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L HE question of the width of spectral lines is a large
chapter in classical and modern optics and spectro-
scopy (see, e.g.,C l > 2 ]). Usually one deals with emission
or absorption lines, while the broadening of the lines of
scattered light is much less frequently considered. Yet
the study of the line width of scattering, both Rayleigh'-3^
and Raman!·4^, is of considerable interest, which has
increased particularly as the result of the extensive use
of lasers as light sources. For this reason, the possi-
bilities of using light scattering for the investigation of
solids have greatly increased^.

The foregoing would justify the publication of a spec-
ial review devoted to the line width of scattered light. It
would be desirable to have such a review published as
soon as possible, and for this purpose, incidentally, it
would be necessary to consider and analyze many prob-
lems in greater detail than in the original literature
known to us. The purpose of the present article, how-
ever, is much more modest, it consists merely of dis-
cussing the physical nature that distinguishes scattering
line widths from emission and absorption line widths,
using several simple examples. Such a problem, of
course, is predominantly methodological, but the inter-
est in it is justified in light of the long history of the
question. Thus, in the thirties, a number of articles
dealt with the line width of Rayleigh scattering of light
in gases in an utterly erroneous manner, but subse-
quently the situation was seemingly straightened out in
pr incip le^ . Recently, however, the confusion with
respect to the light-scattering line width has found its
reflection in the literature both in the case of Raman
scattering of light in crystals with formation of excitons
(polaritons) and, to a certain degree, also in classical
calculations of the line width of Raman scattering of
light for a molecule m o d e l ^ . By the same token, this
demonstrates the psychologically understandable long
lives of certain misunderstandings. It seems curious to
this author that grounds were produced for discussing
this question1^ thirty years after the publication ofB*.
In connection with the last remark we recall, to be sure,
how L. D. Landau reacted when some lecturer men-
tioned in his seminar the evolution of his own under-
standing of the discussed problem, why he occupied him-
self in this question, etc. In such cases, Landau always
reminded the lecturer: "Don't forget that your biogra-
phy interests only your wife." How true and correct
this is...on the one hand! Who is interested, in fact, in
the fact that in this case the author understood in 1940
certain errors and published the note^6-1, and then was
surprised in 1971 to encounter a related question? On
the other hand, however, is not the repeated insufficient
understanding of physics of some particular process a

symptomatic effect, and does not the mention of the
author's personal experience contribute to a clarifica-
tion of the character and the very content of the article
written by him? It is hardly possible to give here an
unequivocal answer, which will be provided by the
readers themselves, depending on their tastes and use.
We now proceed to the gist of the matter.

1. EMISSION LINE WIDTH

Let us stop to calculate the optical emission line
width using the classical and extensively employed ex-
ample of a damped oscillator (see, e.g. ™, Sec. 85).
The corresponding equation of motion is as follows:

O. (1)

Assume that the oscillator has an initial displacement
xo at the instant t = 0, i.e., we use the solution (φ is an
arbitrary phase)

- -L-t
x(t)=--xoe - cos(G>Bi-f(p), ω£ = °>«!-4- Ο»). (2)

Expanding the oscillation (2) in a Fourier integral

J 2π J ' V '

we obtain

ω ~ ~ 4 π 1—(γ/2) + ί(ωΒ —ω)"1" (γ/2) —!(ωκ + ω) / ' (4)

The intens i ty (power) of the dipole radiat ion, a s i s we l l
known, i s proport ional to ( e x ) 2 , where e i s the par t ic le
charge. There fore, obviously, the s p e c t r a l dens i ty of
the intensity Ι(ω) is proportional to ω 4 | χ ω | 2 . We shall
also assume that the phase ψ is arbitrary, and average
over the phase, bearing in mind that we are observing
the radiation of an aggregate of oscillators with arbi-
trary phases. Then

2 [(ω2

(5)
where A is a certain proportionality coefficient and the
averaging is denoted by a superior bar. If, as is usually
the case (exception in radio band),

(6)

( 7 )

then we have with sufficient accuracy
γ/0/2π

/(<">) = -

/ 0 = f I (a) da.

1 1 4
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Formula (7) is indeed customarily used and its meaning
is quite clear. On the other hand, in the case of the
more general formula (5) it is seen (see below) that x2,
is not expressed in simple fashion in terms of
x2 = J |x |2dw, and consequently the assumption that Xo
is constant for all the oscillators is perfectly arbitrary
and unreasonable (see below). Both for this reason, and
for the purpose of the subsequent exposition, let us con-
sider a more realistic problem, i.e., the same oscillator
but acted upon by a random force f(t):

<°5* = /(ί)= J 1 da. (8)

Hence

(9)

The role of the force f can be played, for example, by
collisions that maintain the square of the oscillator
amplitude at a certain unchanged average level. If we
assume that f(t) = Σ a m 6 (t - t m ) , then f = (ΐ/2π) χ

m

]Cx 2yamexp(-io>tm), and for random (uncorrelated)

collisions the mean value is | ί ω | 2 = (ΐ/4ττ2)Σ/ &]
t h e r m o r e , in this case* m

