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Physicists are becoming more interested in solving the equations of quantum theory without using methods
requfring expansion in powers of the interaction constant. The perturbation-theory method, which gave
results that agree splendidly with experiment in quantum electrodynamics, turned to be inapplicable in
strong-interaction theory. One of the methods in which a radical attempt is made to go beyond the
framework of perturbation theory, is the method of functional integration in quantum theory, first proposed
by Feynman. The present review, which is devoted to this method, introduces in lucid fashion the concepts
of functional integrations and then explains some applications of this method in quantum field theory. Much
attention is paid to the use of functional integrals in infrared and high-energy asymptotic relations in field
theory. The review does not claim an exposition of the mathematical difficulties connected with the concept
of functional integral, and focuses attention to certain successes in its use in quantum physics.
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1. INTRODUCTION

T HE development of an invariant perturbation theory
and of a suitable renormalization method has made it
possible to construct for quantum electromagnetic proc-
esses a quantitative theory that agrees with experiment
and permits, in principle, a calculation of physical quan-
tities with accuracy of arbitrary order in the constant
e%/fic = 1/137. The problem of strong interaction, how-
ever, and the study of processes with elementary high-
energy particles, as well as problems in the mathe-
matical structure of quantum field theory (QFT) have
called for the development of new methods that are not
connected with perturbation. Much progress was made
in this direction, primarily as a result of the develop-
ment of an axiomatic approach to QFT. One of the un-
disputed attainments of such an approach was the dis-
covery and proof of the dispersion relations, and also
the determination of a number of important physical
properties of the reaction amplitudes of strongly inter-
acting particles on the basis of an analytic structure
established for these amplitudes within the framework
of the axiomatic approach.

In spite of its success, there still remains in the
axiomatic formulation of QTF the fundamental question
of the construction of nontrivial QFT models formulated
in the language of field operators and satisfying all the
requirements of the axiomatic approach.

At the present time, the physical quantities obtained
by perturbation theory remain the only objects with
which one can verify or guess at the general physical
properties of the theory of strong interactions, such as
the analytic and asymptotic properties of the amplitudes,
etc. Thus, the perturbation-theory methods remain for
the time being the ‘“workshop’’ in which the theoretical
physicists test new methods or conclusions of the
axiomatic approach.
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Great interest attaches in this connection to the find-
ing of exactly-solvable model examples in QFT or,
more importantly, to the development of approximate
methods for solving the equations of QFT without using
expansions in powers of the coupling constant. One of
these methods, which are radical attempts to go beyond
the framework of perturbation theory, is the method of
functional integration, or in other words the ‘*method of
path integrals,’”’ first proposed by Feynman. This
method is based on the representation of microparticle
motion as a sequence of quantum transitions over un-
observable trajectories. This representation of quantum
mechanics is equivalent from the fundamental point of
view to the ordinary representation, but the physical
clarity and the brilliance of the mathematical formula-
tion of the main problem of quantum theory, that of
calculating the probability amplitudes for quantum tran-
sitions, which are typical of this new method, have
attracted the attention of many researches.

The purpose of the present review is to describe
briefly the gist of this insufficiently popular method and
to consider important physical results that have been
obtained in this manner in QFT. Like any method that
claims to solve the problems of quantum theory, the
functional-integral method is not universal and has its
own problems and difficulties. These difficulties are
connected, first, with the solution of the equations of
quantum particles in an arbitrary external field, and
second, with the functional averaging of these solutions
over the external fields with an appropriate weight func-
tional. Both the first and the second problems are
mathematically very complicated. The point is that in
mathematics we still do not have a well developed theory
or technique for functional integration; the only integrals
that lend themselves to calculation are Gaussian in-
tegrals or those that can be reduced to them by replac-
ing the functional argument.
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We confine ourselves in this review to physical re-
sults, and leave aside the question of rigorous mathe-
matical justification of the devices used in the des-
cribed method. A reader interest in the mathematical
aspect of the problem of integration in functional spaces
is referred to the mathematical reviews of Gel’fand and
Yaglomt* or Koval’chikt?d and to Kac’s book[®3,

2. MARKOV CHAINS IN QUANTUM MECHANICS

In 1948 Feynman published his well known articlel*
in which he proposed a new formulation of non-
relativistic quantum mechanics (QM). Unlike the
Schrodinger form of QM, where the main object is a
wave function y(x, t) that satisfies Schrodinger’s equa-
tion, in the new formulation this object has become the
propagator K(x', t’; x° t% of the wave function. Knowl-
edge of this propagator makes it possible to determine
P(x’, t') at any instant of time t’ from the initial value
p(x’, t°):

v, ) = (K@, 15 09, 0 P (1)

It is seen from (1) that if the particle was at the point
x° at the instant t° {meaning that yp(x° - x, t% = 6(x° - x)],
then the wave function y(x’, t') is simply equal to the
propagator K(x', t’; x°, t°. Consequently, the propaga-
tor can be regarded as the probability amplitude for the
transition of the particle from the point x° at which it
was located at the instant t° to the point x’ at the instant
t’, and this probability P(x', t'; x°, t°), according to the
fundamental principle of QM, is equal to

P, ;2% ) =1¢y@, )P =K@, ;¢ 20 P

(2)

On the other hand, from the very definition of the propa-
gator it follows that

K, t; 2% % = SK (&, 52", ") K (&7, ¢ 2% ) dz". (3)

Thus, the amplitude of the transition from the point
(x°, t°) to the point (x', t’) can be regarded as the result
of a transition of the particle from the point (x° t°% to
any intermediate point x” at a certain instant t”, fol-
lowed by a transition from the point x” to the point x' at
the instant of time t’. Figure 1 illustrates the foregoing.
Insofar as we know, this important property of the
propagator was first noted by Dirac.

We note that in classical theory, for example in the
theory of Brownian motion, we would have in (2) for the
transition probability

P, t5a ) =[P@. 52, )P@E £ O (4)
i.e., the probability of transition from the point x° to the
point x’ in the time t — t° is equal to the probabilities
that the particles will fall on any intermediate point x’
within a time t” — t° (it is clear that t’ >t” > t°), and
they will “‘finally’’ land at the point x’ from the point x”
after a time t’' — t”.

