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INTRODUCTION

SCATTERING of waves by uneven surfaces is encoun-
tered in many practical problems in acoustics, radio-
physics, and optics. The propagation of acoustic and
electromagnetic waves over a rough terrain or over a
wavy water surface, and the determination of the sur-
face structure and properties of dry land, sea, planets,
the ocean bottom and others are but a few of a long list
of such problems. Both when the properties of the scat-
tered field are determined from known surface charac-
teristics and when the inverse problem is solved, it is
necessary to know the connection between the properties
of the scattering surface and the characteristics of the
field scattered by it. The main task of the theory is to
determine this connection.

If the structure of the surface roughnesses is suffi-
ciently simple, then various models can be used in the
calculations (sinusoidal or sawtooth roughnesses, plane
on which hemispheres or half-cylinders are randomly
disposed, etc.). The most general approach, covering
mainly the case of practical importance of surfaces
whose roughness is due to natural causes, is the one
using a statistical description of the surface itself as
well as of the waves scattered from it via random fields.
This review is devoted to researches that employ just
this approach.

Among the surveys of this question, we point out the
reviews'-^ and the monographs'·7"9-'. In this review, in
addition with the methods long employed to solve the
problem (Kirchhoff's method and the perturbation
method), we describe recently developed methods that
make it possible to take into account multiple scattering
by the surface (the integral-equation method and the
Green's function method). In addition, we report a num-
ber of results obtained by traditional methods but not
covered in the reviews and monographs cited above.

In spite of the large number of publications on the
scattering of waves by statistically rough surfaces, the
theory of the problem is still far from completely de-
veloped. This is due both to the abundance of factors
that must be taken into account in the construction of a
theory satisfying the needs of modern experiments, and
to the need for refining the approximate solutions that
are already available.

•1. KIRCHHOFF'S METHOD
The gist of the method lies in the assumption that the

field reflected from an uneven surface S can be calcula-
ted by geometrical optics, i.e., as in the case of an
infinite plane tangent to the given point of a surface S.
This assumption is justified if the radius of curvature
of the roughnesses is large when expressed in terms of
the wavelength.

In particular, we can speak here of surfaces having
continuous irregularities (without breaks) or surfaces
consisting of flat areas (faces) of sufficiently large
size. In the latter case, Kirchhoff's hypothesis does not
hold on the edges.

From the point of view of the theory, the former
case is of great interest, and we shall pay principal
attention just to surfaces with continuous irregularities.
Furthermore, in many applications of the theory (for
example, in investigations sea waves by acoustic or
radiophysical methods) the representation of the surface
S in the form of aggregate of flat areas is only a rough
model. To be sure, if we deal in optics, for example,
with reflection from ground glass, then we can encoun-
ter the second case.

The local condition for the applicability of the :
Kirchhoff approximation is1110'11^

/ φ cos3 θ > 1,

where k = ω/c i s the wave number, ρ i s the radius of
curvature of the i r regular i ty , and θ i s the local angle of
incidence. In the presence of surface waves on the
interface S, it i s necessary, in addition, to stipulate
that the field due to these waves i s small'-1 2-',

a) Assume that an acoustic wave

Φ(Γ) = (1.1)

described in the geometrical optics approximation, par-
ticularly a plane wave or a guided spherical wave, is
incident on a surface ζ = ζ (χ, y). In accordance with
Kirchhoff's principle, we have for the reflected field
and for i t s normal derivative on the interface S

frp(r)
dn __ y

3Φ(Γ)
dn

(1.2)

w h e r e V i s the l o c a l F r e s n e l r e f l e c t i o n coef f ic ient . T h e

r e f l e c t e d f ield a t t h e p o i n t of o b s e r v a t i o n R i s c o n n e c -
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ted with φ(τ) and d<p(r)/dn by Green's formula

4njL*W«B |R-r | ft. |R-r |

Assuming satisfaction of the inequality

(1.3)

(1.4)

we use Weyl's expansion of the scalar Green's function
in plane waves

; f c ι D _ - r ° ° J O . .

( 1 . 5 )
| R - r | ^ 2 x J e

where κ = {κ±, κζ), κζ = (k2 - κ\)ι/ζ.
We now substitute (1.5) and (1.2), with allowance for

(1.1), into (1.3) and change to integration over the under-
lying surface So, obtaining an expression for the scat-
tered field. In the case of an absolutely rigid surface
(V = 1), this expression i s [ 1 3 ]

<p(R)=— -=ί=- f f ^%i*0+i>1<R-r-L)+i<i:tii*rLd2x_L, (16)
i s ! , q'*'

where Ao = A(rj_), ψ0 = ψ(Χι), and q = vipo-K is the scat-
tering vector.

Expression (1.6) describes the field scattered by
either a bounded or an infinite surface, with the rather
weak condition (1.4) imposed on the position of the point
of observation over the irregularities. The source of
the primary wave should be located in the Fraunhofer
zone relative to the height σ of the irregularities:

ka2 < L,

where L is the characteristic scale of variation of the
amplitude A(r) and of the gradient of the phase v^(r) of
the primary wave (1.1).

If the point of observation is located at a distance Ζ
from the irregularities, such that Ζ S> σ and Ζ ^> λ,
then the integral with respect to κ j_ can be calculated
by the stationary-phase method, and formula (1.6) be-
comes simpler:

OileHBi+iioH-i,::̂ ,̂ (1.7)

where q = νφο- k ^ / R j ) , Rx = R - r^.
By calculating the integral in the averaged expres-

sion (1.7) by the stationary phase method, we obtain the
mean value of the scattered field

<φ(Β)) — /,. (gIC) φ 1 0 1 (R), (1.8)

where f̂  ( q z c ) is the character i s t ic function of the un-
even surface, q z c i s the value of the z-component of the
scatter ing vector at the stationary point, which coin-
cides with the point of geometric reflection of the wave
(1.1) from the plane So, while <p<0)(R) i s a field regular ly
reflected from So and calculated in the ray approxima-
tion. Formula (1.8) i s valid when the dis tances from the
source of the p r i m a r y wave and from the observation
point to the uneven surfaces a r e such that the following
conditions a r e satisfied for R m = min(R, L):

kRm > {(to)2, (to)4 sin2 2ΘΟ}, (1.9)

where θc is the angle of incidence of the primary wave
at the point of specular reflection from the plane So,
i.e., at the stationary point.

If the incident wave is plane and the surface S is in-
finite, then expression (1.8) is valid under the condition

(1.4), which is less stringent than (1.9). If the surface
is not plane in the mean, formula (1.8) also remains in
force in the case of gently-sloping irregularities^1 4^.
The quantity f x£(q z c) in (1.8) has the meaning of the
effective reflection coefficient of the mean field.

With the aid of the dynamic relations (1.6) and (1.7)
we can easily obtain expressions for the correlation
function *(R, R') = <<p(R)<p*(R')> - <<p(R)><<p*(R')> and
for the average fluctuation intensity I = *(R, R) of the
scattered field. It turns out that when the distances R
and Ro from the point of observation and from the source
to the uneven surface are such that

mm(R,
I for

for
(1.10)

incoherent addition of the intensities of the waves re-
flected by individual elements of the uneven surface
takes place:

(1.11)

here J is the average intensity of the field scattered
from a unit area of the roughness into the Fraunhofer
zone (relative to the dimensions of this roughness) when
a plane wave of unit amplitude is incident.