2
n r

Π Ι /ω

Fur-

( 1 0 )

By the same token, the average values of χ , and conse-
quently of the potential energy mci>oX2/2, and also of the

kinetic energy mx 2 /2, turn out to be constant at a given
| ί ω | * = const (in thermal equilibrium, these mean values
a r e equal to kT/2). Therefore the use of express ion (9),
r a t h e r than (4), is not only s impler and more convenient,
but also better reasoned. F r o m (9), taking the foregoing
into account, we obtain immediately

ί(α)=Αα>'Μ=^^./ζ['- (υ)

O f c o u r s e , e x p r e s s i o n ( 1 1 ) g o e s o v e r i n t o ( 7 ) u n d e r t h e

c o n d i t i o n ( 6 ) . I n t h e g e n e r a l c a s e , h o w e v e r , a s n o t e d ,

t h e s p e c t r a l d e n s i t y ( 1 1 ) h a s b e e n o b t a i n e d u n d e r m o r e

r e a s o n a b l e a n d n a t u r a l a s s u m p t i o n s t h a n e x p r e s s i o n ( 5 ) .

A s t o t h e b r o a d e n i n g o f t h e e m i s s i o n a n d a b s o r p t i o n

l i n e s u n d e r r e a l c o n d i t i o n s , a n d n o t f o r t h e s i m p l e s t

m o d e l u n d e r c o n s i d e r a t i o n , t h e r e a r e m a n y p o s s i b i l i t i e s

a n d v a r i a n t s i n t h i s r e s p e c t ( s e e ' - 2 - ' ) .

2 . L I N E W I D T H O F R A Y L E I G H A N D R A M A N

S C A T T E R I N G O F L I G H T I N G A S E S

L e t u s c o n s i d e r n o w t h e s a m e h a r m o n i c o s c i l l a t o r ,

b u t a c t i n g a s a s c a t t e r e r r a t h e r t h a n a s p o n t a n e o u s

e m i t t e r o f l i g h t . W e a s s u m e t h a t t h e i n c i d e n t l i g h t i s

m o n o c h r o m a t i c , i . e . , t h a t t h e f i e l d o f t h e i n c i d e n t w a v e

i s

E(t)
- i

Eae
iiM da = Eoe

ils'e>, α- ω,), ( 1 2 )

with the frequency ω 6 located far from resonance. What
will be the spectra l composition of the scat tered light if

*A more exact calculation of the mean values can be found in ['],
Sec. 121. Similar reasoning as applied to an electric circuit can be found

1 0

account i s taken of the damping of the scattering oscilla-
tor , o r under conditions when the spontaneous emiss ion
of the osci l lator experiences impact broadening (in the
la t ter case, under the s implest assumptions, we obtain
formula (7) with γ = 2/τ, where τ is the average time
between coll is ions; see^1'2^)? This question has been
answered in a number of a r t i c l e s (for a bibliography
s e e [ 6 ' 1 1 ] ) a s follows: the scatter ing line width will be
the same as in the case of emission; a s imi la r answer
was obtained by the author also in many private discus-
sions. Yet it i s easy to see that under our assumptions
the scattered light will be monochromatic, i .e., there i s
pract ical ly no line broadening. Indeed, the equation of
motion of an osci l lator in the field (12), which is as-
sumed directed along the χ axis, i s

(12a)

Hence

and far from resonance, i.e., at |a>e - ω
i

; s : ι (L '
(0* -U (i) | -j- IVO>

γ, and also
under the assumption that the collisions do not occur
too frequently, the absolutely predominant t e r m is the
one proportional to δ (ω — ω θ ) , since the random force
ί ω has by assumption a broad spectrum.

The foregoing i s clear, of course, also without any
spectra l resolution: when the light i s scattered, the os-
cil lator executes forced oscil lations having the same
frequency a s the driving force (the scat tered wave).
The collisions, on the other hand, so long as their dura-
tion Δ τ can be neglected, a l te r the amplitude and phase
of the osc i l la tor ' s natural oscil lations of frequency
wc = VCL>O - (y 2 /4), which is assumed to be significantly
different from the frequency ω θ of the incident wave.
During the time Δ τ , when another system already scat-
t e r s , the scatter ing changes, and this lead, in part icu-
lar , to a depolarization of the scat tered l ight 1 · 1 2 ] .
Broadening appears , of course, also when resonance is
approached (a separate analysis , although quite c lear
in principle, i s needed also for the scatter ing of a suc-
cession of pulses r a t h e r than a monochromatic wave.

