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This review presents the fundamentals of the method of determining the short-range interaction po-
tentials of atoms and molecules by means of scattering of beams of fast particles. Original results
obtained in recent years from studying more than 50 different systems are presented. The obtained
potentials are analyzed and compared with independent semiempirical and theoretical calculations.
The outlook for future studies is discussed.
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1. INTRODUCTION

I N principle, the properties of gases and liquids (which
are the fundamental objects of macrophysics and the
major working substances in technology) can be des-
cribed quantitatively by studying the motion of the elec-
trons and nuclei that constitute their atoms. In line with
the evident inconvenience of such a detailed description,
one uses cruder characteristics, but these permit one
to exclude effectively from consideration the electronic
structure of the material.

One of these convenient characteristics is the inter-
molecular forces, or intermolecular-interaction poten-
tials of the particles. Introducing these characteristics
permits one to separate the theoretical treatment of
different macroproperties, and the atomic processes
that govern them in gases, into two relatively indepen-
dent parts: determining the forces themselves, and
studying the statistical effect of pair collisions. Con-
siderable progress has been made currently in the sta-
tistical part of the problem. Thus, quantitative study of
the intermolecular forces provides a completed basis
for determining various macroscopic properties of
gases, and partially, of liquids.1-1-1

In the broad sense, intermolecular and interatomic
interaction forces are divided into two classes: short-
and long-range forces. Long-range forces are manifes-
ted at distances of approach at which the electron
clouds for the interacting atomic systems show no ap-
preciable overlap, whereas the latter is specifically
responsible for interaction at short distances.

The absence of overlap at great distances, and hence
also the lack of any appreciable perturbation of the
electron clouds, permits one relatively easily to calcu-
late the corresponding forces from the atomic proper-
ties of the isolated systems. The literature currently
contains considerable experimental and theoretical ma-
terial on the long-range forces.-2

This simplifying circumstance does not exist for the
short-range forces, which are the main topic of the
treatment below. Hence the theoretical results obtained
here are more limited, and the proportion of experi-
mental data correspondingly greater. While digressing
from discussing the methods and results of theoretical
determination of the potentials of intermolecular forces,
I shall first briefly examine the main fields of applica-
tion of the information on these forces in gases. Then I
shall treat the fundamental theoretical and technical as-
pects of determining intermolecular forces from data
on scattering of molecular beams, and I shall summarize
and discuss the results of studying the potentials of
atom-atom, atom-molecular, and intermolecular inter-
actions. In concluding, I shall try to mark the path of
further development of studies of the short-range inter-
molecular forces.

Ί USES OF DATA ON INTERMOLECULAR FORCES IN
GASES

a) The first and most abundant source of information
on intermolecular forces has involved analyzing changes
in the thermodynamic and kinetic properties of gases.
This is because people have been able to approach the
solution of the inverse problem on the basis of statisti-
cal mechanics, i.e., to determine the forces from data
on the cited properties. However, since the theory
has not provided a way of deriving an explicit expres-
sion for the potential as a function of these properties,
people usually have represented the potential by models
in the form of functions that are convenient for mathe-
matical operations, and which contain two or more
parameters. The numerical values of the parameters of
such a model potential are found by comparison of cal-
culated and measured values, e.g., of the viscosity.

However, this procedure, which has been widely ap-
plied in analyzing low-temperature data, gives informa-
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tion limited to the temperature range covered in the
measurements. The upper limit corresponds to a tem-
perature ~ 1000°K, while the obtained information in-
volves mainly the long-range forces. Since the role
played by these forces declines with increasing tem-
perature, while that of the short-range forces increa-
ses, extrapolation of the obtained potentials beyond the
appropriate limits will lead to very large errors . ^

Development of the most recent technique has ad-
vanced the problem of determining the macroscopic
properties of different gases at temperatures consider-
ably greater than 1000°K. When one has independent
information on the intermolecular forces in a distance
range that is characteristic of the conditions at such
high temperatures, one can determine the needed quan-
tities by calculation alone, and avoid insurmountable
difficulties of measuring them directly. This is exactly
how they found in L 4 ] and recently int5·^ the transport
coefficients of very hot air under the conditions behind
the front of a shock wave arising during motion at ultra-
and hypersonic velocities. One can calculate analogously
also the characteristics of gas mixtures corresponding
to planetary atmospheres.

In order to describe dynamic processes in the upper
layers of the atmospheres of Earth and the planets, one
also needs data on the kinetic properties (viscosity,
diffusion, and heat conductivity) of the corresponding
gas mixtures. Photodissociation by solar ultraviolet
irradiation causes the steady-state composition of these
mixtures to be far from thermal equilibrium, even at
moderate temperatures ( ^ 1000°K). Direct measure-
ment of the stated properties of such gas mixtures
seems simply impossible, whereas the existence of
data on the intermolecular forces opens a simple way to
determine them.1-6-1

b) The problem of energy exchange between the
translational and internal degrees of freedom of mole-
cules is attracting the attention of a large set of inves-
tigators. In the Fifties, this interest arose from the de-
velopment of aerodynamics at ultrasonic velocities,'-7-'
and in recent years, the invention of gas-molecular and
chemical lasers and upper-atmosphere studies have
created a new stimulus to studying processes of shock
excitation and deactivation of vibrations.1-8-1 Vibrational
relaxation processes have a substantial effect on the
rates of unimolecular decompositions and recombination
reactions.

In the theory of vibrational relaxation, information
on intermolecular interaction has proved to be the key
to quantitative solution of the dynamic problem of shock
excitation, and hence, study of these forces is of con-
siderable interest.

c) The fundamental problem of the quantum-mech-
anical calculations is to establish the relation of the
energy of a system of interacting atoms to their mutual
arrangement. Development of the calculational tech-
nique has led to a considerable extension of the so-called
called a priori calculations of interaction energies of
diatomic and more complex systems.[-2-' As a rule, the
final results for many-electron systems are obtained
by approximations, and one cannot always estimate their
effect on these calculations. Then, comparison of calcu-
lations with experimental determinations of interatomic
forces can permit one to refine the calculations, and to

reject approximations that lead to appreciable discrep-
ancies. Existence of information on the potential-en-
ergy surface is a prerequisite for quantitative theoreti-
cal treatment of the elementary process of atomic re-
arrangement or chemical transformation.'-9-' The theory
of scattering for a multidimensional potential has not
yet been developed far enough to permit solving the in-
verse problem. However, use of a computer permits
one to test the adequacy of a theoretical prediction of
the potential surface by comparing the cross-sections
for inelastic (see, e.g.t 1 0 ]) and e l a s t i c t u ' l 3 : l scattering
as measured and calculated for this surface. Moreover,
use of a computer allows one to find the parameters of
the potential-energy surface that correspond to the
additive approximation.tl2-1

d) One of the interesting applications of intermolec-
ular-potential data involves the vigorous development
in recent years of the so-called hot-atom chemistry,
i.e., studies of chemical reactions at energies substan-
tially above thermal energies. There had been prac-
tically no information until recently on the behavior of
the excitation functions (reaction cross sections) in the
region beyond the reaction threshold.

Use of fragments from nuclear reactions (e.g.,
3He(n, p)T), with subsequent deceleration of the fast Τ
atoms by an inert moderator, or of " h o t " photolysis
products (e.g., HI + hw — Η + I) permits one to study
reactions at energies Ε ^ 1 eV. Determination of the
non-equilibrium energy distribution function for these
particles involves calculating the energy losses in elas-
tic collisions, information on the interaction potential
can also be used directly in a stochastic analysis of the
experimental data on the yield of products.1^4'15-1

e) Data on the so- called crossings of potential
curves are of considerable interest in physical (and
chemical) kinetics. As we know, these crossings create
channels for various inelastic processes in atomic
collisions.'-9'16-' The difficulty of predicting these cross-
ings theoretically and the opportunity of experimentally
observing scattering features associated with them
opens up one of the most interesting applications of
studies of intermolecular forces.

In closing the discussion of some of the applications
of data on intermolecular forces that show the impor-
tance of studying them, I should comment on the goal of
the experimental program of determining the potentials.
Naturally, this program cannot be limited to getting
numerical values, but must be directed toward estab-
lishing the relation between the interaction potentials at
short and intermediate distances and the atomic char-
acteristics of the interacting systems.

3. FUNDAMENTAL CLASSICAL AND QUANTUM
RELATIONS OF THE THEORY OF ELASTIC
SCATTERING

a) Expressions for elastic-scattering cross sections.
In studying scattering experimentally, one usually finds
either the attenuation of intensity ΔΙ of the beam, or the
flux I(a) into a detector deviating from the beam axis
by the angle a.

Interpreting the measured quantities in terms of dif-
ferential cross sections α(θ), and correspondingly, in
terms of interaction potentials V(r), requires that we
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establish the relationships between them. Let us con-
sider this problem, and restrict the treatment here to
small scattering angles (Θ < 1, V(r) « E ) . In this treat-
ment, I propose not to discuss the scattering theory in
detail,'-17'19·1 but only to give a summary of the formulas
that are useful for experimenters.

The angular distribution of particles scattered from
a beam incident on a scatterer is customarily described
by the differential scattering cross-section σ(θ, Ε). The
latter is defined1-17-1 by the condition that the number of
particles dN scattered in the angular range from θ to
θ + άθ for a beam of flux density J o is dN(0)
= 2vJoa(e, E)s in0 άθ.

In scattering experiments we are dealing with the
flux collected by the detector. For the idealized geom-
etry of an infinitely narrow beam and a concentric de-
tector (an aperture or annular slit), the flux of particles
collected by the detector can be written, respectively,
in the form

π

h-l (9max) = Μ @msx) =. /„ {1 - exp [ - 2nnL \ α (Θ, E) sin θ <B "I ] ,
emax

"max
/(Omin- 9max) =/<, exp [ — 2nnL f σ(θ, £)sin9 del ;

here θ m j n and θ m a x are the minimum and maximum
deflection angles of particles that reach the detector,
and Io is the intensity of the beam, which is passing
through a homogeneous target of density η and length L.