A method for calculating the average intensity (1.11)
was proposed by Isakovich^15]. He was also the first to
obtain an expression for J, the form of which for statis-
tically homogeneous roughnesses is1-15'163

iq-LP[/«fa,, -?». P)- (1.12)

where Rz = R - I , q= V^o(l) - k(Ri>/R2), f 2 j ( q z , - q z , p)
is the two-dimensional characteristic function of the
uneven surface, and il(.(qz) is, as before, its one-
dimensional characteristic function.

It can be shown^1 3 '1 7 '"3 that expression (1.12) des-
cribes the average scattering intensity not only in the
far zone relative to the dimension Lg of the rough area
S, but also at shorter distances satisfying the inequality

min (/?, Ro) > kltLs. (1.13)

The condition (1.13) means physically that the angles
at which the area S is seen from the source and from
the observation point should be small compared with the
scattering diagram of an individual inhomogeneity.

Using the correlation function *(R, R') obtained with
the aid of (1.7), we can estimate, in the case of a
Gaussian distribution of the heights of the irregularities
with one correlation scale I, the radii r"^ and r[f of the
transverse and longitudinal correlations of the scattered
field in the far zone of an individual irregularity, and
express them in terms of the effective dimension If of
the irregularity. If the uneven surface contains the
entire area essential for the scattering, and if the
change of the slowly-varying factors in this region is
sufficiently small, the indicated estimates take the form

ο] cos 9C, (1.14)

where R" = (R + R')/2.
Formulas (1.14) coincide with analogous estimates

for a phase screen with small phase dispersion. The
analogy with the problem of diffraction by an inhomo-
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geneous phase screen was noted by Tamolkin and
Fraiman'-193 and used by them to investigate the corre-
lation of amplitude and phase fluctuations of a field re-
flected from a surface having two irregularity scales,
on which a plane wave is incident.

The problem of scattering of electromagnetic waves
differs from the scalar case only in that polarization
must be taken into account. For a primary wave speci-
fied in the geometrical-optics approximation, the
derivation of the dynamic relations does not differ in
principle from the scalar case. However, the calcula-
tions are somewhat more cumbersome since, first, it
is necessary to use the vector Green's formula in place
of (1.3), and second, when the electric and magnetic
vectors of the reflected field are calculated by
Kirchhoff's method it is necessary to take into account
the difference between the Fresnel reflection coeffi-
cients for vertically and horizontally polarized compon-
ents of the incident wave (relative to the local plane of
incidence). In the case of an ideally conducting surface,
the final expressions for the electric vector of the scat-
tered wave are given by formulas (1.6) and (1.7), in
which the scalar amplitude factor A0q

2 must be replaced
by the vector factor {(eo-q)q- q χ [e0 x q ] p ° 3 . For the
average field we can obtain a vector analog of (1.8) with
the same effective reflection coefficient.

At the distances (1.10) from the uneven surface, the
average energy characteristics of the scattered electro-
magnetic fields (such as the average intensity, the aver-
age Poynting vector, the mean-squared component of
the electric vector along an arbitrary direction, the
elements of the polarization matrix) can be calculated
with the aid of incoherent addition. In this case the
quantity Αο(ξ) in (1.11) is replaced by more complicated
functions, which also vary slowly as functions of ξ. If
the source of the primary wave is an elementary elec-
tric dipole, then in the case of Gaussian statistics of
the irregularities it is possible to obtain formulas in
closed form for the average energy characteristics of
the back-scattered field1·2011*.

In the case of back scattering to a point source, it is
possible to calculate also the average intensity of fluc-
tuations of an acoustic field1113'243.

It is important that all the expressions for the aver-
age energy characteristics contain as an integrand the
quantity J, defined by formula (1.12). This quantity, as
already indicated, is the mean intensity of the field scat-
tered from a unit surface area at distances (1.13) from
S, and particularly in the Fraunhofer zone relative to S
upon incidence of a plane wave.

b) The scattering of a plane wave in the far zone
relative to S has been the subject of a rather large num-
ber of papers. In this formulation, the problem was
first solved by Isakovich [ 1 4 '1 5 3 and was subsequently
treated also by others1 1 2 5"3 3 3. The case of back scatter-
ing was considered in1 1 3 4"3 6 3, the scattered field due to
incidence of a circularly polarized wave on a surface
was calculated in1-37-1, the possibility of determining the
surface characteristics from wave-scattering experi-

*If the surface S is not ideally conducting, than the calculations become
much more complicated'21"231, for in this case it is necessary to take
into account the statistics of the random slopes of the uneven surface,
on which the Fresnel reflection coefficients depend.

ments was studied i n t 3 8 4°3, attempts to take into ac-
count the dependence of the Fresnel reflection coeffi-
cients on the slopes of the irregularities were made
i n [ 4 1 3 , and attempts in general to carry out averaging
with allowance for the statistics of the random slopes
were made i ^ 4 2 " 1 5 3 .

As a rule, the edge effects due to diffraction of the
primary wave by the boundary of a finite rough area
were neglected in all the calculations. This neglect,
however, is not always permissible. As shown in^46-1,
the edge effect makes a noticeable contribution to the
scattered field in scattering of a vertically polarized
wave and at glancing angles <30°. We note that there is
no edge effect when the scattering is by a section of an
unbounded surface.

The approach developed in^4 7 3 is based on represent-
ing the field at the observation point in the form of a
sum of fields coming from reflecting spots on a rough
surface. In this approximation, the scattering problem
reduces to finding the geometrical characteristics of
the surface. Thus, for example, the average cross sec-
tion for scattering from a unit area is proportional to
the number of reflecting spots on the surface, and also
to the quantity <|pip 2 | ) , where pi and p2 are the prin-
cipal curvature radii of the irregularities at the loca-
tions of the reflecting spots. In the case of a normal
distribution of the heights of the irregularities, with a
Gaussian correlation function, the average scattering
cross section can be expressed in explicit form in
terms of the parameters of the problem'-48·1 and the re-
sult agrees with the expressions obtained by calculating
the integral (1.12) in the ray approximation.

As shown in'-493, the same result is obtained for the
average cross section if the calculation is based on the
hypothesis that the rough surface can be broken up into
flat elementary areas with random slope distributions,
and the reflected field is calculated in accord with the
laws of geometrical optics directly in space (and not
only on the surface as in Kirchhoff's method). This
hypothesis, first advanced by Bouguer'-50-', is widely
used in optical calculations of the reflection and trans-
mission of light'-51'52-1 when the diffraction effects due to
breaks in the interface are negligible. The corrections
for the diffraction can in this case be approximated by
assuming in the calculation the scattering patterns of
the elementary flat areas.

The results of calculations performed within the
framework of this approximation are used in practice
to determine the heights of the irregularities and the
distribution functions of the elementary areas, prin-
cipally from experiments on the scattering of light by
ground glass and by surfaces of ground metals1 1 5 4"6 2 3.
This approach was used in'-633 to calculate a number of
characteristics of the light field scattered by a wavy
sea surface.

Finally, there are studies (cf., e.g.,1164'653) in which
the ray approximation was used to interpret certain ex-
perimental data on the reflection of radar signals from
the surfaces of the moon and of planets.

