
S O V I E T P H Y S I C S

U S P E K H I

A Translation of Uspekhi Fizicheskikh Nauk

Editor in chief-B. V. Shpol'skit;Associate editors-L. F. Veres, S. G. Suvorov;Secretary-V. A. Ugarov
Editorial board-K. S. Akhmatov, D. I. Blokhintsev, V. L. Ginzburg, B. B. Kadomtsev, L. V. Keldysh, R. V. Khokhlov,
L. B. Okun', L. P. Pitaevsku, Yu. D. Prokoshkin, G. V. Rozenberg, F. L. Shapiro, I. A. Yakovlev, Ya. B. ZePdovich

Vol. 15, No. 1, pp. 1-137 (Russian Original Vol. 106, Nos. 1 and 2) July-August 1972
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Ya. A. SMORODINSKII and L. A. SHELEPIN

P. N. Lebedev Physics Institute, USSR Academy of Sciences

Usp. Fiz. Nauk 106, 3-45 (January, 1972)

A generalized theory of angular momenta has been developed over the past few years. The new re-
sults account for a substantial change in the role played by Clebsch-Gordan coefficients both in
physical and in mathematical problems. This review considers two aspects of the theory of
Clebsch-Gordan coefficients, which forms a part of applied group theory. First, the close relation
of these coefficients with combinatorics, finite differences, special functions, complex angular
momenta, projective and multidimensional geometry, topology and several other branches of mathe-
matics are investigated. In these branches the Clebsch-Gordan coefficients manifest themselves as
some new universal calculus, exceeding substantially the original framework of angular momentum
theory. Second, new possibilities of applications of the Clebsch-Gordan coefficients in physics are
considered. Relations between physical symmetries are studied by means of the generalized angu-
lar momentum theory which is an adequate formalism for the investigation of complicated physical
systems (atoms, nuclei, molecules, hadrons, radiation); thus, e.g., it is shown how this theory can
be applied to elementary particle symmetries. A brief summary of results on Clebsch-Gordan co-
efficients for compact groups is given in the Appendix.

1. INTRODUCTION

CLEBSCH-Gordan coefficients (C-G coefficients) have
long formed part and parcel of the mathematical appa-
ratus of theoretical physics. These coefficients have
been used in the computations of spectra—both atomic
and nuclear—and have been used in various parts of
scattering theory. Formulas and tables of various
types can be found in many textbooks and monographs
(and even in the "Pocket Diary for Physicists"), How-
ever in the majority of cases the concept of G-G coef-
ficient is associated to formulas for the addition of
angular momenta, and to many physicists their theory
appears as a closed chapter.

In fact, in a certain sense, one may consider closed
only what we call the classical theory of C-G coeffi-
cients, related to the expansion of products of repre-
sentations of the three-dimensional rotation group (of
real three-dimensional space) into irreducible com-
ponents. Investigations over the last few years have
taken the theory of C-G coefficients outside the narrow
circle of its classical problems. The new develop-
ments are more and more intertwined with various
sections of algebra, multidimensional geometry,
topology, projective geometry, analytic function theory,
the theory of special functions, differential equations,
combinatorial analysis and the calculus of finite dif-
ferences. One could say that the theory of C-G coef-

ficients takes on the character of a new kind of calcu-
lus, going far beyond the scope of the classical theory.

However, many of the newer aspects of the theory
of C-G coefficients can be found only in journal art i-
cles; the majority of these aspects are not fully de-
veloped and are not well known. At the same time this
branch of mathematical physics has good chances to
develop, and it seems useful to call attention to it.
This is also important from the viewpoint of physical
applications of the C-G coefficients, which have ex-
panded recently in connection with the discovery of
new symmetries of elementary particles, and also with
the necessity of analyzing the interrelation between
symmetries and the discovery of hidden symmetries in
complicated physical systems: atoms, nuclei, hadrons,
molecules. The theory of C-G coefficients is adequate
for the study of such systems, which reflect the com-
plicated character of the interactions of many particles.
It should also be stressed that the theory of C-G coef-
ficients, in distinction from the theory of characters of
representations, makes it possible to use all the infor-
mation stemming from the presence of symmetry in a
physical system.

Thus, the purpose of the present review is to attract
attention to the new aspects of the theory of C-G coef-
ficients, to tell about the wealth of interrelations in
this theory and to indicate a series of new possibilities
of applications.
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We shall restrict our attention below to the theory
of C-G coefficients of the compact group SU(2) (which
is also called the theory of angular momenta) and some
of its generalizations, but we also list the results for
C-G coefficients for other compact groups. The prop-
erties of C-G coefficients for noncompact groups, in
particular for the group O(2, 1), necessitate a separate
review article. The bases of the theory of angular
momentum were laid in the fundamental work of Wig-
ner [ 1 ] and Racah[2~4] with the purpose of carrying out
practical calculations in atomic and nuclear spectro-
scopy. In the 1940-s and 50-s the C-G and Racah coef-
ficients were studied in detail and tabulated; various
combinations of these coefficients were discussed:
generalized C-G coefficients, transformation matrices,
j-symbols; graphical methods were developed. Toward
the end of the fifties all concepts of angular momentum
theory were unified into a consistent formalism and
the theory seemed completed. The angular momentum
theory as of that time, which we will call "classical,"
is exposed in a series of monographs'1 '5"1 1 1.

Therefore, the discovery by Regge [ 1 2 ] of new sym-
metry properties of the C-G coefficients, overlooked
in all earlier investigations, came completely unex-
pected. This discovery was the starting point of the
new development of the theory1 '. Over the past decade
the theory of angular momenta was subject to qualita-
tive changes. Among the new problems which have ap-
peared in the past few years, one can indicate the
generalization of C-G coefficients to arbitrary com-
plex arguments, extension which was essential in con-
nection with Regge trajectories [ 1 6 1; generalizations of
the C-G coefficients related to the analysis of complex
physical systems; the close intertwining of the theory
of angular momenta and the theory of C-G coefficients
for compact groups. This situation of the theory makes
a review of its state useful, in spite of the fact that
owing to their incompleteness many of the questions
touched upon in this review are exposed only schemat-
ically .

We have considered it very important to indicate
directions which are almost undeveloped and would like
to stress that our enumeration of such directions is
probably incomplete, and that not all of those mentioned
will turn out in the future to be equally fruitful. Un-
doubtedly, new relations will be discovered in future
work.

The review consists of three parts. In the first part
we list briefly the results of the classical theory of
angular momenta and discuss the interrelations with
discrete and continuous mathematics. In the second
part we construct the generalized theory of angular
momenta on the basis of the new symmetries (the
Regge symmetry and higher ones) and discuss the
physical aspects. In the third part we analyze the re-
lation of the theory of C-G coefficients with geometric
and topological concepts. The Appendix gives a brief
listing of results in the theory of C-G coefficients for
compact groups.

1. C-G COEFFICIENTS AND THEIR RELATION WITH
DISCRETE AND CONTINUOUS MATHEMATICS

2. The Classical Theory of Angular Momenta

The first part of this review t r e a t s problems which
a r e directly related to the c lass ical theory of angular
momenta, such a s : the relat ion between the theory of
C-G coefficients and combinatorial analysis, the calcu-
lus of finite differences, the theory of special functions,
integral representat ions and also the construction of
C-G coefficients for complex angular momenta. How-
ever, first of all we must briefly discuss the c lass ical
theory of angular momenta ' 1 " 1 1 1 . At the basis of this
theory l ies the concept of C-G coefficients
( j i i 2 mim 2 | jm) which implement a transformation from

the basis φ^χ φ ^ to the basis ^ J

m , where j 1 ; j 2 , j

are angular momenta and m,, m2, m are their projec-
tions. The C-G transformations are unitary, and thus
verify the equations

Σ {U I jm) (iihK m21 jm) = 6mim;6m>m;. (2.2)

The unitary relations (2.1) and (2.2) and the recurrence
relations which are obtained by means of the infinitesi-
mal operators of the group SU(2) allow one to compute
all the C-G coefficients. The arbitrariness in the
choice of phase is removed by imposing the supple-
mentary condition'161

(/i/2/i»»j|;m)>0. (2.3)

With this choice the C-G coefficients are always real.
The symmetry properties of the Wigner coefficient
(3j-symbol), which projects the product of three i rre-
ducible representations on an invariant subspace and
is related to the C-G coefficient by the relation

mm i ' ) = < (2.4)

'̂ It is characteristic that these symmetries are already contained in
the papers on hypergeometric functions [13'14]. However, nobody ever
attempted to extract them from there.

are expressed by the equalities

fh /, h \ J h h Μ mi+ (2.5)

where e = 1 if the permutation of the columns is even

and equals (-l)]l*i2*h if the permutation of the col-
umns is odd or there is a change of the sign of the
projections; altogether there are 12 such symmetry
operations. (The additional symmetries which were
obtained by Regge [ 1 2 ] will be discussed in Chap. II.)
Usually the index j is assumed to be positive, integer
of half-integer (m takes on 2j + 1 values from -j to
+j). However, the matrix elements of the square of
the angular-momentum operator as well as the eigen-
value equations do not change under the substitution

/ _ / _ _ , _ ! (2.6)

and hence one may consider negative values of the
angular momenta in all formulas for the C-G coeffi-
cients'^9'171. The state vectors (wave functions) corre-
sponding to j and J describe the same state and differ
only by a phase factor

|/m) = (-l) i-"|ym>. (2.7)
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Thus, the substitution (2.6) denotes a definite sym-
metry of the C-G coefficients.

