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Use of Functional I n t e g r a l s in Q u a n t u m M e c h a n i c s a n d Field T h e o r y
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Physicists are becoming more interested in solving the equations of quantum theory without using methods
requiring expansion in powers of the interaction constant. The perturbation-theory method, which gave
results that agree splendidly with experiment in quantum electrodynamics, turned to be inapplicable in
strong-interaction theory. One of the methods in which a radical attempt is made to go beyond the
framework of perturbation theory, is the method of functional integration in quantum theory, first proposed
by Feynman. The present review, which is devoted to this method, introduces in lucid fashion the concepts
of functional integrations and then explains some applications of this method in quantum field theory. Much
attention is paid to the use of functional integrals in infrared and high-energy asymptotic relations in field
theory. The review does not claim an exposition of the mathematical difficulties connected with the concept
of functional integral, and focuses attention to certain successes in its use in quantum physics.
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1. INTRODUCTION Great interest at taches in this connection to the find-
ing of exactly-solvable model examples in QFT or,

X HE development of an invariant perturbat ion theory more importantly, to the development of approximate
and of a suitable renormal izat ion method has made it methods for solving the equations of Q F T without using
possible to construct for quantum electromagnetic proc- expansions in powers of the coupling constant. One of
e s s e s a quantitative theory that agrees with experiment these methods, which are radical attempts to go beyond
and p e r m i t s , in principle, a calculation of physical quan- the framework of perturbation theory, i s the method of
t i t ies with accuracy of a r b i t r a r y order in the constant functional integration, or in other words the " m e t h o d of
eVfic = 1/137. The problem of strong interaction, how- path i n t e g r a l s , " f irst proposed by Feynman. This
ever, and the study of p r o c e s s e s with e lementary high- method is based on the representat ion of micropart ic le
energy par t ic les , a s well a s prob lems in the mathe- motion a s a sequence of quantum transi t ions over un-
matical s t ructure of quantum field theory (QFT) have observable t ra jector ies . This representat ion of quantum
called for the development of new methods that a re not mechanics is equivalent from the fundamental point of
connected with perturbat ion. Much p r o g r e s s was made view to the ordinary representat ion, but the physical
in this direction, p r i m a r i l y as a resul t of the develop- clarity and the bri l l iance of the mathematical formula-
ment of an axiomatic approach to QFT. One of the un- tion of the main problem of quantum theory, that of
disputed attainments of such an approach was the dis- calculating the probability amplitudes for quantum tran-
covery and proof of the dispers ion relat ions, and also sit ions, which a r e typical of this new method, have
the determination of a number of important physical at tracted the attention of many r e s e a r c h e s ,
proper t ie s of the react ion amplitudes of strongly inter- The purpose of the present review is to descr ibe
acting par t ic le s on the bas is of an analytic s t ructure briefly the gist of this insufficiently popular method and
established for these amplitudes within the framework to consider important physical re su l t s that have been
of the axiomatic approach. obtained in this manner in QFT. Lake any method that

In spite of i t s success , there sti l l r e m a i n s in the c la ims to solve the prob lems of quantum theory, the
axiomatic formulation of QTF the fundamental question functional-integral method is not universal and has its
of the construction of nontrivial QFT models formulated own problems and difficulties. These difficulties a r e
in the language of field opera tors and satisfying all the connected, first, with the solution of the equations of
requi rements of the axiomatic approach. quantum par t ic les in an a rb i t ra ry external field, and

At the present t ime, the physical quantities obtained second, with the functional averaging of these solutions
by perturbation theory r e m a i n the only objects with over the external fields with an appropriate weight func-
which one can verify or guess at the general physical tional. Both the f irst and the second problems are
proper t ie s of the theory of strong interact ions, such as mathematically very complicated. The point is that in
the analytic and asymptotic proper t ies of the amplitudes, mathematics we sti l l do not have a well developed theory
etc. Thus, the perturbat ion-theory methods remain for or technique for functional integration; the only integrals
the time being the " w o r k s h o p " in which the theoretical that lend themselves to calculation are Gaussian in-
physicists test new methods or conclusions of the tegra l s or those that can be reduced to them by replac-
axiomatic approach. ing the functional argument.
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We conf ine o u r s e l v e s in t h i s r e v i e w to p h y s i c a l r e -

s u l t s , and l e a v e a s i d e the q u e s t i o n of r i g o r o u s m a t h e -

m a t i c a l j u s t i f i c a t i o n of t h e d e v i c e s u s e d i n t h e d e s -

c r i b e d m e t h o d . A r e a d e r i n t e r e s t i n t h e m a t h e m a t i c a l

a s p e c t of t h e p r o b l e m of i n t e g r a t i o n in funct ional s p a c e s

i s r e f e r r e d t o t h e m a t h e m a t i c a l r e v i e w s of G e l ' f a n d a n d

Y a g l o m L l ] o r K o v a l ' c h i k ^ 3 a n d t o K a c ' s b o o k 1 1 3 3 .

2 . MARKOV CHAINS IN QUANTUM MECHANICS

In 1948 F e y n m a n p u b l i s h e d h i s w e l l known a r t i c l e ^

in w h i c h he p r o p o s e d a new f o r m u l a t i o n of n o n -

r e l a t i v i s t i c q u a n t u m m e c h a n i c s (QM). Unl ike the

S c h r o d i n g e r f o r m of Q M , w h e r e the m a i n o b j e c t i s a

wave function ψ(χ, t) that satisfies Schrodinger's equa-
tion, in the new formulation this object has become the
propagator K(x', t '; x°, t°) of the wave function. Knowl-
edge of this propagator makes it possible to determine
φ(χ', t') at any instant of time t' from the initial value

Α °
ψ (χ, Ο = f Κ (χ1, t'\ χ", t") ψ (χ0, ί°) (Ρχ°. (1)

It is seen from (1) that if the particle was at the point
x° at the instant t° [meaning that ψ(χ° - χ, t°) = δ(χ° - χ)],
then the wave function ψ(χ', t') is simply equal to the
propagator K(x', t'; x°, t°). Consequently, the propaga-
tor can be regarded as the probability amplitude for the
transition of the particle from the point x° at which it
was located at the instant t° to the point x' at the instant
t', and this probability P(x', t '; x°, t°), according to the
fundamental principle of QM, is equal to

Ρ (χ', t'\ x°, t") = | ψ (ζ ' , = Ι Κ (χ', t'; t", χ") (2)

O n t h e o t h e r h a n d , f r o m t h e v e r y d e f i n i t i o n o f t h e p r o p a -

g a t o r i t f o l l o w s t h a t

Κ [x\ t'\ x°, t") = j Κ (χ, t'; χ", t") Κ {χ", t"; χ", t") dx". (3)

T h u s , t h e a m p l i t u d e of t h e t r a n s i t i o n f r o m the p o i n t

(x°, t°) t o t h e p o i n t ( x ' , t ' ) c a n be r e g a r d e d a s t h e r e s u l t

of a t r a n s i t i o n of the p a r t i c l e f r o m the p o i n t (x°, t°) to

any i n t e r m e d i a t e p o i n t x " a t a c e r t a i n i n s t a n t t " , fol-

l o w e d by a t r a n s i t i o n f r o m t h e p o i n t x" t o the p o i n t x ' a t

t h e i n s t a n t of t i m e t ' . F i g u r e 1 i l l u s t r a t e s t h e f o r e g o i n g .

I n s o f a r a s w e know, t h i s i m p o r t a n t p r o p e r t y of the

p r o p a g a t o r w a s f i r s t n o t e d by D i r a c .