We note that in the far zone of a bounded surface the
depolarization component of the scattered field in the
incidence plane (especially in back scattering) turns out
to be equal to zero already in the dynamic part of the
problem. In the near wave zone, however, particularly
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in scattering by an unbounded surface, the mean square
of this component differs from z e r o t 2 o ' e 6 ] . This is due
to the fact that in the former case all the reflecting
spots responsible for the scattering lie on surface ele-
ments that are inclined at one and the same angle,
whereas in the second case we have a set of reflecting
spots from elements having all possible inclinations.

We turn now to evaluation of the integral (1.12), which
plays an important role in the calculation of the energy
characteristics of the field, both for scattering from an
area of finite dimensions and for an unbounded rough
surface. This integral can be calculated exactly only in
a few particular cases, and it is therefore usually esti-
mated by approximate methods.

For the case of irregularities that are high compared
with the wavelength (qzff

2 3> 1), a method of calculating
(1.12), suitable for an arbitrary distribution function of
the irregularities and using a three-point probability
density of the latter, was proposed in1·67-'. The result
of the calculation by this method can be represented in
the form of a series in the small parameter (qzo)~2,
the first term of which corresponds to the ray approxi-
mation. In this approximation, the result is^67'68^

irregularity leads to an infinite series'-8-'

where w s (£ x , £') is the joint distribution density of the
slopes of the surface.

In the opposite case, of irregularities that are small
in comparison with the wavelength ( q | a 2 -C 1), the in-
tegral (1.12) is the Fourier transform of the correlation
function, i.e., it is proportional to the spectral density
of the uneven surface W(qx, qy)'-26-':

If the heights of the irregularities have a normal dis-
tribution with a single correlation scale, then formula
(1.15) yields the same result as obtained in'1151', where
(1.12) was calculated by the saddle-point method. The
saddle-point method can be used also in the case when
it is necessary to take into account several irregularity
correlation scales. For example, for one-dimensional
irregularities with a correlation function of the type

Κ (χ) = g-x%ii2 cosOx, (1.16)

there i s a who le number of c o r r e l a t i o n s c a l e s that a r e
significant when ΙΩ S> q z a . The saddle-point method
then yieldsQ l 5 ]

J = {Lyq
ll8 Ϋ2 n*l2RlQaql) exp ( — qi/2Sfa*ql) χ

X 2 exp [ — i- 2nra (qJQ) — 4π«η2 (?2σνΩ222)],

(1.17)

where L y i s the length of the sur face in the y d i rect ion,
and the s u m m a t i o n i s over the saddle points . In the c a s e
of integer values of Ν = q x / n , expression (1.17) has
maxima analogous to the spectra for scattering by a
periodic surface. Unlike the latter, however, we are
dealing here with intensity rather than amplitude spec-
tra. We note that the correlation function (1.16) des-
cribes sufficiently well not too large a section of a wavy
seasur face [ 1 5 ' e e ' 7 0 ] .

In the case of a normal distribution of the irregulari-
ties with a Gaussian correlation coefficient, calculation
of the integral (1.12) at an arbitrary height of the

•*" 2 •
ί2/4η

For the specular-reflection directions (qx = 0) this
series is expressed in terms of tabulated functions:

/ = (qHyWnRlqi) «Γ"!"2 [Ei (?!σ
2) - C - 2 In ?,σ],

where Ei(t) i s the integral exponential function and C i s
Euler's constant. The representation of J in the form
of an infinite ser ies i s possible also in the case of
anisotropic irregularities .

A model with an exponential correlation results from
a description of the surface with the aid of a Markov
process'-7-1. However, the calculations of J for such a
surface model Q73~76:i are hardly justified1 1 7 7'7 8 ], since the
conditions for the applicability of the Kirchhoff method
are violated in this case. The use of the correlation
coefficient proposed in C 7 9 ]

which behaves like an exponential one at |p | 3> I but,
unlike the latter, i s twice continuously differentiable at
zero, makes it possible to calculate the variance of the
slopes in the usual manner, σ 5 =— Κ"(0)σ2.

From the experimental point of view, it is of interest
to calculate the fluctuations of the amplitude and phase
of the scattered field. In the case of small values of the
Rayleigh parameter (2ka cos θ <C 1), when the scattered
field component is small in comparison with the specu-
larly reflected one, we can put

φ<°> + φ<ι> = (Ao + 6A) Age1*· (1 + SA • A'1 + ίδφ).

T h u s , b y s e p a r a t i n g t h e r e a l a n d i m a g i n a r y p a r t s o f

the ratio φ α ) / φ < 0 ) , we can obtain the fluctuations of the
amplitude and of the phase; by subsequently averaging
the bilinear combinations of δ A and δ φ we can then ob-
tain their autocorrelation and mutual correlation func-

I f t h e n u m b e r o f i r r e g u l a r i t i e s p a r t i c i p a t i n g i n t h e

s c a t t e r i n g o f t h e w a v e b y t h e s u r f a c e i s l a r g e , t h e n , b y

v i r t u e o f t h e c e n t r a l l i m i t t h e o r e m , t h e s c a t t e r e d f i e l d

w i l l h a v e a n o r m a l d i s t r i b u t i o n ' - 8 ' 8 2 1 1 . O f c o u r s e , t h e

f o r e g o i n g d o e s n o t p e r t a i n t o t h e r e g u l a r l y r e f l e c t e d

f i e l d c o m p o n e n t , w h i c h i s s i g n i f i c a n t a t s m a l l v a l u e s o f

t h e R a y l e i g h p a r a m e t e r n e a r t h e s p e c u l a r - r e f l e c t i o n

d i r e c t i o n .

A G a u s s i a n d i s t r i b u t i o n o f t h e s c a t t e r e d f i e l d w a s

u s e d i n 1 1 8 3 ' 8 4 1 1 i n a n i n v e s t i g a t i o n o f t h e p r o p e r t i e s o f t h e

r a n d o m f i e l d o f t h e i n t e n s i t y o f l a s e r r a d i a t i o n s c a t t e r e d

b y a m o v i n g d i f f u s e s u r f a c e .

c ) T o d e s c r i b e w a v e r e f l e c t i o n f r o m a s t a t i s t i c a l l y

u n e v e n s u r f a c e t h a t v a r i e s i n t i m e , t h e q u a s i s t a t i o n a r y

f o r m u l a t i o n o f t h e p r o b l e m s u f f i c e s i n m o s t c a s e s . T h i s

a p p r o x i m a t i o n i s j u s t i f i e d i f t h e r e s p o n s e o f t h e r e c e i v -

i n g a p p a r a t u s t o t e m p o r a l v a r i a t i o n s o f t h e s u r f a c e i s

q u a s i s t a t i o n a r y . I n t h e f a r z o n e o f a s u r f a c e S w i t h a

n o r m a l d i s t r i b u t i o n o f t h e i r r e g u l a r i t i e s , t h e t e m p o r a l

c o r r e l a t i o n f u n c t i o n o f t h e s c a t t e r e d f i e l d t a k e s i n t h i s

a p p r o x i m a t i o n t h e f o r m
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where K(p, τ) i s the space-t ime corre la t ion coefficient
to the surface. The inverse Four ie r t ransform of Φ(τ)
yields the spect ra l density of the reflected field.

