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A review is given of the theory of the generation of ultrashort light pulses in lasers with bleachable
filters. Attention is mainly concentrated on the statistical aspects of the formation of ultrashort light
pulses in such lasers. The topics discussed include the formation of laser modes, the narrowing of
the spectrum in the stage before the bleaching of the filter, the transformation of the field profile
during the bleaching process, the statistics of the appearance of single ultrashort pulses, and the in-
fluence of the gain saturation on the time characteristics of the radiation. Several additional effects,
which influence the final structure of the radiation, are considered. A quantitative theory is given of
the widely used two-photon method for measuring ultrashort pulses and a basic shortcoming of this
method is pointed out: it is not possible to find whether one or many pulses appear in a given period.
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1. INTRODUCTION

I N 1966 several workers[1~3:i reported the generation of
laser radiation with remarkable properties. A time
scan of the intensity of this radiation was a periodic
sequence of pulses whose duration was considerably
less than the separation between them. By way of illus-
tration, Fig. 1 shows an oscillogram of the intensity of
the radiation emitted by a neodymium laser, as reported
i n ^ . Here, the pulse repetition period is equal to the
time required for a round trip along the resonator and
the duration of the pulses—amounting to 3 χ 10"9 sec—
is determined by the width of the spectrum. The instan-
taneous values of the pulsed power are several times
larger than the average radiation power.

Radiation of this type is obtained when a resonator
contains a bleachable filter, which is a substance whose
transmission increases with increasing radiation inten-
sity. Clearly, the concentration of the radiation in short
bursts reduces the absorption of light in such a sub-
stance and, therefore, such concentration is energetic-
ally more favorable than the emission of radiation which
is continuous in time.

These qualitative considerations and the first suc-
cessful experiments seemed extremely promising. It
was hoped to achieve generation of extremely short
pulses and thus attain very high instantaneous powers
by the simple increase of the width of the generated
spectrum.

FIG. 1. Oscillogram of a giant pulse emitted by a neodymium laser.
[4] The pulse repetition period is 22 nsec and the pulse duration (~3
nsec) is equal to the reciprocal of the width of the spectrum.

In fact, considerable difficulties were encountered
whose significance was not understood immediately.
The position was complicated by the fact that erroneous
methods for measuring the time characteristics of the
laser radiation were put forward in 1967 and found wide
application. These methods were used by many workers
to conclude that they produced very short pulses and
reached record power levels.

Only the recent and more careful investigations of the
generation of ultrashort pulses established that regular
sequences of ~10~u sec pulses were produced. This
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was established reliably by the use of unique apparatus
in which the t ime c h a r a c t e r i s t i c s of the radiation were
recorded directly (see^5-1).

The present review p r e s e n t s a quantitative theory
which descr ibes the whole p r o c e s s of the generation of
radiation in a l a s e r with a bleachable filter. We shall
show how a regular sequence of pulses can be produced
in a l a s e r without any external modulation. 1 ' We shall
d i scuss specially the stat is t ical nature of the action of
such a l a s e r : the appearance of a regular t ime pat tern
in the output radiation i s character ized by some proba-
bility. We shall show how the p a r a m e t e r s of a l a s e r
should be varied in o r d e r to increase the probability of
the appearance of a periodic sequence of single ultra-
short pulses . In Chap. 2 we shall give a qualitative
description of the successive stages of the development
of st imulated emiss ion in a l a s e r with a bleachable fil-
t e r . The resu l t s of a quantitative analysis of the suc-
cessive stages of the operation of a l a s e r of this type
a r e given in Chaps. 3—7.

Ultrashort light pulses have a wide range of applica-
tions in technology and physical investigations. For ex-
ample, they can be used in studies of the p r o p e r t i e s of
mat ter and vacuum in extremely strong electromagnetic
fields, in measurements of the l i fetimes of molecular
sys tems (~10~12 sec), and in initiation of thermonuclear
react ions as a resul t of heating of mat ter by l a s e r radia-
tion. The possible applications of u l t rashort light pulses
have been discussed widely in the l i t e r a t u r e (see, for
example, reviews given in ' · 6 ' 7 ' 5 1 ' 5 2 ^) and we shall not
consider them here .

2. SUCCESSIVE STAGES OF THE DEVELOPMENT OF
STIMULATED EMISSION IN A LASER WITH A
BLEACHABLE FILTER

In the present chapter we shall give a quantitative
descript ion of the successive stages of the development
of stimulated emiss ion in a l a s e r with a bleachable fil-
te r . This description will also serve a s a summary of
the content of the chapters in the present review which
give a quantitative discussion of the p r o c e s s e s occurring
at different s tages in the appearance of coherent radia-
tion.

The operation of a solid l a s e r under giant pulse con-
ditions begins at the moment of switching-on the pulsed
pumping whose action t r a n s f e r s active atoms to a higher
energy level. At the beginning of a pumping pulse the
intensity of the radiation at the frequency of the l a s e r
transi t ion i s zero and the active medium shows pract ic-
ally no gain at this frequency. Next, the atoms excited
by the pumping radiation begin to emit spontaneous pho-
tons at the l a s e r t ransi t ion frequency. The spectrum of
the spontaneous radiation i s identical with the spectrum
of the luminescence line corresponding to the l a s e r
transi t ion. Some of the spontaneously emitted photons
are reflected by the resonator m i r r o r s and they r e t u r n
to the active substance where they a re amplified. How-

ever, as long a s the population of the atoms at the upper
excited level is considerably l e s s than the threshold
value, the fraction of these reflected and amplified pho-
tons is l e s s than the fraction of the photons generated
directly in the spontaneous emission p r o c e s s . Since the
spontaneous emission i s essential ly a fluctuation proc-
e s s , the intensity of the radiation fluctuates at a charac-
ter i s t ic correlat ion time τ

c o r r
J lum·

11 Periodic sequences of pulses had been generated in lasers whose Q
factor was switched externally (see, for example, [ s 0]) before the ap-
pearance of papers describing lasers with bleachable filters. [ ' ' 3 ] There
were many great technical difficulties which impeded widespread use of
lasers with external Q-switching. However, the operation of such lasers
is clearly understood.

When the population of the upper active level approa-
ches the threshold value, the fraction of the reflected
photons increases and this amplifies part ly the noise
radiation which is emitted by the active medium and
reflected by the resonator m i r r o r s . At the moment when
the contribution of the amplified noise exceeds the con-
tribution of the direct spontaneous radiation we find that
the fields become periodically corre lated at the moments
t and t + T, where Τ i s the time taken by radiation to
travel a c r o s s the resonator in both direct ions. This
round-tr ip t ime is determined by the geometry of the
resonator and, in the s implest case of a l inear resonator
with a standing wave, it i s given by Τ = 2L/c, where L is
the distance between the m i r r o r s .

The total width of the spectrum i s still ~ Δ ω 1 υ η ι (the
correlat ion time is short : T c o r r ~ ΐ Α ω 1 | 1 ΐ η ) . However,
the presence of a periodic corre lat ion corresponds t o -
rn the spectroscopic language—the formation (under the
influence of the resonator) of single discrete modes
forming an equidistant set of frequencies α>^ = ω0

+ k(2fl-/T). We must s t r e s s that a quasiperiodic fluctua-
tion pattern is formed, generally speaking, before the
l a s e r threshold is reached. These initial fluctuations
a r e important in the formation of the final time pattern
of the radiation.

The gain of the active medium at a frequency cojj i s
proportional to the product of the difference of the popu-
lations of the active levels and the function §(ω%), which
descr ibes the spectra l profile of the luminescence l ine.
Therefore, during the growth of the inversion under the
influence of the pumping radiation, the threshold condi-
tions (the excess of the gain over the losses) a re first
satisfied by the central frequency and then by other fre-
quencies. The p r o c e s s of regenerative amplification of
the noise t rans forms in a continuous manner into the
emiss ion of coherent radiation. Under these conditions,
the frequencies close to the center of the gain profile
a r e amplified preferential ly.

At this stage, the l a s e r i s a l inearly amplifying sys-
tem because the field intensity i s still low and the field
does not give r i s e to nonlinear effects in the filter or in
the active substance. This l inear amplification stage
l a s t s until the onset of bleaching of the filter. Since the
intensity of the radiation at the onset of the bleaching
(increase in transparency) stage is many o r d e r s of
magnitude higher than the intensity of the spontaneous
radiation emitted by the active medium, this l inear am-
plification stage i s necessar i ly quite long. Therefore,
the narrowing of the emiss ion spectrum as a result of
the inhomogeneous distribution of the gain over the
spectrum i s very strong.

Thus, at the moment when the nonlinear stage begins
(the stage of bleaching of the filter) the radiation has a
quasiperiodic noise pattern and the width of the spec-
trum is Δωι, which is much l e s s than the initial width of
the luminescence line Δ ω ι υ Γ η . During one period there
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a r e ~ ΔωιΤ random amplitude peaks. Since the initial
spontaneous noise is amplified l inearly, the field at the
beginning of the bleaching stage i s a complex Gaussian
random quantity.

The field profile is modified during the bleaching
stage. This modification consis ts in the preferential
amplification of those p a r t s of the profile at which the
intensity has i ts highest value. Multiple passage of the
radiation through the bleachable fi lter reduces the dura-
tion of each intensity peak. At the same t ime, the stron-
gest peaks a r e amplified more rapidly than the weaker
peaks. This gives r i se to a time distribution of the in-
tensity which i s much more strongly inhomogeneous
than that in the initial Gaussian p r o c e s s . We may find
that all the l a s e r radiation energy in a period is con-
centrated in one or several very strong peaks. The
formation of such a t ime distribution is the most impor-
tant feature of the operation of a l a s e r with a bleachable
filter. The t ime distribution with one strong peak in a
period can be achieved only with a certain probability
because the field before bleaching i s a random function
of t ime. This probability i s calculated in Chap. 6 as a
function of the l a s e r p a r a m e t e r s .

The next stage i s a rapid amplification (the filter is
now fully bleached and completely t ransparent) of the
field profile formed during the bleaching stage. The
nonlinearity of the gain in the active substance becomes
gradually more pronounced. The gain saturation deter-
mines the amplitude of the giant pulse and the time
during which the light energy stored in the resonator i s
emitted.

This schematic description of the operation of a l a s e r
with a bleachable fi lter is based on the assumption that
the var ious stages a re divided by sharp boundaries.
Actually, there is no absolutely sharp boundary between
the end of one stage and the beginning of the next. For
example, the frequency dependence of the gain of the
active medium is important at all s tages. However, this
frequency is most important in the l inear stage before
bleaching (this stage is longest) and its influence during
other s tages can be ignored.

The aforementioned effects which influence the
operation of a l a s e r with a bleachable fi lter a re basic
in the sense that they must appear in all l a s e r s of this
type. This is used to construct a quantitative theory of
the phenomena which occur at different stages of the de-
velopment of stimulated emiss ion: this theory is given
in Chaps. 3—7.

Apart from the effects described in the preceding
paragraphs, several o thers may exert a considerable
influence on the final field profile. Their influence de-
pends on the actual p a r a m e t e r s of a l a se r . Some of these
effects a r e l isted below.

The frequency dependence of the refractive index of
the active medium (the dispers ion of g lass or ruby) r e -
sults in a non-equidistant mode pattern which is known
a s the dispers ion blurr ing of the pulses in t ime. The
pulses reta in their spectra l width and acquire phase
modulation.

An increase in the refractive index of g lass or ruby
under the influence of the strong field of the l a s e r radia-
tion does not, in the f irst approximation, affect the pulse
duration but it does broaden the spectrum and gives
r i se to phase modulation.

When the radiation intensity i s high, various nonlinear
l o s s e s impair the conditions for the amplification of the
strongest peaks. Consequently, the energy may be
spread over a l a r g e r number of weaker peaks.

These " a d d i t i o n a l " effects are considered in Chap. 8
(they may be extremely important in specific situations).

In view of the wide use of the two-photon method for
measuring ul t rashort pulses it has seemed desirable to
consider this method in some detail. Chapter 9 gives a
brief description of this method and points out i t s basic
shortcoming: it i s not possible to determine the instan-
taneous power by this method.