We n o t e t h a t i n c l a s s i c a l t h e o r y , for e x a m p l e i n the

t h e o r y of B r o w n i a n m o t i o n , we would h a v e in (2) for t h e

t r a n s i t i o n p r o b a b i l i t y

Ρ (χ, ί'; x\ f) = \P (x'> t'-> *", t") Ρ (χ", t"; x°, t") dx", (4)

i . e . , t h e p r o b a b i l i t y of t r a n s i t i o n f r o m the p o i n t x° t o t h e

p o i n t x ' i n t h e t i m e t — t° i s e q u a l t o t h e p r o b a b i l i t i e s

t h a t t h e p a r t i c l e s wi l l fa l l on any i n t e r m e d i a t e p o i n t x '

w i t h i n a t i m e t " - t° ( i t i s c l e a r t h a t t ' > t " > t°), and

t h e y wi l l " f i n a l l y " l a n d a t the p o i n t x ' f r o m the p o i n t x "

a f t e r a t i m e t ' - t " .

B r e a k i n g up t h e t i m e i n t e r v a l s a n d i n t r o d u c i n g new

i n t e r m e d i a t e p o i n t s , w e o b t a i n f r o m (4)

Ρ (χ1, t'; x°, f) = \ . . . \P (x, t'; xn, tn) dxn Ρ (χη, tn\ x n . u in_,)
J m!
1 η

. . . Ρ (x2, h; xu h) dxx Ρ (xu tu x\ t«),

(5)

where the transition from the point (χ , t^ to the point

(x ' ; t ') i s regarded as a result of s imi lar transi t ions via
a sequence of intermediate points (xx, ti), (X2, t 2 ) , ...,

(xn> t n ) ·
Such a sequence i s called a Markov chain. In quantum

theory we can obtain from express ion (3) a formula
analogous to (5) for the propagator, namely,

= j . . . § Κ (χ, /'; xn, tn) dxn Κ (xn, ln; xn_,, <„_,) dxn^
1 η

. . . Κ (x2, t2; xu U) dXi Κ (χ,, U; χ", ?). (g)

T h u s , i n Q M the M a r k o v c h a i n i s m a d e up not of p r o b a -

b i l i t i e s of p r o b a b i l i t y a m p l i t u d e s ( t h i s f e a t u r e of q u a n -

t u m t h e o r y ( " i n t e r f e r e n c e of p r o b a b i l i t i e s " ) d i s t i n g u i -

s h e s i t r a d i c a l l y f r o m t h e c l a s s i c a l t h e o r i e s . We n o t e

t h a t v a r i o u s a t t e m p t s t o b a s e Q M on c l a s s i c a l m e c h a n -

i c s fai l p r e c i s e l y i n t h i s r e s p e c t . F i g u r e 2 s h o w s one of

t h e " t r a j e c t o r i e s " of the p a r t i c l e f r o m the p o i n t (x°, t°)

t o t h e p o i n t ( x ' , t ' ) ; t h e t i m e s t . a r e c h o s e n t o b e e q u i -

d i s t a n t , s o t h a t t. = A t - j (j = 1, 2, . . . , n ) .

T h e w o r d " t r a j e c t o r y " i s u s e d i n q u o t a t i o n m a r k s ,

for i n a c c o r d a n c e wi th t h e v e r y m e a n i n g of t h e M a r k o v

c h a i n e a c h s e g m e n t (x-, t; X: x , ' i . j ) c a n be b r o k e n up

i n t o s m a l l e r b r o k e n s e g m e n t s . T h u s , o u r " t r a j e c t o r y "

h a s no d e r i v a t i v e , j u s t a s a p a r t i c l e e x e c u t i n g B r o w n i a n

m o t i o n h a s no d e r i v a t i v e .

T h e m e t h o d of f u n c t i o n a l i n t e g r a t i o n ( o r ' / p a t h i n -

t e g r a l s " ) i s b a s e d on the a s s u m p t i o n t h a t the p h a s e of

the propagator K(x. , t. ι ; χ., t.) equal to the probabil-
ity amplitude of a transition from the point (Xj, t̂ ) to the
point x. + 1 at the neighboring instant of time t. = t.

+ At (At > 0 and is small) is determined by the class-
ical action W[x. + 1(t), x(t)J, equal to

tt\ = j X (x (t), χ (ί)) dt,W
ί1 where #(x, x) is the Lagrangian of the classical system,
written out here for a system with one degree of free-
dom. In greater detail, we have in the nonrelativistic
case

Χ {χ, χ) = (<) -U(x (<)),

where m is the particle mass, x(t) its velocity, and U
the potential energy, which depends on the particle co-
ordinate x(t). We replace the x(t) in the small time
interval At by a segment of the broken line x(t) passing
through the points x(t· +1) = x, + 1 and x(t·) = x=. Then

x(t) « (χ, + x - x-)/At and we obtain in lieu of (7)

W Ixj+u 0+i: XJ< *A = I"1 (xJ+i — zj)2l2At\ — U (xj) At.

t -
tn -
tn-1

t2 -

t
/

\ j.—

Λ
x» x, a

A I !
ι ι <

• 2 x j xn~f xn - τ'

FIG. I FIG. 2
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T h e F e y n m a n q u a n t i z a t i o n p o s t u l a t e c o n s i s t s of t h e
a s s u m p t i o n t h a t

Κ (χ1+1, tJ+l; xh tj)
= (m/2nih At)1'" exp - U M\,

and the factor preceding the exponential i s chosen such
that

Κ (xj+u tJ+i; Xj, t})tM^t] = 6 (xJ+i — xj).
Δί->0

T o o b t a i n t h e p r o p a g a t o r p e r t a i n i n g t o t h e f i n a l t i m e

i n t e r v a l , w e c o n s t r u c t a M a r k o v c h a i n i n a c c o r d a n c e

w i t h f o r m u l a ( 6 ) :

if (x1, t'\ χ", t°)

= \ Κ {χ', /'; ! „ . ! , tn-i) <*£„_, j if (xn.u in_,; xn_2, tn_2) dxn_2

. . . ^ if (x2, h; xt, t,) dx, Κ (χι, ί,; χ\ ί»),

(9)

w h e r e x ' = x n , t ' = t n , x(t°) = x°, ..., and a s s u m e t h a t
tj = t 0 + j At, At > 0, j = 0, 1, 2, ..., n, s o t h a t t ' = t n

- > t
n - r

We now take the l imit a s At — 0 and η — « (at fixed
t n = t ' and t 0 ) . Then each of the propagators in (9) can
be represented in the form (8), and we obtain

Κ (χ', f; ΐ · , i») = lim [(m/2nift At)"'2 j (far, j dx,... j <&„_! ] . - .

where δχ = (m/2wiRAt)n / 2dx 1dx 2 ... d x n . 1 , and

(x(t), x(t))dt, (11)

and the integral i s taken over all the possible paths
joining the points (x', t') and (x°, t°). Out of these
t ra jector ies only one, namely that corresponding to the
minimum of the action function

W {x («)} = 0, ( 1 2 )

i s t h e c l a s s i c a l t r a j e c t o r y o f a p a r t i c l e m o v i n g f r o m
( x ° , t°) t o ( x ' , t ' ) . F r o m ( 1 2 ) w e o b t a i n t h e e q u a t i o n s o f
m o t i o n o f t h e p a r t i c l e i n L a g r a n g i a n f o r m .

T h e i n t e g r a l ( 1 0 ) , w h i c h i s t h e l i m i t o f a s e q u e n c e o f
n - t u p l e i n t e g r a l s , i s v a f u n c t i o n a l i n t e g r a l o r p a t h i n -
t e g r a l . I t s e x i s t e n c e i n t h e s e n s e of t h e i n d i c a t e d l i m i t
w a s p r o v e d i n t h e m a t h e m a t i c a l l i t e r a t u r e ^ f o r a
b r o a d c l a s s of p o t e n t i a l s U ( x ) .