Breaking up the time intervals and introducing new
intermediate points, we obtain from (4)
P, t; 20 1% = S ... (P @'y 'y, t3) dzy P (24, th; Tn-ts tat)

1 n

o Pz, bz, ty) dxy P (x4, Uy 2%, 1Y),
(5)
where the transition from the point (x°, t% to the point
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(x', t') is regarded as a result of similar transitions via
a sequence of intermediate points (x,, t), (xz, t2), ...,
(*n, tn)-

Such a sequence is called a Markov chain. In quantum
theory we can obtain from expression (3) a formula
analogous to (5) for the propagator, namely,

.

o SK (2, £ Znr tn) G2n K (Tpy tnd Tnots fnoy) @noy
1 n

v K (zg, ty; 24, ) dzy K (24, ty; 2°, £°). (6)

Thus, in QM the Markov chain is made up not of proba-
bilities of probability amplitudes (this feature of quan-
tum theory (‘‘interference of probabilities’’) distingui-
shes it radically from the classical theories. We note
that various attempts to base QM on classical mechan-
ics fail precisely in this respect. Figure 2 shows one of
the ‘‘trajectories’’ of the particle from the point (x°, t%
to the point (x', t'); the times t, are chosen to be equi-
distant, so that tj =At-j(i=1,2..,n).

The word ‘‘trajectory’’ is used in quotation marks,
for in accordance with the very meaning of the Markov
chain each segment (xj, tj; X _p tj _,) can be broken up
into smaller broken segments. Thus, our ‘‘trajectory’”’
has no derivative, just as a particle executing Brownian
motion has no derivative.

The method of functional integration (or ‘/path in-
tegrals’’) is based on the assumption that the phase of
the propagator K(xj ; xj, t].) equal to the probabil-

t.
+1? j+ 1?
ity amplitude of a transition from the point (x]-, t]-) to the

point x]. 1 at the neighboring instant of time t, L= t,

+ At (At >0 and is small) is determined by the class-
ical action W[x]. (0, xj(t)] , equal to
tirg .
W lzjys s @5 il = S £ (@), z (1) dt,

' ‘j
; where z(fc, x) is the Lagrangian of the classical system,
written out here for a system with one degree of free-
dom. In greater detail, we have in the nonrelativistic
case

M

£ (2, 2) = Yoma® (1) — U (z (1),

where m is the particle mass, x(t) its velocity, and U
the potential energy, which depends on the particle co-
ordinate x(t). We replace the x(t) in the small time
interval At by a segment of the broken line X(t) passing
through the points x(tj vy = X4y and x(tj) = X Then
X(t) = (’ﬁ G xj)/At and we obtain in lieu of (7)

Wl e, tipes 5 tl = lm (2404 — z;)22A8 — U (x5) At.
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The Feynman quantization postulate consists of the
assumption that

K (Tjv1s Liges Tjr 1)) 8
= (m/2nik At's exp [(i/R) {m (xj41 — 2;)*/2A8%) — U ()} A4, ®

and the factor preceding the exponential is chosen such
that

K (zj41 Livss Z) tj)tk}:g; =6 (z;41 — z)-

To obtain the propagator pertaining to the final time
interval, we construct a Markov chain in accordance
with formula (6):

K (z',t'; 2° 1%
= K K (1,7 i(; T 1 tn—-l) dzn—l j K (xn-h tn—i; Tn-2s tn—2) dxn_z

. gK (z2, t2; 2, 1) doy K (24, 1y5 20 89,
) (9)
where x' = x, t' = t, x(t% = x°, ..., and assume that
t]- =to+jat, At >0,j=0,1,2,...,n, sothatt’ =t
> >t >t

St e 2 L

We now take the limit as At — 0 and n — « (at fixed
tn =t and to). Then each of the propagators in (9) can
be represented in the form (8), and we obtain

K@, 5 2910 =lim [ m/2in A2 § az, | da... § dz | 10

P (10)

= exp {% é {:%l-(’ii-;——”ﬁ—U(zj) At]} == s dz exp (%W{z (t)}) R
=1 :

where 6x = (m/27iEAt)?2dx, dx, ... dx,_,,

and

|4 .

W =[2emn 2@

10
and the integral is taken over all the possible paths
joining the points (x, t') and (x°, t%. Out of these
trajectories only one, namely that corresponding to the
minimum of the action function

(11)

SW {z ()} = 0, (12)

is the classical trajectory of a particle moving from
(x°, t% to (x’, t'). From (12) we obtain the equations of
motion of the particle in Lagrangian form.

The integral (10), which is the limit of a sequence of
n-tuple integrals, is‘a functional integral or path in-
tegral. Its existence in the sense of the indicated limit
was proved in the mathematical literaturet®) for a
broad class of potentials U(x).

As is well known, K(x', t’; x° t% can be expressed in
terms of the eigenfunctions ¢ (x) and eigenvalues E,, of
the energy operator &%

K (@', ;2% ) = 2 @n {z) @n *(2°) eiBntt—tn, (13)
Feynman gives for this quantity a new definition, which
is simultaneously his quantization postulate.

It is important to note that in order to construct the
quantum quantity K we must know the Lagrangian £ of
the classical system and not the Hamiltonian & as in the
Schrodinger scheme. In addition, there is no canonical
quantization postulate that calls for replacement of the
classical c-number quantities by the operators x and f)

We wish to dwell further on the Hamiltonian form of
the Feynman integral. It is shown in‘% that instead of

the path integral (10) in configuration space {x(t)} it is
more convenient in some cases to consider an expres-
sion for K(x', t'; x°, t% in terms of a functional integral
containing the Hamiltonian (x, p), where the integra-
tion is carried out along the trajectories in phase space
{x(t), p(t)} :
K@, ¢ 2% 1%

v (19)

=cfexp {5z — 5 @@, p ) at} &z5p.
Josn {3 }

For the simplest Hamiltoniand® = (p*/2m) + U(x) (and in
general for & that depends quadratically on p) it is
easy to prove the equivalence of (10) and (14). Indeed,
the argument of the exponential (14) contains again the
action integral expressed in terms of the Hamiltonian
function. Breaking up, as before, the segment [t° t']
into n equal intervals At and approximating the functions
x(t) and p(t) by piecewise linear and piecewise constant
functions, we can rewrite accordingly (14) as the limit
of an (2n + 1)-tuple integral (the values of the momenta
p: and p, on the ends of the trajectories are not fixed;
the integrations are carried out with respect to them,
too):
tim [ (1/2n)"" 5 .. 5 Bpydp, . .. Bpn b, . .. Py,
i...n

ne (15)
x exp { (/8) 3} 1ps(as—25-) — (p}/2m) At —U (z;) e} } |
i=1
=K (z', t'; 2° 19).

