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A review is presented of theoretical and experimental results of an investigation of natural fluctua-
tions in gas and solid-state lasers. All the known theoretical results are obtained by a single method
based on the equations of the quasiclassical laser theory. In the calculation of the fluctuations, the
equations for the amplitudes and phases of the field are regarded as Langevin equations with suitably
introduced fluctuation sources. The sources of the thermal fluctuations of the resonator are determined
by the Kallen-Welton formula. The sources of the non-equilibrium fluctuations of the polarization of
the working medium are calculated on the basis of the equations for the density-matrix elements. The
fluctuations of the amplitudes and phases in linear and ring lasers are considered under arbitrary
pump-to-threshold ratios. The natural line width of the laser radiation is calculated. The coupling of
opposing waves in a ring laser, due to scattering by the mirrors, is taken into account. The maximum
sensitivity of a laser gyroscope is estimated. The results of the theory are compared with the experi-
mental data, A brief description of the status of the problem of calculating the natural fluctuations in
lasers and an estimate of the possibilities of the quasiclassical method of calculating fluctuations are
given in the conclusion.
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1. INTRODUCTION

THE investigation of fluctuations in lasers is neces-

sary in order to estimate the stability of their radiation,

and to determine the maximum capabilities of laser de-
vices, for example the maximum sensitivity of an opti-
cal gyroscope. It is customary to distinguish between
technical and natural fluctuations in lasers. Technical
fluctuations are due to instability of the resonator and
pump parameters. Natural fluctuations are due to the
atomic structure of the working medium and of the
resonator and to the quantum character of the radiation.
Technical fluctuations can be greatly decreased by im-
proving the apparatus, whereas natural fluctuations are
independent of the apparatus. Technical fluctuations are
much slower (their spectral width is of the order of
10°~10* Hz) than the natural ones. This makes it possi-
ble to separate weak natural fluctuations against the
background of the stronger technical fluctuations.
Considerable experimental and theoretical material
on natural fluctuations in lasers has been accumulated
by now. The lack of a unified approach and the complex-
ity of the theoretical calculations prevent the experi-
menters and theoreticians from using the available ma-
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terial unless they are specialists in this field. This has
necessitated a review of the results obtained by one of
the simplest possible methods and a comparison of these
results with calculations performed by other more com-
plicated methods. By the same token it is possible to
understand to some degree to what extent it is necessary
to use more accurate but much more cumbersome calcu-
lation methods.

The simplest approach, from our point of view, is to
start with equations that serve as the basis for the
quasiclassical laser theory. In the calculation of fluc-
tuations, the deviation from Lamb’s quasiclassical
theory lies in the fact that the initial equations are
treated as Langevin equations with suitably introduced
fluctuation sources. Before we proceed to a consistent
exposition of the basic material, let us indicate a num-
ber of experimental and theoretical investigations de-
voted to natural fluctuations of the radiation of gas and
solid- state lasers.

The first attempts to measure the natural line width
of an He- Ne laser were made by Javan, Ballik, and
Bond-*! and Jaseja, Javan, and Townes[ 1,

A theoretical estimate of the line Wldth was carried
out in accordance with the formula of Shawlow and
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Townes''®]

Aw == hay (Awp)2/2P #). (1.1)

At P =1 MW and at resonator losses on the order of 1%,
the line width is Aw/27 ~ 107 Hz. It was established
in?J that the line width at these values does not exceed
20 Hz. Accordmg to the measurements of

Leikin et al. , the line width of the He-Ne laser is of
the order of 3. 5 Hz. This means that the authors of the
cited papers measured not the natural line width but the
technical one.

Zaitsev and Stepanovi®! measured the natural line
width far from the excitation threshold, at different
values of the power, with sufficient accuracy. The line
width near the excitation threshold was measured by
Siegman and Arrathgon[ 1, The experimental results
oft**1 give a rather complete idea of the dependence of
the natural line width of the laser radiation on the
power. Int**3, the line width was determined by meas-
uring the spectrum of the difference frequency of two
lasers, one of which was taken to be the standard.
Egorov[7 proposed a different method of measuring the
line width, namely the method of intermode beats. The
results oft***) will be considered in greater detail later
in the article. The line width of solid-state lasers has
apparently not yet been measured.

The measurement of the natural fluctuations of the
radiation intensity is the subject oft®'%}. Freed and
Haus'®! obtained the spectral densities of the intensity
fluctuations at different values of the average power.
For the region above the lasing threshold, a more de-
tailed investigation of the intensity fluctuations was car-
ried out by Andronova and Zaitsevi® ], Zaitsev(®} in-
vestigated also the intensity fluctuations of the opposing
waves in a ring laser. He measured, in particular, the
spectral density of the correlation coefficient of the
opposing-wave intensities.

The results of a number of measurements of the am-
plitude fluctuations in gas lasers are given in the review
articles of Smith and ArmstrongI . Arecchi et al.[%*%]
investigated the statistics of the photons near the gener-
ation thresholds in the stationary regime, and deter-
mined the width of the spectrum of the amplitude fluc-
tuations near the threshold. Analogous investigations
were carried out inl**’**] for the transient regime.

Let us indicate the main theoretical calculations of
the natural fluctuations in lasers. In the first papers by
Shawlow and Townes''®] and by Lamb’*"? on the theory
of the natural line width of laser radiation, only thermal
fluctuations of the resonator were taken into account.
The results oft'®'”) differed by a factor of 2. Lamb’s
formula agreed with the results of subsequent calcula-
tions.

Simultaneous allowance for both the thermal and the
polarization noise in the calculation of the line w1dth was
apparently made first by Haken'*], Haken et al.}**? | and
Lax'®*), The result of the calculatlon can be represen—
ted in the form

hwg (Awp)? 1 PatPb
Aw= 00 ( )
2p

nty + 2 Pa—Pp (1.2)

*A list of symbols is given at the end of the article.

The first two terms, which contain n + (1/2), take into
account the contribution due to the equilibrium thermal
fluctuations in the free resonator. The last term takes
into account the contribution of the non-equilibrium
fluctuations of the polarization of the working medium
with allowance for the zero-point oscillations.
Formula (1.2) can be rewritten in the form

_ ho (Awp)z Pa
Ao=—m7p ("+ Pa—po ) :

This shows that the summary contribution of the
zero-point oscillations to the line width is equal to
zero. Indeed, the quantity n is the average number of
thermal- radiation photons, and Pa/( Pa — Pp) is that part
of the polarization fluctuations which is due to the spon-
taneous emission.

Formula (1.2) in an arbitrary field is valid only for
the case of immobile atoms in the regime of one travel-
ing wave. For the case of moving atoms, it is valid only
in a weak field, when the field can be neglected in the
calculation of the polarization noise. In a strong field,
the result of the calculation of the emission line width
depends on the form of the field in the resonator (travel-
ing wave, standing wave, opposing waves) and on the
character of the thermal motion of the atoms; formula
(1.2) is therefore no longer sufficient.

All papers on the theory of natural fluctuations in
lasers can be broken up into two groups that differ from
each other in the approach used to the solution of the
problem, The first group includes papers in which the
initial equations constitute a system of operator equa-
tions for the density matrix elements and the field.
Fluctuation sources, whose intensity is calculated in
one manner or another, are introduced into these equa-
tions in a suitable manner. The result is either a sys-
tem of Langevin equations or the corresponding Fokker-
Planck equation. Since the average number of photons
in the resonator turns out to be quite apprec1ab1e even
at the generation threshold (according to Arecchil® , it
is of the order of 4000), it is possible to use for the
field the classical Maxwell equations with random sour:
ces.

Such an approach, with one modification or another,
was used by Lamb[” Haken'*)| Haken et al.l'®J,
Lax"®?, Sauerman[“] Haust?) Fleck[“] Bernshtem
Andronova, and Zaitsevt®®] , Rlskenmj the present au-~
thorst®®>°) and others.

A different approach is used in the second group of
papers, and is based on the approximate solution of the
equations of the first and second distribution functions
of the atomic and field variables. This group includes
the papers of Glaubert®!? Korenmancsz] Lamb and
Scull Fleck!™) wi 11ist*) | Brunnert®, Kazantsev
and Surdutov1ch‘:37] 'Weidlichl*] ,and a number of
others.

In many of the papers listed here, the calculations
are valid only for the case of weak fields. In most pa-
pers, no account was taken of the motion of the active
atoms, and the difference between the fluctuations in the
traveling- and standing-wave modes is not brought out.
Allowance for these phenomena is quite important and
leads to a number of new interesting effects.

We note also a cycle of investigations by Riskent*

160]
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who calculated the field amplitude and phase fluctuations
in a region close to the excitation threshold. Risken set
up a Fokker-Planck equation, solved it, and obtained the
spectral characteristics of the fluctuations near the ex-
citation threshold. Such a problem is mathematically
quite cumbersome, since it becomes necessary to find
a nonstationary solution of the Fokker-Planck equation.
In"**), and also in"*®}, it was shown theoretically that the
spectrum of the amplitude fluctuations has a near-
Lorentz shape even near the generation threshold. This
result is quite useful, for if we assume a certain spec-
trum shape beforehand, then we can calculate its param-
eters by starting from the stationary solution of the
Fokker-Planck equation, which is much easier to obtain.
A number of results for a ring laser were obtained
by Smirnov and Zhelnov'*®” | and by Belenov*'?, but only
for the weak-field case. The fluctuations were calcula-
ted in“**! by a quantum approach similar to that used by
Kazantsev and Surdutovich®?. Inf*? the fluctuation
sources were introduced into the wave equation for the
field in the form of specified external forces. The in-
tensity of these sources was determined in the same
manner as inf**7,

2. SOURCES OF FLUCTUATIONS IN THE EQUATIONS
FOR THE AMPLITUDES AND PHASES IN LINEAR
AND RING LASERS

The fluctuations can be calculated on the basis of the
system of equations for the field and the density matrix
elements of the working levels p,(V), pp(V), Pap(v), and
pba(v):

a a i
(7‘“ Uﬁ—r') Pa:%(rabpba*pabrl)ﬂ)E—‘va (pa—pt’;)’ (2'1)

a9 a 2
(3 +07r) Po=—5 (rasPra—Parrea) E— (oo —08),  (2.2)
) o =t —pa) E 2.3
(—a't—+v'g+‘mab+ 'Yab) Pab= rap (Pp— Po) £, ( . )
Poa= P, (2.4)

92E 0K azp .

