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A review is presented of theoretical and experimental results of an investigation of natural fluctua-
tions in gas and solid-state lasers. All the known theoretical results are obtained by a single method
based on the equations of the quasiclassical laser theory. In the calculation of the fluctuations, the
equations for the amplitudes and phases of the field are regarded as Langevin equations with suitably
introduced fluctuation sources. The sources of the thermal fluctuations of the resonator are determined
by the Kallen-Welton formula. The sources of the non-equilibrium fluctuations of the polarization of
the working medium are calculated on the basis of the equations for the density-matrix elements. The
fluctuations of the amplitudes and phases in linear and ring lasers are considered under arbitrary
pump-to-threshold ratios. The natural line width of the laser radiation is calculated. The coupling of
opposing waves in a ring laser, due to scattering by the mirrors, is taken into account. The maximum
sensitivity of a laser gyroscope is estimated. The results of the theory are compared with the experi-
mental data. A brief description of the status of the problem of calculating the natural fluctuations in
lasers and an estimate of the possibilities of the quasiclassical method of calculating fluctuations are
given in the conclusion.
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1. INTRODUCTION terial unless they are specialists in this field. This has
necessitated a review of the results obtained by one of

T H E investigation of fluctuations in lasers is neces- t h e simplest possible methods and a comparison of these
sary in order to estimate the stability of their radiation, results with calculations performed by other more com-
and to determine the maximum capabilities of laser de- plicated methods. By the same token it is possible to
vices, for example the maximum sensitivity of an opti- understand to some degree to what extent it is necessary
cal gyroscope. It is customary to distinguish between t o u s e more accurate but much more cumbersome calcu-
technical and natural fluctuations in lasers. Technical lation methods.
fluctuations are due to instability of the resonator and T h e simplest approach, from our point of view, is to
pump parameters. Natural fluctuations are due to the s t a r t w i t h equations that serve as the basis for the
atomic structure of the working medium and of the quasiclassical laser theory. In the calculation of flue-
resonator and to the quantum character of the radiation. tuations, the deviation from Lamb's quasiclassical
Technical fluctuations can be greatly decreased by im- theory lies in the fact that the initial equations are
proving the apparatus, whereas natural fluctuations are treated as Langevin equations with suitably introduced
independent of the apparatus. Technical fluctuations are fluctuation sources. Before we proceed to a consistent
much slower (their spectral width is of the order of exposition of the basic material, let us indicate a num-
103-104 Hz) than the natural ones. This makes it possi- ber of experimental and theoretical investigations de-
ble to separate weak natural fluctuations against the voted to natural fluctuations of the radiation of gas and
background of the stronger technical fluctuations. solid-state lasers.

Considerable experimental and theoretical material The first attempts to measure the natural line width
on natural fluctuations in lasers has been accumulated of an He-Ne laser were made by Javan, Ballik, and
by now. The lack of a unified approach and the complex- BondCl] and Jaseja, Javan, and Townes[2].
ity of the theoretical calculations prevent the experi- A theoretical estimate of the line width was carried
menters and theoreticians from using the available ma- out in accordance with the formula of Shawlow and
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TownesC l 6 ]

Δω-δωο(Δωρ)
2/2/>·). (1.1)

At Ρ = 1 MW and at resonator losses on the order of 1%,
the line width is Δω/27Γ « 10~3 Hz. It was established
in1-23 that the line width at these values does not exceed
20 Hz. According to the measurements of
Leikin et a l . M , the line width of the He-Ne laser is of
the order of 3.5 Hz. This means that the authors of the
cited papers measured not the natural line width but the
technical one.

Zaltsev and Stepanov'-4-1 measured the natural line
width far from the excitation threshold, at different
values of the power, with sufficient accuracy. The line
width near the excitation threshold was measured by
Siegman and Arrathgon t 5 ]. The experimental results
of*-4'5-1 give a rather complete idea of the dependence of
the natural line width of the laser radiation on the
power. In'-4'5-1, the line width was determined by meas-
uring the spectrum of the difference frequency of two
lasers, one of which was taken to be the standard.
Egorov1·7-1 proposed a different method of measuring the
line width, namely the method of intermode beats. The
results of^4'5] will be considered in greater detail later
in the article. The line width of solid-state lasers has
apparently not yet been measured.

The measurement of the natural fluctuations of the
radiation intensity is the subject of1-8"15-1. Freed and
Haus*-8-1 obtained the spectral densities of the intensity
fluctuations at different values of the average power.
For the region above the lasing threshold, a more de-
tailed investigation of the intensity fluctuations was car-
ried out by Andronova and Zaltsev^*~"]. ZaStsev[9:i in-
vestigated also the intensity fluctuations of the opposing
waves in a ring laser. He measured, in particular, the
spectral density of the correlation coefficient of the
opposing-wave intensities.

The results of a number of measurements of the am-
plitude fluctuations in gas lasers are given in the review
articles of Smith and Armstrong^ 3 . Arecchi et al. [ 6 ' 1 3 : l

investigated the statistics of the photons near the gener-
ation thresholds in the stationary regime, and deter-
mined the width of the spectrum of the amplitude fluc-
tuations near the threshold. Analogous investigations
were carried out i n [ 1 4 ) l 5 ] for the transient regime.

Let us indicate the main theoretical calculations of
the natural fluctuations in lasers. In the first papers by
Shawlow and Townes r i e ] and by Lamb'-17-' on the theory
of the natural line width of laser radiation, only thermal
fluctuations of the resonator were taken into account.
The results ofci6>17:l differed by a factor of 2. Lamb's
formula agreed with the results of subsequent calcula-
tions.

Simultaneous allowance for both the thermal and the
polarization noise in the calculation of the line width was
apparently made first by Haken r i 8 ] , Haken et a l . C l 9 ] , and
LaV2 0 1. The result of the calculation can be represen-
ted in the form

Δω—- (1.2)

The first two terms, which contain η + (1/2), take into
account the contribution due to the equilibrium thermal
fluctuations in the free resonator. The last term takes
into account the contribution of the non-equilibrium
fluctuations of the polarization of the working medium
with allowance for the zero-point oscillations.

Formula (1.2) can be rewritten in the form

2P

*A list of symbols is given at the end of the article.

This shows that the summary contribution of the
zero-point oscillations to the line width is equal to
zero. Indeed, the quantity η is the average number of
thermal-radiation photons, and ρΆ/{ρΆ- p^) is that part
of the polarization fluctuations which is due to the spon-
taneous emission.

Formula (1.2) in an arbitrary field is valid only for
the case of immobile atoms in the regime of one travel-
ing wave. For the case of moving atoms, it is valid only
in a weak field, when the field can be neglected in the
calculation of the polarization noise. In a strong field,
the result of the calculation of the emission line width
depends on the form of the field in the resonator (travel-
ing wave, standing wave, opposing waves) and on the
character of the thermal motion of the atoms; formula
(1.2) is therefore no longer sufficient.

All papers on the theory of natural fluctuations in
lasers can be broken up into two groups that differ from
each other in the approach used to the solution of the
problem. The first group includes papers in which the
initial equations constitute a system of operator equa-
tions for the density matrix elements and the field.
Fluctuation sources, whose intensity is calculated in
one manner or another, are introduced into these equa-
tions in a suitable manner. The result is either a sys-
tem of Langevin equations or the corresponding Fokker-
Planck equation. Since the average number of photons
in the resonator turns out to be quite appreciable even
at the generation threshold (according to Arecchi1-6-1, it
is of the order of 4000), it is possible to use for the
field the classical Maxwell equations with random sour-
ces.

Such an approach, with one modification or another,
was used by Lamb Q 7 ] , Haken [ 1 8 ], Haken et al.C19],
Lax [ 2 0 ] , Sauerman [ 2 i : l, Haus [ 2 2 ] , Fleck [ 2 3 ], Bernshtein,
Andronova, and Zaltsev1-24], Risken [ 2 5 ], the present au-
thorsC 2 6" 3 0 ], and others.

A different approach is used in the second group of
papers, and is based on the approximate solution of the
equations of the first and second distribution functions
of the atomic and field variables. This group includes
the papers of Glauber1-31-1, KorenmanC32: l, Lamb and
Scull/3 3 1 1, FleckC 3 4 ], WillisC35], BrunnerL3^ , Kazantsev
and SurdutovichC37], Weidlich11383, and a number of
others.

In many of the papers listed here, the calculations
are valid only for the case of weak fields. In most pa-
pers, no account was taken of the motion of the active
atoms, and the difference between the fluctuations in the
traveling- and standing-wave modes is not brought out.
Allowance for these phenomena is quite important and
leads to a number of new interesting effects.

We note also a cycle of investigations by
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who calculated the field amplitude and phase fluctuations
in a region close to the excitation threshold. Risken set
up a Fokker-Planck equation, solved it, and obtained the
spectra l c h a r a c t e r i s t i c s of the fluctuations near the ex-
citation threshold. Such a problem i s mathematical ly
quite cumbersome, since it becomes necessary to find
a nonstationary solution of the Fokker-Planck equation.
I n C 2 5 ] , and also i n [ 3 e ] , it was shown theoretical ly that the
spectrum of the amplitude fluctuations has a near-
Lorentz shape even near the generation threshold. This
result is quite useful, for if we assume a certain spec-
trum shape beforehand, then we can calculate i t s p a r a m -
e t e r s by s tar t ing from the stat ionary solution of the
Fokker-Planck equation, which i s much e a s i e r to obtain.

A number of re su l t s for a ring l a s e r were obtained
by Smirnov and Zhelnov [ 4 0 ] , and by B e l e n o / 4 ^ , but only
for the weak-field case. The fluctuations were calcula-
ted in1-40-1 by a quantum approach s i m i l a r to that used by
Kazantsev and Surdutovich1-37-1. I n [ 4 1 ] , the fluctuation
s o u r c e s were introduced into the wave equation for the
field in the form of specified external forces. The in-
tensity of these s o u r c e s was determined in the same
manner a s in'-24-'.

2. SOURCES OF FLUCTUATIONS IN THE EQUATIONS
FOR THE AMPLITUDES AND PHASES IN LINEAR
AND RING LASERS

The fluctuations can be calculated on the bas i s of the
system of equations for the field and the density matr ix
elements of the working levels p a ( v ) , p b (v), p a D ( v ) , and

a-(?a), (2.1)

(-gf + v-fr) Pb= ~ Ύ (Γ<Ί>Ρί·° — Ε — γ* (Pi. —

b'--= -J- rab(pb~pa) E,

Pba = Ρίί>,

(2.2)

(2.3)

(2.4)

(2.5)

The po lar i zat ion v e c t o r P ( r , t) i s connected with the
dens i ty m a t r i x e l e m e n t s by the wel l-known re lat ion

P{r, t) --en\ (rbaPab + rabpba) dv. (2.6)

Equations (2.1)—(2.5) contain four dissipative coeffi-
cients: γΆ, y b , y a b , and a>o/Q, which a r e assumed
known within the framework of the descript ion consid-
ered h e r e . The quantities y a , y b , and y a b depend on
the p r e s s u r e . The experimentally obtained plots of
y a , y b , and y a b against the p r e s s u r e a re given in the
paper by Fork and Pollak1-42-' (Fig. 1). For this reason,
the initial equations (2.1)—(2.5) a re semiphenomenologi-
cal.