F a r from resonance, and neglecting the duration of
the coll is ions in comparison with the free path t ime, the
scatter ing line broadening is connected only with the
motion of the s c a t t e r e r (such a conclusion was con-
firmed by a quantum calculation1"1 1^). The first to appear
here is the usual Doppler broadening'-1 '2 '6-'

(14)
Me'

where θ i s the scatter ing angle and Τ the tempera ture
of the scatter ing gas, which consis ts of par t ic les (aggre-
gates of oscil lators) of m a s s M.

There exists in addition a broadening genetically
connected with Doppler broadening, but with an intensity
proportional to the square of the p r e s s u r e . This effect
was considered in'-6-' for a rarefied gas with a free path
I > λο/2 sin (θ/2), and λ 0 = 2;rc/u>e. In this case, the
intensity in the line wing (in the region Ω 3> b) i s
Ι(Ω) = const · ρ 2/Ω 6, where ρ is the p r e s s u r e . The dis-
cussed broadening is due to the fact that collisions
change the projection of the velocity of the atom
(oscillator) along the observation direction. The Doppler
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shift of the frequency therefore also changes, i.e., the
derivative of the phase becomes discontinuous, or in
other words, the scattered wave consists of sections
with different frequencies, although with a continuous
phase. Naturally, the Fourier expansion of such a wave
has an additional "wing," the intensity of which increa-
ses with increasing pressure*.

The region of pressures where I ~ λο/2 sin(#/2) is
intermediate and is difficult to analyze. On the other
hand, if I <C λο/2 sin (θ/2) (compressed gas) then, just
as in the case of condensed media, a phenomenological
approach is possible; concretely, the Rayleigh scatter-
ing is described as scattering by acoustic and entropy
waves (see'-3-'). In this case, the question of the scatter-
ing line width has already been considered long
ago1"13"15'3-1. The scattering line width in a condensed
medium will be discussed in the next section of this ar-
ticle, and now we proceed to the line width of Raman
scattering of light in gases.

The customarily employed classical model used to
describe Raman scattering of light by a molecule is an
oscillator (generalized coordinate x, say proportional to
the distance between the two nuclei in a diatomic mole-
cule) which simulates the electronic polarizability of the
molecule ot(x):

p(t)=-a(*)£ = a(*)V"'. aW = ct(0)+(-$L) i, (15)
\ ax f ο

where ρ is the dipole moment of the molecule induced
by the incident field Ε (for details see^'* 1).

The change of the coordinate χ can be described, in
a certain approximation, by Eq. (8). Then, according to
(3), (8), and (15)

^ = ω — ω,,, (16)

where, to standardize the notation, the oscillator fre-
quency ω0 in (8) is now designated Ω ο · The first term
in Ρ ω is responsible for the Rayleigh scattering and is
not of interest to us now. Therefore the spectral den-
sity of the Raman scattering can be written in the form

-f-oo
I ir\\ Λ 4 I 19 ( Y " 0 ' ^ ) *• 0 Τ \ Τ ICW J n / 4 ι-ι\

ι (ί2) = Α(ύ£ j PQ \* =• — — g — — ^ — , / Q = I i \li) (til, ( 1 7 )
—oo

where we have put ω = ω θ , which is legitimate if
Ω <ti we; it is also assumed that | ί Ω | 2 = const. The
frequency region Ω < 0 corresponds to a red satellite,
and the region Ω > 0 to a violet satellite. If Ω ο > γ,
then we have for each of the satellites

/(«) = , Ω 0 > γ , ( 1 8 )

*If the gas consists of a toms of different sorts (with different

masses), then the broadening under discussion contains also a term

proportional to Ω " 4 . Additional broadening is produced also in the

presence of collision that transform the atoms (molecules) into states

with different polarizabilities. We note, finally, that in the case of de-

generate levels of the scattered molecule scattering connected with

transitions of the molecule from the given sublevel to other sublevels

of the level under consideration is superimposed on the Rayleigh (co-

herent) scattering. In fact, we are dealing here with Raman scattering

that is already accompanied by line broadening (see below).

The author is indebted for these remarks to 1.1. Sobel'man, whom

he thanks, taking the opportunity, for a review of the manuscript. The

author is also grateful to T. S. Velichkina and I. A. Yakovlev for re-

marks made during the course of reading the manuscript.

where Io is the total intensity of both satellites. In the
case of an emission or absorption line, the condition
too > ) • (see (6)) is always satisfied in optics, so that
the general formula (11) has no real value in the optical
band, and expression (7) is always more convenient in
broadening of suitable type. On the other hand, in the
case of scattering, the region of applicability of formula
(17) is much broader, since the frequency Ω ο can be low,
as is certainly the case for certain oscillations, for ex-
ample on approaching a second-order phase transition
point (see'-16'17^ and the next section of the article).