3. SUBTHRESHOLD ESTABLISHMENT OF A
QUASIPERIODIC FLUCTUATION PATTERN
(MODE FORMATION PROCESS)

At the beginning of the whole p r o c e s s the gain of the
active medium is pract ical ly zero and the field perturba-
tions in the resonator decay in accordance with the law
&<* {—at/2} , where a i s the decay constant. The con-
stant a includes var ious los ses in the l a s e r : the l o s s e s
due to the reflection from the m i r r o r s , as well as those
due to the l inear scatter ing and absorption in the filter
(at this stage the filter is a l inear element). The attenu-
ation of the field after a one-way t r ip through the reson-
ator is given by e x p { - a T / 2 } . Under typical conditions
the product a T ranges from 0.1 to 3—5. (For example,
in the case of 50% l o s s e s at each of the m i r r o r s and
~ 20% t ransmiss ion of the filter in the unbleached state,
the product a T is 3.0.) We shall consider a l a s e r emit-
ting radiation modes with the lowest t r a n s v e r s e index.
The spectrum of such modes can be regarded as equi-
distant and the mode spacing is

Ω = 2η/Τ. (3.1)

The problem of establishment of the mode pattern
must be considered bearing the following point in mind.
Because of the decay of the radiation, the spectral width
Γ of the field of some mode i s Γ κ a . In many cases ,
this width i s of the same o r d e r as the mode spacing
Ω = 2ιτ/Τ. In this situation, the concept of a mode is not
equivalent to the concept of a spectra l component: the
field of the k-th mode has a continuous spectrum of fre-
quencies which are overlapped significantly by the spec-
t r a of the fields of the k ± 1-th, k ± 2-th, and other
modes. In view of this situation, we shall consider in
detail the establishment of modes under the action of
spontaneous radiation during gradual amplification.

We shall consider the s implest model of a l a s e r in
which the gain and the l o s s e s a re distributed uniformly
over the length of the resonator . 2 ' The field in the
resonator can be represented as an expansion consisting
of a complete set of functions

E(z, i) = <·-"»·< (3.2)

We can see that ω, which i s the central frequency of the
luminescence line of the active medium, is clearly dis-
tinguished and that p 0 = w o/c. The sources of spontane-
ous noise (atoms) are much smal le r than the wavelength

2)This simple laser model is used only in the present chapter; it will
not be needed in subsequent chapters.
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and are distributed uniformly over the length of the
resonator. The corresponding noise polarization Pn(z, t)
is δ-correlated with respect to z:

(P'a (z, t) Pn(z', f)) = g (t, t') δ (z - z'). (3.3)

A truncated system of equations for the amplitudes of
the spatial modes Ek(t) is of the form

spectrum; G(w) is the normalized profile of the lumines-
cence line; the slowly varying function H(t) represents
the gradual rise in the number of atoms at the upper
excited level of the active transition under the action of
the pumping pulse.

The solution of Eq. (3.4) is of the form

"*«+{. ( .-ί«)*Μ-ιΜ*Μ-ΛΜ. (3.4) ftW-j>*-A(O«p{jr-'*0+ifc(O-{.Jdr}. (3.6)

We shal l now expla in the notation used in the above

equation. The factor /3(t) d e s c r i b e s the ampl i f icat ion of

the f ield of the k- th spatial mode of the act ive medium

and the ga in i n c r e a s e s with t ime t under the act ion of the

pumping pu lse . Str ict ly speaking, the gain band

(Δω = Ao>ium) is of finite width and, therefore, the term
describing the amplification of the field Ek(t) should be

of the form J/3(t, t ')E k(t')dt'· The interval |t - t ' | in
— oo

which the kernel of the integral operator |8(t, t') differs
significantly from zero is of the order of At
~ (Aoiium)"1. We shall assume (and confirm the validity
of this assumption by the results of subsequent calcula-
tions) that the field of the k-th spatial mode depends on
time in accordance with the law Ek(t) = e - i k n t E k s i o w ( t ) ,
where the function E k s i o w ( t ) varies only in time inter-
vals considerably greater^than (Δω^,η)"1. In this case,
the effect of the operator jS(t) reduces practically to
multiplication by the number /3k, which is a function of
the frequency kf2. This number is real (it has only the
active component) at the center of the luminescence line
(k = 0). By virtue of the Kramers-Kronig relationships,
the imaginary component of the number /3k near the cen-
ter of the line is proportional to k: Im |3 k = Akf2. The
imaginary component Im 0 k ~ k can be eliminated by re-
defining the mode spacing as Ω ' = Ω + '^ΛΩ. This
corresponds to an allowance for the change in the group
velocity of the radiation in the active medium as a re-
sult of a resonance transition. We shall assume that the
values of β^ are real for those modes which are located
near the center of the line. When this redefinition is
adopted, we find that the numbers j3k contain imaginary
components proportional to (kn/Aa>iuni)

3; we shall drop
these imaginary corrections from the final formulas be-
cause they are small for the strongest central modes.

The right-hand part of Eq. (3.4) contains the k-th
spatial component of the noise polarization fk(t)
~ / P n ( z > t)cos[(p0 + kn/c)z]dz, which is a random
function of time.3 ) Since the distribution of the noise
sources over the length of the resonator is uniform and
the system of functions cos[(p0 + kfi/c)z] is orthogonal,
the noise sources corresponding to different spatial
modes are independent:

<') Α. ( (3.5)

Consequently, the ampl i tudes E k of the v a r i o u s spatial
m o d e s are a l s o independent. The l a s t equation i s der-
ived us ing the Wiener-Khinchin t h e o r e m on the re lat ion-
ship between the c o r r e l a t i o n function and the power

3 Ά consistent allowance for the quantum-mechanical noise of spon-
taneous radiation is discussed in [ 8 ] . We shall not stress explicitly the
quantum nature of the quantities considered but all the calculations
given here apply also to the quantum treatment.

The average of the fluctuation ensemble is <Ek(t)) = 0.
We shall now determine the correlation function
<Ek(t)Ek(t + T)>. This function is given by

i l+t
= j A, j Α,</ί(<,)/*(«„)>exp

Substituting Eq. (3.5) into Eq. (3.7) and bearing in mind

that the width of the l u m i n e s c e n c e l ine A o > i u m of a l l the

so l id l a s e r s i s much g r e a t e r than any of the quant i t ies

a, β, or Ω , we obtain

(Et (i) Eh (t + τ)) = β - (3.8)
«-β* Μ

T h e a b o v e e q u a t i o n i s d e r i v e d o n t h e a s s u m p t i o n t h a t t h e

g a i n / ^ ( t ) v a r i e s s u f f i c i e n t l y s l o w l y i n t i m e . E q u a t i o n

( 3 . 8 ) d e s c r i b e s t h e f o l l o w i n g t w o e f f e c t s .

F i r s t of a l l , i t f o l l o w s f r o m t h i s e q u a t i o n t h a t t h e

i n t e n s i t y of t h e n o i s e o s c i l l a t i o n s i s h i g h e s t a t t h e c e n -

t e r of t h e l u m i n e s c e n c e l i n e ( t h e f a c t o r

σ ^ Ω ) [ α - ^(t)]" 1 ) . According to this formula, the num-
ber of the most effectively excited spatial modes should
decrease without limit when the laser threshold, /3o(t(.h)
= a, is approached. A more accurate analysis of this
effect is given in Chap. 4.

Moreover, it follows from Eq. (3.8) that the width of
the frequency spectrum of the amplitude of the k-th
spatial mode becomes r k « a - fc(t). When the gain
approaches the threshold value, an increasing number
of modes satisfies this condition

Γ»«α-β»(ί)«Ω. (3.9)

This m e a n s that the s p e c t r u m of f luctuations of the

amplitude of the k- th mode has p r a c t i c a l l y no over lap

with the s p e c t r a of the f luctuations of the (k— l )- th and

(k + l ) - t h m o d e s . Therefore, when the threshold i s ap-

proached suff iciently c l o s e l y , the concepts of the spatial

mode and of the s p e c t r a l component in the equidistant

s e t of f requenc ies b e c o m e p r a c t i c a l l y identical . This i s

the main conc lus ion which fo l lows f rom the a n a l y s i s

g iven in the p r e s e n t chapter.

In the next chapter (Chap. 4) we shal l study the e v o -

lution of the d istr ibut ion of the e n e r g y o v e r the v a r i o u s

spat ia l m o d e s . In v iew of what we have just sa id, th i s

wi l l be equivalent to the calculat ion of the spectrum of

the e l e c t r o m a g n e t i c f ield in the l a s e r .

The radiation field emerging from the laser (for ex-
ample, the field at the point ζ = 0) is given by the sum
of the contributions of the various modes:

E(z = 0, <) = Σ £* (3.10)

If we u s e the fact that the ampl i tudes of different m o d e s

a r e independent, we can find quite e a s i l y the e x p r e s s i o n
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for the corre lat ion function (E*(t)E(t + τ)). We shall
give an explicit express ion for the case in which the
preferent ia l growth of the energy of the central modes
becomes significant, i .e. , when the spectrum of the
effectively excited modes becomes two or three t imes
narrower than the luminescence line

l- Zj
2»iff(qg(fcfl)

« - β * Μ '

, ( 3 . 1 1 )

( 3 . 1 2 )

The express ion [τ/Τ] in Eq. (3.11) r e p r e s e n t s the in-
tegra l par t of the rat io τ / Τ and the function R(T) has a
period T. The function R(T) descr ibes the correlat ion
of the fields in one period and differs considerably from
zero in the interval |τ | £ ( A w e x c ) " \ Equation (3.11)
descr ibes the appearance of corre lat ion between the
fields at moments separated by integral numbers of
per iods : this means that a quasiperiodic fluctuation
pattern is established and the decay of the correlat ion
in one period is represented by the factor
e x p { - y 2 [ a - A , ( t ) ] T } .

4. NARROWING OF THE EMISSION SPECTRUM IN THE
STAGE BEFORE THE BLEACHING OF A FILTER

In this chapter we shall consider the l inear stage of
the development of stimulated emission up to the mo-
ment of bleaching of the filter. The character i s t ic fea-
t u r e s of this stage were first discussed by Sooy'-11-' and
in g r e a t e r detail by Sushchik and Freidman.^ 1 2^ We
shall concentrate mainly on the calculation of the fol-
lowing quantities, which character ize the l inear stage:
1) the time of r i se of the intensity of the optical oscilla-
tions to the value at which the nonlinearity of the bleach-
able fi lter becomes important; 2) the number of modes
which are effectively excited at the onset of the bleach-
ing process ; 3) the gain j3(ti) which is established at
that moment. The last two quantities will be used to
descr ibe the operation of the l a s e r in the subsequent
stages.

We have pointed out in Chap. 3 that, beginning from a
certa in moment, the development of coherent radiation
from continuous noise can be described by the fields of
various modes. The equation for the averaged (over the
fluctuation ensemble) energy of the k-th mode Ujjt)—
expressed in ergs—is of the form

(0; (4 ·!)

h e r e , Κω0 i s the average value of the energy of a photon
corresponding to the active transit ion frequency; N2 and
Ni a re the populations of the upper and lower l a s e r
levels; g2 and gi a re the stat is t ical weights of these
levels.

In the l inear stage the number of effectively excited
modes d e c r e a s e s considerably. Therefore, we can ex-
pand the coefficients a^. and ^ ( t ) in powers of ^.Ώ/Αω.
Near the center of the luminescence line these quanti-
t ies can be represented in the form

We shall assume that the l inear los ses in the resonator
(ai) can also depend on the frequency and are minimal
at the center of the l ine. On the other hand, the non-
l inear losses in the filter ( a n j ) will be assumed to be
independent of the frequency.

At some moment t t n the los ses and the gain become
equal at the central frequency kfi = 0:

R(l ) = α η 1 - ΐ ~ α ΐ = α ( 4 · 4 )

F o r typical l a s e r sys tems the value of Τ u m p , which i s
the t ime in which the gain changes significantly under
the influence of pumping, amounts to Τ u m

~ ΙΟ"3—10~4 sec, whereas the duration of the l inear
stage of the development of stimulated emission is
ΙΟ"5—10"6 sec. Therefore, near t = t ^ , where the
phenomena of interest to us a r e taking place, we may
assume that the gain i s a l inear function of t ime:

t• β (ί th ) (̂  — ^ th ) ( 4 . 5 )

[ f r o m n o w o n w a r d w e s h a l l d r o p t h e a r g u m e n t of

s o t h a t a f t e r s u b s t i t u t i o n of E q s . ( 4 . 3 ) — ( 4 . 5 ) t h e c o e f f i -

c i e n t /3k(t) — ofĵ  in E q . ( 4 . 1 ) b e c o m e s

β ,,, ,. , \Q7orwra"i~P(^— ' t h ) i α 1 1 i 4 6^

k (t)-ct k = (i-<th )β^Ω2 ,L. , , " " + ,.,.,..., . ν*·°;
The change in β(ΐ) throughout the l inear stage i s quite
small (for the same reasons) : (tx - t t h)j3 <C /3(ttn) = a.
Therefore, we can ignore the product k 2 n 2 ( t - t tn)/3 on
the right-hand side of Eq. (4.6). Moreover, in our ap-
proximation the intensity of the spontaneous sources
[the right-hand part of Eq. (4.1)] may be assumed to be
constant and independent of ki2 and of t ime. Bearing
these points in mind, we can rewri te Eq. (4.1) in the
form

where the following notation i s used:

(4.7)

(4.8)

This approach-shows very clearly the two character i s t ic
proper t ie s of the system considered: the nonstationary
nature of the gain and i t s frequency dependence. Equa-
tion (4.7) shows also that the noncentral modes satisfy
the threshold condition somewhat la ter than the mode
with k = 0.