Within the framework of the initial equations, the in-
fluence of the collisions is taken into account only via
the coefficients y a , >-b, and y a b . A more detailed ac-
count of the influence of collisions in l a s e r s is given in
the papers of Raut ian C 5 5 ] , Lamb et a l . [ 6 5 ] , and
Stenholn^ 6 ' 0 .

FIG. 1. Plots of 7a, 75, and 7aj, vs.
helium pressure, μ = 215 MHz, ^/2ku =
1000 MHz.

We note one m o r e l imi ta t ion contained in the init ial
equat ions. In the equat ion for p b , no account i s taken of
the i n c r e a s e of p b a s a resu l t of the spontaneous trans i-
t ion from the l e v e l a, i . e . , no account i s taken of the
additional t e r m A b p b , where A? i s the E i n s t e i n coeffi-
cient. Usua l ly Ag <iC y a , y b , s o that the ro le of th i s t e r m
can be neg lected.

F ie ld f luctuations in l a s e r s a r e due to two c a u s e s .
The f i rs t i s connected with thermal f luctuations of the
field in the empty resonator . To take t h e s e f luctuations
into account, a random s o u r c e E(T) i s introduced in the
f ie ld equat ion (2 .5 ) .

The s p e c t r a l dens i ty of the random t h e r m a l s o u r c e
E ( T ) i s d e t e r m i n e d on the b a s i s of the Kal len-Welton
f o r m u l a [ 4 3 ' 4 4 ] :

(2.7)

The s e c o n d s o u r c e of the f ield f luctuations i s the
polarization noise. The polarization vector Ρ in (2.5)
can be represented in the form of a sum of two p a r t s :

P — )-\-t)P. (2.8)

In this expression p ( i n d ) ( E ) is the induced part of the
polarization or the response of the system to the total
field Ε = (Ε) + δΕ, and δ Ρ is the polarization fluctua-
tion due to the atomic s t ructure of the working medium.

The concrete express ion for the spectra l density of
the polarization noise depends on the form of the field,
i.e., on the operating conditions of the l a s e r . We p r e -
sent below resu l t s for three reg imes : the traveling-
wave regime, which is real ized in ring l a s e r s when one
of the opposing waves is suppressed, the standing-wave
regime in a l inear l a ser , and the regime of two opposing
waves in a ring l a s e r .

The amplitude and phase fluctuations of the l a s e r
radiation depend significantly on the rat io of the char-
acter i s t ic temporal p a r a m e t e r s of the working medium
and of the field in the empty resonator . Three cases
can be separated:

1) Gas l a s e r , ra~ r b ~ r a b > A a y

2) Molecular generator, y a ~ y 0 ~ y a b <^ Δ ω Γ

3) Solid-state l a s e r , γΆ ~ y b <C Δ ω Γ <c y a b .
In a gas l a s e r , the polarization becomes established

much more rapidly than the field. As a result, the field
can be regarded as constant during the time of estab-
lishment of the polarization. Let us consider this case
first. Other cases will be considered in Chap. 6.

When the field i s specified in the form of two oppos-
ing waves
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£ — L· ( '+iK) -f-C.C.) (2.9)
0 = 0. (2.15)

we obtain from the field equation (2.5) the following
equations for the amplitudes and phases (without allow-
ance for the coupling via the scattering):

(2.10)

(2.11)

Λ

here κ' and κ" are the real and imaginary parts of the
complex polarizability, determined from the relation

(2.12)

£ and are the sources of the fluctuations of

the amplitude and phase. They are defined by the ex-
pressions

— -ψ \

(2.13)

iph,i,2= -y~ cos(a>0i + Ay

The upper sign corresponds to the first wave and the
lower to the second, and e i s a unit vector directed along
the vector E. In (2.13),

δΡ = en j (rba6pat, + rabSpba) dv. (2.14)

No account is taken of the coordinate dependence in
eqs. (2.10) and (2.11) for the amplitudes and phases.
Such an approximation is justified when the quasistation-
ary condition is satisfied, whereby the characteristic
time Q/OJO ~ 10"e sec greatly exceeds L/C ~ 10"B s e e -
the time of travel of the wave in the resonator.

In accordance with (2.5), (2.8), and (2.13), we repre-
sent ξ . , and ξ

9,1 Ό Π . 1 j
in the form of sums of two parts:

6a — 5a + Sa , t^-<-T>

here £ ( T ) are the parts due to the thermal noise of thes a,ph F /P^
free resonator, and a £ v '. are the polarization parts.

a,pn
In a gas laser, the conditions Δω, Δω&, Δω -C ku

are satisfied (Δωα is the width of the amplitude-fluctua-
tion spectrum and Δω is the width of the laser emission
spectrum). It suffices therefore to know the spectral
densities of the thermal and polarization noises at zero
frequency. It is assumed here implicitly that the spec-
tral density of the fluctuation noises decreases mono-
tonically with increasing ω. In the presence of a field,
the source fluctuation spectrum, generally speaking, is
not monotonic. Using immobile atoms as an example, it
can be shown that this circumstance is not essential.

From (2.7) and from the definitions of ξ ( Τ 1 it followsv ' a,ph
that the spectral density of the thermal parts of the
fluctuation sources are given at zero frequency by

(Sal ,2)0 = (S*i,2)0 = "
ph

To calculate the spectral densities of the sources of
the polarization noise, we represent the density matrix
elements in the initial equations in the form of sums of
induced and fluctuation parts.

The equations for the induced parts coincide with the
initial equations (2.1)—(2.4). The equations for the
fluctuation parts differ from (2.1)—(2.4) in that there
are no terme with the functions p a

0 ) and p . 0 ) .
The system of equations for the induced and fluctua-

tion parts is solved under the assumption that the diag-
onal density matrix elements do not depend on the coor-
dinates and depend slowly on the time, while the off-
diagonal elements are represented by sums of two op-
posing waves.

In the case of a weak field, such an approximation for
a gas laser with inhomogeneous line broadening can be
rigorously justified. For a strong field at arbitrary
parameters in the regime of two opposing waves, this
approximation may turn out to be incorrect.

For the induced part of the polarization, the solution
with allowance for all the spatial harmonics was ob-
tained in [ 4 5 ' 4 6 ] . It is shown inC 4 6 ] that the contribution of
the second and higher spatial harmonics is proportional
to the parameter (^ 2/y a b)aE 2.

For a laser with homogeneous line broadening, under
the condition ku <C y a b , the role of the spatial modula-
tion turns out to be noticeable. This is due to the fact
that in this case the presence of thermal motion does
not lead to a noticeable smoothing of the standing wave.
In the approximation ku <C γ^ it is possible to obtain
an exact expression for the polarization'-*5"47·1.

We consider first the case of inhomogeneous line
broadening. At not too low pressures, the parameter
yVyab

 f o r a n H e " N e laser is small. This is seen from
Fig. 1. Thus, for example, for a mixture pressure
2.5 mm Hg we have y2'/yl^0

 a 0.1. The results consid-
ered here correspond to the zeroth approximation in
terms of this parameter*. In this approximation we put

Pab = P'ab ( (2.16)

We now write expressions for the polarization-noise
source intensities in terms of the spectral densities of
the fluctuations 6 p a b . Substituting (2.14) in (2.13) and
representing 5 p a b in the form (2.16), we obtain

iaj ) ω = 0 — -
I rab I»

( r . l J

I rab I"

Ph

; ) ) o = ( i S ' l i J ' i o = 0 ;
pn

*For the regime with one traveling wave, the results presented below
are valid for an arbitrary ratio of the parameters. We note that for the
regime of two opposing waves, at large detunings relative to the center
of the Doppler line, i.e., at MAyab > 1, the limitation on the parameters
7a» 7b' a nd 7ab a ' s o becomes immaterial.



N A T U R A L FLUCTUATIONS IN LASERS 99

here i, j = 1, 2. Thus, the problem of finding the spec-
tral density of the polarization noise reduces to a de-
termination of the spectral densities of the fluctuations
6 ρ α ύ 2 ) · We shall need l a t e r on express ions for the in-
duced p a r t s of the density matr ix e lements . They are
given i n ^ .

Substituting p'V 2 ' f rom C 2 6 b : l into the express ion for
the polarization vector (2.6) and integrating over the
velocities under the assumption that the line i s inhomo-
geneously broadened and the intensit ies of the opposing
waves differ little from each other, i .e., a | E 2 - E 2 | <C 1,
we obtain the following values for the rea l and imaginary
p a r t s of the polarizabil ity:

*!,= - - ^ ^ / {1- i " + / 2 [1 - (1-2ίί) F] α ( £ ? - £ ! ) } *·),

Χ r-a (El-El)]; (2.18)

_£ Vl
2 2(ku

In a s t r o n g f ie ld (aEo
( 2 . 1 8 ) - ( 2 . 2 0 )

1) we o b t a i n f r o m

«1,2= —«1,2= — "

κ' = 0,

A s a l r e a d y n o t e d a b o v e , f o r t h e c a s e k u / y b <C 1,
w h e n the m o t i o n of t h e a t o m s c a n be n e g l e c t e d , i t i s
p o s s i b l e t o o b t a i n an e x a c t s o l u t i o n of the e q u a t i o n s f o r
the density matr ix with allowance for the spatial modu-
lation of the populations. The express ions for κί, 2 and
κ {',2 a re in this case

κ'ι,2=<μ/Υαΐ.)κΊ,2, (2.23)

h e r e I •

-1/2

(2.19)

I n t h e l i m i t i n g c a s e s o f s m a l l a n d l a r g e f i e l d s , t h e

f u n c t i o n s f a n d F t a k e t h e f o r m

F o r o n e t r a v e l i n g w a v e , p u t t i n g E 2 = 0 i n ( 2 . 1 8 ) a n d

( 2 . 1 9 ) , w e o b t a i n

, ( 2 - 2 0 )χ ' - 0 , χ - = '
to

F o r t h e s t a n d i n g - w a v e r e g i m e ( E x =
we h a v e

= Eo) at μ = 0

(2.20')

I n t h e c a s e o f w e a k f i e l d s , e x p r e s s i o n s ( 2 . 1 8 ) , ( 2 . 2 0 ) ,

a n d ( 2 . 2 0 ' ) c a n b e e x p a n d e d i n p o w e r s o f a E o :

κ ' , , 2 = — ^ -

κ ' = 0, κ

κ,'?=0, K

h e r e

(2.21)

(2.22)

Express ions (2.21) a r e valid with allowance for the spa-
tial modulation of the populations. The coefficient β i s
then given by

*Expressions (2.18) were obtained for a laser using a pure isotope
of the active gas. It is difficult to obtain analogous expressions for a
laser with a mixture of isotopes in a strong field.

