy flux in the field corresponding to each of the
eikonals SCO and s № varies along the t ra jector ies in
inverse proportion to the distance between neighboring
t r a j e c t o r i e s . In part icular, in the case of anomalous
t r a n s m i s s i o n of x-rays, the image intensity in the un-
distorted regions of the crys ta l is determined substan-
tially by the density of ray t ra jector ies (see Fig. 13).

In the general case, considerable difficulties a r e
now involved in carrying out the method of successive
approximations of (6.1)—(6.3) with the eikonal chosen
in the form (5.5), owing to the fact that we must account
for the curvil inear nature of the r a y s . We can sur-
mount this difficulty in weaklv distorted crysta ls by
choosing the eikonal in a form that corresponds to
rect i l inear r a y s . In part icular , if we assume that
S = ± ί χ ζ / 2 , which corresponds to rays having
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χ = const., we get a system like (6.2) and (6.3) for the
amplitudes E ( n \ where, in contrast to (5.3) and (5.4),

i±ifl x-,c

* - ( * :
—
dx

The t ranspor t equation (6.4) takes on the simple form

H e n c e ,

£<•>· = 0,5 e x p

ζ

(6.5)

The next term of the series in (6.1) was also calcu-
lated in^3z] for the case α = a(x):

w h e r e

Pt (α, ζ) = (α2ζ/8) + aiz [(az/8) + (<*i z2/24) + i]
Pi (a, z) = (a + aiz)/2

(ία^ζ2/4),
( 6 . 7 )

(For simplicity we have taken C = 1, χι = χ.ι = -χ.)
Equations (6.5)—(6.7) permit one to calculate explicitly
the image contrast for any smooth function a(x, y) that
varies little over distances of the order of the thickness
of the crystal. Use of these formulas to calculate the
image of an edge dislocation perpendicular to the sur-
face of the crystal showed satisfactory agreement with
the results of numerical solution of Takagi's equation
(see Fig. 9c), and qualitative agreement of the calcu-
lated intensity distribution with x-ray photographs of
dis locations. r 3 3 ]

b) Asymptotic solution for the x-ray wave field in
crystals having a two-dimensional distortion field. The
case α = α(χ, y) involves considerable difficulty in
constructing the wave field by methods of geometric
optics, owing to the continuous increase in phase dif-
ference in adjacent regions of the crystal and the ap-
pearance of waveguide effects like those mentioned at
the end of Sec. a of Chap. 5. On the other hand, when
α - α(χ, y), the coefficients in Takagi's equation (4.2)
do not depend on the variable z. This permits us to
seek the solution of this equation by using integral
transformations with respect to this variable. In order
to study the asymptotic behavior of the wave field in
thick crystals, a Laplace transformation was used
that establishes a correspondence between the sought
functions E0(x, z) and Ei(x, z) and their images
F0(x, p) and Fi(x, p) according to the rules

F {x, p) =\ e-pzE (x, z) dz

or in abbreviated notation, E(x, z) -s-F(x, p)). This
implies that the derivatives with respect to χ and ζ
are, respectively:

»&<*,*> . SF (x, p) SE (x, z) . p, , A, .
to to ' Si -pF{x, p)-E{x,0).

Upon transforming to the functions F o and Fi, Takagi's
equation is reduced to a system of ordinary first-order
differential equations

Xfi 2l(p-•£•)-«(*)
P=2iE(x, 0), (6.8)

T h e y a r e e q u i v a l e n t t o t h e o r d i n a r y s e c o n d - o r d e r dif-
f e r e n t i a l e q u a t i o n s f o r F o a n d F j . T h u s we h a v e for
t h e field of t h e d i f f r a c t e d w a v e :

)
(6.9)

U s i n g t h e i n v e r s e L a p l a c e t r a n s f o r m

Ε (χ, ζ) = (l/2ni) j e"zF (i, p) dp,
Po-ioo

{where p 0 l i e s t o t h e r i g h t of a l l s i n g u l a r p o i n t s of
F ( x , p)) t o s o l v e t h e s y s t e m of (6.8) g i v e s t h e s o u g h t
w a v e f ie ld . T h e a s y m p t o t i c b e h a v i o r of t h e wave field
at large values of ζ is determined by the behavior of
the functions F o and Fi near the singular points
closest to the line of integration.

As an example, the image of a bicrystal was studied
in r 4 1 ] in which a(x, y) = a(y) θ ( - χ ) . In this case, un-
der uniform illumination of the specimen (E0(x, 0)
= 1, Ei(x, 0) = 0), Eq. (6.9) for the diffracted wave
takes on the form

f „ - (jo/2) θ ( - ι ) ,
F'x - IP* + i (α/2) θ (-χ) ρ + (χ·/4) - (a/2) δ (χ)] F = -έχ/2.