A s i s w e l l k n o w n , K ( x ' , t ' ; x ° , t°) c a n b e e x p r e s s e d i n
t e r m s of the eigenfunctions φη(χ) and eigenvalues E n of
the energy o p e r a t o r ^

if (x', t'; x\ t") = 2 φη
(13)

Feynman gives for this quantity a new definition, which
is simultaneously his quantization postulate.

It is important to note that in order to construct the
quantum quantity Κ we must know the Lagrangian χ of
the class ical system and not the Hamiltonian Si a s in the
Schrodinger scheme. In addition, there is no canonical
quantization postulate that calls for replacement of the
classical c-number quantities by the o p e r a t o r s χ and p.

We wish to dwell further on the Hamiltonian form of
the Feynman integral . It i s shown in1-6-1 that instead of

the path integral (10) in configuration space {x(t)} it i s
more convenient in some cases to consider an expres-
sion for K(x', t ' ; x°, t°) in t e r m s of a functional integral
containing the Hamiltonian$£(x, p), where the integra-
tion is car r ied out along the t ra jec tor ies in phase space

= C f exp \~ \ ip (t) i(t) — ffl (x (<), Ρ (0)1 d/ | δ3ζδ3/>.

F o r t h e s i m p l e s t H a m i l t o n i a n ^ = (p 2 /2m) + U(x) (and i n
g e n e r a l iorSS t h a t d e p e n d s q u a d r a t i c a l l y o n p) i t i s
e a s y to p r o v e t h e e q u i v a l e n c e of (10) a n d (14). I n d e e d ,
t h e a r g u m e n t of t h e e x p o n e n t i a l (14) c o n t a i n s a g a i n t h e
a c t i o n i n t e g r a l e x p r e s s e d in t e r m s of t h e H a m i l t o n i a n
funct ion. B r e a k i n g u p , a s b e f o r e , the s e g m e n t [t°, t ' ]
into η equal intervals At and approximating the functions
x(t) and p(t) by piecewise l inear and piecewise constant
functions, we can rewri te accordingly (14) as the l imit
of an (2n + l)-tuple integral (the values of the momenta
p x and p n on the ends of the t ra jector ies a r e not fixed;
the integrations a r e car r ied out with respect to them,
too):

lim Ι (1/2πί)3" \ ... \ d3pld
3pz ... d*pn d

3xt ... d3xn-, M 5 ,
~ - L J i . . . - . J < 1 5 '

X exp {(i/Ji) 2 \Pl (xi-xj-ΰ - (Pj/2m) At-U (XJ) At]} ]

= K(x', f; x\ i°).

We now i n t e g r a t e wi th r e s p e c t of a l l p . ; t h i s i s e a s i l y
d o n e by n o t i n g t h e fo l lowing:

w h e r e Δ χ . = χ. — χ.

As a resul t we find that both definitions of Κ coincide

lZ [ (^r)" l· · · ί d3pi • • •d3p» **« · · · d*x"->
1

x1_i)--li;-At~U(xj)At']}']=K(x·, ('; x\ t")

p {τ 1 [ T ^ W - ^ (i(0)]Λ} δχ.= C U p U ΐ

3. THE SCHRODINGER EQUATION

The Schrodinger equation for ψ(χ', t') in the
Lagrangian and Hamiltonian forms of K(x', t ' ; x°, t°)
are derived in the following manner. We consider Eq.
(1), in which the t i m e s t° and t ' differ by an infinitesim-
ally smal l amount At, t ' = t° + At; then

)= \ K(x', (16)

We t a k e f o r K ( x ' , t° + At; x°, t°) t h e L a g r a n g i a n f o r m (8) :

e x p a n d i n g i n t e r m s of t h e s m a l l q u a n t i t y At i n (16), we
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have

We introduce the substitution ξ = χ' - x°; then

• (18)

Integrating with respect to ξ in (17) with allowance for
the substitution, we note that the succeeding t e r m s of
the expansion in (18) give higher o r d e r s in At. Indeed,

j d't exp l(im/2H At) | s j = (2πίί At/mf'2,

j (Ρξξ exp [(im/2% At) ξ*] = 0,

j d s l | a exp i(im/2h At) ξ»] = (Zntl At/mf2.

As a resul t we obtain Schrbdinger 's equation

In the Hamiltonian formulation we have for the case
when t ' = t° + At
ψ(ζ', fl + At)

= f d'i» f ,f!!,· exp (4- \Ρ (χ'—χ*)—^- — Αί·υ (χ')Λ\ ψ (χ°, ί°),

(20)

and, taking into account the smal lness of At, we can in-
tegrate with respect to ρ not exactly, a s in (11), but by
expanding in t e r m s of At; then

(20')

Substituting this express ion for K(x', t° + At; x°, t°) in
(20) and integrating with respect to x°, we a r r ive again
at Schrodinger' s equation:

, t"),

from which we get (19).
The scheme of quantization with the aid of functional

integrals makes it necessary to consider objects whose
theory has not been sufficiently well developed from the
mathematical point of view, and cal ls for the introduc-
tion of new mathematical concepts, but it does have a
number of advantages, a s already noted, over the canon-
ical quantization procedure . One of them is that in the
usual scheme we must specify the r u l e s for the a r range-
ment of the non-commuting quantities, but in our case
we do not have this uncertainty, since the sequence of
ρ and χ in the functional itself is immater ia l , inasmuch
as these a re c-number functions; this feature of the
scheme i s apparently important when it comes to quan-
tizing nonlinear s y s t e m s ^ 7 ' 8 3 .

It should be noted in this connection that Berezin
pointed out in a recent paper'-9-' an important feature of
functional integrals in (p, x) phase space. He cites a
number of examples demonstrat ing that the l imits of
finite-dimensional integrals [cf. formula (15)] approxi-
mating the functional integral (14) can tend to different
values a s n - « > , depending on the method used to break
up p(t) and x(t) into d i scre te values p ^ and x^, and indi-
cated a connection of the problem of placing the opera-
tors ρ and χ in ordinary quantum theory with the method

of constructing the approximating finite-dimensional
integrals. Thus, the question whether the problem of
the placement of the operators exists within the frame-
work of the functional method remains open, at any rate
for integrals in phase space (p, x).

4. TRANSFORMATIONS OF FUNCTIONAL ARGUMENTS

As seen from the preceding formulas, the functional
integrals were expressed in the Cartesian coordinates
X:(t) and p.s(t), but to extend the practical applicability
of this method it is necessary to express such quanti-
ties in curvilinear coordinates, primarily spherical
ones, which are important for quantum problems with
spherical symmetry. The correct form of the integral
in polar coordinates was derived in'-10·'; Edwards and
Gulyaev'-11-' pointed out the difficulties of this problem.
Indeed, whereas the correspondence p̂  — id/dxi holds
for canonical quantization in Cartesian coordinates, it
does not hold in polar coordinates. Peak and Inomata[lo:l

consider a particle of mass m in a central field U(|x|).
Within the framework of the Lagrangian formulation,
for a small interval At = t - t· i and closely-lying co-
ordinates x. and x. _ , the action function (7) can be ex-
pressed in the polar coordinates

Xj = {r} sin Θ; sin φ,-, r,· sin Θ,- cos qs,-, r} cos θ;) (21)

in the form

W(xh XJ-CI = (m/2) [(ή + r)_t)/At] -m(rjrM/At) cos Bj-At-U(r,);

(22)

we have taken into account h e r e the fact that

cos 0j — cos Θ; cos θ̂ _! + sin Θ; sin &j^ cos ( φ ; — φ -̂ι)>

(χ, - x}-tf = ή + r}., - 2OO-, cos B}.