We have derived above for the emission line width
not only expression (11) but also expression (5). If, as
is sometimes done also for Raman-scattering lines, we
proceed in analogous fashion, i.e., we do not introduce
the Raman force f(t) but write in (15)

* = ioe cos№Kf+q>), Ω | = Ω § - Χ - , \ίυ>

t h e n t h e F o u r i e r e x p a n s i o n f o r

l e a d s t o a f o r m u l a of t h e t y p e (5)

( 2 0 )

T h i s i s j u s t t h e t y p e of a n e x p r e s s i o n g i v e n in '- 7 - 1 , w h e r e

i t i s c o n s i d e r e d t o b e m o r e a c c u r a t e t h a n ( 1 7 ) . H o w e v e r ,

a s w e h a v e s e e n i n S e c . 1, t h e s i t u a t i o n i s i n f a c t

r e v e r s e d , a n d w i t h i n t h e f r a m e w o r k of t h e a s s u m e d

m o d e l i t i s n e c e s s a r y t o u s e ( 1 7 ) a n d n o t ( 2 0 ) . W e n o t e

t h a t i i i 7 - 1 t h e y a l s o o b t a i n e d a n i n c o r r e c t e x p r e s s i o n f o r

t h e e m i s s i o n - l i n e i n t e n s i t y ( w e h a v e i n m i n d f o r m u l a (8)

o i 7 - ' , w h i c h d i f f e r s f r o m t h e f o r e g o i n g e x p r e s s i o n (5) a s

a r e s u l t of a n e r r o r m a d e ixf7^ i n t h e c o u r s e of t h e di f-

f e r e n t i a t i o n of e x p r e s s i o n (2) w i t h r e s p e c t t o t i m e w i t h -

o u t a l l o w a n c e f o r t h e d i s c o n t i n u i t y of t h i s f u n c t i o n a t

t = 0 ; w e h a v e a v o i d e d t h i s e r r o r b y p u t t i n g

S i n c e t h e r e s u l t ( 1 7 ) f o r t h e R a m a n s c a t t e r i n g l i n e

w i d t h , a s a l r e a d y m e n t i o n e d , i s a n a l o g o u s t o f o r m u l a

( 1 1 ) f o r t h e e m i s s i o n l i n e w i d t h , a n i m p r e s s i o n m a y b e

g a i n e d t h a t t h e e s s e n t i a l d i f f e r e n c e b e t w e e n t h e e m i s -

s i o n a n d s c a t t e r i n g l i n e w i d t h s i s l i m i t e d t o t h e c a s e of

R a y l e i g h s c a t t e r i n g . W e s h a l l s h o w , h o w e v e r , t h a t t h i s

c o n c l u s i o n w o u l d b e t o o h a s t y , a n d i t a c t u a l l y p e r t a i n s

o n l y t o t h e s i m p l e s t c a s e s , a n d i n p a r t i c u l a r t o t h e d i s -

c u s s e d o s c i l l a t o r m o d e l s , w h i c h d e s c r i b e t o s o m e d e -

g r e e t h e s c a t t e r i n g of l i g h t i n g a s e s . If w e d e a l w i t h a n y

s c a t t e r i n g i n a c o n d e n s e d m e d i u m , w e e n c o u n t e r i n g e n -

e r a l a g r e a t d i f f e r e n c e b e t w e e n t h e l i n e w i d t h s of t h e

a b s o r p t i o n ( e m i s s i o n ) a n d s c a t t e r i n g .

3 . S C A T T E R I N G L I N E W I D T H I N L I Q U I D S A N D S O L I D S

( R A Y L E I G H S C A T T E R I N G , R A M A N S C A T T E R I N G

W I T H F O R M A T I O N O F P O L A R I T O N S )

L i g h t s c a t t e r i n g i n s u f f i c i e n t l y r a r e f i e d g a s e s i s

c h a r a c t e r i z e d b y i n d e p e n d e n c e ( i n c o h e r e n c e ) of s c a t t e r -

i n g b y d i f f e r e n t v o l u m e s , o r , a s c a n b e a s s u m e d , b y d i f-

f e r e n t m o l e c u l e s ( s c a t t e r i n g o s c i l l a t o r s ) . F o r d e n s e

g a s e s a n d c o n d e n s e d m e d i a , p a r t i c u l a r l y i n t h e a n a l y s i s

of t h e s p e c t r a l c o m p o s i t i o n of s c a t t e r e d l i g h t , t h e s c a t -

t e r i n g a t d i f f e r e n t p o i n t s c a n n o t b e r e g a r d e d a s i n d e p e n -

d e n t . I n t h e s e c a s e s , a n a d e q u a t e p i c t u r e , t h e u s e of
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w h i c h d a t e s b a c k t o E i n s t e i n ' s w e l l k n o w n 1 9 1 0 p a p e r

( s e e 1 - 1 8 - 1 ) , i s t h e c o n c e p t o f s c a t t e r i n g b y s p a t i a l F o u r i e r

c o m p o n e n t s o f t h e d i e l e c t r i c - t e n s o r f l u c t u a t i o n s , o r t h e

e s s e n t i a l l y r e l a t e d a n a l y s i s o f t h e i n t e r a c t i o n o f d i f f e r -

e n t p l a n e w a v e s p r o p a g a t i n g i n a c r y s t a l ( s e e 1 - 3 " 5 ' 1 5 ' 1 7 ^ ) * .