We now integrate with respect of all p].; this is easily
done by noting the following:

o1 At 2 Azjy 2
piday— o At = — - (=57 8m) +5 (&)
where AX. = X, — X.
AR RS BEX
i At m 2 2nkm \ 3/2
Sd"l’fexl’[—fz_m(l’f—ﬁmf) ]=( AL ) .
As a result we find that both definitions of K coincide

lim [ ()™ S{,f_',.s &p, ... dpndiz, ... Pz,

X exp {% é [p,-(z,—xj_,)-——;i—At~U(xj)At]}] =K', t'; 2% 1%
=1

21}12[<2#A2-)3n/25d311 cel Sd:’:::,._1 X exp {—;— é [%AT?——U(::,-)M]}]
=1

m

—C Sexp {%j [3=m-U (z(t))] dt.} oz,

3. THE SCHRODINGER EQUATION

The Schrodinger equation for y(x’, t') in the
Lagrangian and Hamiltonian forms of K(x', t’; x°, t%
are derived in the following manner. We consider Eq.
(1), in which the times t° and t’ differ by an infinitesim-
ally small amount At, t’ = t® + At; then

Yz’ 0+ Af) == SK(x’, 194 At; 20, 19) P (20, 9) d2P. (16)

We take for K(x', t° + at; x°, t° the Lagrangian form (8):

K(z', 0+ At; 29, ) = (ﬁ)m exp {—;; At [—';— (11;:0)2 —U(r’)]} ;

expanding in terms of the small quantity At in (16), we
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have
(o', )+ A RED S LA (@) (g
(& — 202
exp ———-At P (20, t°) diz®.
]
We introduce the substitution £ = x’ — x% then
P20 ) =P (', 1) —EVP (2, 1) 4-(8/2) Vi (a', ) 4-... (18)

Integrating with respect to £ in (17) with allowance for
the substitution, we note that the succeeding terms of
the expansion in (18) give higher orders in At. Indeed,

5 d° exp [(im/ 2k Af) 8] = (2mhi At/m)*2,
S doEE exp [(im/2h At) B4 =0,
5 dEE? exp [(im/2% At) &2 = (2hi At/m)P/>.

As a result we obtain Schrddinger’s equation

%W:[%V”—U(z')]ij}(z’, ). (19)
In the Hamiltonian formulation we have for the case
when t’ = t° + At

P (z', 4+ Al)
=5d8:c°S (2’1:;’)3 exp {; p(z'—z9)—BAL At-U(x’)]} ¥ (20, 9,
(20)

and, taking into account the smallness of At, we can in-
tegrate with respect to p not exactly, as in (11), but by
expanding in terms of At; then

(o2)’ | apecmmer—m {4 —prt { Byt (2 ]}
== 88 (' __x0)+AtTi (—25,:— ViU (.z')] &8 (2" — 2.
(20%)
Substituting this expression for K(x', t° + At; x% t% in

~(20) and integrating with respect to x°, we arrive again
at Schrodinger’s equation:

(&, P +A)=p (', 2)+ At (i/h) [(3*/2m) V2 —

U@, )

from which we get (19).

The scheme of quantization with the aid of functional
integrals makes it necessary to consider objects whose
theory has not been sufficiently well developed from the
mathematical point of view, and calls for the introduc-
tion of new mathematical concepts, but it does have a
number of advantages, as already noted, over the canon-
ical quantization procedure. One of them is that in the
usual scheme we must specify the rules for the arrange-
ment of the non-commuting quantities, but in our case
we do not have this uncertainty, since the sequence of
p and x in the functional itself is immaterial, inasmuch
as these are c-number functions; this feature of the
scheme is apparently imgortant when it comes to quan-
tizing nonlinear systems

It should be noted in this connection that Berezin
pointed out in a recent paper[”] an important feature of
functional integrals in (p, x) phase space. He cites a
number of examples demonstrating that the limits of
finite- dimensional integrals [cf. formula (15)] approxi-
mating the functional integral (14) can tend to different
values as n — «, depending on the method used to break
up p(t) and x(t) into discrete values p, and xp, and indi-
cated a connection of the problem of placing the opera-
tors p and X in ordinary quantum theory with the method
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of constructing the approximating finite-dimensional
integrals. Thus, the question whether the problem of
the placement of the operators exists within the frame-
work of the functional method remains open, at any rate
for integrals in phase space (p, x).

4. TRANSFORMATIONS OF FUNCTIONAL ARGUMENTS

As seen from the preceding formulas, the functional
integrals were expressed in the Cartesian coordinates
xj(t) and pj(t), but to extend the practical applicability
of this method it is necessary to express such quanti-
ties in curvilinear coordinates, primarily spherical
ones, which are important for quantum problems with
spherical symmetry. The correct form of the integral
in polar coordinates was derived inl1° ; Edwards and
Gulyaev('] pointed out the difficulties of this problem.
Indeed, whereas the correspondence p; — i8/8x; holds
for canonical quantization in Cartesian coordinates, it
does not hold in polar coordinates. Peak and Inomata ("]
consider a particle of mass m in a central field U(|x]|).
Within the framework of the Lagrangian formulation,
for a small interval At = tj —t,_, and closely-1lying co-
ordinates x. and x, —y the action function (7) can be ex-
pressed in the polar coordinates

x; = {r; 8in 0, sin @;, 7, sin 6; cos g, r; cos 8,} (21)
in the form
W (x5, zjo0) = (m/2) [P+ r3,)/ At — m(r ;.4 /AL) c0s 8; — AU (ry);
(22)
we have taken into account here the fact that

cos 8;=cos0;cos0;; -+ sin0;sinB;. cos (¢; —@;_,),

(xj—z54)2 =rj+ri—2rirs cos 0;.

If we use an expansion in Legendre polynomials

£uos® ( i )”2 2 (214 1) Py (cos @)I %(u),

where I la1ye is a Bessel function than the quantity

1
exp[(l/h)z w; ] in (10) can be represented in the form

exp[ - ZW(zj,z“] H2(211+1)P1j(0056,)1'?11(r,,r_,,),

j=1 Ij—O
here R; is the radial part of the expression

R,j (rss Ty =

(mits) oxe ([T aw 0]} 1,y ().

Interchanging the order of summation and mu1t1p11cat1on
in this formula, we obtain for the function K(x', t’; x°, t%

Kz, t'; 20, 19

-
e Hyle, ..a,ln

(Tl +1) Py (c0s ) Ry, rss 7o)
i=t

n—14
x I r3(2)dri(#) sin0; () d8; (2) dep, (z)}.
t, i=1
It turns out further that for the considered angular de-
pendence (22) it is possible to integrate exactly over all
the angle variables; to this end it suffices to take into
account only the following equations:
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T z YZ‘ 05 @) Y1 (8-, 109),
nJ_--l

where Y;‘ are spherical harmonics and

Plj(COS 6,)

firie oYy e o) dosingdo =8t (23)

Therefore

n—1

5 S H [(21;4-1) Py, (c0s 8,)] H sin 9; d8; do,

=(4m)" 8y, I[ & 2 YO, ) YT, ¢9).

n=—{

Ji»ll

=z (' 0, @) a® =20 (@ 6, ¢V

As a result, the radial and angular contributions to the
propagator K separate for each quantum number [

K (@', t; 2

o 11
=2 2 K (1% )Y (B, ¢) YT (6% ¢°).
1=0 n=—1I (24)
The radial part of the propagator for the I-wave is given
by a functional integral with respect to the variable r(t)
only:
Ki(r', t'; r0, 19

) m \BE P i (29)
= lini [(41\:") (m) 5 H Ri(rs rimy) H ri dr:] ,
==t i=1

n—

and its calculation is already determined by the con-
crete form of the potential U(r).

