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We consider the generation of magnetic fields under astrophysical conditions. Principal attention is paid to
“dynamo” mechanisms, i.e., mechanisms in which the energy of the magnetic field is drawn from the kinetic
energy of plasma motion. The important role played by turbulent dynamo mechanisms is emphasized. The
dynamo problem itself is divided into two: 1) generation of regular magnetic fields (i.e., the dynamo
mechanism of fields having scales commensurate with the cosmic object itself by turbulent pulsations); 2)
generation of random fields. A review is presented of the existing theories for the generation of regular fields
(reference is made, in particular, to the work of Steenbeck and co-workers and of Parker), and a
generalization of the existing results to include large magnetic Reynolds number Re,, characteristic of cosmic
plasma, is indicated. Astrophysical examples are given. The existing theories in the dynamics of random
fields are also reviewed. Results are presented on the turbulent dynamo in the presence of acoustic
turbulence. Analogies with the question of excitation of vortices in a field of acoustic turbulence is indicated.
The question of the turbulent dynamo in the field of “Kolmogorov” turbulence is discussed. Finally, an
essential problem is that of the steady-state field produced by a nonlinear effect. It is shown that in the
presence of a non-weak field there appears a gyrotropy acting in opposition to the action of the usual
rotational gyrotropy. This observed gyrotropy is called magnetic and can cause nonlinear stabilization of the

magnetic field.
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I. INTRODUCTION

MAGNETIC fields in planets, stars, galaxies, quasars,
and intergalactic space constitute a phenomenon of tre-
mendous scale and significance. The appearance of high-
energy particles such as protons, nuclei, and electrons
is closely connected with the magnetic field. The motion
of these particles in the magnetic field produces the
electromagnetic synchrotron radiation. The proof of the
synchrotron nature of the radiation of the Crab nebula™?
was a most important stage in the development of mod-
ern astrophysics. This discovery was followed by rec-
ognition of the very important role played by the electro-
magnetic field in a large number of astronomical phe-
nomena. In many cases, the magnetic field plays the
primary role in the dynamics of the astrophysical pro-
cesses themselves. This raises the question of the ori-
gin of such fields. The usual plasma excitation mecha-
nisms, such as the thermal mechanism, which will also
be discussed briefly below, result as a rule in only very
weak currents and magnetic fields. On the other hand,
many observed processes have sufficiently high energies
(gravitational or Kinetic) so that if the mechanisms of the
‘‘conversion’’ of this energy into magnetic energy could
be understood, then the observed values of the magnetic
fields could be explained. Thus, for example, in the gas
filling our galaxy, the kinetic energy of the gas, the ki-
netic energy of the cosmic rays, and the energy of the
magnetic field are of the same order, as emphasized by
V. L. Ginzburg.

If we have in mind not regular but random fields, then
the most general considerations make it plausible to as-
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sume equipartition of the energy among the various
forms. Such general statements, however, call for natu-
ral caution. Statements pertaining to the complete and
true thermodynamic equilibrium are undoubtedly cor-
rect, but are absolutely of no interest: the reservoir of
degrees of freedom with maximum wave vectors, i.e.,
essentially the motion of individual particles in the field
of equilibrium ‘‘black body’’ radiation, suppresses all
the macroscopic degrees of freedom.

Macroscopic motions and fields, whether ordered or
statistical (such as turbulent fields), are of interest to
the extent to which they are nonthermodynamic, and con~
sequently are not in equilibrium. In such a situation we
are dealing with the kinetics of energy transfer from one
form to another and from long to short waves; there is
no simple thermodynamic equipartition. We can mention
universally known cases of violation of equipartition.
For example, in a turbulent stream the longitudinal
(acoustic) motions are weaker than the transverse ones
by a factor M°, where M is the Mach number, From the
thermodynamic point of view, the electric field does not
differ from the magnetic one, but in magnetohydrody-

FIG. 1
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namic processes the energy of the electric field is lower
than that of the magnetic field by a factor of at least
(v/c)? (v is the velocity of motion). These examples
show that a superficial application of the idea of equi-
partition is not permissible without a concrete analysis
of the problem.

In cosmic plasma there usually take place various
hydrodynamic motions whose energy is not low. It is
they which offer promise of serving as a possible source
of the enhancement of magnetic fields. Such a mecha-
nism is usually called the ‘‘dynamo’’ mechanism. In the
‘‘dynamo theories’’ to which the present review is
mainly devoted, the most important fact is the freezing-
in of the magnetic field. The large conductivity of the
plasma together with the large spatial scale of the phe-
nomena cause the ohmic resistance to play no role what-
ever (the dimensionless magnetic Reynolds number Rep,
is large). A decisive role is played by the inductance,
as a result of which we get conservation of the magnetic
flux through each contour that moves together with the
plasma, i.e., consisting all the time of the same parti-
cles. It is universally known that in this case the damp-
ing time of the magnetic field in an immobile medium of
astronomical size is gigantic and is absurdly large even
in the astronomical time scale. The burning question in
the theory of generation is whether the growth time of
macroscopically ordered fields is just as large. An af-
firmative answer would mean that it is impossible in
practice to generate fields.

The dynamo theory has been in existence about fifty
years, but until recently there was no distinct separa-
tion into fast and slow dynamos, in other words, into
generation with and without frozen-in fields. An exam-
ple of a slow dynamo is any generator in an electric sta-
tion or a magnetohydrodynamic generator. In the slow
dynamo, the growth of the field is connected with its
penetration into matter, and is therefore of no interest
in astrophysics, where the mechanism of the fast dy-
namo effect is necessary. It has turned out that field
generation under cosmic conditions is not as simple to
realize as in a laboratory. During the initial stage of
the development of the dynamo theory, only negative re-
sults were obtained. It was shown'>! that motions hav-
ing a high degree of symmetry (two-dimensional, axi-
symmetrical, centrally-symmetrical) are incapable of
generating a field. This circumstance greatly compli-
cates the problem, which has not yet been solved in gen-
eral form. On the other hand, using the concept of the
freezing-in of the magnetic field, one can point to a con-
crete example of a fast dynamo mechanism. Let us
imagine a conducting liquid torus in which there exists
an initial toroidal (parallel to the equator plane) mag-
netic field (Fig. 1a). Further, it is easy to imagine mo-
tion that transforms the torus into a ‘“figure 8’’ (Fig.
1b). The next stage is congruence of the circles of the
figure-8 (Fig. 1c¢). It is seen from Fig. 1c that the mag-
netic field flux has doubled. If we repeat such a motion
n times, we obtain an enhancement by a factor 20; thus,
the flux increases exponentially. It should be noted, how-
ever, that the field does not simply double, for in addi-
tion to the toroidal components there appear also ‘‘extra
fields,’’ which can be annihilated by finite diffusion.
Thus, without forgoing the ideal freezing-in, we can ob-
tain an unlimited increase of the ordered flux. It is

VAINSHTEIN and Ya. B. ZEL’DOVICH

clear also that the velocity field in this example does
not have cylindrical symmetry on the whole.

Together with the increase of the flux, there occurs
a certain change in the subtler topological properties of
the current lines. In this sense, certain violation of the
frozen-in property is nevertheless necessary in order
to reproduce exactly all the details of the field upon am-
plification. The velocity field is stationary when aver-
aged over the cycle, but not as each instant of time, The
need for finite diffusion for the dynamo was indicated
already by Flsasser.'® A mechanism analogous to that
described above was indicated by Davis.™

The feasibility, in principle, of a dynamo for helical
motions was rigorously demonstrated analytically by
Lortz."® The doubts concerning the dynamo mechanism
in astrophysics was dispelled after Parker'® and El-
sasser!® developed the theory of the solar cycle as an
oscillatory dynamo. We shall not describe their mecha-
nism, since it is widely known (see, e.g., *°"). We note
only that according to this mechanism a toroidal field
is generated from a poloidal one (whose force lines lie
in meridianal planes) with the aid of differential rota-
tion. The convective motions produce ‘‘loops,’’ and in
the presence of a Coriolis force the loops rotate; it is
easy to understand that if the loops are rotated through
approximately 90° and then coalesce as a result of the
finite electric conductivity, then a new field is produced
in them, either parallel to the initial poloidal field (in
which case enhancement of the field takes place), or
antiparallel (and then the fields reverse sign). It is easy
to see the similarity between this mechanism and the
example given above.

At the present time, great promise is held by statis-
tical mechanisms, i.e., the turbulent dynamo. Of course,
no general theory of turbulence in the presence of mag-
netic fields exists at present: the point is that a decisive
influence was exerted on the establishment and develop-
ment of the theory of ordinary hydrodynamic turbulence
by an abundance of experimental data. As to laboratory
experiments on magnetohydrodynamic turbulence, it is
difficult to create conditions with Rey, > 1 (which is
characteristic of cosmic plasma), while the interpreta-
tion of the observations of cosmic plasma frequently is
itself in need of theoretical premises. The dynamo prob-
lem is usually formulated as a kinematic one, i.e., the
velocity field is specified and the reaction of the mag-
netic field on the magnetic motion is disregarded. In
this formulation, the problem can be divided into two:

1. The interaction of large-scale magnetic fields
with the turbulence (this includes turbulent diffusion and
turbulent generation of the overall fields of stars and
planets and of the overall field of the galaxy by turbulent
mechanisms).