T h e s o l u t i o n of t h i s e q u a t i o n t h a t s a t i s f i e s t h e c o n d i -
t i o n of b e i n g b o u n d e d a t inf inity h a s t h e f o r m
F (x, Ρ) = (ίχ/2) {[ρ2 + (χ/2)2 + ip (α/2) θ ( - ζ ) ] - 1

-exp [i (α/4) χβ (-χ) - \ χ \ {Ip + i (α/4) θ (-χ)}* + (χ2/4)}'/2]
Χ HP2 + (Χ/2)2 + ip (α/2) θ (-*)]-1 +

+ I/>a + (Χ/2)2]-1 H (α/4) -{[ρ +i (α/4)]» + (χ'/4)}»/*]-»)}.
(6.10)

One cannot perform the inverse Laplace transformation
for the image of (6.10) in explicit form. However, we
can elucidate al l the character i s t ic features of the
wave field by using the corresponding asymptotic solu-
t ions . For this purpose, a method was developed in
this study of finding the asymptotic behavior of an
original that resembles the ordinary method of expand-
ing an image in a power s e r i e s in the vicinity of singu-
lar points (see, e.g. 1 4 2 1 ). The analysis was made for a
non-absorbing crystal , which is the most difficult case
for calculation, because here one must take into a c -
count al l of the singular points F ( x , p) in the plane of
the complex variable p. It was assumed for concrete-
ness that α > 0. We see from (6.10) that F(x, p) has
simple poles at ρ = ±ΐχ/2 and ρ = -i(a/4) ± ί[χ2/4)
+ (aVie)]1 7 2, and branch points at ρ = ±ϊχ/2 and
ρ = -ί(α/4) ±ϊ(χ/2). The real part of all the singular
points is zero (non-absorbing crystal). Hence they are
all essential in the asymptotic behavior of the original
When | α | <C χ, | α ζ | » 1, and | x | < z/( x z) 1 / 4 , the
field of the diffracted wave has the .form

Ει (x, z) w i Im [e'x*/2O (χ (ίχ/4ζ)"2)]) x > o,
Ε, {χ, ζ) χ (i/2) e-*""2 (1 - e""'2) sin [(χζ/2) + (α2ζ/16χ)] +

+ (i/2) e-*<"/2 Im {β**[<*/2>+<<*νιβχ)] φ ((κΛ/16χ)"2 — (ίχΙΑζ)*'2 χ)}

.+(ίχ/4ζ)«/21)}, i < 0 r (6.11)

where Φ(ί) is the probability integral.
According to (6.11), the intensity Ii(x, z) in the
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region χ > 0 increases according to a parabolic law
over the segment 0 < χ < ζ / ( χ ζ / 4 ) 1 / ζ . Thenceforth
it osci l lates with declining amplitude, and approaches
a value corresponding to the solution of (2.14) for
α = 0. In the region x < 0 and α 2 ζ / ΐ 6 χ <iC 1, the in-
tensity osci l lates over the segment - α ζ / 2 χ $ x ^ 0
with an amplitude of the o r d e r of unity, and then it ap-
proaches a value corresponding to the solution of (2.14)
with a * 0.

For a highly disoriented bicrysta l in which | χ \
<C a, the asymptotic solution for the region a z > 1
has the following form: in the region x < —z, it i s the
ordinary solution of (2.14) for a * 0; in the region
0 < (x + z ) a / 4 < 1, we have

£, (x, ζ) « (2χ/α) (1 - e~ ic"'4) - (αχ/8) (x + zf e~^'\

a n d in t h e r e g i o n ( x + z ) a / 4 » 1 when x < 0,

E, (x, z) « (ίχ/2) (ζ + x) β'**'' {Jo (χ (ζ + χ)Ι2) + (π/2) [/, (χ (ζ+χ)Ι2)

Χ Η ο (χ (ζ + χ)Ι2) - Jo (χ (ζ +1)/2) Η, (χ (ζ + χ)/2)]},

(6.12)

w h e r e Hj,(t) i s a S t r u v e funct ion . In p a r t i c u l a r ,

Ε (χ z) = l i(X/ 2)(z + a : ) e i a l / 2 ' X(z + x)€U (6.13)

In line with (6.12) and (6.13), the intensity for x < 0
hardly osci l la tes , but remains of a size near unity over
the interval ( - ζ + (2/χ), 0) and declines along a para-
bola over the range ( - ζ + (4/α), - ζ + (2/χ)).