The matr ix e lements of i r reducible representat ions
of the group SU(2), i .e., the matr ix e lements D(u>) of
finite rotat ions, a r e closely re lated to the C-G coeffi-
c ients . If the rotation is parametr ized by means of the
Euler angles α, β, γ one can write the m a t r i x elements

D ] mm'(a, β, Ύ) in the form

- (a, P, V) = e~imaDLs ( ( 2 . 8 )

The quantity

O'nm' (β) =
/ |

2? ' ( / — " 0 ! (/ :•«!)!(/—m')T

X (1 -

, , ,„-
ίΐμ'

(1 ! μ) - \6·» Ι

1-μ)''-'"(1-;-μ) ί : ι"] (μ = cos β)

i s , u p t o a n u m e r i c a l f a c t o r , a J a c o b i p o l y n o m i a l 1 ^ 8 1 .

T h e p h a s e h e r e h a s b e e n c h o s e n i n a g r e e m e n t w i t h [ 5 ] ,

s u c h t h a t

A d i f f e r e n t c h o i c e o f p h a s e h a s b e e n m a d e i n [ 1 8 1 .

I n s p e c i a l c a s e s t h e f i n i t e r o t a t i o n m a t r i x c a n b e

e x p r e s s e d i n t e r m s o f s p h e r i c a l h a r m o n i c s a n d

L e g e n d r e p o l y n o m i a l s :

, a),

io (α, β, γ) = Pi (cos β).
(2.11)

T h e r e l a t i o n b e t w e e n t h e

c i e n t s i s g i v e n b y t h e r e l a t i o n s

ί 4 ' « ΐ ( ω ) θ ί ! . ; Μ = Σ {iiUmim,\

ο ϋ υ

a n d t h e C - G c o e f f i -

' 5 1

( 2 - 1 2 )

η it h \ ί /ι /2 ;'s \
η ί ! τη, m3)\m'1 m', πι3)

(2.13)
I m p o r t a n t r o l e in t h e o r y and a p p l i c a t i o n s a r e p l a y e d

by v a r i o u s c o m b i n a t i o n s of t h e C - G c o e f f i c i e n t s (or
W i g n e r c o e f f i c i e n t s ) w h i c h a r e c o v a r i a n t s u m s of
p r o d u c t s of s u c h q u a n t i t i e s , e .g . , t h e e x p r e s s i o n w h i c h
a p p e a r s w h e n a s c a l a r i s f o r m e d f r o m four o r m o r e
a n g u l a r m o m e n t a ( a d d i t i o n of m o r e t h a n t w o a n g u l a r
m o m e n t a ) :

Uihmlml I hi'n12> (/ l2/3 m 12 m 3 | Ji23m123) ( / ϋ ΐ / , 1 » ! ! ^ | ]">•) ( 2 . 1 4 )

( e x p r e s s i o n s o f t h e t y p e ( 2 . 1 4 ) a r e c a l l e d g e n e r a l i z e d

C - G c o e f f i c i e n t s ) . A s p e c i a l p l a c e a m o n g s u c h c o m -

b i n a t i o n s i s o c c u p i e d b y t h e t r a n s f o r m a t i o n m a t r i c e s

( a n d t h e i r s y m m e t r i c f o r m s , t h e s o - c a l l e d j - s y m b o l s )

w h i c h i m p l e m e n t t h e t r a n s i t i o n f r o m o n e c o u p l i n g o f

t h e a n g u l a r m o m e n t a ( e . g . , i n ( 2 . 1 4 ) : ( ( j J 2 ) j 12J3)j 123J4J))

t o a n o t h e r c o u p l i n g , d i f f e r i n g f r o m t h e f i r s t b y t h e

o r d e r i n w h i c h t h e a n g u l a r m o m e n t a a r e a d d e d . A r b i -

t r a r y t r a n s f o r m a t i o n m a t r i c e s c a n b e e x p r e s s e d i n

t e r m s o f a s u m o f p r o d u c t s o f t h e s i m p l e s t m a t r i c e s —

t h e R a c a h c o e f f i c i e n t s . T h e r e l a t i o n b e t w e e n t h e t r a n s -

f o r m a t i o n m a t r i x a n d t h e c o r r e s p o n d i n g R a c a h c o e f f i -

c i e n t a n d 6 j - s y m b o l i s g i v e n b y t h e f o r m u l a

1) W (jti2jh\ (2.15)

( - l ) i ^ + i 3 + 1 { / ' ' · M .
ill J I23)

According to the c lass ica l theory the 6j-symbol is in-
variant with respect to a permutation of columns with
a simultaneous permutation of any two pairs of angular
momenta which a r e situated in the same column (24
symmetry ru les) .

Transformations between different coupling schemes
of four angular momenta lead to 9j-symbols re lated to
the corresponding transformation matr ix by

(Uth) in (Mi) hti \ (/J3);'«ihji) hJ) =

(2.16)
and satisfying 72 symmetry r u l e s .

The theory becomes, of course, more complicated
for the transformation m a t r i c e s occurr ing in the addi-
tion of a larger number of angular momenta. Little
has been done in this direct ion: there is not even an
established notation for the j - symbols , the problem of
their enumeration has not been solved, e tc . The general
s t r u c t u r e of the transformation m a t r i c e s can be seen
from the following example. According to the definition

31 ji jm),.

Σ (
'u'a

3 \ j m ) .

I n ( 2 . 1 7 ) t h e t r a n s f o r m a t i o n m a t r i x d e f i n e s a r e c o u p l i n g

b e t w e e n t w o c o u p l i n g s c h e m e s w i t h t o t a l a n g u l a r m o -

m e n t u m j a n d v a l u e s o f t h e i n t e r m e d i a t e m o m e n t a j 1 2 ,

j 1 2 3 a n d j i 4 , j 2 3 . M u l t i p l y i n g b o t h s i d e s o f t h e e q u a t i o n

( 2 . 1 7 ) b y t h e a p p r o p r i a t e C - G c o e f f i c i e n t s a n d c a r r y i n g

o u t t h e r e q u i r e d s u m m a t i o n , w e o b t a i n

( ( ( 7 Ί / 2 ) JKJ i I iitii) in U2/3) /W)

14) {j2j3m2m3 \ j2

iml,:.mi | jm)

4m231 jm).
(2.18)

The summation here goes over all projections of the
angular momenta. Equations of the form (2.18) give
general express ions for the transformation m a t r i c e s .
For concrete computations there exist many tables of
C-G coefficients and of their combinations. The general
expression of the C-G coefficient can be written in the
form of a finite sum

a Ι Μ = (h + / ' - ; . ) ! 0" + ; , - / 2 )

m2y. (j2-m2y.

( - 1 ) '
' Ά »l(/l + /a — / — 2)! (i + ; — /l-majHia + mj —z)l(2 + /—/z + mOMji — mi — =)! '

( 2 . 1 9 )

T h e r e a r e o t h e r e q u i v a l e n t r e p r e s e n t a t i o n s , w h i c h w i l l

b e a n a l y z e d i n d e t a i l i n S e c . 5 .

O n t h e o t h e r h a n d , t h e C - G c o e f f i c i e n t s a n d t h e i r

combinations can be expressed in t e r m s of special ν
values of generalized hyper geometric functions 1 2 0 1

(cf. Sec. 5):

(/Js^mj I }m)
, _ ,1 %i2+"i2 Γ (/ -r /ι — /a)I (/l + /a —/)! (/ - m)l (/i —mt)l (2/ + 1) π 1/2
V ' L ( ; - i i + ; 2)!(/iH-/ 2 + / + l ) ! ( H J

+ 1, —j — 1)·
2 0 )
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F r o m the express ions (2.19) which express the C-G

coefficients and their combinations in t e r m s of com-

plicated sums over factorials one can glean the r e l a -

tion of the C-G coefficients to d i scre te mathematics ,

whereas the express ion (2.20) indicates a connection

with the theory of special functions and of differential

equations.

3. The Relation of C-G Coefficients with Combinatorics

and the Calculus of Finite Differences

By thei r very nature the C-G coefficients belong to
di scre te mathemat ics : their arguments range over a
d i scre te set of values, and their numerical value is
expressed in t e r m s of a sum of products of factorials .
Therefore it i s quite natural that in the analysis of the
C-G coefficients and the i r combinations one can make
use of combinatorial analys i s . Such formulas have
been used, e.g., i n [ e ' 2 1 ] , to establish t ransformations
between express ions of the C-G coefficients derived
by various authors . However, the relat ion between
combinatorics and the theory of angular momenta is
more profound than might appear at a first glance.
Combinatorial ana lys i s f 2 2 > 2 4 ] studies various compli-
cated s u m s of factorials and binomial coefficients.
Sums which a r e covariant with respect to some group
or s u m s related to C-G coefficients a r e of interes t in
applications. Therefore a s e r i e s of formulas from
combinatorial analysis can be t rans lated into the
language of C-G coefficients. Consider, for example,
the known relat ions

ία!
b\c\ (a—6)1 (a—c

(a — s)\(b + s (a—c)lb\ (a+ii+l)l

The Vandermonde formula (3.1) can also be expressed
in terms of binomial coefficients in the form

( Ι | ϊ ) = 2 ( „ ! „ ) ( „ ) · ( 3 · 3 )

α

R e w r i t t e n i n t e r m s o f t h e C - G c o e f f i c i e n t s t h e s e r e l a -

t i o n s h a v e t h e f o r m

Σ UiJ2mims 17i + hm) = 1| (3.4)

(3.5)

The t r a n s i t i o n f rom E q s . (3.4) to (3.5) i s s i m p l y the
s y m m e t r y of the C-G c o e f f i c i e n t s .