If we use an expansion in Legendre polynomials

e U 0 0 S θ = ( I T ) " 2 Σ (2l+1) Pi ( c o s θ) / , . («),
1=0 2

where I , . is a Bessel function than the quantity

exp[(i/K)S W.] in (10) can be represented in the form
j ]

exP[ -±

here R, is the radial par t of the express ion
Ί

Interchanging the order of summation and multiplication
in this formula, we obtain for the function K(x', t ' ; x°, t°)

K(x', f; x\ i»)

) 3 ' " 2 f (cos Θ,) Λ, ,(o,r;.,)l

n 1
Χ Π >·? (t) dn (t) sin θ, (t) άθι (t) dq>, (t)} .

i.i=l
It turns out further that for the considered angular de-
pendence (22) it i s possible to integrate exactly over all
the angle variables; to this end it suffices to take into
account only the following equations:
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' ^ n r ~ ' i

w h e r e Y n a r e s p h e r i c a l h a r m o n i c s a n d

| j y f (8, φ) Υΐ (θ, φ) dq> sin θ άθ = δ,,.δ*».. (23)

Therefore
η η— 1

Γ . . . f Π [(21 j+ 1) Ρ,. (cos θ,)] Π »η θ, d6, άφ,

η ί

=(4n)"e , , j i6 W n 2 η * (β', φ-) η (β», ο -

χ' = ζ ' (r', θ', φ ' ) , ζ° = ζ» (r°, θ", φ°).

A s a r e s u l t , t h e r a d i a l a n d a n g u l a r c o n t r i b u t i o n s t o t h e

propagator Κ separate for each quantum number I

Κ (χ', ί'; ι0, ί°)

= Σ Σ Κ, (Γ', ί'; ι··, ί°) Π* (θ', φ') Υΐ (θ», φ").
1=0 η—Ι ^ 2 4 )

T h e r a d i a l p a r t o f t h e p r o p a g a t o r f o r t h e Z - w a v e i s g i v e n

b y a f u n c t i o n a l i n t e g r a l w i t h r e s p e c t t o t h e v a r i a b l e r ( t )

o n l y :

n-i
Π *' (Ο! »
1=1 i=l

(25)

and its calculation is already determined by the con-
crete form of the potential U(r).

Thus, the feasibility of obtaining functional quadra-
tures in terms of the angle variables with respect to
0(t) and φ(ΐ) for a given W in the spherically-symme-
trical problem enables us to write for Κ a functional
integral only with respect to the radial variable r(t) in
the form (24) and (25).

For the Hamiltonian form of the integral in spherical
coordinates we can write an analogous expression1·10-1:

K(x\ f; x\ io) = l ] exp [τ j (P*
η n - 1

Χ J[ (dpTjdpejdp9j) JJ (Γΐδί

and after integrating with respect to dpg., dp^., d6j, and

άφ: we obtain as a result formula (24) with a radial
function

ι η η
β χ ρ [ΐΓ I (Pr-Mi) dt] Π dp, Π Λ drt) ,

where

If, for example, we consider a particle in an attracting
potential U(r) = k2/r2, then the integration over all r. in
(25) is possible, ( see [ i o : l ) , and we then have the closed
expression

K(x', f; x\ i0)

Χ Σο ηΣ_( hm (mr'r'/i («' - ί·)) Υ?* (θ', φ') Υΐ (θ·, φ»),

method of integrating with respect to the angle varia-
bles in the functional integral is not effective for more
complicated functionals encountered in field theory. For
example, for the integral i 1 2 1

V I·
§exp[4~§ O(<i — t^jx^^x^)dtidt^ i-^-\ U(x2)dtl&x

1» to
introduction of the polar coordinates r, Θ, and φ :
\ exp [4" f j D (*i ~ h) r (f.) r (Z2) cos θ (ί,, t2) dt, dtz

1' η

+ ί-τ \ U (ra (ί)) dt TT d<f>ir\ drt sin 9j dQi,

where

cos θ (t,, i2) = cos θ (ί4) cos θ (tt) + sin θ (<,) sin θ (ί2) cos (φ (ί,) — φ (ί2)),

l e a d s , upon e x p a n s i o n in s p h e r i c a l h a r m o n i c s , to the

e x p r e s s i o n

V 1/2

^ H ^ ^*(θ», q»),
y (26)

which is extremely difficult to integrate with respect to
Θ, and φ , , for at each fixed angle 6i or φ* we integrate

a product of η factors Y;

 J (0,, φΛ, and formula (23)

does not hold. The reason is that the quadratic form in
the argument of the exponential in (19) in x(t) depends
on two times tx and t2, and for one fixed tx = t. we are

left with a sum in the exponential or with a product of
factors i n t 2 = t k in (26).

The connection between the canonical transforma-
tions in classical and quantum mechanics is more lucid
in the functional notation.

Let us consider the simple but important particular
case of the canonical transformation^6-1

The express ion (15) for the propagator then takes the
form

d*pn
K(p', f;

If, a s before, we putc#? = (p2/2m) + U(x) and consider
the case when t ' = t° + At, then, proceeding a s in the
derivation of (20'), we obtain
K(p', t°+At; p°, i°)

Further, assuming that the potential U(x) can be expan-
ded in the series U(x) = Uo + UiX + U2x + ..., we obtain

K(p', f+At; p\ <°) = β»(ρ'-ρ·)

We note in conclusion that, unfortunately, this brilliant

From this follows the Schrodinger equation for the
function ψ(ρ', t°), but in the momentum representation).

There are published proofs'-6'8-1 that linear canonical
transformations in classical mechanics correspond to
unitary transformation in the Feynman formulation of
quantum mechanics. A study of nonlinear canonical
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transformation within the framework of the functional
formulation r a i s e s difficulties, since mathematical
p r o c e d u r e s of nonlinear t ransformations for functional
integrals have not yet been fully developed (see1-1 '2-1).

Fadeev h a s recent ly pointed out'·8-1 an important ap-
plication of the Feynman method of quantization with the
aid of a functional integral in Hamiltonian form in situa-
tions when the canonical method encounters difficulties.

The point is that a class ical system can have a
Lagrangian X(q, q) for which the re lat ions

PS 4 0 )

cannot be solved with respect to q., i .e., we cannot ex-
p r e s s q in t e r m s of ρ and q, a s i s required to write
down to Hamiltonian<£#(q, p). Such Lagrangians a r e
called singular in1-8-1. The most interest ing examples
of sys tems with singular Lagrangians is obtained from
field theory for gauge-invariant fields (electromagnetic
field, Yang-Mil s field, gravitational field). All a re ex-
p r e s s e d by singular Lagrangians with additional condi-
tions or constraints imposed on the canonical var iables .
In the η-dimensional c lass ical-mechanics case, the
canonical var iables (q 1 ; q2, ..., q n ) and (ρχ, ρ 2 , . . . , p n )
therefore do not r u n through all the 2n-dimensional
phase space, owing to the constra ints

fa (?> P) = 0 (a = 1, 2, . . ., TO), m < n.

The quantization of such sys tems in the canonical
scheme has been the subject of a paper by Dirac'-1 3-1.
His schemes contains a number of difficulties, mainly
with the placement or, in Feynman's terminology, order-
ing of the operator mult ipl iers .