The quantity Q t r u n c that enters into the expression
for AI(0 m a x ) :

characterizes the cross section for loss of particles
from the beam, and is sometimes called the truncated
" to ta l " cross section. For the total cross section,
which characterizes the total flux of scattered particles,

In the classical treatment, the number of particles
deflected by an angle in the range from θ to θ + άθ
equals the number of particles intersecting an annular
cross section near the (spherically-symmetric) scat-
terer contained between circles of radii b and b — db
(b is the impact parameter). Thus we arrive at the re-
lation

σ (θ, Ε) = (6/sin θ) I dbldQ | ,
(1)

where we take the absolute value of the derivative be-
cause σ(θ, Ε) is always positive in sense. Correspond-
ingly, the total cross section in the classical approxi-
mation is defined by the expression

Q ^ 2π [ 6 db.

This expression diverges for real potentials; as we
know, one can eliminate the divergence of the total and
the differential cross sections in the quantum treatment.

One must use the quantum relations if the classical
treatment proves to be insufficiently justified (for the
experiments described below, this can happen, e.g., in
scattering of Η atoms by the light targets He and H2).1-18-1

The differential cross section (the square of the modu-
lus of the scattering amplitude) can be found from the

well-known quantum expression:
α (Θ, E) = (4*»)-' {[S (21 + 1) (2sin2 δ,) Pt (cos θ)]1

+ [Σ βΐ + 1) sin 26 tP, (cos θ)]'].

In the quasiclassical approximation and for the small-
angle scattering (Θ <iC 1) to be treated hereinafter, this
expression is convenient for calculations. This is be-
cause now I = kb, where k is the wave vector of relative
motion (k = (2μΕ/Κ)ι/2), δ/ = 6(b) is the phase shift,
whose value can be found for a known (or postulated)
interaction potential, and Pj = P(b, Θ) is the asymptotic
expression of the highest-order Legendre polynomials:

P, = /„ (kbB) for θ < {kb)-1,

Pi = (0.5nkb sin θ)"1/* [sin φ — (8kb)-1 (ctg θ cos φ + 2sin φ ) ! ,

φ = Α6Θ + (n/4) for θ > (kb)-1.

The d i s c u s s e d r e l a t i o n s can be used d i r e c t l y for
calculating σ(θ, Ε) on a computer.

The problem of determining the regions of applicabil-
ity of the classical and quantum descriptions of scatter-
ing has been discussed widely in the literature, k19'20^
An expression was derived inc:2 0 ] on the basis of the
well-known Massey criterion for the critical angle 0C

at which, strictly speaking, one should replace the
classical by the quantum treatment. For a power-func-
tion potential V = K/r s :

ec = (nh2^f'2'-Z) [KC (s)]-'ii'-i)E~<'-2)/<-2'-2\

However, it turns out in practice that the differences
between the trends of the quantum and classical differ-
ential cross sections are small for monotonic potentials,
even at angles below 9c, in particular for a system of
the H—H2 type. We see this in Fig. 1, which shows the
values of 0C and the limiting angles (dotted line) used in
calculating the_classical truncated ' ' total'' integral
cross section Q. This difference is relatively small at
angles θ > ec/2v (i.e., to the right of the intersection
with the dotted line). Hence we can conclude that using
the classical relations in the angular range θ > 0C/2JT
when analyzing the measured integral cross sections
leads to insignificant errors as compared with the
rigorous quantum-mechanical description.

b) Calculation of the differential cross section from
a known potential and solution of the inverse problem.
As I shall show in the next section, the measurable
quantities ΔΙ and l(a) are directly related to the differ-
ential cross section. Hence, analysis of an experiment

F I G . 1. Di f ferent ia l scat ter ing

cross s e c t i o n as c a l c u l a t e d b y t h e clas-

sical and q u a n t u m f o r m u l a s for inter-

a c t i o n o f a t o m s h a v i n g m a s s e s o f 1

and 2 a t o m i c - w e i g h t un i t s .

Η - H,

600 eV

e, rad
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poses the problem of calculating the c r o s s section σ(θ)
from the potential function V(r). In turn, one must in-
vert the experimental determinat ions of σ(θ), i .e., find
from them the potential functions V(r).

As we see from Eq. (1), one must r e s o r t to a deflec-
tion function 9(b, E) in the class ical approximation for
finding σ(θ, Ε). When V <C E, the scatter ing angle θ
(which is equal to the rat io of the t ransverse Δρ^ and
longitudinal py momenta) is re lated to the impact
p a r a m e t e r b by [ 1 7 : i

θ = Δ ρ 1 / ρ , ι =- -bE'1 \ (dV/dr)(r2- dr = - (2)

One c a n find an exp l ic i t 8(b) r e l a t i o n only for a V(r) of

a part icu lar type. In part icu lar, for V = K/r s, and

V = A e x p ( - X r ) , r e s p e c t i v e l y ,

iPs = (ff/6s+1)n"2r((s + l)/2)/r(s/2), 3 \ = ΑλΚ0 (Xb),

where T ( s ) i s the g a m m a function of E u l e r , and Ko i s the
z e r o - o r d e r modified B e s s e l function.

According to'-2 1-', one can find the relat ion between θ
and b for a potential of a rb i t ra ry type by transforming
in (2) from integration to summation of the rapidly con-
vergent s e r i e s :

0 £ = - ( n / m ) 2 rj(dV/dr\r=r.), r , = 6/cos{[(2;-l)/2m]jr}. (3)

For r e a l potentials, this summation gives accurate
values with a number of t e r m s in the s e r i e s m / 2 < 15.
It can easi ly be calculated, even on a low-power compu-
ter .

In the quantum description of scattering, one of the
problems consists in calculating the phase shifts. Sim-
ple analytical express ions for the phases exist in the
quasiclass ical approximation for power-function and
exponential potent ia l s ; i l s ^ for a potential of a r b i t r a r y
type, using the resu l t s of "*, we can write

J=m/2
6(6)=: -(kn/2mbE) 2 r)V(r

3=1

; = 6/cos{[(2/-l)/2m] π}.

This relat ion p e r m i t s one relatively easi ly to calculate
the 6(b) relation, and then to use it in a tabulated or
analytical form to find σ(θ, Ε) .

Firsov1-22-1 has solved the problem of reconstruct ing
the interatomic potential V(r) from the experimental
ο(θ, Ε) re lat ion for monotonic V(r) within the framework
of c lass ical mechanics. According to the resu l t s of ,
one can determine V(r) by the expression

V (r) = Ε {1 - [exp (Φ (4)

w h e r e

Φ(Γ) = θ (6) db

a n d £>(b) i s t h e c l a s s i c a l d e f l e c t i o n f u n c t i o n .

Thus, if we know σ(θ, Ε ) , determining V(r) reduces
to the simple computational operation of finding 9(b)
from the relat ion

i β) =

and then taking the integral in (4) for different values of
b 0 . Newton 1- 2 3 ' has derived a convenient express ion for
numerical calculations of V(r) from a known σ(θ, Ε).

The range of d is tances over which one determines the
interaction potential is unambiguously associated with
the angular interval that one studies. Since it i s difficult
to determine σ(θ, Ε) in the angular range θ < 10"3, one
can extend the range by merging with the r e s u l t s of de-
termining V(r) from measurements of the integral
c r o s s sections ^ ( E ) . When the c lass ical description is
inapplicable, the problem of finding V(r) from σ(θ, Ε)
also has a solution,1 1 2 3 '2 4-1 but I shall not consider it
here .

c) Scattering in the case of non-central interaction
forces. In the discussion above, we have operated with
c r o s s sections and interaction potentials of spherically-
s y m m e t r i c sys tems. This approximation, which is well
justified for the interaction potentials of atomic sys-
t e m s , must be made more p r e c i s e in going over to t reat-
ing atomic-molecular and inter molecular interactions.

Two fundamental approaches to describing the aniso-
tropic interaction of molecular sys tems a r e known.
They a r e , f irst, the one-center representat ion of a
non-spherical potential as a s e r i e s expansion in the
spher ica l ly-symmetr ic components Vj(R):

= ^\= ^\Vl(R)Pl(cosy) = 2 [1 + β Λ (cos γ)]; (5)

Here R is the distance between the centers of gravity of
the interacting par t ic les , γ i s the angle of relat ive
orientation, P} (cosy) is the Legendre polynomial of
o r d e r I, and /^is an aspherici ty p a r a m e t e r . The other,
many-centered representat ion is based on the so-called
system of additive interatomic potentials, in which the
interaction of the molecules AB and CD, for example,
i s written as follows:

V(R) = V (rAC) + V (rBC) + V (rAD) + V (rBD),

where R is the distance between the centers of gravity
of the molecules, and r is the interatomic distance.

The interaction potential of the two molecules
V(R, γ) averaged over the equally-probable orientations
determines the effective spher ical ly-symmetr ic poten-
tial that corresponds to a point force center. Analytic
expressions 1- 2 5 ' 2 6 · 1 a re known for the additive system for
the cases of inverse-power and exponential interatomic
potentials . F u r t h e r m o r e , one can usually choose p a r a m -
e t e r s of inverse-power or exponential functions for
V(R) that permit a good approximation of the cumber-
some analytic express ions.

Until recently, analysis of data on scatter ing by
atomic-molecular sys tems was exclusively based on
using isotropic potentials. That is, it corresponded to
the approximation of point c e n t e r s of repuls ion (the PCR
approximation). The fundamental defect of the PCR ap-
proximation, which was noted already i n t 2 6 3 , i s that one
c o r r e l a t e s the measured c r o s s section Q(E) averaged
over the orientation with the c r o s s section calculated
for the averaged potential V(R).