If the dynamic equations describing the temporal
variat ions of the surface a r e l inear, then Κ(ρ, τ) can be
represented in the form of a superposition of traveling
plane waves

Κ (ρ, τ) = I j Κ (x±, θ) e««LP-Q"U>'l d?*± d6
- π - ο ο

with a dispers ion law Ω(κι). It was established i n [ 8 5 : l

that in the far zone of S, in the case q z a 2 <C 1, the scat-
tered field has a line spectrum in first order in ( q z a ) 2 .
The broadening of the spectra l l ines, which is connected
with the nonlinearity of the dispers ion law, i s observed
only in second order . I r r e g u l a r i t i e s of large height
( q z a 2 3> 1) produce in the case of a nonlinear disper-
sion law a continuous spectrum. The l inear dispers ion
law Ω = κ χ · ν leads to a Doppler frequency shift that
depends both on the direction of the wave vector of the
incident wave and on the observation direction.

The r e s u l t s of the calculations of the spectra l den-
sity of the p r e s s u r e of an acoustic wave reflected from
sections of sea surface with large and small waves'-86-1

agree with these conclusions. Complete coherence of
the field takes place only for reflection from a weakly
wavy surface in the direct ion of the specular ray'-87-'.

In the case of uniform motion of an unbounded sur-
face, different sections of the surface yield different
values of the Doppler shift. The frequency spectrum of
the reflected field has in this case a finite width ^ ,
unlike the case of scatter ing in the far zone of a bounded
rough area .

d) The Kirchhoff approximation can be generalized
in natural fashion to include the case of an anharmonic
incident field. By virtue of the superposition principle,
the average field of a reflected regular sound signal
with a spectrum S(a>) is given by

<φ> = - ^ J 5(ω)<φ(ω, t))du>,

where {φ(ω, t)) i s the average field of the reflected
harmonic wave with frequency ω. For the space-time
corre lat ion coefficient of the scat tered field we can
easily obtain the express ion

Ψ(Κ, R', τ) = 4 ^ f f S (ω) S* (ω') Κ (ω, R, ω', R', τ)άωάω', (1.18)

where

„ , „ , „ , . (φ (ω, R, <)φ«(ω·, R', (')>-(φ(ω, R, t)> (φ* (ω", R-, ί'))
Κ (ω, Κ, ω , Κ , τ) = <|<ρ(ω, R, ί)-«ρ(ω, R, tjTW

i s t h e c o e f f i c i e n t of t h e m u t u a l s p a c e - t i m e c o r r e l a t i o n

of h a r m o n i c f i e l d s w i t h d i f f e r e n t f r e q u e n c i e s .

Knowing Κ(ω, R, ω ' , R', τ) we can es t imate the radius
of the frequency corre lat ion of the scat tered field, i .e.,
the width of the t ransmiss ion band of the communication
channel with scatter ing of the wave by the rough sur-
face. The corresponding e s t i m a t e s were made for both
the case of scatter ing in the far zone of a l imited a r e a
S1-89-1 and the case of scatter ing of a directed spherical
wave by an unbounded rough surface'- 9 0 · 1.

In the scatter ing of noise signals it is necessary to
c a r r y out the averaging also over the ensemble of r e a l -
izations of the p r i m a r y field. In the case of stationary

noise, averaging of (1.18) yields

<F(R, R', τ)= f G(a>)K(<a, R, R', τ) dco, (1-19)

where G(o>) i s the energy spectrum of the pr imary noise
signal.

Calculation of the average field and of its spatial-
temporal correlat ion function for a high-frequency pulse
A(t) = A0exp[io>0t — (tWo)] and noise with an energy
spectrum G(w) = Goexp[-(u>- ω0γ/Ω2]ί911 makes it
possible to estimate quantitatively effects such as the
additional damping of the scattered pulse, its spreading,
and the change of the central frequency of the spectrum.
Knowing how each harmonic component of the signal is
scattered, and assuming that the scattered sense is
stationary in the broad sense, we can easily obtain the
energy spectrum of an anharmonic signal t92^ .

e) At large incidence and observation angles, the
scattering is strongly influenced by the blocking of both
the incident and the reflected waves by individual sec-
tions of the irregular surfacet 9 3 ' 9 4 ! . The first attempt
to take shadowing into account in Kirchhoff s method
was made in'-95-1, where use was made of the solution of
the problem of wiggles of a random function over a
specified determined function. Another approach,
based from the very outset on geometrical representa-
tions, was proposed in'-96-', but the results obtained
there turned out to be in error1-97"98-1. On the basis of
the method proposed in'-96·1, the theory of the problem
was subsequently developed further first under the as-
sumption that the heights of the irregularities have a
normal distribution^99"101^, and then also without this

s ^

We note also a paper1 J in which an original method
is used to calculate the shadowing function with the aid
of a simple geometrical identity.

The problem of taking into account the shadowing
relative to the incident field consists of determining,
from the known probability density w(£, ξ'χ) of the
heights and slopes of the ent i re uneven surface, the
probability density of the heights and slopes of i t s
illuminated p a r t of w e f f(£, £ x ) = w(£, £ χ ) Ρ ι ( £ , £ x , ψ),
where P x is the probability that a ray drawn at an angle
ip from a point of the surface with height ζ and slope £ '
never c r o s s e s the i r r e g u l a r i t i e s . The value of P t i s
expressed in t e r m s of the probability density g T (A|B)
of intersect ion of the beam with the surface at a dis-
tance τ from a chosen point (event A) under the condi-
tion that there a re no intersect ions in the interval (0, r)
(event B), in the following manner:

Ρ, (ζ, &, φ) = θ (tg ψ - tx) exp [ - j g, (A \]B) ch],
ο

where θ(χ) is the Heaviside function.
An exact express ion for gT (AjB) can be derived in

principle, but it i s too complicated; g T (A|B) is there-
fore usually calculated approximately under the follow-
ing assumptions:

1) there is no corre la t ion between the height and the
slopes of the i r r e g u l a r i t i e s in the case of weak and
strong shadowing;

2) multiple intersect ions of the beam and the surface
is neglected in the intermediate region of grazing
angles ψ •
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Under the indicated assumptions, we can calculate
weff(£> £χ> ^) a n c * ' n e shadowing function Ρ(ψ), which
yields the probability that an arbitrary point of the sur-
face is illuminated (regardless of its height and slope).
The shadowing of the reflected beams is taken into ac-
count in exactly the same manner as that of the incident
ones. The averaged intensities of the sound field scat-
tered in the far zone of surface S, over the distribution
w e f f ) yields [ 1 0 3 ]

/ = /„<?«>. x).

where Io is the average scattering intensity in the far
zone without allowance for the shadowing, φ is the
grazing angle of the incident wave, and χ is the obser-
vation angle. In the case of weak and strong shadowing

<? (ψ, X) = [l-rA(»-A(»]/[A (ψ) + Λ (χ)],

and in the i n t e r m e d i a t e r e g i o n

where

£ i - t g i )