The additional conditions a r e taken into account in
the Hamiltonian form of the functional integral in the
following manner. If the relat ions φ (q, p) = 0 can be
solved with respect to m coordinates and expressed in
the form

?« = ?a (?*, p)

(q* a r e n— m independent coordinates), then this cal ls
for det \&φ /aq| £ 0. It turns out furthermore that the
observables a r e expressed not in t e r m s of all the η mo-
menta pj, but only in t e r m s of n— m momenta, i.e.,
there exist also m relat ions fQ(q, p) = 0. Therefore,
after the canonical t ransformations in which the new
momenta a re p * = ^ ( q , p), we shall have 2 ( n - m) varia-
bles (q*, q*, . . ., q n _ m ) , (p*, p* ,
of which we e x p r e s s the functional integral :

P * _ m ) , with the aid

,'. I'; 5 (
t 1t, ,=

We can also express Κ in t e r m s of 2n variables, with
allowance for the constra ints and the additional condi-
tions, in the form of an integral with respect to all 2n
var iables :

/ H ( 2 * * -
(0 3=1

Χ Π
i,a=

-?(«*, P'))dpa{t)dqa(t)

«.)=!
In concluding this chapter, we indicate one interesting

numerical calculation of a functional integral, which
yields the ground level of the helium atom. A method

for calculating the Wiener functional integral can be
found already in the paper by Gel'fand and Chentsov'-14-1

and consists in the following. The functional integral i s
approximate by finitely-multiple Riemann or Stieltjes
integrals , and the la t ter a r e calculated by the Monte
Carlo method with a computer. This method was used
to calculate the lowest polaron energy level, by evaluat-
ing 190-tuple and 280-tuple approximating integrals .
The resu l t s a r e : 0.9912 for 300 t ra jector ies , 0.9940 for
400 t ra jector ies , and 0.9999 for 600 t ra jector ies , a s
against the exact value 1.0000 (in the appropriate units).

Evseev'-15-' calculated in this manner the value of the
integral

\ K(x',
+ 00

'dt' = f
i' f

w h e r e W i s t h e c l a s s i c a l a c t i o n o f t w o e l e c t r o n s i n t h e

f i e l d o f t h e h e l i u m n u c l e u s . S i n c e , o n t h e o t h e r h a n d , w e

h a v e f r o m ( 1 3 )

^etWWKix', t'; x\ O)dt' = ^i<fn(x')>fl(x0)-2n6(En-E),

η

an approximate calculation of Κ yields upon integration
with respect to t maxima (in lieu of δ ( Ε η — Ε)) at the
points E n . Integration in the m-tuple approximating
integral with respect to xj is car r ied out from — a to + a
(a = Κ /me 2 i s the radius of the first Bohr orbit) „ since
the function exp(iW/fi) osci l lates rapidly at large χ and
makes a small contribution to the integral . The value
obtained for the ground level of helium is 2.92 ± 0.05,
which differs by 0.57% from the experimental 2.90351.

5. CONTINUAL REPRESENTATION OF THE GREEN'S
FUNCTIONS IN THE THEORY OF QUANTIZED
FIELDS

We turn now to quantum field theory (QFT). A funda-
mental role i s played in Q F T by the Green ' s functions
of quantized fields, knowledge of which enables us to
find the physical c h a r a c t e r i s t i c s of the interacting fields;
in part icular , they make it possible to obtain also the
scatter ing amplitudes (this question will be discussed in
detail l a t e r on).

Many authors'-1 6 '1 7-1 obtained with the aid of functional
integrals expressions in closed form for the Green ' s
functions. For example, the single-particle Green ' s
function of the fermion field i s given by
G(x, y)

- JG(i , y\A)S0(A)exp\—^ j j ^ 4 η Ο ϊ ι

ν ( | - η ) Λ ( & Μ ν ( ΐ ) ] «Μ

X { j S0(A) exp [—i- j J d'lrfVWi-ri) Λμ(ξ)4ν(η)] δΜ}"1 ;

(27)
where 64A = nd*A(x); G(x, y|A) is the Green's function

χ
of t h e f e r m i o n i n a c l a s s i c a l e x t e r n a l f i e l d A ^ , a n d So(A)

i s t h e S m a t r i x a v e r a g e d o v e r t h e f e r m i o n v a c u u m , w i t h

the operators of the boson (electromagnetic) field Αμ
replaced by classical field functions; D" 1 ^ is the rec ip-
rocal of the free propagation function oi the boson

\ OjA (x - (ζ - y) dH = δ*(χ- y) δμ

The first problem arising in the calculation of (27) is
the determination of the functions G(x, y|A) for an arbi-
t r a r y external field Α μ . For an e lectron-posi t ron field,
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G satisf ies the Dirac equation

[»VA -m + eyvAv (x)] G (x, y | A) = -δ4 (χ - y). (28)

E v e n t h e s o l u t i o n of t h i s e q u a t i o n wi th a n a r b i t r a r y f ield

Αμ(χ) i s a t remendously difficult problem in mathe-
mat ics . However, as first shown by Feynman'· 4-', the
solution of this equation can be formally represented
also in the form of a functional integral (this procedure
yields the Green ' s functions of the Klein-Gordan, Dirac,
and Schrodinger equations 1- 1 6 ' 1 8 ' 1 9- 1 for an a r b i t r a r y ex-
ternal field. If the external fields admits of a closed
solution of (28), functional quadratures can be obtained.
A favorable feature in this approach is that the Green ' s
function obtained in this manner makes it possible, if
the vacuum t e r m s in (27) a r e neglected (by putting So(A)
= l ] , to c a r r y out functional averaging over the external
fields and obtain the quantum function G(x, y) without
taking into account the polar izat ion of the fermion
vacuum. It will be shown subsequently that this formal-
ism has a fully covariant form since, in contrast to the
preceding formulas, the variable singled out h e r e is not
the time t, but the proper t ime τ.

Let us examine this formalism using the Dirac equa-
tion (28) as an example, and let us introduce, as usual,
the Green ' s function of the squared Dirac equation:

G (x, y \A) = [ίνμ9μ + m + <?γμΛμ (x)l 9 (x, y \ A).

We then have for 3 the equation
{(id. + eA» (x)Y - m* + βσμ ν3μΛ τ (x)\ 9 (x, y \ A) = -δ4 (χ - y).

(29)

U s i n g t h e e x p o n e n t i a l r e p r e s e n t a t i o n of the r e c i p r o c a l

o p e r a t o r , p r o p o s e d by F o c k t 2 o : l and d e v e l o p e d by

exp {i j d\ [(ΐ3μ (ξ)

Feynman
form:

S{x, y\A) = i

+ eA» (ξ))» + βσμν (Ι) 3μ (ξ) Αν (ξ)}} δ4 (χ - y);

(30)

the e x p o n e n t i a l in t h i s e x p r e s s i o n , w h i c h c o n t a i n s the

non-commuting operators θμ, Α μ and σ μ ι , , i s meant

h e r e to be'-21-1 a T T -exponential, where the ordering
subscript τ has the meaning of the proper time divided
by the m a s s m. All the opera tors in (30) a re assumed to
be commuting functions that depend on the p a r a m e t e r τ.
We now c a r r y out a functional Four ier transformation,
which leads to the first degree of the differentiation
operator 8μ in the argument of the exponential:

τ

χ, ξ)]·}

}

(31)

where

δ4ν=ΠΛ(ξ),
i

C = 1/βχρ [ - 1 Ι νμ

Having now the first degree of the operator θ μ in the
argument of (31), we can use it as a shift operator in
accordance with the " d i s e n t a n g l e m e n t " rules'-2 1-1; as a
resul t we obtain the following express ion for S(x, y |A):

oo τ

e-^C j δ'ν exp { - i | d% [νμ (ξ) - 2e [ νμ (ε) (32)

In this expression the opera tors σμ^,(ξ) remain, in
Feynman's terminology, not " d i s e n t a n g l e d " * , i .e., they
depend on ξ as an ordering index, and the T T -order ing
r e m a i n s in force for them.

The Green ' s function for the Klein-Gordon equation
i s obtained from (32) at σ μ [ , = 0. For the integral with
respect to τ to be convergent at the upper l imit, it i s
assumed that the m a s s m has a negative imaginary in-
c r e m e n t — i e ; formula (32) thus de termines the causal
G r e e n ' s function of the Dirac or Klein-Gordon equation.