2. Interaction of small-scale pulsational magnetic
fields with the turbulence (this includes the possible ex-
citation of random magnetic fields of the galaxy, which
play an important role in the acceleration of cosmic rays
and the polarization of the interstellar medium, random
interplanetary magnetic fields of solar wind, which are
important for the explanation of diffusion and isotropiza-
tion of the cosmic rays, and random solar and stellar
magnetic fields which play a major role in dynamics of
solar and stellar processes).

Some understanding of problem 1 has been reached
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by now, starting with the work of Steenbeck and Krause.
(11 1t has become known that simple isotropic or aniso-
tropic turbulence causes only turbulent diffusion of the
magnetic field. Only gyrotropic turbulence (which is
non-invariant under reflection) in which either right-
hand or left-hand helical motion predominates is capa-~
ble of operating as a field generator. Steenbeck and
Krause have demonstrated this for Rey <€ 1; one of
us® generalized this result to the case Rapy > 1,
which is realistic in cosmic electrodynamics. The prob-
lem of Steenbeck and Krause is that of a slow dynamo

in which the field growth increment depends on the elec-
tric conductivity o; the problem described in *# is that
of the fast dynamo in which the increment depends only
on the turbulent (gross) characteristics.

Notice that all the dynamo mechanisms (the one in-
dicated in Fig. 1, the Parker dynamo, and the Steenbeck
and Krause dynamo) reduce to one and the same mecha-
nism wherein the loop breaks away from the main field
and is rotated in such a way that it becomes parallel to
the initial field; it is thus possible that all the genera-
tion mechanisms reduce to the ‘‘figure 8’’ of Fig. 1.

We point out that introduction of the concept of tur-
bulent resistance has made the problem of fast or slow
dynamo less acute: if the turbulence time is substituted
in the expression for the damping time, then the damp-
ing period (meaning also the growth time) turns out to
differ little from the period of the hydrodynamic mo-
tions.

Gyrotropic turbulence can be an effective generator
of magnetic fields in rapidly rotating objects. The
growth increment is in this case quite large and is
smaller than the rotation frequency by only a few times.
In other cases the sole action of the gyrotropic turbu-
lence (called by Steenbeck the a effect) is insufficient,
and must be aided by regular motions, for example dif-
ferential rotation, acting ‘‘in the same direction’’ as the
o effect. Such a situation obtains in our galaxy. On the
other hand, if the differential rotation acts in opposition
to the o effect, i.e., if the field generated from the po-
loidal field is toroidal and antiparallel to the toroidal
field generating the « effect, then a vibrational dynamo
cycle is obtained (the solar cycle is an example). It is
interesting to note that the differential rotation itself
produces only a growth of the field that is linear in time
(if no diffusion is taken into account), i.e., a rather slow
growth. When the a effect is added, the field growth is
exponential, and the increment is the geometric mean
of the rotation frequency and the a-effect increment.

There are also other interesting aspects of problem
1. Many stars have convective cores or convective en-
velopes, and their remainder is immobile, i.e., the tur-
bulence is inhomogeneous. This raises the question of
how the total field of the star behaves. K it attenuates
effectively in the convective core, then it becomes by
the same token rapidly forced out into the immobile re-
gions. The force lines ‘‘go around’’ the convective core.
If this is so, then the core behaves like a diamagnet,
and it is possible to develop a ‘‘macroscopic’’ electro-
dynamic theory, i.e., electrodynamics of large-scale
fields, with the magnetic permeability u dependent on
the turbulent characteristics. The solution of problems
such as 1 is facilitated by the fact that such problems
have a physically small parameter [/L, where [ is the
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correlation length and L is the scale of the field, al-
though no expansion is carried out in terms of this pa-
rameter. It is interesting to note that the question of
forcing out the field from the turbulent core can be
solved in the two-dimensional case, which includes the
cases of diamagnetism and of turbulently-accelerated
attenuation of the field.

Finally, an important question is that of the steady-
state field, which obviously depends on the nonlinearity
of the effect. In fact, in the kinematic problem, i.e.,
when the characteristics (statistical or regular) of the
velocity field are specified, the dynamo results in an
unbounded (exponential, see above) enhancement of the
field, which naturally has no physical meaning. It is
also natural to assume that the energy of the steady-
state field does not exceed the kinetic energy. But this
is the upper limit. Can stabilization occur in a weakly-
linear regime, i.e., can the energy of the steady-state
magnetic field be much smaller than the kinetic energy?
It turns out that such a situation is possible. The gist
of the situation is that the reaction affects primarily
the gyrotropy itself, and not the average energy of the
turbulence. But a small part of the entire random mo-
tion can be gyrotropic.

We proceed to problem 2, the interaction of small-
scale pulsational magnetic fields with the turbulence.
This question was discussed already in the papers of
Batchelor'*® and Biermann and Schluter.'* Batchelor
called attention to the analogy between the equation for
the magnetic field H and curl v, and arrived at the con-
clusion that when v/vm > 1 (v and vm are the kinematic
and magnetic viscosities, respectively) the pulsational
fields increase. It was subsequently noted by many
workers that these equations are not physically analo-
gous, since the velocity field (and by the same token
also the field curl v) is maintained by external sources,
but the field H is not.™!® 1t is not surprising that
Batchelor’s successors (Saffman, %' Moffatt!8)
reached the opposite conclusion, that a turbulent dy-
namo is impossible in the inertial subregion (by ana-
lyzing the same equations for H and curl v!). Wherein
does the difficulty of the problem lie ?

We turn to the picture of motion with frozen-in fields.
It is known that in a turbulent stream the distance be-
tween neighboring particles increases on the average,
so that the force lines become entangled. One can there-
fore expect the mean-squared magnetic field to increase
with time. However, the entanglement of the force lines
is accompanied by a decrease in the scales of the fields,
i.e., the “transfer’’ energy into the region of large wave
numbers, which is usual for hydrodynamic turbulence,
takes place. This means that there is a danger that the
enhancement of the field occurs only as a result of
breaking up the scales.

Exact investigations of idealized cases (axially sym-
metrical motion and two-dimensional motion) have con-
firmed these dangers. In the indicated degenerate cases,
the growth of the field is indeed connected with a de-
crease in scale, the vector potential does not increase,
and no exponential growth of the field is possible. In a
real three-dimensional case, the investigation is made
difficult by the fact that there is no small parameter in
the problem, and the rates of the aforementioned two
competing processes are of the same order of magni-
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. tude. For this reason, heuristic theories cannot give a
final answer to the question whether a turbulent dynamo
is possible. A significant contribution to the analysis of
these questions was made by Kazantsev.®

It is possible to make progress in this problem by
considering acoustic turbulence, namely an ensemble
of interacting acoustic waves. The foregoing competing
processes occur here, too, and their rates are approxi-
mately equal. On the other hand, a small parameter
v/Aw appears (v is the amplitude of the velocity, A is
the wavelength, and w is the frequency), and by expan-
sion in terms of this parameter it is possible to obtain
correctly an equation for the spectral function of the
magnetic-field fluctuations. It turns out that exponen-
tially increasing solutions do exist, i.e., the dynamo
does take place. Finally, we shall advance later on ar-
guments favoring the turbulent dynamo in ordinary hy-
drodynamic turbulence.

II. REGULAR (LARGE-SCALE) MAGNETIC FIELDS

1. Origin of “‘priming’’ magnetic fields. Of course,
one can assume that there exists a certain metagalactic
field and that the galactic fields become enhanced in
comparison with the primordial one as a result of con-
densation of the galaxies themselves, and the stellar
fields are enhanced as a result of condensation of the
stars."®%) To be sure, the need for dynamo theories
still remains, since, first, alternating magnetic fields
are observed at the stars and, second, turbulent diffu-
sion of the magnetic field is not so slow and is fre-
quently appreciable over cosmological times.

We shall follow an alternative approach, and assume
that the field is excited by certain priming mechanisms,
after which it is enhanced by the dynamo mechanism.