2. PERTURBATION METHOD

In practice one frequently deals with scattering of
waves by surfaces on which the irregularities, whose
height, while small in comparison with the wavelength,
varies noticeably already over distances much smaller
than λ. Such a situation arises, for example, in optics
in the scattering of light by thermal fluctuations of a
liquid surface, in radiophysics and acoustics when
waves are reflected from slightly rough surfaces such
a sea ripples. In this case the Kirchhoff approximation
is no longer suitable and it is natural to use the pertur-
bation method to solve the scattering problem. The gist
of the method consists of expanding both the boundary
conditions and the sought solution in powers of the
small parameter |k£ | ~ |vf | -C 1 and calculating the
successive approximations for the scattered field. The
use of the perturbation method presupposes that the
irregularities are small (|k£| -C 1) and are gently slop-
ing (|v2f | <§; 1), but does not call for the irregularities
to be smooth functions over distances of the order of the
wavelength. We describe here the three modifications
of the perturbation methods most frequently encountered
in the literature on waves scattering by statistically
rough surfaces.

a) The first method consists of applying Green's
formula to the calculation of the scattered field. We
represent the total sound field in the upper medium in
the form of a perturbation-theory series

where Φ(Β) is the field of the primary wave, and the n-th
term of the series is of the order of |k£ | n ~ |v£ | n .
Assume, for simplicity, that the surface is absolutely
soft. Substituting then (2.1) in the boundary condition
expanded in powers of ζ:

we o b t a i n the b o u n d a r y c o n d i t i o n s on t h e p l a n e z = 0 for

t h e s u c c e s s i v e a p p r o x i m a t i o n s

= 0, "j
= 0, I

1
= 0,

(2.2)

From the boundary conditions (2.2) we can easily ob-
tain, using Green's formula, also the scattered field
itself. In the first approximation we have

where cpw is the field regularly reflected by the flat
area So and Ri = R - r±.

In the case of scattering by an absolutely rigid sur-
face, the first-approximation field depends already not
only on £ but also on v£, and is given by t 9 ]

) - — r r
> 2n J \ aj

. &> Jo α

If a plane wave Φ = exp[-i(ko l · r x ) + ikoZz] is incident
on an absolutely rigid area, then the regularly reflected
field component is φ(0) = exp [- i(koX · r±) - ik o Zz], and
the average intensity of the scattered field in the far
zone of the area So is equal to

! = •%- [*2-(k0.i*.i)*l W ( κ * - ν , «„-*„„),

where κ is the wave vector in the observation direction,
and W(u, v) is the spectral density of the uneven surface.

In scattering of electromagnetic waves, it is of inter-
est to calculate the dispersion tensor

&iiK = {(E,-(Ei))(Ek-(Eh)y) (i, k = x, y, z),

which makes it possible to deduce the polarization
properties of the scattered field. In first order pertur-
bation theory, the components of the dispersion tensor
are also proportional to the spectral density of the un-
even surface^106^. This points to a selective mechanism
of wave scattering in the far zone of an area with small
irregularities'-5-1, since the scattering in a given direc-
tion is determined by a single spectral component of
the surface.

Within the framework of the first approximation it is
easy to obtain an expression for the correlation function
and to estimate the radii of the transverse and longi-
tudinal correlations of the scattered field in the far zone
of an individual surface irregularity1-107-1. Under the as-
sumptions used in the derivation of (1.14), these esti-
mates coincide with (1.14) at (kff)2 <C 1. We note that
they were initially obtained precisely by the perturba-
tion method.

In some cases it is possible to solve the more gen-
eral problem of reconstructing the correlation function
of a rough surface from the correlation function of the
scattered field1-107-1. As applied to a wavy water sur-
face, an integral relation was derived in'-108-' for the
description of the joint frequency-space-time correla-
tion of the scattered field, and the corresponding corre-
lation intervals were estimated^108'109-1.

Since the smallness of the scattered field in com-
parison with the specularly reflected one is ensured as
soon as the conditions of applicability of perturbation
theory are satisfied, the question of the correlation of
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t h e f ield a m p l i t u d e a n d p h a s e f l u c t u a t i o n s i s s o l v e d in
t h e m a n n e r i n d i c a t e d in S e c . i t 1 1 0 " 1 1 1 ] . We c a n a l s o con-
s i d e r the c o r r e l a t i o n of a n a r r o w - b a n d n o i s e s i g n a l
s c a t t e r e d f r o m the s u r f a c e ' - 1 1 2 - 1 .

We n o t e , f inal ly, t h a t w h e n the p r o b l e m i s s o l v e d by
t h e p e r t u r b a t i o n m e t h o d it i s a l s o p o s s i b l e t o t a k e i n t o
a c c o u n t s u c h f a c t o r s a s t h e f l u c t u a t i o n s of the s u r f a c e
i m p e d a n c e , the s p h e r i c i t y of t h e e a r t h , t h e d i r e c t i v i t i e s
of t h e r a d i a t o r a n d of t h e r e c e i v e r , and a l s o t h e w a v e -
f o r m of t h e i n c i d e n t p u l s e 1 1 U 3 ] .

b) T h e s e c o n d m o d i f i c a t i o n of the p e r t u r b a t i o n :
m e t h o d i s t h e R a y l e i g h m e t h o d * , w h i c h i s not c o n n e c t e d
wi th t h e u s e of G r e e n ' s f o r m u l a . A c c o r d i n g t o R a y l e i g h ,
t h e s c a t t e r e d f ield i s r e p r e s e n t e d i n the f o r m of a
s u p e r p o s i t i o n of p l a n e t r a v e l i n g a n d i n h o m o g e n e o u s
w a v e s , e a c h of w h i c h i s a s o l u t i o n of t h e H e l m h o l t z
e q u a t i o n . Such a r e p r e s e n t a t i o n of t h e s c a t t e r e d field
on a n i n t e r f a c e S i s p o s s i b l e w h e n t h i s i n t e r f a c e d e v i a t e s
l i t t l e f r o m a p l a n e . In t h e c a s e of a p e r i o d i c i n t e r f a c e
S, one c a n i n d i c a t e a n u m e r i c a l c r i t e r i o n for t h e v a l i d i t y
of R a y l e i g h ' s assumption 1 - : 1 1 4 - 1 . No s u c h c r i t e r i o n w a s
d e r i v e d for s t a t i s t i c a l l y u n e v e n s u r f a c e s .

T h i s m e t h o d w a s f i r s t u s e d by R a y l e i g h i l 1 5 ^ i n t h e
p r o b l e m of s c a t t e r i n g of a p l a n e a c o u s t i c w a v e b y a
s i n u s o i d a l u n d u l a t i n g s u r f a c e . U s i n g t h e r e p r e s e n t a t i o n
of t h e u n e v e n s u r f a c e i n the f o r m of a F o u r i e r s e r i e s
wi th r a n d o m c o e f f i c i e n t s , M a n d e l ' s h t a m ' - 1 1 6 · 1 , a n d l a t e r
A n d r o n o v and Leontov ich 1 - 1 1 7 - 1 , d e v e l o p e d on t h e b a s i s of
R a y l e i g h ' s m e t h o d the t h e o r y of s c a t t e r i n g of l ight by
t h e r m a l f l u c t u a t i o n s of a l i q u i d s u r f a c e . L a t e r on t h e
s o l u t i o n of t h e p r o b l e m by t h e R a y l e i g h m e t h o d w a s i m -
p r o v e d both i n i t s d y n a m i c p a r t ( r e p r e s e n t a t i o n of t h e
u n e v e n s u r f a c e b y a F o u r i e r i n t e g r a l , c a l c u l a t i o n of t h e
s c a t t e r e d field i n the s e c o n d a p p r o x i m a t i o n in t h e s m a l l
p a r a m e t e r | k f | ) a n d in i t s s t a t i s t i c a l p a r t ( d e t e r m i n a -
t i o n of t h e s t a t i s t i c a l c h a r a c t e r i s t i c s of t h e r e f l e c t e d
field i n d e p e n d e n t l y of t h e n a t u r e of t h e i r r e g u l a r i t i e s ) .
T h e s e g e n e r a l i z a t i o n s w e r e m a d e i n ^ 1 1 8 " 1 2 2 3 .