R %W_cZAE: —dhn T @B, (2.5)

The polarization vector P(r, t) is connected with the
density matrix elements by the well-known relation

P(r,t) :en S (FbafPab + FasPpa) dv. (2.6)

Equations (2.1)—(2.5) contain four dissipative coeffi-
cients: y,, ¥y, ¥ap» 2nd wo/Q, which are assumed
known within the framework of the description consid-
ered here. The quantities y4, yp, and v, depend on
the pressure. The experimentally obtained plots of
Yar ¥b» and ¥4 against the pressure are given in the
paper by Fork and Pollak'*?7 (Fig. 1). For this reason,
the initial equations (2.1)—(2.5) are semiphenomenologi-
cal.

Within the framework of the initial equations, the in-
fluence of the collisions is taken into account only via
the coefficients y,, vy, and y4,. A more detailed ac-
count of the influence of collisions in lasers is given in
the papers of Rautiant®?, Lamb et al.l**?, and
Stenholml®

% MHz
Vas
/4

FIG. 1. Plots of 74, 7p, and v, vs.
helium pressure. 4 =215 MHz,/2ku= 4
1000 MHz. Vi

Ya

¥ #o 25 W
p, mm Hg
We note one more limitation contained in the initial
equations. In the equation for p,,, no account is taken of
the increase of py, as a result of the spontaneous transi-
tion from the level a, i.e., no account is taken of the
additional term Aﬁpb, where A% is the Einstein coeffi-

cient. Usually A% <K Yar Ypr SO that the role of this term
can be neglected.

Field fluctuations in lasers are due to two causes,
The first is connected with thermal fluctuations of the
field in the empty resonator. To take these fluctuations
into account, a random source E(T) is introduced in the
field equation (2.5).

The spectral density of the random thermal source
E(T) is determined on the basis of the Kallen-Welton
formulal*®»**]

8hi Aw,

(Em2), = o (;L_-i—%). 2.7

The second source of the field fluctuations is the
polarization noise. The polarization vector P in (2.5)
can be represented in the form of a sum of two parts:

P = pluamy 6P, (2.8)

In this expression P(ind)(E) is the induced part of the
polarization or the response of the system to the total
field E = (E) + 6E, and 6P is the polarization fluctua-
tion due to the atomic structure of the working medium,

The concrete expression for the spectral density of
the polarization noise depends on the form of the field,
i.e., on the operating conditions of the laser. We pre-
sent below results for three regimes: the traveling-
wave regime, which is realized in ring lasers when one
of the opposing waves is suppressed, the standing-wave
regime in a linear laser, and the regime of two opposing
waves in a ring laser.

The amplitude and phase fluctuations of the laser
radiation depend significantly on the ratio of the char-
acteristic temporal parameters of the working medium
and of the field in the empty resonator. Three cases
can be separated:

1) Gas laser, Ya~ Yb "~ Yab > Aw,.

2) Molecular generator, Ya ™~ Yp ™~ Yap KAw,.

3) Solid-state laser, y, ~ yp K Aw,. K yqp.

In a gas laser, the polarization becomes established
much more rapidly than the field. As a result, the field
can be regarded as constant during the time of estab-
lishment of the polarization. Let us consider this case
first. Other cases will be considered in Chap. 6.

When the field is specified in the form of two oppos-
ing waves
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E=1

3 (E e~ itoot=hordq1) E,e—ilootthor+02) Lo ¢ )

(2.9)

we obtain from the field equation (2.5) the following
equations for the amplitudes and phases (without allow-
ance for the coupling via the scattering):

s o 2 (4diat ) Eretodara () (2.10)
T Sl g g B2 (0 (2.11)

here k' and k” are the real and imaginary parts of the
complex polarizability, determined from the relation

({ind s . .
Py = (u, 2+ ix12) Ey, 0

(2.12)

gam and ‘g’phm are the sources of the fluctuations of

the amplitude and phase. They are defined by the ex-
pressions

Bar,o= — % S (4me 8P -+ eEM) sin (gt F kor +0) dr,

(2.13)
Eph 1,2= — 5~ S (47te 6P 4 eE™M) cos (w0t == kor -+ @) dr.

The upper sign corresponds to the first wave and the
lower to the second, and e is a unit vector directed along
the vector E. In (2.13),

8P =en { (754800 + rasbpe) do (2.14)

No account is taken of the coordinate dependence in
egs. (2.10) and (2.11) for the amplitudes and phases.
Such an approximation is justified when the quasistation-
ary condition is satisfied, whereby the characteristic
time Q/wo ~ 107° sec greatly exceeds L/C ~ 107 sec—
the time of travel of the wave in the resonator.

In accordance with (2.5), (2.8), and (2.13), we repre-

sent £ and & in the form of sums of two parts:

a1,z phu,z

L=, Bt

here E;T)h are the parts due to the thermal noise of the

free resonator and aE(P)h are the polarization parts.

In a gas laser, the conditions Aw, Aw,_, Aw_ K ku
are satisfied (Awgy is the width of the amphtu e-fluctua-
tion spectrum and Aw is the width of the laser emission
spectrum). It suffices therefore to know the spectral
densities of the thermal and polarization noises at zero
frequency. It is assumed here implicitly that the spec-
tral density of the fluctuation noises decreases mono-
tonically with increasing w. In the presence of a field,
the source fluctuation spectrum, generally speaking, is
not monotonic. Using immobile atoms as an example, it
can be shown that this circumstance is not essential.

From (2.7) and from the definitions of g(aT)h it follows

0y
that the spectral density of the thermal parts of the
fluctuation sources are given at zero frequency by

4k Aoy (r_z+ 1)

(T)2) __ 2(M)2y =
(gax,z)ow(%#,zo— Ve =)
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(EPED0 = (B = @Rk = 0. (2.15)

To calculate the spectral densities of the sources of
the polarization noise, we represent the density matrix
elements in the initial equations in the form of sums of
induced and fluctuation parts.

The equations for the induced parts coincide with the
initial equations (2.1)—(2.4). The equations for the
fluctuation parts differ from (2.1)—(2.4) in that there
are no terms with the functions p” and p{®

The system of equations for the induced and fluctua-
tion parts is solved under the assumption that the diag-
onal density matrix elements do not depend on the coor-
dinates and depend slowly on the time, while the off-
diagonal elements are represented by sums of two op-
posing waves.

In the case of a weak field, such an approximation for
a gas laser with inhomogeneous line broadening can be
rigorously justified. For a strong field at arbitrary
parameters in the regime of two opposing waves, this
approximation may turn out to be incorrect.

For the induced part of the polarization, the solution
with allowance for all the spatial harmonics was ob-
tained in****), It is shown in[*®? that the contribution of
the second and higher spatial harmonics is proportional
to the parameter (y*/y5y,)aE".

For a laser with homogeneous line broadening, under
the condition ku < y ab’ the role of the spatial modula-
tion turns out to be noticeable. This is due to the fact
that in this case the presence of thermal motion does
not lead to a noticeable smoothing of the standing wave.
In the approximation ku < y,, it is possible to obtain
an exact expression for the polarizationt**"3,

We consider first the case of inhomogeneous line
broadening. At not too low pressures, the parameter
v*/vap for an He-Ne laser is small. This is seen from
Fig. 1. Thus, for example, for a mixture pressure
2.5 mm Hg we have y%/y5 ~ 0.1. The results consid-
ered here correspond to the zeroth approximation in
terms of this parameter*. In this approximation we put
(2.16)

Pap = o (1) eitoot—hor+a) | Eg(t)e—imatﬂarﬂ».

We now write expressions for the polarization- noise
source intensities in terms of the spectral densities of
the fluctuations 8p,y,. Substituting (2.14) in (2.13) and
representing 8p,), in the form (2.16), we obtain

i 8 2e? 1
EDE gm0 = S T 550050

(rap)®
T Tranl®

8n%ent | r, i
(E‘P’ (P)) - nenslr b [? S[(apu 55 om0

(épéz’ﬁp“))m ol dvdv’,

e (85 (2894 ) omol d v’

VD)= VY =0;

*For the regime with one traveling wave, the results presented below
are valid for an arbitrary ratio of the parameters. We note that for the
regime of two opposing waves, at large detunings relative to the center
of the Doppler line, i.e., at g/y,, > 1, the limitation on the parameters
Ya> Th» and ¥ap, also becomes immaterial.
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here i, j = 1, 2, Thus, the problem of finding the spec-
tral density of the polarization noise reduces to a de-
termination of the spectral densities of the fluctuations
8p 1bz) We shall need later on expressions for the in-
duced parts of the density matrix elements. They are
given in[2607

Substituting 5‘}’*’ from into the expression for
the polarization vector (2.6) and integrating over the
velocities under the assumption that the line is inhomo-
geneously broadened and the intensities of the opposmg
waves differ little from each other, i.e. aIE1 Ei € 1,
we obtain the following values for the real and imaginary
parts of the polarizability:

[26b]

d

%i,== —,;Wf{i—F—i—sz*(i—"g) Fla(E1—ED}™,
” d — o 1 o 2 2
o= = F{ L F[ 1 F 220 gPa (B1—ED } 5 (2.18)
here
f=[—:— (l/i+2gaE§—1+2g+gaE§)]'{/2,
F=(1+2gak)~112, (2.19)

= (B4 ED/2, g=vi/ (W + Vi)

In the limiting cases of small and large fields, the
functions f and F take the form

=t (-2,
f=1/V %E:,

F=1—gaE?,
F=1/V 2gaE?,

aEr &1,
gakl > 1.

For one traveling wave, putting E, = 0 in (2.18) and
(2.19), we obtain

d 1

n (2.20)
VT am

w =0, ® =

For the standing-wave regime (E; = Ez =Eg) at u =0
we have

d 1

S N 2.20°
RN ( )

=0, Ky = —

In the case of weak fields, expressions (2.18), (2.20),
and (2.20°) can be expanded in powers of aEj:

, d "
Ay 2= ‘-EbaEg,h %ny2 == —%(1—0!'&E%,2—511E§_1), }
® =0, »'= —%(1——aaE:), ¢ (2.21)
%s=0, = —% (1 —akE}); )I
here
T (2.22
1 .
e T T S

Expressions (2.21) are valid with allowance for the spa-
tial modulation of the populations, The coefficient 8 is
then given by

*Expressions (2.18) were obtained for a laser using a pure isotope
of the active gas. It is difficult to obtain analogous expressions for a
laser with a mixture of isotopes in a strong field.