For a known nonspherical potential V(R, γ), the
averaged total c r o s s section can be described by the
express ion

<?(£) =M i
(V) (Θ)

σ(θ, γ, E)d cos yd cos Θ. (6)

Since theoretical calculations of a nonspherical po-
tential of the type of V(R, γ) a r e known only for individ-
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ual systems, analysis of experiments involving meas-
urement of total or differential cross sections of mole-
cular scattering has proved possible only within the
framework of using an additive-potential system. As
will be shown below, one can actually avoid the PCR ap-
proximation on this basis by going over to an adequate
treatment of the averaged cross sections. An additional
attractive feature of this approach involves the possibil-
ity of decreasing the number of parameters of the po-
tential, and effectively eliminating the indeterminate
asphericity parameter fy.

Within the bounds of validity of classical mechanics
(we shall restrict ourselves here to precisely this
case), in order to calculate σ(θ) according to Eq. (1)
for a fixed E, one must find the deflection function 0(b)
= 0(b, φ η , χ η ) . Here φ α and χ η (η = 1, 2) describe the
orientations of the interacting molecules.

In describing the orientations of the colliding parti-
cles, it is convenient to use the xy plane of the coordin-
ate system, with the ζ axis along the vector of the
relative velocity v. The position of an axially symme-
tric molecule is determined with respect to this plane
(for real conditions of experiment with fast beams, the
orientations of the interacting molecules are frozen) by
the two angles φ and χ (by three angles in the general
case). Figure 2 shows, as it were, an instantaneous
photograph of one of the possible relative orientations.
Owing to the small scattering angles and the large rela-
tive velocities ν of approach, this fixed orientation
exists throughout the time of interaction of the mole-
cules at the impact distance b as reckoned between the
centers of gravity of the molecules.

For small scattering angles, the projections of the
molecules AB and CD on the xy plane (see Fig. 2) permit
one easily to relate* the distances of closest approach
between the atoms A, B and C, D (the interatomic impact
parameters in Fig. 2) to the angles φ η and χ η , the bond
length r e n , and the intermolecular impact parameter b.

Assuming additive interatomic potentials is equiva-
lent to assuming that the total transverse momentum
Δρ χ that determines the deflection angle is equal to the
sum of momenta imparted during the interaction process
on the (almost) rectilinear trajectory of each of the
atoms. From Eq. (2) and the obvious expression (see
Fig. 2)

Δρ± = kApx + lAp,j, b u = kxtj + \yu

we can der i ve the fol lowing e x p r e s s i o n for the total

t r a n s v e r s e momentum:

Δρ± = (2/v)

Δ Ρ ι = (2/v) [(Σ = (2/υ) Φ (6),

where

Here k and 1 are unit vectors that correspond to the χ
and y directions, £Py is defined by Eq. (2), with by set
as the lower limit.

The sought deflection function for elastic scattering
of the molecules is found from

(b, <tn, Xn) = j = Αρ±/μν = Φ (6, <pn, χη)/Ε. (V)

*B. Μ. Smirnov proposed the idea of treatment presented herein-
after.

FIG. 2. Schematic diagram of the pattern of scattering at small
angles, and the fundamental collision parameters of diatomic molecules.

When one has assigned the form of the interatomic
potentials, Eq. (7) permits one to find the deflection
function, and from it to find the differential cross sec-
tion α(β, φ η , χ η ) for fixed orientations. Upon averaging
σ(θ, φ η , x,j) one can arrive at an expression for the
cross section σ(θ, Ε) that corresponds to the measured
differential scattering cross section.

I have assumed in deriving Eq. (7) that the atoms in
the molecules do not interact, and thus the collision did
not excite molecular degrees of freedom (vibrations
and rotations). In the next approximation, one can take
account of the small (in the sense of a correction to Δ Ρ ι )
effect of excitation. However, one must take into ac-
count the intramolecular forces to do this.

One can use a method analogous to the one for find-
ing the deflection function 0(b, φ η , χ^) described above
for calculating the phase function 6(b, φ η , χη) and the
quantum differential cross section for scattering in a
many-centered force field.

4. EXPERIMENTAL STUDY OF INTERMOLECULAR
INTERACTION

a) The method of elastic scattering of fast neutral
beams. The elastic-scattering method has an advan-
tageous position over other methods of determining
intermolecular forces. This involves the fact that it
contrasts with other methods in that one can directly
determine the scattering probability (or cross-section)
at a given angle, and unambiguously interpret these
measurements in terms of interaction potentials.

One can use several variants of the elastic-scatter-
ing method: one can measure the total cross sections
Q(E), or the integral cross sections Q(E), or the differ-
ential cross sections. The choice of any particular
variant is dictated on the one hand by the studied energy
range, and on the other hand by the potentialities and
convenience of technical performance of the experiment.

Usually when one uses fast beams, the scattering
cross section is found from the attenuation ΔΙ of the
beam intensity Io in a target of known density η and
length I by using the expression

Μ = / 0 [1 - exp ( - nQl)\ « Ion~Ql,

H e r e Q(E) i s the ( integral) c r o s s s e c t i o n for l o s s of
p a r t i c l e s f rom the beam. In m e a s u r i n g differential
c r o s s s e c t i o n s , one usua l ly d e t e r m i n e s the flux of parti-
c l e s I(a) arr iv ing at a d e t e c t o r set_at an angle a to the
axis of the beam. The relation of Q(E) and l(a) to σ(θ)
will be discussed below.

In a crude approximation, the interaction energy V at
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FIG. 3. Diagram of an apparatus to study scattering of fast beams of
neutral atoms and molecules.

the point of closest approach r 0 , the energy E l a b of the
impinging par t ic le , and its deflection angle θγ^
^ l a b ^ *^°) a r e c o n n e c t e d by the simple re lat ion
V(ro) « Ejab^lab* *"*ne c a n conveniently use this re la-
tion to character ize experimental conditions (as we
know, E l a b 0 l a b = SE).

Molecular-beam technique on the current level does
not p o s s e s s simple means of creat ing neutral part ic le
beams that a r e homogeneous in energy in the range
1—10 eV. Hence, using beams of higher energies in-
volves decreasing the absolute values of the deflection
angles to be measured. Thus, for the pract ical ly con-
venient energy range E^ j j ~ 103 eV, study of inter-
molecular forces in the range V ~ 1 eV implies that
one must measure scatter ing at angles of Θ^Ά^ ~ 10"3

rad ians .

Amdur (see'-27-1) performed the f irst experiments to
study scatter ing at such small angles. Thus far, several
ins t ruments have been built and described'-2 7"2 9-' for
studying scatter ing of fast neutral beams.

The apparatus of'-28-1 shows the greates t universality
from the standpoint of choice of objects of study and
methods. Figure 3 shows a diagram of it (EMA: e lectro-
metr ic amplifier; REC : r e c o r d e r ; the functions of sec-
tions 1—6 will be described below). The only way of
getting monokinetic neutral beams of high energy
(E > 102 eV) at acceptable intensity is charge t ransfer
of accelerated ions. If the source must permit getting
beams of any atomic par t ic le s whatever, then naturally
m a s s selection must precede the charge transfer .
Resonance or a lmost-resonance charge transfer of
mass-se lected ions makes it possible to convert an ion
beam into a neutral beam with practical ly no perturba-
tion of the initial t ra jector ies and energies of the par t i -
cles. These ideas a r e the bas is of design of the appara-
tus shown in Fig. 3:

1) Electron-bombardment ion source that p e r m i t s
variation over a broad range of both the energy and the
current of the ionizing e lectrons. The beam being
formed is ribbon-shaped.

2) Magnetic (120°) analyzer for selection of ions of
the beam over the mass interval from 1 to 400 atomic-
weight units at energies from several hundred eV to
4 - 5 keV.

3) Charge-transfer section using gas or vapor
(alkali-metal) targets .

4) Section containing the deflecting capacitor and
monitor to control constancy of the beam flux.

After charge t ransfer and removal from the mixed
beam of ions by using a paral le l-plate deflecting capa-
citor, the neutral beam i s collimated by a narrow slit.

The resonance defect (as defined by the energy differ-
ence of the t e r m s of the system A*— B and A—B+ at
infinity) can decrease strongly as the par t ic le s ap-
proach. However, in contrast to resonance charge
transfer, the charge t ransfer real ized here will be
accompanied by an appreciable deflection of the par t i-
cles. Collimation of the neutral beam makes it possible
to eliminate the contribution from charge t ransfer in-
volving an undesired amount of resonance defect.

5) Section containing the scatter ing target, with an
ionization gauge for measuring the p r e s s u r e in the tar-
get and an automatic supply system. The target is set
on a movable stage for adjustment of i t s position. In
order to increase the accuracy of re lat ive measure-
ments of c r o s s sections, a special valve i s used to sup-
ply gas to the target. It periodically switches the gas
supply, e i ther to the scatter ing chamber, or into the
working volume. This method makes it possible to take
account automatically of scatter ing by the background,
and by using the high stability of delivery through the
valve, it avoids constant recording of the p r e s s u r e s in
the target. One can then determine the absolute values
of the measured c r o s s sections only in special, separate
calibration measurements .

6) Section containing the detector and recording sys-
tem. The detector used i s an open secondary-electron
multiplier set on a movable platform. Along with meas-
uring the profile of the incident beam, it p e r m i t s one to
measure fluxes of par t ic les scat tered in the range up to
10° (in the laboratory system), i .e., differential scat ter-
ing c r o s s sections. The lower energy l imit of m e a s u r e -
ment and the upper angular l imit of deflection a r e mainly
determined by the sensitivity of the secondary-electron
multiplier. The major opportunity for sharply i n c r e a s -
ing the sensitivity involves use of a channel multiplier
as the detector. The measuring system includes an
e lec t rometr ic amplifier whose output is connected to a
digital voltmeter. The la t ter is used for (amplitude-
frequency) conversion of the signal, with subsequent
measurement of the amplitude with a sea le r (PP-09M).