It is possible to obtain in s imi lar fashion the re tarded
G r e e n ' s function of the Schrbdinger equation'·1 9-' with an
a r b i t r a r y potential U(x, t):

G (x', f; ι", ί») = έθ (/' - ί°) C

r-i

X exp [-if- Γ
0

- i § U (ί' + ξ; x° + 2
0

C-10
Χ δ"»(χ-χο-2

ν (η) dr\) d\\

(η)(2η).

(33)

Both express ions, (32) and (33), can be easi ly reduced
to a Feynman path integral of e^, where W i s in both
cases the action integral . To this end it suffices to
change over from integration with respect to ν (ξ) to
the new functional var iables χ,,(ξ) = 2 ^ μ ( ξ ) . The de-
terminant of this transformation is equal to unity, and
we obtain for the re lat iv is t ic function "§:
S(x, y\A) =

1 , we r e p r e s e n t the solution (29) in operator =;C ' di exp { - i f d\ [χμ (ξ) - ( χ )

(34)

(owing to the 64-function in (32), we have put Χμ(τ) = χ
and Χμ(0) = y). The argument of the exponential in (34)
contains the relat ivist ic action function of a charged
part ic le in a field Au:

W- [xHl)-2exliAll(x)-m''}dt

and a spin par t ϊσμ^θμΑμ, which has no counterpart in
the c lass ical theory. The integral i s taken over all the
t ra jector ies joining χ and y. For the Schrodinger func-
tion (33) one makes the substitution ι^(ξ) = χ(ξ) , where ξ
i s a lready simply the t ime.

Examples of concrete fields Αμ(χ) for which the inte-
gration with respect to ν in (32) can be c a r r i e d out

accurately a r e given in'-18-'.

6. APPROXIMATE METHODS IN FUNCTIONAL
INTEGRATION

For an approximate calculation of the functional in-
tegra l s in QM and QFT, many authors'- 4 ' 1 9 ' 2 3- 1 have con-
sidered, f irst of all, the stat ionary-phase method devel-
oped in mathematics for ordinary integrals . Its appli-
cability can be regarded as justified if W 3> K, but there
a r e still no es t imates of this method even for the simp-

*The problem of "disentangling" Dirac matrices in the solution of the
Dirac equation in an arbitrary external field was considered by
Fradkin1221.
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l e s t functional integrals t 2 3 ' 2 4 - 1 . In this method one seeks
the ext remal t ra jec tor ies [c lass ical , see (12)], from the
condition

6 W [ Z d ] = 0 . • /OCX
(ΟΌ)

T h e a c t i o n i s e x p a n d e d a b o u t t h e s e t r a j e c t o r i e s :

w h e r e , f o r e x a m p l e ,

-18»W [zcl ]

l = J dt
didx

is a quadratic functional with respect to x(t). Equation
(35) on a classical trajectory has the following form in
the case of the relativistic problem (34) (without the

(36)

For the Schrbdinger equation we have (see [ l e : l )

(37)

Equations (36) and (37) differ from the equations of mo-
tion of a c lass ical part ic le in that at the initial instant
one specifies not the coordinate and the velocity, but two
values of the coordinate at the ends of the interval
U", t ' ] :

*d (<' - i°) = *- * c l (0) = x°·

Unfortunately, for a r b i t r a r y fields Αμ and potentials
U, which must be considered in order to construct the
quantum function G(x, y) in accordance with (27), it is
impossible to obtain exact solutions of (36) and (37).
This quasiclass ical approximation of the functional in-
tegra l can therefore be of pract ica l use in those cases
when (36) and (37) can be solved by some other method
outside the framework of perturbat ion theory.

It was pointed out i n t 2 5 J that functional integrals can
be calculated by the stationary-phase method in the
case of quantum fields described by Lagrangians of the
type X = X(K, I), where Κ = Άμφδμφ/2 i s the free-field
Lagrangian and I = φ2/2. Such fields were called by one
of us (D.B.) essential ly-nonlinear. It was shown in the
cited paper that if the dimensionless quantity
Μ = dx/dK 3> 1 in the space-t ime region of pract ical
importance, then the stat ionary-phase method can be
used. The action W {<p(x)} can then be taken in the form

where φ(χ) = φογ(χ) + Ψ(Χ). The quadratic form
is the action for a free quantum field ψ(χ), but one
propagating in space with a curved m e t r i c . This m e t r i c
i s determined by the field φ(χ) and i ts f irst derivatives.
It turns out that this approximation is equivalent to
introducing in the Poisson quantum brackets

[ψ (χ), ψ (χ')1 = Λ* δ (χ - χ)

an effective Planck constant h* = fi/M, where Μ is the
mean value of M, under the assumption that Μ 3> 1. In
this case the quantum fluctuations of the quantities ψ(χ)
and ip(x) a r e small and the quantum field becomes close
to the class ical one.

W e p r o c e e d t o c o n s i d e r a n o t h e r m e t h o d o f a p p r o x i -

m a t i n g f u n c t i o n a l i n t e g r a l s o f a p a r t i c u l a r t y p e . T h i s

m e t h o d y i e l d s t h e a s y m p t o t i c e x p r e s s i o n i n t h e i n f r a r e d

r e g i o n o f q u a n t u m e l e c t r o d y n a m i c s , a n d a l s o a l l o w s u s

t o s t u d y t h e a s y m p t o t i c b e h a v i o r o f c e r t a i n p a r t i c l e -

s c a t t e r i n g p r o c e s s e s a t h i g h e n e r g i e s a n d l o w m o m e n -

t u m t r a n s f e r s . I n o r d e r t o s i m p l i f y t h e p r o b l e m , w e

c o n s i d e r a s i m p l e r e l a t i v i s t i c a l l y - i n v a r i a n t m o d e l ^ 1 8 - 1

of the interaction of two scalar fields, φ with mass μ
and ψ with mass m. The interaction Lagrangian of this
system is

#lnt = gty2 (Χ) φ (χ).

The Green ' s function of the part icle of field ψ in the
class ical external field φ(χ) sat isf ies the re lat ion

№* _ m * + g(f (X)] G (x, y | φ ) = -δ4 (χ - y).

R e p e a t i n g t h e p r o c e d u r e d e s c r i b e d i n S e c . 5, w e g e t

G(x, y\<f) = i f Are-*"»'exp {i \ [i* dl +gcp{x, I)] dU δ* (x - y). (38)
u ο

I n a n a l o g y w i t h ( 3 1 ) , w e m a k e t h e t r a n s f o r m a t i o n

τ τ τ

exp [i I rf|i- dl (I)] = C j 6*v exp [ - 1 j ^ (ξ) d\ + 2i $ νμ (ξ) 3μ (ξ) dl].
0 ϋ 0

S u b s t i t u t i n g t h i s e x p r e s s i o n i n ( 3 8 ) a n d " d i s e n t a n g l i n g "

the differentiation operator 3μ, we get

G (x, y | φ) --- — I f dTe~imH

ο

We n e e d next t h e F o u r i e r t r a n s f o r m of the G-funct ion

G (p, q! Φ) = ( d*x d'ye^v-G (x, y j φ) =

— i f d'y >TC

τ ξ

X exp I - i f [G£ - g<f (x + 2p% + 2 j ω (η) <2η) ]dU •

(40)

we have made here a change of functional variable ΐ 'μ(ξ)
= ρμ + ω μ ( ξ ) ; the integral with respect to d4x i s
inated by the 64-function in (39). At g = 0 we get
(38) the free propagation function