.8 b
P~z

In a strong field (aEj >> 1) we obtain from
(2.18)—(2.20)

N S S S d
" 47 yap V2aER S T T Vam
% =0, ®' = —dfbn)/ dEL.

As already noted above, for the case ku/y <1,
when the motion of the atoms can be neglecte% it is
possible to obtain an exact solution of the equations for
the density matrix with allowance for the spanal modu-
lanon of the populations. The expressions for ,2 and
K1 2 are in this case

%12 = (W/Van) %12,

(2.23)

2| rap |* nDY

Bhyebals 5

Wy — { 1 ¥ ga (E{—E}) }
2= Vii2ga(Bi+ B v eoa® (BE — BB J
In the standing-wave regime we have in (2.23) E; = E;
= Eq. The corresponding expression K;l,z without allow-
ance for modulation is

e?|rqp |2 nDO
3Ryab

(2.24)

. g
®1,2= — 1+ g (@Ei--eE}) *

We proceed to consider the spectral densities of the
spontaneous fluctuations. They are calculated by using
the equations for the functions 6p a» 0pp, and épab
Instead of 6p, and 8py, it is more convenient to use the
functions 6D = 6p, — 6pp, and SR = 6pg + 6P

The corresponding equations follow from (2.1)—(2.4)
and are given by

6D

B e X o (BOBE, + PR E,) —
— 7 (BPSRE, + Op{2E )| — 1.8D + y_6R,
aéR = y_8D —+.8R,
a6 LD

(1.2

S = 1 (T Rov - iya) 698 (2.25)

i
— 55 ODraEy

8a® = (855 ) *.

/

Let us multiply Egs. (2.25) by §5);3”(t') and average.

As a result we obtain a system of homogeneous equa-
tions for the correlation functions of the argument
T=t—t.

It is necessary to add to this system of equations the
initial conditions, namely the value of the correlations
functions at 7 = 0. They follow from formula (5) of
Appendix 1, if we neglect the last term of this formula

BDEEI 0 =0, (BROPL )0 = ——p{.},’ﬁ (v—v'),

(2.26)

~ (i ' 8;50 (v— & ..
(80578050 =—j—2(:Tu R, i,j=1,2.

(89 §00p8) om0 =

The system of equations for the correlation functions
can be solved by using the Laplace transformation

(8989)5 — | (808P eior d.

o

(2.27)
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The expressions for the spectral densities of the
noise sources (2.17) contain the spectral densities of
the fluctuations &p at zero frequency. They are connec-
ted with the fluctuations (2.27) by the relation

(60 80)o = 2Re (8p 8p)5—0-

The simplest expressions for the spectral densities
at zero frequency (intensities) of the polarization-noise
sources are obtained in the regime of one traveling
wave: ’

2nh Aw g &
E)= o B0 (2.28)
@0 =yt (-4 af.

General expressions for the noise intensities were ob-
tained in®*®J, They are given in Appendix 2.

The polarization-noise source intensities in the
standing-wave regime can be obtained from the general
formulas (6) and (7) of Appendix 2, by taking into account
the fact that

ga. [ (§a1 +- §32)/2, §ph«s= (%hi + E;Z)/Z
and consequently

& o= (E1 Do+ Carkadel:  (Eondo = % (€420 + EprEoadol-
Thus, the expressions for the spectral densities (‘;’;’S) 0
and (E;h g), take into account the contribution of the

amplitude and phase fluctuation sources in the equations
for the opposing waves.
In particular, at y, = y, we obtain

nhA®r go

2.29
Voo Do ! ( )

(§§l.>_)cz)o =

nh Aw 0 aE?
&= 7o (1+757) -

Formulas (6), (7), (2.28), and (2.29) contain, besides
the explicit dependence on the field, also an implicit
dependence on the field via the parameters Awy, D°, and
R’. For a comparison with the experimental data, it is
necessary to include this implicit dependence. The form
of this dependence is determined by the method of vary-
ing the field. Zaitsev, Andronova, et al.[>*'J varied the
field by varying the losses in the resonator, i.e., by
varying Awy, at a constant pump current. Substituting
Aw = —47wok"(Eo) in formulas (2.29), (6), (7), and
(2.29) we obtain the explicit dependence of the fluctua-
tion-source intensities on the field. Plots of these de-
pendences are shown in Fig. 2.

In writing down (2.28), (2.29), (6), and (7), we used
the condition Awy + 4Twek” = O for the stationary gener-
ation regime. If we again substitute —4rwok” for Aw,
in these formulas, we can obtain the limiting transition
to the equilibrium state.

At equilibrium E = 0, «” > 0, and
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FIG. 2. Dependence of the noise-source intensity on the field ampli-
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We therefore obtain from (2.28)
€00 €0~ T (71 7).

In the generation regime, both factors (k" and R%/D9%
reverse sign.

From formulas (2.28) and (2.29) and from the general
formulas (6) and (7) we see that the intensities of the
noise sources which enter in the equation for the ampli-
tudes and phases of the field differ greatly from each
other at a non-zero field amplitude even when it comes
to the character of the dependence on the field, Such a
difference is due to the following causes. The fluctua-
tions of the density matrix depend, in accordance with
(2.25), on the instantaneous value of the average field E,
and consequently are not stationary random processes.
(Only the slowly varying amplitudes of these fluctuations
are stationary.) Accordingly, the polarization fluctua-
tions 6P, which enter in expressions (2.13) for the noise
sources, are likewise not stationary. By virtue of this,
the expression (§P(t)6P(t + T)cos(wo(2t + 7) ¥ 2kor + ¢))
differs from zero. It enters in the expression for the
correlation functions of the amplitude and phase noise
sources with different signs, so that the intensities of
these sources are different.

For the same reason, the correlations of the fluctua-
tion sources (£, £,.) and (Ephfgphz)o are likewise dif-

ferent from zero for opposing waves in a ring laser,
even if no account is taken of the second spatial harmon-
ics of the working-level populations, i.e., without allow-
ance for the spatial modulation of the populations.
Allowance for the spatial modulation can yield additional
terms in the correlation functions of the sources.

We note one more important circumstance. It follows
from (2.13) that the mean values of the noise sources
Ea and Eph are equal to zero if we can neglect the cor-

relation of the random deviations 6P and E(T) and the
phase of the field. This takes place in a sufficiently
strong field, since the change of the phase at a specified
noise is reversely proportional to the field.

At the generation threshold, the mean value of the
amplitude noise differs from zero and is equal tol*®-

E—0y ()28, and =0
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The bar denotes averaging over the time interval I/yab
LAt < 1/,

An analysis of the obtained expressions and diagrams
for the polarization-noise sources shows that at a suffi-
ciently large frequency deviation, when |u] > y 4, the
intensities of the noise sources are the same for all
three regimes (the factor of 2 for the standing-wave
regime is connected with the method of specifying the
amplitude). At frequency deviations || < ¥ ab the
source intensities are different for different regimes,.

When the power is varied by varying the losses, in
all regimes, the noise-source intensities in'the equations
for the amplitudes decrease with increasing field. On
the other hand, the noise-source intensities in the equa-
tions for the phases increase with increasing field in the
traveling-wave regime and in the regime of two opposing
waves. In the standing-wave regime, on the other hand,
the character of the dependence of the phase-noise inten-
sity on the field is governed by the detuning. When

W2/ Viw 3> Yol 20/ 004

the intensity of the phase noise increases with increas-
ing field, and in the opposite case it decreases. In a
strong field, the intensity of the phase-noise source
tends to a constant value.

We note also that in a strong field there is an almost
complete ‘“‘anticorrelation’’ between the polarization-
noise sources for opposing waves (the correlation coeffi-
cient tends to—1). This means that the sum of the sour-
ces fluctuates much less than their difference.

In the standing-wave regime, in the case of homo-
geneous line broadening, when ku <y, and y,p = vy,
we obtain for the spectral densities of the spontaneous
fluctuations of the polarization’*’

(E(P)z) - nh Ao Ro
Ca,c o = oV o
(2.30)
@z kAo, ﬂ( 20E3 Y1+ 4gaB]  p? )
=P oV DO\ VT igak? —1 Vb

Awy = —4mwok”, where k” is determined by formula
(2.23) with E, = E; = Eo. For the traveling-wave regime,
the expressions for the noise intensity coincide with
formulas (2.28).

We note that the calculation of the fluctuation intensi-
ties for a ring laser with homogeneously broadened line
shows that allowance for the spatial modulation exerts a
strong influence on the correlations of the fluctuation
sources for opposing waves. The influence of the popu-
lation modulation on the fluctuation correlation may
turn out to be significant also for the case of an inhomo-
geneously broadened line.

We note once more that the expressions presented
for the sources of the thermal and polarization noises
include contributions of the zero-point fluctuations.
Analogously, using initial conditions that do not include
zero-point polarization fluctuations, it is possible to
obtain noise sources determined only by spontaneous
emission. We do not present here the corresponding
expressions, since the separation of the spontaneous
parts can be carried out in the final expressions.

l il
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3. AMPLITUDE AND PHASE FLUCTUATIONS IN A
LINEAR GAS LASER

When considering the fluctuations in a linear laser,
we specify the field in the form of a standing wave

(3.1)
2

E(r, )= Eycos (kr —3) e @nthe) L c.
This expression follows from (2.9) for opposing waves if
we put E;, = E; = Egand ¢ = (@1 + @2)/2. The quantity &
is constant and is determined by the boundary condi-
tions.

Thus, the description of the fluctuations in a linear
laser differs from the description of the fluctuations in
a ring laser in that the differences E, — E: and ¢, - ¢2
do not fluctuate.

The equations for E and ¢ are (we omit the subscript
“0”’ of Eo; E, will henceforth denote the field amplitude
without allowance for the fluctuations)

dE L1 ,
= (4 ) E-t o, s @), (3.2)
%: —-%4nx's+—(%°§ph st).

The quantities kg and kg are determined by formulas
(2.18) with E, = E; = E,.

