
SOVIET PHYSICS USPEKHI VOLUME 15, NUMBER 2 SEPTEMBER-OCTOBER 1972

523.038

O r i g i n o f M a g n e t i c F i e l d s in A s t r o p h y s i c s

(Turbulent "Dynamo" Mechanisms)

S. I. Vainshtein and Ya. B. Zel'dovich
Siberian Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Siberian Division, USSR Academy
of Sciences, Irkutsk
Applied Mathematics Institute, USSR Academy of Sciences
Usp. Fiz. Nauk 106, 431-457 (March, 1972)
We consider the generation of magnetic fields under astrophysical conditions. Principal attention is paid to
"dynamo" mechanisms, i.e., mechanisms in which the energy of the magnetic field is drawn from the kinetic
energy of plasma motion. The important role played by turbulent dynamo mechanisms is emphasized. The
dynamo problem itself is divided into two: 1) generation of regular magnetic fields (i.e., the dynamo
mechanism of fields having scales commensurate with the cosmic object itself by turbulent pulsations); 2)
generation of random fields. A review is presented of the existing theories for the generation of regular fields
(reference is made, in particular, to the work of Steenbeck and co-workers and of Parker), and a
generalization of the existing results to include large magnetic Reynolds number Rem, characteristic of cosmic
plasma, is indicated. Astrophysical examples are given. The existing theories in the dynamics of random
fields are also reviewed. Results are presented on the turbulent dynamo in the presence of acoustic
turbulence. Analogies with the question of excitation of vortices in a field of acoustic turbulence is indicated.
The question of the turbulent dynamo in the field of "Kolmogorov" turbulence is discussed. Finally, an
essential problem is that of the steady-state field produced by a nonlinear effect. It is shown that in the
presence of a non-weak field there appears a gyrotropy acting in opposition to the action of the usual
rotational gyrotropy. This observed gyrotropy is called magnetic and can cause nonlinear stabilization of the
magnetic field.
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I. INTRODUCTION

JS4.AGNETIC fields in planets, s t a r s , galaxies, quasar s ,
and intergalactic space constitute a phenomenon of t r e -
mendous scale and significance. The appearance of high-
energy par t ic le s such as protons, nuclei, and e lectrons
is closely connected with the magnetic field. The motion
of these par t ic le s in the magnetic field produces the
electromagnetic synchrotron radiation. The proof of the
synchrotron nature of the radiat ion of the Crab nebula 1 1 ' 2 1

was a most important stage in the development of mod-
ern as t rophys ics . This discovery was followed by r e c -
ognition of the very important role played by the e lec t ro-
magnetic field in a large number of astronomical phe-
nomena. In many cases , the magnetic field plays the
p r i m a r y role in the dynamics of the astrophysical p r o -
c e s s e s themselves . This r a i s e s the question of the o r i -
gin of such fields. The usual p lasma excitation mecha-
n i s m s , such as the t h e r m a l mechanism, which will also
be discussed briefly below, resu l t as a rule in only very
weak c u r r e n t s and magnetic fields. On the other hand,
many observed p r o c e s s e s have sufficiently high energies
(gravitational or kinetic) so that if the mechanisms of the
" c o n v e r s i o n " of this energy into magnetic energy could
be understood, then the observed values of the magnetic
fields could be explained. Thus, for example, in the gas
filling our galaxy, the kinetic energy of the gas, the k i-
netic energy of the cosmic rays , and the energy of the
magnetic field a r e of the same o r d e r , a s emphasized by
V. L. Ginzburg.

If we have in mind not regular but random fields, then
the most general considerations make it plausible to a s -

sume equipartition of the energy among the various
forms. Such general s tatements, however, call for natu-
r a l caution. Statements pertaining to the complete and
true thermodynamic equilibrium a r e undoubtedly c o r -
r e c t , but a r e absolutely of no i n t e r e s t : the r e s e r v o i r of
degrees of freedom with maximum wave vectors , i .e.,
essential ly the motion of individual par t ic les in the field
of equilibrium "black body" radiation, suppresses all
the macroscopic degrees of freedom.

Macroscopic motions and fields, whether ordered or
stat is t ical (such as turbulent fields), a r e of interest to
the extent to which they a r e nonthermodynamic, and con-
sequently a r e not in equilibrium. In such a situation we
are dealing with the kinetics of energy t ransfer from one
form to another and from long to short waves; there is
no simple thermodynamic equipartition. We can mention
universally known c a s e s of violation of equipartition.
For example, in a turbulent s t r e a m the longitudinal
(acoustic) motions a r e weaker than the t r a n s v e r s e ones
by a factor M5, where Μ is the Mach number. From the
thermodynamic point of view, the e lectr ic field does not
differ from the magnetic one, but in magnetohydrody-
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namic processes the energy of the electric field is lower
than that of the magnetic field by a factor of at least
(v/c)2 (v is the velocity of motion). These examples
show that a superficial application of the idea of equi-
partition is not permissible without a concrete analysis
of the problem.

In cosmic plasma there usually take place various
hydrodynamic motions whose energy is not low. It is
they which offer promise of serving as a possible source
of the enhancement of magnetic fields. Such a mecha-
nism is usually called the "dynamo" mechanism. In the
"dynamo theories" to which the present review is
mainly devoted, the most important fact is the freezing-
in of the magnetic field. The large conductivity of the
plasma together with the large spatial scale of the phe-
nomena cause the ohmic resistance to play no role what-
ever (the dimensionless magnetic Reynolds number R e m

is large). A decisive role is played by the inductance,
as a result of which we get conservation of the magnetic
flux through each contour that moves together with the
plasma, i.e., consisting all the time of the same parti-
cles. It is universally known that in this case the damp-
ing time of the magnetic field in an immobile medium of
astronomical size is gigantic and is absurdly large even
in the astronomical time scale. The burning question in
the theory of generation is whether the growth time of
macroscopically ordered fields is just as large. An af-
firmative answer would mean that it is impossible in
practice to generate fields.

The dynamo theory has been in existence about fifty
years, but until recently there was no distinct separa-
tion into fast and slow dynamos, in other words, into
generation with and without frozen-in fields. An exam-
ple of a slow dynamo is any generator in an electric sta-
tion or a magnetohydrodynamic generator. In the slow
dynamo, the growth of the field is connected with its
penetration into matter, and is therefore of no interest
in astrophysics, where the mechanism of the fast dy-
namo effect is necessary. It has turned out that field
generation under cosmic conditions is not as simple to
realize as in a laboratory. During the initial stage of
the development of the dynamo theory, only negative re-
sults were obtained. It was shownC3~sl that motions hav-
ing a high degree of symmetry (two-dimensional, axi-
symmetrical, centrally-symmetrical) are incapable of
generating a field. This circumstance greatly compli-
cates the problem, which has not yet been solved in gen-
eral form. On the other hand, using the concept of the
freezing-in of the magnetic field, one can point to a con-
crete example of a fast dynamo mechanism. Let us
imagine a conducting liquid torus in which there exists
an initial toroidal (parallel to the equator plane) mag-
netic field (Fig. la). Further, it is easy to imagine mo-
tion that transforms the torus into a "figure 8" (Fig.
lb). The next stage is congruence of the circles of the
figure-8 (Fig. lc). It is seen from Fig. lc that the mag-
netic field flux has doubled. If we repeat such a motion
η times, we obtain an enhancement by a factor 2 n; thus,
the flux increases exponentially. It should be noted, how-
ever, that the field does not simply double, for in addi-
tion to the toroidal components there appear also "extra
fields," which can be annihilated by finite diffusion.
Thus, without forgoing the ideal freezing-in, we can ob-
tain an unlimited increase of the ordered flux. It is

clear also that the velocity field in this example does
not have cylindrical symmetry on the whole.

Together with the increase of the flux, there occurs
a certain change in the subtler topological properties of
the current lines. In this sense, certain violation of the
frozen-in property is nevertheless necessary in order
to reproduce exactly all the details of the field upon am-
plification. The velocity field is stationary when aver-
aged over the cycle, but not as each instant of time. The
need for finite diffusion for the dynamo was indicated
already by Elsasser. [ e l A mechanism analogous to that
described above was indicated by Davis.C7]

The feasibility, in principle, of a dynamo for helical
motions was rigorously demonstrated analytically by
Lortz.1 8 3 The doubts concerning the dynamo mechanism
in astrophysics was dispelled after Parker c e ] and El-
sasser c e ] developed the theory of the solar cycle as an
oscillatory dynamo. We shall not describe their mecha-
nism, since it is widely known (see, e.g., i101). We note
only that according to this mechanism a toroidal field
is generated from a poloidal one (whose force lines He
in meridianal planes) with the aid of differential rota-
tion. The convective motions produce "loops," and in
the presence of a Coriolis force the loops rotate; it is
easy to understand that if the loops are rotated through
approximately 90° and then coalesce as a result of the
finite electric conductivity, then a new field is produced
in them, either parallel to the initial poloidal field (in
which case enhancement of the field takes place), or
antiparallel (and then the fields reverse sign). It is easy
to see the similarity between this mechanism and the
example given above.

At the present time, great promise is held by statis-
tical mechanisms, i.e., the turbulent dynamo. Of course,
no general theory of turbulence in the presence of mag-
netic fields exists at present: the point is that a decisive
influence was exerted on the establishment and develop-
ment of the theory of ordinary hydrodynamic turbulence
by an abundance of experimental data. As to laboratory
experiments on magnetohydrodynamic turbulence, it is
difficult to create conditions with R e m » 1 (which is
characteristic of cosmic plasma), while the interpreta-
tion of the observations of cosmic plasma frequently is
itself in need of theoretical premises. The dynamo prob-
lem is usually formulated as a kinematic one, i.e., the
velocity field is specified and the reaction of the mag-
netic field on the magnetic motion is disregarded. In
this formulation, the problem can be divided into two:

1. The interaction of large-scale magnetic fields
with the turbulence (this includes turbulent diffusion and
turbulent generation of the overall fields of stars and
planets and of the overall field of the galaxy by turbulent
mechanisms).

2. Interaction of small-scale pulsational magnetic
fields with the turbulence (this includes the possible ex-
citation of random magnetic fields of the galaxy, which
play an important role in the acceleration of cosmic rays
and the polarization of the interstellar medium, random
interplanetary magnetic fields of solar wind, which are
important for the explanation of diffusion and isotropiza-
tion of the cosmic rays, and random solar and stellar
magnetic fields which play a major role in dynamics of
solar and stellar processes).