We denote the wave vectors of the incident and scat-
tered light by k e and k s , and the corresponding frequen-
cies by w e and ω 8 . Assuming that the medium is t r a n s -
parent at the frequencies u>e and w s , we take all the
quantities lCg, k s , &e, and w g to be r e a l . Then the scat-
tered wave, say the F o u r i e r component of the fluctua-
tion variation of the dielectr ic constant Δε (we are con-
sidering Rayleigh scatter ing without allowance for
anisotropy; for details see1- >14>153), i s character ized by
a frequency Ω and a wave vector q given by

Ω^ω,, — ω8, q = k c - k s . ( 2 1 )

If the change of the frequency Ω i s small , then k s « k e

= 2ττη/λ0 = a>en(coe)/c and

2.1
Λ

2ω.Β(ω.) . θ
sin y ,

(22)

where η(ωβ) i s the refractive index at the frequency
coe « w s and θ i s the scatter ing angle.

Under the discussed conditions, the intensity of the
scat ter ing in the volume V, p e r unit solid angle, i s equal
to

Δβ(Γ)«""Λ·,
( 2 3 )

where Ιο i s the intensity (flux) of the incident light, ψ i s
the angle between the e lec t r ic vector of the incident
wave and the observation direction, and the averaging
(superior bar) i s of the type customari ly employed in
stat i s t ical physics.

The spectra l composition of the scat tered light i s de-
termined by the kinetics of the fluctuations Aeq, and
specifically

( 2 4 )

In a r a t h e r good approximation, Δε = (

where ρ i s the density; the density fluctuations Δρ a r e
resolved in turn into p r e s s u r e fluctuations Δρ and en-
tropy fluctuations AS:

T h e a d i a b a t i c ( i s e n t r o p i c ) d e n s i t y f l u c t u a t i o n s , w h i c h

a r e proportional to Δρ, vary with time in accordance
with the equations of hydrodynamics, while the kinetics
of the isobaric fluctuations (which a r e proportional to
Δβ) a r e determined by the heat-conduction equation. We
shall not stop in detail to derive all the corresponding
formulas ( s e e ^ , and also1-1 3"1 5^), but we shall neverthe-
l e s s make a few r e m a r k s in this connection.

If we assume both the viscosity coefficients η and £,
and a l so the heat-conduction coefficient κ, to be equal
to zero, then the sound propagates in the liquid without
absorption, and the entropy fluctuations do not die out.
In such cases , one would observe in the spectrum of the

*One can single out especially the interesting question of the narrow-
ing of Raman lines in gases with increasing pressure, but then it is still
possible to consider scattering by individual molecules [3 8].

s c a t t e r e d l i g h t a t r i p l e t o f u n b r o a d e n e d l i n e s — a t t h e

center of the line with unshifted frequency ω = u>e (in
which case Ω = ω — u>e = 0), and the Mandel 'shtam-
Brillouin doublet Ω = ± Ω 0 , with Ω ο = uq = (2unw e/c)
χ sin (θ/2), where u is the speed of sound of frequency
Ω ο . In quantum language, the appearance of the satel-
l i tes Ω = ± Ω 0 i s described as scatter ing of light accom-
panied by emission of a phonon with energy Κ Ω ο and
momentum Rq = (f in o /u)q/q (red satellite) or absorption
of a s imi lar phonon (violet satel l i te).

If we do not neglect viscosity and thermal conductiv-
ity, then the sound attenuates, and the entropy fluctua-
tions die out, a s a result of which all the tr iplet ions
broaden. The kinetics of the i sobar ic fluctuations i s de-
termined by the heat- conduction equation

4 f - x ^ ( i , r ) , * - - £ + £ + - £ . . χ - £ . (25)

where fT are random " f o r c e s " due to thermal motion
in the liquid; the fluctuations of Τ at a given p r e s s u r e
are proportional to the fluctuations of the entropy S,
and lead in final analysis to fluctuations of the density
ρ and of the permitt ivity e (see above).