3.1. Amplitude fluctuations. In the correlation ap-
proximation, assuming E = E; + §E, we obtain from the
first equation of (3.2) the following expressions for the
spectral densities of the fluctuations of the amplitude E
and of the intensity E*:

v €, sl
@2 (Awg)e *

(3.3)

(B8~ (8 (B2)2)o = AT (BE?)..

The width Awy of the amplitude-fluctuation spectrum is
(3.4)

ot
Aw, — 47, 02,2 E:-

0o df [* (1 -+ F)* - gF®*| o ET.

In a weak field, with allowance for (2.21) and for the
condition of stationary generation, this expression takes
the form

Awg = Aogn, (3 .5)
where 17 = Qd — 1 is the excess of pump over threshold.

Let us compare the results of the calculation of the
intensity fluctuations with the experimental data of
Zaitsev' ™. Figure 3 (curve 1) shows the dependence of
the spectrum width Awg on the field intensity, plotted in
accordance with formula (3.4) at zero detuning (u = 0).
Under this condition formula (3.4) contains one unknown
parameter d. However, in comparing with the experi-
mental dependence of Aw, on the power, it is necessary
to know one more parameter that characterizes the con-
nection between E§ and P.

The total laser radiation power is connected with E3
by the relation

P (Ey4n) VAo,

The width of the resonator band at constant pumping
varies itself with changing power. This dependence fol-
lows from the condition of stationary solution of (3.2).

In experiment one measures not the quantity P but a
fraction of this quantity P, determined by the trans-



102
Ao, 72 Homt
—7’—!3,kHz M He

507 °
700
L
500 i
400
300+

200 2

Ay ——

7 I W s g 4z 4w 4% _g}m
ak,
FIG. 3. Dependence of the width of the amplitude-fluctuation spec-
trum (1) and of the relative spectral density of the fluctuations and the
intensity at zero (2) on the powerat u = 0.

parency of the output mirror. The quantity P is pro-
portional to E3:

Py (EY4n) V Ao,

where Awp = ¢(1 — r)/L, i.e., it does not depend on E3,

In"**) | the curves were plotted as functions of P.
This requires additional recalculation of the experimen-
tal and theoretical data. It is more natural to plot the
curves as functions of Pp. The corresponding additional
information on the values of Pp were kindly supplied to
us by the authors of-®**}, The experimental points
based on Fig. 3 are based on these data. The unknown
parameters d and ym = aE?,/PT were determined from
the condition that the results coincide at the two points.

The values of these parameters turned out to be

d=- 11510,  y,==1.1G.102 puW™,

Curve 2 on Fig. 3 is a plot of the relative intensity
fluctuation density at zero frequency (M = (5 (E?)%)o/E})
on the power Pp. We see that there is sufficiently good
agreement between theory and experiment. We note that
when no account is taken of the dependence of the inten-
sity of the amplitude- fluctuation source on aE} the
theoretical curve lies much higher, starting with aE}
= 0.2.

From (3.4) and (3.3) we obtain expressions for the
variances of the amplitude and of the intensity:

(BE?) == (0] 2A00) (8, sy (B (E2)?) == 263E2 (8} ()o'Awo,. (3.6)

Let us establish the connection between the expres-
sions for the fluctuations of the amplitude and the ex~
perimentally measured quantities, namely the average
number of photons <%h> and the variance of the number
of photons (Gn;h).

The average number of photons is connected with the
mean square of the field in the traveling- wave regime
by the relation

(B2 == E* - (BE?) == (8nhaw, V) ((np}‘,+ —;—) .
From this, knowing the excess above threshold and

using (3.6), we can find the average number of photons.
Expressions (3.6) determine the radiation-intensity
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fluctuations that are directly connected with (an).
Thus, for a traveling wave

(8 (EH?) = (BnhoyV)? (Snkh.

The relative variance of the intensity in a weak field
is determined by the expression

(B(Eny V3 2 1
s S AT

(3.7)

We have introduced here the following symbol for the
dimensionless noise intensity
4 9 (E: o

.Vz e —

7 2 (3.8)

From (3.7) we get the condition for the applicability
of the correlation approximation

NsgI. 3.9
In the zeroth approximation in the field, at parameter
values wo = 3 X 10 sec™, V=1 cm, d~ 10,
(a/V)(1 + R%/DY% = 2 x 10° cgs esu, and u = 0 we obtain
Ng = 0.5x10™.

It follows from (3.9) that the correlation approxima-
tion is valid if the radiation power is much larger than
1 uWw.

Using formula (3.4) and (2.23) it is possible, for ex-
ample, to calculate the spectral width of the amplitude
fluctuations for a laser with homogeneous line broaden-
ing, when y,;, > ku. In a weak field we obtain for Awy
the expression

Ao, == 3A0 ek},

If no account is taken of the spatial modulation of the
populations, the coefficient 3 in this formula is replaced
by 2. If we express AWy in terms of the excess of pump
over threshold, then the results coincide. Indeed, taking
the modulation into account,

0B 1 (34 am—3) 1+ ).

from which we get aE3 = 27/3 for small 1. If modula-
tion is not taken into account, then aEj = 7.

3.2. Amplitude and intensity fluctuations at the
generation threshold. At the generation threshold, the
condition (3.9) is not satisfied. To calculate the ampli-
tude and intensity fluctuations in this case it is neces-
sary to use the method of the Fokker-Planck equa-
tion'**'*®), Near the threshold, the field is weak
(aE® < 1), therefore the function k” in Eq. (3.2) for E
can be expanded in terms of aE” and only the first two
terms retained. As a result Eq. (3.2) takes the form

dE

9B _ 2% (1+9) ([ —aB) E+ o 0). (3.10)

In the stationary generation regime without allowance
for the noise we have

aky=: 1.

The corresponding Fokker-Planck equation for the
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functlon W(E), with allowance for the fact that Ea(t)
/ 2E, is

o(&al
LA { 29 (14 g) (U —aB) E+ " le (3.11)
28 (e o
From this we obtain the stationary distribution
2 2a N (aE2—])2
wE=1 L 21+ )] Eexp(— ___), (3.12)

From this distribution follows a general expression for
the moments
n /7 Ngyn/2 n n IANE
= 3 () 5 () [t () ]

a

42 N2 i
$D_(nj2eu1y (_Ts)

(3.13)
Three limiting cases are of interest:

1) At a considerable excess over the generation
threshold, when1 >> N, Eq. (3.13) leads to the formulas
of the correlation theory.

2) At the generation threshold (JI| < Ng) we obtain
from (3.13)

(6E2)7,012—(1+025—) (3.14)
(8E2) 4 (E2)2y 7
e 18- 0,057\,—;, ~Fm 057 —0.28-.

Calculation shows that formulas (3.13) and (3.14) remain
unchanged in the case of immobile atoms.

3) Below the excitation threshold at {I] > Ng and
I <0 we obtain from (3.13)

Yy, N2 2N
(By= z‘alv;l , PLoEn=2E (3.15)
Hence
N2 — N ’
OBy =2 A5 S (E == g (3.15))

The second formula of (3.15°) leads to an expression
for the mean squared value of the number of photons

(‘Snph (m ph) + )

The exact expression for (Gn;h> is

(8n ) = (npn) (7 pnd —1). (3.16)
They coincide when the number of photons is large, the
only case when the semiclassical description is valid.

According to the experimental data of Arecchi,
Rodari, and Sonal® , the number of photons at the thres—
hold is 4000. Calculatlon shows that at V = 0.25 em?,

a = 10° cgs esu, N = 10, and w = 3 x 10'° sec™, we
have (n) = 5 x 10°,

Hempstead and Lax'®®, and Risken(®*) performed
the corresponding calculatmns for immobile atoms.
Their results coincide in form with those given above.

We now compare the theoretical and experimental
data for the intensity fluctuations near the threshold.
Figure 4 (curve 1) shows the dependence of the relative
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variance of the intensity on the quantity I/ Ng. The cir-
cles denote the experimental data of Smith and
Armstrong[m. Curve 2 shows a plot of the square root
of the variance. The crosses mark the results of the
experiments of Arecchi et al,[**]

To determine the spectral function of the amplitude
and intensity fluctuations it is necessary to know the
non-stationary solution of the Fokker- Planck equation
(3.11). Such a solution was obtained int***®1, It turned
out that the spectral line shape differs only 11tt1e from a
Lorentz shape near the threshold.

We present the results of the calculation of the spec-
trum width of the amplitude fluctuations near the thres-

hold, obtained assuming a Lorentz line shapet®’. It fol-
lows from (3.6) that
Awy =07 (8, 5)0/2 (BE?). (3.17)
Hence, using (3.14), we get
- LA 3.18
A0n = (A04) gy (10,255 (3.18)
here
(A®y) gy =~ 20 dN. (3.19)

The dependence of Awy on I/N is shown in Fig. 4
(curve 3). This dependence comcldes sufficiently well
with that given inf®"J, calculated in accordance with
Risken’s exact theory

At wod/2m = 10° Hz, u = 0, and Ng = 10™* we obtain
from (3.19) (Awa)thr/ZW ~ 200 Hz.

Freed and Haus'®) measured the line width of the

amplitude fluctuations in the regions above and below

the threshold at
8 < I/N <2800, —~80g I/Ny << —8.

The results were extrapolated to the threshold reg-
ion. From the plot given in"®? it follows that (AW )ihy /27
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~ 100 Hz. Arecchi, Rodari, and Sona'® obtained for the
spectrum width of the amplitude fluctuations, at a
resonator band width Aw,./27 = 27 MHz, a value
(Awg)thr /2T = 1.4 KHz at the threshold.

As already noted, the results presented here for
moving atoms coincide in form with the results of cal-
culations for immobile atoms. A review of these results
is given in Risken’s papert®®,

3.3. Phase and frequency fluctuations. From (3.2)
we obtain in the correlation approximation an equation
for the phase fluctuations

209 o 90 (KSE -+ Ean o015 (3.20)

here

an’ ,
K= —4xn —53—,—E2=;‘:;daE2f (gF3 — > (1 — FY)).

The term KOE characterizes the influence of the ampli-

tude fluctuations on the phase and frequency fluctuations.