Some understanding of problem 1 has been reached
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by now, start ing with the work of Steenbeck and Krause.
1 1 1 3 It has become known that simple isotropic or aniso-
tropic turbulence causes only turbulent diffusion of the
magnetic field. Only gyrotropic turbulence (which is
non-invariant under reflection) in which either r ight-
hand or left-hand helical motion predominates is capa-
ble of operating as a field generator . Steenbeck and
Krause have demonstrated this for R e m -C 1; one of
u s c i 2 ] generalized this resul t to the case R s m ΐϊ> 1,
which is rea l i s t ic in cosmic e lectrodynamics . The prob-
lem of Steenbeck and Krause is that of a slow dynamo
in which the field growth increment depends on the e lec-
t r i c conductivity σ; the problem described in ί1ΖΊ i s that
of the fast dynamo in which the increment depends only
on the turbulent (gross) c h a r a c t e r i s t i c s .

Notice that all the dynamo mechanisms (the one in-
dicated in Fig. 1, the P a r k e r dynamo, and the Steenbeck
and Krause dynamo) reduce to one and the same mecha-
nism wherein the loop breaks away from the main field
and is rotated in such a way that it becomes para l le l to
the initial field; it i s thus possible that all the genera-
tion mechanisms reduce to the "f igure 8 " of Fig. 1.

We point out that introduction of the concept of t u r -
bulent r e s i s t a n c e has made the problem of fast or slow
dynamo les s acute : if the turbulence t ime is substituted
in the express ion for the damping t ime, then the damp-
ing period (meaning also the growth t ime) turns out to
differ little from the period of the hydrodynamic mo-
tions.

Gyrotropic turbulence can be an effective generator
of magnetic fields in rapidly rotating objects. The
growth increment is in this case quite large and is
smal le r than the rotation frequency by only a few t i m e s .
In other cases the sole action of the gyrotropic turbu-
lence (called by Steenbeck the a effect) is insufficient,
and must be aided by regular motions, for example dif-
ferential rotation, acting " i n the same d i r e c t i o n " as the
a effect. Such a situation obtains in our galaxy. On the
other hand, if the differential rotation acts in opposition
to the a effect, i .e., if the field generated from the po-
loidal field is toroidal and antiparal lel to the toroidal
field generating the a effect, then a vibrational dynamo
cycle is obtained (the solar cycle is an example). It is
interest ing to note that the differential rotation itself
produces only a growth of the field that is l inear in t ime
(if no diffusion is taken into account), i.e., a r a t h e r slow
growth. When the a effect is added, the field growth is
exponential, and the increment is the geometr ic mean
of the rotation frequency and the α-effect increment.

There a r e also other interest ing aspects of problem
1. Many s t a r s have convective cores or convective en-
velopes, and their remainder is immobile, i .e., the t u r -
bulence is inhomogeneous. This r a i s e s the question of
how the total field of the s tar behaves. If it attenuates
effectively in the convective core, then it becomes by
the same token rapidly forced out into the immobile r e -
gions. The force lines "go a r o u n d " the convective core .
If this is so, then the core behaves like a diamagnet,
and it is possible to develop a " m a c r o s c o p i c " e lec t ro-
dynamic theory, i.e., e lectrodynamics of large-sca le
fields, with the magnetic permeabil i ty μ dependent on
the turbulent c h a r a c t e r i s t i c s . The solution of problems
such as 1 is facilitated by the fact that such problems
have a physically smal l p a r a m e t e r l/L·, where / is the

corre lat ion length and L is the scale of the field, a l-
though no expansion is c a r r i e d out in t e r m s of this pa-
r a m e t e r . It is interesting to note that the question of
forcing out the field from the turbulent core can be
solved in the two-dimensional case, which includes the
cases of diamagnetism and of turbulently-accelerated
attenuation of the field.

Finally, an important question is that of the steady-
state field, which obviously depends on the nonlinearity
of the effect. In fact, in the kinematic problem, i.e.,
when the c h a r a c t e r i s t i c s (statist ical or regular) of the
velocity field a re specified, the dynamo resu l t s in an
unbounded (exponential, see above) enhancement of the
field, which naturally has no physical meaning. It is
also natural to assume that the energy of the steady-
state field does not exceed the kinetic energy. But this
is the upper l imit . Can stabilization occur in a weakly-
linear reg ime, i.e., can the energy of the steady-state
magnetic field be much smal ler than the kinetic energy ?
It turns out that such a situation is possible. The gist
of the situation is that the reaction affects p r i m a r i l y
the gyrotropy itself, and not the average energy of the
turbulence. But a smal l p a r t of the ent i re random mo-
tion can be gyrotropic.

We proceed to problem 2, the interaction of smal l-
scale pulsational magnetic fields with the turbulence.
This question was discussed already in the papers of
Batchelor C 1 3 1 and Biermann and Schluter . : i 4 3 Batchelor
called attention to the analogy between the equation for
the magnetic field Η and c u r l v, and arr ived at the con-
clusion that when v/vm. > 1 (y and vm a re the kinematic
and magnetic v iscosi t ies, respectively) the pulsational
fields increase . It was subsequently noted by many
workers that these equations a r e not physically analo-
gous, since the velocity field (and by the same token
also the field curl v) is maintained by external sources,
but the field Η is n o t . C 4 ' 1 5 ] It is not surpr is ing that
Batchelor ' s s u c c e s s o r s (Saffman,C 1 8 '1 7 3 Moffatt : i 8 1)
reached the opposite conclusion, that a turbulent dy-
namo is impossible in the inert ia l subregion (by ana-
lyzing the same equations for Η and cur l v ! ) . Wherein
does the difficulty of the problem lie ?

We turn to the picture of motion with frozen-in fields.
It is known that in a turbulent s t r e a m the distance be-
tween neighboring par t ic le s increases on the average,
so that the force lines become entangled. One can t h e r e -
fore expect the mean-squared magnetic field to increase
with t i m e . However, the entanglement of the force l ines
is accompanied by a d e c r e a s e in the scales of the fields,
i.e., the " t r a n s f e r " energy into the region of large wave
numbers, which is usual for hydrodynamic turbulence,
takes place. This means that there is a danger that the
enhancement of the field occurs only as a resul t of
breaking up the sca les .

Exact investigations of idealized c a s e s (axially sym-
metr ica l motion and two-dimensional motion) have con-
firmed these dangers . In the indicated degenerate cases ,
the growth of the field is indeed connected with a de-
crease in scale, the vector potential does not increase,
and no exponential growth of the field is possible. In a
r e a l three-dimensional case, the investigation is made
difficult by the fact that there is no smal l p a r a m e t e r in
the problem, and the r a t e s of the aforementioned two
competing p r o c e s s e s a r e of the same order of magni-
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tude. For this reason, heur is t ic theor ies cannot give a
final answer to the question whether a turbulent dynamo
is possible. A significant contribution to the analysis of
these questions was made by Kazantsev.C 2 8 3

It is possible to make p r o g r e s s in this problem by
considering acoustic turbulence, namely an ensemble
of interacting acoustic waves. The foregoing competing
p r o c e s s e s occur here , too, and their r a t e s a r e approxi-
mately equal. On the other hand, a small p a r a m e t e r
ν/λω appears (v is the amplitude of the velocity, λ is
the wavelength, and ω i s the frequency), and by expan-
sion in t e r m s of this p a r a m e t e r it i s possible to obtain
correct ly an equation for the spectra l function of the
magnetic-field fluctuations. It tu rns out that exponen-
tially increasing solutions do exist, i .e., the dynamo
does take p lace. Finally, we shall advance later on a r -
guments favoring the turbulent dynamo in ordinary hy-
drodynamic turbulence.

Π. REGULAR (LARGE-SCALE) MAGNETIC FIELDS

1. Origin of " p r i m i n g " magnetic fields. Of course ,
one can assume that there exis ts a certain metagalactic
field and that the galactic fields become enhanced in
comparison with the pr imordia l one as a resu l t of con-
densation of the galaxies themselves, and the s te l lar
fields a re enhanced as a resul t of condensation of the
s t a r s . t l 9 ' e 5 ] To be s u r e , the need for dynamo theor ies
still r e m a i n s , s ince, f irst, alternating magnetic fields
a r e observed at the s t a r s and, second, turbulent diffu-
sion of the magnetic field is not so slow and is f re-
quently appreciable over cosmological t i m e s .

We shall follow an alternative approach, and assume
that the field is excited by certain priming mechanisms,
after which it is enhanced by the dynamo mechanism.

The f irst to propose a mechanism for the excitation
of the priming field were Biermann and S c h l u t e r . : i 4 ]

The mechanism reca l l s the thermoeffect: in the p r e s -
ence of a p r e s s u r e gradient, it is eas ie r for e lectrons
to leave places where the p r e s s u r e is higher than for
ions, and this gives r i s e to a current . A magnetic field
is excited if cur l p'1 Vp # 0, and in this case the e lectr ic
field contains a non-potential component. This condition
can be satisfied in rotating bodies; for s t a r s , the p r i m -
ing fields a r e as a rule smal l . For example, for the sun
Η RJ 10" 5G. P r i m a r y generation in s t a r s was considered
also by Drobyshevski i . c e e ] H a r r i s o n [ 2 0 ] proposed a
mechanism for the generation of pr iming fields in p r o -
togalaxies in an expanding universe, in the period when
the density of the radiation was much higher than the
density of m a t t e r . It is assumed h e r e that the protogal-
axies have an initial rotation. Qualitatively, Harr i son ' s
mechanism can be explained in the following manner.
Let us imagine a spherical uniformly-rotating region
of radius r ; the radiation density is ργ and the density
of matter is ρ (ions and nonrelativist ic e lectrons) . As
this vortex expands we have p r 3 = const and ργτ*
= const; consequently, if the angular momentum is con-
served we have ω ~ r~2 and Wy ~ r" 1 (u> a r e the angular
velocities), so that if no account is taken of the i n t e r a c -
tion between the radiation and the mat ter , the ions r o -
tate more slowly that the radiation. The e lectrons a r e
drawn by the radiation, so that the c r o s s section of the
Thomson scatter ing is not smal l ; a current is thus p r o -

duced—the e lectrons rotate more rapidly than the ions.
More accurately speaking, they "would l i k e " to rotate
more rapidly, but generate in this case a magnetic field
such that the induced emf offsets the inert ia of the ions;
from this we can easi ly obtain the value of the field.
The magnetic field generated thereby can be est imated
at

B= — 2(mHc/2)a= — 2·10-*ω G

Generation by th i s method s t o p s when the fr ict ion b e -
tween the i o n s and the e l e c t r o n s b e c o m e s l a r g e enough.
This o c c u r s at the end of the radiat ion per iod, and the
final f ield i s e s t i m a t e d by H a r r i s o n at ~ 1 ( T 1 8 G .