The s e c o n d Vandermonde formula, which o c c u r s for
t h e subst i tut ion j — J

a
c o r r e s p o n d s to a C-G coef f ic ient analogous to (3.4), but
with negat ive angular m o m e n t u m .

Another e x a m p l e i s the product of two F ibonacc i

n u m b e r s t 2 5 ' , defined by

and g iven by the formula

The product of t h r e e F ibonacc i numbers can be e x -
p r e s s e d in t e r m s of a combination of two such C-G,
e t c . We note that h e r e the argument of the angular
momentum contains the project ion m.

The equations (3.4), (3.5), (3.7) a r e i l l us t ra t ions of
the in terre lat ion between c o m b i n a t o r i c s and angular-
momentum theory. It i s l ike ly that many other formu-
l a s from combinator ia l a n a l y s i s can be e x p r e s s e d in
t e r m s of the C-G c o e f f i c i e n t s .

A s r e g a r d s the combinator ia l p r o p e r t i e s of the
arguments in the C-G coe f f i c ients , the ir re la t ion with
the theory of magic s q u a r e s , b l o c k - s c h e m e s , and
finite g e o m e t r i e s s e e m s to be taking shape at the p r e s -
ent t i m e . H o w e v e r , it i s m o r e convenient to d i s c u s s
t h e s e quest ions within the f ramework of the g e n e r a l i z e d
theory of angular momenta, to which Chapter II i s
ded icated.

Another branch of d i s c r e t e m a t h e m a t i c s d i rect ly
r e l a t e d to the C-G coef f ic ients i s the c a l c u l u s of finite
d i f f e r e n c e s . We r e c a l l s o m e b a s i c d e f i n i t i o n s [ 2 e ' 2 7 ] :

1. Genera l i zed power (the analog of ordinary power) :

Its proper t i es a r e :

) _ J (i_n)\

1 0.

r — re)! '
0, x<n.

(3.8)

(3.9)

2. Finite d i f ferences (the ana logs of d e r i v a t i v e s ) :

ΔΛ/(*) = /(* + * ) - / ( * ) .

(3.10)

3 . Operat ions with g e n e r a l i z e d p o w e r s (analogs of
differentiation and integrat ion) :

+ !)<*+«) (3.11)

The calculus of finite differences preserves the basic
propert ies of the analogues indicated above.

In a cycle of p a p e r s 1 2 1 ' 2 8 ' 2 8 1 , Ansary has shown that
the numerical value of the C-G coefficients i s de ter-
mined by the expansion of the quasi-binomial

{(ax-by))(n) = 2 ( - 1)" ( £ ) α<"-β)*(η-")6<β>|ί"ι> ( 3 · 1 2

α

a c c o r d i n g t o t h e e q u a t i o n

α

a'

a"

Ρ
β'
β"

τ
ν'
7'

\ /i + h—mi — m2 / (3.7)

(3.13)

where the square matr ix has the meaning of a Wigner
coef f ic ient . (Its a r g u m e n t s and s y m m e t r i e s a r e the
s a m e , up to a phase f a c t o r [ 1 2 ] . ) N ' i s a normal i zat ion
factor .

However , in order to apply f in i te-di f ference methods
to the theory of C-G coef f ic ients it i s m o r e convenient
to use in p lace of (3.13) the r e l a t i o n s der ived i n [ 1 0 ] .
The quantity

f f V k) = (-iY~r[(k-v)'··^ (Α+μ)|,1+ί>1 (3.14)
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is the difference analogue of a Jacobi polynomial. The
C-G coefficients can be expressed in terms of these
quantities by means of the formula

s Ί / ( 7 ι + )-;2) !ϋ2 + 7-;ι)!(/ι + ; ; - ; ί ! (2/ + DI ()+m)\ (f-m)l

(3.15)

w h e r e

« = / — Ji + J-2, α = (j, — m,) — (/ 4- m), β = (;, -f m j — (/ + m).

E q u a t i o n s a n a l o g o u s t o (3.14) and (3.15) c a n b e c o n -

s t r u c t e d for s o m e c o m b i n a t i o n s of C - G c o e f f i c i e n t s . On

t h e o t h e r h a n d , s i n c e one c a n e x p r e s s d i f f e r e n t r e l a -

t i o n s i n t h e c a l c u l u s of f in i te d i f f e r e n c e s in t e r m s of

C - G c o e f f i c i e n t s , i t i s not e x c l u d e d t h a t s o m e of t h e

p r o b l e m s of t h e t h e o r y of f in i te d i f f e r e n c e s , n a m e l y

f in i te d i f f e r e n c e e q u a t i o n s , a p p r o x i m a t e c a l c u l a t i o n ,

a p p r o x i m a t i o n s , c o u l d a l s o b e e x p r e s s e d in t e r m s of

C - G c o e f f i c i e n t s . T h i s w h o l e r a n g e of p r o b l e m s r e -

q u i r e s c a r e f u l f u r t h e r e x a m i n a t i o n .

4 . C l e b s c h - G o r d a n C o e f f i c i e n t s and C o n t i n u o u s

T r a n s f o r m a t i o n s

T h e C - G c o e f f i c i e n t s a r e c l o s e l y r e l a t e d t o c o n t i n u -

o u s t r a n s f o r m a t i o n s . H e r e one c a n d i s t i n g u i s h t h r e e

d i f f e r e n t b a s i c l i n e s of d e v e l o p m e n t . T h e f i r s t i s t h e

o b v i o u s r e l a t i o n t o L i e g r o u p s , i n f i n i t e s i m a l t r a n s f o r -

m a t i o n s , t h e c o r r e s p o n d i n g d i f f e r e n t i a l e q u a t i o n s and

t h e i r s o l u t i o n s , i . e . , t h e s p e c i a l f u n c t i o n s ; t h e s e c o n d

l i n e of a p p r o a c h i s t h a t of i n t e g r a l r e p r e s e n t a t i o n s of

t h e C - G c o e f f i c i e n t s ; t h e t h i r d l i n e c o n s i s t s i n g e n e r a l -

i z i n g t h e C - G c o e f f i c i e n t s t o c o n t i n u o u s , and in g e n e r a l

c o m p l e x v a l u e s . T h e r e l a t i o n wi th s p e c i a l f u n c t i o n s

(in p a r t i c u l a r , h y p e r g e o m e t r i c f u n c t i o n s ) a r e d i s c u s s e d

b e l o w , i n C h a p . II ( S e c . 6) on t h e b a s i s of t h e s y m m e t r y

of t h e C - G c o e f f i c i e n t s d e r i v e d by R e g g e ; in t h i s s e c -

t i o n w e b r i e f l y d i s c u s s t h e s e c o n d a n d t h i r d l i n e s .

An i n t e g r a l r e p r e s e n t a t i o n of t h e C - G c o e f f i c i e n t s

i s b a s e d o n t h e r e l a t i o n (2 .13) . S i n c e , a c c o r d i n g t o

(2.13) t h e C - G c o e f f i c i e n t s a r e def ined a s a n i n t e g r a l

of a p r o d u c t of t h r e e D - f u n c t i o n s , u s i n g t h e d i f f e r e n t i a l

r e p r e s e n t a t i o n of one of t h e D - f u n c t i o n s and s u b s t i t u t -

i n g for t h e f i r s t d e g e n e r a t e C - G 2 > a n d for t h e o t h e r

t w o D - f u n c t i o n s t h e a p p r o p r i a t e e x p r e s s i o n s , we o b t a i n

t h e i n t e g r a l r e p r e s e n t a t i o n

(Jijimimi | jm)

(2;

T h e s e r e p r e s e n t a t i o n s y i e l d t h e u s u a l s e r i e s for t h e

C - G c o e f f i c i e n t s . M a k i n g u s e of t h e s y m m e t r y a m o n g

d i f f e r e n t C - G c o e f f i c i e n t s one c a n a l s o o b t a i n o t h e r

i n t e g r a l r e p r e s e n t a t i o n s .