Equation (4.7) has an exact solution which can be ex-
p r e s s e d in t e r m s of the e r r o r function Φ(ζ):

At the moment of interest to us (t), the argument of the
e r r o r function for the most effectively excited modes
becomes much l a r g e r than unity. Moreover, we shall
assume (this will be confirmed by the resu l t s of subse-
quent calculations) that the t e r m Ό\4Ω4/2β can be
dropped from the argument of the exponential function.
In this way, we find that the excitation energy of the
k-th mode at a time t is given by the expression

uk(t) = 2v(±y'2exV{i(t-tthy-k*QW(t-tth)}. (4.10)

(4.3) This expression shows that in the l inear stage the dis-
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tribution of the excitation energy over the modes is of
Gaussian form:

( 4 Λ 1 )

where the effective width of the spectrum Δω(t) decrea-
ses with time proportionally to l/Vt — t{n. The total
energy, carried by all the modes, increases in accord-
ance with the law

(4-12)

the dependence exp{/3(t — tj.n)
2/2} is related to the non-

stationary nature of the gain.
We shall now find the following quantities: 1) the

width of the emission spectrum Δω(ίι) at a moment ti
corresponding to the onset of the nonlinear action of the
filter; 2) the value of the gain /3(ti) = a + (tt - tth)/5
which is established at this moment. First, we find the
moment of onset of the bleaching process tx from the
equation

here, c is the velocity of light; L is the length of the
resonator (in cm); S is the area of the cross section
(in cm2) occupied by the modes with the lowest trans-
verse indices; 1χ has the dimensions of erg- cm"2 · sec"1.
In the lowest approximation Ix can be regarded as the
power density at which significant bleaching of the filter
takes place: Ii ~ I b j . More accurately, we should sub-
stitute for Ii a quantity considerably smaller than I b j .
A detailed analysis of the bleaching process1-9'103 shows
that the effective interaction of light with a nonlinear
filter in a laser begins when the instantaneous radiation
power density reaches

r τ P(tQ — α ϊ — αηΐ (Λ 1Λ\
Jinst — * bl JT"j V ^ · 1 ' /

( t h i s p o i n t i s d i s c u s s e d a l s o i n t h e n e x t c h a p t e r , w h i c h

d e a l s w i t h t h e b l e a c h i n g p r o c e s s ) . M o r e o v e r , t h e f l u c -

t u a t i o n p a t t e r n o f t h e r a d i a t i o n i n c l u d e s s o m e p e a k s a n d

t h e i n s t a n t a n e o u s p o w e r d e n s i t y I i n s t f ° r t h e s t r o n g e s t

peaks may exceed the average value οΙΓ1£ΓΙΣ% by a
factor of ln[Ao)(t)/n] (see Chap. 6); these are the peaks
of greatest interest to us. When these points are borne
in mind, the equation for the determination of ti, which
is the moment from which the nonlinearity of the filter
becomes significant, assumes the form

, , (*ι-«Λ)β 1

! = e x p { P ( i l - i , h ) 7 2 } .

i - ' t h ) ( 4 . 1 5 )

W e s h a l l s o l v e t h i s e q u a t i o n b y i n t r o d u c i n g t h e f o l -

l o w i n g d i m e n s i o n l e s s p a r a m e t e r s :

Z = p ( i , - i t h )2, ( 4 . 1 6 a )

y = <*a/p\ ( 4 . 1 6 b )

/ , , α ϊ (A<J>imn)«\-i/2

V1 + ai + <xnj (Δω«,)«; (4.16c)"° — 5 "

Equation (4.15) then becomes

SL jy.- (4.16d)

[ 2 { lnf-rior-'/ij-ln^i/i)· I 4 ' 1 ' )
The parameter mo represents the number of modes
which can be fitted into the luminescence line and the
root factor in Eq. (4.16c) gives the correction which
allows for possible selective losses in the resonator.
The parameter A represents the ratio of the bleaching
power density 1 ^ to the power density corresponding to
the optical energy of one photon Κω0 stored in the reson-
ator. The quantity Amo1 is the ratio of the bleaching
power density to the power density of the spontaneous
radiation in the form of modes with the lowest trans-
verse indices. The parameter Υ represents the rise
time of the gain, divided by the decay time of the field
in an empty resonator. Finally, the parameter Z/2 de-
termines the argument of the exponential function in the
law describing the rise of the energy of the optical os-
cillations. The value of I b j depends on the actual sub-
stance used in the filter: by way of an estimate we can
assume that I b Z ~ 2 MW/cm2 (seeC 4 7 '4 8 : i). We shall use
the following typical values: S = 0.1 cm"2. L = 102 cm,
Κα>ο ~ 10"19 J, Aw lum/27rc ~ 100 cm"1, T p u m p ~ 2
x 10"3 sec. We then find that A ~ 1015, m0 ~ 3 χ 104,
and Υ ~ 5 χ 105. Since A is a very large number, we
can easily find an approximate solution of Eq. (4.17):

Z, = 21n Z, = 21n-

(4.18)
For these parameters, the value of Ζ is ~50. When the
parameters of the resonator and the filter are varied,
the value of Ζ is hardly affected because it is a logarith-
mic function of these parameters. We shall now express
all the laser characteristics at the onset of the bleach-
ing process (tx) in terms of the quantities defined in the
preceding paragraphs:

A(alam

V
ΛΥΖΤ

»+;

(4.19)

(4.20)

In later chapters we shall need the parameters
m = Ai»(ti)/Q and ρ = 1 + on^/(/3(tl) — «/ — «n/)· Hiese
parameters are given by

P = l + ̂ n l - j / T , (4.21)

^ « , Γ ' Υ 1 " . (4.22)

In the specific case we are considering we may assume
that α η / / ( α ; + ani) ~ 0.8 and, therefore, ρ ~ 80,
m ~ 600. It would be interesting also to find the time
from the moment of reaching the threshold to the onset
of the nonlinear interaction with the filter:

ii-ith = Kz/Kpr; (4.23)

in our example ti — t j n amounts to ~3 χ 10"5 sec. It is
interesting to note that the product mVpj encountered in
Chap. 5, is given by

i/— , /—οϋ ι (4 241

All the expressions obtained so far contain the
parameter
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The value of this p a r a m e t e r depends on the actual na-
ture of the function /3(t) and has to be determined separ-
ately for each l a s e r system. Byway of i l lustration, we
shall derive the express ion for β for a simple pumping
model. Let us assume that

Ρ « = β,η3χΓΐ.-(-=Λ- Π , (4.25)
L * ' pump ' -1

where the gain / 3 m a x can be expressed in t e r m s of the
absorption coefficient a = α^ + αηι and the excess of
the pumping energy over the threshold η :

(4.26)

In this case, the quantity β i s given by

Λ _ 2α (4.27)

T h e r e a d e r m a y w i s h t o s u b s t i t u t e t h e a b o v e e x p r e s s i o n

into the formulas for ρ and m.
Thus, we have been able to express the quantities ρ

and m in t e r m s of l a s e r p a r a m e t e r s which can be de-
termined by direct exper iments :

<*•!, a n l , Δ ω Γ ε r p u m p .

5. TRANSFORMATION OF THE FIELD PROFILE IN
THE FILTER BLEACHING PROCESS

W e h a v e s h o w n e a r l i e r t h a t a q u a s i p e r i o d i c f l u c t u a -

t i o n p r o f i l e of t h e f i e l d S0(t) i s e s t a b l i s h e d b e f o r e t h e

o n s e t of t h e b l e a c h i n g p r o c e s s . W e s h a l l n o w c o n s i d e r

t h e t r a n s f o r m a t i o n of t h i s p r o f i l e d u r i n g t h e i n t e r a c t i o n

of t h e f i e l d w i t h t h e f i l t e r .

W e m u s t f i r s t f o r m u l a t e m o r e e x a c t l y w h a t w e u n d e r -

s t a n d b y t h e i n i t i a l a n d f i n a l p r o f i l e s of t h e f i e l d . E s t i -

m a t e s s h o w t h a t t h e d u r a t i o n of t h e b l e a c h i n g p r o c e s s

in rea l sys tems i s relatively short: ~ 5 χ 1(Γ7 sec. In
view of this , we can consider the bleaching p r o c e s s ig-
noring the nonstationary nature of the gain and i ts fre-
quency dependence (these two effects a r e most important
in the preceding l inear stage).

Bearing these points in mind, we can descr ibe the
field in the l a s e r before the bleaching p r o c e s s by

b̂efore bleachw— e" ©o (v'

where S0(t) is a periodic function of t ime:

©o U~i T) — ©o (0 \"'^1)

(T i s the period of the l a s e r resonator) . This periodic
function S0(t) will be called the initial field profile or
the profile before bleaching.

After the end of the bleaching p r o c e s s , i .e., when the
filter becomes t ransparent even at the lowest point of
the field profile, the r i se of the field in the l a s e r i s ex-
ponential and the filter l o s s e s do not occur in the argu-
ment of the exponential function:

after bleach (i) = e
(5.3)

The periodic function

(5.4)

will be called the field profile after bleaching.
Since the bleaching stage is relatively short, the

values of the gain β which occur in Eqs. (5.1) and (5.3)
can be assumed to be identical and equal to the gain at
the center of the line which is established before bleach-
ing.

Thus the problem reduces to the derivation of the
relationship between the initial field profile &0(t) and
the function ff(t), which i s the profile after bleaching.
This problem has been solved in C 9 > l o : l .

We shall now make some more definite assumptions
relating to the l a s e r system itself. We shall consider a
traveling-wave l a s e r (for example, a unidirectional ring
laser) which contains a bleachable filter. The unidirec-
tional nature of the filter simplifies theoretical analysis
because it allows us to ignore the possibility of simul-
taneous bleaching of the filter by pulses traveling in
opposite direct ions. The same i s a lso t rue of a
standing-wave l a s e r if the cuvette containing the bleach-
able mater ia l i s sufficiently thin: I ^ CT , and if this
cuvette is p r e s s e d tightly against one of the resonator
m i r r o r s . Moreover, the bleachable filter should have
instantaneous response (it should respond to instantane-
ous changes in the field intensity) in order to provide
the most favorable conditions for the formation of ultra-
short light pulses. Therefore, we shall assume that the
filter has an instantaneous response. Finally, we shall
postulate that before bleaching the field r i s e s slowly:
(β- ffj - a n Z ) T / 2 <?C 1. Es t imates made in the preced-
ing chapter show that this inequality is satisfied at p r a c -
tically all the values of the pumping level because at the
onset of bleaching the gain i s always very close to i t s
threshold value. In fact, (β- a^ - a n / ) T = ρ~1(β- »^)Τ,
where ρ is much larger than unity, and if the gain after
bleaching exp{(j3 - a^)T/2} is not too high
[{β - a j )T/2 < l ] ; this inequality is satisfied. When
these assumptions are made, the transformation of the
field profile can be found in its general form.

We shall select two points in the initial profile in
such a way that they satisfy

where q i s an integer. In this case, the evolution of the
field at a point t2 in one period during the filter bleach-
ing p r o c e s s i s given by the same law a s at the point t i
but with a lag of q periods. After bleaching, the shift by
q per iods gives r i se to a change in the amplitude
amounting to a factor of exp{(/3— a j ) T q / 2 } . Therefore,
in the final profile we have

\B(t1)\ = \%(k)\eili-'xlyr'"2.