The first to propose a mechanism for the excitation
of the priming field were Biermann and Schluter.®*
The mechanism recalls the thermoeffect: in the pres-
ence of a pressure gradient, it is easier for electrons
to leave places where the pressure is higher than for
ions, and this gives rise to a current. A magnetic field
is excited if curl p™ Vp # 0, and in this case the electric
field contains a non-potential component. This condition
can be satisfied in rotating bodies; for stars, the prim-
ing fields are as a rule small. For example, for the sun
H=~ 107°G. Primary generation in stars was considered
also by Drobyshevskif.!® Harrison'™’ proposed a
mechanism for the generation of priming fields in pro-
togalaxies in an expanding universe, in the period when
the density of the radiation was much higher than the
density of matter. 1t is assumed here that the protogal-
axies have an initial rotation. Qualitatively, Harrison’s
mechanism can be explained in the following manner.
Let us imagine a spherical uniformly-rotating region
of radius r; the radiation density is py and the density
of matter is p (ions and nonrelativistic electrons). As
this vortex expands we have pr® = const and p},r4
= const; consequently, if the angular momentum is con-
served we have w ~r?and Wy ~ r (w are the angular
velocities), so that if no account is taken of the interac-
tion between the radiation and the matter, the ions ro-
tate more slowly that the radiation. The electrons are
drawn by the radiation, so that the cross section of the
Thomson scattering is not small; a current is thus pro-
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duced—the electrons rotate more rapidly than the ions.
More accurately speaking, they ‘‘would like’’ to rotate
more rapidly, but generate in this case a magnetic field
such that the induced emf offsets the inertia of the ions;
from this we can easily obtain the value of the field.
The magnetic field generated thereby can be estimated
at

B= —2(myge/2)o= —2.10"% G

Generation by this method stops when the friction be-
tween the ions and the electrons becomes large enough.
This occurs at the end of the radiation period, and the
final field is estimated by Harrison at ~107% G,

A somewhat different mechanism for the last stage
is proposed by Mishustin and Ruzmaikin.'”®’ During a
period close to our own epoch, the interaction with the
radiation can be neglected in first-order approximation,
and the electrons and ions rotate together relative to
the radiation. The collisions between the protons and
the neutrals causes the former to rotate with the same
angular velocity as the neutral matter. The electrons,
on the other hand, interact with the radiation (homoge-
neous background) much more effectively than with the
neutrals. The radiation slows down the rotation of the
electrons. The resultant emf is compensated by the in-
duced field.

The presence of two mechanisms is useful, since it
is not clear to this day when the rotation of the galaxies,
which is undoubtedly observed at the present time, set
in. According to the vortex theory developed by Chernin
and Ozernoi*“> and by others, the rotation took place al-
ready in the earlier pre-galactic stage to which the
Harrison mechanism pertains. One can however, ad-
vance the hypothesis that the rotation developed as a
result of gravitational instabilities and density pertur-
bations. In this theory, the rotation occurs later™” and
then the mechanism of Mishustin and Ruzmajkin is more
suitable.

2. The symmetrical problem. We illustrate below
the symmetrical {(two-dimensional) problem using the
flat case as an example, and following Zel’dovich.'*!
Thus, let vz = 0 and let the gradients in the z direction
be equal to zero, 3/0z = 0. Then the magnetic field sat-
isfies the equations

ity

o+ YV, = va A, 1)

94

W+VVA =vnAd, (2)
][xz_‘?i Ily:-—%, divv =0,

The problem has broken up into two, one concerning the
Hz component of the field and the other concerning Hy
and Hy, which are expressed in terms of the Az-compo-
nent of the vector potential, henceforth denoted for brev-
ity by A (without a subscript), A = A(x, v). Multiplying
(1) by Hy and (2) by A, and integrating over the entire
(x, y) plane, we obtain

s { Bdray— —vn [ vHy2dzay, (3)

v §ardzay— —vn [ Hr - HY dzay. (4)

From (3) we see immediately that H —~ 0 as t — . In-

tegrating (4) with respect to t, we obtain
t

S A2 (z, y, 0)drdy — S Az, y, 8 drdy—=2v, S (HE4- HY) dx dy de'.
0
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The expression on the right is a monotonic function of t
(an integral of a positive function), bounded by the quan-
tity [A%x, y, 0) dxdy.

Consequently, the integral converges as t — <« it
follows therefore that (Hz + H5) — 0 as t — «. We have
thus obtained the well known result that a two-dimen-
sional dynamo is impossible. We note that the conclu-
sion can be generalized to include the case when vy # 0,
Vy = Vy(X, y)—the problem remains two-dimensional.
Equations of the type (3) and (4) for the axially-symmet-
rical case were written out by Braginskii.!” In addition
to these negative results, positive results concerning
large-scale fields were also obtained. So far in this
section we did not deal with turbulence at all, and the
only requirement that v must satisfy is that it decrease
at infinity.

We call attention to the fact that (1) and (2) are anal-
ogous to the equation for a scalar impurity (smoke den-
sity, temperature) in an incompressible liquid. Now the
results obtained above are clear. The equation for Hy
is particularly simple: Hy does not increase and Hy
—~ 0ast— «, We therefore put H; = 0. Then the equa-
tion for the vector potential is analogous to the equation
for the temperature, and the absolute value of H is equal
to the gradient: H? = | VA [>. In the presence of turbu-
lence, the average temperature becomes smoothed out
with the turbulent coefficient of the temperature con-
ductivity. During the first stage, however, as a result
of the turbulent motion, elements of the liquid having
different temperatures appear together. The mean-~
squared gradient first increases (and corresponds to the
mean-squared H), but the scale decreases; ultimately
the gradient also decreases to zero.

Positive results are obtained by considering aver-
aging over the time (or over the ensemble), which we
denote by the angle brackets (...).

We obtain a meaningful result if we assume that the
intensity of the turbulent pulsations depends on the co-
ordinates, i.e., the turbulence is inhomogeneous. The
coefficient of turbulent temperature conductivity y de-
pends on the coordinates, and the equation for the
‘‘large-scale’’ temperature takes the form

A .
{()—, —=divyVAa.
Hence

a(H, a . a g a .
= )_—_~Wd)vx\7(A), Sy = — - div gV (4,

oy .
= —rot rot y (IL);

(5)

here (H) has the components {(HX Y, (Hy ), 0}. We as-
sume that the turbulence ends somewhere (convective
core), and it is inhomogeneous in the region where the
turbulence does take place. In other words, let y = ¥,
when r € Q and y = vy, when r € Q. By the same token,
we neglect the thickness of the boundary layer. Using
the equation div {(H) = 0, we obtain the following bound-
ary conditions:
<Hn1\/ = <an>~

Ye <Ht1> =V <I{12>~ Ao (I'(7111H> =V <r()tlzl'l>; (6)
the subscripts n, n,, t,, and t, correspound here to the
normal and tangential components of the fields on the
boundary, and the numbers 1 and 2 pertain to the inter-
nal and external sides of the surface containing Q. The
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boundary conditions (6) correspond to a diamagnet with
magnetic permeability

b Va/Yy D'Rem. n L

Thus, the field is not completely forced out of the turbu-
lent region, as assumed by Landau and Lifshitz."®' We
recall that in ' it was assumed that the turbulent re-
gion behaves like a superconductor. After the field is
forced out of the turbulent region, a certain quasista-
tionary state is established and corresponds to external
non-turbulent fields which we assume specified.

We shall assume that the dimension of the non-turbu-
lent part of the plasma is at least not smaller than that
of the turbulent one; we denote it by L. Then the field
attenuation time is t, = L?/vy,, since both the field and
the currents are forced out from the region where the
dissipation is large.

What is the relation between the energies of the large-
scale field and the pulsation fields ? We denote by the
symbol N the average dissipation of the ‘‘temperature’’
inhomogeneities dA2/dt; from (5) we can obtain the en-
ergy that is drawn from the inhomogeneities with the
largest scales, hence N = yA2/L? where A, is the large-
scale component of the temperature.

On the other hand, using (4), we obtain

N =AY L= v, H?,
H?=RenH%;

H, is the large-scale component of the magnetic field.
We express the pulsational fields in the turbulent region
in terms of the external field: since the average field in
Q is smaller by a factor Rey, than the external field H,,
we have Hit = HZoxt Re. All this pertains to the Hy
and Hy components; the reader can easily consider the
case Hy # 0 by himself, We note also in this connection
the paper by Weiss,® who specified the velocity field
in the form of a solitary two-dimensional vortex, i.e.,
the velocity vanished outside a certain volume. By nu-
merically integrating the induction equation he was able
to find H(r, t). He also found that a field that is homo-
geneous at the initial instant of time is forced out of the
volume. To be sure, Weiss’s velocity field is not a ran-
dom function, so that one or several two-dimensional
vortices are too crude a model of turbulence.