When a p l a n e s o u n d w a v e i s i n c i d e n t on a s u r f a c e ,
the t o t a l f ield in t h e u p p e r and l o w e r m e d i a , a c c o r d i n g
to Rayleigh's hypothesis, is written in the form (the ζ
axis is assumed to be directed downward)

φ' (Ά') =

+ f A ( X J J eii*

f A'(x±) eUxl-R±

(2.3)

(2.4)

where k and k' a r e the wave numbers of the upper and
lower media, respectively, V and V' a r e the Fresne l co-
efficients of reflection and t ransmiss ion, θ and θ' a r e
the angles of incidence and reflection in the absence of
surface i r regu lar i t i e s , κ ζ = (k2 - κ χ ) ι / 2 , κ'ζ - (k'2 - κ

The solution for a plane interface is given by form-
ulas (2.3) and (2.4) if we put in them Α(κχ) = Α'(κ χ ) = 0.
In the presence of i r regu lar i t i e s , the problem reduces
to a calculation of the unknown amplitudes Α(κχ) and
A ' ( K X ) from the boundary conditions

1/2

= Ρ'Φ\ ^ = (2.5)

where ρ and p ' a r e the densit ies of the upper and lower
media. This calculation is usually carr ied out by the

perturbation method. We represent the unknown ampli-
tudes in the form

where the n-th t e r m i s of the order of | k £ | n . Assuming
the quantities κ ζ £ , κ'ζζ, and v£ to be small , we expand
(2.3)—(2.5), taking (2.6) into account, in powers of these
small p a r a m e t e r s . Substitution of (2.3) and (2.4) in (2.5)
leads then to a system of algebraic equation relat ive to
the successive approximations of the unknown ampli-
tudes, the solution of which yields the scat tered field in
the approximation of interest to us .

We note that since the representat ion (2.3) descr ibes
waves propagating only upwards from the surface, the
Rayleigh method does not make it possible to take into
account multiple scatter ing by the i r regular i t ie s .
Therefore a t tempts to obtain on i t s bas i s an exact solu-
tion of the problem'- 1 2 3" 1 2 5 · 1 are apparently inconsistent.

In the far zone of a rough area , the first approxima-
tion of the Rayleigh method yields the selective scat ter-
ing mechanism referred to above. Calculation in the
second approximation'-1 2 3-1 revea l s depolarization of the
electromagnetic wave in the plane of incidence.

The Rayleigh method is convenient for the solution
of problems on scatter ing of an acoustic wave by an
interface between a liquid and a solid, when t r a n s v e r s e
(shear) waves can exist in the solid in addition to the
longitudinal waves'-1 2 6 1 3 0-1. The boundary conditions
then become more complicated, s ince they e x p r e s s the
continuity of the normal components of the displacement
and of the s t r e s s , and also the vanishing of the tangen-
tial s t r e s s components.

c) The third modification of the perturbation method
is connected with the use of nonlocal boundary condi-
tions on the plane, first introduced by Bass. 1 1 1 3 1 3 It can
be shown that in the first approximation the surface
i r regu lar i t i e s a re equivalent to the presence on the
plane of effective surface c u r r e n t s *

j e = (C/4JI) (1 - ε) ε"1 [η, ν±Ε02ζ], j m = ( c/4jt) ik (1 - ε) Ε ο χ ζ ,

w h e r e E o i s t h e z e r o t h - a p p r o x i m a t i o n f i e l d a n d e i s t h e

d i e l e c t r i c c o n s t a n t o f t h e l o w e r m e d i u m . T h e n o n l o c a l

b o u n d a r y c o n d i t i o n f o r t h e e l e c t r o m a g n e t i c f i e l d i n t h e

p r e s e n c e o f s u r f a c e c u r r e n t s t a k e s t h e f o r m ' - 1 3 2 · 1

[nE (r)] + -L j dV ' ' \ l ^ [ {ik [n [nH]] - i [nV£2

This boundary condition forms, together with Green ' s
vector formula, a system of integral equations which is
solved by the Four ier- t rans format ion method.

Using the solution obtained in this manner, B a s s t l 3 2 ]

investigated in the quasistatic approximation the fre-
quency spectrum of a field scattered by gravitational-
capillary waves on a surface of a heavy incompressible
liquid. The calculations have shown that in this case the
spectrum consists of two frequencies symmetr ical ly
located relat ive to the incident-signal frequency. In
general, it i s shown in the cited paper that in the case
of a determined surface whose shape satisfies the equa-
tion

•Sometimes called Rice's method in the literature.
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where L is an arbitrary linear operator, the frequency
spectrum consists of I harmonics with frequencies
ω0 + Ω^, where Ω^ are the roots of the dispersion equa-
tion

In the presence of dissipative processes, the spectral-
line broadening investigated in'·133-' is observed.

When waves are scattered by a surface with random
irregularities, the nonlocal boundary conditions can be
derived also directly for the moments of the scattered
fields. This obviates the need for solving the dynamic
part of the problem. If the Leontovich boundary condi-
tions are valid at each point of the surface, then we have
for the mean value of the scattered field the following
boundary condition1-134]:

ί)Κ (ρ) > ^<Εχ>

( 2 . 7 )

where K(p) is the correlation coefficient of the irregu-
larities, η is the surface impedance, and

B a s s 1 1 1 3 5 3 c a l c u l a t e d w i t h t h e a i d o f ( 2 . 7 ) t h e r e f l e c -

t i o n c o e f f i c i e n t s o f t h e a v e r a g e f i e l d f r o m a s t a t i s t i c a l l y

u n e v e n s u r f a c e f o l l o w i n g t h e i n c i d e n c e o f a n a c o u s t i c

a s w e l l a s a n e l e c t r o m a g n e t i c w a v e . I n p a r t i c u l a r , f o r

t h e r e f l e c t i o n c o e f f i c i e n t o f a n a c o u s t i c w a v e f r o m a n

a b s o l u t e l y s o f t s u r f a c e t h e f o r m u l a i s

V = _ { f t - / j ^ -^[K (p) /o
υ

ftoxP)] dp,

and b e c o m e s m u c h s i m p l e r u n d e r t h e c o n d i t i o n s

/ / l / 2

p

k i » 1, (TT/2) - θ » ( 2 / k Z ) l / 2 , n a m e l y ,

( 2 . 8 )