A somewhat different m e c h a n i s m for the l a s t s tage
i s p r o p o s e d by Mishust in and R u z m a i k i n . : 2 1 ] During a
per iod c l o s e to our own epoch, the interact ion with the
radiat ion can be n e g l e c t e d in f i r s t - o r d e r approximation,
and the e l e c t r o n s and ions rotate together r e l a t i v e to
the radiat ion. The c o l l i s i o n s between the protons and
the n e u t r a l s c a u s e s the f o r m e r to rotate with the s a m e
angular v e l o c i t y a s the neutral mat ter . The e l e c t r o n s ,
on the other hand, in teract with the radiat ion (homoge-
n e o u s background) much m o r e e f fect ive ly than with the
n e u t r a l s . The radiat ion s l o w s down the rotation of the
e l e c t r o n s . The resu l tant emf i s c o m p e n s a t e d by the in-
duced f ield.

The p r e s e n c e of two m e c h a n i s m s i s useful, s i n c e it
i s not c l e a r to th is day when the rotat ion of the g a l a x i e s ,
which i s undoubtedly o b s e r v e d at the p r e s e n t t i m e , s e t
in. According to the v o r t e x theory deve loped by Chernin
and Ozerno i c 2 ] and by o t h e r s , the rotat ion took p lace a l -
ready in the e a r l i e r p r e - g a l a c t i c s tage to which the
Harr i son m e c h a n i s m p e r t a i n s . One can however, ad-
vance the hypothes i s that the rotat ion deve loped a s a
r e s u l t of gravitat ional ins tab i l i t i e s and dens i ty p e r t u r -
b a t i o n s . In th is theory, the rotat ion o c c u r s l a t e r 1 3 7 1 and
then the m e c h a n i s m of Mishust in and Ruzmaikin i s m o r e
sui tab le .

2. The s y m m e t r i c a l prob lem. We i l lus trate be low
the s y m m e t r i c a l ( two-dimens ional ) p rob lem using the
flat c a s e a s an e x a m p l e , and fol lowing Z e l ' d o v i c h . : 4 ]

Thus, let v z = 0 and let the gradients in the ζ direction
be equal to z e r o , 3/3z = 0. Then the magnetic field sat-
isfies the equations

dA
(1)

(2)

, " - • £ . divv~O.

The problem has broken up into two, one concerning the
Hz component of the field and the other concerning H x

and Hy, which are expressed in t e r m s of the A z -compo-
nent of the vector potential, henceforth denoted for brev-
ity by A (without a subscript), A = A(x, y). Multiplying
(1) by H z and (2) by A, and integrating over the entire
(x, y) plane, we obtain

i 4- j H\dxdy = -v M j (V/r2)»dxdy, (3)

^ J \ (4)

F r o m (3) we see immediately that H z — 0 as t — ». In-
tegrating (4) with respect to t, we obtain

t
^ A'(x, y, 0)dxdy-j A'(x,y, t)dxdy=2vm § (H'X + H%) dx dy dt'".
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The express ion on the right is a monotonic function of t
(an integral of a positive function), bounded by the quan-
tity /A2(x, y, 0 ) d x d y .

Consequently, the integral converges as t — °°; it
follows therefore that ( H x + H y ) — 0 as t — °°. We have
thus obtained the well known resu l t that a two-dimen-
sional dynamo is impossible. We note that the conclu-
sion can be generalized to include the case when v z Φ 0,
v z = v z (x, y)—the problem r e m a i n s two-dimensional.
Equations of the type (3) and (4) for the axial ly-symmet-
r i c a l case were written out by Braginskri.1 5·1 In addition
to these negative r e s u l t s , positive r e s u l t s concerning
large-sca le fields were also obtained. So far in this
section we did not deal with turbulence at all, and the
only requirement that ν must satisfy is that it decrease
at infinity.

We call attention to the fact that (1) and (2) a r e anal-
ogous to the equation for a sca lar impurity (smoke den-
sity, t empera ture) in an incompress ible liquid. Now the
r e s u l t s obtained above a r e c lear . The equation for H z

is par t icular ly s imple: H z does not increase and H z

- O a s t - °o. We therefore put H z = 0. Then the equa-
tion for the vector potential is analogous to the equation
for the t e m p e r a t u r e , and the absolute value of Η is equal
to the gradient: H 2 = |VA | 2 . In the presence of turbu-
lence, the average t e m p e r a t u r e becomes smoothed out
with the turbulent coefficient of the tempera ture con-
ductivity. During the f irst stage, however, a s a resul t
of the turbulent motion, elements of the liquid having
different t e m p e r a t u r e s appear together. The mean-
squared gradient f i rs t increases (and corresponds to the
mean-squared H), but the scale d e c r e a s e s ; ultimately
the gradient also d e c r e a s e s to z e r o .

Positive r e s u l t s a r e obtained by considering aver-
aging over the t ime (or over the ensemble), which we
denote by the angle brackets ( . . . ) .

We obtain a meaningful resu l t if we as sume that the
intensity of the turbulent pulsations depends on the co-
ordinates, i .e., the turbulence is inhomogeneous. The
coefficient of turbulent tempera ture conductivity χ de-
pends on the coordinates, and the equation for the
" l a r g e - s c a l e " t empera ture takes the form

3.4

Hence

- ^ = - r o t rot χ (II); (5)

h e r e <H) has the components {(Hx>, <Hy>, θ } . We a s -
sume that the turbulence ends somewhere (convective
core), and it is inhomogeneous in the region where the
turbulence does take place. In other words, let χ = χ0

when r e Q and χ = vra when r <§ Q. By the same token,
we neglect the thickness of the boundary layer. Using
the equation div <H) = 0, we obtain the following bound-
ary conditions:

XC (Hi,) -= vm (H( !), Xo (rot ( lH) = vm (rot,2H); (6)

t h e s u b s c r i p t s nv n 2 , t v a n d t 2 c o r r e s p o n d h e r e t o t h e
n o r m a l and t a n g e n t i a l c o m p o n e n t s of t h e f i e l d s on t h e
b o u n d a r y , a n d t h e n u m b e r s 1 a n d 2 p e r t a i n t o t h e i n t e r -
n a l and e x t e r n a l s i d e s of t h e s u r f a c e c o n t a i n i n g Q. T h e

boundary conditions (6) correspond to a diamagnet with
magnetic permeabil i ty

μ νη,'χ,- 1-Rem. μ < Ί.

T h u s , t h e f ie ld i s n o t c o m p l e t e l y f o r c e d out of t h e t u r b u -
l e n t r e g i o n , a s a s s u m e d b y L a n d a u a n d L i f s h i t z . C 2 3 ] We
r e c a l l t h a t in C 2 3 : i t w a s a s s u m e d t h a t t h e t u r b u l e n t r e -
gion b e h a v e s l i k e a s u p e r c o n d u c t o r . After t h e f ie ld i s
f o r c e d out of t h e t u r b u l e n t r e g i o n , a c e r t a i n q u a s i s t a -
t i o n a r y s t a t e i s e s t a b l i s h e d a n d c o r r e s p o n d s t o e x t e r n a l
n o n - t u r b u l e n t f i e l d s w h i c h we a s s u m e s p e c i f i e d .

We s h a l l a s s u m e t h a t t h e d i m e n s i o n of t h e n o n - t u r b u -
l e n t p a r t of t h e p l a s m a i s a t l e a s t not s m a l l e r t h a n t h a t
of t h e t u r b u l e n t o n e ; we d e n o t e i t b y L. T h e n t h e f ie ld
a t t e n u a t i o n t i m e i s t 0 = L 2 / V m , s i n c e b o t h t h e f ield and
t h e c u r r e n t s a r e f o r c e d out f r o m t h e r e g i o n w h e r e t h e
d i s s i p a t i o n i s l a r g e .

What i s t h e r e l a t i o n b e t w e e n t h e e n e r g i e s of t h e l a r g e -
s c a l e f ie ld a n d t h e p u l s a t i o n f i e l d s ? We d e n o t e b y t h e
symbol Ν the average dissipation of the " t e m p e r a t u r e "
inhomogeneities dA2/dt; from (5) we can obtain the en-
ergy that is drawn from the inhomogeneities with the
largest sca les , hence Ν = xA 2/L 2, where Ao is the la rge-
scale component of the t e m p e r a t u r e .

On the other hand, using (4), we obtain

Ho is the large-scale component of the magnetic field.
We express the pulsational fields in the turbulent region
in t e r m s of the external field: since the average field in
Q is smal ler by a factor R e m than the external field Ho,
we have Hfnt = H 2

e x t Rej^, All this per ta ins to the H x

and Hy components; the r e a d e r can easi ly consider the
case H z Φ 0 by himself. We note also in this connection
the paper by Weiss,C 2 4 ] who specified the velocity field
in the form of a solitary two-dimensional vortex, i.e.,
the velocity vanished outside a certain volume. By nu-
merical ly integrating the induction equation he was able
to find Η (r, t ) . He also found that a field that is homo-
geneous at the initial instant of t ime i s forced out of the
volume. To be s u r e , Weiss 's velocity field is not a r a n -
dom function, so that one or several two-dimensional
vort ices a re too crude a model of turbulence.

3. Generation of regular field by gyrotropic turbu-
lence. At f irst glance it seems that random motions
cannot generate a regular field in any way. Of course,
if the initial magnetic field is random, then random mo-
tions do not produce a regular field. The m e r i t of the
work of Steenbeck and Krause l ies in the fact that they
have shown that gyrotropic turbulence, i.e., turbulence
in which ν and rot ν c o r r e l a t e

(v rot ν) φ 0, (7)

i s c a p a b l e of a m p l i f y i n g a n i n i t i a l l y w e a k f ie ld . In e s -
s e n c e , P a r k e r and E l s a s s e r p r o p o s e d a q u a l i t a t i v e d y -
n a m o m o d e l — i n t h e l a n g u a g e of f r o z e n - i n f i e l d s , c o n -
v e c t i v e e l e m e n t s , and r o t a t i n g m a g n e t i c l o o p s ; S t e e n -
b e c k and K r a u s e gave a m a t h e m a t i c a l a p p r o a c h t o t h e
s a m e p r o c e s s e s in t h e l a n g u a g e of a v e r a g i n g s and c o r -
r e l a t i o n t e n s o r s . To b e s u r e , t h e r e s u l t s of t h e i r a p -
p r o a c h p e r t a i n t o w e a k l y f r o z e n - i n f i e l d s : R e m < 1. We
n o t e t h a t a m o r e a c c u r a t e d e r i v a t i o n of t h e g e n e r a t i o n
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equation was given by Moffatt.t251 When (7) is satisfied,
the correlation tensor of the isotropic velocity field is
of the form

Ih ι (x, x', I, t') - (Vi (X, t) Vj (x\ I')) =

r, \ t - t'\)

( s e e l № 2 ) . It w a s a s s u m e d i n c z n t h a t t h e l a r g e - s c a l e

f i e l d i s h o m o g e n e o u s a n d t h e p u l s a t i o n s a r e s m a l l

(Η = Β + hlt <H> = B, hi < B). Then the induction
equation

(8)

(9)*

can be simplified as follows:

AK (10)

With the aid of G r e e n ' s function, the heat-conduct ion

equation (10) can be solved with respect to η χ ; further,
the obtained value of hi can be used to obtain the quad-
ratic correction, namely, we can calculate (vxhj) ,
which is expressed in terms of Bij. We then obtain
<v xh!> = oB; a is expressed in terms of C (r, s) from
(8). If we now take into account the weak dependence of
Β on the coordinates, we obtain the generation equation

.ΔΒ. (11)

U s i n g ( 1 1 ) , i t c a n b e e a s i l y s h o w n t h a t t h e g e n e r a t i o n o f

the field does indeed take place. In fact, if Β contains at
t = 0 only a poloidal part, then in the linear approxima-
tion in t we get from (11) B ( 1 ) = at curl B<0) (curl B<0) is
the toroidal field); in the approximation quadratic in t
we get B<2) = a 2 t 2 curl curl B<0) (the field B ( 2 ) corre-
lates with B<0), i.e., it is poloidal). Thus, enhancement
of the field is obtained in second order.