3. Generation of regular field by gyrotropic turbu~
lence. At first glance it seems that random motions
cannot generate a regular field in any way. Of course,
if the initial magnetic field is random, then random mo-
tions do not produce a regular field. The merit of the
work of Steenbeck and Krause lies in the fact that they
have shown that gyrotropic turbulence, i.e., turbulence
in which v and rot v correlate

(vrotvy=£Q,

M

is capable of amplifying an initially weak field. In es-
sence, Parker and Elsasser proposed a qualitative dy-
namo model—in the language of frozen-in fields, con-
vective elements, and rotating magnetic loops; Steen-
beck and Krause gave a mathematical approach to the
same processes in the language of averagings and cor-
relation tensors. To be sure, the results of their ap-
proach pertain to weakly frozen-in fields: Reyy < 1. We
note that a more accurate derivation of the generation
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equation was given by Moffatt.'?® When (7) is satisfied,
the correlation tensor of the isotropic velocity field is
of the form
Belx, x's 4, 8) v {x, o, (X, )y =

= A (e, |80 8i4- B (r. [1—2" ) rirj - C(r, 16— |V ey

. (8)
(see "), It was assumed in ™ that the large-scale
field is homogeneous and the pulsations are small
(H=B +h, (H) = B, h, < B). Then the induction
equation

% ==rot | VH} 4+ v, AH (9)*
can be simplified as follows:
—a—h'—=mt {VB]+ vinAh,. (10)

at

With the aid of Green’s function, the heat-conduction
equation (10) can be solved with respect to h ; further,
the obtained value of h, can be used to obtain the quad-
ratic correction, namely, we can calculate (v xh,),
which is expressed in terms of Bjj. We then obtain
{vxh;)= aB; a is expressed in terms of C (r, s) from
(8). ¥ we now take into account the weak dependence of
B on the coordinates, we obtain the generation equation

i—?rr:arot.B—}-vaB. (11)
Using (11), it can be easily shown that the generation of
the field does indeed take place. In fact, if B contains at
t = 0 only a poloidal part, then in the linear approxima-
tion in t we get from (11) B = ot curl B‘® (curl B is
the toroidal field); in the approximation quadratic in t
we get B® = a%t® curl curl B (the field B‘® corre-
lates with B'?, i.e., it is poloidal). Thus, enhancement
of the field is obtained in second order.

In astrophysics the field is practically always frozen
into matter, Rey, > 1. The pulsational fields are
strongly entangled and h >> B, where h is the intensity
of the pulsational field: H = B +h, (H) = B. Thus, the
perturbations are not small; can we use perturbation
theory ? It turns out that it is possible to develop a the-
ory analogous to the theory of strong perturbations in
quantum electrodynamics.™® To this end it is conve-
nient to change over to Fourier space. We use the Fou-
rier integral (for an unbounded homogeneous turbulence
this will be the Fourier-Stieltjes integral) and the Fou-
rier representation of (9):

H{r, §) = 5 1 (k. ¢) exp {ikr} dk,
(12)
v(r )= 5 u (k, #) exp {ikr} dk,
H (k, ) = I* (—k, 1), u(k, £) = u* (—K, &), (w)=0;
H.(k‘ t)-=H (k, 0) exp (—vnk?2)
!

-+ 1 g dtyexp [ —veh? (¢ — 1)} j dky [k (uk—kg, £) 1 {k,, ¢)]].
[\)

The convenience of the representation (12) lies in the
fact that we are dealing already with an integral equa-
tion for which it is easy to write down an iteration se-
ries:

*[vHl =v X H
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H(k, 1) = 2 H9 (K, 2, HO =T (k, 0) exp (— vph?t)

]
n=0 |
: }
H P = g 5 exP| — vk (t— 1)1 41, S (k {u (k — Ky, 1) 11 (ky, )] Ky |
] )
(13)
When Rep, < 1, the series (13) can be terminated, say,
with the second term—the perturbations are small in
comparison with H'®, and we obtain Steenbeck’s result,
At Rep > 1, an estimate shows that H” ~ H'Y ~ H®
etc., so that the series cannot be terminated. We are
interested in the large-scale component, so that (14)
must be averaged term by term.

We shall henceforth assume that the velocity proba-
bility distribution is Gaussian, i.e., the odd moments
are equal to zero and the even ones are expressed in
terms of the second moments (spectral tensor). We can
now use a diagram technique. Figure 2 shows an exam-
ple of a fourth-order diagram corresponding to (H®™)),
The circles correspond to H (k, 0) exp (— vy k*t). The
points correspond to the variables of integration with
respect to time ty; if it follows from the integration lim-
its that t, < tm, then the point th is placed to the left of
tm. The straight diagrams are the time axes; zero is
on the left, t on the right, and the dashed lines corre-
spond to Bjj (r, tp—tm). We carry out a partial summa-
tion: we retain only diagrams of the type of Fig. 2a.

In the diagrams of Fig. 3, the dashed lines join only
neighboring points. ¥ we sum the diagrams of Fig. 3
(we can use a recurrence formula for this purpose) we
obtain

B (k. ?) =exp| — (vy+vm) K2} {B (k, 0) ch (kat)

i kB (k, 0)] k™ sh (kat)}. (14)

The values of v, and o will be written out later. Such a
partial summation (selective summation) can be substan-
tiated for a ‘‘white noise’’ turbulence model—58-like cor-
relation with respect to time:

Bij(r,t—1t') =Py (1) 8 (¢ —1'). (15)

When (15) is satisfied, the diagrams type 2b and 2c are
equal to zero and only the diagrams of Fig. 3 remain.
Such a model was proposed by Kazantsev.'®! The 6 cor-
relation means that the correlation time 7 is neglected;
this is correct in the present problem, since 7 is much
smaller than the period of variation of the large-scale
field. The dynamics of the turbulence is specified by
the form of the spectral tensor Tjj:

(i, b (K. )y == Tk, [t =2 |} S(k—k)
=8 (k) {1 (k, 1£—1"[) (Bt — Chah k)] £ iC () ik}
Here

vD:'%SA(k,s)dkds,a:%SC(k,s)k?dkds. (16)

Using (14), we easily obtain an equation for B(r, t):

Pt s T
Ol
b c

FIG. 2

27N Y Y 77N Y )
O=0+ O—tdd—} O—dbb b bbb
FIG. 3




ORIGIN OF MAGNETIC FIELDS IN ASTROPHYSICS

B -rot aB - (vg 4 vim) AB. 1mn

at

4. Properties of the equation of turbulent degenera-
tion, At C = 0, when there is no gyrotropy, we obtain
turbulent diffusion of the field

vy T3, V> v

Turbulent diffusion was usually obtained from dimension-
ality considerations. Equation (17) differs from (11) in
the constants. vy in (17) can be neglected, and the con-
stants depend only on the turbulent characteristics. I
(17) is solved for eigenfunctions in an unbounded space,
then it is easy to show that the eigenfunctions are given
by

(18)

here n is directed along the third axis. Of course, the
helical field (18) can be turned through any angle, and
then its form in the previous system of coordinates be-
comes somewhat more complicated.

Expansion in terms of the functions (18) is equivalent
to expansion in a Fourier integral. The fields (18) are
force-free and have a helical character. In the case of
a body of limited volume, these functions therefore do
not satisfy the boundary conditions, which call for con-
tinuity at the interface with the vacuum, and are there-
fore not suitable as eigenfunctions. Substituting the
eigenfunctions in (17), we obtain the connection between
the field growth increment y and the wave vector n:

B, =cos(nr), B,=sin(nr), B;==0;

Vi —an; — vpni, i=1,2,3.

We see therefore that the dynamo will take place if
— oy > vgni.

It is easy to obtain the maximum increment ymgx

= a®/4v,; accordingly, n"3¥ = — @ /2v,. Consequently,
fields with a scale 2v, /o will increase more rapidly
than all others. The choice of a right-hand or left-hand
helical field depends on the value of ¢. If a right-hand
field increases exponentially, then a left-hand field at-
tenuates exponentially.

5. Astrophysical examples. Let us first estimate «.
The exact value of @ can be obtained by using the Navier-
Stokes equation with allowance for the Coriolis force.
For the estimate it suffices to use qualitative consider -
ations. Tt follows from (16) that @ = — (v curl v)1/3.

We recall that the quantity (v curl v) is determined by
the action of the Coriolis acceleration 2v, x w on that
part of the velocity v, which is determined by the den-
sity gradient (by the change of the volume of the convec-
tive or turbulent element) and with the associated rota-
tion of the volume element. Hence

a“i(vﬁ) o I 1, . 1% 152
3T ie L, 3, T, ™

Ly is the scale of density variation; we have taken into
account the fact that 7 = I/v. We now write down the
generation conditions. It follows from (14) that genera-
tion occurs at small k, k <k

[ a/(l/'u -+ Vm).

Since we are dealing with generation in a body of finite
dimensions, the growth of B (k, t) at kK < ki, may not
have a physical meaning if the dimensions of the body
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are not large enough. The dimension L of the body
should exceed a certain critical value Lg = 21/Kpp.
Thus, it is necessary to satisfy the condition

(19)

The growth increment of the field of largest dimension
is then

o > ZHL’U/L.

y-call.

There is one more requirement
(20)

This is the condition for the applicability of the theory,
namely, the increment must be smaller than the corre-
lation time.

Let us consider by way of an example a sero-star
of the principal sequence,'® * M = 30M,, T, = 40 000°K,
and R = 6.6R~. The parameters of the star are taken
from ™', The rotation speeds of star surfaces reach
vy = 250 km/hr, hence w = 5.4 x10™ sec™. A convec-
tion velocity v = 2 x 10° cm/sec was obtained in ', we
assume L ~ Ly, and then o = 7.5 x10° cm/sec, vi/L
= 2x10*cm/sec, and vL/I = 10v = 2 x 10® cm/sec. Thus,
conditions (19) and (20) are satisfied and a magnetic
field is generated in the convective core within a char-
acteristic time

Y <<uil.