From (3.20) we get an expression for the spectral
density of the frequency fluctuations:

(59)4 = (0 E?) (K (8B, + (E3h Dol (3.21)

In the derivation of (3.21) we took into account the ab-
sence of correlation between the quantities £a g and
gph,s (see (2.15) and (2.17)). ’

In books on statistical radiophysicst*®*®%] it is shown
that for times greatly exceeding the noise-source corre-
lation time, the mean squared phase shift in (3.20) is

(e t+v)— 0 @)= O¢d=D|7| (3.22)
The phase diffusion coefficient D is defined by the ex-
pression

D == (8g%),.

For Eq. (3.20), the source correlation time is deter-
mined by the amplitude-fluctuation correlation time,
and therefore the condition for the applicability of (3.22)
is

T3 1/Aw,.

Substituting in (3.21) expression (3.3) for the spec-
tral density of the amplitude fluctuations at w = 0, we
obtain

5 -
oy

2 s . -
DZ—ET[ KZT%T(&,(:)O“:“ (gf)hs\oJ'

(3.23)
In a weak field,
K= L gdal?,
and consequently (taking (3.5) into account),
of o3 I g R
Db o[ 1+ 4 ) (3.29)
In a strong field at aE®> >> 1 we have
___nk dm;‘;_ RO ¥-
=T (Do +2= ) (3.25)

It follows from (3.24) and (3.25) that the phase diffu-
sion coefficient decreases in inverse proportion to the
square of the radiation field in the standing-wave reg-
ime, both in a weak and in a strong field.

A more exact formula for the mean- squared phase
shift, which is valid also when 7 = 1/Aw,, is

KLIMONTOVICH, KOVALEV and LANDA

(8E%), 03K?

b, |t
Ao Er (1 —e 2%l h,

Gov=Dit[— (3.26)
Let us determine the form of the field spectrum in
the laser and calculate the natural line width of the
radiation.
From (3.1) we obtain an expression for the correla~
tion function of the field in the laser:

(EE:) = (((E)+ OE); ((E) 4 8E) 14 cos (wot + @1} €08 (0p(f+ T) - Pras))-
(3.27)

At sufficiently large excesses of pump over thres-
hold, when the probability distribution for the amplitude
fluctuations and the phase shift can be regarded as
Gaussian, we obtain from (3.27) the following approxi-
mate expression for the correlation function of the field:

— 2
(EEy) = (E; cos “"’T“"—W sin mot) Rt (3.28)
200K (BE% . Ao, T—(<8p2>/2)
+ ((SE’) c08 @t g sin ("oT) oDy T—(<bop>

1. ¢] 2)2
- GIKTOEDY o ogte

—280,T—(<89%>/2)
E3 (Awg)?

Taking the Fourier transform, at D < Awgy, we ob-
tain*

B EDi2
(B = gyt ooy (1+

40K BE?) w—ay ) (3‘29)

Aw E} D

4 (8Eh [Awg +(D/2)] [1_ 03K 20K (0—wp)
" (0~ 0g)3 - [Awg -+ (Df2)]2 (Awq)? (B0q)%
203K3 (5E? 1
T T AGLEE (0—0g)2+4 (Awg)®

It follows from (3.29) that the spectrum of the gener-
ated signal in the laser is a sum of three lines. One of
the lines is determined by the fluctuations of the phase
shift and is a narrow line of almost Lorentz shape with
width Aw = D and intensity ~E3. The second line, due to
the amplitude fluctuations and the correlation between
the phase and amplitude fluctuations, has a width
~ 2Aw,, This line is much broader than the first, but
is much less intense. We note that the line of width
2Awy is essentially asymmetrical. The third line, even
weaker, has a width ~4Awy,. In a weak field, the largest
value of the parameter woK/Awa is 0.25, and conse-
quently the influence of the amplitude fluctuations on the
phase fluctuations is not significant. The spectrum of
the field in the laser can be written, with good approxi-
mation, in the form

(EY2 D2
(0 —wq)2-4- (D/2)2

(SE?) [Awg -+ (1/2)]
V(0 — )2+ [Awy -+ (D/2)]2

(Ez)m = (3'30)

The dependence of the emission line width Aw ~ D on
aE2, calculated from formula (3.23) at a zero frequency
deviation from the center of the Doppler line, is shown
in Fig. 5. The experimental data obtained by Zaitsev
and Step::movE4J are also shown. At the chosen values of
the parameters, the experimental data differ from the
theoretical ones by not more than 20%.

As already noted, in a weak field, and consequently
also at the generation threshold, the influence of the
amplitude fluctuations on the phase ones is small. As a
result, even at the generation threshold, the phase shift

*An expression analogous to (3.29) was first obtained by Malakhov
[63].
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changes approximately in accordance with the diffusion
law, with a diffusion coefficient
D = (@03/{E?) (Eph - (3.31)

The laser emission spectrum near the threshold is
given approximately by formula (3.30). The width of the
emission spectrum can be obtained by dividing the inten-

sity of the spectral line by the spectral density at w = we.

We then get from (3.30)

R 4 SEDTOEY (3.32)

Ey, % (NLS) D,

= (). o () 8

where

In the case of a large excess over threshold we have
a = 1. At threshold, using (3.14), we get @ = 1.18. Below
the generation threshold, I <0 at |I] >> Ng. From (3.32)
we get
4—n
n

4
s =—.
However, the approximations under which (3.32) was
derived are no longer justified in this case. The result
can be obtained directly from the equation for the field
and takes the form

Awg == @y (%—d) = Ao |}

From a comparison with formulas (3.31) and (3.15)
we see that Awg = 2D, i.e., o = 2, The percentage values
of o agree with those obtained inf**J,

Let us estimate the emission line width at the gener-
ation threshold. From (3.32), (3.31), and (3.8) at zero
detuning we obtain

2 . n
Awg :aTj;;—)(gfb)o:% ‘/%Amch.

At a resonator bandwidth Awr /27 = 10" and Ng ~ 107
we obtain Awg /21 =~ 740 Hz.

This result agrees in order of magnitude with the
spectrum-width measurements performed by Siegman
and Arrathgont®,

4. AMPLITUDE AND INTENSITY FLUCTUATIONS OF
OPPOSING WAVES IN A RING LASER

There is only one known experimental investigation
of ring lasers, that of Zaitsev 93, who measured the
intensity fluctuations of each of the opposing waves and
the corresponding correlation coefficients.

The character of the wave and fluctuation processes
in a ring laser differs considerably from that in the
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linear laser. For example, at small deviations of the
generation frequency from the center of the Doppler
line, the regime of two opposing waves in a ring laser
in a weak field turns out to be unstable and a transition
to the regime with one traveling wave takes placec“j.
In the transition regime, just as near the generation
threshold, the fluctuations are not small. Consequently,
it is again necessary to use the method of the Fokker-
Planck equation to investigate the fluctuations.

In the correlation approximation, the equations for
the amplitude fluctuations of the opposing waves follow
from (2.10) and are given by

(4.1)
déf;m F Ay a0E s+ BioOEs, = 0ol (1);
here . o P -
Ayp = ATy 6E2' El 3 By,=4nw, T E\E,
1,2 ot 4.2)

At equal values of the Q of opposing waves we get
from (4.2) and (2.18)
E1:E2:E0s
Ay = Ag = A=200df [ (14 F) 4 gF (P24 420 £) | a2,
- Yab

By By=B—aydf[ f(L+F)2 4 gF (F2—4 %fz)] B (4.4)

(4.3)

From (4.1) we obtain the spectrum of the amplitude
fluctuations for the opposing waves:

w2 (§§1,2)0 i-(Eat€azo

(OEBE  o)u= ('5E26E2.1)m=T o (A bR+

(£2) 2do— (Eastazdo
ol (AZBy ]

(4.5)

(SETBEY 2)u= (BEIDES, o = 4K} (OESE 0o (4.6)
Thus, the spectral densities of the amplitudes and of
the intensities are sums of two Lorentz lines with widths
A + B and A —- B. Since the fluctuation sources are anti-
correlated, i.e., (£4,£,,), <0, the narrower line has a
higher intensity. It follows from this, in particular,
that the fluctuations of the opposing-wave amplitudes
are always anticorrelated.
Formulas (4.5) and (4.6) lead to expressions for the
variances of the amplitudes and intensities of the oppos-
ing waves, and also for the correlation function

6 (Ef) s (E%z)) — 6 (E?_;) 5 (E§'1)) - 2(00E§ (Eatﬁal,z)oﬁ:gsﬁaz,i)o B ) (47)

From this we can obtain the condition for the appli-
cability of the correlation approximation

“’% (Ez;_z)o A—(EaBasko B

(4.8)
2E2 A B2

£ 1.

At the stability limit of the two-wave regime we have
A = B, and condition (4.8) is not satisfied.

It is shown in"®* that when account is taken of the
spatial modulation of the populations at

a3 > vl (ku)? (4.8

the region of instability of the two-wave regime van-
ishes, i.e., A > B in the entire range of detunings.

In a weak field we have
A= Ao xaE}, B=AoSBak;.

At not very small detunings, when p > Y ap» the line
has a near-Lorentz shape. This is confirmed by
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Zaitsev’s experimental datal®l,

The relative variances of the amplitudes and intensi-
ties and the correlation coefficient of the opposing waves
in a weak field are given by

(8E2) N2 2 (B(E%HY) N2 a 4.9
EZ 77 8(aERE aZ--p2° K} = 2(aEY? at— ﬁl !
= (8 (E3) 8 (ES))/(8 (Ef 2% = —Bla; (4.10)

here
=2 V(Egi,z)o Ojoa/d'

Zaitsevl® investigated experimentally the relative
correlation of the intensity fluctuations at the frequency
w:

Po == (BEISER)u/(BEF 2)o-

A general expression for p,, follows from (4.5). In a
weak field

2
Am’_‘

2

Do = —;ﬁ%—zm; (4.11)
here

Aw, = A 2BV ot L B7,
Awp is the width of the correlation- coefficient spectrum.

With increasing detuning, p, _ 0 decreases mono~
tonically from unity to zero. Aty =y, and 8= 0.5
we have p, _ =0 =—-0.8.