We therefore obtain from (24) and (25)

/• ir>\ Δ 77? ι> (γ/2π) /ο
Amag («) = Λ Ι /,, Q I1 = Ω , ^ , , , , , ,

(26)

/„= Iimae{Q)dQ,

where, a s below, we assume that the frequency depen-
dence of |fq is negligible. In the case of the

Mandel 'shtam-Bril louin components, corresponding to
scatter ing by adiabatic fluctuations, we shall d i s regard
certain fine points connected with the dispers ion of
sound (see'-1^'), and will use therefore the following
equation for the p r e s s u r e (see'-3-1):

Hence

c
- sin 0

2 '

(ν/π) OSh
( S i — Q J J - T - V ^

V ι ί ' -*o / M B = j
(28)

T M Bwhere Io i s the total intensity of one satell i te; for
narrow l ines (at γ <C Ω ο ) we have for each of the satel-
l i tes

(V/2.1) /,'MB
7 M B = Γ /MB ( Q ) ( / Q i

(29)

T h e o b t a i n e d f o r m u l a s c o i n c i d e , a p a r t f r o m t h e n o t a t i o n ,

w i t h w e l l k n o w n e x p r e s s i o n s ( s e e [ 3 ' 1 3 ~ 1 5 : ] ; i n t h e b o o l i 1 5 ^ ,

for example, γ is used to denote the quantity γ/2 in (26)
or (29)). We presented the derivation of these formulas,
nevertheless , in o r d e r to emphasize a fact usually left
obscure, namely the use of forced r a t h e r than free solu-
tions of the equations of motion (we have in mind h e r e
Eqs. (25) and (27)). Yet, if we were interested in the
propagation of sound in a liquid, then we would use in
this approximation the equation

-^ u-Ap — ΓΔ —— — 0, \Jv)

t h e s o l u t i o n o f w h i c h f o r a m o n o c h r o m a t i c p l a n e w a v e
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with real q is given by

(31)

If we assume on the other hand, in accordance with
another possible formulation of the problem, the fre-
quency Ω _ to be real, then the wave vector q will be
complex, since Eq. (30) leads only to a general connec-
tion (dispersion equation)

Q5-iiV-irQ,?o- = 0. (32)

In the case of scattering of light, both quantities fi and
q in (21) are real, since k , k , ω θ , and cos are real.
Such "sound" waves can propagate in a medium only
because we are dealing with forced solutions of (27).
The dispersion equation, obviously, does not apply to
forced solutions of (27). The dispersion equation, obvi-
ously, does not apply to forced solutions. Thus, when
account is taken of sound absorption, it is in general
wrong to speak of light scattering with absorption or
emission of a phonon—what is absorbed or emitted is
not a sound wave capable of freely propagating in a
given medium, but a certain forced acoustic perturba-
tion, with frequency Ω and wave vector q as defined in
(21). The foregoing does not prevent us, generally
speaking, from using measurements of the scattering
line width to determine the absorption coefficient of
hypersound. Indeed, by determining from (28) or (29)
the quantity γ, we also obtain by the same token the co-
efficient Γ or y for the propagation of sound (see (31)).
But the situation is so simple only by virtue of neglect-
ing the dispersion of sound, i.e., the frequency depen-
dence of the viscosity and heat-conduction coefficients.
In strong absorption and in the general case this cannot
be done at all, and the determination of the velocity and
of the damping of the hypersound (i.e., the investigation
of the dispersion equation F(U_, q) = 0 for the propaga-
tion of sound) by the light-scattering method may turn
out to be difficult. A similar situation obtains also in
other cases, for example in the scattering of light in
crystals with formation of excitons ( s e e ^ and below).

A very interesting and unique case of light scattering
takes place near second-order phase-transition points
or near the point of a first-order phase transition close
to a second-order transition. This question has been
discussed already quite long agoC 5 ' 1 6 ' 1 7 ' 2 0" 2 3 : i, but unfor-
tunately still remains insufficiently clear. On one hand,
there is no doubt of the existence of particle fluctuations
and of unique opalescence near second-order phase
transition points. This pertains, in particular, to the
a sr β transition in quartz, at which anomalous scatter-
ing of x-rays'-24^ and neutrons'-25-1 is also observed. On
the other hand, no account was taken in the

C 1 6 ' 1 7 ' 2 0 ' 2 ^ of the possible appearance of twins*,

*The calculations in [·«.".20,22·] a r e based on the Landau theory
of phase transitions, which is inaccurate near the transition point itself.
However, as already emphasized in [17·20], a theory of the Landau type
has apparently a much larger region of applicability when it comes to
the scattering of light than in the case of calculations of the specific
heat or scattering of x-rays and neutrons, accompanied by a large change
in the wave vector (in the case of light scattering, the wave vector of the
light changes by an amount q = (2ncje/c) sin (β 12) ^ 4π/λ0 ^ 3 X 10"5

cm"1).

a n d i n t h e e x p e r i m e n t s w i t h q u a r t r f 2 1 ' 2 3 ^ t h e r e l a t i v e

r o l e of t h e s c a t t e r i n g by f l u c t u a t i o n s of t h e o r d e r i n g

p a r a m e t e r and by m i c r o t w i n s a l s o r e m a i n s u n c l e a r .

T h e p r o b l e m of s c a t t e r i n g of l i ght n e a r p o i n t s of s e c o n d -

o r d e r p h a s e t r a n s i t i o n s ( a n d r e l a t e d f i r s t - o r d e r t r a n s i -

t i o n s ) i s u n d o u b t e d l y w o r t h y of f u r t h e r e x p e r i m e n t a l

a n d t h e o r e t i c a l s t u d y . Why i t d o e s not a t t r a c t t h e n e c e s -

s a r y a t t e n t i o n i s s o m e t h i n g we c a n n o t u n d e r s t a n d and i s

m o r e l i k e l y due t o s o m e r a n d o m c a u s e s .