T (hwl-=10/w= 2-10°sec - (.10 years.

Of course, it can be assumed that the generation is very
rapid. We note that since all the harmonics for which
the condition (19) is satisfied are excited, the fields with
the largest scale will be of the dipole type; in addition,
it follows from (14) that a toroidal component is also
excited.

The field may emerge to the surface of the star from
the convective core as a result of meridional circula-
tion, which is sufficiently effective here. The circula-
tion velocity is"™?

ve = VELIY/GEA® ~ 3.10 cm/sec
The time of emergence of the field is 7o ~ R/ve = 5
x 10® years, which is one tenth the lifetime of a star
with mass 30M, in the principal sequence.

Another interesting example is the generation of a
magnetic field in the interstellar gas of the galaxy. We
have in mind here the regular component, the scale of
which is comparable with the dimensions of the galactic
disk. In this case, the self-excitation criterion (19) is
not satisfied. Generation may nevertheless occur as a
result of the presence of a differential rotation. The
latter accelerates the generation.

The first attempt to explain the field of the galaxy
was made in a note by Fitremann and Frisch.™ No ac-
count was taken there, however, of the differential rota-
tion and the value of the gyrotropy coefficient ¢ was ob-
tained from dimensionality considerations. This ques-~
tion was investigated recently by Parker ™% and by
Vainshtein and Ruzmaikin, %%

Let us examine, following !, generation in a disk.
We introduce a cylindrical coordinate system (r, ¢, 2z)
with a z axis parallel to the disk axis; we consider the
axially-symmetrical problem, 3/9¢ = 0. Further, dif-
ferential rotation with v = w(r)r is present.

We shall assume that 38/9z > 3/0r; this is connected
with the fact that the height of the disk is much smaller
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than the radius. Then the generation equations take the

form 3B, ) --@B L B,
at 7 or rty dz2 7
B, ) .o, 9
= o et (21)
aB, 1 8 B,
5t e e o

In the first equation of (21) we have already taken into
account the fact that differential rotation generates a
toroidal field much more effectively than the « effect,
which we have neglected. Substituting By from the first
equation of (21) in the second, we obtain an equation for
B(p:

[ N, 0 &

Ji 2 04
92 —""'LOW 0z

o
Byt arBe 5t bt By 0. (22)

An estimate shows that the last term in the left-hand
side of (22) is small, and we shall neglect it. We now
turn to the eigenvalue problem: By = N(z) exp (11);

y’N—ZvuyN”—;—r%’— (aNy =0. (23)
The boundary conditions are N = 0 on the boundary, as
follows from the axial symmetry and the condition for
matching with the vacuum, curly B = 0. Indeed, on the
‘bases’’ of the disk we have r™ (3rBy /dr) = 0, hence
By = 0; on the ‘‘lateral surfaces’ 9By /9z = 0, from
which By = 0 when the boundary conditions are taken
into account. The existence of eigenfunctions of (23)
is not subject to any doubt, since (23) can be reduced
to a Schrédinger equation without the time. If dissipa-
tion can be neglected, then

Y= = 5

I dw da N 1/2
ar 0:)

Since the Coriolis force and o reverse sign at the half-
thickness of the disk, we assume that o = ayz (the ori-
gin is placed at the center of the disk). We now estimate
the increment. As is known from “®!, the linear veloc-
ity of the galaxy rotation is practically constant (with
the exception of the core), Vo R 200 km/sec, and the
turbulent velocity (the random motion of the clouds) is
~5 km/sec, I = 100 parsec, the half-thickness of the
disk is z, ~ 400 parsec, and

(24)

At r = 10 kiloparsec (the vicinity of the sun) we have
y~' = 2x10° yrs. Parker™ assumed that o changes
jumpwise on going through the equator and is constant
at z > 0 and z < 0. He then obtained a fourth-order
equation with constant coefficients. The numerical in-
crement obtained by him was of the order of (24).

Interest attaches also to numerous theories explain-
ing the solar cycle. These include the works of Steen-
beck and Krause,™® vainshtein,™® and also those in
which an ensemble of convective cells acted upon by a
Coriolis force plays an important role, even though no
turbulence is used and the dynamo is laminar, /%%~
45461 we note also that the o effect itself has already
been experimentally confirmed. *"™**

6. Diamagnetism of a turbulent liquid. Boundary
conditions. As already indicated in the two-dimensional
problem, the inhomogeneous turbulence exhibits dia-
magnetic properties. We proceed to the general three-
dimensional case. Let the mean-squared velocity

vt~ 2.107r sec.
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depend on the coordinates, and then v can be represented
in the following form:
vix.t) f(x)u(x,), @(x, ) 1.
We assume that f(x), which determines the inhomoge-
neity, depends little on the coordinates, or more accu-
rately, varies little over the correlation length I. We
can then expect the velocity field to be already not only
inhomogeneous but also anisotropic: the predominant
direction is parallel to Vf. Thus, we have a small pa-
rameter, the ratio of ! to the inhomogeneity scale, in
terms of which we can expand the correlation tensor in
order to simplify it. We shall not present here the in-
termediate steps, referring the reader for details to
491 where an expression is derived for the spectral
tensor with allowance for the conditions imposed on it
(see, e.g., ©*"). We write out the spectral tensor:

(us (O g (k) @ (kg + ) { 4 (ko) Uegihys— (ko) 8]

dA (k 1
LT o R+ (k)] (ki — K381 }

¢ (x) = f (x) == g ¢ (k) exp (ikx) dk. (25)
Naturally, the spectral tensor of homogeneous turbu-

lence should follow from (25) as a limiting case. This
is actually obtained, provided we put

@ (ky+-kp) = (%) 8 (k- ko).

i

It is now again necessary to average the induction equa-

tion (9). Since (curl [v xH]) = curl (v xH), we calculate

(v x h). To this end we use again the series (13) and
the diagrams of Figs. 2 and 3. This time, however, the
integration of the multiple integrals is made difficult by
the fact that we have the function ¢ instead of the 6-

function. Changing variables, we can integrate the ex-

pressions in such a way that ¢ enters in the final ex-
pression; this is natural, since ¢ describes the inhomo-
geneity of the turbulence. We obtain ultimately

{IvH]) = —yrot B-—(1/2) [V¥B],
%!:_: —rot vy (1 -%—\%)“? rot (17—7’:)
Using (26), it is now easy to average Maxwell’s equation
and obtain ‘‘macroscopic’’ Maxwell’s equations, in a
method similar to that used in the electrodynamics of

continuous media. We write out these equations (we denote
the electric field by e, and the average field is (e ) = E):

(26)

1/2
B.

A e —rotE, divE«-4ap, divB=0, @
rot H==(4n/c) j, B=spH, po=[1-+ Quvm)™ "2
Ohm’s law takes the form
j=0e E,
J eff (28)

et == 0/[1-+ (x/vu)l'".

Thus, (27) and (28) describe a conductor with an inhomo-
geneous electric conductivity and an inhomogeneous
magnetic permeability, and since Rep, > 1, we get
Oepp K0, Voir DV B

The results derived in this section are important
primarily for the formulation of the boundary conditions.
As already stated, the turbulent convection does not in-
volve the entire star, but only a convective zone or else
a convective envelope (e.g., the sun). The question of
how the presence of a convective core influences the
field of the entire star was raised at one time (see ),
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Spitzer®® advanced the hypothesis that this influence is
not very strong, since the field and the currents are
‘‘crowded out’’ from the convective core and the total
field dissipation is small. We shall examine below
whether this hypothesis is confirmed. On the sun, this
effect can lead to a crowding out of the magnetic fields
into the sub-convective zone (where their intensity
should be much larger than in the convective zone!),
and this may turn out to be a very important factor in
the theory of the solar cycle.

We proceed to formulate the boundary-value prob-
lem. Assume that y = yoatr € Qand x=0atr & Q.
We neglect the thickness of the boundary layer. As is
well known, the boundary conditions in electrodynamics
are obtained from Eqgs. (27) by integrating them over
the boundary layer and letting the thickness of the layer
go to zero. For the electric field we have

By — Ey,. En, Enz [1-+ (X/Vm)]u2 (29)
For the magnetic fields
By, — B, [1+ (/vm)]'?, Bhy-cBug. (30)

For the currents

B {1+ (X"vm)]—l.
- 10l B = roty, B {14 (vl

roty, B =roty,

It is easy to calculate also the surface currents flowing
on the surface of any diamagnet.

It is of interest to repeat all the derivations of the
present section for two-dimensional fields. This makes
it possible to verify the method of the present section,
since in Sec. 2 the results were obtained by an entirely
different method, A calculation performed by the method
of the present section duplicates fully the conclusions of
Sec. 2.

Let us discuss now the characteristic field attenua-
tion times, going over by the same token to the Spitzer
hypothesis. Let the dimension of Q be L, and the dimen-
sion of the non-turbulent part of the liquid be L, with
L > L,. Then the time of crowding out the field is de-
termined by its attenuation in Q:

ty= LY+ vor).