The width Aw, also decreases monotomcally with in-
creasmg detuning, from Aw, = Aw aE°/N2 to Aw,
= AwpaE 2/9. Figure 6 shows the dependence of py in ac-
cordance with formula (4.11) at p = 1.1y, and Awy
=5.02 X 10* sec™. The values of the parameters were
obtained from the condition that the height (py = 0) and
the width (Awp) of the spectrum agree with experimentt®).
At high frequencies, the experimental points lie above the
theoretical curve. This is due to the fact that in the der-
ivation of (4.11) no account was taken of the contribution
of the noise-source correlation (§3,43,),- At large w, the
value of p  tends not to zero but to (£4,82,),/(£5,, 2)0
This makes it possible to determine from the values of
Py at large w, the anti-correlation coefficient of the
amplitude-fluctuation sources. In the case when the
correlation approximation is not valid, i.e., condition
(4.8) is not satisfied, the fluctuations are calculated by
the Fokker-Planck method. The condition (4.8) is not
satisfied in two cases, near the generation threshold
(Eo — 0) and at the instability limit, when A— B — 0.

By virtue of the condition (4.8’), we can confine our-
selves to the weak-field approximation. In this case
Eqgs. (2.10) take the form

P12 = 9 (a4 ) I —aaB, —BaB3, ] Bug - 0frai (4.12)

here . .
I= 5 (1-4g)-

The stationary solution of the Fokker-Planck equa-
tion, corresponding to the Langevin equations (4.12), is

W (B}, B) = CEEyexp { — oz [ (Bl — 1)+ (@B} = 1)? (4.13)

+2l@e-nee-nl}.
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P,
” L
FIG. 6. Frequency dependence
of the spectral density of the cor- or
relation coefficient. 22
7

G I W wyen
The constant C is determined from the normalization
condition.

Let us consider two most interesting cases.

1) Fluctuations at the generation threshold (I/N = 0)
for arbitrary o and 8:

prpp P \-
C=8 V'Im B (arctg Vaﬁ p* ) Lo (4-19)
The corresponding expressions for the moments are
n+a4
_ L (n/4) N \2To(n42 1 . n 3. a2_pe
(Eiz) =Cn 16 (n—2) (aV&) F( T T T T aoaﬁ )'(4‘15)
: e (5)0(3)
npmy Vﬂ nm 4oa? 4 2 2
(BB =C A I () Q=) (4.16)
A
m+2 ni-2  ntm 3. a2
XF(PR 2 gt 5 25F)

At the stability limit, when o — 8 = 0, we obtain from
(4.15) and (4.16)

1 N2

Eigy- ) TA (EIED - (B} =22 (417
We present expressions for the relative variance of
the intensities of the opposing waves and the correlation

coefficient near the generation threshold:

(BT 20— (BT 00 12802 (n--B) ot N2 v
o - LRS-l e b (1-222c) —1. (4.18)
5 N g & —
o (EEDEL 2 N2 —Spat— W‘ % E”* (4-19)
(E{ o) —(E7 o) Saa? b o2 T 2B g
Hence o 1haa- a-i-f
ot=-0,64, p=- —0,19 for e Yavs
0*=0,70, p- —0,22 for p=0 (a p- 1,2).

Thus, near the threshold, the variances of the inten-
sities of the opposing waves and the correlation coeffi-
cient depend little on the detuning. The anti-correlation
between the opposing waves near the threshold is small.

2) At the stability limit (o = B) we have

RIENI

The corresponding expressions for the moments are

o ¢ 22 —
C=2 {41 I [ (4.20)

Bt ey TR 110 (2], ‘|
\Ef ~>—'L (1+i5_1{\723_) _%% Ce=202NE | (4'21)
(E{E3) (B 52,

At I =0, these expressions coincide with (4.17). Far
from the generation threshold (I/N 3> 1) the expres-
sions (4.21) take the form

(4.22)

o I 2 . 842 2
(Bimy - (BT gmli (BIED-— 5510
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Hence

,-the opposing waves are fully anti- correlated. These
results coincide with those given by Smirnov and
Zhelnovt*°

The amphtude and intensity fluctuations in the regime
of one traveling wave are calculated in similar fashion.
In a weak field, the dependence of the amplitude and in-
tensity fluctuations on the field coincides with the case
of two opposing waves. In a strong field, the relative
variances of the amplitude and intensity decrease in in-
verse proportion to the square of the field, whereas in
the case of two opposing waves these quantities tend to
a constant value. This is connected with the different
field dependences of the amplitude-noise sources,

For the width of the amplitude-fluctuation spectrum
in the regime of one traveling wave we obtain the ex-
pression

AYORS ;1 .

: % A(i)l ]

Near the threshold, the results coincide with those
given above for the standing-wave regime in a linear
laser, the only difference being that N in (3.14) and
(3.15) is replaced by N.

Allowance for the rotation of the ring laser and the
coupling of the opposing waves through scattering by the
mirrors leads to the appearance of additional terms in
the equations for the amplitudes and phases of the oppos-
ing waves (2.10) and (2.11):

M 1 . =
= —‘220‘ (4’“‘1 2t _Q—) Ey,F P‘)D—dlmi.z [ Eg.sin (@ 4-0,,5) + 0ay.s,

Q [0 [
_IiT_—2_4”"1 2__“7112'— cos (D + ﬁm)“’fﬁ&pb..z-

The fluctuations were calculated with allowance for
the coupling in"**??7, It is shown in"*"? that in the
synchronization region, allowance for the coupling does
not lead to a noticeable change in the spectrum of the
amplitude fluctuations at w > V22 — Q2. Calculation of
the form of the spectrum of the amplitude fluctuations
at w <VQ2~-QZ? is of no interest, since technical fluc-
tuations are quite significant in this frequency region,

The transitions between different operating modes of
a ring laser under the influence of the fluctuations were
calculated in™%] for a laser at rest.

5. FREQUENCY AND PHASE FLUCTUATIONS IN A
RING LASER

We present the results of the calculation of the fluc-
tuations for the region far from the generation thres-
hold, when the correlation approximation can be used.
Equations (2.11) lead to equations for the phase fluctua-
tions of the opposing waves:

ddq,
dt

(5.1)

2 (C8E, 5+ DOEy 14 Epn 1.5

here

— ;’2;2 B %%df (gF®— f2 (3~ 2F (1 —2¢) — F?)| 4 B2,

D= —4n=L2 22122 E“:—,,—Lbdf{gF-“‘ + /2 [1 —2F (1—2g) + F*|}aE?. (5.2)

From this we obtain expressions[”] for the line width
of each of the opposing waves and the line width of the

i bl
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beat signal E, cos (@1 — ¢2)/2 + @o):

A®ps == (847 2} o = [(cu D?) (8E} 3)o = 2CD (8E3E,)y - (Eon 1.
(5 3)
Aoy =88 __9t_ (¢ py: (81 2)0— (OE8Ea)ol + (E11 2do— (%“‘t"(“g)"l;)

For a weak field (aE5 < 1) we obtain from (5.3) and
(5-4)

Aw N2 b (a2 -i- 2)

o= gy (14 R, 6.9
Aw N2 ) b2

Ay = s;Eg [1”* (a—ﬁ)ﬂJ' (5.8)

The second terms in the square brackets determine
the contribution of the amplitude fluctuations. We see
that when the stability region is approached, as o — 3,
the role of the amplitude fluctuations (according to the
formulas of the correlation approximation) increases.
However, on the boundary of the instability region the
contribution of the amplitude fluctuations is of the order
of b?, and is consequently small, since b> < 1. The in-
fluence of the amplitude fluctuations was taken into ac-
count int**], the results of which coincide with formula
(5.6) without the first term.

For the regime of one traveling wave we have

= (O5/E3) (Eho- (5.7)

From this we obtain for a weak field

Ao = Ao N*/4aE}. (5.8)

The corresponding expression for a linear laser differs
from (5.8) only in the dependence on the frequency
deviation.

When the coupling is taken into account, an additional
term M, ,6¢ appears in (5.1); here

‘l/[n——"d{—lm”{sm((b—l—ﬁ,z)i (CA—DB)

82
%1y | 008 @+ By0) + (CB— D) | my, ] cos (D 8,1} .
(5.9)

Accordingly, the equation for the phase-difference fluc-
tuations contains a term M5®, where

Vo= (5.10)

The corresponding expressions for the spectral den-
sities of the frequency fluctuations of the opposing waves
and the beat frequency aret*"

M=M,—

60! 2)a= (aq'ﬁ D+ g

(O == 5o (6D, (5.11)
The superscript (0) marks expressions without allow-
ance for the coupling,

It follows from (5.11) that the spectral densities of
the fluctuations of the opposing-wave frequencies and
the beat frequency depend strongly on the magnitudes
and phases of the coupling coefficients, and via M also
on the position of the synchronization region inside the
band (see (5.10)), i.e., on the speed of laser rotation.

On the boundary of the synchronization band, when

M = 0, the spectral density of the beat-frequency fluc-
tuations does not depend on the coupling. Using the iden-
tity

T (502)),

(M5+M2) M2

MM,= o
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FIG. 7. Dependence of the spectral density of the frequency fluctua-
tions with allowance for the coupling via back scattering.

we see that MiM: > 0 at M = 0. Consequently the spec-
tral density of the frequency fluctuations of each of the
opposing waves increases as a result of the coupling,
and tends to infinity as w — 0.

Inside the synchronization band, when M = 0, the
spectral density of the beat-frequency fluctuations tends
to zeroas w — 0.

At the center of the synchronization band, at equal
moduli of the coupling coefficients we have MiM:
= - M’/4. Consequently, the second term in the first
formula of (5.11) is negative. At w = 0 we get from
(5.11)

== (5(;’%.2)80) —

(693 2)o 2 e,

Plots of the spectral densities of the frequency fluc-
tuations of the opposing waves and of the beat frequen-
cies, calculated in accordance with formulas (5.11), are
shown in Fig, 7.

In the presence of coupling, the mean-squared phase
shift of the opposing waves and the phase differences
do not vary in accordance with the diffusion law. Calcu-
lation yields

T2y {0
o0y =E8%_ (4 _ o),
" L R2 () MMy g o (0) 4 =Mt
(607 ,21) == (891, 2)0 " | 7|~ > @D (M|tj—14e ).