In astrophysics the field is practically always frozen
into matter, R e m 3> 1. The pulsational fields are
strongly entangled and h » B , where h is the intensity
of the pulsational field: Η = Β + h, <H> = Β. Thus, the
perturbations are not small; can we use perturbation
theory? It turns out that it is possible to develop a the-
ory analogous to the theory of strong perturbations in
quantum electrodynamics.C 1 2 : To this end it is conve-
nient to change over to Fourier space. We use the Fou-
rier integral (for an unbounded homogeneous turbulence
this will be the Fourier-Stieltjes integral) and the Fou-
rier representation of (9):

II (r, i) = f II (k. t) exp {ikr} elk,

r (12)
v(r, i)= u (k, /) exp {ikr} dk,

H(k, J) = H*( —Jt, 0, >'(k, i) = u*(-k, i). <u>-0;
Η (k, I) II (k, 0) (>.\p ( — vmft=0

ι

dk,[k[u(k —k,, ^, t,)]].

The convenience of the representation (12) lies in the
fact that we are dealing already with an integral equa-
tion for which it is easy to write down an iteration se-
r ies :

II (k, /) = S H""(k, t), H"" = Il(k, 0) exp (-v,,,/;-7) i

Γ r >
№"'•'=•/ ο χ · | . | - ν η ι λ · 5 ( ί - Ί ) ] ' " . [k |u(k-k,, i.) II"" (k,,/,)]](№,. I

ί J ι
(13)

When Rem «C 1, the series (13) can be terminated, say,
with the second term—the perturbations are small in
comparison with H<0), and we obtain Steenbeck's result.

( 1 ) H < 2 )At R e m > 1, an estimate shows that H(o> « H
etc., so that the series cannot be terminated. We are
interested in the large-scale component, so that (14)
must be averaged term by term.

We shall henceforth assume that the velocity proba-
bility distribution is Gaussian, i.e., the odd moments
are equal to zero and the even ones are expressed in
terms of the second moments (spectral tensor). We can
now use a diagram technique. Figure 2 shows an exam-
ple of a fourth-order diagram corresponding to (H ( n ) )) .
The circles correspond to Η (k, 0) exp (- ; ; m k 2 t ) . The
points correspond to the variables of integration with
r e s p e c t t o t i m e t n ; i f i t f o l l o w s f r o m t h e i n t e g r a t i o n l i m -

i t s t h a t t n Σ t m , t h e n t h e p o i n t t n i s p l a c e d t o t h e l e f t o f

t m . T h e s t r a i g h t d i a g r a m s a r e t h e t i m e a x e s ; z e r o i s

o n t h e l e f t , t o n t h e r i g h t , a n d t h e d a s h e d l i n e s c o r r e -

s p o n d t o B i j ( r , t p — t m ) . W e c a r r y o u t a p a r t i a l s u m m a -

t i o n : w e r e t a i n o n l y d i a g r a m s o f t h e t y p e o f F i g . 2 a .

I n t h e d i a g r a m s o f F i g . 3 , t h e d a s h e d l i n e s j o i n o n l y

n e i g h b o r i n g p o i n t s . I f w e s u m t h e d i a g r a m s ' o f F i g . 3

( w e c a n u s e a r e c u r r e n c e f o r m u l a f o r t h i s p u r p o s e ) w e

o b t a i n

Β (k, t) ~ exp [ - (va + vm) №\ {B (k, 0) ch (Itat)

-r i[kB(k, OJlA (14)

The values of v0 and a will be written out later. Such a
partial summation (selective summation) can be substan-
tiated for a "white noise" turbulence model—δ-like cor-
relation with respect to time:

B,J(T, t — t')---PtJ(T)6(t — t'). (15)

When (15) is satisfied, the diagrams type 2b and 2c are
equal to zero and only the diagrams of Fig. 3 remain.
Such a model was proposed by Kazantsev.C2al The δ cor-
relation means that the correlation time τ is neglected;
this is correct in the present problem, since τ is much
smaller than the period of variation of the large-scale
field. The dynamics of the turbulence is specified by
the form of the spectral tensor T^:

- δ (k - k') {A (/,·, | i - i ' |) [&u - (Mv/*)1 + & № e

Here

vo----.^JA(k,s)dkds, ο - | - |C(A-, s)k*dkds.

Using (14), we e a s i l y obtain an equation for B ( r , t ) :

,'-\ .*-\
b c

FIG. 2

*[vH] Ξ ν Χ Η FIG. 3
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(17)

4. Proper t ie s of the equation of turbulent degenera-
tion. At C = 0, when there is no gyrotropy, we obtain
turbulent diffusion of the field

Turbulent diffusion was usually obtained from dimension-
ality considerat ions. Equation (17) differs from (11) in
the constants . vm in (17) can be neglected, and the con-
stants depend only on the turbulent c h a r a c t e r i s t i c s . If
(17) is solved for eigenfunctions in an unbounded space,
then it is easy to show that the eigenfunctions a re given
by

% — sin (nr), B3==0; (18)

h e r e η is d irected along the third axis . Of course, the
helical field (18) can be turned through any angle, and
then its form in the previous system of coordinates b e -
comes somewhat more complicated.

Expansion in t e r m s of the functions (18) is equivalent
to expansion in a Four ier integral . The fields (18) a r e
force-free and have a helical c h a r a c t e r . In the case of
a body of limited volume, these functions therefore do
not satisfy the boundary conditions, which call for con-
tinuity at the interface with the vacuum, and a r e t h e r e -
fore not suitable as eigenfunctions. Substituting the
eigenfunctions in (17), we obtain the connection between
the field growth increment γ and the wave vector n:

i - — arii — vonl, ( = 1, 2, 3.

We see therefore that the dynamo will take place if

— ani >von\.

It is easy to obtain the maximum increment Vniax
= « 2/4v 0; accordingly, n p a x = - »/2v0. Consequently,
fields with a scale 2vo/a will increase more rapidly
than all o t h e r s . The choice of a right-hand or left-hand
helical field depends on the value of a . If a right-hand
field increases exponentially, then a left-hand field at-
tenuates exponentially.

5. Astrophysical examples . Let us f irst est imate a.
The exact value of a can be obtained by using the Navier -
Stokes equation with allowance for the Coriolis force.
For the est imate it suffices to use qualitative consider-
ations. It follows from (16) that a = - <v cur l ν ) τ / 3 .
We reca l l that the quantity (v cur l ν ) is determined by
the action of the Coriolis accelerat ion 2Vj χ ω on that
p a r t of the velocity Vj which is determined by the den-
sity gradient (by the change of the volume of the convec-
tive or turbulent element) and with the associated r o t a -
tion of the volume element. Hence

1 (ι>2> ω 1 Ρ
- = -r -τ- ω;

Lp is the scale of density var iat ion; we have taken into
account the fact that τ = l/v. We now write down the
generation conditions. It follows from (14) that genera-
tion occurs at smal l k, k < k m :

k,n a./(vo-\-vm).

Since we a r e dealing with generation in a body of finite
dimensions, the growth of Β (k, t) at k < k m may not
have a physical meaning if the dimensions of the body

a r e not large enough. The dimension L of the body
should exceed a certain cr i t ica l value L c = 2jr/km.
Thus, it i s necessary to satisfy the condition

α > 2nvo/L. (19)

T h e g r o w t h i n c r e m e n t of t h e f ie ld of l a r g e s t d i m e n s i o n
i s t h e n

T h e r e i s o n e m o r e r e q u i r e m e n t

Y < r , 7 . (20)

T h i s i s t h e c o n d i t i o n for t h e a p p l i c a b i l i t y of t h e t h e o r y ,
n a m e l y , t h e i n c r e m e n t m u s t b e s m a l l e r t h a n t h e c o r r e -
l a t i o n t i m e .

L e t u s c o n s i d e r b y w a y of an e x a m p l e a s e r o - s t a r
of the principal s e q u e n c e / 2 9 3 0 ] Μ = 30Μ Θ , T e = 40 000°K,
and R = 6 . 6 R Q . The p a r a m e t e r s of the star a r e taken
from C S 1 ] . The rotation speeds of s tar surfaces reach
v r = 250 km/hr , hence ω = 5.4 x lO" 5 sec" 1 . A convec-
tion velocity ν = 2 χ 105 cm/sec was obtained in t 2 9 1 . We
assume L « Lp, and then a = 7.5 χ 105 cm/sec, vZ/L
= 2 χ 10 4 c m / s e c , and vL/Z = lOv = 2 χ 10β c m / s e c . Thus,
conditions (19) and (20) a r e satisfied and a magnetic
field is generated in the convective core within a c h a r -
acter i s t ic t ime

τ (it) ω- 2-i0 5sec- C· i(r3 y e a r s .

Of c o u r s e , i t c a n b e a s s u m e d t h a t t h e g e n e r a t i o n i s v e r y
r a p i d . We n o t e t h a t s i n c e a l l t h e h a r m o n i c s for w h i c h
t h e c o n d i t i o n (19) i s s a t i s f i e d a r e e x c i t e d , t h e f i e l d s wi th
t h e l a r g e s t s c a l e w i l l b e of t h e d i p o l e t y p e ; in a d d i t i o n ,
i t fo l lows f r o m (14) t h a t a t o r o i d a l c o m p o n e n t i s a l s o
e x c i t e d .