In the standing-wave regime we have in (2.23) Ei = E 2

= E o . The corresponding express ion KJ' ) 2 without allow-
ance for modulation is

^ = _ i i i ^ ^ L ° l _, . (2-24)

We proceed to consider the spectra l densit ies of the
spontaneous fluctuations. They a r e calculated by using
the equations for the functions 6 p a , 6 p b , and tp^.
Instead of 6 p a and 6 p b it i s more convenient to use the
functions 6D = 6 p a - 6 p b and 6R = 6 p a + 6 p b .

The corresponding equations follow from (2.1)—(2.4)
and a r e given by

1

~rab ( 2)\ -γ+6Ζ>+ γ.δ

d&R

(2.25)

L e t u s m u l t i p l y E q s . (2.25) by 6 p b a

2 ) ( t ' ) a n d a v e r a g e .

A s a r e s u l t we o b t a i n a s y s t e m of h o m o g e n e o u s e q u a -
t i o n s f o r t h e c o r r e l a t i o n f u n c t i o n s of t h e a r g u m e n t
τ = t - t ' .

It i s necessary to add to this system of equations the
initial conditions, namely the value of the correlat ions
functions at τ = 0. They follow from formula (5) of
Appendix 1, if we neglect the las t t e r m of this formula

(6O6pS) t = 0 = 0, <δ/?δρέί')τ_ο = 1 ~t
nV M — v'), (2.26)

T h e s y s t e m of e q u a t i o n s f o r t h e c o r r e l a t i o n f u n c t i o n s
c a n be s o l v e d by u s i n g the L a p l a c e t r a n s f o r m a t i o n

(δρδρ);= ( 2 . 2 7 )
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The expressions for the spectral densities of the
noise sources (2.17) contain the spectral densities of
the fluctuations δρ at zero frequency. They are connec-
ted with the fluctuations (2.27) by the relation

The simplest expressions for the spectral densities
at zero frequency (intensities) of the polarization-noise
sources are obtained in the regime of one traveling
wave:

2π)ι Δω Γ flo

ϊπί,Δω, №>

( 2 . 2 8 )

Genera l e x p r e s s i o n s for the no i se i n t e n s i t i e s w e r e ob-

tained i n [ 2 e b : i . They are g iven in Appendix 2.

The p o l a r i z a t i o n - n o i s e s o u r c e i n t e n s i t i e s in the

standing-wave r e g i m e c a n be obtained from the genera l

f o r m u l a s (6) and (7) of Appendix 2, by taking into account

the fact that

la, c - (la! + la2)/2, iph.S= (1.1 + l*2)/2
Ρ" ph

and consequent ly

(la, s)o = -2fi(lal,2)o (Iphs'O = -j [ ( | ^
ο + (Ιφι|φ2)ο1·

Thus, the expressions for the spectral densities (ξ & s ) o

and ( l l n s ) 0 take into account the contribution of the

amplitude and phase fluctuation sources in the equations
for the opposing waves.

In particular, at y a = yD we obtain

(Sa,.c
nh Δω r fit*

Va0 "So" '
( 2 . 2 9 )

F o r m u l a s ( 6 ) , ( 7 ) , ( 2 . 2 8 ) , a n d ( 2 . 2 9 ) c o n t a i n , b e s i d e s

t h e e x p l i c i t d e p e n d e n c e o n t h e f i e l d , a l s o a n i m p l i c i t

dependence on the field via the parameters ΔωΓ, D°, and
R°. For a comparison with the experimental data, it is
necessary to include this implicit dependence. The form
of this dependence is determined by the method of vary-
ing the field. Zaitsev, Andronova, et al.'-9"11-' varied the
field by varying the losses in the resonator, i.e., by
varying ΔωΓ, at a constant pump current. Substituting
Δω Γ = -4ΐΓωοκ"(Εο) in formulas (2.29), (6), (7), and
(2.29) we obtain the explicit dependence of the fluctua-
tion-source intensities on the field. Plots of these de-
pendences are shown in Fig. 2.

In writing down (2.28), (2.29), (6), and (7), we used
the condition ΔωΓ + Ατωοκ" = 0 for the stationary gener-
ation regime. If we again substitute —Απωο*" for Δω ρ

in these formulas, we can obtain the limiting transition
to the equilibrium state.

At equilibrium Ε = 0, κ" > 0, and

1 Λ» - j _

0,5-

Ο ! 2 3 4 0 1 2 3 4 0 1 Ζ 3 4

a αε* b "% c "ι!
FIG. 2. Dependence of the noise-source intensity on the field ampli-

tude. A) Traveling-wave regime: ι — <i£v<sl>°i Ε =O. 2 — (φ· '<Φ· ι Ε =• ο;ι b)
regime of two opposing waves: >, i'— (ii,t)./<ili..). I E,=O, ». «'-'iJi.iW

r_j· — n = vab\ (c) standing-wave regime: ι, ν — (ll, c'«'<5a, c>· ι E 0 - ο.
2 · 2 ' - « | l C l . / ( ? | , c ) . | E ( ) = 0. '• ί - μ - Ο , J-, ί · - μ = ϊ ( 1 | ι .

W e t h e r e f o r e o b t a i n f r o m ( 2 . 2 8 )

•)o

In the generation regime, both factors (κ" and R°/D°)
reverse sign.

From formulas (2.28) and (2.29) and from the general
formulas (6) and (7) we see that the intensities of the
noise sources which enter in the equation for the ampli-
tudes and phases of the field differ greatly from each
other at a non-zero field amplitude even when it comes
to the character of the dependence on the field. Such a
difference is due to the following causes. The fluctua-
tions of the density matrix depend, in accordance with
(2.25), on the instantaneous value of the average field E,
and consequently are not stationary random processes.
(Only the slowly varying amplitudes of these fluctuations
are stationary.) Accordingly, the polarization fluctua-
tions 6P, which enter in expressions (2.13) for the noise
sources, are likewise not stationary. By virtue of this,
the expression <6P(t)6P(t + T)cos((i>0(2t + τ) τ 2kor + φ))
differs from zero. It enters in the expression for the
correlation functions of the amplitude and phase noise
sources with different signs, so that the intensities of
these sources are different.

For the same reason, the correlations of the fluctua-
tion sources ( ξ & ι ξ ^ ) 0 and ( £ p n i £ p h 2 ) 0

 a r e likewise dif-
ferent from zero for opposing waves in a ring laser,
even if no account is taken of the second spatial harmon-
ics of the working-level populations, i.e., without allow-
ance for the spatial modulation of the populations.
Allowance for the spatial modulation can yield additional
terms in the correlation functions of the sources.

We note one more important circumstance. It follows
from (2.13) that the mean values of the noise sources
£ a and ξ ρ η are equal to zero if we can neglect the cor-
relation of the random deviations δ Ρ and E ' ^ ' and the
phase of the field. This takes place in a sufficiently
strong field, since the change of the phase at a specified
noise is reversely proportional to the field.

At the generation threshold, the mean value of the
amplitude noise differs from zero and is equal to1·49-1

! „ - a n d f p h = o .
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The bar denotes averaging over the time interval l/>-aD

<SC At «C Ι/Δω h .

An analysis of the obtained express ions and diagrams
for the polarization-noise sources shows that at a suffi-
ciently large frequency deviation, when | μ | >• y a b , the
intensit ies of the noise sources a re the same for al l
three reg imes (the factor of 2 for the standing-wave
regime is connected with the method of specifying the
amplitude). At frequency deviations | μ | < y a b , the
source intensit ies a re different for different reg imes .

When the power i s varied by varying the losses , in
all reg imes , the noise-source intensit ies in the equations
for the amplitudes decrease with increasing field. On
the other hand, the noise-source intensit ies in the equa-
tions for the phases increase with increasing field in the
traveling-wave reg ime and in the regime of two opposing
waves. In the standing-wave reg ime, on the other hand,
the character of the dependence of the phase-noise inten-
sity on the field is governed by the detuning. When

3. AMPLITUDE AND PHASE FLUCTUATIONS IN A
LINEAR GAS LASER

When considering the fluctuations in a l inear l a ser ,
we specify the field in the form of a standing wave

£(r, <)-·£„cos (fcr--y) e-i«"»'+<P)-fK. c. ' '

This express ion follows from (2.9) for opposing waves if
we put Ei = E 2 = Eo and ψ = {φι + φ2)/2. The quantity Φ
is constant and is determined by the boundary condi-
tions.

Thus, the description of the fluctuations in a l inear
l a s e r differs from the description of the fluctuations in
a ring l a s e r in that the differences Ei — E 2 and ψι — φ 2

do not fluctuate.
The equations for Ε and φ are (we omit the subscript

" 0 " of Eo; Eo will henceforth denote the field amplitude
without allowance for the fluctuations)

dE
dt '

« - r £ ) * + . (3.2)

the intensity of the phase noise i n c r e a s e s with i n c r e a s -
ing field, and in the opposite case it d e c r e a s e s . In a
strong field, the intensity of the phase-noise source
tends to a constant value.

We note also that in a strong field there i s an almost
complete " a n t i c o r r e l a t i o n " between the polarization-
noise s o u r c e s for opposing waves (the corre lat ion coeffi-
cient tends to — 1). This means that the sum of the sour-
ces fluctuates much l e s s than thei r difference.

In the standing-wave regime, in the case of homo-
geneous line broadening, when ku <C γΆ^ and y a j , = γ^,
we obtain for the spectra l densit ies of the spontaneous
fluctuations of the polarization'-47-'

<P)2\ __a, c h - -~n<r<
(2.30)

E(P)2. _ " " « ! Λ0
Sphcslo — ω F 755-

-lEu y { — igaE* μ 2

Δ ω Γ = — 47Γ(ΑΌΚ", where κ" i s determined by formula
(2.23) with Ei = E 2 = E o . For the traveling-wave regime,
the express ions for the noise intensity coincide with
formulas (2.28).

We note that the calculation of the fluctuation intensi-
t ies for a ring l a s e r with homogeneously broadened line
shows that allowance for the spatial modulation exer t s a
strong influence on the correlat ions of the fluctuation
sources for opposing waves. The influence of the popu-
lation modulation on the fluctuation corre lat ion may
turn out to be significant also for the case of an inhomo-
geneously broadened l ine.

We note once more that the express ions presented
for the sources of the thermal and polarization noises
include contributions of the zero-point fluctuations.
Analogously, using initial conditions that do not include
zero-point polarization fluctuations, it i s possible to
obtain noise sources determined only by spontaneous
emiss ion. We do not present h e r e the corresponding
express ions, since the separat ion of the spontaneous
p a r t s can be c a r r i e d out in the final express ions.

T h e q u a n t i t i e s K'S a n d K S a r e d e t e r m i n e d b y f o r m u l a s

( 2 . 1 8 ) w i t h E i = E 2 = E o .