L e t u s l i s t , f i n a l l y , a f e w m o r e p r o b l e m s s o l v e d b y

t h e m e t h o d o f s m a l l p e r t u r b a t i o n s . T h e s e i n c l u d e t h e

p r o b l e m o f w a v e r e f l e c t i o n f r o m a d i e l e c t r i c l a y e r w i t h

s t a t i s t i c a l l y u n e v e n b o u n d a r i e s ' - 1 3 6 ' 1 3 7 - ' , t h e c a l c u l a t i o n

o f t h e i n t e n s i t y o f a s o u n d f i e l d p a s s i n g t h r o u g h a n a i r -

w a t e r i n t e r f a c e ^ 1 3 8 ' 1 3 9 3 , t h e c a l c u l a t i o n s o f t h e c h a r a c -

t e r i s t i c s o f a s u r f a c e w a v e p r o d u c e d i n s c a t t e r i n g f r o m

t h e b o u n d a r y o f a l i q u i d ^ 1 4 0 - ' , a n d t h e t r a n s f o r m a t i o n o f

a s u r f a c e w a v e i n t o a t h r e e - d i m e n s i o n a l o n e w h e n

p r o p a g a t i n g a l o n g a r o u g h s u r f a c e ' - 1 4 1 - ' .

d ) T h e r e a l s u r f a c e s p r o d u c e d b y n a t u r a l c a u s e s h a v e

a s a r u l e a c o m p l i c a t e d s t r u c t u r e . T h e y a r e c h a r a c t e r -

i z e d b y s e v e r a l c o r r e l a t i o n s c a l e s , a n d s o m e t i m e s b y

s e t s o f t h e m . I f t h e c o n d i t i o n s f o r t h e u s e o f t h e p e r t u r -

b a t i o n m e t h o d h o l d f o r s u c h i r r e g u l a r i t i e s , t h e n t h e

d y n a m i c p a r t o f t h e s c a t t e r i n g p r o b l e m r e m a i n s u n -

c h a n g e d , a n d t h e c o m p l e x s t r u c t u r e o f t h e i r r e g u l a r i t i e s

i s t a k e n i n t o a c c o u n t i n t h e s e c o n d , s t a t i s t i c a l p a r t o f

t h e p r o b l e m . T h u s , f o r e x a m p l e , i n t h e c a l c u l a t i o n o f

t h e a v e r a g e i n t e n s i t y o f t h e s c a t t e r e d f i e l d i n f i r s t o r d e r

o f p e r t u r b a t i o n t h e o r y , t h e s t r u c t u r e o f t h e i r r e g u l a r i -

t i e s i s a c c o u n t e d f o r i n t h e e x p l i c i t f o r m o f t h e s p e c t r a l

d e n s i t y o f t h e s u r f a c e .

Real irregularities, however, can frequently be re-
garded as large-scale formations on which a slight
ripple is superimposed. Such a model can be used, for
example, to describe the wavy surface of the sea. In
this case it is necessary to modify the solution of the
scattering problem even in its dynamic part.

The method proposed by Kur'yanov1-142:1 for calculat-
ing the scattered field consists of regarding the slight
ripples as a small perturbation. The scattered field is
then calculated by the perturbation method, using as the
first approximation the field scattered by the smooth
large-scale irregularities, which is calculated by the
Kirchhoff method. This method was used i n

[ 1 4 3 " 1 4 6 : i * to
calculate a number of statistical characteristics of a
scattered electromagnetic field under the assumption
that both types of irregularity are statistically indepen-
dent.

A somewhat different calculation method, based on
incoherent addition of fields scattered by small-scale
irregularities, was proposed by Semenov'·148"149-'. If the
intensity of a wave incident on an element dS of an un-
perturbed surface is denoted by Io = const, then the in-
tensity of the incoherently scattered field in the far zone
is written in the form

= | f f ( Z , φ, (2.9)

where F(x, φ , θ) is the indicatrix for wave scattering
from an elementary area Ds containing a slight ripple,
and depends on the local incidence angle θ and observa-
tion angles χ and φ .

Formula (2.9) is valid at not too large inclination
angles of the large-scale irregularities, when the mutual
influence of the neighboring sections of the surface S can
be neglected. As to the intensity of the coherently re-
flected waves, its calculation calls for knowledge of the
scattered field itself. The latter can be obtained by the
Kirchhoff method, using instead of the Fresnel reflec-
tion coefficients the average-field coefficients of the
type (2.8), calculated with the aid of the nonlocal boun-
dary conditions.

3. METHODS ACCOUNTING FOR MULTIPLE
SCATTERING BY THE SURFACE

We describe here two methods which in our opinion
are the most promising ones, in which account can be
taken of multiple scattering from an uneven surface.
These are the integral-equation method and the Green's
function method.

a) The first of them was proposed by Lysanov'-150-' in
connection with the solution of the problem of scattering
of an acoustic wave by a surface with one-dimensional
periodic irregularities. The method consists of an ap-
proximate calculation of the field or of its normal
derivative on the surface S from Green's integral form-
ula

£ j { . ( ^ ^ - ^ ^ } * . (3.1)

where φ is the total acoustic field, η is the outward
normal to S, and Φ is the field of the primary wave. The
field at an arbitrary point R over the surface is then ob-

*See also the discussion of11461 in[147].
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tained by substituting the obtained values of φ (τ) and
3(p(r)/an in (3.1).

Let the scattering surface be absolutely soft; then
φ(τ) = 0 on the interface S. Making the observation point
identical with the point r ' on S, we obtain from (3.1) an
integral equation with respect to Βφ/dn on S

.Φ(Ο=-^ΐ-^-£^ν. (3-2)

If the inequalities

2 dx

dn

1, Ασ

r'

-8

-r |

(to).
mai ~ kl « 1 (3.3)

are satisfied, the kernel of (3.2) reduces to a difference
kernel. Solving this equation in the case of a plane
primary wave with the aid of the Fourier transforma-
tion and substituting the value of S<p(r)/dn obtained in
this manner in (3.1), we obtain1-1513

f ( R ) - - s i i

F,

where

Ψ J ^ ι V **-*5.·
(3.4)

:»-4 l

(q_L-*±).

?Γ±,

^o = (^oi' ""^oz) * s ' n e w a v e v e c t o r of the incident wave.
Averaging (3.4) over the e n s e m b l e of s u r f a c e s , we

obtain for s t a t i s t i c a l l y i s o t r o p i c i r r e g u l a r i t i e s the r e -
f lect ion coef f ic ient of the a v e r a g e field

V - - e -^ °>° + i -

(3.5)

where h(p) = e~^a^ - f a £ ( - k o Z , - k o Z > p) and fa£ i s
the two-d imens iona l c h a r a c t e r i s t i c function of the ir-
r e g u l a r i t i e s .

In the l imi t ing c a s e of s m a l l k z a (in which c a s e , a c -
cording to (3.3), k/ » 1), there fo l lows from (3.5) the
e x p r e s s i o n (2.8) c i ted above and obtained with the aid of
the nonlocal boundary condit ions. In the c a s e of non-
glancing inc idence of a plane wave on the sur face, at
l a r g e k z a (in which c a s e we must have k/ 3> 1) we ob-
tain f rom (3.5) the s a m e average- f ie ld re f l ec t ion coeffi-
c ient a s in Kirchhof f s method ( s e e (1.8)).

For the a v e r a g e intens i ty of the total field in the
Fraunhofer zone of a rough a r e a S w e obtain

;!§•

w h e r e

— qiJ_, . —q2X,

( 3 . 6 )

= ( 2 H j « J J J ( — koz, — v z , k 0 2 , v z r u , r 2 ± ,

χ e · ( v j _ - q u _ ) r , j _ - i ( q 2 _ L - k o j _ ) r 2 J _ - i (V j_-q 2 _L) Γ 3 χ >

v i s t h e w a v e v e c t o r i n t h e o b s e r v a t i o n d i r e c t i o n .