The automation of measurements attainable with this
system makes possible a considerably g r e a t e r speed
with heightened accuracy. As a whole, the described ap-
paratus makes possible:

1) obtaining well-collimated beams of neutral par t i -
cles (and ions) of fixed m a s s and energy (j° ~ 10~u

2 1 0 2A-cm" 10"1 0 A-cm" 2 );
2) varying the energy of the par t ic le s in the beam

over the range 3 χ 10"2—5 χ 103 eV;
3) rel iable measurement of the angular distribution

and attenuation of the scat tered beam, with exact meas-
urement of the density of the scatter ing gas directly in
the target;

4) obtaining beams of metastable atoms of the noble
gases and molecules (N2, etc.) with a controllable ad-
mixture of the ground state by using special charge-
transfer targets .

b) The problem of interpreting the measured quanti-
t ies. The directly measured beam attenuation ΔΙ(Ε) and
the angular distribution l(a) of the scattered par t ic les
can be transformed into σ(θ) (and from σ(θ) into V(r))
only under ideal geometric conditions in which one can
neglect the finite dimensions of the detector, the scat-
tering target, and the beam c r o s s section, and c o r r e -
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spondingly, the fact that one is collecting a spectrum of
scattering angles. Usually the conditions are such that
the detector cannot isolate from the scattered flux only
those particles deflected by angles from θ to θ + άθ. An
actual detector collects particles scattered over a finite
range of angles, and here the efficiency of collection
(actual solid angle) is a function of the deflection angle.
This feature of the detector is manifested both in meas-
urements of attenuation (loss from the beam), and also
in measurements of the angular distribution of the scat-
tered flux. Hence the problem arises of determining
σ(θ, Ε) from the measured quantities ΔΙ(Ε) or I(a).

A natural connection between the quantities σ(θ),
ΔΙ(Ε), and Ι(α) is a characteristic such as the efficiency
of collection of the scattered particles. This is because
α(θ) characterizes the total number of scattered parti-
cles, while ΔΙ and l(a) are respectively the measured
fraction of particles lost from the beam and the fraction
of scattered particles entering the detector.

One can conveniently describe the efficiency of the
detector with the function η(θ, I) introduced by Kusch.1-30-'
It determines the probability normalized to unity that a
particle scattered by the angle θ at a point removed
from the detector by the distance I will enter the detec-
tor (in the laboratory system, when θ <iC 1, the deflec-
tion angle θγ^ is directly proportional to Θ). On the
other hand, 1 - θ gives the probability of loss from the
beam. In its physical meaning, η = Ν^(θ)/Ν(θ) is the
ratio of the number of particles scattered by the angle θ
and entering the detector to the total number of parti-
cles scattered by the same angle.

We shall examine a method of determining the func-
tion η(θ, I), while mentioning another approach to
analyzing the measurements that was developed by
Amdur's studies, and which has been described in de-
tail in . In this approach, the measured quantity Q(E)
is correlated with the cross-sections (Q) averaged over
the angle, as caused by a finite thickness of the target,
the area of the detector, and the shape of the intensity
distribution over the cross section of the beam. In
averaging, one assumes that the relation of Q to the
angle θ has a quite definite form (that corresponds to
an interaction potential having an inverse-power func-
tion dependence on the distance). This permits one to
perform the integration in closed form. These calcula-
tions have been performed for a beam and detector both
of round'-27-' and of rectangular'-31-' cross section.

In terms of detector efficiency, these calculations
actually correspond to defining some aperture angle ΘΆ

for which the efficiency 1 - η of the detector is taken
to be unity when θ\^ < 0 a , while it_is zero when 0 l a b

> ΘΆ. The integral cross sections Q(E) to be measured
are replaced by cross-sections truncated at θ&. A de-
fect of this approach is its limitation to the case of
inverse-power potentials and the introduction of rather
artificial limits of applicability of the obtained potential
parameters Κ and s.

For measurements of angular distributions of scat-
tered particles, Filippenko has given an analysis
and method of accounting for errors that arise in inter-
preting the measurements in terms of differential cross
sections. However, this author restricted the treatment
to the case of small and equal heights of the beam and
the detector slit. Hence, the obtained results are in-

applicable to ribbon- shaped b e a m s .
If we use the detector efficiency η(θ) introduced

above, then we can achieve a more adequate approach
to analyzing the measurements. ̂ 33>34^ in contrast
to1-27'32-', one can account for geometric factors in this
method, quite independently of the nature of the inter-
action.

One can easily express the attenuation ΔΙ, or flux of
particles that miss a detector coaxial with the beam,
and the flux I(o) into a detector shifted from the axis of
the beam by the angle a, in terms of the differential
cross section σ(θ, Ε) and the detection efficiency η(θ).
In the notation ofu37- ,̂ these expressions have the form

π le-Al

Δ/=-2πη/0 [σ(θ, £)3ίηθ<2θ f A (I) [1 — r^ (0, l)]dl,

π ίο-Δί

7(α) = 2π«/0 j σ (θ, E)sinQdO f Α (Ι) η α (θ. I) dl.

If we introduce the function

/ο. α - | A (l) η0, „ (θ, 1) dlj \ A (I) dl.
Δ ί 'ν

c a l l e d t h e a p p a r a t u s f u n c t i o n , w e a r r i v e a t t h e f o l l o w i n g
c o n v e n i e n t r e l a t i o n s c o n n e c t i n g t h e m e a s u r e d q u a n t i t i e s
with the sought cross section σ(θ, Ε):

π

Q (Ε) = 2π Ι σ (θ, Ε) [1 - /„ (θ)] sin θ

π

Ι (α) = Β [ σ (θ, Ε) fa (6)sin θ άθ,
Ό

(9)

Here B is a numerical coefficient that contains experi-
mentally measured quantities (n, ΔΖ, Io, etc.).

The functions fQ a have been calculated'-33'34-' on a
computer for a number of the possible combinations of
detector widths, beam profiles, and round and rectangu-
lar geometries.

Figure 4 shows the results of calculating f0, from
which we see that the apparatus function depends rather
strongly on the deflection angle, and it can be only
crudely approximated by a step function corresponding
to the aperture angle 9 a that had been used in'-27'31-',
(p is the dimensionless deflection angle.'-34-' The nota-
tions on the curves of the universal relationships corre-
spond to different types of intensity distributions
(see1-34-1). Use of the functions f0 and fa and Eqs. (8)
and_(9) allows one to convert the measured quantities
ΔΙ(Ο.(Ε)) and I(a), and to get the σ(θ, Ε) relationship.
Also, if one compares the measured and calculated

W

as XexpC-WZ,,!)

to

fl5

-KG»

exp(-3.656p2)

FIG. 4. Apparatus functions fo(p) describing the efficiency of de-
tection of particles scattered at a given reduced angle ρ for a detector
of rectangular (a) and round (b) geometry.
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ΙΟ 1 α, 9, rad 10"'

F I G . 5. A n e x a m p l e o f f i t t ing

v a l u e s o f Q ( E ) a n d I (a ) as ca lcu-

l a t e d b y Eqs . ( 9 ) a n d ( 1 0 ) ( c i r c l e s )

and m e a s u r e d ( f i n e l ines ) for t h e

N 2 - N 2 s y s t e m u p o n u s i n g t h e

apparatus f u n c t i o n s f0 a n d fa, t h e

i n t e r a t o m i c - p o t e n t i a l p a r a m e t e r s

f rom T a b l e V ( p . 5 3 ) , a n d t h e

differential cross section σ(θ),
which is shown by the heavy line.

1.0 2.0 3.0 4.0 E,ab> keV

values of ΔΙ and I(o), one can find the parameters of a
potential of any presumed type. Thus, for non-central
molecular interaction potentials, one can express Eq.
(8), using (7), in the form (e.g., for diatomic molecules):

Q (Ε) = 2π \db ><*Μ\6(Θ,
) (χ)

?, φη, χ») Ι! - /ο (8)1 d2 cos χ.
(10)

If we assume a potential of the type V = Aexp(-\r)
for the interatomic interactions, then by using a Monte
Carlo procedure we can calculate Q(E) for fixed values
of A and λ. Thus, the true values of A and λ have been
determined by fitting measured and calculated Q(E) re-
lations. The fivefold integral in (10) (fivefold in the
case of diatomic molecules, and sevenfold in the gen-
eral case) was calculated with the BESM-4 computer
with a statistical accuracy of 1—3%. Here the number
of calculated trajectories was as great as 104. Figure 5
shows a typical_example of the agreement of calculated
and measured Q(E) and I(a) relationships for the N2—N2

system. _
We note that the calculated Q(E) relationships for a

choice of monotonic interatomic potentials prove_ always
to be monotonic, and practically linear when In Q is
plotted against In E. Hence, injprinciple, experimen-
tally observed non-monotonic Q(E) relations (showing a
break) should correspond to non- monotonic interatomic
potentials. Figure 5 also shows an example of conver-
sion of the measured angular distribution I(o) for the
same N2— N2 system, and its result is the differential
cross-section σ(θ, Ε) shown in the same diagram. The
experimental σ(θ, Ε) relation can be used to determine

the parameters of the anisotropic potential. In order to
do this, one can, by varying the parameters A and λ,
compare the measured values of σ(θ, Ε) with the calcu-
lated values by the relation

ά (Θ, E) = f f d2 φ £ J (Δί>2/ΔΘ2) d2 cos χ;
<<p) <x)

Here the integrand arises from Eq. (1), Δ.Θ2 = (θ\- θί)
is determined by the size of the fixed interval Ab
= bi - b2, and b(f?, φ η , χ η ) can be calculated by Eq. (7).

5. FUNDAMENTAL RESULTS OF STUDYING
INTERMOLECULAR FORCES

a) Interaction of noble-gas atoms. Studies of the
interaction of noble-gas atoms seems to be the simplest,
both from the methodological standpoint and from that of
interpreting the measurements. It was precisely for
these systems that the first data were obtained in the
fifties; the purely repulsive interaction of the atoms
permitted Amdur to make a reliable interpretation of
the obtained Q(E) relations in terms of a potential of the
type V = K/rS.