Go (ρ) = (2π)<δ* (p-q)/<j?-m?+ ie),

μ
elim-
from

since

If we a r e not interested in the infrared region in this
model at μ = 0, then it i s proved ίηί28>2ί° that the con-
tributions of the vacuum polarization of the field ψ can
be neglected, S0((p) = 1, and we obtain from (27) the
quantum function G(p) by integrating with respect to φ
in accordance with (27) and (40):
G(p) =

0°
= i f

I)

where

τ τ

6%exp {-i f <ϋω'μ(ξ)-Μ i" f
0 0

(41)
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Α (ξ,, ξ, ω) = j dlkD (k) exp [ - likp | ξ, - E21 - 2/ft | ω (η) dri] ,

a) Infrared asymptotic form of G r e e n ' s function. It
i s impossible to integrate exactly with respect to δω
in (41), and we therefore calculate the integral approxi-
mately in the investigated infrared region (the effec-
tively-virtual momenta k a r e smal l) . To this end, we
a s s e s s the role of the functional argument ω in

I f w e c o n s i d e r t h e p e r t u r b a t i o n - t h e o r y s e r i e s , e x -

p a n d i n g ( 4 1 ) i n p o w e r s o f g\, t h e n t h e f u n c t i o n a l i n t e g -

r a l s c a n b e e a s i l y e v a l u a t e d , s i n c e w e g e t e x p r e s s i o n s

o f t h e t y p e

] -= Ιω'Δ (I,, £,2) =
 c \ δ4ω exP [ —' J

ο

j
(42)

We see therefore that the functional argument in
Δ ( ξ ι , ξϊΐω) leads after integration to the appearance of
a quadratic dependence on the virtual momenta k.
Therefore, if we a r e interested in the low-energy
region, where the k a r e effectively smal l , we can
neglect in Δ the dependence on ω. Results pertaining
to the infrared region were obtained by Fradkin^-6-1 and
Milekhin^27-1 to the same degree of an approximation,
but by another method. Such an approximation, how-
ever, a l t e r s appreciably the behavior of Δ ( ξ 1 ; ξ2) at
large momenta k, and leads, in par t icu lar , to s t ronger
divergences of the non-renormalizable quantities; we
shall therefore not neglect this dependence, but r e s o r t
to another procedure, namely approximation of the in-
tegra l s with respect to ω.

To explain the meaning of this approximation, we
consider the expansion, in powers of g?, of the quantity

t ,,, Ε2|ω)]

τ

= 1—1Γ Π
" θ

Δι(ξ ι , ξ2) is defined in (42), and

Δ, (Ε,, E2, ξ,, l,)=-.C f 6«ωβχρΓ-ί | ω2 (η) d<\ 1

(43)

ξ,, Ε,2, ξ,,

and expand the exponential under the integral sign in
t e r m s of the differences Δ - Δ. We then obtain for A in
place of the expansion (43) a new s e r i e s with the ex-
ponential factor separated:

Λ - e x p - ^

χ Λ, (Ε,, ξ21 ω) Δ, (E3,

where
Θ(Ε,,Ε2, ξ,,

ω) == £ rf4A-, £ <№»£> (*,) Ο (ft2) exp <i (k\ | 2pft,) |

i (K + 2pk2) | Es - E41 + ZikfcO (ξ,, ξ,, ξ,, ξ,)},

(44)

1,

x < o .

We approximate the functional Δ ( ξ 1 ; ξ 2 |ω) in the
infrared region by i ts mean value Δ ( ξ χ — ξ2) defined in
(42). We now rewri te (43) in the form

- ^ | j [Δ-Δ]

y.C [ ( Δ -

"=" " (45)
An advantage of such an expansion, in comparison with
perturbat ion theory, i s that after separating the factor

τ

exp[-i-4l j j Δ (E,, yiiE.dE,]

in front of the ent i re s e r i e s and integrating with respect
to ω, each t e r m of (45) no longer contains infrared
singulari t ies, which are present only in the exponential
factor.

We note that further par t ia l summation of the s e r i e s
(43) is possible. To this end it is necessary to choose
a s the approximation of

τ

j f Δ (ξ,, ξ,

the quantity

Δ , - Δ · ) . (46)

We then have in lieu of (45), a s a common factor, an
exponential with (46) as the argument, and a s e r i e s in
which g? is the first t e r m that follows 1. In the infrared
region, however, this does not change the resu l t s ,
since the second t e r m of (46) has no infrared singulari-
t ies, and the first t e r m is decisive.

If (45) is substituted in the express ion for the G r e e n ' s
function (41), then we obtain an expansion in powers of

a common factorgi with

which, as shown in'-18-1, includes all the infrared singu-
l a r i t i e s of the Green ' s function.

Each t e r m of the s e r i e s (45) r e p r e s e n t s the differ-
ence between the express ion Δ(ξ 1 ; . .., ξ η ) , obtained in
perturbation theory, and a like express ion in which the
t e r m s kjkj with j ^ j i s discarded. This can be seen in
the gt-order :

by comparing (42) and (44). Thus, in the language of
perturbat ion theory the proposed approximation of the
functional integral means, that t e r m s of the type kjkj
a r e discarded from the part ic le propagators ,

Σ hY- • 1/(2;, 2 kt
(47)

b) Asymptotic behavior of the scat ter ing amplitudes
at high energies and low part icle scatter ing energies .
Recently, a number of workers have stated that the ap-
proximation of the propagators (47) is valid also at high
energies of the colliding par t ic le s , at momenta | p | 3> m.
It i s assumed in this case that the t e r m 2 ρ Σ kj in the

propagator (47) is dominant in comparison with Σ
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An analysis of this approximation, within the framework
of perturbation theory, has shownt30'31^ that it accounts
well for the asymptotic behavior of the amplitudes at
high energies, s —· «, and at low momentum transfers
t, t/s «: 1.

As follows from the preceding section, the method of
functional integration yields closed expressions for the
Green's functions in the approximation of (47). We shall
demonstrate in this section that this method is effective
in the study of the high-energy asymptotic behavior of
scattering amplitudes. Starting from the preceding con-
siderations, we can obtain here the Glauber'-32-1 repre-
sentation, which is also called the eikonal or the
geometrical-optics approximation for the scattering
amplitude in field theory. The application of the geom-
etrical-optics method to the scattering of elementary
particles was developed by the present authors in earlier
papers^ 3 3 ' 3 4 3 .

We begin the analysis with the scattering of a high-
energy scalar particle by an external potential1-35·1 <p(x).
We can obtain the amplitude of the process f(p, q|<p)
(p and q are the momenta of the particle before and
after the scattering) if we know the Green's function
G(P> ql<p) o f this particle [formula (40)]. To this end it
is necessary to go over to the mass shell with respect
to the external momenta in accordance with the relation

p* ? Ι Φ ) = [ ( p 2 - m 2 ) ( ? 2 - m 2 ) < ? ( / > , ? | φ ) ] . (48)

The procedure of taking the limit in (48) consists of
separat ing from the function G(p, q|<p), specified by the
integral (40), two pole express ions (p2 — m 2 )" 1 and
(q2 — m 2 ) ' 1 , which a re two free Green ' s functions. This
procedure was developed in detail i n ^ 2 9 ' 3 5 ' 3 6 ] . We p r e -
sent here the final resul t for f(p,

/ ip, 11 T) = j d W " " "

X j dkexp {iXg J φ

gf (x) C [ δ'ω exp [ - i j

(η)ίη)

Changing over to a new functional variable ζ(ξ)
(49)

(ύ(η)άη, we rewr i te (49) in the form of a Feynman

integral along the paths z( ξ) :

/ (ρ, 9 | <P) = g \ d*xel '"-•" x Ψ (χ) j d\ f bze™ Μ

where

i s the action function of a re lat iv i s t ic part ic le moving
in a potential φ ; ξ plays the role of the proper time of
the par t ic le , at ξ = 0 the part ic le is at the point x, and
ζ(ξ) i s the variable describing the deviation of this par-
ticle from straight-l ine paths along the 4-momentum
ρ (ξ > 0) before the scatter ing and along q (ξ < 0) after
the scatter ing.