T h e t h i r d point of t h e i n t e r r e l a t i o n s b e t w e e n C - G

c o e f f i c i e n t s a n d c o n t i n u o u s t r a n s f o r m a t i o n s r e f e r s t o

a c o m p l e x i f i c a t i o n of t h e v a r i a b l e s . T h e g e n e r a l i z a -

t i o n c a r r i e d out b e l o w of t h e C - G c o e f f i c i e n t s of t h e

group SU(2) is based on the properties of the represen-
tations of the group 0(4) and of the Lorentz group
SL(2, C). As is well known, the six generators of the
group 0(4) satisfy the commutation relations

[M, M] = jeM,
[M, N] = ieN, (4.2)

L e t u s d e n o t e t h e a p p r o p r i a t e q u a n t u m n u m b e r s by

M, N, m, η (integers). Introducing the linear combina-
tions

(4.3)
Β : . - y ( M - N ) ,

e a c h t h r e e new g e n e r a t o r s s a t i s f y t h e c o m m u t a t i o n

r e l a t i o n s of t h e g r o u p SU(2)

[Α, Α1 = ίεΑ, ^
[Β, Β]= -ίεΒ, } (4.4)

[AB].= 0. J.
L e t u s d e n o t e t h e q u a n t u m n u m b e r s b e l o n g i n g t o t h e s e

generators by 1^, m A , lg , m B ; this allows one to ex-
press the matrix elements of the operator Ν in terms
of the known matrix elements of the operators A and
B. Since

M = A+B, N = A-B,

the matrix element will depend on two C-G coefficients
of the form

/ η + Μ η — Μ m A- j

\ 2 2 2~
Ι η + Μ η — Μ m -j- μ m — μ

l· (4.5)

w h e r e J m a r e t h e q u a n t u m n u m b e r s of t h e o p e r a t o r s

Μ and N, and %(n ± M) and y2(m ± μ) are the quan-
tum numbers of the operators A, A3 and B, B3 respec-
tively. This matrix element can be written in the form

cTiAf ifi\ Γ (η — / ' ) ! (rt + / ' - { - 1 ) ! Ί ί / 2 π ΙηΑς-Μ η — Mm-i-μτη — μ Γ \
6·""·'· ( 6 ) = L (rc-/)! (n-r 7 + 1)1 J 2j (-2 $~ ~2~ ~Γ~ Jm )

μ

X e V " ~ 2 2 2 ~ 2 ^ J m ) ( m < M ) - ( 4 . 6 )

T h i s f o r m u l a c a n b e g e n e r a l i z e d t o t h e L o r e n t z g r o u p .

T h e s i x g e n e r a t o r s o f t h e L o r e n t z g r o u p s a t i s f y t h e

c o m m u t a t i o n r e l a t i o n s

[Μ, Μ] = ίεΜ, Ι

[Μ, Ν]^ίεΝ, Ι (4.7)
[Ν, Ν]= -ίεΜ. J

Their eigenvalues have the form a = - 1 + ip, v, J , m
(p is r e a l , the other numbers a r e integers or half-
integers) . Introducing the (nonhermitian) generators

F=M+tN, K = M — m, (4.8)

we a r e led to complex eigenvalues and to the commuta-
tion relat ions of the complex rotation group SU(2, C)

IF, F] = £eF, "I
[Κ, Κ] = ίεΚ, \ (4.9)
[F, K] = 0. J

As a r e s u l t of t h i s we o b t a i n for t h e m a t r i x e l e m e n t of

N3 (a boost3' by the "hyperbolic angle" θ) a for-
mula [ 3 0"3 3 ] analogous to the one for O(4):

(σ-j-v σ — ν σ — ν , . , t r — v l , . . ^ /Λ

~ξ-, — j - , t 2~ + m ' ~ί+~2Γ\ m) (4·
Xexp[—θ(2ί — σ + v + m)] ( ± for I m i > 0 ) ,

' \h -h -ii+h)~l{. 2—ill
3 ) Α boost is a pure, rotation-free, Lorentz transformation.
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or simpler

<*JW'(9)=AT ,±i.tl

/σ + ν σ —ν
X \~2~· ~2~· J'm) e-2el,

(4.11)

where the normalization factor is

., i Γ ( σ -
2 Γ(σ

T h e s e f o r m u l a s c o n t a i n q u a n t i t i e s w h i c h a r e r e l a t e d t o

t h e C - G c o e f f i c i e n t s , b u t for t w o m u t u a l l y c o m p l e x

c o n j u g a t e a n g u l a r m o m e n t a

7 ι = 1 ( - 1 + Φ + ν), )2 = λ(-ΐ+ίρ-ν) (/ = /). (4.12)

The "projections" of these angular momenta become
continuous.

More general C-G coefficients occur for nonunitary
representations. However, the theory of these objects
is not yet developed.

If one replaces the generators F and Κ by the
generators

fx, y = - iMx, y + Nx, „, kx, y = iMXt

t h e s e g e n e r a t o r s f o r m two a l g e b r a s of t h e t h r e e - d i m e n -

s i o n a l L o r e n t z g r o u p O ( 2 , 1)

[f, k] = 0. I (4 .14)
J

[/„, Λ1 =•·-*/*, Iky, kt]= -ikx,
Ifz, fx] = - ify, [h, kx] = - ik,j,

In t h i s c a s e , t h e c o m p u t a t i o n of t h e m a t r i x e l e m e n t s

l e a d s t o a t h e o r y of C - G c o e f f i c i e n t s f o r t h e g r o u p

0 ( 2 , l p 0 » 3 " ! ; t h e p r o p e r t i e s of t h e s e c o e f f i c i e n t s go

b e y o n d t h e f r a m e w o r k of t h e p r e s e n t r e v i e w a r t i c l e .

In c o n c l u s i o n we w r i t e out t h e e x p r e s s i o n s of t h e

C - G c o e f f i c i e n t s wi th t h e c o r r e c t p h a s e a n d n o r m a l i -

z a t i o n f a c t o r s

. h—mt+i,
Χ

Χ Λ (7ι - 72 - 73. 7ι - 72 + 73 + 1. 7. - '

h e r e

» + 1; h - h - m3 + 1, 2/, f 2; 1);

(4.15)

, m s = - i ' ,
3 = J or

ρ and m are arbitrary real numbers.
The hypergeometric function (and accordingly, the

C-G coefficients) remain terminating series (finite
sums) even after complexification. In the form above
the series terminates for i 1 - j 2 - j 3 + z - l = - J + z
- 1 vanishing.

Nonterminating series are characteristic for the
noncompact group 0(2, 1).

This example indicates the possibility of a com-
plete complexification of the C-G coefficients and
their utility in the theory of complex angular momenta.

In conclusion of this section it is necessary to note
that both the investigation of the relations for C-G
coefficients with differential and integral representa-
tions and their generalization to complex values of the
variables require, in general, the use1 of symmetries

h i g h e r t h a n SU(2), i . e . , a p p e a l t o t h e t h e o r y of L i e
g r o u p s , both c o m p a c t a n d n o n c o m p a c t .

II. SYMMETRIES OF THE C-G COEFFICIENTS AND
OF THEIR COMBINATIONS

5. The Regge S y m m e t r y . Re la t ions of the C-G Coef-
f ic ients with Specia l Funct ions

In t h i s s e c o n d p a r t of o u r r e v i e w we c o n s i d e r t h e

g e n e r a l i z e d t h e o r y of a n g u l a r m o m e n t a . T h i s t h e o r y

i s c o n s t r u c t e d on t h e b a s i s of new q u a n t i t i e s , t h e

η χ n-symbols [S51, which are closely related to the
symmetries of the C-G coefficients and their combina-
tions. The starting point of this development was the
discovery by Regge of new symmetry properties of the
C-G coefficients, not contained in the classical theory
of angular momenta. We consider below the direct
consequences of the Regge symmetries, including a
reformulation of the theory of angular momenta in the
so-called R-representation, and an investigation of its
relation to generalized hypergeometric functions. Ac-
cording to Regge f l 2 ] the Wigner 3j-symbol can be
represented in the form

h h\_
= 1 h - ' h — m%

/2 + m2

7s — τ.

7 3 + 1

ίι, Λ»
(5.1)

= Λ2, Λ« = 1

^3
where the 3 x 3 square symbol | | Rikll is the coeffi-
cient in the expansion of the J-th power of the determin-
ant4*:

"-•2 = ^ ( / ! ) 3 ( / + l ) 2

^31| 2J fli(t=

Λ,,

1! /?22! Ra\ Π3 32! Λ,,)
(5.2)

T h e e n t r i e s o f t h e s y m b o l | | R ^ l | a r e n o n n e g a t i v e

i n t e g e r s . T h e s u m o f t h e e l e m e n t s i n a l l r o w s a n d

c o l u m n s i s t h e s a m e a n d e q u a l s j i + J2 + J3 = J . T h e

n u m e r i c a l v a l u e i s i n v a r i a n t u n d e r p e r m u t a t i o n s o f

r o w s a n d c o l u m n s a n d w i t h r e s p e c t t o t r a n s p o s i t i o n ,

a n d i s m u l t i p l i e d b y ( - 1 ) u n d e r o d d p e r m u t a t i o n s .