3.1. Amplitude fluctuations. In the correlation ap-
proximation, assuming Ε = E o + δΕ, we obtain from the
first equation of (3.2) the following expressions for the
spectral densities of the fluctuations of the amplitude Ε
and of the intensity E2:

(3.3)

The width Ao>a of the amplitude-fluctuation spectrum is

(3.4)
4πω0 - ^ El, <o0 df \f (1 + F)°- aE'o.

In a weak field, with allowance for (2.21) and for the
condition of stationary generation, this expression takes
the form

A<oa = Δω, η, (3.5)

where η = Qd— 1 is the excess of pump over threshold.
Let us compare the results of the calculation of the

intensity fluctuations with the experimental data of
Zai t sev^ . Figure 3 (curve 1) shows the dependence of
the spectrum width Δω α on the field intensity, plotted in
accordance with formula (3.4) at zero detuning (μ =0).
Under this condition formula (3.4) contains one unknown
parameter d. However, in comparing with the experi-
mental dependence of ΑωΆ on the power, it is necessary
to know one more parameter that characterizes the con-
nection between E o and P.

The total laser radiation power is connected with Eo
by the relation

/' (E]/in)V hiut.

The width of the resonator band at constant pumping
varies itself with changing power. This dependence fol-
lows from the condition of stationary solution of (3.2).

In experiment one measures not the quantity Ρ but a
fraction of this quantity P T , determined by the trans-
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FIG. 3. Dependence of the width of the amplitude-fluctuation spec-
trum (1) and of the relative spectral density of the fluctuations and the
intensity at zero (2) on the power at μ = 0.

parency of the output m i r r o r . The quantity P>p i s p r o -
portional to Eo:

where Δωχ = c(l - r)/L, i.e., it does not depend on Eo.
jn[9-u] ^ j . n e c u r v e s were plotted as functions of P.

This requires additional recalculation of the experimen-
tal and theoretical data. It is more natural to plot the
curves as functions of Pip. The corresponding additional
information on the values of P T were kindly supplied to
us by the authors οί9"1 1-1. The experimental points
based on Fig. 3 are based on these data. The unknown
parameters d and γ^ = aEo/P-p were determined from
the condition that the results coincide at the two points.

The values of these parameters turned out to be

= ; 1,15-10-*,

Curve 2 on Fig. 3 is a plot of the relative intensity
fluctuation density at zero frequency (M2, = (δ(Ε2)2)0/Ε0)
on the power Pip. We see that there is sufficiently good
agreement between theory and experiment. We note that
when no account is taken of the dependence of the inten-
sity of the amplitude-fluctuation source on aE 0 the
theoretical curve lies much higher, starting with aE0

= 0.2.
From (3.4) and (3.3) we obtain expressions for the

variances of the amplitude and of the intensity:

<6£*>,-- (ω̂  '2Λο),) (si, SV (6 (Εψ) = 2ω'αΕΙ (g, ,)0Δ%. (3.6)

Let us establish the connection between the expres-
sions for the fluctuations of the amplitude and the ex-
perimental ly measured quantities, namely the average
number of photons (Πρη) and the variance of the number
of photons ( δ η 2 . ) .

The average number of photons i s connected with the
mean square of the field in the traveling-wave regime
by the relation

(E1)--= El-:• <6£«>- (8nS(o0'F) (<»„{,+ -i-) ·

F r o m th i s , knowing the e x c e s s above thresho ld and
us ing (3.6), we can find the a v e r a g e number of photons.

E x p r e s s i o n s (3.6) d e t e r m i n e the radiat ion- intens i ty

fluctuations that are directly connected with (δη2).
Thus, for a traveling wave

T h e r e l a t i v e v a r i a n c e o f t h e i n t e n s i t y i n a w e a k f i e l d

i s d e t e r m i n e d b y t h e e x p r e s s i o n

<6 (£'
_ _

(3.7)

We have introduced here the following symbol for the
dimensionless noise intensity

(3.8)

From (3.7) we get the condition for the applicability
of the correlation approximation

-V8«/. (3.9)

In the zeroth approximation in the field, at parameter
values ω0 = 3 χ 1015 sec"1, V = 1 cm, d

3

10"
, , ,

(a/V)(l + R°/D°) = 2 χ 103 cgs esu, and μ = 0 we obtain
N s = 0.5 χ 10~4.

It follows from (3.9) that the correlation approxima-
tion is valid if the radiation power is much larger than
1 μ ψ .

Using formula (3.4) and (2.23) it is possible, for ex-
ample, to calculate the spectral width of the amplitude
fluctuations for a laser with homogeneous line broaden-
ing, when 7 ^ » ku. In a weak field we obtain for Δω 2

the expression

A(oa =- 3A(o χ %a.E\.

If no account i s taken of the spat ia l modulat ion of the
populat ions, the coef f ic ient 3 in th is formula i s rep laced
by 2. If we e x p r e s s A w a in t e r m s of the e x c e s s of pump
o v e r threshold, then the r e s u l t s co inc ide. Indeed, taking
the modulation into account,

from which we get aE0 = 2η/3 for small η. If modula-
tion is not taken into account, then aEo = V •

3.2. Amplitude and intensity fluctuations at the
generation threshold. At the generation threshold, the
condition (3.9) is not satisfied. To calculate the ampli-
tude and intensity fluctuations in this case it is neces-
sary to use the method of the Fokker-Planck equa-
tion*4 8 '4 9 3. Near the threshold, the field is weak
(aE2 <r 1), therefore the function κ" in Eq. (3.2) for Ε
can be expanded in terms of aE2 and only the first two
terms retained. As a result Eq. (3.2) takes the form

Δω01£- = - ρ - (1 + * ) ( / - a&) Ε + «ola (ί). (3.10)

In the stationary generation regime without allowance
for the noise we have

The corresponding Fokker-Planck equation for the
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function W(E), with allowance for the fact that £a(t)
= ( ξ 2 ) / 2 Ε , i s

(3.11)

d'W

F r o m this we obtain the stationary distribution

F r o m this distribution follows a general express ion for
the moments

«-''•'4-v>D_(n/2.,u ( - J - ) . (3.13)
^ ' s

Three l imi t ing c a s e s are of i n t e r e s t :
1) At a cons iderab le e x c e s s o v e r the generat ion

threshold, when I S> N g , Eq. (3.13) l e a d s to the formulas
of the c o r r e l a t i o n theory.

2) At the generat ion threshold ( |I | < N g ) we obtain
from (3.13)

(6E>) =: 0,12 4 1 (1 + 0,25-^-), (3.14)

0,57—0,28-^-.

Calculation shows that formulas (3.13) and (3.14) remain
unchanged in the case of immobile atoms.

3) Below the excitation threshold at | I | » N s and
I < 0 we obtain from (3.13)

<£> =
2Λ/α\1\

(Ε2) = a\I\ '

H e n c e

> = =^f. (3.15)

( 3 . 1 5 ' )

The second formula of (3.15') leads to an express ion
for the mean squared value of the number of photons

The exact express ion for <δη 2^) i s

(3.16)

T h e y c o i n c i d e w h e n t h e n u m b e r of p h o t o n s i s l a r g e , t h e

o n l y c a s e w h e n t h e s e m i c l a s s i c a l d e s c r i p t i o n i s v a l i d .

A c c o r d i n g t o t h e e x p e r i m e n t a l d a t a of A r e c c h i ,

R o d a r i , a n d S o n a C 6 ] , t h e n u m b e r of p h o t o n s a t t h e t h r e s -

h o l d i s 4 0 0 0 . C a l c u l a t i o n s h o w s t h a t a t V = 0 . 2 5 c m 3 ,

a = 102 cgs esu, N g = 10"4, and ω = 3 χ 101 5 sec" 1 , we
have <n> = 5 χ 103.

Hempstead and Lax1-39-1, and Risken1-25-1 performed
the corresponding calculations for immobile atoms.
Their re su l t s coincide in form with those given above.

We now compare the theoretical and experimental
data for the intensity fluctuations near the threshold.
Figure 4 (curve 1) shows the dependence of the relative

US,

, A o ) a . t Λ f [»(Ε»)»]0

v a r i a n c e o f t h e i n t e n s i t y o n t h e q u a n t i t y l / N g . T h e c i r -

c l e s d e n o t e t h e e x p e r i m e n t a l d a t a o f S m i t h a n d

A r m s t r o n g ' - 1 2 - ' . C u r v e 2 s h o w s a p l o t o f t h e s q u a r e r o o t

o f t h e v a r i a n c e . T h e c r o s s e s m a r k t h e r e s u l t s o f t h e

e x p e r i m e n t s o f A r e c c h i e t a l . ' - 1 3 - '

T o d e t e r m i n e t h e s p e c t r a l f u n c t i o n o f t h e a m p l i t u d e

a n d i n t e n s i t y f l u c t u a t i o n s i t i s n e c e s s a r y t o k n o w t h e

n o n - s t a t i o n a r y s o l u t i o n o f t h e F o k k e r - P l a n c k e q u a t i o n

( 3 . 1 1 ) . S u c h a s o l u t i o n w a s o b t a i n e d i n [ 2 5 ) 3 9 : l . I t t u r n e d

o u t t h a t t h e s p e c t r a l l i n e s h a p e d i f f e r s o n l y l i t t l e f r o m a

L o r e n t z s h a p e n e a r t h e t h r e s h o l d .

W e p r e s e n t t h e r e s u l t s o f t h e c a l c u l a t i o n o f t h e s p e c -

t r u m w i d t h o f t h e a m p l i t u d e f l u c t u a t i o n s n e a r t h e t h r e s -

h o l d , o b t a i n e d a s s u m i n g a L o r e n t z l i n e s h a p e 1 - 2 7 - 5 . I t f o l -

l o w s f r o m ( 3 . 6 ) t h a t

Δω3 = ω? (ξΗ Λη/2 (6Ε2). to -tn\

H e n c e , u s i n g ( 3 . 1 4 ) , w e g e t

) t b ( 1 - 0 , 2 5 ^ - ) ; ( 3 · 1 8 )

h e r e

(Δω3) t h r sa 2ω0 dNs. (3.19)

The dependence of Au>a on l / N g i s shown in Fig. 4
(curve 3). T h i s dependence c o i n c i d e s suff ic iently w e l l
with that g iven i n C 5 7 ] , ca lculated in a c c o r d a n c e with
R i s k e n ' s e x a c t theory'-25-'.

At wod/27r = 106 Hz, μ = 0, and N g = 10"4 we obtain
from (3.19) ( A w a ) t h r / 2 7 r « 200 Hz.

F r e e d and H a u s [ 8 ] measured the line width of the
amplitude fluctuations in the regions above and below
the threshold at

The resu l t s were extrapolated to the threshold reg-
ion. F r o m the plot given in'-8-' it follows that
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« 100 Hz. Arecchi, Rodari, and Sona1-6-1 obtained for the
spectrum width of the amplitude fluctuations, at a
resonator band width ΔωΓ/2π = 27 MHz, a value

(Δ<°£ΐΗηΓ/2π = ! · 4 kHz a t t h e threshold.
As already noted, the results presented here for

moving atoms coincide in form with the results of cal-
culations for immobile atoms. A review of these results
is given in Risken's paper'-60-'.