We also began our experimental program of studies
with the noble gases, since comparison permitted us to
estimate the reproducibility of the independently ob-
tained data. Table i^35»363 summarizes the obtained
parameters Κ and s for a potential V = K/rs and A and λ
for a potential V = A exp (-Xr) for atoms of the noble
gases. Comparison of the energies calculated by the
parameters of Table I with the values from the experi-
mental study [ 2 7 ] and the calculations1137>3i l shows close
agreement for practically all systems. The agreement
of independent experimental determinations of V(r) per-
formed in apparatus having substantially different
geometries is convincing evidence of the reliability of
the data obtained by the method of scattering of fast
beams.

In the treatment of the first measurements on the
noble gases, which was carried out by calculating the
effective aperture by the method of'-27-1, the assumption
was made that an inverse-power potential with constant
parameters Κ and s is valid over the range of approach
distances corresponding to the entire set of deflection
angles in the detector. We can expect the potential to
change in slope over the experimentally-realized broad

Table I

System

He-He
He-He
Ne —Ne
Ar—Ar
Kr —Kr
Xe —Xe
He—Ne
He-Ar

K, eV-As

2.8
4.33

78
171

1382.5
463
10,3
22.6

•

3.9
5.86
7.65
6.06
7.7
6.35
5.61
5.15

Δ Γ , A

0 . 8 7 — 1 . 2 3

0 . 7 9 — 1 . 3 5

1 . 7 — 2 . 1 8
2 . 2 7 — 3 . 1 2

2 . 4 — 3 . 0 2

2 . 4 8 — 3 . 0 9

1 . 3 — 1 . 6 5
1 . 6 3 — 2 . 0 6

Sys tem

H e - K r

H e — X e

N e — A r
N e — K r

N e — X e

A r — K r

A r — X e

K r — X e

K, eV-A s

4 5 . 3

3 5 . 2

9 9 . 5
4 3 7

2 1 0
8 5 5

292

8 7 5

j

5 . 5 2
5 . 2

6 . 5 8

7 . 6 5
6 . 7 6

6 . 9 2
5 . 9
7 . 1

ΔΓ, A

2.67—2.04
1,73—2.2
1.93-2.49
2.25—2.52

2 - 2 . 5 6
2.4—3.1

2.48—3.27
2.44—3

System

He —He {

Ne-Ne {
Ar— Ar

A, keV

0.542
0.212
4.55
440
2.54

λ, A- i

7 . 0 5
4 . 3 0
4 . 5 1
6 . 2 0
3 . 5 6

i r . A

0 . 2 0 — 0 . 3 5
0 . 3 5 — 1 . 5 0
0 . 6 0 — 1 35
1 . 3 5 - 1 . 8 0

0 . 8 — 2 . 3

Sys tem

K r - K r {

X c - X e {

A, k e V

4 . 8
0 . 6 7
7 . 1 5
1.64

X. A- i

3 . 4 9
2 . 6
3 . 4 6
2 . 6 4

i r , A

1 . 0 — 2 . 2 5
2 . 2 — 3 . 0
1 . 2 — 1 . 8
2 . 8 - 3 . 3
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FIG. 6. Diagram of the measurement of the angular distributions of
scattered particles.

v, ev

FIG. 7. Comparison of the theoretical
and experimental determinations of the in-
teraction potential of He atoms.

range of approach distances, i.e., the exponent s will not
be constant. We'-40-1 undertook a series of measurements
of the angular distribution I(o) of the flux of scattered
particles in order to test the correctness of the assump-
tions that the parameters Κ and s are constant-? and to
eliminate the discrepancy between Amdur's measure-
ments for the He—He system and the theoretical calcu-
lations. Figure 6 shows a diagram of these meas-
urements (Here 1 is the fast-particle beam, 2 is the
target, 3 is a deflecting condenser to remove particles
that have changed their charge state upon scattering, ί ί 0^
and 4 is the detector.) The σ(θ) relationships recon-
structed from the measured I(a) by using the apparatus
function show that the exponent remains constant (the
σ(θ) relationship is linear on a log-log plot) over a limi-
ted range of angles (and correspondingly also a limited
range of impact parameters). This fact emphasizes that
one must apply the inverse-power dependence very
cautiously. By using Ο. Β. Firsov's method, one can
find V(r) from a known σ(θ); Table I also gives the
parameters A and λ obtained for an exponential approxi-
mation V = A exp (-λ r) and their regions of applicabil-
ity. Figure 7 shows for comparison the potential curves
of the He—He system obtained from measurements of
I(a) and Q(E),C35'4°'42:1 together with the theoretically
calculated curves'-38'39-1 (the heavy line corresponds to
the parameters A and λ of Table I; 1 is from^4 1 ],
2 frorn^211, 3 f rom t 3 9 ] , and 4 fromC 3 8 ]). As we see,
these results agree well. Besides, Fig. 7 shows the
agreement of the experimentally found and calculated
values of V for r < 0.5 A. The above-mentioned dis-
crepancy for He was explained by a false interpretation
of the earlier measurements, and it has been eliminated
in a recent study.-42-1 The information on the behavior
of the potential at interaction energies V > 3—5 eV
provides a good opportunity for testing the accuracy of
the calculations based on the Thomas- Fermi- Dirac
statistical theory of atoms.'-43-1

Comparison shows agreement within a factor ~ 2;
the experimental values of V(r) lie below the calculated
values. The calculations of Gaydaenko and Nikulin, -1

who used a Hartree-Fock electron-density distribution

in the atoms to calculate the potential, show substan-
tially better agreement.

For asymmetric atom pairs, the experimental data
of Table I and1-27-1 confirm well the combination rule
(Vjj = (Vjj- Vjj)l/2). Thus, we can consider the com-
bination rule to be experimentally justified for the
noble-gas atoms over the range of interaction energies

V •£ 1 eV. This rule has not been tested in the high-
energy range; we can assume that it holds in this region
also according t o [ 3 8 ' 4 3 ] .

Determination of V(r) at short approach distances
has recently gained in interest in connection with deter-
mining absolute excitation cross-sections of optical
transitions in atomic collisions. £M-«S3 in particular,
energy thresholds E^ n r of excitation have been obtained
for the alkali ions (which are isoelectronic with the
noble gases), and an attempt was made to interpret the
mechanism of excitation, based on ideas of quasi-
crossing of the terms corresponding to atoms in the
excited and ground states. One can easily estimate the
position of the quasi-crossing point r c , and correspond-
ingly determine the cross sections, from the potential
curves for pairs of isoelectronic atoms of the noble
gases from the condition V(rc) = E(-nr. This is just how
one can determine that r c = 0.76 (in contrast to the value
1 A found in'-44-') for the system K+—Ar (which is iden-
tical to Ar—Ar) from the fact that E t h r = 140 eV. By
using the combination rule, one can construct the poten-
tial curves for the systems K+ (= Ar) — He, Ne, Kr, and
Xe, and estimate the position of the quasi-crossing
points r c from the experimental values of E t n r . t 4 1 ^

b) Interaction of Η, Ο, and F atoms with the noble
gases. It has been of interest to study pairs of these
atoms in connection with detecting existence of com-
pounds of the noble gases'-46-' and with the problem of
translational relaxation of fast particles in an inert
moderator. While in the former case study of the inter-
actions can facilitate solution of the quantum- chemical
problem of quantitative description and prediction of the
properties of compounds to be synthesized, in the latter
case a knowledge of the energy spectra of the particles
being decelerated makes it possible to study the nature
of reactions of hot atoms (i.e., those with energies
above thermal).

The Q(E) relations observed for these systems are
mostly monotonic,'-47"49·1 and they were interpreted in
these studies in terms of a potential of the type
V = K/r s . An inaccuracy in estimating the aperture
angle 0 a in > led to a certain distortion of the values
of the parameter K. Hence the results have been treated
again in the exponential approximation of the interatomic
potentials, with exact account made of aperture effects.
Table II gives the obtained values of the parameters A
and λ of a potential V = A exp (-Ar) for Η, Ο, and F
atoms and noble-gas atoms (the parameters for the sys-
tems involving Kr and Xe atoms were obtained from the
values of Q^4 7 '4 9] corrected for the more precise value
of the constant of the ionization manometer).

For systems including Η atoms, the question can
arise whether analysis of the results on the basis of
classical description is valid. A detailed analysis has
been performed for the H—H2 system and is described
below. It showed that the smallness of the apparatus
function in the angular range that requires a quantum
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System

H-He
H — Ne
H-Ar
H-Kr
H —Xo
O-He
0 —Ne
O-Ar

A.eV

87
239
980
870

3260
1200
925

2940

λ, λ-χ

3.59
4.22
4.53
4.31
4.63
5.28
4.25
4.23

System

0 — Kr
0 —Xe
F — H e
F — N B
F — Ar
F — K r
F —Xe

A, eV

14450
204
630

2720
9780

12400
27200

λ, A-i

5.20
3.6
4,91
5.18
4.82
5.23
5,38

F I G . 8. C o m p a r i s o n o f t h e r e s u l t

o f e x p e r i m e n t a l ( 1 ) a n d t h e o r e t i c a l

( 2 a n d 3 ) d e t e r m i n a t i o n s o f t h e in-

t e r a c t i o n p o t e n t i a l f o r t h e s y s t e m

F - H e ( 2 is f r o m [ 3 8 ] , 3 is f r o m [ 5 0 ] ) ,

d e s c r i p t i o n s t r o n g l y s u p p r e s s e s e r r o r s i n v o l v e d w i t h

u s i n g c l a s s i c a l m e c h a n i c s . A l t h o u g h , s t r i c t l y s p e a k i n g ,

one should have gotten correct values of A and λ by
using the quantum dependence of the differential c ros s
section, the calculations for the H—H2 system support
the idea that the actual e r r o r s of determining V(r) in
the region < 1 eV a r e such that the corresponding devia-
tions from the true values a r e apparently no greater
than ~ 20%. These ideas in par t icular and the cumber-
someness of calculation by the quantum formulas have
compelled us thus far to r e s t r i c t the t reatment to the
stated accuracy.