The field attenuation problem is formulated as an eigen-
function problem; to find the smallest eigenvalue cor-
responding to the attenuation decrement of the entire
field we use for E an equation that holds in all of space:

1 JB

i X yte
P Uy B

In vacuum we have vy, = « and (31) goes over into
curl® E = 0—a current-free field.

Taking the scalar product of (31) with E and inte-
grating over all of space, we obtain

1 d £ (g eyt

?T5 Vi [ O/ vm)] V72 dr- 5(1 i vm) (roLEy?dr.  (32)

Using (32) and the boundary conditions (29) and (30), we
obtain without difficulty the attenuation time of the en-~
tire field:

by == L2/vin. (33)

We recall that t, from (33) coincides with the time of
attenuation of the field in a solid conductor, and we con-
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clude therefore that the turbulent region has little effect
on the attenuation of the entire field. This confirms
Spitzer’s hypothesis.

III. RANDOM (SMALL-SCALE) MAGNETIC FIELDS

1. Difficulties of the problem. Whereas for regular
fields one can find features common to the two-dimen-
sional and three-dimensional problems (turbulent dif-
fusion, diamagnetism), in the case of random fields the
fact that a two-dimensional dynamo is impossible still
does not prove anything in the three-dimensional case.
The difficulty of solving the problem of the random tur-
bulent dynamo is connected with the absence of a small
parameter. More accurately, there is a small param-
eter, say 1/ Re p, but this does not yield anything, since
the zeroth-approximation solution is not known. This
problem is closely related to the problem of the possi-
bility of propagation of magnetic and kinetic energy. In
fact, if the turbulent dynamo does exist, i.e., if Eq. (9)
results in growth of the mean-squared field, then the
steady-state energy (H?)/87 cannot be much larger than
pvZ/2, so that (9) holds true as before. Only when the
energies become comparable, v itself in (9) already de-
pends on H (via the equation of motion), and (9) becomes
nonlinear. On the other hand, in the steady-state we
cannot have (HZ)/87 >> pv?/2, since the force lines
start to ‘‘disentangle themselves’’ and the electromag-
netic forces cause the liquid to move. This can be dem-
onstrated by using an equation of motion in which one
can neglect the terms that are nonlinear in the velocity,
as a result of the predominance of the magnetic forces:

(34)

o
ot 4np

[rot HH].

We integrate (34) with respect to t, take the scalar prod-
uct with v(t), average the fourth-order moment obtained

on the right-hand side, and express in terms of the sec-

ond moments after Gauss. We then obtain

t
@) =5 T |
1]

(rot H (t,) rot H (1)) (H (¢,) H (t)) dt, dt,.  (35)

Sy

Expanding the right-hand side of (35) in powers of t, we
obtain

wh= 3 (,mp 7 ((rot H)?) (H?) 22
Thus, the problem of the ‘‘dynamo’’ of the velocity field
(i.e., the problem which in a certain sense is the in-
verse of the usual dynamo problem) can be solved in
trivial fashion.

We thus have the following alternatives: either equi-
partition (but not necessarily over all scales) or ulti-
mate attenuation of the fluctuations of the magnetic
fields without external sources. We note the following
interesting analogy. K the dynamo of random fields is
actually realized, then this process recalls instability
(this has already been noted by Moffatt!*®! and others).
In fact, if H = 0 when t = 0, then it follows from (9) that
the field will no longer arise: H = 0. On the other hand,
the presence of arbitrarily weak fields immediately
brings the dynamo mechanism into action, and the fields
will increase exponentially, i.e., a turbulent medium is
unstable against introduction of weak perturbations in
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the form of magnetic fields. However, the analogy with
the instability is in this case purely physical, and the
mathematical theory of stability is not suitable for the
solution of the problem.

This instability has a stochastic character, i.e., only
(H?) becomes enhanced, whereas an individual pertur-
bation of H? can also decrease.

We have explained that we are dealing with alterna-
tives. Is it possible to approach in this case the prob-
lem of the turbulent dynamo from the point of view of
the possibility or impossibility of equipartition? A re-
markable feature of the equations of magnetohydrody-
namics is that they can be written in symmetrical form
with respect to v and H (see, e.g., '), One might be
able to conclude from this that since v and H are in a
certain sense on a par, equipartition does indeed take
place. These attempts, however, were long ago criti-
cized by Cowling: in fact, only the fictitious fields
v + (47p)/2H and v — (47p)™/H are on a par, and fur-
thermore only if v = vy, and the boundary conditions are
identical. The last condition is certainly not satisfied.
An interesting approach was employed by Lee.™*! He
noted that the equations of incompressible magnetohy-
drodynamics in Fourier space are similar to the Boltz-
mann kinetic equation, if the Fourier amplitudes are
treated as coordinates in phase space. In this case v
=Vm*= 0.

Using Gibbs statistics, Lee has shown that equipar-
tition is possible and that in this case the power spec-
trum of E is proportional to . . . k*(!). E increases
with increasing k; this is so highly improbable that a
doubt immediately arises as to whether this result has
any bearing at all on the theory of turbulence. A nega-
tive answer to this question is given by Kraichnan and
Nagrarjan.'®! The situation in which vy, = v = 0 seems
harmless, since Rey and Reg are much larger than
unity. In fact, however, in the dynamic situation (i.e.,
in the usual situation), the energy is transferred into
the region of large wave numbers, where vy, and v are
significant; they are small but not equal to zero!

At the present time there is apparently no regular
{non-heuristic) mathematical formalism for an exact
solution of the problem. Nonetheless, certain problems

that bring us closer to the solution have been considered.

We note first of all the work by Kazantsev'™! and by one

of us.™ Kazantsev proposes a turbulence model that
has already been used many times above; in such a
model, the problem can be solved exactly. An equation
was obtained for the spectral function F (k, t) of the
magnetic field, and it was found that an unstable solu-
tion exists. Acoustic turbulence, which is an ensemble
of interacting acoustic oscillations, is considered in
[%6) 1t is important to bear in mind that the two afore-
mentioned competing processes are present in such a
turbulence, and the rates of the processes are of the
same order of magnitude. On the other hand, in this
case there is a small parameter in which it is possible
to expand the induction equation and to obtain an equa-
tion for F (k, t), i.e., a regular approach is available.

2, Exact solution of the problem in a certain turbu-
lence model. Following (28] we derive an equation for
F (k, t), defined by the relation

(Hi(k, t) HY (K, 8)) - F (k, 1) |85 — (riky/k2)] 8 (k —Kk').
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It is necessary here to multiply the series (14) by its
complex conjugate and average. The corresponding dia-
grams are given in "®®, It is important that when a 6-
like correlation is used, only diagrams of the ‘‘ladder’’
type remain. As a result of their summation we obtain
the equation

oF - ( (kq) (kp) (pq)
S 2er = [ daF () v (g) (2 — LLERED ),

p= k— q,
and v(q) is defined in the following manner:

ik, Hud K )y =vE)S(t—1t")6(k—k) 161 — (kik 1k3)].

A similar equation was obtained by Kraichnan and
Nagarajan,*? who used a Lagrangian description of the
turbulence. The problem then reduces to an eigenvalue
problem and a search for increasing solutions is car-
ried out. A positive growth increment, i.e., an unstable
solution, was obtained in ® for a non-analytic corre-
lation function, i.e., one in which the first derivative at
the point r = 0 is not equal to zero. On the other hand,
in Y% they obtained numerically a growing solution for
the ‘‘Kolmogorov’’ turbulence, namely, a certain initial
function F (k, t) was specified and the Cauchy problem
was solved, thus determining the behavior of F (k, t) in
time. It turns out that F (k, t) increases with time. Thus,
the turbulent dynamo does exist in this model.

3. Turbulent dynamo in the presence of acoustic tur-
bulence. The hydrodynamic theory of acoustic turbulence
was developed in a paper by Zakharov and Sagdeev.'®
Acoustic turbulence can occur in a given region of space
if there is a flux of sound sustained by external sources
through its boundary, and in addition, if there is a linear
interaction between the waves and leads to randomiza-
tion of the oscillations. Such a situation can occur in
the solar corona. The turbulence has then mainly a po-
tential character.

Using the results of '**), we write down the power
spectrum E (k) and the time of interaction of the oscilla-
tions (‘‘phonon lifetime’’) T (k):

E (k) ~A@)A %Y A,
T (k) = o/E (k) k2,

where X is the characteristic wavelength, Formulas (36)
hold true when k > 1/x; when k < 1/x we have E — 0.

We proceed now to the question of particle diffusion
in the field of acoustic turbulence. To this end, we add
a scalar admixture to the liquid; the rate of its mixing
be a reflection of the particle drift velocity. Thus, we
deal with the equation

(36)

%’:——f— div va = pAn.