Thus, the feasibility of obtaining functional quadra-
tures in terms of the angle variables with respect to
o(t) and ¢(t) for a given W in the spherically-symme-
trical problem enables us to write for K a functional
integral only with respect to the radial variable r(t) in
the form (24) and (25).

For the Hamiltonian form of the integral in spherical
coordinates we can write an analogous expression[m]:

"
K&, ¢ ot o) =lim { (57)" { exe [ [ oo+ p08 + pog— ) at
n-1{

X H (dpr, dpe, dpo;) H (r¥sin 6, dry dB, dtp,)}

puivt
and after integrating with respect to dp9j’ dp(P]., d9], and
dp; we obtain as a result formula (24) with a radial
function

Ri(r', t'; 1% %= an/z

hm { ZmAt

xSexp[

(pr—c%z) dt] H dp; H ri dr,}

=1 f==q
where
i (ry, ps)=Cmy {p3+ L)/} + U (ry).

If, for example, we consider a particle in an attracting
potential U(r) = k*/r®, then the integration over all r; in
(25) is possible, (see[m]), and we then have the closed
expression

K (2, 5 2% ) =[m/i (' — 1) (r'r)'?) exp [im (' + r9%)/2 (¢ — 19)]
o0 1
X 3 B L (mrrli(e —o) Y@, o) ¥T (@, g,
MO =10+ 17272+ 592,

We note in conclusion that, unfortunately, this brilliant
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method of integrating with respect to the angle varia-
bles in the functional integral is not effective for more
complicated functionals encountered in field theory. For
example, for the integralt*]

Sexp[ SD(t1~tz)x (t;) x (t,) dt, dt, - ;_..SU(xz) dt]ﬁx

introduction of the polar coordinates r, 6, and ¢:

S exp

S Su(t,—tz)r(t,)r(tz) o8B (2,, £,) dt, di,

n

Iy
+i% S U (@) dt] IT doird drisin 8, d8y,

1 =1
where
cos 0 (¢, £,) =cos 8 (¢,) cos 8 (#,) + sin O (¢,) sin 0 (¢,) cos (@ (t;) — @ (2)),

leads, upon expansion in spherical harmonics, to the
expression

.exp( ’hz— D,ur;rhcose,,.) 24" (%)uz
w . ik
X 2 Ix,,'-;._( D”"f”‘) E YI,,, 8, ) Yx,"hk(em Pr)s
tn=0 Pop=—Ip

(26)
which is extremely difficult to integrate with respect to

93 and @5 for at each fixed angle 6; or ¢y we integrate

a product of n factors Y;l] (0 qo]), and formula (23)

does not hold. The reason is that the quadratic form in
the argument of the exponential in (19) in x(t) depends
on two times t; and t,, and for one fixed t, = tj we are

left with a sum in the exponential or with a product of
factors in tz =t in (26).

The connection between the canonical transforma-
tions in classical and quantum mechanics is more lucid
in the functional notation.

Let us consider the simple but 1mE)ortant particular
case of the canonical transformation

z—p, p—> —z.

The expression (15) for the propagator then takes the
form
. Sd%i .

K(p,
xexp[—%(s.zdp+5<%dt)]}.

If, as before, we putd# = (p°/2m) + U(x) and consider
the case when t’ = t° + At, then, proceeding as in the
derivation of (20'), we obtain

K(p', t°+At' po t(l)
(2rm)a Sdzexp{——z(p —p“)——At[ +U(x)]}

.. . 1
£'; p°, %) =lim {(2::_&)87-‘ S . « BPznd®py ... dipp

n->o0

Further, assuming that the potential ng) can be expan-
ded in the series U(x) = Up + Ujx + UxX" + ..., we obtain

K(p', 04 At; pY, t% =8 (p' —p"
At [ Bt Upt U (1h ) + U () +--- J80" .

From this follows the Schrédinger equation for the
function (p’, t%, but in the momentum representation).
There are published proofst®*®) that linear canonical
transformations in classical mechanics correspond to
unitary transformation in the Feynman formulation of
quantum mechanics. A study of nonlinear canonical



198 . D. I

transformation within the framework of the functional
formulation raises difficulties, since mathematical
procedures of nonlinear transformations for functional
integrals have not yet been fully developed (see[ ])

Fadeev has recently pointed outl® an important ap-
plication of the Feynman method of quantization with the
aid of a functional integral in Hamiltonian form in situa-
tions when the canonical method encounters difficulties.

The point is that a classical system can have a
Lagrangian £(q, q) for which the relations

=22  (i=1,2,..,1n

a3
cannot be solved with respect to a., i.e., we cannot ex-
press q in terms of p and q, as is required to write
down to Hamiltoniand#(q, p). Such Lagrangians are
called singular inl®). The most interesting examples
of systems with singular Lagrangians is obtained from
field theory for gauge-invariant fields (electromagnetic
field, Yang- Mills field, gravitational field). All are ex-
pressed by singular Lagrangians with additional condi-
tions or constraints imposed on the canonical variables,
In the n-dimensional classical-mechanics case, the
canonical variables (q,, Gz, ..., 9;) and (p1, pz; ..., Pp)
therefore do not run through all the 2n-dimensional
phase space, owing to the constraints

(Pa(‘L p)=0 (a=19 2, .. m): m < n.

The quantization of such systems in the canonical
scheme has been the subject of a paper by Diract®®
His schemes contains a number of difficulties, mainly
with the placement or, in Feynman’s terminology, order-
ing of the operator multipliers.