Accordingly, the signal spectrum is not of the Lorentz
type but is determined by a more complicated expres-
sion. Without allowance for the amplitude fluctuations,
we obtain for the spectral density of the beat signal

(52), = Ele=0&0"/8M 1 Re [

o0

LI
im“(M ’ M 8M

o—in a—uo__l (6@2)‘“’)'].
(5.12)

The spectral density of the radiation of each of the
opposing waves is

MM, (6®2)“"
(B3 2o~ E“e‘p[ = J [(Dq,/Z)—z(m—mo)
(Do/2)—ilo—wg)  (Dg/2)—i(0— ) . MM (6D2)@
S i ; 7 G = )J

(5.13)
Near the boundary of the synchronization band,
M < (68)” and the obtained line shape is the same as
in the absence of coupling.
Near the cénter of the synchronization band, M= £,
and usually (6$)§”/M < 1. In this case it follows from
(5.12) that

(5.14)

(Sl)w —i__e (60 )30).,”[><(6 ((O)J 1 (502)(0)J

% o M2
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The beat signal is thus a superposition of a dc com-
ponent and a noise background. The intensity (6 & Ho/M
of the latter is much smaller than the intensity of the
dc component.

From (5.13) we obtain an approximate expression for
the form of the emission spectrum of each of the oppos-
ing waves:

(897
(0—op)H(0g13/4] )
MM, (800 [(g2)o- 2M] |
2M3 [(0—awolt+(((85%)0/2) + M)2) )

It follows therefore that the form of the spectrum of
each of the opposing waves near the center of the synch-
ronization band, without allowance for the amplitude
fluctuations, is a sum of Lorentz lines, a narrow and
intense one of width Aw, 2 = (6@%,2)0 and a broad one of
width (6@1 2)o + 2M.

It follows from the foregoing that to measure the line
width near the boundary of the synchronization region it
suffices to measure the spectral density of the frequency
fluctuations at frequencies much higher than Q. (on the
order of 10° sec™), and consequently one goes beyond
the limits of the region of technical fluctuations (of the
order of 10*~10° sec™). To determine the line width
near the center of the synchronization band it is neces-
sary to measure the spectral density of the frequency
fluctuations at frequencies much smaller than £,. Such
measurements cannot be carried out directly, owing to
the technical fluctuations.

An exact calculation of the radiation in the case when
the beat frequency exceeds the width of the synchroniza-
tion band entails great mathematical difficulties and has
not yet been carried out. It is to be expected, however,
that with increasing distance from the synchronization
region the role of the coupling of the opposing waves
will weaken and the results will agree with those ob-
tained without allowance for the coupling.

2 .
(Ef 2)o = % M3M6D2Y 1 2M3 {

6. MAXIMUM SENSITIVITY OF LASER GYROSCOPE

The question of the maximum sensitivity of an ideal
laser gyroscope (without allowance for the coupling be-
tween the opposing waves through scattering) limited by
the natural fluctuations of the radiation, was apparently
first considered by Brunnet'®J. He stated that the mini-
mum measureable frequency dlfference between the
opposing waves is determined, without allowance for
synchronization, by the natural line width. According to
Brunnet’s estimates, this minimal frequency distance
corresponds to a laser rotary speed on the order of
0.1 deg/hr. However, as correctly noted by Rozanov.®7,
the maximum sensitivity of a laser gyroscope is deter-
mined not only by the natural line width but also by the
measurement time.

It is shown in"®" that the average spread of the beat
frequency far from the region of synchronization is de-
termined by the formula

b Dy i/2 /" Aoph
s0._ 4@ <;>>)> .y Tp'
The bar denotes averaging over the observation time T,
and Aw gy, is the width of the beat signal line. Far from
threshold it is determined by formulas (5.4) and (5.6).
At dwpy /27 = 107 Hz (which corresponds to a power
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o)
]

0.25 mW at Aw,./27 = 10° Hz, 1 + (R°/D° = 5 and
Yap and T = 10° sec we have

8Q/2n =104}/ 25 Hz.

=
i

The corresponding minimum laser rotation speed is
determined by the expression

86 = 6QcL/2w,S,

where L is the laser perimeter, S the area of the con-
tour, wo is the oscillation frequency. Assuming

L =40 cm, S =100 cm’, and wo = 3 x 10" rad /sec, we
obtain 86 = 107 deg/hr.

In"*®°%) they investigated also the limiting sensitivity
of a laser gyroscope with the speed of rotation meas-
ured within the synchronization region by a phase
method. The following expression was obtained for the
phase- method error, which is characterized by the var-
iance of the phase difference:

M(&Lm)“z:]/“_z“.;ﬂ 1—J;—T(1-e‘MT)].

At T > 1/M, the limiting sensitivity of the phase method
coincides in order of magnitude with the limiting sensi-
tivity of the frequency method.

On the other hand, if T < 1/M, then

M D22 = V O

and consequently at small measurement times the limit-
ing sensitivity of the phase method turns out to be higher
than that of the frequency method. This result is phys-
ically obvious, for at short measurement times the
averaging in the phase method is performed by the sys-
tem itself within a time on the order of 1/M, whereas
there is no such averaging in the measurement by the
frequency method.

7. AMPLITUDE AND PHASE FLUCTUATIONS IN A
SOLID-STATE LASER

It was already noted in Chap. 2 that in a solid-state
laser the relation between the dissipative parameters
Yar ¥b» Yab> and Aw, is different than in a gas laser.
In this case y,, yp < Aw,, so that one cannot assume
that the level populations ‘‘follow’’ the field as in a gas
laser. Consequently, in the calculation of the population
fluctuations, meaning also the polarization fluctuations,
the field cannot be regarded as determined and the term
5P(ind) can not be left out from formula (2.8). Thus, the
induced part of the polarization is given by

plind) __ (Py+ s plind) (7.1)

We shall present results for two regimes, standing
wave and traveling wave. When (7.1) is taken into ac-
count, Egs. (2.10) and (2.11) take the form

By,
dat

d 2 ‘
2= — T (B, (Ey) (Br) + g5 Gova-

Al
*% Ey,—2n0gx" (B, (E2)) (E(5) + ©olay,e (7 -2)

(7.3)

The noise sources differ from £, and £ph in (2.10)
and (2.11) by the additional terms

gai.z = gai.z + gglindz) ’

(ind,
;tm,z = §¢1,2 T §d)11n,2) .

(7.4)
(7.5)

[ L
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ph1,2 and ﬁal,z for the

traveling-wave and standing-wave regimes were calcu-
lated by us earlier (see (2.28), (2.30), (2.19)).

We therefore need to consider here only the induced
fluctuations, For the induced parts of the fluctuations of
the density matrix elements with the field given in the
form (2.9) we obtain a linearized system of equations in
which we can no longer neglect the field fluctuationst®®?,

Recognizing that the relation y,,, > Awy, vy, vy 18
satisfied in a solid-state laser and assuming for sim-
plicity y, = vy, we obtain in the two cases the following
expressions for the Fourier components of the induced-
fluctuation sources:

1) Traveling-wave regime:

The noise-source intensities £

T 2 N (7-6)
(G oo o €. @.m
2) Standing-wave regime:
o (80 - 55 {1 — A=y
“ [ 1= sz 1/’177:4;:;%7(10)4 Tl Vi»,v;:gab';-; J} (06, (7-8)

ERDe =L @), (7.9)

The amplitude and phase fluctuations of a solid-state
laser will also be considered for two regimes.

7.1. Traveling-wave regime. Substituting the noise
sources in (7.2) and taking (2.28) into account, we obtain
an expression for the spectral density of the field ampli-
tude fluctuationst®®:

— “32+'?%1 (14-gaER)? ®? ( 2)
T (0 — A0 ygakR)T 4 02y (1} gaEf)r 0 0

(OE?). (7.10)

The curve of the spectral density of the field amplitude
fluctuations can be approximately regarded as a sum of
two lines: a broad line

o} (Ea)o

BENo= ©2-} [A0, gaEF/(1 + gaE3)]? (7.11)
and a narrow peak at the frequency
Omax =V AoyyogaE: — v (1 + gaE? (7.12)

(when Aw. > y, we have w ..~ YAw .y ,gaE%). The
width of the peak at half-height is Aw = ya(l + gaEﬁ),
and the spectral density of the field fluctuations at the
maximum is

BE N ow oy, = 0y (E)o/v2(1 + gaE?). (7.13)
It is seen from (7.12) that for a peak to exist on the

amplitude- fluctuation spectral-density curve it is neces-
sary to satisfy the condition

Vol Ao | < ga EY << A® [y, (7.14)

This condition is practically always satisfied in a solid-
state laser. The appearance of a peak in the spectrum
of the amplitude fluctuations of solid-state lasers is due
to the large inertia of the working-level populations. In
gas laser y, ~ y,p > Aw, and the amplitude of the
radiation field, at small deviations from the stationary
state, approaches the stationary state aperiodically. In
solid-state lasers, since y, K Awy < y4p, the ap-
proach to the stationary state is oscillatory with fre-
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quency ®q 5. Analogous phenomena are observed also
in vacuum-tube oscillators with inertial non-linear-
ityt®,

The existence of a peak of this type in the emission
of lasers was indicated inf****%:%%] | It was observed
experimentally int®J,

Integrating (6E2)w with respect to the frequencies, we
obtain an expression for the field-amplitude variance

gakii = AOp 1 -1 .1 Ro
T )(”_“__At»__)
sak? Ve 1--gak} 202 Do j”

(0E - 2 (1o (7.15)

14

For the variance of the number of photons we have ac-
cordingly

Sy Aoy 1

a(n) Ya 1—‘:'1(")) ("_"‘_Tiz ':_%%) . (7.16)

on) = () (552 4
where

o = 8ality a
=g a.

This result coincides with that given by Lax'®"J,

We consider now the phase fluctuations in a solid-
state laser. From (7.3) we obtain for the phase fluctua-
tions the equation

L e D gD — o). (7.17)
Using (7.9), (2.28), and (7.12) we obtain for the spectral
density of the frequency fluctuations the expression

cn O p (A0rpagaEY? :
(8¢ = EZ [(%)0"‘ 'yz—b (07— AmryuguE%):»;— (,):?g (1 gak3)® (E?i)OJ - (7 . 18)

This yields for the emission line width

80 = (8430 = 7o [ @+ @0 -
This expression coincides with that obtained int®®*").
The spectral density of the frequency (7.18) was obtained
inl®}, 1t follows from this formula that when g # 0 the
amplitude fluctuations on the frequency-fluctuation spec-
tral density curve give rise to a peak at the frequency
Wmax-
On the basis of (7.18) we can find the form of the
emission spectral line, in analogy with the procedure
used for the gas laser. The difference lies in the fact
that the broad line due to the amplitude fluctuations has
two symmetrically located small peaks of width y,.