As I have said, sys tems containing Ο and F atoms
a r e of interest in connection with the problem of
quantum-chemical prediction of the proper t ie s of noble-
gas compounds.'-46-' The calculations of V(r) performed
for the sys tems O—He, Ne, and F—He, Ne
(and H—He)1150-1 can be compared with the experimental
determinat ions. Such a comparison (Fig. 8) shows poor
agreement, and it can serve to indicate the necessity
of using m o r e prec i se approximations in the quantum-
chemical calculations. The calculations of Gaydaenko
and Nikul in [ 3 8 ] also show poor agreement: the calcula-
ted values of V(r) are systematical ly higher than the
experimental values. We note that the disagreement
with the calculations, e.g., i n ^ , for the H—He system
can be partial ly due to using the class ical description
of scattering, and it can be easi ly eliminated.

The features in the scatter ing of Ο and F atoms by
Kr and Xe found in the measurements of'-47-' (breaks in
the Q(E) plot) may be of interest from the standpoint of
explaining bond formation in the corresponding sys tems.
Although one can draw better-grounded conclusions only
from thorough study of the differential c ros s sections,
however, the possibility was noted already in'-47-' of ex-
plaining these anomalies by the influence of a bound-
state t e r m . We have used1-48-1 data for sys tems includ-
ing hydrogen atoms to calculate the size of Δ (the mean
logarithmic energy loss) , which i s used in the kinetic
theory of hot-atom react ions. The calculations c o r r e -
sponded to the case of decelerat ion of tr i t ium (T) atoms
(which are equivalent in their electron cloud to Η atoms)
in different noble gases. One cannot determine the ab-

solute value of Δ directly from the data from studying
hot-atom react ions, but only i t s ra t io for different
modera tors . Comparison of the rat ios calculated from
our data and the values from'-52-' showed that they agree
poorly. Apparently this involves the crudity of the ap-
proximations of the kinetic theory of hot-atom r e a c -
tions. It seems promising to use information on the
potentials for computer simulation of passage of fast
par t ic les through a reagent- inert moderator mixture.
This approach, which uses the Monte Car lo technique,
was developed in'-14-'. A form of the excitation function
of the reaction was assumed:

Schem= So [1 - (£thr/£)lP exp ( - p/E) (11)

(So = T b c h e m , b c h e m is the " c h e m i c a l r a d i u s , " E t h r i s
the threshold energy, and ρ and β a re p a r a m e t e r s that
determine the form of dependence of S c n e m on the en-
ergy). With this assumption, the method permitted them
to select the values of β and ρ that give the best agree-
ment of calculated and measured yields of products of
the react ions :

CH4 + Τ -> CH3T + H, CH4 + Τ -»- HT + CH3.

Recently obtained results '- 1 4 ' 1 5 ^ confirm the great poten-
tial i t ies of this approach, which i s based on stochastic
calculation of the resu l t s of collisions in different (elas-
tic and inelastic) channels, for quantitatively describing
react ions that occur at super thermal energies .

The data of Table II show that the values of the
p a r a m e t e r λ in the successive s e r i e s of noble-gas
atoms do not usually fit the commonly-made assump-
tion that they a r e directly proportional to the ionization
potential.'-53-' According to this assumption, λ should
have declined in going from He to Xe, but a decline is
not observed (Table II).

c) Interaction of noble-gas atoms with molecules.
Study of interaction of noble-gas atoms and molecules
makes it possible to extend considerably the set of sys-
tems under study (including a new factor; spatial aniso-
tropy of the potential), while avoiding complications in-
volved with chemical interaction. The sys tems
H e - H 2 , L 3 6 ] A r - N 2 , O 2 , t 5 4 : i H e - C H 4 , C 5 5 ; l and all com-
binations of noble-gas atoms with the molecules CO2'"

5e-'
and N 2 O [ 5 7 3 have been studied.

If we consider the s t ructure of the molecules, t rea t-
ment of the measured re lat ions in t e r m s of a spheric-
al ly-symmetr ic potential s e e m s to be a very rough ap-
proximation, although it has been used i n£ 3 6> 5 4> 5 53. i n

this regard, the resu l t s for a number of sys tems have
been interpreted afresh. Within the framework of an
additive-potential system, this permit ted using the
above-described method to find the p a r a m e t e r s A and λ
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Table III

System

He —H2

He —CH4Ar— O2Ar — N2He —CO2He —N2ONe — CO2

A, keV

0.098
0.41
4.07
1.09
0.3
0.12
2.31

λ.Λ-ι

3.65
4.82
4.25
3.51
3.87
3.19
4.63

A.keV

0.21
6.12

14.18
28.76

1.41
0.55

32.6

ϊ,Α-ι

3.54
4.40
4.17
3.46
3.42
2.98
4.38

System

Ne — N2O
Ar-CO 2

Ar — N2O
K r - C O 2

K r - N 2 O
Xe —CO2
Xe —N2O

-A.keV

0.84
7.88
1.47

14.4
2.58

46.2
6.8

λ, A-i

3.93
4.63
3.7
4.72
3.78
5.0
4.02

A.keV

5.68
122

11.4
269

22.5
1058

68.33

λ, A - i

3 . 6 3

4 . 4 2

3 . 5 3

4 . 5 5

3 . 6 3

4 . 8 2

3 . 8 5

of the interatomic potentials. Table ΠΙ summarizes the
values of the parameters A and λ of the interatomic po-
tentials obtained in this way (the interval of applicabil-
ity of these_values^ is 0.1—10 eV). Table ΠΙ also includes
the values A and_X of the_parameters of the exponential
relation V(R) = A exp (-XR) that approximates the total
potential averaged over the orientation: V(R) =2V(rjj).

It is interesting to note here that the values of the po-
tential energy given by V are about twice as large as
those obtained by measuring Q(E) in the PCR approxi-
mation. Hence, we cannot consider the PCR model to be
justified for systems of the discussed structure. Such
discrepancies indicate the error in the method proposed
in1-28-1 of determining the interatomic potentials by sub-
dividing the effective spherical potentials (e.g., for the
N2—Ar system) into the "atomic" contributions
V ((N) - Ar). Use of the reduced "atomic" contribu-
tions, followed by the combination operations
(V«N) - Ar) and V(Ar - Ar)), for example, and averag-
ing will lead to underestimating the intermolecular
V(N2 - N2) potentials.

We should note that underestimating with respect to .
the true values can be manifested only when the com-
bination rule of interatomic potentials is valid, as was
simply postulated in1-25-1. However, it will be shown
below that this rule is false in the general case of inter-
molecular interaction. In line with this, the agreement
found in a recent study1-5t>^ between the combined poten-
tials and our direct determinationsc·6-1 apparently arises
from compensation of errors . There is another indica-
tion against this use of an additive system for semi-
empirical construction of the intermolecular poten-
tials. L 5 5 ] As was shown in [ 5 5 : l , direct combination of
the potentials V(He - CH4) and V(He - He) that corre-
spond to structureless repulsion centers gave consider-
ably better agreement for V(CH4 - CH4) than using an
additive system and combining the interaction potentials
of the atoms (H) and He.

For linear molecules, the potential-energy surface
obtained from the additive-interaction system can be
described by an expression like (5). Only the even
terms will exist in the expansion of (5) for homonuclear
molecules, and the values of the corresponding param-
eters can be easily chosen numerically. Here one can
effectively overcome the difficulty of determining the
asphericity parameter fy. Such a compact representa-
tion of the potential-energy surface (hereinafter ab-
breviated PES) will be convenient for use in calcula-
tions, e.g., of excitation of internal degrees of freedom.

The studies [ 5 9 ' β ο : ι give values of the parameters Ao,
λ0, and 0i for the PES of the He— H2 system that were
obtained by quantum-mechanical calculation of the en-
ergy of this system. It is interesting to note that the
potential'-59-' averaged over the orientation is described

ο - /

τ -i
v -3

FIG. 9. Comparison of the Q(E)

relationships calculated from the

theoretical PES of the H 2 - H e sys-

tem (1 is calculated by (10), 2 is

from [ s 9 ] , and 3 is from [ 6 0 ] ) with

the measured quantities (4).

2 4E lab,keV

b y a n e x p o n e n t i a l f u n c t i o n h a v i n g p a r a m e t e r v a l u e s

A = 220 eV, λ = 3.53 A'1 that practically coincide with
those in Table m. K one uses Eq. (6) and includes the
function fo(0) in it, one can calculate the measured
cross-sections and compare the theoretical and experi-
mental Q(E)__relationships. Figure 9 compares the ex-
perimental Q(E) relation (heavy line, while the circles
are the calculated relationship with the parameters A
and λ of Table ΙΠ) and that calculated for the PES
of^59'60-1. This comparison indicates rather clearly that
the PES of[59] is preferable to that ο ί [ 6 ο ] . FigureJ
also shows examples of comparison of measured Q(E)
relations (heavy lines) with those calculated (1) with the
parameters A and λ of Tables IV and V.

The data included in Table ΙΠ for noble gas—CO2 or
N2O systems permit us to judge on possible correlation
with atomic properties of the values of the potential
parameters (chiefly λ). The idea is widespread, but
strictly valid only for interaction at relatively great
distances, that λ is directly proportional to the ioniza-
tion potential of the interacting atoms. Thus, as one
goes in the noble-gas series from light to heavy, λ
should correspondingly decline (see, e .g . [ 6 1 ] ) . The data
of Table ΙΠ indicate the opposite trend. This fact ren-
ders problematical the establishment of simple correla-
tions of this type. Apparently, further expansion of the
set of studied systems will be required in order to re-
veal them. It is interesting here also to note that the
values of the parameters A and λ are not the same for
the isoelectronic molecules CO2 and N2O. I shall give
below analogous data on some other isoelectronic mole-
cules (N2 and CO). Thus, we cannot consider the iso-
electronicity approximation, which is convenient in prac-
tice, to be valid for short-range intermolecular forces.
The data of Table ΙΠ present a good opportunity for test-
ing the predictions of the theory of coUisional excitation
of molecular degrees of freedom, and correspondingly,
of calculating the relaxation characteristics of various
gas mixtures. The interaction model used in the differ-
ent theories is the additive-potential model. Hence,
the reliable parameter values for them make it possible
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( )

ο
ο
ο
(Ι

(Ι

I s

System

I I ,

- Ν,
- 0 2

— CO
— NO
— CO,
- Ο 2

A

0

ι
I
I
1

keV

.1187
88
.36
.87
.1

.17

λ,

.,

5

5

4

4
4

4

Λ-1

.Μ

.23

,06
.06
.11(1
.25

A

0
11
in

1

7

keV

186
35

.25

.22

.14

.87

T a b l e

λ. λ-1 (

3 . 5 6 .,

5 . 1 2 i!
4 . 8 5

3 . nli

3 .U5

3.811

4 . 1 3

I V

S y s t e m

N -

N -

N-
\ _

I I -

I I -

- N ,

- C O

- N O

- C l l 4

- o .
- S .