Considering the asymptotic behavior of the amplitude
(49) at large momenta p 0 , q0 3> m, it is natural to r a i s e
the following question: can we neglect the functional

variable ζ(ξ) in the argument ψ compared with the large
quantity ρθ(ξ) + q0(-?)> and will this be a good approxi-
mation of the integral at large p 0 and q 0 ?

The answer to this question is connected with the
character of the function φ . If the potential φ i s a
smooth, non-oscillating and bounded function satisfying
the conditions

ΐ | / | φ ( * ) | , ( 5 0 )

then it can be proved'-35-' that the expansion of φ in a
Taylor s e r i e s with respect to the functional argument
in (49) and a subsequent integration with respect to ω
leads in the argument of the exponential (49) to the ex-
press ion

φ (χ + 2 | [ρθ (ξ) -;- q θ (-ξ)]) + Ο (1/| ρ |) (51)

This resu l t can be understood by r e a s o n i n g a s fo l lows.
The l a s t two condit ions of (50) are the condit ions for the
val idity of the q u a s i c l a s s i c a l approximation. For an ap-
p r o x i m a t e ca lcu lat ion of the functional integral we can
therefore u s e the s tat ionary-phase method c o n s i d e r e d
above, when the main contribution to the integral i s
made by the c l a s s i c a l t ra jectory. Owing to the f i r s t
condition of (50), the two l inear paths along ρ when
ξ > 0, and along q when ξ < 0, a re also good approxi-
mations for the class ical trajectory. In this case the
approximation of the potential φ by its mean value in
accordance with (42) is a lso valid (and gives a more ac-
curate resul t than (51)):

The conditions (50) a r e the conditions for the validity
of the Glauber'-32-' or eikonal representat ion of the scat-
tering amplitude, which follows directly from (49) at
small momentum t rans fers |p — q| [the scattering angle
i s a <C (pR)" l / 2 , where R is the effective radius of the
potent ia l ] . In the case of a potential φ (τ) that does not
depend in the t ime, we have

where

2|p|

The eikonal approximation obtained in this manner is
valid, a s shown in'-35-', in a wider range of angles; it
has made it possible to refine the r e s u l t s obtained by
Schiff t 3 7 ] within the framework of perturbation theory.
On the bas is of the approach presented h e r e , an eikonal
representat ion was obtained in'- for the amplitude of
the scatter ing of a Dirac part ic le by an arb i t ra ry poten-
tial.

We consider also the possible use of the approxima-
tion (45), and hence also (47), in the calculation of the
asymptotic behavior of the scatter ing amplitude of two
part ic les in the high-energy region at a fixed momentum
transfer . This method was used in^2 8 '3 0-1 to investigate
the asymptotic behavior of e las t ic-scat ter ing ampli-
tudes, and in subsequent papers 1^ 0- 1 to use the influence
of radiation correct ions to scattering diagrams.

The scheme for constructing the elast ic amplitude
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within the framework of the discussed approximation i s
a s follows. Knowing G(p, q|<p), we can, neglecting the
contributions from the polarizat ion of the nucleon
vacuum, So((p) = 1, obtain the quantum two-particle
G r e e n ' s function

J [ j D^(q) φ (?) φ ( — q) d*g]

p2, 92 | Φ) + G(Pl,

by integrating with r e s p e c t to ψ.
By going over to the m a s s shell with respect to the

external momenta, we can construct the two-particle
amplitude

(2it)'64 (pi + p 2 - 9i — 92) / (Pi. Ρ* 9i> 9a)

= lim [ | f i - K ) ( ! ! - " ' 1 ) ( i ' ! - m 1 ( « ! - " m l )

X G (gi, 92 I Pi- Pa)'·

w h i c h , u n l i k e t h e s i n g l e - p a r t i c l e a m p l i t u d e ( 4 9 ) , i s e x -

p r e s s e d b y a d o u b l e f u n c t i o n a l i n t e g r a l w i t h r e s p e c t t o

Wj and ω 2 ( integrals over the t ra jec tor ie s of the two
scat tered par t ic les) .

The express ion for f, which i s quite complicated in
form (see*-29'39-1), includes contributions of s u m s of
Feynman d iagrams of the type indicated on the left,
with d iagrams of the type with radiative correct ions
(right):

Pi

It i s s h o w n in1-31-1 t h a t t h e a p p r o x i m a t i o n (47) i s v a l i d i n

t h e h i g h - e n e r g y r e g i o n s — » a l s o a t low m o m e n t u m

t r a n s f e r s t f o r e x p r e s s i o n c o n n e c t e d wi th d i a g r a m s of

t h e f i r s t t y p e a n d i s not t r u e f o r e a c h d i a g r a m of t h e

s e c o n d t y p e . It i s p r o v e d i n ' - 4 1 · 1 , h o w e v e r , up to s i x t h

o r d e r i n c l u s i v e , t h a t i n e a c h o r d e r of p e r t u r b a t i o n

t h e o r y t h e s u m of d i a g r a m s of t h e s e c o n d t y p e , but not

a n i n d i v i d u a l d i a g r a m , h a s t h e s a m e a s y m p t o t i c f o r m at

s — 00 and a t f ixed t a s o b t a i n e d by m e a n s of t h e a p -

p r o x i m a t i o n (45).

T h u s , a s t u d y of t h e a s y m p t o t i c b e h a v i o r of a n i n d i -

v i d u a l F e y n m a n d i a g r a m m a y not d u p l i c a t e t h e a s y m p -

t o t i c b e h a v i o r of a s u m of d i a g r a m s of a g i v e n o r d e r ,

s o t h a t t h e d e v i c e s u s e d h e r e f o r t h e s u m m a t i o n a n d a p -

p r o x i m a t i o n of p e r t u r b a t i o n - t h e o r y s e r i e s wi th t h e a id

of t h e t e c h n i q u e of f u n c t i o n a l i n t e g r a l s m a y t u r n out to

b e m o r e s u i t a b l e for t h e s t u d y of a s y m p t o t i c f o r m s in

q u a n t u m field t h e o r y t h a n the s t u d y of the a s y m p t o t i c

f o r m of e a c h d i a g r a m s e p a r a t e l y , fo l lowed by s u m m a -

t i o n . We w i s h t o e m p h a s i z e h e r e o n c e m o r e t h a t i t i s

di f f icul t t o p r o v e m a t h e m a t i c a l l y the r e g i o n s of a p p l i -

c a b i l i t y of t h e a p p r o x i m a t i o n s m a d e in the c a l c u l a t i o n

of f u n c t i o n a l i n t e g r a l s ' - 4 2 · 1 .

F r o m the e x a m p l e s g i v e n i n t h e r e v i e w of a p p l i c a -

t i o n s of t h e m e t h o d of f u n c t i o n a l i n t e g r a t i o n i n q u a n t u m

m e c h a n i c s a n d q u a n t u m field t h e o r y we s e e t h a t t h i s

m e t h o d r e p r e s e n t s only t h e f i r s t s t e p s , both m a t h e -

m a t i c a l l y and f r o m t h e p o i n t of v iew of p h y s i c a l a p p l i c a -

t i o n s . H o w e v e r , t h e p h y s i c a l c l a r i t y and t h e b r i l l i a n c e

of the f o r m u l a t i o n of t h e m a i n p r o b l e m s of q u a n t u m

field t h e o r y i n t h i s m e t h o d g i v e s g r o u n d s for h o p i n g

t h a t it w i l l find f u r t h e r d e v e l o p m e n t i n t h e f u t u r e .
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