Combining Eqs. (5.5) and (5.6), we find that

(5.6)

(5.7)

The transformation law given by Eq. (5.7) applies to all
points which satisfy the condition (5.5) with an integral
value of q. Since the dependence of S on ff0 i s mono-
tonic and since the network of points with integral
values of q i s sufficiently " f i n e " [because
exp{(/9- a z - anl)T/2} - 1 <C l] , it follows that Eq.
(5.7) descr ibes satisfactorily the transformation of the
whole initial function S0(t). Therefore, the t ransforma-
tion of the amplitude profile of the field can be written
in the form

= c.onst.|g0(i)|p (5.8)
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where

p = β— α ( — c ( 5 . 9 )

W e s h a l l a s s u m e t h a t — i n t h e l a s e r s y s t e m c o n s i d -

e r e d — t h e p h a s e of t h e f i e l d i s n o t t r a n s f o r m e d , i . e . , t h a t

Sn(t) ( 5 . 1 0 )

T h u s , t h e l a w of t r a n s f o r m a t i o n of t h e f i e l d p r o f i l e d u r -

i n g t h e b l e a c h i n g of a f i l t e r i n a l a s e r i s o f t h e f o r m 4 '

( 5 . 1 1 )

T h e c o n s t a n t i n E q . ( 5 . 1 1 ) r e p r e s e n t s t h e d u r a t i o n o f t h e

b l e a c h i n g p r o c e s s a n d i t c a n n o t b e d e t e r m i n e d a c c u r -

a t e l y i n t h i s v e r y g e n e r a l f o r m . T h i s c o n s t a n t i s c a l c u -

l a t e d in 1 · 9 ' 1 0 - 1 f o r a s p e c i f i c l a s e r s y s t e m a n d a d e f i n i t e

m o d e l of t h e b l e a c h i n g p r o c e s s . H o w e v e r , w e s h a l l n o t

b e i n t e r e s t e d i n t h e e x a c t v a l u e of t h i s c o n s t a n t . T h e

m o s t i m p o r t a n t c h a r a c t e r i s t i c of t h e t r a n s f o r m a t i o n

law is the nonlinearity exponent ρ defined by Eq. (5.9).
The value of the exponent ρ is determined by the
dynamics of the laser in the linear stage and has been
calculated in the preceding chapter.

The true measure of the deformation of the initial
function is the quantity ρ — 1 = an//(|S — a/ — anl) D e "
cause the transformation of Eq. (5.11) is linear if ρ = 1.
The meaning of the parameter ρ — 1 can be found from
the following simple estimates. The order of magnitude
of the duration of the bleaching process is

Atbl « ( β - α , - a m ) - 1 (5.12)

or, in t e r m s of the number of field passes through the
filter,

During this t ime interval the f i l ter acts essential ly as a
nonlinear element. A character i s t ic of the effect of the
filter p e r single pass is i t s absorption coefficient a n j T .
A m e a s u r e of the total effect of the nonlinear fi lter i s
the product

P = 5 F ^ · (5.14)

Hence, we can easily see why this quantity occurs in the
field transformation law. The nonlinearity exponent
may be increased by increas ing the optical density of
the filter ani (enhancing the effect of the filter p e r
single pass) or by increas ing the number of effective
p a s s e s Q D ; , which means that the l a s e r should operate
near the threshold: β - a^ - a n j — 0.

It follows from Eq. (5.11) that the deformation of the
initial field profile (and, therefore, of the intensity pro-
file I(t) = |E(t)|2) is manifested in two aspects. Both

4 ) Str ic t ly speaking, the field profile described by Eq. (5.11) can be

established only after a t ime sufficient for even the lowest points of the

profile t o grow in ampl i tude so that the filter becomes transparent at

these points. In real lasers the saturation of the amplifying medium

limits the total durat ion of the stimulated emission process, including

the amplifying stage. Therefore, the transformation law of Eq. (5.11)

does not apply to the lowest points of the field profile. Nevertheless,

since only t h e strongest peaks in the final profile are of importance in

the problems of interest to us, the use of the asymptot ic transforma-

tion law (5.11) does not lead to significant errors.

t h e s e a s p e c t s w e r e p o i n t e d o u t q u a l i t a t i v e l y b y D e M a r i a ,

S t e t s e r , a n d Heynau.'" 1 -'

F i r s t , e a c h i n t e n s i t y p e a k of t h e i n i t i a l p r o f i l e b e -

c o m e s n a r r o w e r b y a f a c t o r o f VjTon t h e t i m e s c a l e . W e

s h a l l i l l u s t r a t e t h i s f o r a G a u s s i a n p u l s e :

zAe-V-WlA, /(<) = const-[/0(<)]p = const'· c i?. ( 5 . 1 5 )

The reduction in the pulse duration corresponds to the
broadening of the field spectrum by a factor of Vp". The
final pulse duration becomes [compare with Eq. (4.24)]

'final VP
( 5 . 1 6 )

where to = ^ w i u m [ l + αι^ω\\ιτα^αΙ + aηΐ)^ωres^ * s

the peak duration corresponding to the width of the
luminescence line (with a correction for the selective
losses in the resonator). Under realistic conditions -JZ
~ 6—8 and Eq. (5.16) yields an almost universal expres-
sion for r f i n a i ; this means that the narrowing of the
spectrum in the linear stage is almost completely com-
pensated (to within a factor of 7) by the subsequent
broadening of the spectrum during the stage of bleach-
ing of the instantaneous-response filter.

Secondly, if any two peaks in the initial field profile
have amplitudes Ιό and I '̂, respectively, the ratio of the
intensities of the corresponding peaks in the profile ob-
tained after bleaching is given by

•£•-(•£)"· ( 5 # 1 7 )

Since p » l , Eq. (5.17) implies that the inequality of
two peaks in the initial profile becomes much greater
after the bleaching stage. In particular, the most desir-
able situation is that when the final intensity profile is
dominated by a single pulse. The probability of achiev-
ing this situation is calculated in the next chapter (see
Chap. 6) as a function of the laser parameters.

We have considered the time dependence of the
periodic function <y(t). This time dependence is particu-
larly convenient in the analysis of the field transforma-
tion by the bleachable filter. On the other hand, the
periodicity of the function &(t) makes it possible to
describe the behavior of the field in terms of discrete
Fourier components which are practically identical (in
our case) with the amplitudes of modes having different
longitudinal indices:

%(t) = e~«M 2 e-'*a'gft (t). (5.18)
A=-oo

This approach has been employed in the first investiga-
tions of laser with bleachable filters and the first ex-
planations have been based on this approach (see1-2-1).
The spectral or mode approach may be more convenient
in the case when only one radiation pulse is emitted per
period. In this case, the phases of all the modes depend
linearly on the mode number:

©ft— I ©ft I e ι yu.LO)

a n d t h e f i e l d i t s e l f w i l l b e i n t h e f o r m o f a s i n g l e p u l s e

p e r p e r i o d w i t h i t s m a x i m u m l o c a t e d a t t h e p o i n t to a n d

i t s width given by At ~ Ι/Δω:

g-iftai. (5.20)

In view of this, the formation of a t ra in of u l t rashort
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pulses is frequently called the mode self-locking.
However, the spectral or mode approach is quite

unsuitable if we wish to find whether a single strong
pulse will evolve from the initial fluctuation pattern.
In fact, when the initial fluctuation profile is trans-
formed in accordance with Eq. (5.11), the field spectrum
broadens by a factor of Vp. Each initial fluctuation peak
with its maximum at the point t = t· makes a contribu-
tion to the amplitude of the k-th mode and this contribu-
tion is proportional to exp(iknt-). The initial fluctuation
pattern includes a large number of irregularly distribu-
ted peaks. Therefore, the complex amplitude of the k-th
mode is the sum of the contributions of each of the
pulses:

]bje" (5.21)

in general, the phase of S^ is a complex nonmonotonic
function of the mode number k.

Let us consider again the transformation of the field
during the bleaching stage. The two effects—the narrow-
ing of the pulses and the selection of the strongest pul-
ses—occur simultaneously in a single process of inter-
action between the field and the filter. However, only the
second effect is equivalent to the phasing of the modes
in the initial spectrum. It is this effect that gives rise
to a regular time distribution which evolves from the
initial random time sequence. The narrowing of the pul-
ses represents—in the spectroscopic language—the ap-
pearance of new spectral components which is not rela-
ted to the phasing of the initial components. We can
easily imagine a laser model in which mode phasing is
not accompanied by broadening of the spectrum. For
example, the dispersion of the gain may prevent such
broadening. If the initial field in a laser with a bleach-
able filter is of spectral width which identical with the
total width of the gain profile, it is found that the broad-
ening of the spectrum is unlikely but the phasing effect
remains. This effect is again manifested by a preferen-
tial growth of the strongest pulses.

6. STATISTICS OF THE APPEARANCE OF
ULTRASHORT PULSES DURING FILTER
BLEACHING

We have mentioned earlier that the formation of sin-
gle ultrashort light pulses in a laser with a bleachable
filter is due to the selection of such pulses from the
initial fluctuation pattern which forms in the laser be-
fore the onset of the bleaching process.

The transformation of the fluctuation pattern during
the bleaching of a filter was first calculated by Fleck*-57^
on a computer. Unfortunately, it was not possible to
carry out a similar analysis by the method employed
in'· 5 7 ' : Fleck^57^ computed the only realization of a ran-
dom process resulting from the presence of just 11 ini-
tial modes. Therefore, we shall use an analytic expres-
sion (5.15) obtained in Chap. 5 for the transformation of
the field profile during the bleaching of an instantaneous-
response filter. In the present chapter, we shall calcu-
late, following the work of Kuznetsova,'-13-1 the probabil-
ity of the appearance of single light pulses in one
resonator period as a result of transformation of the
initial fluctuation pattern during the bleaching of the
filter. We shall consider first the statistical properties

of the initial field profile and concentrate our attention
on the presence of strong peaks. It is essential to know
the stat is t ical proper t ies of the initial profile if we wish
to answer the question of whether the profile t r a n s -
formed by the action of the filter consists of just one
strong pulse p e r period. In view of the stat ist ical nature
of the process , we must calculate the probability of this
event.

An important problem in the stat is t ics of peaks in the
initial profile was formulated by Letokhov.^ 5 5 ' 5 6 1 How-
ever, Letokhov's t reatment cannot be used direct ly in
the solution of our problem. We shall follow the work
of Kuznetsova. [ I 3 ]

The initial field profile i s formed a s a resul t of
l inear amplification of noise fields which a re generated
a s a resul t of the spontaneous emission of radiation by
atoms in the resonator. Since the amplification i s l inear
and the number of statist ically independent spontaneous
noise sources (atoms) i s large, the initial field profile
<?fo(t) (the profile before bleaching) can be regarded as a
complex Gaussian random p r o c e s s . 5 '

The probability distribution of the field modulus
|#o(t) | in the case of a complex Gaussian random proc-
e s s is given by the well-known Rayleigh law. It i s con-
venient to express this law in t e r m s of the field inten-
sity: I0(t) = | # 0 ( t ) | 2 . The distribution of Io is then of the
form

The mean-square fluctuation of this quantity is

(Δ/*> = </„)*, (6.2)

and the correlat ion of the intensity i s given by the ex-
press ion

(ih (t) - {/„}) (/„ (i + τ) - </„))) = (/0>
21 y0 (τ) |2; (6.3)

h e r e , > Ό ( Τ ) i s t h e n o r m a l i z e d c o r r e l a t i o n f u n c t i o n o f t h e

f i e l d £ O ( t ) d e t e r m i n e d b y i t s s p e c t r a l p o w e r d e n s i t y :

v . w = < - S ( ; | g ; i ' . >

+ T > > = T g ^ ' ~ < " ' t o · ( 6 > 4 )

The value of | > Ό ( Τ ) | during a time interval |τ| s Τ differs
significantly from zero only when |τ| ^ (Δωχ)"1, where
Δίι>ι is the width of the spectrum established at the be-
ginning of the bleaching p r o c e s s .

It follows from Eqs. (6.1)-(6.4) that the intensity L(t)
fluctuates about a mean value (Io) by an amount which
is of the o r d e r of (Io) and the intensity maxima change
to minima in a t ime ~ T c o r r = (Δωχ)"1. The number of
the intensity maxima (or minima) p e r unit time is of
the o r d e r of τ'1

 τ = Δω 1 # We must s t r e s s that the func-
tion £o(t) is periodic, i.e., we are dealing with a periodic
random p r o c e s s character ized by a period T. In real-
izations of the random p r o c e s s of duration Τ the number
of maxima fluctuates from one realization to another
and the average number of maxima i s of the order of

m sw r/T c o r r = Τ Δω,/2π. (6.5)

5*To avoid misunderstanding we must stress that we are speaking of
the Gaussian nature of the statistics of the process, i.e., we shall be speak-
ing of the probability distributions, etc. The fact that the spectrum of
the statistically Gaussian process is of the form g(cj) <* exp {-(ω—ω0)

2/
Αω]}, i.e., it is also described by the Gaussian function, it is not related
directly to the statistical problems that we shall now consider.



34 Β. Ya. Z E L ' D O V I C H and Τ. I . KUZNETSOVA

Since Τ = 2π/Ω, the parameter m is of the same
order of magnitude as the number of the modes which
are excited effectively in the initial spectrum.6' The ex-
pression for the parameter m, expressed in terms of
the laser characteristics, has been derived in Chap. 4.