A,

0

0

1

0

ι
ι

keV

-?5
.6
.74
°5

.33

.54

:i

4
4
4

35
2
73
ϋϋ

-τ,

„

1
,r.
3
1
I

keV

62
57
33
7
24
74

λ, Λ-1

3 . 3 1
3

4
3
4

4

72

21

95
Β
52

Table V

System

H2-H2

N2—N2N2-O2N2-CO
N2—NO
N2-CO2N2 —N2OO2-O2
O2—CO
O2—NO

A, keV

0.059
0.367
0,245
0,9
0,73
1.17
0.44
0.15
0.41
0.83

λ, A - i

3 . 3 7

3 . 2 7

3 . 1 6

3 . 7 9

3 . 7 8

4 . 0 6

3 . 5
3 . 0

3 . 2 7
3 . 9 4

A . k e V

0 . 2 4 6

2 . 2 9

1 . 4 3
7 . 0 6

5 . 7 8

3 0
6 . 7 7

0 . 8 2
2 . 7

7 . 6 2

_
λ, Λ-1

3 , 2 2

3 . 1 6

3 . 0 2

3 . 6 6

3 . 6 4
3 , 7 8

3 . 2 5

2 . 8 5

3 . 1 5
3 . 7 8

Sys tem

0 , — C O ,
N O — N O

N O - C O

C O - C O

C O — C O 2

C O 2 - C O 2

N 2 O — N , 0

C H 4 — C H f

N H 3 - N H J

A, k e V

0 . 4 9

0 , 3 3
0 , 5 7

0 . 6 5

0 . 8 9 7

1 . 0 9
0 . 4 0 7

—

—

λ, Λ-1

3 . 5 8

3 , 4

3 . 6 3

3 . 6

3 . 8 1

3 . 9 6

3 , 5 4
—

—.

A . k e V

8 . 7 2

2 . 1 6

4 . 2 8

4 . 7 4

1 9 . 2

4 4 , 9

1 0 . 7 6

2 3 . 9
0 . 1 2

λ,Α-ι

3.33
3.26
3,49
3.47
3.55
3.43
3.07
4,35
2.65

t o a s c r i b e t h e r e a s o n f o r d i s c r e p a n c i e s b e t w e e n c a l c u -

l a t e d a n d m e a s u r e d c r o s s s e c t i o n s ( p r o b a b i l i t i e s ) o f

t r a n s l a t i o n a l - v i b r a t i o n a l t r a n s i t i o n s o r r e l a x a t i o n t i m e s

t o d e f e c t i v e a p p r o x i m a t i o n s u s e d i n t h e t h e o r y . D e t a i l e d

c a l c u l a t i o n s h a v e b e e n m a d e i n [ e 2 3 o f v i b r a t i o n a l r e l a x a -

t i o n t i m e s o v e r a b r o a d t e m p e r a t u r e r a n g e f o r t h e m i x -

t u r e O 2 — A r . T h e y u s e d i n t h e c a l c u l a t i o n s t h e p o t e n t i a l

" s p l i t t i n g " o f " 5 4 - 1 , w h i c h c o r r e s p o n d s t o p o i n t c e n t e r s ,

w h i l e t h e v a l u e t h a t t h e y u s e d f o r t h e p a r a m e t e r A

( A = 3 2 , 2 5 0 e V ) d i f f e r e d a p p r e c i a b l y f r o m t h a t g i v e n i n

Table ΙΠ. We might expect that repeti t ion of these cal-
culations with new data will make it possible to draw
more rel iable conclusions on the validity of the classical
descript ion of translat ion-vibration transit ions, and
correspondingly, to extend the pract ical applications of
the computational p r o g r a m s .

d) Interaction of H, N, and Ο atoms with molecules.
In the group of sys tems to be discussed h e r e , we shall
find it necessary to take account of the possible mani-
festation of " c h e m i c a l in terac t ion. " One of the stimuli
to studying sys tems involving H, N, and Ο atoms and the
molecules H 2, N2, O ^ 5 3 3 CO, NO, 1 1 * 0 CCfe, N2O, and
CH4

C57»65-1 has been the need of getting data for calculat-
ing the kinetic p r o p e r t i e s of dissociated gas mixtures .
The possibility of studying manifestation of chemical
interaction at approach distances of the order of the
character i s t ic bond lengths in molecules also provides
a strong st imulus for studying such sys tems.

For a large number of the sys tems listed above, the
measured Q(E) re lat ions show an anomalous behavior
as compared with the trend for the sys tems discussed
above. Figures 10 and 11 show these re lat ions for the
sys tems H - CH4, O - N 2, O - CH4, H - H2, etc. (in
Fig. 11, the three curves correspond to measurements
with detectors of different widths). Table IV gives
values of the p a r a m e t e r s of the interatomic (Α, λ) and
averaged (Α, λ) atomic-molecular interaction potentials
for several of the studied sys tems.

Roughly speaking, the anomaly in the Q(E) relat ions
is manifested in breaks that a r e so pronounced that they
cannot be fitted by monotonic interatomic interaction
potentials . Moreover, for breaks like that occurring in

FIG. 10. Typical examples of
anomalous experimental Q(E) re-
lationships (showing breaks).

FIG. 11. Comparison of the
Q(E) relationships calculated for
the theoretical PES [66] of the
H—H2 system with the measured
values (circles).

S7 1,0 1.1 2.0 Zi

e,3
5

ι 1

3.W

5

4

5'

4

3.16

Zi

0.6 US t 2E l a b,keV*

t h e H - C H 4 s y s t e m , t h e Q ( E ) r e l a t i o n c a n n o t at a l l b e

d e s c r i b e d b y a n y r e a s o n a b l e c o m b i n a t i o n o f r e p u l s i o n

p o t e n t i a l s . O n e c a n i l l u s t r a t e t h e s e q u a l i t a t i v e i d e a s b y

using the r e s u l t s o f [ l l ] for the Η - H2 system. The
Η - H2 system as a c lass ical object of theoretical chem-
ical kinetics has been subjected to the most detailed
analysis, and r a t h e r rel iable theoret ical determinations
of the potential energy surface exist for it (see the
bibliography in the article1-6 7-1). Tang and Karplus1-66-1

have given one of the most exact representat ions of the
PES, which was used for studying the dynamics of the
reaction of isotopic substitution. "^ The adiabatic PES
(in the sense of an invariant equilibrium distance in H2)
has the following form according to1-66-1:
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V (R, ν) = Vo (R) (R) Pi (cos y) + Vt (R) P4 (cos γ)

It can be used for calculating the variation in Q meas-
uredin L 6 3 : l .

As I mentioned above, if we know V(R), we can calcu-
late the differential scattering cross sections by class-
ical or quantum mechanics. The classical description
is quite natural for scattering of heavy atoms, but we
must either justify it for the Η - H2 system or use the
quantum relations. The use of classical mechanics
in1-11-1, which made it possible to decrease the bulk of
the calculations considerably, was justified as follows.
For the two extreme energy values ( E ^ m = 600 and
4000 eV), Fig. 1 shows the course a c l(9) of the classical
(straight lines) and a q u (e) of the quantum differential
cross-sections as calculated for the potential V = K/r s

(K = 1.12 eV, s = 3.7), which approximates the course of
the PES in the low-energy region, t^8-1 We see from Fig.
1 that the transition boundary from the classical to the
quantum relationship is diffuse, since the differences
between oc\ and a q u are small even at angles below 6C.
In this situation, if we take account of the cutoff action
of the apparatus function (f0 — 1 when θ <C 10"3; Fig. 4),
we can calculate Q(E) by the formula for the truncated
integral cross-section (with 9min = θο/2π). The dotted
line indicates the values of the cutoff angles in Fig. 1.
Control calculations of the integral cross-sections using
a q u showed that the difference between Q t r u n c and Qqu

< 5%, and it is invariant in sign (QqU > Q t r u n c ) . These
results are a well-known justification for using the
classical description^>f scattering, and they guarantee
correct fitting of the Q(E) relation for the chosen poten-
tial. Since the PES from1-663 is characterized by an
angular_dependence, a relation like (6) was used to cal-
culate Q(E). _

Figure 11 compares the Q(E) relationships calculated
for three detectors with the measured values. We see
that their unsatisfactory agreement is manifested not
only in the discrepancy of the absolute values of Q(E),
but also (as is more important) in irreproducibility of
the characteristic breaks in the measured Q(E) relation-
ships. We can explain the discrepancy between the cal-
culated and measured relations in two ways. First, an
additional scattering channel (inelastic) not accounted
for in the calculation might be manifested; second, we
might expect that the PES from1-663 is not accurate
enough.