I n d i s t i n c t i o n f r o m t h e 1 2 s y m m e t r i e s o f t h e c l a s s i -

c a l a n g u l a r m o m e n t u m t h e o r y , c o r r e s p o n d i n g t o p e r m u -

t a t i o n s o f o n l y t h e l a s t t w o r o w s i n t h e t a b l e , t h e s y m -

b o l ( 5 . 1 ) e x h i b i t s 7 2 s y m m e t r y p r o p e r t i e s . ( T r a n s p o s i -

t i o n w i t h r e s p e c t t o t h e s e c o n d d i a g o n a l d o e s n o t y i e l d

a n e w s y m m e t r y t r a n s f o r m a t i o n . ) T h e s e p r o p e r t i e s

a r e h a r d t o u n d e r s t a n d i f o n e r e m a i n s w i t h i n t h e f r a m e -

w o r k o f t h r e e - d i m e n s i o n a l s p a c e . I n c o m p u t i n g t h e

C - G c o e f f i c i e n t s w e s t u d y i n f a c t a m e t h o d o f s e p a r a t -

i n g a s i n g l e S U ( 2 ) g r o u p i n t h e d i r e c t p r o d u c t S U ( 2 )

x S U ( 2 ) ( a d d i t i o n o f t w o a n g u l a r m o m e n t a ) . T h i s c a n b e

a c h i e v e d b y t w o e s s e n t i a l l y d i f f e r e n t m e t h o d s . T h e

t r a n s i t i o n f r o m o n e m e t h o d t o t h e o t h e r s c r a m b l e s t h e

a n g u l a r m o m e n t a a n d t h e i r p r o j e c t i o n s . O n e s h o u l d

also remark that within the group O(4) = SU(2) χ SU(2),
j and m appear more or less with equal rights and

4'The normalization in Eq. (5.2) differs from Regge's paper
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are scrambled in different reductions.
I n t 3 6 ) 3 7 ] it was indicated that there are definite func-

tional relations between various Racah coefficients.
These relations correspond to a new symmetry of the
Racah coefficients (6j-symbols). Substituting into the
definition of the 6j-symbol

f/i h /12Ί _

\h ) in)

/ h h 7i2 \ ( ία h ί \

\ m i "»2 — ηΙ2)\πι№ m~ —m)

x ( h h

\ — m3 —— m2 m23J\ — m, m —

,+ m3, (5.3)

the Regge symbols according to (5.1), we obtain new
symmetries of the 6j-symbol, which is conveniently
considered in the formJ381

|| «It «21 «31 «411
Ri2 R22 R32

Ι «13 R23 R33

Ri2 =

7i 4- 7 — 723 7 + ί3 — 7i2 72 + 73 — /as 7i + 72 — /is |

7i + 7i2 —72 73+7 2 3 — 72 /3+/12 —7 /1+/23 — 7

( 5 . 4 )

H e r e a l l 1 2 e l e m e n t s a r e n o n n e g a t i v e i n t e g e r s . T h e

d i f f e r e n c e s b e t w e e n c o r r e s p o n d i n g e l e m e n t s o f r o w s

a n d c o l u m n s t u r n o u t t o b e c o n s t a n t s . A l l i n a l l t h e r e

a r e 3 ! x 4 ! = 1 4 4 s y m m e t r y r u l e s w h i c h f o l l o w f r o m

( 5 . 1 ) a n d ( 5 . 3 ) . W e s h a l l d e s i g n a t e t h e q u a n t i t i e s ( 5 . 1 )

a n d ( 5 . 4 ) a s R - s y m b o l s . S i n c e m a n y q u a n t i t i e s i n t h e

t h e o r y o f a n g u l a r m o m e n t a c a n b e e x p r e s s e d i n t e r m s

of c o m b i n a t i o n s o f C l e b s c h - G o r d a n a n d R a c a h c o e f f i -

c i e n t s , t h e y c a n a l s o b e e x p r e s s e d a s c o m b i n a t i o n s of

R - s y m b o l s . A n e s s e n t i a l l y n e w e l e m e n t i n t h e R - n o t a -

t i o n i s t h e f a c t t h a t w e n o l o n g e r d i s t i n g u i s h h e r e

a n g u l a r m o m e n t a f r o m t h e i r p r o j e c t i o n s . L i n e a r c o m -

b i n a t i o n s o f j - s c a n p l a y t h e r o l e s o f p r o j e c t i o n s m

a n d v i c e - v e r s a . T h e R - n o t a t i o n c o n t a i n s , o b v i o u s l y ,

m o r e i n f o r m a t i o n t h a n t h e j m - n o t a t i o n . It a l s o y i e l d s

a s e r i e s o f n e w r e l a t i o n s b e t w e e n t h e C - G c o e f f i c i e n t s ,

t h e R a c a h c o e f f i c i e n t s a n d t h e t r a n s f o r m a t i o n

m a t r i c e s 1 3 8 1 . T h u s , t h e f i r s t a n d s e c o n d r e c u r r e n c e

r e l a t i o n b e t w e e n t h e R - s y m b o l s h a s t h e f o r m

I «11 «12 «13 |

/?21 ^22 -̂ 25 H~ 1
ο ϊ? ΐ? 4

II i t 3 l H32 H33 — 1 |

! « . .

« 2 1

II « 3 ,

-flu «12 « 1

Λ.2

1 - 1 « L I " M ( 5 . 5 )

T h i s l e a d s t o r e c u r r e n c e r e l a t i o n s w h i c h w e r e n o t

c o n t a i n e d i n t h e u s u a l t h e o r y o f a n g u l a r m o m e n t a . F o r

i n s t a n c e ,

(jj&umi Ι 73"ί3) = 1/ y
1—mp

X (71 - V2/2 mi - V2 m2173 + V2 m3 - V2) ( 5 . 6 )

H e r e a r e t w o m o r e e x a m p l e s o f n e w e q u a t i o n s d e -

r i v e d i n t h i s m a n n e r i n t h e j m - n o t a t i o n . T h e o r t h o -

g o n a l i t y r e l a t i o n :

2 m2+r — y\'j3 m3+2r)

m 3 + 2 r )

( 5 . 7 )

Ji4-h— mi— m2 + 4 r + l _ g
* 2Ϊ7Χ~\ Oyi·.

R e l a t i o n s b e t w e e n t h e 6 j - a n d 3 j - s y m b o l s :

\ml m2 mi2)\—m'n

= ( _ 1 ) 2 ' y ( _ i ) c + p ( 2 C +

m3 m

^ / i 2 \
c J

— m2) m — j

( 5 . 8 )

w h e r e m l 2 = j 2 - j i . T h e R a c a h c o e f f i c i e n t h e r e d e -

p e n d s n o t o n l y o n t h e a n g u l a r m o m e n t a j b u t a l s o o n

t h e i r p r o j e c t i o n s m . In t h i s s e n s e t h e d i s t i n c t i o n b e -

t w e e n t h e j - a n d j m - s y m b o l s d i s a p p e a r s . F r o m r e l a -

t i o n s f o r t h i r d - o r d e r d e t e r m i n a n t s a n d t h e i r e x p a n s i o n s

a c c o r d i n g t o ( 5 . 1 ) a n d ( 5 . 2 ) f o l l o w a s e r i e s o f n e w r e l a -

t i o n s b e t w e e n c o m b i n a t i o n s o f C - G c o e f f i c i e n t s a n d t h e i r

c o m b i n a t i o n s . W e l i s t s e v e r a l e x a m p l e s ^ 8 1 .

If t h e d e t e r m i n a n t i n t h e l e f t - h a n d s i d e of ( 5 . 1 ) h a s

t w o i d e n t i c a l r o w s v i = u i , s i n c e t h e e q u a t i o n m u s t b e

v a l i d f o r a r b i t r a r y v a l u e s o f u i a n d w i , w e o b t a i n t h e

r e l a t i o n

| « n «12 «13J

2 Δ « 2 Ι « 2 2 « 2 3 ( i ? l t ! i ? 1 2 ! R l 3 \ R 2 i \ R 2 2 \ R 2 3

I n t h e j m - n o t a t i o n , t h i s y i e l d s f o r e v e n J

= 0. ( 5 . 9 )

( 5 . 1 0 )

S p l i t t i n g t h e J - t h p o w e r o f t h e d e t e r m i n a n t i n t o a

p r o d u c t o f d e t e r m i n a n t s r a i s e d t o p o w e r s J l } J 2 , . . . , J n

( J i + J 2 + . . . + J n = J ) , e x p a n d i n g t h e d e t e r m i n a n t s a c -

c o r d i n g t o E q . ( 2 . 2 ) , a n d e q u a t i n g t h e c o e f f i c i e n t s o f

e q u a l p o w e r s , w e o b t a i n

]-l

ΰ* " '

1/2

(5.11)
where 11 Rik 11 and | j Α(^> 11 (r = 1 , . . . , η) are the

Regge symbols corresponding to the indicated deter-
minants .

For Jx = J 2 = . . . = J n = 1 the symbols | | A(r> | | re-
duce to first-order symbols, equal to ±(2)~1/2, the sign
being determined according to the distribution of units
in the symbol. Substituting them into (5.11) we obtain
a numerical expression for the Regge symbol

W < 5 - 1 2 >

T h e s u m m a t i o n h e r e i s o v e r a l l a d m i s s i b l e v a l u e s a c -

c o r d i n g t o t h e s c h e m e

!l Pi + ϊι

li Pa"!