Unfortunately, there are very few exact formulas
suitable for the determination of the number of maxima
and the distribution of their amplitudes in a Gaussian
random process of finite duration (see the work of
Tikhonov^14'15^). We must stress that our problem is
even more complex because we are interested no so
much in the initial Gaussian process but principally in
the result of its transformation by the action of a bleach-
able filter, i.e., we are interested in the p-th order of a
Gaussian process with p » l , Therefore, instead of the
initial Gaussian process SO(t), we shall consider a
model random process <gi(t) which retains the most
important features of *O(t) and, at the same time, allows
us to calculate the statistical characteristics of interest
to us.

We shall start with a random function in the form of
a train of a fixed number (m) of nonoverlapping pulses:

Auf(t-T-tn);

here, f(t) is a pulse function of period Τ whose value
d i f f e r s f r o m z e r o o n l y i n t h e i n t e r v a l 0 = Ξ t s T / m . T h e

a c t u a l f o r m o f t h e p u l s e f u n c t i o n i s o f n o s i g n i f i c a n c e ;

h o w e v e r , i t i s i m p o r t a n t t h a t t h e p u l s e s s h o u l d n o t o v e r -

l a p . W e s h a l l a s s u m e t h a t t h e p u l s e s a r e e q u i d i s t a n t :

t n = (T/m)n, where η is the number of the pulse. We
shall use Eq. (6.5) to select the number of pulses m in
accordance with the spectral width of the real Gaussian
process £O(t). We shall assume that the shift τ is dis-
tributed uniformly in the interval 0 s τ « T/m and that
the complex amplitudes of the pulses are Gaussian
random quantities independent of one another.

We shall introduce the phase and amplitude of the
pulses:

The phases of the pulses are assumed to be distributed
uniformly in the interval (0, 2π) and the intensities have
a distribution of the type

iff (Xn) dxn = exp {— xn) dzn. (6.8)

The normalization constant C in Eq. (6.6) will be selec-
ted, for the sake of convenience, so as to give (xn) = 1.

We shall use Hi to denote the pulse whose intensity is
greater than the intensities of all the other pulses in a
given period. The probability distribution for x n i is of
the form

w (x) dx —- me~x [1 — e~x]m'1 dx. (6.9)

The quantity w(x) has a maximum at the point χ = In m.
This means that the most probable value of the intensity
of the strongest pulse is several times higher than the
average intensity if the number of pulses m in a period
is sufficiently large.

An important characteristic in our problem is not

6 )Factors such as 2π, etc., are unimportant in the determination of
the parameter m because the expressions which we shall obtain depend
logarithmically on m.

the absolute value of the amplitude of the strongest peak
(this has been estimated in [ 5 5 ' 5 6 ] ) but the amplitude of
this peak relative to the amplitudes of other peaks in
the same realization.

If the value of m is high, other pulses of amplitude
close to that of the strongest pulse are quite likely to
appear. The distribution of the probability for the sec-
ond strongest pulse Xĵ  is of the form

w(x)dx = m(m—i) e~2x [1 — e (6.10)

and the maximum of this probability occurs at χ
= ln(m/2).

The relationship between the strongest and all the
other pulses can be obtained from the probability that
the amplitude of the strongest pulse exceeds the ampli-
tudes of all the other pulses by a factor which is not
less than a:

W{xni
Για+1)Γ(ΐΒ+1)

Γίο + m)
(6.11)

(6.6) W{x,

where Γ(ζ) is the gamma function or the Euler integral
of the second kind. This formula will be needed later
and can be derived as follows. The probability

{ }
n i

consists of m identical terms. The first
i jj

term represents the probability that the first pulse is
the strongest and the inequality Xi > axn, η * 1 is satis-
fied. The second term represents the probability that
the second pulse is the strongest, etc.:

The probability W^"1 = ' is given by the integral

h e r e , w ( x ) i s t h e d i s t r i b u t i o n o f t h e p r o b a b i l i t y of t h e

intensity of the first pulse; Ρ(ξ) is the probability that
a particular pulse has an intensity χ η < ξ

( 6 . 1 4 )P(l)=\w(x)dx,

and the factor [Pfx/a)]111"1 gives the probability that
m - 1 remaining pulses are at least a times weaker
than the first pulse. Substitution of the expression w(x)
= e x leads to

W{xni > axn} = m \ dxe~x{l— e-»/o]».-i

and this yields Eq. (6.11).
We shall now estimate the probability that the ampli-

tude of the strongest pulse is twice as large as the am-
plitude of any of the other pulses. It follows from Eq.
(6.11) that this probability is 2/(m + 1), i.e., it is very
small if the value of m is large.

Of greatest interest is the situation in which one of
the pulses in the final profile contains most of the en-
ergy emitted in one period. We shall denote the pulse
amplitudes in the final profile by I n (n = 1, 2, ..., m):

We shall be interested in events such that the energy in
the strongest pulse is at least Μ times as large as the
energy in all the other pulses:

/ > M V Τ ( 6 - 1 6 )
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We shall call this situation the " p u l s e selection to a
precis ion determined by the p a r a m e t e r M." The pulse
selection p r o c e s s can also be regarded a s the achieve-
ment of full mode self-locking. In view of the stat ist ical
nature of the p r o c e s s in question, we can speak only of
the probability of pulse selection (the probability of full
self-locking).

A direct analytic calculation of the probability of
self-locking in the model considered, i .e., the calcula-
tion of the probability that the inequality (6.16) is
obeyed, i s very difficult. Therefore, we shall give the
upper and lower l imit s of the probability that this will
happen. We shall show that the probability W l ies within
the l imit s

F,(p, m, M)<W<.Fi(p, m, M), (6.17)

where the functions F 2 (p, m, M) and F ^ p , m, M) are
given by the express ions

F, (p, m, M) -.

,-l)li/i>, (6.18)

(6.19)

The functions F 2 and Fi r e p r e s e n t the probab i l i t i es of
e v e n t s , the f i r s t of which i s the s p e c i a l c a s e of the event
of i n t e r e s t to u s and defined by Eq. (6.16) and the
second i s m o r e genera l and inc ludes the event of Eq.
(6.16) a s the s p e c i a l c a s e . The function F 2 r e p r e s e n t s
the probabi l i ty that the amplitude of the s t r o n g e s t pu lse
e x c e e d s the ampl i tudes of all the other p u l s e s by a fac-
tor of at l e a s t M ( m - 1):

/ n i >(/n-l) iW/ n , ηφη,; (6.20)

if the inequality (6.20) i s sat i s f ied, the inequal ity of Eq.
(6.16) i s a l s o sa t i s f i ed but the c o n v e r s e i s not true.
Consequently, W(6.20) = F 2 < W(6.16) . 7 ) The e x p r e s s i o n
(6.18) for the probabi l i ty F 2 i s obtained by applying the
inequality (6.20) to the init ial prof i le,

ί,,χί/Ιπι-Ι)]1'»!,, ηφηι, (6.21)

and us ing Eq. (6.11) . The function Fi r e p r e s e n t s the
probabi l i ty that the amplitude of the s t r o n g e s t pu l se in
the final prof i le e x c e e d s the ampl i tudes of all the other
p u l s e s by a factor of at l e a s t M:

/ , „ > * / / „ , (6.22)

If the inequality (6.16) i s satisfied, we know that the in-
equality (6.22) is also satisfied but the converse is not
t rue and, therefore, W(6.22) = F,. > W(6.16).

The events represented by the inequality (6.22) with
a given value of Μ may somet imes be of experimental
interes t and, therefore, Eq. (6.19), represent ing the
probability of these events, i s of special interes t .

If the number of modes in the initial profile i s large
(m > 1), Eq. (6.17) simplifies to

e-~-Unm-: 1,1 -UJH, m ^ ^ _±1η Λ, ,„„, (6.23)

The inequalities (6.17) and (6.23) solve the problem of
est imating the probability of full self-locking of modes.
In the case of the l a s e r considered in Chap. 4, we have

ρ = 80 and m = 600. If we assume that Μ = 9, it follows
from Eq. (6.23) that 0.50 < W M = 9 < 0.84. This means
that, although the probability of mode self-locking i s
high (exceeding 50%), the inequality (6.16) does not ap-
ply to a significant number (exceeding 16%) of the l a s e r
pulses if Μ = 9.

The inequalities in Eq. (6.23) can be rewri t ten in a
different manner. If we assume a par t icu lar value of
the probability W(6.16) = η of mode self-locking (for
example, η = 0.5) and a specified value of the p a r a m e t e r
M, we can show that the probability of self-locking (for
this value of M) in the range

, (m, Μ, η); (lnm-f-ln Μ) lnm
( 6 . 2 4 )

i s high: W > η, whereas the probability of self-locking
(for the same p a r a m e t e r M) in the range

/></>, (m, Μ, η); In Μ lnm
lnl/η

(6.25)

is low: W < η.
The curve in the (p, m) plane for which W(6.16) = η

divides the regions with high and low probabil it ies of
self-locking and it p a s s e s between the curves pi(m) and
P2(m) corresponding to fixed values of Μ and η. We de-
termined the exact position of this curve by numerical
calculations on a computer in which a random number
p r o g r a m was used (we are not aware of an analytic
solution of this problem).

The relevant dependences a re plotted in Fig. 2 for
η = 0.5 and Μ = 9. The lowest curve shows the depen-
dence pi(m) and the highest represents p 2(m): these de-
pendences were obtained using the analytic express ions
in Eqs. (6.24) and (6.25). The middle curve (3) i s the
plot of the resu l t s of our numerical calculations: it
r e p r e s e n t s the boundary of the region of full self-lock-
ing in the (p, m) plane for Μ = 9 and η = 0.5.

Similar curves a re plotted in Fig. 3 for η = 0.5 and
Μ = 1.5. In the first case (Fig. 2, Μ = 9, a pulse con-
tains at least 90% of the energy evolved in a period),
the boundary of the full self-locking region l ies c loser
to the dependence pi(m), whereas in the second case
(Fig. 3, Μ = 1.5, a pulse contains at least 60% of the
energy evolved in one period), the same boundary l ies
much further from pi(m).

It is c lear from Figs. 2 and 3 that the l a r g e r the ini-
tial number m of the oscillation modes, the more diffi-
cult they are to lock. The curves plotted in these figures
show that full self-locking of a large number of modes

7)W(6.20) denotes the probability of the event or physical situation
represented by Eq. (6.20).

FIG. 2. Dependence of the nonlinearity exponent ρ on the number
of modes m established before the onset of bleaching; η = 0.5, Μ = 9.
Above curve 3 (obtained by calculation) the probability that the strong-
est post-bleaching pulse represents at least 90% of the energy emitted
per period is W > η = 0.5 and below this curve the probability is W < η =
0.5.
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FIG. 3. Same dependence as in Fig. 2 but for η = 0.5, Μ - 1.5 (it is

assumed that the probability that the pulse contains at least 60% of the

energy emitted in one period is W > TJ). Below curve 1 the probability

that the strongest pulse exceeds the next pulse by a factor of Μ = 1.5

is quite low: W, < η = 0.5. Above curve 2 the probability that the

strongest pulse exceeds any of the other pulses by a factor of M(m-1)

times is W2 <TJ = 0.5,

m requires high values of the nonlinear conversion ex-
ponent p. This dependence of ρ on m is due to the fact
that the probability of the appearance of several high-
intensity peaks of comparable amplitudes in the initial
field is higher when the number of modes is large.
Therefore, in this case, the nonlinearity must be of
higher order ρ in order to achieve selection of the
strongest pulse. This dependence of the probability of
the appearance of a single pulse in one period on the
width of the initial spectrum has been confirmed experi-
mentally: 1 ^ in this investigation the initial width of the
spectrum was varied by introducing linear losses into
the resonator of a laser with a sharp minimum at the
center of the emission line. The time dependence of the
intensity of the output radiation was recorded with a
resolution of ~10 sec.

7. INFLUENCE OF GAIN SATURATION ON THE FINAL
FIELD PROFILE

When the filter becomes completely transparent the
intensity of the laser oscillations rises rapidly [the rise
is proportional to exp{(/9 — apt} ] in a relatively short
time interval. This rise soon stops because the radia-
tion extracts a considerable part of the energy stored
in the active medium and this reduces the gain. Be-
ginning from some particular moment (corresponding
to the peak of a giant pulse), the gain falls below the
value of the losses and the field begins to decay.

We are interested in producing a regular train of
very short light pulses and, therefore, we have to ask
whether the saturation of the laser transition can impair
the intensity profile which is formed under the influence
of the bleachable filter. In other words, we have to en-
quire whether the inversion saturation may lead to im-
pairment of the relationship between the strongest pulse
and the rest of the radiation in the vicinity of the giant
pulse maximum.