In the l a s t few y e a r s t h e r e h a s b e e n i n c r e a s i n g r e -

s e a r c h on R a m a n s c a t t e r i n g of l i ght in s o l i d s a c c o m -

p a n i e d by p r o d u c t i o n of d i f f e r e n t e x c i t a t i o n s s u c h a s

e x c i t o n s , p o l a r i t o n s , m a g n o n s , e t c . ( s e e C 4 > 5 ' 8 ' 2 f H 3 2 : l ) . T h i s

g r o u p of q u e s t i o n s d e s e r v e s a s p e c i a l r e v i e w * . We s h a l l

s t o p t o d i s c u s s h e r e only t h e l i n e width f o r s c a t t e r i n g

w i t h f o r m a t i o n of p o l a r i t o n s ( r e a l e x c i t o n s ) , s i n c e t h e

c o r r e s p o n d i n g analys is^ 8 - ' i s q u i t e c l o s e l y r e l a t e d t o t h e

p r e c e d i n g p a r t of t h e p r e s e n t a r t i c l e .

T h e t e r m " p o l a r i t o n " o r , m o r e r a r e l y , " r e a l e x c i -

t o n " i s c u s t o m a r i l y u s e d t o d e s c r i b e e x c i t o n s p r o p a g a t -

ing in c r y s t a l s and c o n s i d e r e d with a l l o w a n c e f o r d e l a y ;

t h i s m e a n s e s s e n t i a l l y t h a t we a r e d e a l i n g wi th

" n o r m a l " e l e c t r o m a g n e t i c w a v e s o r p h o t o n s in a

m e d i u m (for d e t a i l s s e e t h e l i t e r a t u r e i n d i c a t e d a b o v e ,

a n d a l s o t 3 3 " 3 5 1 1 ) . S c a t t e r i n g of l i ght wi th f o r m a t i o n of

p o l a r i t o n s (and, c o n c r e t e l y , one p o l a r i t o n ) , n e g l e c t i n g

d a m p i n g of t h e p o l a r i t o n s , c o n s t i t u t e s s c a t t e r i n g i n

w h i c h t h e r e i s e m i t t e d ( o r a b s o r b e d ) i n t h e m e d i u m a

"normal" electromagnetic wave—a polariton with fre-
quency Ω and wave vector q satisfying the conditions
(21). In other words, the process under discussion is
perfectly analogous to scattering with formation of
Mandelstam-Brillouin satellites in liquids (solids), ex-
cept that the phonons are replaced by polaritons (real
excitons)t.

We confine ourselves for simplicity to an optically
isotropic mediumt and neglect spatial dispersion. Then
the optical properties of the medium are characterized
by a dielectric constant e(w) = e'(w) = ie"(w). Just as in
the case of Rayleigh scattering above, we shall assume
that the medium is transparent to the incident and scat-
tered waves with frequencies ω θ and ω 8 . This means
that ε(ω6) and ε(ω8) are real quantities, i.e., we can put
e"(we) = ε"(ω8) = 0. As to a scattering wave with fre-

*This question was the subject of an international conference in
1968, the proceedings of which were published [ s]. In July 1971, the
second international conference devoted to light scattering in solids was
held in Paris, and judging from the program it reflected the exceedingly
vigorous and extensive development of the corresponding research. The
proceedings of the conference will be published and a reference to them
is given (see [32]), although the author could naturally not be acquainted
with them.

fThe introduction of the term "real exciton" is due to the fact that
other excitons are also considered, for example Coulomb excitons and
mechanical excitons (see [iyis]). We emphasize also that the terminol-
ogy in this field has not yet been standardized, something that must be
borne in mind when becoming acquainted with the literature.

tThe "three-photon" process discussed here (we are dealing here
with interaction of three waves or three photons with frequencies o>e,
ω 5 , and Ω in a medium), is possible only in a medium without a sym-
metry center, but such media include also non-gyrotropic cubic crystals
of the class T j = 43m (ZnS, ZnSe, etc.), which are optically isotropic
if one disregards effects of spatial dispersion of higher order (this means
that ejj(Gj, k) = e(«)6y).
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quency Ω = ω 6 - ω δ , i t s absorption, generally speaking,
cannot be neglected.