«11 «12 «13

«21 «22 «23

«31 «32 «33

( 5 . 1 3 )

T h e n u m e r i c a l v a l u e o f t h e 6 j - s y m b o l , r e p r e s e n t e d i n

t h e f o r m ( 5 . 4 ) i s g i v e n b y t h e e x p r e s s i o n

( 5 . 1 4 )

( Σ B » . - H ) !

where ζ = £}xi + X) yk· The summation goes over all
i k

admissible values of Xi, y^ (XJ + yk = Rik). m analogy
with Eq. (5.13).
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T h e s y m m e t r i e s d i s c o v e r e d b y R e g g e not only a l low
one t o f o r m u l a t e t h e R - r e p r e s e n t a t i o n of t h e t h e o r y of
a n g u l a r m o m e n t a , w h i c h c o n t a i n s a l a r g e q u a n t i t y of
n e w e q u a t i o n s , b u t a r e a l s o e s s e n t i a l for t h e a n a l y s i s
of t h e r e l a t i o n b e t w e e n C - G c o e f f i c i e n t s a n d h y p e r g e o -
m e t r i c f u n c t i o n s . F o r t h i s p u r p o s e one m u s t e x t e n d
t h e R e g g e d e f i n i t i o n , r e m o v i n g t h e n o n n e g a t i v i t y r e -
q u i r e m e n t s for a l l e n t r i e s of t h e t a b l e . We s h a l l a s -
s u m e t h e n t h a t t h e t a b l e d e n o t e s t h e s a m e C - G coef-
f i c i e n t if o n e c a r r i e s out i n i t o n e of t h e t w o i n d e p e n d -
e n t s u b s t i t u t i o n s (cf. (2.6))

Λ - * - / . - ! (5.15)

or
• - / 2 - 1 ,

A t h i r d s u b s t i t u t i o n ( t h r e e n e g a t i v e m o m e n t a )

• - 7 , - 1 , - / 3 - 1 , (5.17)

i s o b v i o u s l y t h e p r o d u c t o f t h e f i r s t t w o . O n e c a n , o f

c o u r s e , o b t a i n o t h e r s u b s t i t u t i o n s b y c o m b i n i n g t h e s e

with permutat ions . After this completion one can con-
s ider that there exist 72 χ 4 = 288 identical C-G coef-
ficients with positive or negative values of j . If one
considers the permutations of the angular momenta
(123) and the substitutions j — - j - 1 as t r iv ia l opera-
tions, then the permutation Ρ of the first row of the
Regge symbol with the second or third row and the
transposit ion Τ will be nontrivial. This gives three
nontrivial operations (e.g., P 1 2 , T, P 1 2 T ) . Together
with the initial one, they yield four nontrivial forms of
the C-G coefficients. As such one can select the
formulas of Wigner (cf. [ 3 4 ], van der Waerden [ 4 0 ] ,
Racah (cf. [ 1 ] ) and M a j u m d a r [ 4 1 ] .

Looking at any of the formulas that express the C-G
coefficients in the form of a finite sum (e.g., (2.19)) it
is c lear that in all of them the summation variable ζ
occurs in five factorials . This immediately r a i s e s the
suspicion of a connection with the generalized hyper-
geometric function of the type p F q with ρ + q = 5.

We r e c a l l [ 4 2 ] that the generalized hypergeometric
function is defined by the s e r i e s (in general, an infinite
s e r i e s ) :

. . . p P : , ; * ) =
(Pi)z (Pz)x · • • (Pp)z

, i f • (5-18)

where, e.g.,

Γ(ρι+-*)
Γ (ρ,) (Pi -1)1

Using the identity

— 1)1 (5.19)

one can change the sign of the summation variable,
transfer ing the appropriate factorial from the numera-
t o r to the denominator, or vice ver sa .

One can thus reduce all sums to a standard form
(with a plus sign in front of z ) 5 ) , and we see that (up to
a factor) all four forms of the C-G coefficient r e p r e -
sent values of the function 3F2 for χ = 1. Without ca l-
culating the numerica l factor (one example is contained

5 ) A change of sign of all ζ is nothing other but a reversal of the
finite sum: the last term becomes first, etc.

in E q . (2 .20), we only l i s t t h e v a l u e s of t h e a r g u m e n t s
of t h e funct ion 3 F 2 for a l l four f u n d a m e n t a l f o r m s of

t h e W i g n e r coef f ic ient ( l ^ i ? * ) (for g r e a t e r c l a r i t y
ΙΠ.1ΠΊ.2ΙΪΙ3

w e w r i t e t h e a r g u m e n t s o f t h e h y p e r g e o m e t r i c f u n c t i o n

in columns, omitting, as usual, the variable χ = 1):
Wigner's form

Λ - ^ ι + Ι -i-h-m,
pi __. . . .

. - / + /1-/2

van d e r W a e r d e n ' s f o r m

(5.16) Racah ' s form

l-h-h+i / - / , + » » , + 1 \
^2 - J i + m, ; - ; , - m , + l j ,

V - / , - m , /

lh + mi + 1 -J-U + mi \

V -Ji + ml /

Majumdar 's form

//1 + / . - / + I - 2 / \
-j-m j.-i-m. + l .

V A - / , - / /

(5.20)

(5.21)

(5.22)

(5.23)

The functions 3F2 appearing in connection with the
class ica l C-G coefficients a r e not a r b i t r a r y functions
(even if one forgets about the fact that we have set
χ = 1). These functions a r e distinguished by the fact
that they degenerate into finite s u m s . It is proved in
monographs on generalized hypergeometric functions
(cf . [ 1 4 ] ) that there exist altogether 18 such functions.
In proving this one a s s u m e s , however, that the s e r i e s
for 3F2 te rminates for a highest coefficient equaling a
negative integer, with all other numbers remaining
a r b i t r a r y . If two coefficients a r e negative integers one
can show that the number of terminat ing s e r i e s is
larger and equals 24. Recognizing that permutations of
the arguments of the same type (those which a r e in the
s a m e columns in the above formulas) lead to equations
of a different form for the C-G coefficients, one obtains
altogether 24 χ 3! χ 2! = 288 different forms for the
C-G coefficients, a resul t obtained above from an analy-
s i s of the s y m m e t r i e s .

Thus, all functions 3F2 which degenerate into finite
sums a r e C-G coefficients. This resul t allows us to
suspect that the other functions 3 F 2 (for χ = 1) a r e
somehow related to generalized C-G coefficients. We
have already encountered one example of such a
generalization to complex arguments in Sec. 4. The
relation between C-G coefficients and generalized
hypergeometric functions is not an isolated fact. Vari-
ous combinations of C-G coefficients can also be ex-
pressed in t e r m s of generalized hypergeometric func-
t i o n s . Thus, Minton [ 4 2 ] has shown that the Racah coef-
ficient satisfies the formula

χ Γ

W (abed; ef) = Λ (ate) Δ (cde) Λ (acf) Δ (bdf) [Γ (e + / + 1 - / - c ) ] " 1

a+b + c + d+'.'.
a+b+i — e, c+d+l — e, a f-c+1 —/, b+d+l—f, e+f+l—a — d
χ iF3(e — a — b, e — c — d, f — c — a, f—b — d; —a — b — c — d — l,

e + f + l—a — d, e + f + 1—b — c; 1),

(5.24)
w h e r e we h a v e u s e d t h e n o t a t i o n
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Δ Ixuz) =
I — ζ , I + J 4

x + y + z + 2

: b . . .\ Γ (a) Γ (6)

— y, y+z+l-x
}}'"•

r ( " · " · · · ) =
Γ (ρ) Γ (?) . . . '

A l l p r o p e r t i e s of t h e C - G a n d R a c a h c o e f f i c i e n t s f o l l o w

f r o m t h o s e of t h e f u n c t i o n s 3 F 2 a n d 4 F 3 . T h e r e s u l t s

f o r h i g h e r - o r d e r s y m b o l s a r e s i m i l a r , a n d o n e c a n

f o r m u l a t e a t h e o r y of a n g u l a r m o m e n t a i n t h e l a n g u a g e

of g e n e r a l i z e d h y p e r g e o m e t r i c f u n c t i o n s m F n w i t h t h e

argument χ = 1.

Such a formulation opens up severa l direct ions for
further investigations. Thus, since the C-G coefficient
is a solution of the differential equation for 3 F 2 at
χ = 1, and on the other hand, also a solution of a differ-
ence equation, there a r i s e s the problem of the relation
between these two equations. It is also interesting to
study the role of hypergeometric functions for values
of χ * 1 in the general theory of C-G coefficients.
Thus, generalized hypergeometric functions and special
degenerate cases of these (Bessel functions, Legendre
functions, Jacobi, Chebyshev, and Hermite polynomials,
etc.) a r e closely tied to the theory of C-G coefficients.
An investigation of these aspects is essential both for
the theory of special functions and for the physical ap-
plications .

6. Higher Symmetr ies

The Regge symmetry considered in the preceding
section means, essential ly, that an SU(3) symmetry is
present in the theory of C-G coefficients of the SU(2)
group. The J - t h power of the determinant occurr ing in
the left-hand side of Eq. (5.2) is an invariant of the
group SU(3) and the symbol | | Rikll is a special form
of Wigner coefficient for the group SU(3) (at the same
t ime it is a general Wigner coefficient of the group
SU(2)). Together with the SU(3) symmetry an essent ia l
role may also be played in the theory of angular mo-
menta by other s y m m e t r i e s , higher than SU(3)
("higher s y m m e t r i e s " ) . Thus, by analogy to the square
3 x 3 symbol HRyjH one can construct η χ η symbols,
corresponding to an a r b i t r a r y SU(n) group, and occur-
ring in the expansion of the J- th power of a determinant
of rank n [ 3 3 1 . For the group SU(4) the expansion of the
type (5.1) takes on the form of rank

u, ν, -,-, t l

H3 V.2 W2 t2

«3 1-3 U>3 h
U, V, W, t.