T h e f ie ld m a y e m e r g e t o t h e s u r f a c e of t h e s t a r f r o m
t h e c o n v e c t i v e c o r e a s a r e s u l t of m e r i d i o n a l c i r c u l a -
t i o n , w h i c h i s suf f ic ient ly e f fect ive h e r e . T h e c i r c u l a -
t i o n v e l o c i t y i s : 3 2 ]

vc •-- V'JJWM3 « 3· 10"2 c m / s e c

T h e t i m e of e m e r g e n c e of t h e f ield i s Tg ~ R / v c = 5
x 1 0 5 y e a r s , w h i c h i s o n e t e n t h t h e l i f e t i m e of a s t a r
with m a s s 3 0 M Q in t h e p r i n c i p a l s e q u e n c e .

A n o t h e r i n t e r e s t i n g e x a m p l e i s t h e g e n e r a t i o n of a
m a g n e t i c f ie ld in t h e i n t e r s t e l l a r g a s of t h e g a l a x y . We
h a v e in m i n d h e r e t h e r e g u l a r c o m p o n e n t , t h e s c a l e of
w h i c h i s c o m p a r a b l e with t h e d i m e n s i o n s of t h e g a l a c t i c
d i s k . In t h i s c a s e , t h e s e l f - e x c i t a t i o n c r i t e r i o n (19) i s
not s a t i s f i e d . G e n e r a t i o n m a y n e v e r t h e l e s s o c c u r a s a
r e s u l t of t h e p r e s e n c e of a d i f f e r e n t i a l r o t a t i o n . T h e
l a t t e r a c c e l e r a t e s t h e g e n e r a t i o n .

T h e f i r s t a t t e m p t t o e x p l a i n t h e f ie ld of t h e g a l a x y
w a s m a d e in a n o t e b y F i t r e m a n n and F r i s c h . [ 3 3 ] No a c -
c o u n t w a s t a k e n t h e r e , h o w e v e r , of t h e d i f f e r e n t i a l r o t a -
t ion and t h e v a l u e of t h e g y r o t r o p y coef f ic ient a w a s o b -
t a i n e d f r o m d i m e n s i o n a l i t y c o n s i d e r a t i o n s . T h i s q u e s -
t i o n w a s i n v e s t i g a t e d r e c e n t l y b y P a r k e r C 3 4 ' 3 5 ] a n d b y
V a i n s h t e i n and R u z m a i k i n . " 6 ' 3 7 3

L e t u s e x a m i n e , fo l lowing [ 3 e ] , g e n e r a t i o n in a d i s k .
We introduce a cylindrical coordinate system (r, φ, ζ)
with a z axis para l le l to the disk axis; we consider the
axial ly-symmetr ical problem, d/d<p = 0. Further, dif-
ferential rotation with νφ = a>(r)r is present .

We shall assume that d/dz S> 3/9r; this is connected
with the fact that the height of the disk is much smal ler



166 S. I. V A i N S H T E i N and Ya. B. Z E L ' D O V I C H

t h a n t h e r a d i u s . T h e n t h e g e n e r a t i o n e q u a t i o n s t a k e t h e

f o r m SB,,, ata ϋ*Βφ

•-- r - j - i r - r H - i r ,tit

0Br

l a
r or

2 Β,

(21)

I n t h e f i r s t e q u a t i o n o f ( 2 1 ) w e h a v e a l r e a d y t a k e n i n t o

a c c o u n t t h e f a c t t h a t d i f f e r e n t i a l r o t a t i o n g e n e r a t e s a

t o r o i d a l f i e l d m u c h m o r e e f f e c t i v e l y t h a n t h e a e f f e c t ,

w h i c h w e h a v e n e g l e c t e d . S u b s t i t u t i n g B r f r o m t h e f i r s t

e q u a t i o n o f ( 2 1 ) i n t h e s e c o n d , w e o b t a i n a n e q u a t i o n f o r

Βφ:

~~ύβ
JL are * . | . r> *L
0; a f Or • " Λ:4

0. ( 2 2 )

An estimate shows that the last term in the left-hand
side of (22) is small, and we shall neglect it. We now
turn to the eigenvalue problem: Βφ = N(z) exp (yt);

Y2/V — 2<.·0γΛ'" + /·-^-(αΛΓ)' =0. (23)

The boundary conditions are Ν = 0 on the boundary, as
follows from the axial symmetry and the condition for
matching with the vacuum, curl n Β = 0. Indeed, on the
"bases" of the disk we have r '^SrB^/Sr) = 0, hence
Βφ = 0; on the "lateral surfaces" 3B<p/3z = 0, from
which Βφ = 0 when the boundary conditions are taken
into account. The existence of eigenfunctions of (23)
is not subject to any doubt, since (23) can be reduced
to a SchrOdinger equation without the time. If dissipa-
tion can be neglected, then

Since the Coriolis force and a reverse sign at the half-
thickness of the disk, we assume that a = atf. (the ori-
gin is placed at the center of the disk). We now estimate
the increment. As is known from C 3 8 ], the linear veloc-
ity of the galaxy rotation is practically constant (with
the exception of the core), νφ « 200 km/sec, and the
turbulent velocity (the random motion of the clouds) is
~5 km/sec, I « 100 parsec, the half-thickness of the
disk is z0 « 400 parsec, and

2 - i t r v s e c . ( 2 4 )

A t r = 1 0 k i l o p a r s e c ( t h e v i c i n i t y o f t h e s u n ) w e h a v e

γ'1 = 2 χ 108 yrs. ParkerC 3 4 ] assumed that a changes
jumpwise on going through the equator and is constant
at ζ > 0 and ζ < 0. He then obtained a fourth-order
equation with constant coefficients. The numerical in-
crement obtained by him was of the order of (24).

Interest attaches also to numerous theories explain-
ing the solar cycle. These include the works of Steen-
beck and Krause, c s e ] Vainshtein,C401 and also those in
which an ensemble of convective cells acted upon by a
Coriolis force plays an important role, even though no
turbulence is used and the dynamo is laminar. 1 4 1 ' 4 2 ' 4 3" 4 4 '
4 5 - 4 6 1 We note also that the a effect itself has already
been experimentally confirmed.1-47"481

6. Diamagnetism of a turbulent liquid. Boundary
conditions. As already indicated in the two-dimensional
problem, the inhomogeneous turbulence exhibits dia-
magnetic properties. We proceed to the general three-
dimensional case. [ 4 9 ] Let the mean-squared velocity

depend on the coordinates, and then ν can be represented
in the following form:

v(x. t) /(x)u(x, t), <u*(x, /)) 1.

We assume that f (x), which determines the inhomoge-
neity, depends little on the coordinates, or more accu-
rately, varies little over the correlation length I. We
can then expect the velocity field to be already not only
inhomogeneous but also anisotropic: the predominant
direction is parallel to Vf. Thus, we have a small pa-
rameter, the ratio of I to the inhomogeneity scale, in
terms of which we can expand the correlation tensor in
order to simplify it. We shall not present here the in-
termediate steps, referring the reader for details to
C 4 9 :, where an expression is derived for the spectral
tensor with allowance for the conditions imposed on it
(see, e.g., [ 5 0 1 ) . We write out the spectral tensor:

i (k,) UJ (k,)) - φ (k,+ k2) \A (k,) fafaj- (k,k2) δ,

φ (χ) -- Ρ (χ) - J φ (k) exp (ikx) Λ. (2 5)

Naturally, the spectral tensor of homogeneous turbu-
lence should follow from (25) as a limiting case. This
is actually obtained, provided we put

<p(k, + k2)

It is now again necessary to average the induction equa-
tion (9). Since (curl [v xH]) = curl ( v x H ) , we calculate
(ν χ h>. To this end we use again the series (13) and
the diagrams of Figs. 2 and 3. This time, however, the
integration of the multiple integrals is made difficult by
the fact that we have the function φ instead of the δ-
function. Changing variables, we can integrate the ex-
pressions in such a way that φ enters in the final ex-
pression; this is natural, since φ describes the inhomo-
geneity of the turbulence. We obtain ultimately

flvlIl>-_xrotB-(l/2)[VxB],
(26)

Using (26), it is now easy to average Maxwell's equation
and obtain "macroscopic" Maxwell's equations, in a
method similar to that used in the electrodynamics of
continuous media. We write out these equations (we denote
the electric field by e, and the average field is <e> = E):

1 4 51 4 5 - = - r o t E, tlivE, 4πρ, divB = 0,

(4n/c)j, Β - μ Η ,

O h m ' s l aw t a k e s t h e f o r m

(27)

(28)

T h u s , (27) a n d (28) d e s c r i b e a c o n d u c t o r wi th a n i n h o m o -

g e n e o u s e l e c t r i c c o n d u c t i v i t y a n d a n i n h o m o g e n e o u s

m a g n e t i c p e r m e a b i l i t y , a n d s i n c e R e m 3> 1, we ge t

T h e r e s u l t s d e r i v e d in t h i s s e c t i o n a r e i m p o r t a n t

p r i m a r i l y f o r t h e f o r m u l a t i o n of t h e b o u n d a r y c o n d i t i o n s .

As a l r e a d y s t a t e d , t h e t u r b u l e n t c o n v e c t i o n d o e s not i n -

v o l v e t h e e n t i r e s t a r , b u t o n l y a c o n v e c t i v e z o n e o r e l s e

a c o n v e c t i v e e n v e l o p e (e .g . , t h e s u n ) . T h e q u e s t i o n of

h o w t h e p r e s e n c e of a c o n v e c t i v e c o r e i n f l u e n c e s t h e

f ie ld of t h e e n t i r e s t a r w a s r a i s e d a t o n e t i m e ( s e e C 5 1 ] ) .
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Spitzer 1 5 2 1 advanced the hypothesis that this influence i s
not very strong, since the field and the c u r r e n t s a r e
"crowded o u t " from the convective c o r e and the total
field dissipation is smal l . We shall examine below
whether this hypothesis is confirmed. On the sun, this
effect can lead to a crowding out of the magnetic fields
into the sub-convective zone (where their intensity
should be much l a r g e r than in the convective zone!) ,
and this may turn out to be a very important factor in
the theory of the solar cycle.

We proceed to formulate the boundary-value prob-
l e m . Assume that χ = χ 0 at r e Q and χ = 0 at r e Q.
We neglect the thickness of the boundary layer. As is
well known, the boundary conditions in electrodynamics
a r e obtained from Eqs. (27) by integrating them over
the boundary layer and letting the thickness of the layer
go to z e r o . For the e lect r ic field we have

E t l - E , 2 . Eni

For the magnetic fields

Β,,-Β,, 11+ (x/

For the c u r r e n t s

(29)

(30)

It is easy to calculate also the surface c u r r e n t s flowing
on the surface of any diamagnet.