We shall answer these questions by finding the evo-
luation of the intensity profile of the laser radiation,
making allowance for the inversion depletion in the
active substance. We shall show that, in cases of prac-
tical interest, the saturation of the active material does
not give rise to a significant distortion of the time de-
pendence of the radiation in one period.

We shall consider once again a ring laser. We shall
assume that all the elements of this laser, with the ex-

c e p t i o n o f t h e a c t i v e s u b s t a n c e , a r e l i n e a r i n t h e s t a g e

b e i n g c o n s i d e r e d h e r e . T h e p r o p a g a t i o n of t h e r a d i a -

t i o n i n t h e a m p l i f y i n g m e d i u m h a s o f t e n b e e n d i s c u s s e d

i n t h e l i t e r a t u r e C l 6 ' 1 7 ) 4 9 : i m a k i n g a l l o w a n c e f o r t h e s a t u r -

a t i o n of t h e a c t i v e t r a n s i t i o n . T h e e q u a t i o n s f o r t h e

intensity I and inversion Ν are of the form

dl . 1 dl TIT τ t*7 1 \

-J7 + —•*- = Λ σ / - \'Λ)

( 7 . 2 )

where σ is the cross section of the laser transition.
We shall assume that the process of formation of a giant
pulse after the bleaching stage is quite rapid. There-
fore, the influence of pumping and of population relaxa-
tion can be dropped from the equation for 8N/8t. The
solution of both equations is

1 — (1 — *-
/v»)exp[-o j I(z = 0, t')i«']

(7.3)

where No is the initial inversion. In one period in a ring
laser the radiation traverses an active element of
length I, is reflected from mirrors characterized by a
general loss factor exp(—o^T), and approaches the ac-
tive medium again. Therefore, at any point in the
resonator the following equation is satisfied:

-<s J I(f)df (7.4)

here, exp(/3T) = exp(NoaZ) is the unsaturated gain of the
active medium per period. We shall introduce the func-
tions

l A

Integrating Eq. (7.4), we obtain

r (f + T) = e~ai - 1 + e~»T) e+»T].

(7.5)

(7.6)

This equation was first derived by Gurevich.^18^1 A
characteristic feature of Eq. (7.6) is that it relates the
values of the function r(t) at discrete points separated
from one another by the resonator period T. It is this
that allows us (as in Chap. 5) to draw definite conclu-
sions about the relationship between the final and initial
field profiles.

Equation (7.6) has two singular solutions such that
r(t) = r(t + T):

ru a = e~alTIn [ ( / ' · 2 - 1 + e-Bi) g+βΐ·]. ( 7 . 7 )

T h e f i r s t r o o t o f E q . ( 7 . 5 ) i s r i = 0 a n d a r o u g h a p p r o x i -

m a t i o n f o r t h e s e c o n d r o o t y i e l d s

0 < r 2 < - ( 7 . 8 )

[ n o d i f f i c u l t i e s a r e e n c o u n t e r e d i n d i r e c t n u m e r i c a l

s o l u t i o n of E q . ( 7 . 7 ) f o r s p e c i f i e d v a l u e s o f a ^ T a n d

If t h e i n i t i a l v a l u e i s r ( t ) > 0 , w e f i n d t h a t a f t e r a

s u f f i c i e n t l y l a r g e n u m b e r of s t e p s ( N — «>) t h e f u n c t i o n

r ( t + N T ) t e n d s t o r 2 a n d t h e s o l u t i o n o f r ( t ) , w h i c h d e s -

c r i b e s t h e t r a i l i n g e d g e of a g i a n t p u l s e , c a n b e f o u n d b y

e x p a n d i n g t h e d i f f e r e n c e e q u a t i o n ( 7 . 6 ) i n t h e v i c i n i t y o f

r 2 . O n t h e o t h e r h a n d , t h e i n i t i a l v a l u e s o f r ( t ) — c o r r e -

s p o n d i n g t o t h e l e a d i n g e d g e of t h e g i a n t p u l s e , w h e n t h e
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deplet ion of the i n v e r s i o n i s not s igni f icant—are c l o s e

to z e r o , i . e . , to the f i r s t root rx = 0 and they can a l s o be

found by expans ion of the init ial equation.

When t h e s e points are taken into account it i s found

that the function r(t) in the presaturat ion s tage i s of the

form

r(t) = ei*-al)X(t), (7.9)

where s o (t) = s o ( t + T) i s a per iod ic function which
r e p r e s e n t s the initial s tage of the e m i s s i o n . After
i n v e r s i o n saturat ion (correspond ing to the trai l ing edge
of the giant pulse) the function r(t) b e c o m e s

r(i) = r 2 -e-v 's(0, ( 7 , 1 0 )

where

-y = $-a,—±-r.1(ea,T-l) ( 7 . H )

and the p e r i o d i c function s(t) r e p r e s e n t s the final s tage
of the e m i s s i o n .

P r o c e e d i n g a s in Chap. 5, we can e s t a b l i s h the re la-
t ionship between the functions s(t) and s o ( t ) :

n - T % - (7.12)

which yields

) = COHSt·

= rz — const· [r (t)] N
(7.13)

We shal l introduce the initial and final intens i ty pro-

f i l e s :

/before satu,ationW = i o W ^ P - a ' ) i - S

( B - a r ' [ ( p - a ; ) S o ( i ) + ^ ] , (7.14)

/after saturation (f) = I (t) e~v< = e-v< [_—ys (t) + -̂ -"J · (7.15)

The t rans format ion of the intens i ty prof i le i s found

from Eq. (7.13) :

The last expression allows us to estimate the factor by

which the intensities at two arbitrary points of the pro-

file in one period can change during the stage of satura-

tion of the active material. It follows from Eq. (7.16)

that the ratio i(t2)/i(tx) differs from the ratio io(t2)/io(ti)

by a factor not larger than exp{(0— α^ + y)T}:

k fa) \ ̂ Λ»-«,+ν)Τ (7.17), / H':) \ I (

In real laser systems the upper limit of the distortions

introduced by saturation is quite low: exp[(/3- α ι + γ)Τ]

ΐί 2—3. In fact, even this estimate of the distortion is

strongly overestimated. This means that the saturation

of the active medium has little effect on the probability

of pulse selection and mode self-locking derived in

Chap. 6.

We have estimated above which distortions may ac-

cumulate at the trailing edge of a giant pulse as a result

of saturation of the active medium. It is obvious that

these distortions will be much weaker at the peak of a

giant pulse and this justifies the conclusion made at the

outset of the present chapter.

8. ADDITIONAL EFFECTS INFLUENCING THE FINAL

STRUCTURE OF THE RADIATION

In this chapter we shall consider some effects which

may influence the structure of the radiation generated

in a l a s e r with a b leachable f i l ter.
8 . 1 . If the ve loc i ty of propagation of l ight p u l s e s

along the r e s o n a t o r depends on the frequency (due to

d i s p e r s i o n of the re fract ive index), the m o d e s a r e no

l o n g e r equidistant in frequency. Th is c o r r e s p o n d s to

d i s p e r s i o n spreading of the pulse along the t ime a x i s .

The inf luence of such d i s p e r s i o n on the operat ion of a

l a s e r with a bleachable f i l ter h a s been pointed out

e a r l i e r . t 5 3 ' 5 4 ^ However, only the s t e a d y - s t a t e model

w a s c o n s i d e r e d i n [ 5 3 > 5 4 ] and the importance of the d i s-

p e r s i o n w a s o v e r e s t i m a t e d . We shal l c o n s i d e r the influ-

e n c e of the d i s p e r s i o n on the p a r a m e t e r s of l a s e r p u l s e s

by analyz ing the fol lowing s i m p l e model prob lem.

Let u s a s s u m e that an optical f ield in the form of a

Gaussian pulse reaches a transparent dispersive med-

ium at the point where ζ = 0:

We shall find what happens to this pulse when it traver-

ses a layer of thickness I. We shall introduce the fol-

lowing quantitative measure of dispersion:

dVi_ = _l_ _λ3_ £n_ = 1 dvf {8.2)
ddt2 e'- 2-"ϊ dXl rg. ;/oi ·

I n t h e s e c o n d a p p r o x i m a t i o n o f t h e d i s p e r s i o n t h e o r y ( t h e

p a r a b o l i c e q u a t i o n a p p r o x i m a t i o n ) t h e f i e l d & ( z = I, t )

w i l l b e o f t h e f o r m

where

t' = t-l/vt,

2/2|+ίφ}, (8.3)

(8.4)

(8.5)

(8.6)

(8.7)

It fo l lows from Eqs. (8.3)—(8.7) that the d i s p e r s i o n re-
s u l t s in spreading of the Gauss ian pu l se and such
spreading depends strongly on the init ial pu lse duration
T0, i.e., on i ts spectra l width Δω 0 = 2/τ0. In our case,

the dispersive medium i s l inear and it does not a l te r

the spectra l width of the pulse. The spreading of the

pulse along the time axis i s accompanied by the appear-

ance of a phase (frequency) modulation character ized by

The influence of the dispersion on the operation of a

l a s e r with a bleachable filter can be est imated by sub-

stituting into the above formulas the initial duration of

the pulse τ0 and some effective length I. This length can

be expressed conveniently in t e r m s of the distance l0

traveled by the pulse in the dispersive medium in one

resonator period and the effective number of p a s s e s Q:

l = hQ. (8.9)

We shall now est imate the values of Q and τ0. Since the

amplification p r o c e s s is l inear and fluctuations before

the bleaching stage a r e of Gaussian type, it follows that

the phases of different modes (spectral components) a re

independent. Therefore, the dispersion-induced shifts of

these phases in the l inear stage have no influence on the

stat ist ical proper t ies of the initial fluctuation pattern.

Thus, we can take Q as the number of p a s s e s occurring
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during the bleaching stage:

«nl
Λ ι— «nl

-p-1 ( 8 . 1 0 )

We shall assume that τ0 i s the pulse duration after the
bleaching stage (Chap. 5). The influence of the disper-
sive medium found in this way may be overest imated.
The dispers ion of g lass in the λ ~ 1 μ range can be
taken a s

- ^ ~ 10-" sec 2 /cm· (8.11)

If we assume that l0 = 20 cm and τ0 = 2 χ 10~12 sec, we
find that Eq. (8.5) yields

τ' = τ0 )/l + (<?„, .10-»)». (8.12)

Hence, we can see that even if the number of p a s s e s i s
large, Q b j ~ 100, the l inear dispersion i n c r e a s e s the
pulse duration by a factor of V2, i.e., the influence of
the dispers ion during the bleaching stage is slight.

This es t imate is based on a very rough model: it
overes t imates the influence of the dispersion. In fact,
at the stage when the dispers ion of g lass becomes im-
portant, the spectra l width of a pulse Δ ωχ has not yet
increased because of the nonlinear effect of the filter.
However, the inadequacy of our model i s much l e s s im-
portant than the e r r o r result ing from the inaccuracy of
the values of Q^j = ρ — 1 and τ0 of a given l a s e r . For
this reason, we shall not go into the influence of the dis-
pers ion in g r e a t e r detail.

8.2. Self-modulation of the radiation frequency should
occur in the p r o c e s s of propagation of a pulse along a
medium in the l a s e r resonator if the field intensity in
the pulse is sufficiently high (see 1 1 1 9 ' 2 0 3 ) . This effect has
been carefully studied for the case of self-mode-locked
laser s^ 2 1 3 and the r e a d e r i s re fer red to this paper for
detai l s . We shall just give the s implest e s t imates .

Self-modulation of a pulse i s a resul t of an additional
phase lead in the field of a high-power wave

where n2|E| 2 is a nonlinear correct ion to the refractive
index (known as the reactive nonlinearity). The quantity
n2 |E | 2 can be t ransformed conveniently to the form
n2|E| 2 = h2(noC|E|2/87r). For glass, the o r d e r of magni-
tude of this correct ion is n 2 ~ 10"13 cgs esu, h2

~ 10"9 cm 2/MW. Broadening of the spectrum a s a r e -
sult of self-modulation i s of the o r d e r of

ut 01* C

This broadening becomes of the o r d e r of the initial
spectra l width of the pulse Δω = ΐ / τ 0 at the point

«~, i -- i-[ i , . l£ o w-' ( 8 · 1 5 )

Substituting the power density ~ 103 MW/cm2, we find
from Eq. (8.15) that Zi ~ 10 cm. This means that ap-
preciable frequency self-modulation may appear during
just one p a s s through the l a s e r resonator.