3.3. Phase and frequency fluctuations. From (3.2)
we obtain in the correlation approximation an equation
for the phase fluctuations

ϊ - .mi· (3.20)

here

The term ΚδΕ characterizes the influence of the ampli-
tude fluctuations on the phase and frequency fluctuations.

From (3.20) we get an expression for the spectral
density of the frequency fluctuations:

In the derivation of (3.21) we took into account the ab-
sence of correlation between the quantities ξ a s and
ξ ρ Μ (see (2.15) and (2.17)).

In books on statistical radiophysicsC48"50] it is shown
that for times greatly exceeding the noise-source corre-
lation time, the mean squared phase shift in (3.20) is

<(<p (ί + τ) - φ (ί))»> = <δφ?> = D | τ |. (3.22)

The phase diffusion coeff ic ient D i s defined by the e x -

p r e s s i o n

For Eq. (3.20), the source correlation time is deter-
mined by the amplitude-fluctuation correlation time,
and therefore the condition for the applicability of (3.22)
is

τ > 1Άωα.

Substituting in (3.21) expression (3.3) for the spec-
tral density of the amplitude fluctuations at ω = 0, we
obtain

(A<oa)*
(3.23)

In a weak field,

and consequently (taking (3.5) into account),

In a strong field at aE2 > 1 we have

VE' \'"g ν o° 2 v + ' '

(3.24)

(3.25)

It fo l lows from (3.24) and (3.25) that the p h a s e diffu-
s ion coeff ic ient d e c r e a s e s in i n v e r s e proport ion to the
square of the radiat ion f ield in the standing-wave reg-
i m e , both in a weak and in a s t rong field.

A m o r e e x a c t formula for the mean- squared phase
shift, which is valid also when τ s 1/Δωα, is

Ι_β-Αντΐ). (3.26)

Let u s de termine the form of the f ield spectrum in
the l a s e r and ca lcu late the natural l ine width of the
radiation.

F r o m (3.1) we obtain an e x p r e s s i o n for the c o r r e l a -
tion function of the f ie ld in the l a s e r :

<£•£,) = («£> + 6E)t ((£> + 6£)i+t cos (ωοί + φ,) cos (ωο(ί + τ) + φ,+τ)>.

(3.27)

At sufficiently large excesses of pump over thres-
hold, when the probability distribution for the amplitude
fluctuations and the phase shift can be regarded as
Gaussian, we obtain from (3.27) the following approxi-
mate expression for the correlation function of the field:

sin ωοτ )

ω cos ωοτβ

(3.28)

-2Λω8Τ-«δφ?>/2)

T a k i n g t h e F o u r i e r t r a n s f o r m , a t D <?C A » a , w e o b -

t a i n *

m ggg/2 ( . . 4ωοΑ' (δ£2) ω — ω0 \ /t OQ\

1 - 1 Έω^Ε* D~) (Ο·*ν)
(Δω,)"" (ω —

I t f o l l o w s f r o m ( 3 . 2 9 ) t h a t t h e s p e c t r u m o f t h e g e n e r -

a t e d s i g n a l i n t h e l a s e r i s a s u m o f t h r e e l i n e s . O n e o f

t h e l i n e s i s d e t e r m i n e d b y t h e f l u c t u a t i o n s o f t h e p h a s e

s h i f t a n d i s a n a r r o w l i n e o f a l m o s t L o r e n t z s h a p e w i t h

width Δω = D and intensity ~Eo. The second line, due to
the amplitude fluctuations and the correlation between
the phase and amplitude fluctuations, has a width
~ 2Δωα. This line is much broader than the first, but
is much less intense. We note that the line of width
2Δωα is essentially asymmetrical. The third line, even
weaker, has a width ~ 4ΔωΕ. In a weak field, the largest
value of the parameter ω0Κ/Δω& is 0.25, and conse-
quently the influence of the amplitude fluctuations on the
phase fluctuations is not significant. The spectrum of
the field in the laser can be written, with good approxi-
mation, in the form

<£>* D/2
(ω — ωο)2 - ί- (ϋ/2)2 • (ω - ω0)* + [Δω ο + (Ι>/2)]" '

(3.30)

The dependence of the emission line width Δω » Don
aEl, calculated from formula (3.23) at a zero frequency
deviation from the center of the Doppler line, is shown
in Fig. 5. The experimental data obtained by Zaltsev
and Stepanov1-4-1 are also shown. At the chosen values of
the parameters, the experimental data differ from the
theoretical ones by not more than 20%.

As already noted, in a weak field, and consequently
also at the generation threshold, the influence of the
amplitude fluctuations on the phase ones is small. As a
result, even at the generation threshold, the phase shift

*An expression analogous to (3.29) was first obtained by Malakhov
I6 3].
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FIG. 5. Emission line width vs. signal
power.

ο qz

changes approximately in accordance with the diffusion
law, with a diffusion coefficient

The l a s e r emiss ion spectrum near the threshold i s
given approximately by formula (3.30). The width of the
emiss ion spectrum can be obtained by dividing the inten-
sity of the spect ra l line by the spectra l density at ω = ωο·
We then get from (3.30)

/q QO\
Δω 4 -

where

In the case of a large excess over threshold we have
a = 1. At threshold, using (3.14), we get a = 1.18. Below
the generation threshold, I < 0 at | I | > N s . From (3.32)
we get

4 — π

H o w e v e r , t h e a p p r o x i m a t i o n s u n d e r w h i c h ( 3 . 3 2 ) w a s

d e r i v e d a r e n o l o n g e r j u s t i f i e d i n t h i s c a s e . T h e r e s u l t

c a n b e o b t a i n e d d i r e c t l y f r o m t h e e q u a t i o n f o r t h e f i e l d

a n d t a k e s t h e f o r m

Δωο==ω0 (-Q- — d) = Δ ω Γ | η | .

F r o m a c o m p a r i s o n w i t h f o r m u l a s ( 3 . 3 1 ) a n d ( 3 . 1 5 )

we see that Δ ω 8 = 2D, i .e. , a = 2. The percentage values
of a agree with those obtained in1-"*-1.

Let us est imate the emiss ion line width at the gener-
ation threshold. F r o m (3.32), (3.31), and (3.8) at zero
detuning we obtain

At a resonator bandwidth Δα>Γ/2π = 107 and N s ~ 10~4

we obtain Δ α ' 8 / 2 π κ 740 Hz.
This resul t agrees in order of magnitude with the

spectrum-width m e a s u r e m e n t s performed by Siegman
and Arrathgon^5 1 1.

4. AMPLITUDE AND INTENSITY FLUCTUATIONS OF
OPPOSING WAVES IN A RING LASER

There is only one known experimental investigation
of ring l a s e r s , that of Zaitsev'-9-', who measured the
intensity fluctuations of each of the opposing waves and
the corresponding corre lat ion coefficients.

The c h a r a c t e r of the wave and fluctuation p r o c e s s e s
in a ring l a s e r differs considerably from that in the

l inear l a se r . For example, at small deviations of the
generation frequency from the center of the Doppler
line, the regime of two opposing waves in a ring l a s e r
in a weak field turns out to be unstable and a transit ion
to the regime with one traveling wave takes place1·64-1.
In the transit ion regime, just as near the generation
threshold, the fluctuations a r e not small . Consequently,
it i s again necessary to use the method of the Fokker-
Planck equation to investigate the fluctuations.

In the corre lat ion approximation, the equations for
the amplitude fluctuations of the opposing waves follow
from (2.10) and a r e given by

(4· 1)

(3.31) h e r e
""1,2 BU2 = dEl , Ε,Ε,.

(4.2)

At equal values of the Q of opposing waves we get
from (4.2) and (2.18)

£, ~ £2 = Eo,

A, ^A2^A = + 4 ^ - f ) j aE\, ( 4 · 3 )

*-'t^-p)~\aE\. ( 4 . 4 )

F r o m ( 4 . 1 ) w e o b t a i n t h e s p e c t r u m of t h e a m p l i t u d e

f l u c t u a t i o n s f o r t h e o p p o s i n g w a v e s :

ι 1)ω = -g- I
ω; f (»m.a>Q'i'(EaiEa>)o , (Sai,2)o —(laila>)o

- I ±

(4.5)

(4.6)

Thus, the spectra l densit ies of the amplitudes and of
the intensit ies a re sums of two Lorentz l ines with widths
A + Β and A - B. Since the fluctuation sources a re anti-
corre lated, i .e., ( £ a i ? a 2 ) 0 < 0, the narrower line has a
higher intensity. It follows from this, in par t icular ,
that the fluctuations of the opposing-wave amplitudes
a r e always ant icorrelated.

Formulas (4.5) and (4.6) lead to express ions for the
var iances of the amplitudes and intensit ies of the oppos-
ing waves, and also for the corre lat ion function

Ei) δ (£?,2)> = (δ (El) δ (Εί,φ = 2α,0£0

2 ( 4 . 7 )

F r o m this we can obtain the condition for the appli-
cability of the corre lat ion approximation

2 E 2 .42-/J2 •<1.
( 4 . 8 )

At the stability l imit of the two-wave regime we have
A = B, and condition (4.8) i s not satisfied.

It is shown i n [ 6 4 ] that when account i s taken of the
spatial modulation of the populations at

aE\ > y>h/(ku)* (4.8')

the region of instability of the two-wave regime van-
ishes, i.e., A > Β in the entire range of detunings.

In a weak field we have

At not very small detunings, when μ > y a b , the line
has a near-Lorentz shape. This is confirmed by
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Zaltsev's experimental data1-9-1.
The relative variances of the amplitudes and intensi-

ties and the correlation coefficient of the opposing waves
in a weak field are given by

Ρ =

here

Zaitsev^ investigated experimentally the relative
correlation of the intensity fluctuations at the frequency
ω:

A general expression for ρ ω follows from (4.5). In a
weak field

2*χβ Δω»

ω2 Ι Δ ω '
( 4 . 1 1 )

h e r e

,,2; (4.12)

h e r e

F I G . 6 . F r e q u e n c y d e p e n d e n c e

o f t h e s p e c t r a l d e n s i t y o f t h e c o r -

relation c o e f f i c i e n t .

W4 ω/2α

T h e c o n s t a n t C i s d e t e r m i n e d f r o m t h e n o r m a l i z a t i o n

c o n d i t i o n .

L e t u s c o n s i d e r t w o m o s t i n t e r e s t i n g c a s e s .