It is of in teres t to repeat all the derivations of the
present section for two-dimensional fields. This makes
it possible to verify the method of the present section,
since in Sec. 2 the r e s u l t s were obtained by an entirely
different method. A calculation performed by the method
of the present section duplicates fully the conclusions of
Sec. 2.

Let us d i scuss now the character i s t ic field attenua-
tion t i m e s , going over by the same token to the Spitzer
hypothesis. Let the dimension of Q be L x and the dimen-
sion of the non-turbulent p a r t of the liquid be L, with
L j Li. Then the t ime of crowding out the field i s de-
termined by its attenuation in Q:

The field attenuation problem is formulated as an eigen-
function problem; to find the smallest eigenvalue cor-
responding to the attenuation decrement of the entire
field we use for Ε an equation that holds in all of space :

— rol (l + —V'' 2 .rot E. (31)

In vacuum we have vm = °° and (31) goes over into
c u r l 2 Ε = 0—a current- f ree field.

Taking the sca lar product of (31) with Ε and inte-
grating over all of space, we obtain

( 3 2 )

Using (32) and the boundary conditions (29) and (30), we
obtain without difficulty the attenuation t ime of the en-
t i r e field:

t, = L»/vm. (33)

We r e c a l l that t 2 from (33) coincides with the t ime of
attenuation of the field in a solid conductor, and we con-

clude therefore that the turbulent region has little effect
on the attenuation of the ent ire field. This confirms
Spitzer ' s hypothesis.

ΙΠ. RANDOM (SMALL-SCALE) MAGNETIC FIELDS

1. Difficulties of the problem. Whereas for regular
fields one can find features common to the two-dimen-
sional and three-dimensional problems (turbulent dif-
fusion, diamagnetism), in the case of random fields the
fact that a two-dimensional dynamo is impossible still
does not prove anything in the three-dimensional case .
The difficulty of solving the problem of the random t u r -
bulent dynamo is connected with the absence of a smal l
p a r a m e t e r . More accurately, there i s a smal l p a r a m -
eter , say 1/ R e m , but this does not yield anything, since
the zeroth-approximation solution is not known. This
problem is closely re lated to the problem of the poss i-
bility of propagation of magnetic and kinetic energy. In
fact, if the turbulent dynamo does exist, i .e., if Eq. (9)
resu l t s in growth of the mean-squared field, then the
steady-state energy (H2)/87T cannot be much la rger than
pv 2/2, so that (9) holds t rue as before. Only when the
energ ies become comparable, ν itself in (9) already d e -
pends on Η (via the equation of motion), and (9) becomes
nonlinear. On the other hand, in the steady-state we
cannot have (H2)/8ir 3> pv 2/2, since the force l ines
s t a r t to "disentangle t h e m s e l v e s " and the e lectromag-
netic forces cause the liquid to move. This can be dem-
onstrated by using an equation of motion in which one
can neglect the t e r m s that a r e nonlinear in the velocity,
as a resul t of the predominance of the magnetic forces :

(34)

We integrate (34) with respect to t, take the sca lar prod-
uct with v(t), average the fourth-order moment obtained
on the right-hand side, and e x p r e s s in t e r m s of the sec-
ond moments after Gauss. We then obtain

i1rfi2. (35)

Expanding the right-hand side of (35) in powers of t, we
obtain

("2>=τ JikF<(rot H)2) (№> tK

Thus, the problem of the "dynamo" of the velocity field
(i.e., the problem which in a certain sense is the in-
verse of the usual dynamo problem) can be solved in
trivial fashion.

We thus have the following alternatives: either equi-
partition (but not necessarily over all scales) or ulti-
mate attenuation of the fluctuations of the magnetic
fields without external sources. We note the following
interesting analogy. If the dynamo of random fields is
actually realized, then this process recalls instability
(this has already been noted by MoffattC181 and others).
In fact, if Η = 0 when t = 0, then it follows from (9) that
the field will no longer a r i s e : Η = 0. On the other hand,
the presence of a r b i t r a r i l y weak fields immediately
brings the dynamo mechanism into action, and the fields
will increase exponentially, i .e., a turbulent medium is
unstable against introduction of weak perturbat ions in
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the form of magnetic fields. However, the analogy with
the instability is in this case purely physical, and the
mathematical theory of stability is not suitable for the
solution of the problem.

This instability has a stochastic character, i.e., only
(H2> becomes enhanced, whereas an individual pertur-
bation of H2 can also decrease.

We have explained that we are dealing with alterna-
tives. Is it possible to approach in this case the prob-
lem of the turbulent dynamo from the point of view of
the possibility or impossibility of equipartition ? A r e -
markable feature of the equations of magnetohydrody-
namics is that they can be written in symmetrical form
with respect to ν and Η (see, e.g., c s 3 ] ) . One might be
able to conclude from this that since ν and Η are in a
certain sense on a par, equipartition does indeed take
place. These attempts, however, were long ago criti-
cized by Cowling: in fact, only the fictitious fields
ν + (4irp)~1/2H and ν - (4πρ)"1'2Η are on a par, and fur-
thermore only if ν = vm and the boundary conditions are
Identical. The last condition is certainly not satisfied.
An interesting approach was employed by Lee/54·1 He
noted that the equations of incompressible magnetohy-
drodynamics in Fourier space are similar to the Boltz-
mann kinetic equation, if the Fourier amplitudes are
treated as coordinates in phase space. In this case ν
= vm = 0.

Using Gibbs statistics, Lee has shown that equipar-
tition is possible and that in this case the power spec-
trum of Ε is proportional to . . . k 4 ( ! ) . Ε increases
with increasing k; this is so highly improbable that a
doubt immediately arises as to whether this result has
any bearing at all on the theory of turbulence. A nega-
tive answer to this question is given by Kraichnan and
Nagrarjan. [ 1 ! ] The situation in which i/m = ν = 0 seems
harmless, since R e m and Re e are much larger than
unity. In fact, however, in the dynamic situation (i.e.,
in the usual situation), the energy is transferred into
the region of large wave numbers, where i>m and ν are
significant; they are small but not equal to zero!

At the present time there is apparently no regular
(non-heuristic) mathematical formalism for an exact
solution of the problem. Nonetheless, certain problems
that bring us closer to the solution have been considered.
We note first of all the work by KazantsevC28] and by one
of us. c s e : l Kazantsev proposes a turbulence model that
has already been used many times above; in such a
model, the problem can be solved exactly. An equation
was obtained for the spectral function F (k, t) of the
magnetic field, and it was found that an unstable solu-
tion exists. Acoustic turbulence, which is an ensemble
of interacting acoustic oscillations, is considered in
C 5 e ]. It is important to bear in mind that the two afore-
mentioned competing processes are present in such a
turbulence, and the rates of the processes are of the
same order of magnitude. On the other hand, in this
case there is a small parameter in which it is possible
to expand the induction equation and to obtain an equa-
tion for F(k, t), i.e., a regular approach is available.

2. Exact solution of the problem in a certain turbu-
lence model. Following [ 2 8 ] , we derive an equation for
F (k, t), defined by the relation

(Hi(k, t)HUk',t))---F(k, t)l6,j-(kikJ/k')]6(k~kl).

I t i s n e c e s s a r y h e r e t o m u l t i p l y t h e s e r i e s ( 1 4 ) b y i t s

complex conjugate and average. The corresponding dia-
grams are given in C28:l. It is important that when a δ-
like correlation is used, only diagrams of the " ladder"
type remain. As a result of their summation we obtain
the equation

lL + 2xk*F=.-- f dqF(p)v(q) (ft»_ C"»>(kP)<Pt> ) ,
οι J \ PI /

ρ = k — q,

and v(q) i s defined in the fol lowing m a n n e r :

(u, (k, 0 uj (k', /')) := ν (ft) δ (f - /') a (k - k') [6U _ (ktkjlk*)].

A s i m i l a r equation w a s obtained by Kraichnan and

N a g a r a j a n , t l 5 ] who used a Lagrangian descr ip t ion of the

turbulence. The prob lem then r e d u c e s to an e igenva lue

prob lem and a s e a r c h for i n c r e a s i n g so lu t ions i s c a r -

r ied out. A pos i t i ve growth increment , i .e . , an unstable

solut ion, w a s obtained in [ 2 8 ] for a non-analyt ic c o r r e -

lation function, i .e . , one in which the f i r s t der ivat ive at

the point r = 0 i s not equal to z e r o . On the other hand,

in ils^ they obtained n u m e r i c a l l y a growing solut ion for

the " K o l m o g o r o v " turbulence, namely, a cer ta in init ial

function F (k, t) w a s spec i f i ed and the Cauchy prob lem

w a s so lved, thus de termin ing the behav ior of F (k, t ) in

t i m e . It turns out that F ( k , t) i n c r e a s e s with t i m e . Thus,

the turbulent dynamo d o e s e x i s t in th is model .

3. Turbulent dynamo in the p r e s e n c e of a c o u s t i c tur-

bu lence. The hydrodynamic theory of a c o u s t i c turbulence

w a s deve loped in a paper by Zakharov and Sagdeev . C 5 5 ]

Acoust ic turbulence can o c c u r in a g iven reg ion of s p a c e

if there i s a flux of sound susta ined by externa l s o u r c e s

through i t s boundary, and in addition, if there i s a l inear

interact ion be tween the w a v e s and l e a d s to randomiza-

tion of the o s c i l l a t i o n s . Such a s i tuation can occur in

the s o l a r corona. The turbulence has then mainly a p o -

tential c h a r a c t e r .

Using the r e s u l t s of C 5 B I , we wr i te down the power

spectrum Ε (k) and the time of interaction of the oscilla-
tions ("phonon lifetime") T(k):

E(k) A(v2)l~u2k~3'2, A ~ 1,
τ (ft) = c/E (ft) ft2,

where λ is the characteristic wavelength. Formulas (36)
hold true when k > l/λ; when k < l/λ we have Ε — 0.

We proceed now to the question of particle diffusion
in the field of acoustic turbulence. To this end, we add
a scalar admixture to the liquid; the rate of its mixing
be a reflection of the particle drift velocity. Thus, we
deal with the equation

Let us determine the regular component (n) = N. An
equation for Ν is obtained in exactly the same manner
as the equations for B, but now there is no need for sum-
ming an infinite series, since we are dealing with oscil-
lations and ν/λω <?C 1. We therefore confine ourselves
to the quadratic correction. We assume that the initial
perturbation of η is not correlated with v, so that it is
meaningful to consider the resultant expression at t
larger than the "memory" time of the system, i.e., the
"phonon lifetime" r(t) from (36).

The quadratic correction gives rise to the expression
σο

/ d s f f ( q , s ) d q , w h e r e f ( q , s ) i s t h e s p e c t r a l f u n c t i o n :
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(Vi(x, t)Vj{x+r, ( + «)>= f (kikj/k*) f (k, s) exp (ikr) dk.