The dispersion and the reactive nonlinearity give
r i s e to a t ime dependence of the frequency (frequency
modulation) and for the majority of media (such as glass)
we have n 2 > 0 and d 2 n/dX 2 > 0. Therefore, these two
effects should result in changes with the same sign of
dw/dt:

-df>0- (8.16)

In this connection, we must mention the work of
Treacy,'·2 2·1 who measured experimentally the value of
dw/dt. He found that dw/dt was positive, which was not
in conflict with the proposed mechanism of frequency
modulation. Moreover, in a separate investigation
Treacy^ 2 3 3 compressed phase- modulated pulses along
the t ime axis by a system of diffraction gratings which
simulated a medium with d2n/dAo < 0. The pulse dura-
tion obtained in this way could, in principle, have the
minimum value set by the indeterminacy rule:
~ (Δω)" 1 .

8 .3 . The combined effect of the d i s p e r s i o n and the
r e a c t i v e nonl inearity may l e a d to self- c o m p r e s s i o n
along the t ime a x i s ( th is i s a t i m e analog of the self-
focus ing effect) or to s e l f - e x p a n s i o n of the p u l s e s
(see^ 2 < ~ 6 - 1 ) . F o r m o s t med ia (such a s g l a s s , e tc . ) the
re lat ionship between the s i g n s of the r e a c t i v e nonlinear-
ity and the d i s p e r s i o n effect i s such that s e l f - e x p a n s i o n
of the p u l s e s should occur . It i s worth quoting the s im^
p l e s t estimate^ 2 6- 1 obtained for the d i s tance z 2 in which
the s e l f - e x p a n s i o n effect b e c o m e s s ignif icant:

«.-^{^.ΐΊ^-μ}-1. (8.17)

For T0 = 2 χ 10' 1 2 sec and Ρ ~ 103 MW/cm2, we obtain
z2 « 2 χ 102 cm, i.e., about 10 p a s s e s for Zo = 20 cm.
This rough est imate shows that the self-expansion effect
may be considerable. As far a s we know, this effect
has not yet been observed experimentally in its pure
form.

8.4. In general, the central absorption frequency of a
filter u)f may not coincide with the frequency ωο of the
l a s e r radiation. Then, before the bleaching stage the
filter not only absorbs but also produces a phase shift.
After the bleaching stage the absorption and the phase
shift a re suppressed. This field-dependent phase shift
also gives r i se to a phase (frequency) modulation of
l a s e r pulses (see^ 2 7 3 ) . An explicit express ion for the
law of transformation of the field profile during the fil-
t e r bleaching stage can be obtained—taking into account
this effect—by using the general method developed in
Chap. 5 (this express ion i s obtained in^27-' by a different
method).

The law of transformation of the field profile i s of the
form

• const;
(8.18)

* w = 8 , < i ) i « , w r ' V T

h e r e , a s in Chap. 5, we shall take p - 1 = αηί/{β- a j
- αηι); Γ is the ra te of relaxation of the level popula-
tions in the filter. This transformation leads to the
appearance of a phase modulation in the final profile.
The corresponding additional broadening of the spec-
trum, Δθ)£, i s

(8.19)Δωφ

ω0—ω,·

Γ

where Δ ω ^ i s the duration of pulses in the field profile
after the bleaching stage. In this case, the sign of dw/dt
i s the same as the sign of (ω 0 — ω^).

8.5. Bleachable m a t e r i a l s used at present have a
finite relaxation time of the bleached state. Relatively
litt le work has been done on the relaxation p r o c e s s but
it i s known that it depends on the nature of the mater ia l .
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A typical relaxation time is τ{ ~ 10 u sec. The validity
of the theory presented in Chaps. 5 and 6 in the case of
a real laser depends on the ratios τ^/τι and τ{/τ'. Here,
η = (Δω^"1 = (πιΩ)"1 is the duration of the peaks in the
original fluctuation pattern which is established before
the onset of bleaching and r' = Tj./Vp~is the duration of
the peaks which would have been generated in the bleach-
ing of an ideal instantaneous-response filter. It is ob-
vious that when the inequalities

I i . < l , Z f < i (8.20)

are satisfied, all the results obtained in Chaps. 5 and 6
are fully applicable. The situation described by the in-
equalities (8.20) represents a relatively narrow initial
spectrum Δω! = τϊ1 and it may result from frequency-
dependent resonator losses (see, for example, a report
of an experimental investigation given iii28^1). If

I t ^ l , l l > u (8.21)

the duration of each peak will be reduced by a factor
which is -/p~ smaller than in the previous case. On the
other hand, all the statistical results relating to the
selection of the strongest of m initial pulses remain in
force.

Finally, a situation differing strongly from the pre-
ceding one appears if

^ » l . (8.22)

An exact theory of the effect of a bleachable filter is not
yet available for the case when τ̂  ^$> Τι. Obviously,
when the inequality (8.22) is satisfied, the time depen-
dence of the radiation will have two characteristic time
scales. Some experiments'-29"31-1 employing the two-
photon method for recording the time characteristics
of the laser radiation have established the existence of
two characteristic time scales in the correlation of the
intensity (see alsci 6 5 ' 6 ^). Bradley et al.C 3 I ] have sug-
gested that groups of peaks with a group duration ~ T J
are selected from the initial fluctuation pattern and that
a fine structure in the form of peaks of approximately
the same amplitude is observed within time intervals of
the order of τ^.

It is not yet clear whether one such group is isolated
or whether there can be several groups in one period.
Moreover, it is not known whether the duration of such
a group should be equal to the relaxation time of the
filter or whether shorter groups may appear. The diffi-
culty has been that even a weak response of the filter to
fast changes in the intensity may give rise—because of
the large number of passes of the radiation through the
filter—to a considerable discrimination between the
various peaks within the group and to a reduction of the
duration of the group compared with Tf.

8.6. In a standing-wave resonator the thickness h of
a cuvette containing a bleachable filter material may be
of importance. The influence of this thickness is, to
some extent, analogous to the influence of the finite
filter relaxation time τ, ~ h/v (see1-31-1).

If such a cuvette is placed at a considerable distance
h from a mirror and not next to it, some special effects
may be observed. The appearance of several pulses,
separated by time intervals At = 2Z2/v, during one per-

iod becomes more likely. This happens because the field
of one pulse causes partial bleaching of the filter and
this improves the conditions for the development of a
second pulse, separated by At = 1Uh from the first.
These effects have been considered, for example, i n ^ .

8.7. When the field amplitude in a pulse is large,
nonlinear effects such as self-focusing, many-photon
absorption, etc. may become important. The losses due
to these effects increase with increasing amplitude of
the pulse in question and, therefore, they may strongly
impair the time structure of the radiation, giving rise
to the appearance of many pulses in one period. Since
these effects depend very strongly on the actual param-
eters of a laser, we shall not make any estimates but
simply refer the reader to the original paper describing
experimental investigations.^32^

8.8. In Chaps. 5—7 we have assumed that the field
emerging from a laser is a quasiperiodic function of
time. This means that the time structure of the radia-
tion does not vary within a given period and that the
total field amplitude, which increases at the beginning
of a giant pulse and decreases at the end, varies slowly
with time.

The dispersion, frequency self-modulation, and self-
expansion (self-compression) effects all disturb the
quasiperiodicity of the output radiation. The influence
of these effects accumulates during successive passes
of the pulses through the active medium in the resona-
tor. Therefore, the phase modulation of the radiation
resulting from the reactive nonlinearity n 2 |E | 2 and ap-
pearing at the peak of a giant pulse may vary consider-
ably from one period to another (see -1).

The combined effect of the dispersion and of the fre-
quency self-modulation may result in changes not only
of the phase of the field but also of the time structure of
the amplitude pattern |E(t)| from one period to another.
We are speaking only of changes in the fine time struc-
ture of the pulses: neither the dispersion nor the fre-
quency self-modulation can produce changes in the inten-
sity envelope considered on a large time scale. The
nonperiodicity of the fine time structure of the radiation
intensity was observed iff-33-1. In this investigation the
two-photon method (Chap. 9) was used to show that the
correlation function of the intensities φ (τ)
~ fI(t)I(t + T)dt has a very sharp peak at τ = 0, whereas
the peak of ψ(τ) at τ = Τ is weaker and spreads over a
longer time interval.

The nonperiodicity of the fine time structure of the
radiation may be manifested also in various nonlinear
radiation conversion processes (for example, in the
conversion involving the four-photon interaction,
seeC3 4 '3^).

Thus, in some cases, the time structure of the laser
radiation may depend strongly on the influence of the
effects considered in the present chapter.

9. TWO-PHOTON METHOD FOR RECORDING THE
TIME STRUCTURE OF THE RADIATION

Several difficulties are encountered in comparisons
of the theories of lasers with bleachable filters with the
experimental results. The main difficulty is that there
is as yet no apparatus which would have sufficiently
high time resolution. The width of the spectrum of a
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luminescence line of an active material, which is
~ 1—100 cm"1, leads us to expect (at least in principle)
pulse durations of ~ 5 χ 10"12—5 χ 10"14 sec. Direct
measurements of pulses of such durations are impossi-
ble at present. Recent image converter studies^36'58'59^
have made it possible to reach an exceptionally short
resolution time of 10"11 sec. When the first reports of
lasers with mode self-locking appeared in the literature
(1966), the time resolution of the apparatus used in
direct recording of the radiation was an order of magni-
tude poorer.

In view of this, an indirect two-photon method for re-
cording the time structure of the laser radiation was
suggested in1-383. The method is simple and has been
used extensively. However, this method allows us to de-
termine only a characteristic time interval in which the
intensity of the investigated radiation undergoes a change
but it does not allow us to find whether only one radia-
tion pulse is emitted in a period.

Unfortunately, for a long time the theoreticians and
experimentalists investigating the self-locking of laser
modes had been overestimating the capabilities of the
two-photon method. Unjustifiable reports of full mode-
locking and high powers had been made on the basis of
the two-photon method. In view of the fact that this
method is still widely used, we shall show (following the
reports given in^39"42^1) what information about laser
radiation can be obtained by this method.

The standard form of the two-photon method for re-
cording the time structure of the radiation is as follows.
The radiation being investigated is split into two beams
of the same intensity. These beams are directed so that
they reach a cuvette containing a dye solution (usually
rhodamine 6G) from opposite directions. The dye is
selected so as to ensure that the luminescence appears
in it only when two photons of the laser radiation are
absorbed simultaneously. The measured quantity is the
intensity of the luminescence plotted as a function of the
coordinate directed along the axis of the two beams.

The idea behind the method is that the intensity of the
luminescence excited by two-photon absorption is pro-
portional to the square of the intensity of the exciting
radiation:

#lum {x) = const- J P(x, t) dt. (9.1)

Therefore, at the center of the cuvette, where the differ-
ence between the arrival times of the pulses from the
first and second beams is zero, the intensities of the
pulses from two beams should be added and this should
enhance the two-photon luminescence. At those points in
the cuvette where the pulses of the photons from the two
beams arrive at different times, the luminescence inten-
sity should be lower. Thus, the presence of a lumines-
cence peak of width ~Δχ at the center of the cuvette can
be used to draw the conclusion that the time structure
of the radiation includes peaks with a characteristic
scale At ~ 2Δχ/ν, where ν is the velocity of light in the
cuvette.

A more rigorous analysis should make allowance for
the fact that we must add not the intensities but the
fields of the waves traveling in opposite directions and
that a standing wave is formed where the pulses meet.
Such an analysis (see'-39-') yields the following result. If
the two waves traveling in opposite directions have the

FIG. 4. Time dependence of the
intensity during a period I(t) and
the trace of the two-photon lumi-
nescence brightness Φ(τ). It is evi-
dent that quite different functions
I(t), shown in parts a and b, give
practically identical two-photon
luminescence traces. If the resolu-
tion time of the oscillograph t r is
greater than the interval occupied
by the group of pulses in case b,
the same oscillograms are obtained
in both cases.

T-ll
(a)

t'-T/l c-ff
(b)

same envelopes I(t), the luminescence at the point χ
should be

. (9.2)

The distance from the center of the cuvette χ is related
linearly to the difference between the times: τ = 2x/v.
Consequently, the value of Ψ(τ) can be measured only in
relative units.

It is convenient to introduce a special symbol for the
time correlation of the intensity function:

(9.3)

Eq. (9.2) then becomes

Ψ(τ) = Λί,0, {2ψ(0) + 4ψ(τ)}. (9.4)

We have mentioned earlier that a distribution of the
luminescence Ψ(τ) with a peak at τ = 0 can be used to
estimate the characteristic time scale of variation of
the function I(t), which can be deduced from the width of
the peak. Difficulties are encountered if the same dis-
tribution is employed to show that the incident radiation
consists of one and not several pulses. Figure 4 shows
two possible I(t) functions and the corresponding two-
photon luminescence distributions Ψ(τ). We can see that
only one strong peak of Φ(τ) is observed in case b, in
spite of the fact that the incident radiation I(t) consists
of several strong pulses.