The additional conditions are taken into account in
the Hamiltonian form of the functional integral in the
following manner. If the relations ¥ 4(d, p) = 0 can be
solved with respect to m coordmates and expressed in
the form

9o = qq (q*, P)

(9* are n — m independent coordinates), then this calls
for det |8<p /3q| # 0. It turns out furthermore that the
observables are expressed not in terms of all the n mo-
menta Py but only in terms of n— m momenta, i.e.,
there exist also m relations fa(q, p) = 0. Therefore,
after the canonical transformations in which the new
momenta are p* = f,(q, p), we shall have 2(n — m) varia-
bles (a}, af, ..., q’r"l_'_"m), (X, p¥s - p;‘l_m), with the aid
of which we express the functional integral:

= dpt () dg¥ (9
)d’] H R

' n-m
K(qlv t,; Q°' to)= S exp [‘TS ( Z PJ*;?
0 =t

We can also express K in terms of 2n vanables, with
allowance for the constraints and the additional condi-
tions, in the form of an integral with respect to all 2n
variables:

o) at]

S exp [_ S 2 PJQJ
=1
X H 8 (Pa) 8 (ga—a (2", P*)) dpa () dga () H
t,a—=1 t, j=1
In concluding this chapter, we indicate one interesting
numerical calculation of a functional integral, which
yields the ground level of the helium atom. A method

™ dpt (1) da} (o)
CnRynm
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for calculating the Wiener functional integral can be
found already in the paper by Gel’fand and Chentsovt!
and consists in the following. The functional integral is
approximate by finitely- multiple Riemann or Stieltjes
integrals, and the latter are calculated by the Monte
Carlo method with a computer. This method was used
to calculate the lowest polaron energy level, by evaluat-
ing 190-tuple and 280-tuple approximating integrals.
The results are: 0.9912 for 300 trajectories, 0.9940 for
400 trajectories, and 0.9999 for 600 trajectories, as
against the exact value 1.0000 (in the appropriate units).

Evseevt!®) calculated in this manner the value of the
integral

5 K (z
where W is the classical action of two electrons in the

field of the helium nucleus. Since, on the other hand, we
have from (13)

—+oo
t'; z0 0)eG/MEL gy — 5 dt’eli/mEL Se(i/n)W[x'. 1, 2018,

o0

feammek @, ¢; 20, 0)dt' = 3] o (2') ¢4 (27) - 208 (Ea— E),

an approximate calculation of K yields upon integration
with respect to t maxima (in lieu of 4(E,, — E)) at the
points E;,. Integration in the m-tuple approximating
integral w1th respect to x; is carried out from —a to +a
(a = fi/me’® is the radius of the first Bohr orbit), since
the function exp(iW/h) oscillates rapidly at large x and
makes a small contribution to the integral. The value
obtained for the ground level of helium is 2.92 + 0.05,
which differs by 0.579, from the experimental 2.90351.

5. CONTINUAL REPRESENTATION OF THE GREEN'S
FUNCTIONS IN THE THEORY OF QUANTIZED
FIELDS

We turn now to quantum field theory (QFT). A funda-
mental role is played in QFT by the Green’s functions
of quantized fields, knowledge of which enables us to
find the physical characteristics of the interacting fields;
in particular, they make it possible to obtain also the

scattering amplitudes (this question will be discussed in
detail later on).

Many authorst*®'™ obtained with the aid of functional
integrals expressions in closed form for the Green’s
functions. For example, the single-particle Green’s
function of the fermion field is given by

G(z, y)
= {6 yla)s, () exp [ — 4 [ | asg Dy (€—n) 4, 9 4u (m) | 004
s { §sotayexs [ =+ [ { azamppE—m 4@ 4sm ] 804}
(27
where 6*A = 1 d*A(x); G(x, y|A) is the Green’s function

of the fermioﬁ in a classical external field A, and So(A)
is the S matrix averaged over the fermion vacuum, with
the operators of the boson (electromagnetic) field A,
replaced by classical field functions; D, lu is the rec1p-
rocal of the free propagation function of the boson

(Db @ — 9 Dor 6 — 1) d% = 8% (z — ) 6.

The first problem arising in the calculation of (27) is
the determination of the functions G(x, y|A) for an arbi-
trary external field A we For an electron-positron field,
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G satisfies the Dirac equation

liyd, —m + eywds @ G (z, y | 4) = =8 (z — ).  (28)

Even the solution of this equation with an arbitrary field
A“ (%) is a tremendously difficult problem in mathe-
matics. However, as first shown by Feynman["] , the
solution of this equation can be formally represented
also in the form of a functional integral (this procedure
yields the Green’s functions of the Klein- Gordan, Dirac,
and Schrodinger equations! %1%} for an arbitrary ex-
ternal field. If the external fields admits of a closed
solution of (28), functional quadratures can be obtained.
A favorable feature in this approach is that the Green’s
function obtained in this manner makes it possible, if
the vacuum terms in (27) are neglected (by putting So(A)
= 1], to carry out functional averaging over the external
fields and obtain the quantum function G(x, y) without
taking into account the polarization of the fermion
vacuum. It will be shown subsequently that this formal-
ism has a fully covariant form since, in contrast to the
preceding formulas, the variable singled out here is not
the time t, but the proper time 7.

Let us examine this formalism using the Dirac equa-
tion (28) as an example, and let us introduce, as usual,
the Green’s function of the squared Dirac equation:

G, yld) =livdy +m+ ev,d, (@I F (2, y | 4).

We then have for ¥ the equation

(@D, + edy (@)2 — m® + eoued Ay (D] & (z, ¥y | 4) = -84 (z — y).
(29)

Using the exponential representation of the reciprocal

operator, proposed by Fockt?? and developed by

Feynman[m , we represent the solution (29) in operator

form:

o0 T
G(z, y|A)=i S dre—im*s exp {i S dE [(i04 (%)
0 0
+edy (8)2+eduy () 9u (B) Ay (§)]} 8 (z—y);
(30)
the exponential in this expression, which contains the
non- commuting operators 3u» Au and Cup is meant

here to bet? a T -exponential, where the ordering
subscript T has the meaning of the proper time divided
by the mass m. All the operators in (30) are assumed to
be commuting functions that depend on the parameter 7.
We now carry out a functional Fourier transformation,
which leads to the first degree of the differentiation
operator 8, in the argument of the exponential:

T

exp {1 § a2 116, @)+ ey (=, DI}
0

=¢[ovexp {—1 (i@ &E+2 [ @8O +ed},
0 0 (31)
where

T

sty=T] dtv (¥), C=1/exp[—i Sv;(g) a].
¢ [

Having now the first degree of the operator 3,, in the
argument of (31), we can use it as a shift operator in
accordance with the ‘‘disentanglement’’ rules[m; as a
result we obtain the following expression for %(x, y|A):

Gz, ylA)=1 3? dte~im*C S 8%vexp {—i § dt [v}’, (&) —2e [vu (e) (32)
v b
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+5 O ®0 O du (22§ v(yan) | ]} o (z—y—2 [ sy an)
t . 0

In this expression the operators o, y(§) remain, in
Feynman’s terminology, not ‘‘disentangled’’*, i.e., they
depend on £ as an ordering index, and the T -ordering
remains in force for them.