I n c a s e s w h e n t h e c o n d i t i o n s f o r t h e a p p l i c a b i l i t y o f

t h e K i r c h h o f f m e t h o d o r o f t h e p e r t u r b a t i o n m e t h o d a r e

s a t i s f i e d , f o r m u l a ( 3 . 6 ) g o e s o v e r i n t o t h e e x p r e s s i o n s

o b t a i n e d b y t h e s e m e t h o d s f o r t h e a v e r a g e i n t e n s i t y .

F o l l o w i n g t h e p r o c e d u r e d e s c r i b e d h e r e , w e c a n o b -

t a i n , u n d e r t h e s a m e c o n d i t i o n s ( 3 . 3 ) , a n e x p r e s s i o n f o r

t h e c o r r e l a t i o n f u n c t i o n o f t h e s c a t t e r e d f i e l d , a n d a l s o

c o n s i d e r t h e c a s e o f a s p h e r i c a l p r i m a r y ' 3

T h u s , e v e n i f w e a s s u m e t h a t t h e i n e q u a l i t i e s ( 3 . 3 )

a r e s a t i s f i e d , t h e i n t e g r a l - e q u a t i o n m e t h o d g i v e s m o r e

e x a c t e x p r e s s i o n s f o r t h e f i r s t t w o m o m e n t s o f t h e s c a t -

t e r e d f i e l d t h a n t h e K i r c h o f f m e t h o d a n d t h e m e t h o d o f

s m a l l p e r t u r b a t i o n s .

b ) T h e G r e e n ' s - f u n c t i o n m e t h o d i s b a s e d o n f i n d i n g

a n d s o l v i n g t h e e q u a t i o n s d i r e c t l y f o r t h e s t a t i s t i c a l

c h a r a c t e r i s t i c s o f t h e s c a t t e r e d f i e l d . I t i s n o t n e c e s -

s a r y h e r e t o s o l v e t h e d y n a m i c p a r t o f t h e p r o b l e m , i . e . ,

t o f i n d t h e f i e l d s c a t t e r e d b y e a c h o f t h e r e a l i z a t i o n s o f

t h e r a n d o m s u r f a c e . T h i s m e t h o d , i n i t i a l l y d e v e l o p e d i n

q u a n t u m f i e l d t h e o r y , w a s s u b s e q u e n t l y u s e d t o f i n d t h e

s t a t i s t i c a l c h a r a c t e r i s t i c o f a f i e l d p a s s i n g t h r o u g h a

r a n d o m l y - i n h o m o g e n e o u s m e d i u m ^ 1 5 3 ' 1 5 4 - 1 .

I t w a s f i r s t u s e d t o c a l c u l a t e t h e m o m e n t s o f a f i e l d

s c a t t e r e d b y a n u n e v e n i n t e r f a c e b y B a s s , F r e i l i k h e r ,

a n d F u k s , w h o c o n s i d e r e d b o t h s c a t t e r i n g b y a r o u g h

p l a n e ' - 1 5 5 - ' a n d p r o p a g a t i o n i n a w a v e g u i d e w i t h r o u g h

[ 1 5 6 - 1 5 8 ]

Let Ry. = r + n(r) J(r) be the radius vector of an un-
even surface Σ, consisting of a regular surface S with a
radius vector r and a normal n(r), and random irregu-
larities £(r). Assuming the surface Σ to be absolutely
soft, we denote by G(R, Ro) the Helmholtz-equation
Green's function satisfying the boundary condition
G(Rj;, Ro) = 0. If we confine ourselves to terms linear
in £, this boundary condition takes the form

G(r, Ro) + ζ (r) ̂  G (r, R,,)=0. (*•·)

F r o m G r e e n ' s t h e o r e m with a l lowance for (3.7) we get
an integral equation for G(R, Ro)

G(R,R0) = G0(R, R o ) - ^ j - | r (3.8)

w h e r e G 0 ( R , R o ) i s t h e G r e e n ' s f u n c t i o n o f t h e H e l m h o l t z

e q u a t i o n w i t h b o u n d a r y c o n d i t i o n G 0 ( r , R o ) = 0 o n S ; t h i s

f u n c t i o n i s a s s u m e d k n o w n . T h e s u r f a c e S i s a s s u m e d

p l a n e .

Assuming the distribution function of ζ to be
Gaussian, iterating in (3.8), and using a Feynman-
diagram technique^1 5 3 > 1 5 4 ], it is possible to obtain a
closed Dyson equation for the average Green's function
(G(R, Ro)} and the Bethe-Salpeter equation for the sec-
ond moments of the scattered field. Representing
(G(R, Ro)) in the form of a superposition of plane waves,
each of which is reflected from the surface and has its
own reflection coefficient V(Kj_), we can find approximate
expressions for ν(κ χ) in which, however, multiple re-
radiation of the primary field by the irregularities are
taken into account.

In the Bourret approximation, the reflection coeffi-
cient' V(KL) coincides with that obtained in1·135-1 with the
aid of the nonlocal boundary conditions for the average
field. A more exact value of V(K J is obtained by separ-
ating in the mass operator a certain infinitely-summable
subsequence of diagrams. One such possibility was in-
deed considered in the cited paper^155-1. For V(/cJ we
have in this case the expression

( κ 2 / 4 π » ) γ ( χ ± ) '

where

v (*j
x(pj_—q^J^qx
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&(KL) is the spectral density of the uneven surface, and
κ = (κχ, κ ζ) is the wave vector of the plane wave reflec-
ted from the surface.

To find V(KX) we can also use the Dyson nonlinear
equation obtained in the simple-vertex approximation.

In the problem of wave propagation in a waveguide
having statistically rough walls, the Green's function
method makes it possible to calculate the change of the
spectrum of the normal waves t l 5 6 ] , to calculate the
attenuation of the average field both at the critical fre-
quency1- l57^ and at subcritical frequencies, and finally
to derive the radiation transport equation from the
Bethe-Salpeter equation.ClSB*

4. CONCLUSION

The theory of wave scattering by statistically uneven
surfaces is treated in the literature in two ways corre-
sponding to two methods of solving the dynamic part of
the problem, namely the Kirchhoff approximation and
the perturbation method. These methods solve the prob-
lem of finding the statistical characteristics of the scat-
tered field for either smooth irregularities or irregu-
larities that are small compared with the wavelength,
and also in the case when slight ripple is superimposed
on large-scale irregularities. Formulas connecting the
statistical characteristics of the rough surface with the
statistical properties of the field scattered by were ob-
tained for irregularities of these types. The results of
the theory have been confirmed by a number of experi-
ments, both in laboratories and under natural conditions.
In this review we hardly touched upon the experimental
studies, for their description could be the subject of a
separate review.

In addition to the traditional methods for solving the
problem, which were cited above, more rigorous
methods have been successfully developed recently,
namely the integral-equation method and the Green's
function method. These make it possible to take into
account multiple scattering of waves from a surface.
The results obtained by these methods are of undoubted
interest from the theoretical point of view, and possibly
will become of practical value when the experimental
accuracy reaches the appropriate level.

The author is deeply grateful to S. M. Rytov, at whose
suggestion this article was written, and also to G. V.
Rozenberg, Yu. A. Kravtsov, and I. M. Fuks, for a num-
ber of valuable remarks and suggestions.
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