The dispers ion relation for a wave of frequency Ω
propagating freely in a medium i s

- = (η — ι κ ) 2 = ε ( Ω ) = ε ) — ιε" (Ω). ( 3 3 )

This, of course, is the usual express ion relating Ω with
q in the case of propagation of t r a n s v e r s e e lectromag-
netic waves in an isotropic medium. By virtue of (33),
the " n o r m a l " (free) waves propagating in the medium
in any direction ζ a re

)

( 3 4 )

A s a r e s u l t o f t h e p r e s e n c e o f a b s o r p t i o n ( i . e . , u n d e r

the condition ε"(Ω) * 0), the normal waves (polaritons)
are absorbed, and, for example, at a rea l frequency Ω ,
the wave vector q in the normal waves i s complex. But
in scatter ing of light with formation of polaritons, the
l a t t e r should, by virtue of (21), have real Ω and q. The
seeming contradiction is eliminated if it is recal led that
the scattering is an induced p r o c e s s * and the dispers ion
equation (33) has no relat ion to the " p o l a r i t o n s " pro-
duced in s c a t t e r i n g t . In other words, only if absorption
is neglected can we speak in the l i te ra l sense of Raman
scatter ing with production of polari tons. If absorption
is taken into account, what i s produced is not a free
polariton but a certain polariton-like wave. The la t ter
does not prevent us, of course, from using Raman scat-
tering of light for the study of polaritons. The situation
in this respect i s analogous to that already discussed
in connection with Rayleigh scatter ing in liquids. Con-
cretely, for scatter ing with formation of " p o l a r i t o n s "
we obtain a formula for the line widthC 8 ' 2 8 : l Ι(Ω, q),
which contains the same p a r a m e t e r s that determine
also the propagation of " n o r m a l " e lectromagnetic
waves—polaritons. For certain further details and the
formula for the scatter ing line width itself we refer the
r e a d e r to'·8-1, the contents of which need hardly be dis-
cussed h e r e , since it is easily available. We note only
the fact that in'-8-1 we did not introduce the random
" f o r c e s " f(t, r ) , the consideration of which is part icu-
lar ly convenient in the class ical approach to the scat-
tering problem. Instead, the equation for the polariton
field iff-8^ contains in explicit form a " f o r c e " that takes
into account the action of the e lect r ic fields of the inci-
dent and scat tered waves on the medium. Such an ap-
proach, which i s equivalent to a consideration of the
energy of interaction of the incident and scat tered waves

*The fact that a certain difficulty was seen here is clear, for example
from the articles [26] and [2 8]. Thus, in [26] an attempt was made to
connect Ω and q at the maximum of the Raman scattering line by the
relation c V / Ω 2 = n 2 ; in [ 2 8 ] , the relation c V / Ω 2 = ε'(Ω) is discussed.
This is done in both cases in order to obtain a real quantity in the right-
hand side of the dispersion equation. Such an approach does not lead
to agreement with observations and, more importantly, it is essentially
incorrect, since Ω and q in the "polariton" produced upon scattering
are not connected at all by a dispersion equation.

tWe have in mind here any scattering, including spontaneous scat-
tering, and not only the so-called stimulated scattering produced when
waves of high intensity are scattered [ 3 · 4 · 3 6 · 3 7 ] .

with an a c o u s t i c or e x c i t o n w a v e s produced (absorbed)
a s a r e s u l t of scat ter ing, i s natural in those c a s e s when
it i s n e c e s s a r y or advantageous to c a r r y out the calcu-
lat ion of the intensity within the framework of quantum
theory.

The e x a m p l e s p r e s e n t e d in th i s s e c t i o n have appar-
ently d e m o n s t r a t e d the unique nature of the quest ion of
the l ine width of l ight scat ter ing, a s c o m p a r e d with the
l ine width of l ight absorpt ion o r sound absorpt ion, which
i s d e t e r m i n e d by the f ree propagat ion equation of the
correspond ing w a v e s . Thus, for e x a m p l e , the polar i ton
absorpt ion l ine i s produced when the c r y s t a l a b s o r b s an
incident free wave with frequency Ω (of course, to ob-
tain the line it i s necessary to change the frequency Ω ) ,
i .e. , it reduces to a determination of the absorption co-
efficient κ(Ω) which enters in the dispers ion equation
(33).

The problem of the line width of light scattering
(especially one bear s in mind also stimulated Raman
and Rayleigh scattering 1- 3 6 ' 3 7^, let alone the scattering
of electromagnetic waves in a p lasma and by relativis-
tic part icles) is quite important and has many aspects .
It has remained in the past somewhat in the shadow in
connection with purely experimental difficulties, namely
the lack of suitable sources of monochromatic light,
which has part icular ly hindered a broad development of
r e s e a r c h on the scatter ing line width. Now, using l a s e r s ,
this obstacle h a s been eliminated, and this has already
led to the above mentioned impress ive development of
various r e s e a r c h e s on light scatter ing in all possible
media. In par t icular , the spectra l composition (width)
of scatter ing l ines a r e being investigated more and more
frequently, and one can assume that this tendency will
remain in force and become stronger. The author hopes
in this connection that the present art ic le will be useful,
although it did not touch upon many concrete problems
in the theory of scatter ing line width in different media.
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