« „ Ri2 Hi3 Ru

/*2! -"">2 *̂23 **24
« 3 1 itC ft.,, « 3 4

«41 «42 «43 «44 (6.1)

H e r e t h e 4 x 4 s y m b o l 11 R ^ 11 a l r e a d y e x h i b i t s

4! x 4 ! χ 2 =1152 symmetry rules (permutations of
rows and columns and t ransposi t ion). For the group
SU(n) the η χ η symbol 11 Rjk 11 corresponding to the
expansion

I K -
j tilk \' -= \r(J\Y (/+ 1) 2 II Ri" II Γ\ΤΊΓΤ\~" (6.2)

will exhibit η ! χ η ! χ 2 s y m m e t r i e s .
In the discussion of the η χ η-symbols there appear

essentially new combinations of the C-G coefficients.
As an example, we consider the group SU(4). Expand-
ing the determinant with respect to a column, we obtain

«1
«2
«3
U,

v.2 u.

V3 IL

1 «1
2 h

3 h
4 h

J

Σ

y.
Rik"J

κ
w2 w3

u2 u3

/l|

"'4

"4

«11 ift

«1

- f

"3
«3

>t»12̂ 13̂ 14

«12
Ul y, v4

Bl3 10,

u,

w2\w3

(6.3)

Making use of the relations (5.1) and (6.3) we obtain [ 3 5 ]

υ i i η υ

Λ,, η 1 3 Λ 1 3 n i t

«21 «22 «23 «24

«31 «32 «33 «34

«41 «42 «43 «44

V(J + 1)!

S 2 2 B'2, B\t

« ' i

B\

«31
nl

«3
Β2

Β:,«ι «'τ
«ΐι
β,,

β;, 5 ^

« « «31
β»2 S?,

β 4

2 1 Β*2

«L «Γ2«51 «ί·.

β?3

«13

«Is

In distinction from the convention of summing over
combinations of two symbols, which is usual in the
theory of C-G coefficients, h e r e the summation goes
over combinations of three symbols. A s imilar expan-
sion can also be written for the 5 χ 5-symbol; in this
case four symbols participate in one summation, e tc .
We s t r e s s that each symbol (which is a factor in (6.4)
or a s imi lar equation) is a Wigner coefficient. The
method of combining these is quite distinct from the
usual method.

The direct physical interes t in introducing the
η χ η-symbols consists in a generalization of the con-
cept of recoupling. In the c lass ica l theory the general-
ized C-G coefficients which appear in the addition of
severa l angular momenta, a r e defined by specifying
the intermediate momenta in the coupling scheme.
Thus, the invariant formed from four spinors
( i = 1, 2, 3, 4) has the form

y Πι ϊι /ΐ2 \ / 7ΐ2 ]3

~?\πΐι m.3 ml2)\ — ml2 m.

Π

mt)\
rr
γ-

(6.5)
This is a consistent coupling scheme. In the case (6,5)
the coupling is defined by specifying one intermediate
angular momentum. One can generalize the concept of
coupling scheme by means of η χ η-symbols; the new
coupling schemes which appear a r e superposit ions of
couplings like (6.5), forming a complete sys tem:

«η «ι=

«21 «2S

Λ — η » , ; 2 — ί

/ι + "Ί /s + f

«13
«23

«H

h + "h

II (2/

">!>' (6.6)

Since all angular momenta occurring in (6.6) are on an
equal footing, one may call this coupling scheme sym-
metric. The transition between different coupling
schemes (recoupling) is defined by the transformation
matrix

«11
«21

«12
«22

1 is —
/2 + «2 j3

«13
«23

«14
«24

ji — m,
it + ™4

Πι ίι !<
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which extends the usual theory of transformation
matrices.

The investigation of the η χ η-symbols is in many
respects analogous to Sec. 5. We list the explicit ex-
pression for the η χ η-symbols, obtained by the same
method as Eq. (5.12)[44>4S]:

Λ 1 1 ••• Hin

R n l . . . Rnn ,ϋ.''—1"
( 6 . 8 )

H e r e [l] denotes the set (h...ln) determined by the
odd permutat ions, and (h.. ,ln) denotes all the permu-
tations of the indices . The summation is c a r r i e d out
over all nonnegative integers satisfying a system of D 2

equations of the form

i.tMi+1 . . . !„, (6.9)Σ
i . . . In

analogous to the Eq. (5.13) for the 3 χ 3-symbol.
The problems of the algebraic s t r u c t u r e of the

generalized theory a r e of great in teres t . Giovannini
and S m i t h [ 4 e ] have considered the η χ η-symbols as
magic squares (magic squares have the property that
the sum of the entr ies in al l rows and columns is the
s a m e , where the entr ies a r e nonnegative integers) .
They have pointed out the special significance of the
η χ η-symbols, which a r e the coefficients of the expan-
sion of the determinant to the power J = 1, from which
one can construct a symbol of a rb i t ra ry rank. These
symbols form a group of η χ η - m a t r i c e s isomorphic
to the symmetr ic group (permutation group) S n . We
note that the Racah coefficient (6j-symbol) can also be
represented in the form of a magic s q u a r e ' 3 5 1 . In the
notation (5.4) this coefficient was listed as a 3 x 4
table . The latter is part of a more general 4 x 4
table, corresponding to the magic square (the symbol
to the right is given for i l lustration of a different o r d e r
of arrangement of the arguments)

y-,

ys x3+y2 χ* -y,

In t h e j - n o t a t i o n t h e s y m b o l

+y3

]1J2J.
J3J0J5

: J/i

3+ν·.
+ y,,

(6.10)

can be written in

the form (the form given h e r e differs from that i n [ 3 5 ] )

4 — ii ii + it—h h + h
Ji + 74 ^ 7o 72 + 73 — ;'s Λ + Jo - 7;

+ 73

+ J2

+ Jo

+" 74

- 7 2

(6.11)

A discussion of 3j-, 6j-, and η χ η-symbols as magic
squares is important not only from the viewpoint of
symmetry, but has a deeper combinatorial meaning.
Thus, a special case of magic squares a r e the so-
called latin squares , in which the integers a i . . . a n a r e
arranged in such an order that each integer appears
once and only once in each row and each column. Their
theory is closely related to the general theory of
b l o c k - s c h e m e s f 2 2 ' 2 4 ' 2 7 1 , and thus with problems of
control theory, experiment planning, and coding. In
this connection it is interest ing to note a definite d i s-
tinction between the 3 χ 3-symbols and higher-rank
symbols . The 3 χ 3-symbols (considered as magic
squares) a r e defined by specifying al l their 9 e lements .

T h e c o n d i t i o n o f " m a g i c i t y " f o r a f i x e d s u m J y i e l d s

f i v e i n d e p e n d e n t r e l a t i o n s . W r i t i n g t h e e l e m e n t s i n t h e

f o r m of a R e g g e t a b l e w e c a n d e f i n e f o u r of t h e m a r b i -

t r a r i l y , e . g . , j 1 j 2 m 1 m 2 . S i n c e m 3 = ~ml - m 2 a n d t h e

s u m j i + j 2 + J3 = J h a s b e e n f i x e d , t h e m a g i c 3 x 3 -

s q u a r e c o m p l e t e l y d e t e r m i n e s t h e C - G c o e f f i c i e n t . In

o t h e r w o r d s , a C - G c o e f f i c i e n t i s d e t e r m i n e d b y 9

p o s i t i v e i n t e g e r s a n d t h e c o n d i t i o n t h a t t h e s q u a r e b e

m a g i c .

F o r 4 x 4 - s q u a r e s t h i s s i t u a t i o n n o l o n g e r p r e v a i l s .

T h e l i s t i n g o f t h e e n t r i e s d o e s n o t d e t e r m i n e t h e m a g i c

s q u a r e u n i q u e l y ( i . e . , u p t o p e r m u t a t i o n s ) . In t h i s c o n -

n e c t i o n w e n o t e t h a t t h e R a c a h c o e f f i c i e n t s a r e a l s o

n o t c o m p l e t e l y d e t e r m i n e d by s i m p l y l i s t i n g t h e e l e -

m e n t s o f t h e t a b l e — o n e m u s t a l s o i n d i c a t e t h e o r d e r

i n w h i c h t h e y o c c u r i n t h e t a b l e .

F o r c o m b i n a t o r i a l a p p l i c a t i o n s t h e t r a n s f o r m e d

η χ n-symbols {| Rikl) might present some interest.
These symbols are the coefficients in the expansion of
an arbitrary determinant

Ι"ΐ*Γ'=Σ<|Λϋ|>Π!ί<»'*· (6.12)

They are a direct generalization of the binomial coef-
ficients

\

which occur in the expansion for η = 2:

«II «12
U.,, U.