The Green’s function for the Klein-Gordon equation
is obtained from (32) at Oy = 0. For the integral with
respect to 7 to be convergent at the upper limit, it is
assumed that the mass m has a negative imaginary in-
crement —ie; formula (32) thus determines the causal
Green’s function of the Dirac or Klein- Gordon equation.

It is possible to obtain in similar fashion the retarded
Green’s function of the Schrédinger equation[”‘] with an
arbitrary potential U(x, t):

Gz, t'; 2% ) =i0 (' — 19 C S &
tr—t

xexp [ | ] e [
0

- R
‘St U (t'+§; X042 S v(n)dn) dg]
0 0
P—t0

{ vmyan).

’ (33)
Both expressions, (32) and (33), can be easily reduced
to a Feynman path integral of elw, where W is in both
cases the action integral. To this end it suffices to
change over from integration with respect to v, (£) to
the new functional variables x, (£) = 2 v, (§). The de-
terminant of this transformation is equal to unity, and
we obtain for the relativistic function :

Gz, y|4)=

X §® (x—x"-—2

oo

e S 8z S dvexp { —i S d8 [2% (B) — 26z, (£) A, (z) + 2 — ivyy avA,,]}
0

(34)
(owing to the 8*-function in (32), we have put x,, (1) = x
and x,(0) = y). The argument of the exponential in (34)
contains the relativistic action function of a charged
particle in a field A, :

W= j (23 (8) — 2ez,.4, (z) —m?] d&
[}

and a spin part i, 6, A, which has no counterpart in
the classical theory. The integral is taken over all the
trajectories joining x and y. For the Schrédinger func-
tion (33) one makes the substitution v(£) = %(£), where ¢
is already simply the time.

Examples of concrete fields A , (x) for which the inte-
gration with respect to vy in (32) can be carried out

accurately are given int*®J,

6. APPROXIMATE METHODS IN FUNCTIONAL
INTEGRATION

For an approximate calculation of the functional in-
tegrals in QM and QFT, many authors{**>®] have con-
sidered, first of all, the stationary-phase method devel-
oped in mathematics for ordinary integrals. Its appli-
cability can be regarded as justified if W >> h, but there
are still no estimates of this method even for the simp-

*The problem of “disentangling” Dirac matrices in the solution of the
Dirac equation in an arbitrary external field was considered by
Fradkin(®).
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lest functional integralstzsv’m. In this method one seeks
the extremal trajectories | classical, see (12)], from the
condition

GW[ZCI]=O. ) (35)
The action is expanded about these trajectories:
W [z)=

W (2|4 8 (2] - OW 2]+ ...,

where, for example,

224
9z3 |, _.cl

(x—al P4 (z—z9) (z—2)}

ct

t
2 cly—
W (2] §dt Tl
is a quadratic functional with respect to x(t). Equation
(35) on a classical trajectory has the following form in
the case of the relativistic problem (34) (without the

term o " VP’J)

2,0l o 24, (2) .
® _, 9" @ u 94y ()
0&” e [ azd  zg ] (36)
For the Schridinger equation we have (seel!®))
macl — U8, 2 @y (37)

axcl

Equations (36) and (37) differ from the equations of mo-
tion of a classical particle in that at the initial instant
one specifies not the coordinate and the velocity, but two
vaolue]s of the coordinate at the ends of the interval

(¢, t']:

Xg (f — ) = x, x (0) = x".

Unfortunately, for arbitrary fields A“ and potentials
U, which must be considered in order to construct the
quantum function G(x, y) in accordance with (27), it is
impossible to obtain exact solutions of (36) and (37).
This quasiclassical approximation of the functional in-
tegral can therefore be of practical use in those cases
when (36) and (37) can be solved by some other method
outside the framework of S)erturbation theory.

It was pointed out int#]) that functional integrals can
be calculated by the stationary-phase method in the
case of quantum fields described by Lagrangians of the
type £ = Z(K, 1), where K = 8, 93, ¢/2 is the free-field
Lagrangian and I = ¢%/2. Such flelds were called by one
of us (D.B.) essentially-nonlinear. It was shown in the
cited paper that if the dimensionless quantity
M=08%/8K > 1 in the space-time region of practical
importance, then the stationary-phase method can be
used. The action W {¢(x)} can then be taken in the form

W {9 @) =W{0a @) + o Q {h (=} + .-,

where ¢(x) = ¢ ;)(%) + ¥(x). The quadratic form Q{y(x)}
is the action for a free quantum field i (x), but one
propagating in space with a curved metric. This metric
is determined by the field ¢(x) and its first derivatives.
It turns out that this approximation is equivalent to
introducing in the Poisson quantum brackets

I (z), » (&) = B*8 (z — =)

an effective Planck constant h* = /M, where M is the
mean value of M, under the assumption that M > 1. In
this case the quantum fluctuations of the quantities z/z(x)
and §(x) are small and the quantum field becomes close
to the classical one.
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We proceed to consider another method of approxi-
mating functional integrals of a particular type. This
method yields the asymptotic expression in the infrared
region of quantum electrodynamics, and also allows us
to study the asymptotic behavior of certain particle-
scattering processes at high energies and low momen-
tum transfers. In order to simplify the problem, we
consider a simple relativistically-invariant model(*®]
of the interaction of two scalar fields, ¢ with mass pu
and ¥ with mass m, The interaction Lagrangian of this
system is

Lint = gy (2) ¢ (z).

The Green’s function of the particle of field § in the
classical external field ¢(x) satisfies the relation

[0 —m® + go @) G (z, y | ) = —6' (z — y).
Repeating the procedure described in Sec. 5, we get

Gz, ylo)=i { ave-moxp {i [ 1204+ go (2, 91 dE} 84z —y). (38)
0

o
[}

In analogy with (31), we make the transformation
exp[ S e a,,(g)] c S Stv exp [——L { Vv (8) dE+ 2i S v (8) 8, (8) dg]
U

Substituting this expression in (38) and ‘‘disentangling”’
the differentiation operator 8, , we get

—1i § dre~im*t
CSG‘ivexp{-iivaa ——grp(x—2s dﬂ dE} (39)

x 6t (z—y—~2§v(n)dn).
b

G (z, y!(P)Z:

We need next the Fourier transform of the G-function

G(p.al0)= | do a6 (2. y| ) =
— S diyei(p-Du g dtei (p2—m¥) 10 Sé‘m X

o

X exp { —i g (("u ~ g (:c—l—2p§+2 dn }dg}

° (40)

we have made here a change of functional variable v, (£)
+ w (é), the integral with respect to d*x is elim-