Let us determine the regular component {(n) = N. An
equation for N is obtained in exactly the same manner
as the equations for B, but now there is no need for sum-

. ming an infinite series, since we are dealing with oscil-
lations and v/Aw < 1. We therefore confine ourselves

to the quadratic correction. We assume that the initial
perturbation of n is not correlated with v, so that it is
meaningful to consider the resultant expression at t
larger than the “memory’’ time of the system, i.e., the
¢‘phonon lifetime’’ 7(t) from (36).
The quadratic correction gives rise to the expression
o0

fds ff(q, s)dq, where f(q, s) is the spectral function:
[}
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@i(x, Husxtr, b4 s) = 3 (ke k2 £ Uk, s) exp (ikr) dk.

The latter, in turn, is naturally expressed in terms of
the spectral function J(k, w): in (k, w) space we have

ok s) - S.I(k, ) exp ( — ivs) dw,

It is now easy to derive an equation for N:

aN r
- = YaAN,

We see thus that the quantity J(k, w) plays a major
role in diffusion at w = 0. We shall show later on, with
magnetic fields as an example, that it is also used in
the calculation of the velocity at which the particles
move apart.

The approximate form of J(k, w) is shown in Fig. 4
(the greater part of the energy, naturally, ‘‘stays’’ in
oscillations with frequency ck). The physical meaning
of J(k, 0) is clear—it is the energy of the potential com-
ponent of the acoustic flow. It is clear that a non-zero
frequency corresponds only to oscillations, i.e., the par-
ticle remains in place on the average; the zero frequency
results in irreversible motion.

In view of the great importance of the value of J(k, 0)
for the subsequent results, we shall show how it is de-
termined.'® Linearization of the hydrodynamic equa-
tions (first approximation) leads, as is well known, to
a wave equation describing sound waves. Consequently,
in the first approximation, J, (k, w) ~ &(w —ck) and, of
course, J;(k, 0) = 0. The second approximation gives
already a non-zero contribution. In fact, we use the
equation for the second-approximation correction to the
continuity equation

%}"--{- 0o div vy~ —divpyv,.

(37)

Multiplying the Fourier transform of (37) by its com-
plex conjugate and averaging the fourth-order moment
that appears on the right-hand side, we can express it
in terms of the second-order moments, using the ran-
dom-phase approximation. Using (36), we obtain for the
inertial subregion

T (k, 0) = (Aw4/3mc%h) ks,
Yo = 2MAAM/3,

k> 1/A,
M =v/e.

To obtain an equation for F(k, t) we use the same
method as for the scalar admixture. Here again we
confine ourselves to the correction that is quadratic in
the small parameter v/(A, w). The resultant expression
will again be considered at t >> 7, but it is important
that the perturbations be small compared with F(k, 0).
An estimate of the quadratic correction shows that the
latter is small at M22/v >t > 7~ M)\ /v. The prob-
lem turns out to be self-consistent precisely because

] (k,w)T
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the characteristic period of the variation of the field
M™X/v (the reciprocal increment, as will be shown be-
low) turns out to be much larger than the correlation
time M) /v. The equation for F is (see %)

’;—f+2kz (a+vm) E=m S J(p, 0)B(q, t) ikp)2";qu2"2(‘E’idq_ (38)
Following Kazantsev,'*! we can transform (38) into
a Schrdinger equation; then the bound states corre-
spond to unstable solutions. The necessary condition
for the existence of bound states, namely the presence
of a potential well, is satisfied when

X(l >> '\’m
or, equivalently,

S = M3Ren 1. (39)
The stronger the inequality (39), the ‘‘deeper’’ the

well, but this still does not mean that bound states exist
when § > 1. The point is that the ‘‘mass’’ in the
Schrédinger operator also depends on the parameters
that enter in (39) (an approximate calculation of the
levels in the well by the WKB method shows that there
is ~1 level in the well). To determine the sufficient
condition, we turn to the problem of the eigenvalues of
Eq. (38) and make the substitution

F(k, t) = (k) exp (—2E1).
It is known that to find the minimum value of E we
can use a variational principle (see, e.g., ©*"):
_ (ta+vm) § K202 dk—(11/2) § dk dp® (k) © (9) J (p, 0) [(kp)Z 92~ k2 (pq)?] (¢p)2

| w2dk

&7 -=0. (4 0)
1t is clear that if we find a function &(k) such that the
functional (40) becomes negative, this means that eigen-
functions with E < 0 exist, i.e., the ‘‘well’’ is suffi-
ciently large. Such a function has indeed been ob-
tained.!®® ¥ F(k, t) is expanded in terms of the eigen-
functions, then it is clear that the first eigenfunction
with E < 0 (as we have already explained) ‘‘suppresses’’
all the remaining eigenfunctions, and its growth incre-
ment is the largest.

Thus, acoustic turbulence is indeed unstable against
fluctuations of the magnetic fields. The approximate
value of the field growth increment is (see, e.g., ©*®)

Y= A["U/A‘

4, Excitation of vortices in the presence of acoustic
turbulence. The problem considered above is closely
related with the problem of generation of a vortical
component. If a weak perturbation in the form of vor-
tices is present in the liquid, then the velocity is rep-
resented in the form v = vp + vy, where vp and vy are
the potential and vortical components, respectively,
with vy < v,. Then the dynamic equation for curl vy,
linearized with respect to vy, is

E

drotv .
i L ==rot [vp rot v,] - vArot vy

and recalls the equation for H. This analogy differs
significantly from the analogy between the equation for

H and for curl v in the usual turbulence, since, first,

the boundary conditions are in the present case the same
for curl v and H, neither field being sustained, and sec-
ond, it can be assumed here that v, and curl vy are in-
dependent at t = 0. We can therefore solve for curl vy

a problem of the same type as for H. In this case the
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quantity of greatest importance for the generation is
Sw = M® Repy; if S,,>> 1, then the generation is com-
pletely analogous to the instability described above;
on the other hand, if S, < 1, then the vortical com-
ponent v, increases (this is a nonlinear effect, a phe-
nomenon known as ‘‘acoustic flow’’B%),

We confine ourselves to the case when S, >> 1.
From qualitative considerations we can determine the
steady-state energy level v, . When the energy is in-
creased, the ‘‘vortex-vortex’’ interaction comes into
play, i.e., the process playing the principal role in
ordinary turbulence. The equation for v, (of course,
in a roughly approximate form), is

gk — ().

i (41)

The first term in the right-hand side of (41) describes
the generation of vi, by the acoustics, and the second
the transfer of energy into the region of larger k and
attenuation. In the steady state we have

vy & Ay & M3,
We note in conclusion that in the presence of a homo-
geneous magnetic field and when Sy, < 1 (i.e., when
there is no turbulent dynamo), we can obtain the fluctu-
ation spectrum of the magnetic field in a wide range of
wave numbers (in analogy with the Golitsyn spectra ®®
in ordinary turbulence). The spectra were obtained
in® and will not be discussed here.

5. Does a turbulent dynamo of random fields exist
after all? This question is discussed most fully in the
paper of Kraichnan and Nagarajan bs , where it is stated
that no final conclusion can be drawn as yet. Let us
advance some additional considerations in connection
with the publication of new papers. A §-like correla-

tion with respect to time is proposed in '®!. the question

of the feasibility of applying such a model to a
‘“Kolmogorov’’ turbulence remains open, since the
correlation time 7 is of the same order as the growth
period of the waves. On the other hand, in acoustic
turbulence the diffusion term 2k*x,F in (38) ‘‘com-
petes’’ with the right-hand side of (38), which de-
scribes the ‘‘entanglement’’ of the force lines; both
terms are of the same order of magnitude, as in ordi-
nary turbulence. Consequently, it is reasonable to
suggest that the mechanism causing the growth of the
fields prevails also in ordinary turbulence.

. We can add also that the perturbation-theory series
employed here many times diverges. One can there-
fore proceed as in Wyld’s paper'®® on hydrodynamic
turbulence, namely, replace the divergent series by a
partial sum. In this problem we can sum only ladder
diagrams in the hope that they characterize the ex-
panded function. The result is again the Kazantsev
equation, i.e., the dynamo exists.

The same equation can be easily obtained upon satis-
faction of the condition 7« A/v, which is not satisfied
in the ‘‘Kolmogorov’’ turbulence. It does occur, how-
ever, if the external force has a pulsed character.
Such a turbulence is quite artificial from the point of
view of hydrodynamics, and with respect to magnetic
fields it behaves qualitatively in the same manner as
the ordinary turbulence.

Finally, we note a paper by Thomas, where this
problem is simulated numerically with the one-dimen-

£e3]
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sional equation as an example (this equation no longer
reduces to the heat-conduction equation, and the dynamo
is possible). Thomas also obtains a random -field
dynamo. Taking all the foregoing inot account, we can
assume the possibility of a turbulent dynamo of random
fields as a working hypothesis.

IV. NONLINEAR PROBLEM. STEADY-STATE FIELD

1. Formulation of problem. As already mentioned,
if a turbulent dynamo of random fields is possible,
then the approximate equality {pv®)/2 ~ (H%) /87 holds;
we shall henceforth assume this to be the case. As to
the spectral distribution of E and F, nothing definite
can be said with respect to them.