1 ) F l u c t u a t i o n s a t t h e g e n e r a t i o n t h r e s h o l d ( I / N = 0 )

for arbitrary a and β:

(4.14)

The corresponding expressions for the moments are
n+4

Γ (η/4) "

Δωρ is the width of the correlation-coefficient spectrum.
With increasing detuning, ρ ω _ 0 decreases mono-

tonically from unity to zero. At μ = y a b and β = 0.5»
we have ρ ω = 0 = - 0 . 8 .

The width Δα)ρ also decreases monotonically with in-
creasing detuning, from Αούρ = AwraE2//2~ to Δα>ρ
= AwraE2/2. Figure 6 shows the dependence of Ρω in ac-
cordance with formula (4.11) at μ = 1-1 yab

 a n c * Δ ω Γ
= 5.02 x 10* sec"1. The values of the parameters were
obtained from the condition that the height (Ρω = 0) and
the width (AWp) of the spectrum agree with experiment1^.
At high frequencies, the experimental points lie above the
theoretical curve. This is due to the fact that in the der-
ivation of (4.11) no account was taken of the contribution
of the noise-source correlation U a i . ^ V At l a rf5 e ω> the
value of ρ ω tends not to zero but to ( £ a i i a 2 ) 0 / U a 1 ; 2 ) 0 ·
This makes it possible to determine from the values of
ρω, at large ω, the anti-correlation coefficient of the
amplitude-fluctuation sources. In the case when the
correlation approximation is not valid, i.e., condition
(4.8) is not satisfied, the fluctuations are calculated by
the Fokker-Planck method. The condition (4.8) is not
satisfied in two cases, near the generation threshold
(Eo — 0) and at the instability limit, when A - Β — 0.

By virtue of the condition (4.8'), we can confine our-
selves to the weak-field approximation. In this case
Eqs. (2.10) take the form

At the stability limit, when a - j3 = 0, we obtain from
(4.15) and (4.16)

We present expressions for the relative variance of
the intensities of the opposing waves and the correlation
coefficient near the generation threshold:

r t ' 2 - (4.19)

Hence
5 _

1 6 α β 2 α - β
JV*

σ*=-0,04, p--- —0,19 f o r μ.. yab;

σ 2 -0,70, (>, -0,22 fo r μ,--0 (α 1 / 2 ) .

T h u s , n e a r t h e t h r e s h o l d , t h e v a r i a n c e s o f t h e i n t e n -

s i t i e s o f t h e o p p o s i n g w a v e s a n d t h e c o r r e l a t i o n c o e f f i -

c i e n t d e p e n d l i t t l e o n t h e d e t u n i n g . T h e a n t i - c o r r e l a t i o n

b e t w e e n t h e o p p o s i n g w a v e s n e a r t h e t h r e s h o l d i s s m a l l .

2 ) A t t h e s t a b i l i t y l i m i t (a = (3) w e h a v e

T h e c o r r e s p o n d i n g e x p r e s s i o n s f o r t h e m o m e n t s a r e

12 a*
(4.21)

T h e s t a t i o n a r y s o l u t i o n o f t h e F o k k e r - P l a n c k e q u a -

t i o n , c o r r e s p o n d i n g t o t h e L a n g e v i n e q u a t i o n s ( 4 . 1 2 ) , i s

( 4 . 1 3 )

+ 2 A (aE\-/

At I = 0, t h e s e e x p r e s s i o n s c o i n c i d e wi th (4 .17) . F a r

f r o m the g e n e r a t i o n t h r e s h o l d ( I / N 3> 1) t h e e x p r e s -

s i o n s (4.21) t a k e t h e f o r m

•J1.
( 4 . 2 2 )
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Hence
σ2 1/3. - 1 ,

i .e . , the opposing w a v e s a r e fully ant i -corre la ted . T h e s e
r e s u l t s co inc ide with those g iven by Smirnov and
Z h e l n o v C 4 o ] .

The amplitude and intens i ty f luctuations in the r e g i m e
of one trave l ing wave are ca lcu lated in s i m i l a r fashion.
In a weak field, the dependence of the amplitude and in-
tens i ty f luctuations on the f ie ld c o i n c i d e s with the c a s e
of two opposing w a v e s . In a s t rong field, the re la t i ve
v a r i a n c e s of the amplitude and intens i ty d e c r e a s e in in-
v e r s e proport ion to the square of the f ield, w h e r e a s in
the c a s e of two opposing w a v e s t h e s e quant i t ies tend to
a constant va lue. T h i s i s connected with the different
f ie ld dependences of the ampl i tude-noise s o u r c e s .

F o r the width of the amplitude-f luctuation s p e c t r u m
in the r e g i m e of one trave l ing wave we obtain the e x -
p r e s s i o n

Δ ο ν - - J A W J - J — - r

N e a r t h e t h r e s h o l d , t h e r e s u l t s c o i n c i d e w i t h t h o s e

g i v e n a b o v e f o r t h e s t a n d i n g - w a v e r e g i m e i n a l i n e a r

l a s e r , the only difference being that Ν in (3.14) and
(3.15) is replaced by N.

Allowance for the rotation of the ring l a s e r and the
coupling of the opposing waves through scat ter ing by the
m i r r o r s leads to the appearance of additional t e r m s in
the equations for the amplitudes and phases of the oppos-
ing waves (2.10) and (2.11):

dip
-3;-

£,,, sin

ι (Φ 4 ΐ

The fluctuations were calculated with allowance for
the coupling i n C 4 0 ' 2 7 ] . It i s shown in [ 2 7 ; ] that in the
synchronization region, allowance for the coupling does
not lead to a noticeable change in the spectrum of the
amplitude fluctuations at ω > Vfi2,- Ω 2 . Calculation of
the form of the spectrum of the amplitude fluctuations
at ω < Vfijj — Ω 2 i s of no interes t , since technical fluc-
tuations a re quite significant in this frequency region.

The t rans i t ions between different operating modes of
a ring l a s e r under the influence of the fluctuations were
calculated ί η [ 4 0 ] for a l a s e r at re s t .

5. FREQUENCY AND PHASE FLUCTUATIONS IN A
RING LASER

We present the resu l t s of the calculation of the fluc-
tuations for the region far from the generation t h r e s -
hold, when the corre lat ion approximation can be used.
Equations (2.11) lead to equations for the phase fluctua-
tions of the opposing waves:

, + D6E2,t
(5.1)

h e r e

c = —i.

F r o m th is we obtain expressions 1 - 2 7 ^ for the l ine width
of e a c h of the opposing w a v e s and the l ine width of the '

beat signal E o c o s [(ψι - φζ)/2 + φ0]:

Δω,,, - (δ<Ί'ί,2)ω=ο - !!• [(C + ΰ2) (δ£?,2)04 2CD (6£,6£s)0 -•- (gph 1,2)
(5.3)

For a weak field (aE 0 -C 1) we obtain from (5.3) and
(5.4)

(5.5)

(5.6)

The s e c o n d t e r m s in the square b r a c k e t s d e t e r m i n e
the contribution of the amplitude f luctuations. We s e e
that when the stability region i s approached, as a -» β,
the role of the amplitude fluctuations (according to the
formulas of the correlat ion approximation) i n c r e a s e s .
However, on the boundary of the instability region the
contribution of the amplitude fluctuations i s of the order
of b 2 , and is consequently small , since b 2 -C 1. The in-
fluence of the amplitude fluctuations was taken into ac-
count i n [ 4 1 ] , the resu l t s of which coincide with formula
(5.6) without the f irst t e r m .

For the regime of one traveling wave we have

Δω =(*>;/£;) (sv
From this we obtain for a weak field

(5.7)

(5.8)

The correspond ing e x p r e s s i o n for a l i n e a r l a s e r d i f fers
from (5.8) only in the dependence on the frequency
deviat ion.

When the coupl ing i s taken into account, an additional
t e r m Μχ 2 6Φ appears in (5.1); here

'tf.,a =
 ! x { - K . , | s i n ( ® 4 « 1 . J ) ± : i i ^ [ ( C ^ - Z > J 3 )

x |m l l S | cos ( © 4 ^ , , ) 4 (CB-ZJ4) | m,,, | cos (Φ4 »,,2)]} •
(5.9)

Accordingly, the equation for the phase-difference fluc-
tuations contains a t e r m Μ5Φ, where

M = M,—Λ/, = ν"Ωί—Ω". (5.10)

The corresponding express ions for the spectra l den-
sit ies of the frequency fluctuations of the opposing waves
and the beat frequency a r e C 2 7 ]

The superscript (0) marks expressions without allow-
ance for the coupling.

It follows from (5.11) that the spectral densities of
the fluctuations of the opposing-wave frequencies and
the beat frequency depend strongly on the magnitudes
and phases of the coupling coefficients, and via Μ also
on the position of the synchronization region inside the
band (see (5.10)), i .e., on the speed of l a s e r rotation.
On the boundary of the synchronization band, when
Μ = 0, the spect ra l density of the beat-frequency fluc-
tuations does not depend on the coupling. Using the iden-
tity



108 K L I M O N T O V I C H , KOVALEV and LANDA

O M,+Ml SB at

FIG. 7. Dependence of the spectral density of the frequency fluctua-
tions with allowance for the coupling via back scattering.

we see that Wl^lfe > 0 at Μ = 0. Consequently the spec-
tral density of the frequency fluctuations of each of the
opposing waves increases as a result of the coupling,
and tends to infinity as ω — 0.

Inside the synchronization band, when Μ * 0, the
spectral density of the beat-frequency fluctuations tends
to zero as ω — 0.

At the center of the synchronization band, at equal
moduli of the coupling coefficients we have MiM2

= — MV4. Consequently, the second term in the first
formula of (5.11) is negative. At ω = 0 we get from
(5.11)

Plots of the spectral densities of the frequency fluc-
tuations of the opposing waves and of the beat frequen-
cies, calculated in accordance with formulas (5.11), are
shown in Fig. 7.

In the presence of coupling, the mean-squared phase
shift of the opposing waves and the phase differences
do not vary in accordance with the diffusion law. Calcu-
lation yields

δφ?,2τ> - = (δφ?,2)ί,
0) Ι τ Ι + ) (Λί | τ | -

Accordingly, the signal spectrum is not of the Lorentz
type but is determined by a more complicated expres-
sion. Without allowance for the amplitude fluctuations,
we obtain for the spectral density of the beat signal

(5.12)

The spectral density of the radiation of each of the
opposing waves is

, ( Ο φ / 2 ) - ί ( ω - ω ο ) ( Ο φ / 2 ) - ί ( ω - ω 0 ) MtM2 (6Φ')^> \ I
χ i ' i [ Μ ; Μ •• * . 2Λ/3 )}•

( 5 . 1 3 )

N e a r t h e b o u n d a r y o f t h e s y n c h r o n i z a t i o n b a n d ,

Μ -C (δΦ)ό0> and the obtained line shape is the same as
in the absence of coupling.

Near the center of the synchronization band, Μ « Ωο
and usually (δΦ)οΟ>/Μ < 1. In this case it follows from
(5.12) that

The beat signal is thus a superposition of a dc com-
ponent and a noise background. The intensity (δΦ2)0/Μ
of the latter is much smaller than the intensity of the
dc component.