1na#ed by the 6*-function in (39). At g =0 we get from

(38) the free propagation function

Gy (p) = (2m)*8* (p — )/ (P> —m® + ie),

since T
(4 S 64mexp[~i g o (1) dnJ =1.
v

If we are not interested in the infrared region in this
model at p = 0, then it is proved int?®*% that the con-
tributions of the vacuum polarization of the field § can
be neglected, Sy(¢) = 1, and we obtain from (27) the
quantum function G(p) by integrating with respect to ¢
in accordance with (27) and (40):

G(p)=

=i 3’ dreit wr-m2) ¢ S Soexp {—L S deol, (5 — 2 5 S dE, dE, A (&, Ezlm)} ,
[} (41)

where
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A Gy Elo) = f atkD (k) exp [~2ika§1—§2|-21kT @ (n) dn],

D (k) =1/(k* +ie), gy=g/(2n).

a) Infrared asymptotic form of Green’s function. It
is impossible to integrate exactly with respect to 6w
in (41), and we therefore calculate the integral approxi-
mately in the investigated infrared region (the effec-
tively-virtual momenta k are small). To this end, we
assess the role of the functional argument w in
A, E2]w).

If we consider the perturbation-theory series, ex-
panding (41) in powers of g5, then the functional integ-
rals can be easily evaluated, since we get expressions
of the type

wt(m)dn | A (& E| @)

S, &

Ak, &) =C Sﬁ“mexp[__i

- S AkD (k) exp [ — i (2pk + ) | & — |-
(42)
We see therefore that the functional argument in
A(&,, E2|w) leads after integration to the appearance of
a quadratic dependence on the virtual momenta k.
Therefore, if we are interested in the low-energy
region, where the k are effectively small, we can
neglect in A the dependence on w. Results pertaining
to the infrared region were obtained by Fradkin(!®) and
Milekhin{?"} to the same degree of an approximation,
but by another method. Such an approximation, how-
ever, alters appreciably the behavior of A(£,, £;) at
large momenta k, and leads, in particular, to stronger
divergences of the non-renormalizable quantities; we
shall therefore not neglect this dependence, but resort
to another procedure, namely approximation of the in-
tegrals with respect to w.
To explain the meaning of this approximation, we
consider the expansion, in powers of g2, of the quantity

A=C [ owesp[ —i V Wb (8 dt|exp[ — & ﬂ' 08 A& A G B ) |
0 1

—1— 2 [ [ ae amd ¢ -0+
“o

(43)
+3 (%)2 S e S d%y. . dEAS (5, &, s )+ ..

0 n
B,(£,, £2) is defined in (42), and

T

B e B B, 8= € | Stwexp[ —i {02 (m)an]

n

X Ay (G B [0) &, Gy &lo) = [ 4, [ %0 () D (ko exp (1 (kT | 20k [,

—% |+ i (k;+ 2pks,) I E—& | -+ 2ikk.9 (&1» & & 54)}1
where ' (44)
08 & b B) =B 10 (G —8) =0 E~EN+ 50 (5 —5&) —0 (& —E)]
FEIO(E—E&)—0(E —E)I+ &[0 (Ba—8) —0 (5, —E)I,
1, z>0,
O(I):{ 0, x<0.
We approximate the functional A(£,, £;|w) in the
infrared region by its mean value A(£, — £,) defined in
(42). We now rrewrite (43) in the form

A=exp[ B [ (8¢ —5)dedt]
o

X CS (‘S‘wexp{~-i SE % (n) dn—ii; 515 [A—A] dg1d§2} ,
b o

and expand the exponential under the integral sign in
terms of the differences A — A. We then obtain for A in
place of the expansion (43) a new series with the ex-
ponential factor separated:

T

A=exp[ 2 [ (8@ ) dbi k|
0

xC S Swexp [»i 5 w? (1) dq} D (7-%%)2(71!)“[.“ S (A —A)dg, dgz]".
[i] n=10 1 (45)

An advantage of such an expansion, in comparison with

perturbation theory, is that after separating the factor

exp [ -—igT% 15 A @, &) dE, dgz]
0

in front of the entire series and integrating with respect
to w, each term of (45) no longer contains infrared
singularities, which are present only in the exponential
factor.

We note that further partial summation of the series
(43) is possible. To this end it is necessary to choose
as the approximation of

(lac aloaea,
the quantity !
— B g ()] [ e B— ). (46)
0 [ )
We then have in lieu of (45), as a common factor, an
exponential with (46) as the argument, and a series in
which g} is the first term that follows 1. In the infrared
region, however, this does not change the results,
since the second term of (46) has no infrared singulari-
ties, and the first term is decisive.
If (45) is substituted in the expression for the Green’s
function (41), then we obtain an expansion in powers of
g3 with a common factor

o [ 8 [ 1R tas ],
¢

which, as shown int 18 , includes all the infrared singu-
larities of the Green’s function.

Each term of the series (45) represents the differ-
ence between the expression Z(& 1y sves ‘g’n), obtained in
perturbation theory, and a like expression in which the
terms kik; with j # j is discarded. This can be seen in
the g}-order:

()] ek e s - 86 A E)L

by comparing (42) and (44). Thus, in the language of
perturbation theory the proposed approximation of the
functional integral means, that terms of the type kikj
are discarded from the particle propagators,
Ylp+ S ki) —ma) > 1/(2p 3k, + 31 K. (47)

b) Asymptotic behavior of the scattering amplitudes
at high energies and low particle scattering energies.
Recently, a number of workers have stated that the ap-
proximation of the propagators (47) is valid also at high
energies of the colliding particles, at momenta |p| >> m.
It is assumed in this case that the term sz k; in the

i
propagator (47) is dominant in comparison with Z kikj'

i,j
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An analysis of this approximation, within the framework
of perturbation theory, has shownt“"”] that it accounts
well for the asymptotic behavior of the amplitudes at
high energies, s — =, and at low momentum transfers
t, t/s < 1.