More meaningful results can be obtained by consider-
ing the turbulent dynamo of the regular field. So far,
the velocity field was assumed given. When can such
an assumption be made? Obviously, if the electro-
magnetic force in the equation of motion
1

4np

(42)

is sufficiently small. Comparing it with other terms
of (42), we find that we should have pv*/2 << H?/87
Assume now that we have a regular component:

H = B + h; we assume also that the random fields are
comparable in energy with p(v®)/2: h?/87 = p{v®)/2
(owing to the turbulent dynamo of the random fields).
What can be said concerning the turbulent dynamo of
the regular field? It turns out that if B*/81 <« (v?)/2,
i.e., 8 = 47pv’/B® > 1, then the equation for B again
takes the form (17). In fact, the 5-like correlation can
be employed as before, since B varies slowly in com-
parison with the temporal correlation. In addition, the
initial field can again be regarded as correlated with
v, if it is assumed that at t = 0 we have H(k,0) and
B(k,0) and h(k,0) = 0, and the initial field is only regu-
lar. In this case the series is summed as before. As
the field becomes exponentially stronger, the turbulence
parameéters (the quantities a and vo) vary slowly. If
we take this circumstance also into accou nt, then, in
spite of the fact that we obtain in place of (14) a some-
what more complicated expression, differentiation with
respect to t again yields equation (17), in which a and
vo already depend on t.

The problem thus reduces to a determination of o
and v,. At first glance it seems that the situation be-
comes much more complicated when the field becomes
stronger. In fact, the turbulence will no longer be
isotropic, and Alfven waves with entirely new inter-
action laws appear; the turbulent viscosity v, is sig-
nificantly altered. Only one thing can be stated at once:
the upper limit of the intensity B is determined from
the equipartition condition

Al 1
STV v~V

[rot HH] -} vpAv

Bt = 4mpr?/ B2 = {,

(43)
whereas g > 1att=0.

It can be assumed, however, that a situation is pos-
sible in which the equipartition (43) is not reached and
a stationary state in which pgt 2> 1 (weakly-linear
regime) is established. In this case the turbulence
itself changes little. In fact, in the linear problem,
only the gyrotropic part of the tensor (8) with €iifYF
is responsible for the generation of the field; we can
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therefore expect the magnetic field to ‘‘suppress’’
precisely the gyrotropy.

We shall show below that such a weakly-linear steady
state is indeed possible. We have dealt above with the
gyrotropy due to the action of the Coriolis force on the
turbulent element. Let us discuss the action of the elec-
tromagnetic force on this element. It can be assumed
that the given turbulent element corresponds to a cer-
tain current loop acted upon, of course, by a torque,
since it is located in an external magnetic field. Even
if the body does not rotate, i.e., there is no Coriolis
force, this torque can yield in principle (v curl v) # 0,
i.e., its own app. This gyrotropy will be called mag-
netic, to distinguish it from the Steenbeck gyrotropy
which we call rotational.

2. Determination of the magnetic gyrotropy. To de-
duce the equation for ay, = (v curl v) we must take the
scalar products of (42) by curl v and of the curl of (42)
by v, and add the resultant expressions. We then aver-
age over an ‘‘elementary’’ volume whose dimension is
much larger than the correlation length, but smaller
than the scale of B. On the left side we retain day, /at.
It is remarkable that in this case all the triple correla
tions with respect to velocity vanish:

rotv[vrotv] =0,
rot vV [(v3/2) + (p/p)] == div {vV [2%/2) 4- (p: )]},
vrot [vrot v] = div [v [vrot v]].
The divergence vanishes after averaging over the ele-
mentary volume. We now calculate the term with the
magnetic field:
M = (1/4np) (rot v [rot HH]) + (1/4mp) (v rot [rot HH]). (44)

H(r, t) can be expressed in terms of H(r, 0) and in terms
of v(r, t) by using the series (13). Expression (44) indeed
describes the action of the electromagnetic force on the
turbulent elements. Before writing down the results of
the calculation of (44), we present a heuristic derivation
of the result. On what should oy depend ? First, o) is
a pseudoscalar; in addition, (44) depends quadratically
on H. The entire gyrotropy should be expressed in
terms of the regular field B, since it is the only possi-
ble source of the magnetic gyrotropy. The only possible
pseudoscalar that is quadratic in B is of the form
B curl B. Thus, apg ~ B curl B. Let us explain the co-
efficients. Tt is necessary also to take into account
somehow the fact that the magnetic field causes aniso-
tropy of the distribution of the velocity probabilities:
there appears a preferred direction parallel to B. It is
natural to assume that the measure of the anisotropy is
determined by the ratio B?/4mp(v?); thus,
M ~ (B4np (v®) Brot B. (45)
A numerical calculation confirms the expression (45).
To calculate (44) we use the series of diagrams of Fig.
2. For small fluctuations, we confine ourselves to the
first term of the series; we obtaint > 7
x exp (—vpk?t — t,)) =~ 1:
M = M,B*Brot B+ (B%/4np) (44/3),
M, = (1/4mp) (1/15) S [2C (k. )= D (k, s)} dk ds,
(46)
Ay={ A, 9k dk ds; .
we have used here the following form of the spectral
tensor Tij (obtained in "**) assuming weak anisotropy
connected with the magnetic field, as is natural when
B >1)
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Tij=[A4(k, s)+C (k, 5) (kB)?) [8;;— (kikes/k%)]

) + Dk, ) [(kiBj+k;B;) kB—kBS:— k2B, B ;| +i4, (k, s)eq; :
Actually, at Rey, > 1 we have h > B, and it does not
suffice to take only the first term of the series into ac-
count. We shall therefore again use selective summa-
tion.™) A calculation shows that the result of such a
summation makes a small contribution to (46); this is
precisely the basis for the applicability of the &-like
correlation in this model of turbulence.

3. Certain properties of magnetic gyrotropy. An im-
portant role in generation is played by the quantity «:

N
1 o , ,
a g [v@reven =3 [ Ak e aas.

We obtain an expression for o by using (46) and certain
assumptions concerning the character of the turbu-
lence: "

ay - — (Brot B) @,

@ = Ztnln (k0)/SB4np, nx1, (47)
where k,, is the spectrum cutoff threshold as a result
of the finite viscosity, and [ is the external turbulence
scale.

We now proceed to determine certain properties of
ay, which are connected with generation of the mag-
netic field. Assume that o = 0, i.e., there is no rotation
and there is no rotational gyrotropy. Att =0, let
B-.curl B # 0. From (17) it follows, neglecting diffusion,
that

1 4
5 5 B*= —(Brot By ®.

We note that & > 0, hence

t
B () —B(0)= —2 S dt, (Brot B2 .
0

As t — «, the integral converges and

.BrotB—0.

‘It is thus clear that if B-curl B # 0 at t = 0, then the re-

sultant magnetic gyrotropy is such as to cause B-curl B
— 0, after which the gyrotropy itself vanishes in ac-
cordance with (47).

Another property of magnetic gyrotropy is that it acts
in opposition to the rotational gyrotropy. In fact, in the
presence of a, if B-curl B= 0 at t = 0, then

% V BrotBdr ::%ocm ( (rot B) dr;

the integration is carried out over the entire volume.
We see that B.curl B acquires the same sign as o,,;

" therefore, if @ > 0, then it follows from (47) that ap

<0, but @ = aM + ay, so that a stationary state sets in
at @ = 0. If oy <0, then ap > 0. In both cases | o |

= lay +aMm| < layl, i.e., the generation coefficient
decreases in the presence of magnetic gyrotropy. It is
precisely this last circumstance which makes possible
nonlinear stabilization of the field B at Sgt > 1, i.e.,
far from equipartition.

Assume that differential rotation and turbulence have
been excited in a conducting liquid sphere (the model of
a star), i.e., w depends on r: w = w(r). Such an example
has been considered in Sec. 5 of Chap. V. The field
growth increment is

dw \ 1/2 vy .
v (—agm) — 2

L, the dimension of the system, should be positive. We
assume that 3w/or ~ — w/L; in the stationary state we
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have y = 0, from which we obtain oSt = aﬁ + aﬁ,t and

Bst:
Bee= (2/5) In (kD) [N —- (/L) N7, N = layw.
It is easy to see from (48) that if 1/N > [/L, then
2 — 21n (kD)/5N.
Usually N < 1, since the frequency of rotation of the
star is lower than the frequency rotation of the turbu-
lent element,

Thus, under certain perfectly realistic conditions,
the stabilized field satisfies the condition 85 > 1, i.e.,
a weakly-linear state sets in.

We note in conclusion that although, as seen from the
review, the theory of the turbulent dynamo is only in the
initial development state, nontheless it helps introduce
some clarity in the question of the origin of cosmic
magnetic fields of tremendous scale.

The authors are grateful to F. Krause and A. A,
Ruzmaikin for discussions and to S. 1. SyrovatskiY for
interest in the work.
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