The la t ter , in turn, is natural ly expressed in t e r m s of
the spectra l function J(k, ω): in (k, ω) space we have

/ (ft, s) \ J (k, ω) exp (— icos) ίίω.

It i s now e a s y t o d e r i v e a n e q u a t i o n for N :

the character i s t ic period of the variat ion of the field
Μ~3λ/ν (the rec iproca l increment, as will be shown b e -
low) turns out to be much la rger than the correlat ion
time Μ ^ λ / ν . The equation for F is (see [ 5 6 : )

J(P, 0)B{q, t) ( 3 8 )

We see thus that the quantity J(k, ω) plays a major
role in diffusion at ω = 0. We shall show later on, with
magnetic fields as an example, that it is also used in
the calculation of the velocity at which the par t ic les
move apar t .

The approximate form of J(k, ω) is shown in Fig. 4
(the g r e a t e r p a r t of the energy, naturally, " s t a y s " in
osci l lat ions with frequency ck). The physical meaning
of J(k, 0) is c lear—it is the energy of the potential com-
ponent of the acoustic flow. It is c lear that a non-zero
frequency corresponds only to oscil lations, i.e., the p a r -
ticle r e m a i n s in place on the average; the zero frequency
r e s u l t s in i r r e v e r s i b l e motion.

In view of the great importance of the value of J(k, 0)
for the subsequent r e s u l t s , we shall show how it is de-
termined.' · 5 6 · ' Linearization of the hydrodynamic equa-
tions (first approximation) leads, as is well known, to
a wave equation describing sound waves. Consequently,
in the f irst approximation, J ^ k , ω) ~ 5 ( w - c k ) and, of
course , Ji(k, 0) = 0. The second approximation gives
already a non-zero contribution. In fact, we use the
equation for the second-approximation correct ion to the
continuity equation

Multiplying the Four ier t ransform of (37) by its com-
plex conjugate and averaging the fourth-order moment
that appears on the right-hand side, we can express it
in t e r m s of the second-order moments, using the r a n -
dom-phase approximation. Using (36), we obtain for the
inert ia l subregion

J (k, 0) = (4ν/3πε»λ) ft"5, ft > 1/λ,

F o l l o w i n g K a z a n t s e v , 1 2 8 1 we c a n t r a n s f o r m (38) into
a S c h r B d i n g e r e q u a t i o n ; t h e n t h e b o u n d s t a t e s c o r r e -
s p o n d t o u n s t a b l e s o l u t i o n s . T h e n e c e s s a r y c o n d i t i o n
f o r t h e e x i s t e n c e of b o u n d s t a t e s , n a m e l y t h e p r e s e n c e
of a p o t e n t i a l w e l l , i s s a t i s f i e d w h e n

Χα > Vm

o r , e q u i v a l e n t l y ,

S ^ M ' R e m » l . ( 3 9 )

T h e s t r o n g e r t h e i n e q u a l i t y ( 3 9 ) , t h e " d e e p e r " t h e

w e l l , b u t t h i s s t i l l d o e s n o t m e a n t h a t b o u n d s t a t e s e x i s t

w h e n S > 1 . T h e p o i n t i s t h a t t h e " m a s s " i n t h e

S c h r S d i n g e r o p e r a t o r a l s o d e p e n d s o n t h e p a r a m e t e r s

t h a t e n t e r i n ( 3 9 ) ( a n a p p r o x i m a t e c a l c u l a t i o n o f t h e

l e v e l s i n t h e w e l l b y t h e W K B m e t h o d s h o w s t h a t t h e r e

i s ~ 1 l e v e l i n t h e w e l l ) . T o d e t e r m i n e t h e s u f f i c i e n t

c o n d i t i o n , w e t u r n t o t h e p r o b l e m o f t h e e i g e n v a l u e s o f

E q . ( 3 8 ) a n d m a k e t h e s u b s t i t u t i o n

F (ft, t) =-- Φ (ft) exp (— 2Et).

It is known that to find the minimum value of Ε we
can use a variational principle (see, e.g., C 5 7 1 ) :

(X« + v m ) \ *2<D>rfi—(π/2) I dk άρφ (k) φ (q) J (p, 0) [(kp)2 q* + k* (pq)2] (qp)-°-

y
(40)

To o b t a i n a n e q u a t i o n f o r F ( k , t ) we u s e t h e s a m e
m e t h o d a s f o r t h e s c a l a r a d m i x t u r e . H e r e a g a i n we
conf ine o u r s e l v e s t o t h e c o r r e c t i o n t h a t i s q u a d r a t i c in
the small p a r a m e t e r ν/(λ, ω). The resul tant expression
will again be considered at t ΐϊ> τ, but it i s important
that the perturbat ions be smal l compared with F(k, 0).
An est imate of the quadratic correct ion shows that the
lat ter is small at Μ" 3λ/ν » t » τ « Μ"1

« e = o .

I t i s c l e a r t h a t i f w e f i n d a f u n c t i o n < £ ( k ) s u c h t h a t t h e

f u n c t i o n a l ( 4 0 ) b e c o m e s n e g a t i v e , t h i s m e a n s t h a t e i g e n -

functions with Ε < 0 exist, i .e., the " w e l l " is suffi-
ciently large . Such a function has indeed been ob-
t a i n e d / 5 6 3 If F(k, t) is expanded in t e r m s of the eigen-
functions, then it is c lear that the f irst eigenfunction
with Ε < 0 (as we have already explained) " s u p p r e s s e s "
all the remaining eigenfunctions, and its growth i n c r e -
ment is the largest .

Thus, acoustic turbulence is indeed unstable against
fluctuations of the magnetic fields. The approximate
value of the field growth increment is (see, e.g., : 5 8 3 )

4. Excitation of vor t ices in the presence of acoustic
turbulence. The problem considered above is closely
related with the problem of generation of a vort ical
component. If a weak perturbation in the form of vor-
t ices is present in the liquid, then the velocity is r e p -
resented in the form ν = Vp + Vy, where Vp and Vy a r e
the potential and vort ical components, respectively,

Ι ' / " ° τ ϊ Γ *"b W ^ V y ^ V P ' r ^ n e n ^ e dynamic equation for curl v v ,

l e m t u r n s out t o b e s e l f - c o n s i s t e n t p r e c i s e l y b e c a u s e
p

linearized with r e s p e c t to v v , is

J I

FIG. 4

?J^L?i.
 = rol [Vp rot

 v
v
] + νΔ rot v

v

and reca l l s the equation for H. This analogy differs
significantly from the analogy between the equation for
Η and for cur l ν in the usual turbulence, since, f irst,
the boundary conditions a r e in the present case the same
for cur l ν and H, neither field being sustained, and s e c -
ond, it can be assumed h e r e that Vp and curl v v a re in-
dependent at t = 0. We can therefore solve for cur l v v

a problem of the same type a s for H. In this case the
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quantity of greatest importance for the generation is
S w = Ms R e m ; if Sw^> 1, then the generation is com-
pletely analogous to the instability described above;
on the other hand, if β ω -C 1, then the vortical com-
ponent νω increases (this is a nonlinear effect, a phe-
nomenon known as ''acoustic flow"t5 9 ').

We confine ourselves to the case when S^ 1.
From qualitative considerations we can determine the
steady-state energy level ν ω . When the energy is in-
creased, the "vortex-vortex" interaction comes into
play, i.e., the process playing the principal role in
ordinary turbulence. The equation for νω (of course,
in a roughly approximate form), is

•-£•'•·» V - - ('•"«'*>• (41)

The f i rs t t e r m in the right-hand s ide of (41) d e s c r i b e s
the generation of ν2

ω by the acoustics, and the second
the transfer of energy into the region of larger k and
attenuation. In the steady state we have

We note in conclusion that in the presence of a homo-
geneous magnetic field and when βω <C 1 (i.e., when
there is no turbulent dynamo), we can obtain the fluctu-
ation spectrum of the magnetic field in a wide range of
wave numbers (in analogy with the Golitsyn spectra t 6 0 ]

in ordinary turbulence). The spectra were obtained
in feU and will not be discussed here.

5. Does a turbulent dynamo of random fields exist
after all? This question is discussed most fully in the

where it is stated,[15]paper of Kraichnan and Nagarajan
that no final conclusion can be drawn as yet. Let us
advance some additional considerations in connection
with the publication of new papers. Α δ-like correla-
tion with respect to time is proposed in c w l ; the question
of the feasibility of applying such a model to a
"Kolmogorov" turbulence remains open, since the
correlation time τ is of the same order as the growth
period of the waves. On the other hand, in acoustic
turbulence the diffusion term 2k2xaF in (38) "com-
petes" with the right-hand side of (38), which de-
scribes the "entanglement" of the force lines; both
terms are of the same order of magnitude, as in ordi-
nary turbulence. Consequently, it is reasonable to
suggest that the mechanism causing the growth of the
fields prevails also in ordinary turbulence.

. We can add also that the perturbation-theory series
employed here many times diverges. One can there-
fore proceed as in Wyld's paper" 2 3 on hydrodynamic
turbulence, namely, replace the divergent series by a
partial sum. In this problem we can sum only ladder
diagrams in the hope that they characterize the ex-
panded function. The result is again the Kazantsev
equation, i.e., the dynamo exists.

The same equation can be easily obtained upon satis-
faction of the condition r<gc λ/ν, which is not satisfied
in the "Kolmogorov" turbulence. It does occur, how-
ever, if the external force has a pulsed character.
Such a turbulence is quite artificial from the point of
view of hydrodynamics, and with respect to magnetic
fields it behaves qualitatively in the same manner as
the ordinary turbulence.

Finally, we note a paper by Thomas/6 3 1 where this
problem is simulated numerically with the one-dimen-

sional equation as an example (this equation no longer
reduces to the heat-conduction equation, and the dynamo
is possible). Thomas also obtains a random-field
dynamo. Taking all the foregoing inot account, we can
assume the possibility of a turbulent dynamo of random
fields as a working hypothesis.

IV. NONLINEAR PROBLEM. STEADY-STATE FIELD

1. Formulation of problem. As already mentioned,
if a turbulent dynamo of random fields is possible,
then the approximate equality (pv2)/2 ~ (Η2)/8ττ holds;
we shall henceforth assume this to be the case. As to
the spectral distribution of Ε and F, nothing definite
can be said with respect to them.