As follows from the preceding section, the method of
functional integration yields closed expressions for the
Green’s functions in the approximation of (47). We shall
demonstrate in this section that this method is effective
in the study of the high-energy asymptotic behavior of
scattering amplitudes. Starting from the preceding con-
siderations, we can obtain here the Glauberl3?] repre-
sentation, which is also called the eikonal or the
geometrical-optics approximation for the scattering
amplitude in field theory. The application of the geom-
etrical-optics method to the scattering of elementary
particles was developed by the present authors in earlier
papers (3334,

We begin the analysis with the scattering of a high-
energy scalar particle by an external potential-**! ¢(x).
We can obtain the amplitude of the process f(p, q|¢)

(p and q are the momenta of the particle before and
after the scattering) if we know the Green’s function
G(p, q@) of this particle [formula (40)] . To this end it
is necessary to go over to the mass shell with respect
to the external momenta in accordance with the relation

fpale)y= lim K(p*—m) (@ ~m*G(p. ¢] )] (48)
The procedure of taking the limit in (48) consists of
separating from the function G(p, q|¢), specified by the
integral (40), two pole expressions (p° — m?* and

(¢ — m%™, which are two free Green’s functions. This
procedure was developed in detail in[2%%%3%) | we pre-
sent here the final result for f(p, q|¢):

Hp, q|9)= g dize O g (1) € § 8w exp f —i +§° © (1) dn] :

~0c0

[84w]
L Ta 4
o | dhexp {ing T o (o4 2100 @+ 00 (—B1+2 | 0 () am) @8] .
U —c0 0
(49)
Changing over to a new functional variable z( )

£
= [ w(m)dn, we rewrite (49) in the form of a Feynman

]
integral along the paths z(£):

Fo a0 =g § dzet o0y (@ | @ § s,

€y —

where
+w .
WizZ]|= S dE{— 2 (BF +Age [z + 2 (08 (8) + 90 (— ) E+22(D)},

is the action function of a relativistic particle moving
in a potential ¢; £ plays the role of the proper time of
the particle, at £ = 0 the particle is at the point x, and
z( &) is the variable describing the deviation of this par-
ticle from straight-line paths along the 4- momentum
p (£ > 0) before the scattering and along q (£ < 0) after
the scattering.

Considering the asymptotic behavior of the amplitude
(49) at large momenta po, Qo > m, it is natural to raise
the following question: can we neglect the functional
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variable z(£) in the argument ¢ compared with the large
quantity pg (&) + q9(—£), and will this be a good approxi-
mation of the integral at large po and qo?

The answer to this question is connected with the
character of the function ¢. If the potential ¢ is a
smooth, non-oscillating and bounded function satisfying
the conditions

Py > g max|¢(2)]. lpl>>!§—;f‘/lcp(x)l, Po»

99
By

fle@l (50
then it can be proved[“‘:l that the expansion of ¢ in a
Taylor series with respect to the functional argument
in (49) and a subsequent integration with respect to «
leads in the argument of the exponential (49) to the ex-
pression

@@+ 281p0(5) - g0 (=D +0W|p) (31)

This result can be understood by reasoning as follows.
The last two conditions of (50) are the conditions for the
validity of the quasiclassical approximation. For an ap-
proximate calculation of the functional integral we can
therefore use the stationary-phase method considered
above, when the main contribution to the integral is
made by the classical trajectory. Owing to the first
condition of (50), the two linear paths along p when

¢ >0, and along q when £ < 0, are also good approxi-
mations for the classical trajectory. In this case the
approximation of the potential ¢ by its mean value in
accordance with (42) is also valid (and gives a more ac-
curate result than (51)):

@ (x+2E[p8 (B) +40 (—H))
:CS 64mexp[—i sz('ﬂ) dn]cp (x+2§[p9(§)+q9(—§)1+/2 iw(ﬂ)dﬂ).
0

The conditions (50) are the conditions for the validity
of the GlauberL®*} or eikonal representation of the scat-
tering amplitude, which follows directly from (49) at
small momentum transfers |p — q| [the scattering angle
is @ < (pR)™?, where R is the effective radius of the
potential]. In the case of a potential ¢(r) that does not
depend in the time, we have

1P, gl @) =4m8 (po—go) | pli | dozye’ T PL%L g ey

v

where

o0

21 =z, @) x(@) =5y |

) dte (551 '\1‘%) .

The eikonal approximation obtained in this manner is
valid, as shown inf®7 | in a wider range of angles; it
has made it possible to refine the results obtained by
Schiffl®"] within the framework of perturbation theory.
On the basis of the approach presented here, an eikonal
representation was obtained inf*J for the amplitude of
the scattering of a Dirac particle by an arbitrary poten-
tial.

We consider also the possible use of the approxima-
tion (45), and hence also (47), in the calculation of the
asymptotic behavior of the scattering amplitude of two
particles in the high-energy region at a_fixed momentum
transfer. This method was used in[?%%%) to investigate
the asymptotic behavior of elastic-scattering ampli-
tudes, and in subsequent papers’*® to use the influence
of radiation corrections to scattering diagrams.

The scheme for constructing the elastic amplitude
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within the framework of the discussed approximation is
as follows. Knowing G(p, q|¢), we can, neglecting the
contributions from the polarization of the nucleon
vacuum, S¢(¢) = 1, obtain the quantum two-particle
Green’s function

G (pi. pelar 40 =Cy {swexp| —5 § D@ e @ e (—g aq]

S G (p1r @) 6) G (D2r 32 @) -G {(py: ¢:19) G (por 44| )],

by integrating with respect to ¢.

By going over to the mass shell with respect to the
external momenta, we can construct the two-particle
amplitude
@)t (pr + p2 — @ — g2 [ {5y P23 91s 02)

= lim l(p? —nd) (g} — m?) (B} — m?) (@ — m?)
2 gt am?

X G (g1 g2 | Py P2

which, unlike the single-particle amplitude (49), is ex-
pressed by a double functional integral with respect to
w; and w; (integrals over the trajectories of the two
scattered particles).

The expression for £, which is quite complicated in
form (see'*®*®)), includes contributions of sums of
Feynman diagrams of the type indicated on the left,
with diagrams of the type with radiative corrections

(right):
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It is shown int®" that the approximation (47) is valid in

the high-energy region s — « also at low momentum
transfers t for expression connected with diagrams of
the first type and is not true for each diagram of the
second type. It is proved in[“], however, up to sixth
order inclusive, that in each order of perturbation
theory the sum of diagrams of the second type, but not
an individual diagram, has the same asymptotic form at
s — oo and at fixed t as obtained by means of the ap-
proximation (45).

Thus, a study of the asymptotic behavior of an indi-
vidual Feynman diagram may not duplicate the asymp-
totic behavior of a sum of diagrams of a given order,
s0 that the devices used here for the summation and ap-
proximation of perturbation-theory series with the aid
of the technique of functional integrals may turn out to
be more suitable for the study of asymptotic forms in
quantum field theory than the study of the asymptotic
form of each diagram separately, followed by summa-
tion. We wish to emphasize here once more that it is
difficult to prove mathematically the regions of appli-
cability of the approximations made in the calculation
of functional integrals’*?,

From the examples given in the review of applica-
tions of the method of functional integration in quantum
mechanics and quantum field theory we see that this
method represents only the first steps, both mathe-
matically and from the point of view of physical applica-
tions. However, the physical clarity and the brilliance
of the formulation of the main problems of quantum
field theory in this method gives grounds for hoping
that it will find further development in the future.
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