From (5.13) we obtain an approximate expression for
the form of the emission spectrum of each of the oppos-
ing waves:

It follows therefore that the form of the spectrum of
each of the opposing waves near the center of the synch-
ronization band, without allowance for the amplitude
fluctuations, is a sum of Lorentz lines, a narrow and
intense one of width Δωι,2 = (6φΙ,2)ο and a broad one of

i? 2
It follows from the foregoing that to measure the line

width near the boundary of the synchronization region it
suffices to measure the spectral density of the frequency
fluctuations at frequencies much higher than Ω ο (on the
order of 103 sec"1), and consequently one goes beyond
the limits of the region of technical fluctuations (of the
order of ΙΟ4—105 sec"1). To determine the line width
near the center of the synchronization band it is neces-
sary to measure the spectral density of the frequency
fluctuations at frequencies much smaller than Ω ο . Such
measurements cannot be carried out directly, owing to
the technical fluctuations.

An exact calculation of the radiation in the case when
the beat frequency exceeds the width of the synchroniza-
tion band entails great mathematical difficulties and has
not yet been carried out. It is to be expected, however,
that with increasing distance from the synchronization
region the role of the coupling of the opposing waves
will weaken and the results will agree with those ob-
tained without allowance for the coupling.

6. MAXIMUM SENSITIVITY OF LASER GYROSCOPE

The question of the maximum sensitivity of an ideal
laser gyroscope (without allowance for the coupling be-
tween the opposing waves through scattering) limited by
the natural fluctuations of the radiation, was apparently
first considered by Brunnet^543. He stated that the mini-
mum measureable frequency difference between the
opposing waves is determined, without allowance for
synchronization, by the natural line width. According to
Brunnet's estimates, this minimal frequency distance
corresponds to a laser rotary speed on the order of
0.1 deg/hr. However, as correctly noted by Rozanov'·58-',
the maximum sensitivity of a laser gyroscope is deter-
mined not only by the natural line width but also by the
measurement time.

It is shown inC 5 9 ] that the average spread of the beat
frequency far from the region of synchronization is de-
termined by the formula

s o _ «Φ — ( Φ » ; ) ' / 2 -ι ^Acoph
O W - 2 ^V Τ •

T h e b a r d e n o t e s a v e r a g i n g o v e r t h e o b s e r v a t i o n t i m e T ,

and Δω η is the width of the beat signal line. Far from
threshold it is determined by formulas (5.4) and (5.6).

)m^3.e-ui>"-)0".».υXfg(ω) + 1 ^®2}ζ21. (5.14) At Δωρη/2ττ = 10 2 Hz (which corresponds to a power
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Ρ = 0.25 mW at ΔωΓ/2ττ = 106 Hz, 1 + (R°/D°) = 5 and
μ = y a b ) and Τ = 102 sec we have

The noise-source intensit ies ξ and ξ for the

The corresponding minimum l a s e r rotation speed is
determined by the express ion

60 = SQcL/2<a0S,

where L i s the l a s e r p e r i m e t e r , S the a r e a of the con-
tour, ω 0 i s the oscillation frequency. Assuming
L = 40 cm, S = 100 cm 2 , and ω 0 = 3 χ 101 5 r ad/sec , we
obtain δό = 10"2 d e g / h r .

InC58,59] t h e y i n v e s t i g a t e d also the l imiting sensitivity
of a l a s e r gyroscope with the speed of rotation meas-
ured within the synchronization region by a phase
method. The following express ion was obtained for the
phase-method e r r o r , which is character ized by the var-
iance of the phase difference:

At Τ > l / M , the limiting sensitivity of the phase method
coincides in o r d e r of magnitude with the l imiting sensi-
tivity of the frequency method.

On the other hand, if Τ «C l / M , then

and consequently at smal l measurement t i m e s the l imit-
ing sensitivity of the phase method turns out to be higher
than that of the frequency method. This resul t i s phys-
ically obvious, for at short measurement t imes the
averaging in the phase method is performed by the sys-
tem itself within a time on the o r d e r of l /M, whereas
there is no such averaging in the measurement by the
frequency method.

7. AMPLITUDE AND PHASE FLUCTUATIONS IN A
SOLID-STATE LASER

It was a lready noted in Chap. 2 that in a solid-state
l a s e r the relation between the dissipative p a r a m e t e r s
y a , y b , y a b , and Δ ω Γ i s different than in a gas l a se r .
In this case γΆ, y b <C Δ ω Γ Ι so that one cannot assume
that the level populations " fo l low" the field a s in a gas
l a s e r . Consequently, in the calculation of the population
fluctuations, meaning also the polarization fluctuations,
the field cannot be regarded a s determined and the t e r m

6 p ( i n d ) c a n n o t b e l e f t o u t f r o m f 0 r m u l a (2.8). Thus, the

induced p a r t of the polarizat ion i s given by

f(ind) = ( p ) + 6/)(ind)_ (TJ^

We shall p resent r e s u l t s for two reg imes , standing
wave and traveling wave. When (7.1) i s taken into ac-
count, Eqs. (2.10) and (2.11) take the form

a - 2 π ω«κ" . + ωοζ Ϊ Μ, (7.2)

(7.3)

The noise sources differ from £ a and ξ ^ in (2.10)

and (2.11) by the additional t e r m s

bal,2 — Sal,2

^ φ ! , 2 — 1,2 ~

?ai,2 *

E(ind)
(7.4)

(7.5)

p ,
traveling-wave and standing-wave r e g i m e s were calcu-
lated by us e a r l i e r (see (2.28), (2.30), (2.15)).

We therefore need to consider here only the induced
fluctuations. F o r the induced p a r t s of the fluctuations of
the density matr ix e lements with the field given in the
form (2.9) we obtain a l inear ized system of equations in
which we can no longer neglect the field fluctuations'-29-'.

Recognizing that the relation y a b 3> Δ ω Γ , ya, y b i s
satisfied in a solid-state l a s e r and assuming for s im-
plicity 7 a = y D ! we obtain in the two cases the following
express ions for the Four ie r components of the induced-
fluctuation s o u r c e s :

1) Traveling-wave reg ime:

t(
(ind)

I
al ί'ω

ISph )

l-y*(l-gaE»)

2 ίω :-ya(i-vgaEl)

' Yu!>

2) Standing-wave reg ime:

indH

Ί i<" Vl-,-!.iT(, V«)] V I -

μ /t(indK

(7.6)

(7.7)

£)„, (7.8)

(7.9)

T h e a m p l i t u d e and p h a s e f l u c t u a t i o n s of a s o l i d - s t a t e
l a s e r w i l l a l s o be c o n s i d e r e d f o r two r e g i m e s .

7 . 1 . T r a v e l i n g - w a v e r e g i m e . S u b s t i t u t i n g the n o i s e
s o u r c e s i n (7.2) a n d t a k i n g (2.28) in to a c c o u n t , we o b t a i n
a n e x p r e s s i o n f o r t h e s p e c t r a l d e n s i t y of the f ie ld a m p l i -
t u d e f l u c t u a t i o n s 1 1 2 9 1 :

—ί-5ω;(ξ;)0. ν ( · χ υ /

T h e c u r v e of t h e s p e c t r a l d e n s i t y of t h e f i e l d a m p l i t u d e

f l u c t u a t i o n s c a n b e a p p r o x i m a t e l y r e g a r d e d a s a s u m of

t w o l i n e s : a b r o a d l i n e

and a n a r r o w p e a k a t t h e f r e q u e n c y

(7.12)

(when Δ(ι'Γ > γΆ we have w m a x « VAw ry agaEg). The
width of the peak at half-height i s Δω = y a ( l + gaEo),
and the spectra l density of the field fluctuations at the
maximum is

( )

It i s s e e n f r o m (7.12) t h a t f o r a p e a k t o e x i s t on the
a m p l i t u d e - f l u c t u a t i o n s p e c t r a l - d e n s i t y c u r v e it i s n e c e s -
s a r y t o s a t i s f y t h e c o n d i t i o n

Γ < gaE\< ΔωΓ/γα (7.14)

T h i s c o n d i t i o n i s p r a c t i c a l l y a l w a y s s a t i s f i e d in a so l id-
s t a t e l a s e r . T h e a p p e a r a n c e of a p e a k i n t h e s p e c t r u m
of t h e a m p l i t u d e f l u c t u a t i o n s of s o l i d - s t a t e l a s e r s i s due
t o the l a r g e i n e r t i a of t h e w o r k i n g - l e v e l p o p u l a t i o n s . In
gas l a s e r y a ~ y a b 2> Δ ω Γ and the amplitude of the
radiation field, at small deviations from the stationary
state, approaches the stationary state aperiodically. In
solid-state l a s e r s , since y a <S Δ ω Γ <€. >-ab, the ap-
proach to the stat ionary state i s osci l latory with fre-
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q u e n c y w m a x . A n a l o g o u s p h e n o m e n a a r e o b s e r v e d a l s o

i n v a c u u m - t u b e o s c i l l a t o r s w i t h i n e r t i a l n o n - l i n e a r -

i t y ^ .

T h e e x i s t e n c e o f a p e a k of t h i s t y p e i n t h e e m i s s i o n

of lasers was indicated i n C 2 0 ' 2 9 ' 5 1 ' 6 2 3. κ was observed
experimentally in [ 5 2 ] .

Integrating (δΕ 2)ω with respect to the frequencies, we
obtain an expression for the field-amplitude variance

2π<ίθ)0 ι\.\ gaEf, 4»r 1 \ / - , 1 , 1 Λ» \
^-T-^Ei) {"•-t--z-r-2iw)·

For the variance of the number of photons we have ac-
cordingly

I a(ri> , Δ

where

This result coincides with that given by Laxf-20].
We consider now the phase fluctuations in a solid-

state laser. From (7.3) we obtain for the phase fluctua-
tions the equation

<£. = — % [$>•» + l'pf - χ-βί]. (7.17)

Using (7.9), (2.28), and (7.12) we obtain for the spect ra l
density of the frequency fluctuations the express ion

l F (!!)„]. (7.18)

This yields for the emission line width

This express ion coincides with that obtained
The spectra l density of the frequency (7.18) was obtained
i n [ M 1 . It follows from this formula that when μ f 0 the
amplitude fluctuations on the frequency-fluctuation spec-
tral density curve give rise to a peak at the frequency

"max-
On the basis of (7.18) we can find the form of the

emission spectral line, in analogy with the procedure
used for the gas laser. The difference lies in the fact
that the broad line due to the amplitude fluctuations has
two symmetrically located small peaks of width γ&.

7.2. Standing-wave regime. In this case the calcula-
tion of the fluctuations must be carried out with allow-
ance for the spatial modulation of the populations. In the
general case the result is quite complicated1-47-', and we
present therefore only the result for the case of a weak
field, from which we can assess the role of the popula-
tion-difference modulation.