It is also evident that for a given value of the total
energy emitted in a time interval Τ the instantaneous
power reached in case a is six times higher than that
reached in case b.

It must be stressed that, in many cases, we cannot
distinguish situations of type a and b even by means of
an oscillograph. In fact, if all the short pulses in case b
lie within a time interval shorter than the resolution
time of the oscillograph t r (Fig. 4b), the trace displayed
on the oscillograph screen consists of one pulse in case
a and in case b.

We must point out that the task of differentiating the
case of one pulse from the case of several strong pulses
within a time interval equal to the resonator period is
not made easier by any theoretical considerations of the
operation of a laser under mode self-locking conditions.
On the contrary, the discussion given in the preceding
chapters shows that we can have partial mode locking,
corresponding to the presence of several pulses of com-
parable intensity in the time distribution.

The two-photon luminescence method could yield ex-
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tensive information if we did not r e s t r i c t it to measure-
ments of the width of the peak in the luminescence pat-
t e r n but determined the complete luminescence intensity
t r a c e . However, this t race must be determined very
accurately. Unfortunately, the first quantitative meas-
u r e m e n t s of such traces^ 4 6 ] were performed using con-
t r a s t , which i s a fairly rough character is t ic .C 6 0 ' 4 6 ] it i s
assumed i n [ 6 0 ' 4 e ] that there is a definite value of the
luminescence intensity Ψ(°°) which determines the
brightness of the luminescence pat terns at all points
outside the peak (τ > At). The contrast R was defined
as the rat io

= Ψ(0)/Ψ(οο). (9.5)

In fact, the corre lat ion function of Eq. (9.3) and, there-
fore, the brightness Ψ(τ) a r e usually not constant out-
side the centra l maximum (see, for example, Fig. 4b).
Therefore, the contrast R which has been discussed and
measured by many workers is a quantity which r e p r e -
sents some average t r a c e .

We shall now give some data on the contrast obtained
in severa l simple cases .

In the first case, the radiation r e p r e s e n t s a segment
of a Gaussain random p r o c e s s (the radiation emitted by
a l a s e r with modes which are not locked in phase). In
each specific real ization ( laser flash) the correlat ion
function ip(r) of Eq. (9.3) has a central maximum and a
large number of weak i r regular ly distributed additional
maxima. If the number of modes is sufficiently large,
for example, m ~ 1000, we find that ψ(τ) for some
real izat ions will differ from this ensemble-average
value by a small quantity ~ l / 7 m « 1/30. Therefore,
we obtain the following approximate expression

w h e r e > Ό ( Τ ) i s t h e n o r m a l i z e d c o r r e l a t i o n f u n c t i o n f o r

the field: yo(0) = 1, γο(τ — °°) [see Eq. (6.3)]. It follows
from Eq. (9.6) that the contrast of the two-photon lumin-
escence pat tern i s

l,Gauss : ; = 1,5. (9.7)

The analogous express ion for the contrast in the case
when the radiation r e p r e s e n t s a Gaussian random proc-
e s s of the p-th o r d e r i s :

i?P,Gauss = 3 [ l + ^ T ] " 1 · (9-8>

Thus, for example, Ri = 1.5, Ra = 2.57, Ri = 2.86,
R, = 2.96, Rs= 2.99.

Finally, we shall consider the case when the intensity
of the radiation vanishes outside a certain time interval
At. The t ime corre lat ion ψ (τ) of Eq. (9.3) then vanishes
for \T\ > At and the contrast of such a pulse R , be-

c o m e s

, (9.9)

T h e l a r g e d i f f e r e n c e b e t w e e n t h e v a l u e s of t h e con-
t r a s t g i v e n by E q s . (9.7) and (9.9) h a s l e d t o the i m p r e s -
s i o n t h a t one c a n p r o v e q u i t e s i m p l y t h a t only one p u l s e
i s g e n e r a t e d in a g i v e n p e r i o d . F i g u r e 4 s h o w s c l e a r l y
t h a t t h i s c o n c l u s i o n i s w r o n g : i n both c a s e s , t h e con-
t r a s t of t h e t w o - p h o t o n l u m i n e s c e n c e p a t t e r n i s 3,
a l t h o u g h i n c a s e b t h e r e a r e s i x p u l s e s of a p p r o x i m a t e l y
t h e s a m e i n t e n s i t y in e a c h p e r i o d .

T h e b a s i c i n a c c u r a c y in t h e d e f i n i t i o n of t h e c o n t r a s t
i s the indeterminacy of the definition of Ψ(°°). In o r d e r
to find what quantitative information on the exciting
radiation can be deduced from the two-photon lumines-
cence pattern, we must drop the contrast, which is a
rough character i s t ic , and use more r igorous integral
express ions.

In o r d e r to compare different t ime pat terns without
making a pr ior i assumptions about their actual nature,
we shall introduce (in accordance with the t reatment
given irf4 1^) the following character i s t ic of the radiation
which we shall call the effective duration:

l(t)dt]2j

In m a n y c a s e s , the r a d i a t i o n in a giant l a s e r p u l s e
d e p e n d s q u a s i p e r i o d i c a l l y on t i m e , i . e . , t h e funct ion I(t)
i s of t h e f o r m

w h e r e f(t) = f(t + T) and a(t) v a r i e s l i t t l e i n a t i m e i n t e r -
v a l T. It t h e n fo l lows f r o m E q . (9.10) t h a t

1 tot
J
0

I+T
I I f(t)dt]2

'tot '+'
Τ ] [a(t)\'dt J [/№<*<

(9.12)

The first factor, N, in Eq. (9.12) r e p r e s e n t s the number
of per iods in the envelope of the giant pulse. The second
factor, At(J), is the effective duration of the radiation in
the t ime interval [t, t + T ] . We shall consider only the
quasiperiodic functions and use the quantity AtC-D (we
can show that violation of the condition of quasiperiodic-
ity will have little effect on A t e f f / N ; se<£421).

It follows from the definition

(9.13)

t h a t 0 < A t l | i < T . We c a n e a s i l y s e e t h a t if t h e func-

t i o n I(t) i s in t h e f o r m of a s i n g l e r e c t a n g u l a r p u l s e of

d u r a t i o n At ^ d u r i n g one p e r i o d , we h a v e A t ( J ) = At ^.

The radiation which consists of η rectangular pulses of
the same duration and same intensity in a time interval
[t, t + T] is character ized by AtCJ) which i s given by

A t ^ = nAt , and the instantaneous value of the inten-

sity in a pulse I j n s j . exceeds the average intensity I by

a factor of T/At e f f = (T/n)At ^

/ i M t = i Γ / ( ί ) * . (9.14)
eff ό

It i s c l e a r t h a t i n t h e c a s e of p u l s e s of d i f f e r e n t s h a p e ,
( T )

d u r a t i o n , a n d a m p l i t u d e , t h e q u a n t i t y A t ^ ' i s s t i l l a

m e a s u r e of t h e i n s t a n t a n e o u s p o w e r d e f i n e d b y E q .

( 9 . 1 4 ) .

For a given width of the field spectrum Δω a mini-

mum of At^t/ i s reached when the spectra l components

are completely in phase: in this case, At' i i ~ ΐ/Δω.
(T) e

The deviation of Atv „-' from this minimum value can be
regarded as one of the character i s t ic s of the degree of
part ia l mode locking which is directly related to the
instantaneous power.

The value of At(^) can be expressed in t e r m s of the
eff
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correlation function of Eq. (9.3). If we use the quasi-
periodicity condition of Eq. (9.11), we obtain

τ

A'eff = (1/2) f ψ (τ) ίτ/ψ (0). (9.15)
-τ

Equation (9.4), which relates Ψ(τ) and ψ(τ), can also be
used to express At(T) in terms of Φ(τ) measured by the

two-photon luminescence method:
τ

Δ ί $ = [ (3/4) \ Ψ (τ) dx/Ψ (0)'] - (Γ/2). (9.16)
-τ

This expression can be rewritten in the form

«eff=4 ί Γ ^ - 4 - Κ (9-16a)

which shows that the contrast of about 3 corresponds to
durations much shorter than the resonator period. The
most important case is that of short effective durations
such that AtCD <iC T. In this case, the right-hand side
of Eq. (9.16) represents a small difference between two
large quantities. It is clear that, in this case, the value
of AtCjD can be found only if Ψ(τ) is measured very ac-
curately from τ = 0 to τ = T/2. If we assume that Φ(τ)
is measured with an error δφ, we find that Eq. (9.16)
yields

(9.17)) - 3 τ

Thus, if the two-photon method is used to find whether
a single pulse of duration At^ is generated in one period
T, we must measure Ψ(τ) with an accuracy δ*/Ψ(0)
= Atjj/T. Under typical conditions, At Z/T < 10"3, i.e.,

a very high accuracy is required.
We must mention that when the two-photon lumines-

cence pattern is recorded simultaneously with the os-
cillogram of the investigated radiation, the accuracy re-
quirements may be somewhat less straight. We shall
assume that an oscillogram shows that all the energy
emitted in a period Τ is concentrated in an interval of
duration t r , which is the resolution time. Under these
conditions, Eqs. (9.15) and (9.16) can be reduced to the
form

= [(3/4) Ψ(τ)Λ/ψ(0)]-(ί,/2),

(9.18)

(9.19)

and Eq. (9.17) i s replaced by the following est imate of

the experimental e r r o r :

'(3/2)*, δΨ/Ψ(0). (9.20)

This means that the use of an osci l lograph in the two-

photon method makes it possible to reduce the require-
ments of the experimental precision to the level δΨ/ψ(0)

~ Δ ίρΛ·
Under typical conditions At̂ /tr < 10~2, i.e., the ex-

perimental precision must still be very high.
The precision of measurements in the standard form

of the two-photon method is δφ/Φ(0) ~ 1 (see [ 4 6 ] ). Thus,
this method cannot be used to determine the effective
duration, i.e., it gives practically no information on the
peak power of the investigated incident radiation.

These theoretical conclusions relating to the time

dependence of the radiation and the two-photon lumines-
cence pattern were confirmed by Malyutin and
Shchelev.^363 In their experiments, the laser radiation
was recorded by an image converter with a resolution
of ~10~u sec and they also photographed the lumines-
cence pattern in rhodamine 6G. The image converter
measurements indicated clearly that many of the laser
flashes consisted of a group of several pulses in one
period and that the separation between these pulses,
their number, and the relative intensities varied within
wide limits. All these flashes had the same two-photon
luminescence patterns.

Several recent investigations of the time characteris-
tics of the laser radiation have been based on other non-
linear effects in which some correlation function of the
intensity is measured. These methods include harmonic
generation,1143"453 the use of optical switches,11633 tech-
niques based on the luminescence resulting from
η-photon absorption (n > 2)P2^ and the stimulated scat-
tering of lights 6 4 3

These methods may have technical advantages under
particular conditions but the principle of recording time
characteristics is very similar to that used in the stan-
dard two-photon method. All these methods suffer from
the same basic shortcoming: it is difficult to disting-
uish the case of a single pulse in one period from the
case when many such pulses are emitted. The correla-
tion function must be measured with a high precision
(~ALj/tr) from τ = 0 to τ = t r / 2 . A detailed analysis
of the method utilizing the luminescence resulting from
the n-photon absorption is given in [ 6 1 3 .

Moreover, in some methods the correlation func-
tions for different values of the arguments are meas-
ured using different laser flashes. This complicates -
the situation and reduces the information value of the
measured quantities. In fact, a clear interpretation of
such measurements can be given only if it is known
a priori that different laser flashes represent radiation
with fully identical time characteristics.

Summarizing our discussion, we can say that the only
reliable method for investigating the time structure of
the laser radiation is high-speed photography in which
image converters are employed (see, for example/5 3).

10. CONCLUSIONS

The basic principles of the operation of a laser with
a bleachable filter are now fully understood.

A regular train of single ultrashort pulses can be
produced only with some probability: the time distribu-
tion of the radiation is not always reproduced from one
flash to another.

The narrowing of the initial laser radiation spectrum
(when an active medium with a narrower luminescence
spectrum is used or when frequency-dependent losses
are introduced into the laser resonator) enhances the
probability of obtaining a train of single ultrashort pul-
ses.

The probability of obtaining a regular train of single
pulses is also enhanced by operating the laser close to
its threshold and by increasing the density of the bleach-
able filter.

Careful control of the laser operation and of the po-
sitions of various elements in the resonator should
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make it possible to achieve a high reproducibility of the
time distribution of the radiation under experimental
conditions. Direct measurements have demonstrated
that one ^lO" 1 1 sec pulse per period can be generated
with a reproducibility of <;95%.

The authors are deeply grateful to A. A. Malyutin
and I. I. Sober man for discussions which have stimula-
ted them in the preparation of this review.
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