More meaningful results can be obtained by consider-
ing the turbulent dynamo of the regular field. So far,
the velocity field was assumed given. When can such
an assumption be made? Obviously, if the electro-
magnetic force in the equation of motion

~ + (vV)v: —i- Vp + ̂ ~- [rot HH] + vmAv (42)

is sufficiently small. Comparing it with other terms
of (42), we find that we should have pv2/2 <<C Η2/8ττ
Assume now that we have a regular component:
Η = Β + h; we assume also that the random fields are
comparable in energy with p(v2)/2: h2/8ir « p(v2)/2
(owing to the turbulent dynamo of the random fields).
What can be said concerning the turbulent dynamo of
the regular field? It turns out that if Β2/8π <Τ ptf)/2,
i.e., β = 47rpv2/B2 » 1, then the equation for Β again
takes the form (17). In fact, the δ-like correlation can
be employed as before, since Β varies slowly in com-
parison with the temporal correlation. In addition, the
initial field can again be regarded as correlated with
v, if it is assumed that at t = 0 we have H(k,0) and
B(k,0) and h(k,O) = 0, and the initial field is only regu-
lar. In this case the series is summed as before. As
the field becomes exponentially stronger, the turbulence
parameters (the quantities α and vo) vary slowly. If
we take this circumstance also into accou nt, then, in
spite of the fact that we obtain in place of (14) a some-
what more complicated expression, differentiation with
respect to t again yields equation (17), in which a and
Vo already depend on t.

The problem thus reduces to a determination of α
and vo. At first glance it seems that the situation be-
comes much more complicated when the field becomes
stronger. In fact, the turbulence will no longer be
isotropic, and Alfven waves with entirely new inter-
action laws appear; the turbulent viscosity v0 is sig-
nificantly altered. Only one thing can be stated at once:
the upper limit of the intensity Β is determined from
the equipartition condition

Pet = ί-πρί.·2//?2 « 1, (43)

whereas β » 1 at t = 0.

It can be assumed, however, that a situation is pos -
sible in which the equipartition (43) is not reached and
a stationary state in which pst 3> 1 (weakly-linear
regime) is established. In this case the turbulence
itself changes little. In fact, in the linear problem,
only the gyrotropic part of the tensor (8) with Hjff
is responsible for the generation of the field; we can
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therefore expect the magnetic field to " s u p p r e s s "
precise ly the gyrotropy.

We shall show below that such a weakly-linear steady
state is indeed possible. We have dealt above with the
gyrotropy due to the action of the Coriolis force on the
turbulent e lement. Let us d i scuss the action of the e lec-
tromagnetic force on this element. It can be assumed
that the given turbulent element corresponds to a c e r -
tain c u r r e n t loop acted upon, of course, by a torque,
since it is located in an external magnetic field. Even
if the body does not rota te , i .e., there is no Coriolis
force, this torque can yield in principle (v cur l ν ) ί θ ,
i.e., i t s own aj/[. This gyrotropy will be called mag-
netic, to distinguish it from the Steenbeck gyrotropy
which we call rotat ional .

2. Determination of the magnetic gyrotropy. To de-
duce the equation for a m = (v cur l ν > we must take the
scalar products of (42) by curl ν and of the curl of (42)
by v, and add the resul tant express ions . We then aver-
age over an " e l e m e n t a r y " volume whose dimension is
much la rger than the corre lat ion length, but smal ler
than the scale of B. On the left side we retain 3 a m / 9 t .
It i s remarkable that in this case all the tr iple c o r r e l a -
tions with respect to velocity vanish:

rot ν [v rot v] = 0,

rot vV |(̂ /2) + (p!p)\ --•, div {vv [i-,'2) + (p/p)]},

ν rot [v rot v] = div [v [v rot v|].

T h e d i v e r g e n c e v a n i s h e s a f t e r a v e r a g i n g o v e r t h e e l e -

m e n t a r y v o l u m e . We now c a l c u l a t e t h e t e r m with t h e

m a g n e t i c f i e l d :
Μ = (1/4πρ) <rot ν (rot HH]>+ (l/4np) (v rot (rot HH]>. (44)

H ( r , t ) c a n b e e x p r e s s e d in t e r m s of H ( r , 0) and in t e r m s

of v ( r , t ) b y u s i n g t h e s e r i e s (13). E x p r e s s i o n (44) i n d e e d

d e s c r i b e s t h e a c t i o n of t h e e l e c t r o m a g n e t i c f o r c e on t h e

t u r b u l e n t e l e m e n t s . B e f o r e w r i t i n g down t h e r e s u l t s of

t h e c a l c u l a t i o n of (44), we p r e s e n t a h e u r i s t i c d e r i v a t i o n

of t h e r e s u l t . On w h a t s h o u l d « M d e p e n d ? F i r s t , « M i s

a p s e u d o s c a l a r ; in a d d i t i o n , (44) d e p e n d s q u a d r a t i c a l l y

on H. T h e e n t i r e g y r o t r o p y s h o u l d b e e x p r e s s e d in

t e r m s of t h e r e g u l a r f i e ld B, s i n c e i t i s t h e o n l y p o s s i -

b l e s o u r c e of t h e m a g n e t i c g y r o t r o p y . T h e only p o s s i b l e

pseudoscalar that is quadratic in Β is of the form
Β cur l B. Thus, « Μ ~ Β cur l B. Let us explain the co-
efficients. It is n e c e s s a r y also to take into account
somehow the fact that the magnetic field causes aniso-
tropy of the distribution of the velocity probabil i t ies :
there appears a p r e f e r r e d direction paral le l to B. It is
natural to as sume that the measure of the anisotropy is
determined by the rat io Β 2 /4ττρ(ν 2 ); thus,

M~ (53/4np<i;»»BrotB. (45)
A numerical calculation confirms the express ion (45).
To calculate (44) we use the s e r i e s of d iagrams of Fig.
2. For smal l fluctuations, we confine ourselves to the
f irst t e r m of the s e r i e s ; we obtain t ^> τ
χ exp (— i/mk^t — t j ) « 1:

Μ = MOB2B rot Β + (Β2/4πρ) (AjZ),

Λίο = (1/4πρ) (1/15) f [2C (k, s)-^D(k, s)]dkds,
, (46)

A,= \Al{k, s)kldkds;

we h a v e u s e d h e r e t h e fo l lowing f o r m of t h e s p e c t r a l

t e n s o r Ti j ( o b t a i n e d in : e 4 ] a s s u m i n g w e a k a n i s o t r o p y

c o n n e c t e d wi th t h e m a g n e t i c f ie ld, a s i s n a t u r a l w h e n

β > 1) :

Tt]=[A(k, s)-fC(k, s) (kB)2] [&,j—(kikj/k2)]

Actua l ly , a t R e m > 1 w e h a v e h » B , and it d o e s not

suff ice t o t a k e o n l y t h e f i r s t t e r m of t h e s e r i e s into a c -

c o u n t . We s h a l l t h e r e f o r e a g a i n u s e s e l e c t i v e s u m m a -

t i o n . 1<S4Z A c a l c u l a t i o n s h o w s t h a t t h e r e s u l t of s u c h a

s u m m a t i o n m a k e s a s m a l l c o n t r i b u t i o n t o (46); t h i s i s

precise ly the bas i s for the applicability of the δ-like
corre lat ion in this model of turbulence.

3. Certain p r o p e r t i e s of magnetic gyrotropy. An i m -
portant role in generation is played by the quantity a:

a --L j <v (t) rot ν (i')> dt' = A j Λ, (4. s) /fc* dk ds.

We obtain an expression for a by using (46) and certain
assumptions concerning the character of the turbu-
lence : [ e 4 ]

aM -••= — (BrotB)<D,

Φ = 2τη1η(λνΖ)/5β4πρ, n w l , (47)

w h e r e kj, i s t h e s p e c t r u m cutoff t h r e s h o l d a s a r e s u l t

of t h e f in i te v i s c o s i t y , a n d I i s t h e e x t e r n a l t u r b u l e n c e

s c a l e .

We now p r o c e e d t o d e t e r m i n e c e r t a i n p r o p e r t i e s of

°M> w h i c h a r e c o n n e c t e d wi th g e n e r a t i o n of t h e m a g -

n e t i c f ie ld . A s s u m e t h a t a = 0, i . e . , t h e r e i s no r o t a t i o n

a n d t h e r e i s no r o t a t i o n a l g y r o t r o p y . At t = 0, l e t

Β · cur l Β Φ 0. F r o m (17) it follows, neglecting diffusion,
that

-TT-§fB"= — (BrotB)2(P.

We note that Φ > 0, hence
t

i?2 (f) — £ 2 (0) = —2 f di,(BrotB)2<J).

ο

As t — °°, t h e i n t e g r a l c o n v e r g e s a n d

.BrotB-H>0.

It is thus c lear that if Β · cur l Β 'Φ 0 at t = 0, then the r e -
sultant magnetic gyrotropy is such as to cause Β · cur l Β
— 0, after which the gyrotropy itself vanishes in a c -
cordance with (47).

Another property of magnetic gyrotropy is that it ac t s
in opposition to the rotational gyrotropy. In fact, in the
presence of αω, if Β · cur l Β = 0 at t = 0, then

•A. f BrotBdr = y a a [ (rotB)2dr;

the integration is c a r r i e d out over the ent ire volume.
We see that Β - c u r l Β acquires the same sign as αω;
therefore, if αω > 0, then it follows from (47) that « M
< 0, but a = ffjj + «ω» so that a stationary state se t s in
at a = 0. If α ω < 0, then « M > 0. In both c a s e s | a I
= Ι αω + « Μ Ι < Ι αω l> i-e-i the generation coefficient
d e c r e a s e s in the presence of magnetic gyrotropy. It is
precise ly this las t c i rcumstance which makes possible
nonlinear stabilization of the field Β at β3^ > 1, i.e.,
far from equipartition.

Assume that differential rotation and turbulence have
been excited in a conducting liquid sphere (the model of
a s tar) , i .e., ω depends on r : ω = to(r). Such an example
has been considered in Sec. 5 of Chap. V. The field
growth increment is

/ da> ν 1/2 „„

L, t h e d i m e n s i o n of t h e s y s t e m , s h o u l d b e p o s i t i v e . W e

assume that 3o>/3r « — ω/L; in the stationary state we
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have γ = 0, from which we obtain 0 s * = afy + α| | · and
0

N-1]-1, Ν = 1ω/υ. (48)

It i s e a s y t o s e e f r o m (48) t h a t if 1/N » Z/L, t h e n

Usually Ν < 1, since the frequency of rotation of the
star is lower than the frequency rotation of the turbu-
lent element.

Thus, under certain perfectly realistic conditions,
the stabilized field satisfies the condition ^ > 1, i.e.,
a weakly-linear state sets in.

We note in conclusion that although, as seen from the
review, the theory of the turbulent dynamo is only in the
initial development state, nontheless it helps introduce
some clarity in the question of the origin of cosmic
magnetic fields of tremendous scale.

The authors are grateful to F. Krause and A. A.
Ruzmaikin for discussions and to S. I. Syrovatsktf for
interest in the work.
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