We tried in'-113 to take phenomenological account of
the effect of an additional inelastic channel. We can as-
sume here that the most probable inelastic process is
a substitution reaction that occurs when the partners
approach to some characteristic distance. Owing to the
large relative velocity and the smallness of the impulse
imparted to the atoms of the molecule, this point evi-
dently involves a virtual reaction that forms a new bond
only for a time of the order of the time of flight. From
the standpoint of interaction, occurrence of a virtual
reaction implies that the fast atom on the departing
branch of the trajectory will undergo attraction instead
of repulsion. However, the attempt in to take ac-
count of the possibility that a certain fraction of the
scattered atoms will have "composite" trajectories did
not permit us to improve the agreement with the experi-
mental data. As it seems to us a subsequent, more

r i g o r o u s a n a l y s i s (re ject ing a pure ly c l a s s i c a l d e s c r i p -

tion of s c a t t e r i n g for th is s y s t e m ) wi l l make it p o s s i b l e

to s o l v e the contradict ion that has a r i s e n . We a l s o can-

not rule out the poss ib i l i t y of making the re f inement

used in the ca lcu lat ions of the P E S i n C e e ] . We note that

it wil l be more indicat ive to c o m p a r e not the integral

Q(E) values, but the differential scattering cross-sec-
tions σ(θ, Ε). _

Qualitatively analogous anomalies in the Q(E) rela-
tion have been found for the systems D, Η, Ο— CH4 (see
Fig. 10). Of interest are the difference in Q(E) values
and the shift in the breakpoint in the Q(E) relation for
D - CH4 as compared with Η - CH4.

Along with the features of the discussed type, the
measurements showed also breaks "directed" in the
opposite sense. Typical examples here might be the
Q(E) relations for Ο - CO and Ο - N 2 . C M ] It_is an im-
portant circumstance that the calculation of Q(E) for
such systems based on a system of summing interatomic
repulsions does not permit full agreement with the
measured relationships (the data of Table IV corre-
spond to approximate agreement). Hence, it is quite
justified to expect that these cases also possess a chem-
ical channel that perturbs the elastic scattering. In
comparing the measured and calculated Q(E) relation-
ships, the parameters A and λ were taken from the
curves. This ensured fitting with a smoothed course
(with respect to the breaks). Hence, apart from the sys-
tems ( Ν - Ν2, Ν - Οϋ, and O-_H2) (Table IV), the statis-
tical accuracy of calculating Q(E) was assumed to be 3%,
instead of the usual 1%.

The features found in the course of the Q(E) relation-
ship for chemically active systems and the impossibility
of explaining them on the basis of a potential surface of
purely repulsive type gives us grounds for assuming
that use of the technique of fast-beam scattering opens
up prospectives of empirically finding potential energy
surfaces describing chemical reactions. Naturally, the
most reliable information will be obtained in measure-
ments of differential cross-sections.

If we use the representation of the PES of a reaction
adopted in quantum chemistry (see, e.g., the book )
in the form of a combination of attractive and repulsive
pair potentials, we can solve the inverse problem of
determining the corresponding parameters from scat-
tering data.

Thus, if we adopt a trend of the interatomic poten-
tials that is reasonable from the standpoint of existing
information (spectroscopic, kinetic, etc.), it seems quite
attainable by using Eqs. (3), (7), and (11) to fit meas-
ured and calculated differential cross sections by vary-
ing the parameters of the parameters of the potentials.
The empirical surface thus obtained will correspond to
a "frozen" value of the bond length r e in the molecule,
i.e., it will describe only the entrance valley in the PES
of the reaction. However, we can expect that this is a
quite sufficient basis for constructing purely empirical
surfaces that will permit us to describe very simple
chemical reactions of substitution or decomposition
types. Evidently, this opportunity presents one of the
most attractive prospectives of applying the fast-beam
scattering method.

e) Interaction of molecules. A large set of studies of
interaction of molecular systems has been conducted in
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FIG. 12 F I G . 13

F I G . 12 . V i s c o s i t y o f a i r a t h i g h t e m p e r a t u r e , a s c a l c u l a t e d f r o m ex-

p e r i m e n t a l d a t a o n t h e i n t e r a c t i o n p o t e n t i a l s o f t h e c o r r e s p o n d i n g c o m -

p o n e n t s o f d i s s o c i a t e d a i r .

F I G . 1 3 . C o m p a r i s o n o f t h e a n i s o t r o p i c i n t e r a c t i o n p o t e n t i a l s o f H 2

m o l e c u l e s ( T a b l e V ) f o r t h r e e r e l a t i v e o r i e n t a t i o n s o f t h e m o l e c u l e s w i t h

t h e r e s u l t s o f q u a n t u m - m e c h a n i c a l c a l c u l a t i o n . [ 7 0 ]

c o n n e c t i o n w i t h p r a c t i c a l n e e d s o f c a l c u l a t i n g t r a n s p o r t

c o e f f i c i e n t s i n g a s m i x t u r e s s u c h a s p l a n e t a r y a t m o s -

p h e r e s a t v a r i o u s t e m p e r a t u r e s . M o r e o v e r , t h e p r o b l e m

h a s b e e n p o s e d h e r e o f e x p e r i m e n t a l l y t e s t i n g a n u m b e r

o f m o d e l s a n d m e t h o d s o f d e t e r m i n i n g i n t e r m o l e c u l a r

f o r c e s k n o w n i n t h e l i t e r a t u r e . ! " 2 7 " 1 T a b l e V g i v e s a l i s t

of sys tems studied in'--6'54-', together with the param-
e t e r s A and λ of the exponential interatomic potentials

V = A exp (— Xr). Table V includes the p a r a m e t e r s A
and λ of the overall potentials averaged over the orien-
tation, as approximated by the exponential function
V = A exp (-AR) (the sys tems marked by a s t e r i s k s were
treated in the PCR approximation).

For homonuclear molecules, using the additive sys-
tem described above causes no difficulties, but the prob-
lem a r i s e s upon going to non-homonuclear molecules of
whether the potentials for different atom p a i r s a r e iden-
tical. Existence of a single e lectron cloud in the mole-
cule justifies the approximation of identical potentials,
and one can rule it out only for exper iments with polar-
ized par t ic les . At the current level of experimentation,
which does not p e r m i t making such measurements , it
proves to be practical ly the only possible way.

F r o m the data of Table V (and Table IV), one can
calculate values of the so-called reduced collision
integrals Ω^> s (see1-1-1), and correspondingly find the
transport coefficients for gas mixtures containing the
stated components in a rb i t ra ry concentrations over the
temperature range 1000—15,000°K. Such calculations of
viscosity (and heat conductivity) for a i r a r e described
in1-5-' and the r e s u l t s are given in Fig. 12. We should
note that the calculations in were based on potentials
corresponding to the PCR model. Hence we can expect
that the data of Tables IV and V will correspond to
values of η(λ) that a re about 10% greater than those
given in Fig. 12.

The data of Tables IV and V permit one to make a
quantitative test of the variant proposed in1-68·1 of the
semiempir ica l method of determining interatomic and
intermolecular potentials, In1"68-1, they used the spec-
troscopic information by this method, and found the
p a r a m e t e r s A and λ of the exponential interaction po-
tential, e.g., for the Ο and Ν atoms occurring in O2 and
N2 molecules. In par t icular , the values found in1-68'89-1

λ = 2.7 and 2.8 (for <N> = <N», λ = 3.56 and 2.08

(<O> - (O>), and λ = 2.64 and 2.56 ((N) - (O>) diverge
considerably from the data obtained in the same ap-
proximation from direct measurements . In this variant
of the semiempir ical method, the interatomic potentials
should be the same in the cases , e.g., of N— N2 or
N 2 - N2 (or other homonuclear molecules). We see from
Tables IV and V that this i s not the case. Such discrep-
ancies indicate that direct extension to intermolecular
potentials of the semiempir ical method that was devel-
oped for intramolecular potentials is not exact. Evi-
dently, the defects must be eliminated in further appli-
cation of this potentially useful method.

The data given in Table V make it possible to test
directly the combination rule of interatomic potentials
postulated in1-39-'. This rule, which is expressed by the
relat ions (i and j being the types of atoms)
Vij = (VU · V j j }

l / 2 , Ay = ( A ^ * and x ^
= (Xjj + Xjj)/2, was tested with the resu l t s of studies of
scatter ing of noble gases, and it justified itself well. It
seemed that one could extrapolate it to interatomic po-
tentials of molecules. The attract iveness of using such
a rule in molecular sys tems involves the opportunity of
substantially shortening (whenever it i s valid) the ex-
per imenta l program of studying interaction for the p r a c -
tically unbounded number of pa i r combinations of a toms
and molecules. Such a test on the large set of sys tems
included in Tables IV and V shows that the combination
rule for the p a r a m e t e r s A and λ does not hold, apart
from the N2 — O2 system. The exceptional nature of this
system allows us to conclude that the combination rule
of p a r a m e t e r s of interatomic potentials and i ts use in
the per ipheral model of intermolecular forces'-32-' can-
not be considered to be justified. However, it turns out
h e r e that the values of V^ themselves can be obtained
by calculation using the combined p a r a m e t e r s , since as
a rule an elevated value of Aj; corresponds to an eleva-
ted Xj.j, and the e r r o r s compensate.

Apparently, the H2 - H2 system i s the only one for
which one can make rel iable enough theoretical calcula-
tions of interaction energies corresponding to different
relative positions of the molecules. In this sense, it i s
very interest ing to compare the experimental data with
the calculations. t 7 0 -' The comparison shows a smal l
systematic increase in the calculated with respect to the
experimental values (for a comparison for three con-
figurations, see Fig. 13). Part ia l ly (within ~ 20%), we
can explain this by the inadequacy of the classical t reat-
ment of scatter ing in this case, and on the other hand,
by the approximations used in the calculations.'-7 0-1

6. CONCLUSION

The data presented in this review, which have mainly
been obtained in recent years , show pictorially the broad
potentialit ies for detailed study of interatomic and inter-
molecular short-range forces using the method of e las-
tic scatter ing of fast beams. Fur ther use and develop-
ment of this method can give valuable information on the
nature of the variat ion in the interaction energy of
atomic sys tems in a distance range that had formerly
been accessible only by the methods of molecular spec-
troscopy. Studies of intermolecular forces for p a i r s
that include metastable part ic les may be of considerable
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interest . We should consider one of the promising ap-
plications of this method to be the study of collisions
involving a change in the electronic (or charge) state of
the par t ic les .
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