In the region 0 < x < ζ / ( χ ζ ) 1 / 4 , the asymptotic be-
havior of Ei(x, z) has this form:

E, (x, z) = i-V2 {sin [(χ (ζ/2) + (π/4)] C (ΐ2χ/4ζ) ·

- c o s [(χζ/2) + (π/4)] S (χ2χ/4ζ)} + {ίαχ exp [-i (α/4) ζ

+iz [(α'/16) + (χ2/4)]ΐ/2 _ Χ {(α/2) [(α2/16) + (χ2/4)]'/2 - (α«/8)}»Λ]

Χ {2 (α2 +4χ 2 )ΐ/ 2 [(α/2) [(α»/16) + (χ !/4)]'/2 - (α'/δ)]»/2)-1,

(6.14)

w h e r e C ( t ) a n d S ( t ) a r e F r e s n e l f u n c t i o n s . E q . (6.14)

also holds when a ~ χ and χ > 0. When a j> χ in the
region x > 0, the intensity of the x-ray image declines
exponentially over the segment 0 s Χ χ / 2 < 1 (total
internal reflection!). Then it increases along a para-
bola over the region (2/χ, ζ / ( χ / 2 ) 1 / ζ . Beyond, it
osci l lates with declining amplitude and approaches a
value corresponding to the solution of (2.14) with
α = 0. The study conducted i n t 4 1 ] shows that the devia-
tions from geometric optics a r e substantial only in the
regions χ ( ζ + x)/2 <iC 1 and 1 < ( χ ζ ) 1 / 2 , even under
conditions of total internal reflection.

7. CONCLUSION

The theory of x-ray images has taken only the first
s teps as compared with that of e lectron-microscopic
diffraction images . A number of the ways of analyzing
images that a r e used in electron microscopy have as
yet no analogy in x-ray topography. The variety of
possible cases and the awkwardness of the numerica l
methods of image calculation have hindered compila-
tion of a t lases of images of typical lattice defects.
However, most of the problems allow effective qualita-
tive and even quantitative study to solve the problem of
image analysis in pract ical c a s e s .

The scat ter ing of radiation from regions having
local distort ions is represented well by the Green ' s

functions: analysis of the conditions for appearance
and decay of the Bloch waves of the first and second
types determines the conditions for appearance and
disappearance of extinction fringes; and the path of the
x-rays in weakly distorted crys ta l s is amenable to
simple es t imates , including reflection and refraction
of rays at inner boundaries . The worse difficulties
a r i s e in analyzing the images of distortion fields that
extend along the reflecting planes. Then caust ics can
easily a r i s e , and waveguide effects, total internal r e -
flection effects, and other such phenomena can a r i s e
and interfere with use of geometrical optics . In such
a case, the most promising thing to do is to use
asymptotic methods of studying the wave field.

A single approach to analyzing x-ray images s e e m s
impossible. Highly varied methods may prove effective,
depending on the concrete problem. We can hope that
the a r s e n a l of methods of x-ray topography will be
expanded further in the course of experimental test ing
of the above-cited methods of image analysis . In
part icular , it is of interest to test the qualitative p r e -
dictions of the connection between the sign of the con-
t r a s t and simple c h a r a c t e r i s t i c s of distortion fields,
and to test quantitatively the expressions that express
explicitly the images of weakly distorted regions of a
crys ta l and the theoret ical conclusions on the images
of local distortions of the Green ' s functions and on the
form of the initial perturbations of the wave field in
strongly distorted regions. It is also of interes t to
make a quantitative study of images for special defect
positions, to perform interferometry of distortion fields
using sectional topograms and Four ier analysis of the
lat ter , to study extinction effects in images obtained
under anomalous x-ray t ransmiss ion conditions, to test
quantitatively the theory of x-ray refraction and reflec-
tion at inner boundaries, to study waveguide and total
internal reflection effects, and to construct x-ray-
optical devices resembling F r e s n e l lenses and various
dislocation lenses . We can hope that, as we make
progress in understanding the mechanisms of these
phenomena, a t ransi t ion will begin from passively
studying various phenomena that complicate analysis
of x-ray images to consciously using them in various
x-ray optical ins t ruments .

A number of problems of the theory of x-ray images
that took no part in this review a r e also worth mention-
ing. These include image analysis in reflected beams
(in Bragg diffraction)*, the x-ray moire effect, account-
ing for angular divergence and incoherence of the radia-
tion incident on the crystal , and analysis of the contr i-
bution of t h e r m a l vibrations and diffuse scat ter ing.

In conclusion, we thank deeply Z. G. P insker , I. L.
Shul'pinaj and V. I. Nikitenko, whose advice and sug-
gestions stimulated writing this a r t i c l e .
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