7.2, Standing-wave regime. In this case the calcula-
tion of the fluctuations must be carried out with allow-
ance for the spatial modulation of the populations. In the
general case the result is quite complicated*’7, and we
present therefore only the result for the case of a weak
field, from which we can assess the role of the popula-
tion-difference modulation.

In a weak field we have for the spectral density of
the amplitude fluctuations

(@2 +3) 0§ (5h)o
©2 —3A0 e Ef) -0

(OB = ¢

If no account is taken of the modulation, the number 3
in the denominator is replaced by 2. This leads to a
corresponding change in the value of the spectral den-
sity at w = 0 and in the value and position of the maxi-
mum. The reason is that when allowance is made for
spatial modulation of the populations the laser radiation
intensity depends somewhat differently on the excess of
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the pump level over threshold than when allowance is
made for this modulation!*"7, The dependence of the
amplitude-fluctuation spectrum on the excess of pump

over threshold is the same for both cases.

8. CONCLUSION

As already indicated in the Introduction, natural fluc-
tuations of laser radiation can be separated by spectral
methods against the background of slower technical
fluctuations. We have presented in the review the re-
sults of a calculation of the natural fluctuations for dif-
ferent emission regimes of gas and solid- state lasers
at practically arbitrary ratios of pump to threshold.

The main results consist in the following. We have ob-
tained the spectral characteristics of the laser emis-
sion. In particular, we have determined the form of the
spectrum and the emission line width. In the simplest
case, just as in a vacuum tube oscillator, the emission
spectrum is a superposition of two lines. One, narrow
and intense, is due to the fluctuations of the emission
frequency. Its width, depending on the radiation power,
is of the order of 10™—10™® Hz. The second line, broad
and weak, is due to fluctuations of the emission ampli-
tude. Its width is of the order of 10°~10" Hz. The width
of the narrow line (at a specified observation time) de-
termines the limiting sensitivity of the laser gyroscopes.
The amplitude and frequency fluctuations of opposing
waves in a ring laser have been considered in detail.
The fluctuations in gas and solid- state lasers were cal-
culated by different methods.

For an He-Ne gas laser the polarization has time to
follow the field (the inequalities y,4 ~ yp ~ vap > AWy)
are satisfied, so that the problem of calculating the
natural fluctuations of the laser radiation can be reduced
to a solution of a system of equations for the field am-
plitudes and phases with random sources. The main
task is to determine the statistical characteristics of
the random forces. The spectral densities of the fluctua-
tion sources can be represented in the form of a sum of
two parts. One of them is due to the equilibrium fluctua-
tions of the field in the resonator, and the other to the
medium- polarization fluctuations connected with the
spontaneous emission. The equilibrium field fluctuations
are determined on the basis of the Kallen-Welton form-
ula. The polarization fluctuations are non-equilibrium.
Their spectral density is indeed one of the main prob-
lems in the calculation of natural fluctuations in a laser,
Since the number of photons in the resonator in the gen-
erated mode is large (~10°) even at the very threshold
of the generation, we can use the classical field equa-
tions. The quantum character of the radiation of the
atoms of the working medium is accounted for through
the spectiral densities of the fluctuation sources and
through the polarizability of the medium. Thus, this
theory is semi-phenomenological.

However, calculations based on the semi-classical
equations are simpler and therefore make it possible to
consider more complicated cases. We note also that in
gquantum theory, as a rule, one calculates only the mo-
ments of the numbers of photons. The calculation of the
spectral characteristics of the fluctuations within the
framework of the quantum theory is a complicated prob-
lem, but its solution on the basis of the semi-classical
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theory entails no difficulty. The use of the semi-class-
ical theory makes it possible to calculate fluctuations

in lasers by the statistical methods used in the theory of
radio oscillators.

The spectral densities of the amplitude and phase
fluctuations can be obtained at not too high an excess
above threshold by using correlation theory, and near
the generation threshold by using the Fokker- Planck
equation. In the case of a ring gas laser, there are two
regions where it is necessary to employ the method of
the Fokker-Planck equation in the investigation of the
amplitude and intensity fluctuations of the opposing
waves. These are the region near the generation thres-
hold and the region of small deviations of the generation
frequency from the center of the Doppler line, where
the two-wave regime becomes unstable.

When considering the frequency and phase fluctua-
tions in a ring laser, it is necessary to take into account
the coupling between the opposing waves. This coupling
determines the synchronization region in which the fre-
quencies of the opposing waves become locked.

In the case of a solid-state laser, in view of the fact
that the polarization of the medium assumes its steady-
state more slowly than the field amplitude, it is neces-
sary to take into account also induced fluctuations,
namely polarization fluctuations due to the field fluctua-
tions. The statistical characteristics of the radiation
are then significantly altered.

The method developed above for calculating natural
fluctuations in lasers is sufficiently general and can be
used successfully to calculate non-equilibrium fluctua-
tions in other systems.

APPENDIX 1

We denote by q the aggregate of variables of the atom
(quantum numbers n and coordinates r and p) and by
p(d, q4', t) = ¥*(q, t)¢(d’, t) the operator density matrix.
Here 9*(q, t) and y(q, t) are quantum wave functions
satisfying known commutation relations. Using these
commutation relations, we can writel®®

N2 (g1, a1, ) 0 (92, g3y 1) = N2 b+ (g1, 1) ¥ (a1, 1) * (g2, £) P (020 1))
= N(N—1) F2lqs, q1s G2» 950 )4 N8 {q1—q2) P (42, 1. )03

(1)

we have introduced here the symbol for the second dis-
tribution function

Fo= 09 (gl ) W (2, 0% (g1, D (g2, 7). (2)

The function F; is connected with the correlation func-
tion G by the relation

Fo=(p gt a1, ) (P (a2, 95, -G (a1, ¢}, €2» 95 D). (3)

The spontaneous fluctuations are calculated in an ap-
proximation in which the correlation function is neglec-
ted.

From (1) and (2) at G = 0, after symmetrizing with
respect to the particles, we obtain for the deviations
&8p = p— (p) the expression
B0 (1. 031 1) 80 (02, 04, ) =g 16 (41 —03) (0 (0 050 1)

4

28 (ga— ) (P (G1s 930 1Y — 24P 5y 91> 2P {42y g3, 1)),

If the motion of the mass centers of the atoms is
described classically, then we can change over from the
functions (p(q’, q, t)) to the functions P am(Ts P 1),

where r and p are the coordinates and momentum of the
mass center. As a result, expression (4) becomes

Bpum (1, 22 1) 6!’1['"1' @y p't) -
= o (8 ) B0 1) B (7 Py 8 BBy (7 2 )
—2ppm{r, p, t) Pnme ' p's )}
(5
Thus, expression (5), which is used in the text to calcu-
late the spectral densities of the amplitude and phase
fluctuation sources, holds for G = 0. By the same token,
the fluctuation sources are determined by the motions
of the individual atoms. The correlations themselves
are expressed in terms of the fields produced by these
sources. This question is discussed in greater detail
int®!, The last term of the right-hand side of (5) is im-
portant only when py + pp =~ 17°°2. Allowance for this
term in a two-level laser scheme leads to the correc-
tion obtained by Kazantsev and Surdutovich to the form-
ula for the variance of the number of photonst®"?,

APPENDIX 2

We present an expression for the spectral densities
of the polarization noise at zero frequency for the case
when the amplitudes of the opposing waves differ little,
i.e., when (E, — E;)/(E, + E;) € 1. AtE, = E; = E the
following expressions were obtained int**P:

2nh Ao RO FaE3 .. gFaE}
@y, = L J'_(H_K_EE_O)_V__ELD_ , (6)
s Vo, | Do 14-F v+ t+F
2nk Ao RO FaE2 - FoE? 2
mz D[R () apa 8FaBs Y v gFeEs (W )
a1, 2)="Tg, {DO (1 Ry ) vi I¥F (1 P }

The functions {; and f, are determined by the expressions
- e 3
f=r{2 (1) (F’—i)—-g—F—(Fﬂ—l)—ZanEg} :

202 I3, 2%
o M4 (2u?/y5y) —(1+2aE})
2 Vo gF ]

In a strong field, the spectral densities of the ampli-
tude and phase correlations of the opposing waves also
differ from zero. They are determined by the expres-
sions

(E(U)E(")) . 2nk AOy  gFaE? ( ROy )
Sat Sa2 /0 Vag 1 F \DV 5. )"
2k Aw RO 1
¢ Ny = P . L Y-
€=~y o8t { o e A+ nk. (7)

LIST OF SYMBOLS

wo—generation frequency
Q—figure of merit of resonator
AWy = wo/Q—resonator band width
V—resonator volume
L—resonator length
Aw = 2TA—laser emission line width
a, b—indices of working levels (a—upper level),
(V)5 PKp(V)) Pap(V)s Ppa(v)—matrix-density elements
for the working levels of an atom possessing a

velocity v.
Py (v), py’(v)—level populations in the absence of a
field,

2
Py = o) (e~ T IR T myav, pf = [pi(¥)

_ 2
X (e mv’/ 21(T/w/27rkT7m)dv—working—level popula-
tions averaged over the velocities.
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D(v) = py(v) - pb(v)—difference between the populations
of the working levels (D° = pg — pp),
R(v) = p (V) + pb(v)—sum of populations of working
levels
Yar Vb Yab— relaxation constants of the corresponding
density- matrix elements,

Ya¥Yb¥Yab
Ve + Vb

Yot ¥b
2

Cw Bt

V= v P-=

U =wo— wab—deviation of generation frequency
from the center of the gain profile;

g = (vap/k° + ¥ap)» k1,2, ki,2—real and imaginary
parts of the polarizability;

a = (e®|r,p %/ 6h°y %)~ saturation parameter;

d = (47%e*n| §ab{zD°/ 31v2mkou)—pump parameter;

2
&(x) = V(2/m) fe X / 24x—probability integral

Du(z)—parabglic cylinder function.
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