In a weak field we have for the spectral density of
the amplitude fluctuations

( ω * - i<Oj γαί!.Εί5) -j - a'

I f n o a c c o u n t i s t a k e n o f t h e m o d u l a t i o n , t h e n u m b e r 3

i n t h e d e n o m i n a t o r i s r e p l a c e d b y 2 . T h i s l e a d s t o a

corresponding change in the value of the spectral den-
sity at ω = 0 and in the value and position of the maxi-
mum. The reason is that when allowance is made for
spatial modulation of the populations the laser radiation
intensity depends somewhat differently on the excess of

the pump level over threshold than when allowance is
made for this modulation1-471. The dependence of the
amplitude-fluctuation spectrum on the excess of pump
over threshold is the same for both cases.

8. CONCLUSION

As already indicated in the Introduction, natural fluc-
tuations of laser radiation can be separated by spectral
methods against the background of slower technical
fluctuations. We have presented in the review the re-
sults of a calculation of the natural fluctuations for dif-
ferent emission regimes of gas and solid-state lasers
at practically arbitrary ratios of pump to threshold.
The main results consist in the following. We have ob-
tained the spectral characteristics of the laser emis-
sion. In particular, we have determined the form of the
spectrum and the emission line width. In the simplest
case, just as in a vacuum tube oscillator, the emission
spectrum is a superposition of two lines. One, narrow
and intense, is due to the fluctuations of the emission
frequency. Its width, depending on the radiation power,
is of the order of ΙΟ'1—10'3 Hz. The second line, broad
and weak, is due to fluctuations of the emission ampli-
tude. Its width is of the order of 105-107 Hz. The width
of the narrow line (at a specified observation time) de-
termines the limiting sensitivity of the laser gyroscopes.
The amplitude and frequency fluctuations of opposing
waves in a ring laser have been considered in detail.
The fluctuations in gas and solid-state lasers were cal-
culated by different methods.

For an He-Ne gas laser the polarization has time to
follow the field (the inequalities y a ~ y b ~ y a b » Ao>r)
are satisfied, so that the problem of calculating the
natural fluctuations of the laser radiation can be reduced
to a solution of a system of equations for the field am-
plitudes and phases with random sources. The main
task is to determine the statistical characteristics of
the random forces. The spectral densities of the fluctua-
tion sources can be represented in the form of a sum of
two parts. One of them is due to the equilibrium fluctua-
tions of the field in the resonator, and the other to the
medium-polarization fluctuations connected with the
spontaneous emission. The equilibrium field fluctuations
are determined on the basis of the Kallen-Welton form-
ula. The polarization fluctuations are non-equilibrium.
Their spectral density is indeed one of the main prob-
lems in the calculation of natural fluctuations in a laser.
Since the number of photons in the resonator in the gen-
erated mode is large (~103) even at the very threshold
of the generation, we can use the classical field equa-
tions. The quantum character of the radiation of the
atoms of the working medium is accounted for through
the spectral densities of the fluctuation sources and
through the polarizability of the medium. Thus, this
theory is semi-phenomenological.

However, calculations based on the semi- classical
equations are simpler and therefore make it possible to
consider more complicated cases. We note also that in
quantum theory, as a rule, one calculates only the mo-
ments of the numbers of photons. The calculation of the
spectral characteristics of the fluctuations within the
framework of the quantum theory is a complicated prob-
lem, but its solution on the basis of the semi-classical
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theory entai ls no difficulty. The use of the semi-c las s-
ical theory makes it possible to calculate fluctuations
in l a s e r s by the stat ist ical methods used in the theory of
radio osci l la tors .

The spectra l densi t ies of the amplitude and phase
fluctuations can be obtained at not too high an excess
above threshold by using corre lat ion theory, and near
the generation threshold by using the Fokker-Planck
equation. In the case of a ring gas l a ser , there a re two
regions where it i s necessary to employ the method of
the Fokker-Planck equation in the investigation of the
amplitude and intensity fluctuations of the opposing
waves. These a r e the region near the generation t h r e s -
hold and the region of smal l deviations of the generation
frequency from the center of the Doppler l ine, where
the two-wave regime becomes unstable.

When considering the frequency and phase fluctua-
tions in a ring l a s e r , it i s necessary to take into account
the coupling between the opposing waves. This coupling
determines the synchronization region in which the fre-
quencies of the opposing waves become locked.

In the case of a solid-state l a s e r , in view of the fact
that the polarization of the medium a s s u m e s i t s steady-
state more slowly than the field amplitude, it i s neces-
sary to take into account a lso induced fluctuations,
namely polarization fluctuations due to the field fluctua-
tions. The stat ist ical c h a r a c t e r i s t i c s of the radiation
a r e then significantly a l tered.

The method developed above for calculating natural
fluctuations in l a s e r s is sufficiently general and can be
used successfully to calculate non-equilibrium fluctua-
tions in other sys tems.

APPENDIX 1

We denote by q the aggregate of var iables of the atom
(quantum numbers η and coordinates r and p) and by
P(q> q', t) = 0*(q, t )^(q ' . t) the operator density matr ix .
Here i/)+(q', t) and ip(q, t) a r e quantum wave functions
satisfying known commutation re lat ions. Using these
commutation relat ions, we can write1-56-1

••·'»

w e h a v e i n t r o d u c e d h e r e t h e s y m b o l f o r t h e s e c o n d d i s -

t r i b u t i o n f u n c t i o n

Ft — (ty+ {fj'iy t) ψ+ (72. 0 Ψ (?1· ') ψ (*7̂ > '))· \ ί

T h e f u n c t i o n F 2 i s c o n n e c t e d w i t h t h e c o r r e l a t i o n f u n c -

t i o n G b y t h e r e l a t i o n

T h e s p o n t a n e o u s f l u c t u a t i o n s a r e c a l c u l a t e d i n a n a p -

p r o x i m a t i o n i n w h i c h t h e c o r r e l a t i o n f u n c t i o n i s n e g l e c -

t e d .

F r o m ( 1 ) a n d ( 2 ) a t G = 0 , a f t e r s y m m e t r i z i n g w i t h

r e s p e c t t o t h e p a r t i c l e s , w e o b t a i n f o r t h e d e v i a t i o n s

δρ = ρ — {β) the express ion

(4)
<6ρ(ϊΐ, ?;, t) δρ (<7Z, 72, ()> = - 5 j y - [ 8 ( i i — ϊ ί ) ( Ρ ( ϊ 2 . ?ί. '))

-: 8 ( 7 2 — ? ί ) ( ρ ( ϊ ι . ?2. <)>—2<p(?f. ?;. Ο Χ Ρ ( Ϊ 2 . ϊ ί . ο»-

I f t h e m o t i o n o f t h e m a s s c e n t e r s o f t h e a t o m s i s

d e s c r i b e d c l a s s i c a l l y , t h e n w e c a n c h a n g e o v e r f r o m t h e

f u n c t i o n s < p ( q ' , q , t ) ) t o t h e f u n c t i o n s P n n l ( r , p , t ) ,

where r and ρ a re the coordinates and momentum of the
m a s s center. As a resul t , express ion (4) becomes

(8pnm (r, P, ') «!>„.„,. ('", P', 0> '

= -2S-W'--r')6(p-p')l6mn.Pnm.('·. P> i>--'WPn'm(r.fJ. ')!

-2p»,n(r, p, t)pn,m,(r', p', I)).
(5)

Thus, express ion (5), which is used in the text to calcu-
late the spectra l densit ies of the amplitude and phase
fluctuation sources , holds for G = 0. By the same token,
the fluctuation sources a re determined by the motions
of the individual a toms. The corre lat ions themselves
a r e expressed in t e r m s of the fields produced by these
sources . This question is discussed in g r e a t e r detail
i n C 2 8 ] . The last t e r m of the right-hand side of (5) i s im-
portant only when P a + Pb ~ * · Allowance for this
t e r m in a two-level l a s e r scheme leads to the c o r r e c -
tion obtained by Kazantsev and Surdutovich to the form-
ula for the var iance of the number of photons'-37-1.

APPENDIX 2

We present an express ion for the spectral densit ies
of the polarization noise at zero frequency for the case
when the amplitudes of the opposing waves differ l i t t le,
i .e. , when ( E x - E 2)/(Ei + E2) < 1. At Ei = E 2 = Ε the
following express ions were obtained in1-26 .

/ t(n)2, 2 π Λ A 0 ) P f B° (ι ι gFaEl \ y- gFaEl ~\ /fi\
^al, 2)0 V(Jlg y fl0 \»-r

gFa
( π ) 2 . 2 π * Α ω Ρ

5φ1,2>— γω ί— (
1 £>» \

1 4-aEl — γ- gFoEZ Ι. . μ2

~ ^ 7 ΤΤΤ V ~ tii,

T h e f u n c t i o n s fx a n d f2 a r e d e t e r m i n e d b y t h e e x p r e s s i o n s

ft — l ?—(> — «) , . j . Η 1 : Γ ° [ \-^Γζ-~1) (l + 2aE8)

0 μ* (2μ'/γάί) — (l+2a£g) η
— ζ — ^ ,

l-t-F

In a s t rong field, the spect ra l d e n s i t i e s of the ampl i-
tude and phase c o r r e l a t i o n s of the opposing w a v e s a l s o
differ from z e r o . They a r e d e t e r m i n e d by the e x p r e s -
s i o n s

2πδ Δω

(7)

LIST OF SYMBOLS

ω0—generation frequency
Q—figure of mer i t of resonator

Δ ω Γ = ω 0 / Ο — r e s o n a t o r band width
V—resonator volume
L—resonator length

Δω = 27ΓΔ—laser emiss ion line width
a, b—indices of working levels (a—upper level),

Pa(v)> P b ( v ) ' Pab(v)> P b a ( v ) - m a t r i x " d e n s i t v e lements
for the working levels of an atom possess ing a
velocity v.

Pa° '( v ) ' P h O ) ( v ) ~ l e v e l populations in the absence of a
field,

χ (e~ m v / 2 k T /V2wkT/m)dv-working-level popula-
tions averaged over the velocit ies.
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D(v) = p a (v) - p b(v)—difference between the populations
of the working levels (D° = p a - p b ) ,

R(v) = P a (v) + p b (v)—sum of populations of working
levels

γ&, y b , y a b — r e l a x a t i o n constants of the corresponding
densi ty-matr ix e lements ,

ν · = .

μ = ω 0 - ct>ab— deviation of generation frequency
from the center of the gain profile;

g = ( ^ a b ^ 2 + yab)> κί, 2> t i ' ,2-rea l and imaginary
p a r t s of the polarizability;

a = (e 2 | ro b | 2 /6K 2 >' 2 )— saturat ion p a r a m e t e r ;
d = (47r2e in|rab |

2D°/3nV27rkou)—pump p a r a m e t e r ;

Φ(χ) = /(2/iT)fe~^^2dK-probability integral
0

Dj,(z)—parabolic cylinder function.
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