«a R»
R2l ft22

2 ugn u«p. (6.13)

The propert ies of the symbols ( | R ^ | ) a r e obtained
from the propert ies of the determinants according to
the method of Sec. 5. The Vandermonde formula (3.1)
can be rewri t ten in these notations:

h
h —

\/

ii+i2
Λ+72

\
/

-\-m

— m
ii + Η — m

ii+ji + m

(6.14)

In spite of the importance of the new s y m m e t r i e s of
the C-G coefficients and their combinations, the total
number of papers on this subject is relatively smal l .
In addition to the already quoted papers , one should
part icularly point out the p a p e r s 1 9 ' 4 8 1 , where it i s
shown that the use of the Regge s y m m e t r i e s has defi-
nite advantages for computer calculations, the p a p e r [ 4 9 ] ,
where the Regge s y m m e t r i e s were discussed on the
basis of the theory of entire analytic functions, and the
papers ' 2 1 ' 2 8 » 2 7 1 , where the Regge symmetry was d i s-
cussed on the basis of the quasibinomial r e p r e s e n t a -
tions of the C-G coefficients and the relat ion between
the s y m m e t r i e s of the squares in (3.14) and (3.15) and
the Regge symbols was pointed out. On the bas i s of
Schwinger's boson operator technique [ 5 0 ] , B i n c e r [ 5 1 ]

has proposed the interpretat ion of the Regge and higher
s y m m e t r i e s as reduction s y m m e t r i e s . The Regge
symmetry is related to different ways of reducing the
Kronecker product, expressed in t e r m s of boson opera-
t o r s . It was shown that in the c lass ica l l imit the Regge
symmetry is equivalent to the m — μ symmetry in
the finite rotation matr ix D m . A number of other a s -
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pects related to the new symmetries are discussed in
[52,53,54]in

7. Generalized Angular Momentum Theory

The new symmetries, combinations, and methods of
coupling of the C-G lead to a generalization of the
theory of angular momenta. The object of the general-
ized theory a r e the η χ η-symbols of various ranks
and their possible combinations, a s well as the appro-
priate generating invariants [ 4 4 ' 4 5 > 5 5 1 . The c lass ica l
theory of angular momenta is a special case , contain-
ing the r e s t r i c t e d c lass of combinations of 3 χ 3-sym-
bols . The generalized angular momentum theory
generates a wide variety of new forms, presenting in-
t e r e s t both from the viewpoint of mathematics and its
applications. Even consideration of combinations of
3 χ 3-symbols corresponding to Wigner coefficients
yields many new facts . In the usual construction of
combinations of C-G coefficients ( jm- and j-symbols)
there occur two types of invariant summation, dyadic
and t r i a d i c t 5 7 ] . The dyadic method corresponds to
summing over the projections of the angular momentum
(with respect to two elements of the Regge symbol);
the tr iadic method corresponds to a combination of
transformation m a t r i c e s and involves a sum over a
t r iad of angular momenta (the upper row ( B U | R 1 2, R 1 3 )
of the Regge symbol (5.1). However, from the view-
point of the generalized theory, according to (5.2) all
Rik entering in the 3 χ 3-symbols a r e to be t reated on
an equal footing. Therefore for invariant summation of
products of Regge symbols (the construction of com-
binations) one may select any elements Rfc (three e le-
ments for t r iadic summation, two for dyadic summa-
tion, from any row or column). Thus, in addition to the
usual summation of Regge symbols, c a r r i e d out over
R21R31, R22R32, R23R33, R11R12R13, one can consider in-
variant express ions obtained by summing over
RnRi2Ri3, R21R22R23 or over R21R31J R22R23, R32R33,
e t c . This yields a r ich c las s of " n o n s t a n d a r d " com-
binations. However, up to the present, only a smal l
number of such combinations has been investigated or
used. Combinations of the form

w h e r e }l + T2 + T, j 2 + i>2 =

'v') ϋ ι / ^ ν , l /v) (TJzt^

(7.1)

- T 2 + Τ, and

where ji + v\ = -ji + j 2 + j , j 2 + v'i = ji - j 2 + j , ji + 1/1
= -Ti + T2 + T, j 2 + f 2 = Ti - T2 + T, both derived from
the usual generalized C-G coefficients'81 by means of
the Regge symmetries, are of importance in the theory
of C-G coefficients for the SU(n)-groups. Another
special form of "nonstandard" combinations, contain-
ing simultaneously dyadic and triadic summations, are
the formulas obtained by Vanagas and Batarunas [ 5 8 1

with the aid of the characters of the symmetric group.
Of interest is also the formula obtained with the aid of
dyadic summations over elements situated in different
rows and columns:

Σ <-*>" «22 + κ «2 3-κ

Although it is premature to talk about physical applica-
tions of the " n o n s t a n d a r d " combinations one may ex-
pect a change in this situation in the future. The com-
pletely new coupling types (6.4) seem to be very
promising, a s well as the use of various combinations
of η χ η-symbols of higher rank than the Regge sym-
bols . In this connection it i s interest ing to note that
according t o r 4 4 ' 4 5 ' 5 5 1 the C-G coefficients of the group
SU(n) can be constructed as combinations of η χ n-
symbols, i .e., the theory of C-G coefficients of higher
groups is an integral part of the generalized angular
momentum theory. However, the investigation of this
group of problems is sti l l in its infancy.

In addition to the consideration of η χ η-symbols
and of their combinations, an important part of the
generalized theory a r e the generating invari-
a n t s 1 4 4 ' 4 5 ' 5 5 ' 5 6 1 . Since higher symmetr ies manifest
themselves in the generalized theory, part icularly sym-
m e t r i e s corresponding to the groups SU(n) (and other
semis imple Lie groups), it becomes necessary to use
fully the theory of invariants of the c lass ica l groups.
This theory discussed in detail in Weyl's book [ 6 0 1 .

In analogy with the way in which a Wigner coeffi-
cient combines three irreducible representat ions into
an invariant (and the generalized Wigner coefficient
combines several such representat ions) , one can a s s o -
ciate combinations of η χ η-symbols of different ranks
with definite generating invariants . According to (6.1)
the role of generating invariant for the η χ η-symbol
is played by the determinant of rank n, ra i sed to the
J- th power. In part icular, for the Wigner symbol (the
3 χ 3-symbol), it i s (£ikiuiiu2kU3^)^, and for the metr ic

tensor (the 2 χ 2-symbol p 1 1 ^ 1 2 ) it is ( ε λ μ ^ ι λ ^ μ ) J ' .

T h e g e n e r a t i n g i n v a r i a n t s o f a n y s t a n d a r d c o m b i n a t i o n s

o f C - G c o e f f i c i e n t s o f t h e g r o u p S U ( 2 ) c a n b e c o n -

s t r u c t e d b y m e a n s o f t h e t e n s o r s ei^i a n d e ^ . T h u s ,

e . g . , t h e g e n e r a t i n g i n v a r i a n t f o r t h e p r o d u c t o f t w o

C - G c o e f f i c i e n t s , s u m m e d o v e r t h e p r o j e c t i o n s m j a n d

m 2 , i s o f t h e f o r m

(elmnuuu2^u3n)
J (e,.m.n'"ii_'«2m-"3n·)''' ( ελλ·)Β ι (εμμ·)"

2· ( 7 . 4 )

Here the Latin indices Ι, τη, η take on the whole set of
possible values 1, 2, 3; the underlined latin indices
1, Eli & take on only the value 1; the Greek indices λ,
μ, ν corresponding to /, m, η take on the remaining
values 2 and 3. In this notation the generating invariant
for the Racah coefficient (6j-symbol) can be written in
the form

Χ ( ε λιλ 2 )

Similarly one can write out the generating invariants
for an arbitrary combination of Wigner coefficients
and for any transformation matrix. The expansion co-
efficients of the generating invariants for expansions
in powers of uik are combinations of Wigner coeffi-
cients. Thus, the product of Wigner coefficients corre-
sponding to the generating invariant (7.4) is

(7.3)

I? D
«11 «12«21 «22
«31 «3̂

«13
«23
«33

«Ή
«;,
«31

«;2

«ι2«32

«",3

«33

« • > , « ' „r 2 1 2 1

/ ? / ? '

«2
(7.6)
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The summation is carried out over repeated Rjfc; the
6j-symbol corresponding to the generating invariant
(7.5) is

« ή «12

RL RL

t:, RI

Κ-

α- RI

«L «M «L
*L Λ·, «J,

«a«S
«;3 «33IIII «?.«;•

D 4 D 4 Π 4
t t u Ji,2 Hi&

21 " 2 2 " 2 3

Λ 4 D 4 p i

31 « 3 2 « 3 3

R* Rt , « *

( 7 . 7 )

A l l c o m b i n a t i o n s o f t h e c l a s s i c a l a n g u l a r m o m e n t u m

t h e o r y c a n b e e x p r e s s e d i n t e r m s o f a s u m o f p r o d u c t s

of 2 χ 2-symbols and 3 χ 3-symbols. An example of a
generating invariant for combinations of η χ η-symbols
of higher rank is given by the expression

«<, v0 w0 t0

u, vl wt fiu,

«3 V3 wt «3*3
The coefficients in the expansion of (7.8) are given by
the combinations

«11 «12 «13 «14

Σ
R24R34R44

«2.
«3,
«41

«22
«32
«42

«23
«33
«43

«24
«34
«44

«24
«34
«44

«25

«4

«26
«36
«46

(7.9)

The possibility of formulating the generalized theory
of angular momenta in terms of generating invariants
makes the role of the latter quite prominent, allowing
one to solve applied problems directly in terms of the
invariants. The theory of invariantsr60], which has been
actively developed at the end of the last century, thus
acquires new applications. Let us consider as an ex-
ample the methods of coupling angular momenta. Out
of k spinors Uj (i = 1,..., k) of the group SU(2) one
can construct generating invariants for the Wigner
coefficients of rank k. (Here the rank corresponds to
the number of component angular momenta; the nota-
tion [UJUJJ] corresponds to the determinant.) The in-
variants

[utu.
, Η ΐ 3 ,

" \ w h \ " ( 7 . 1 0 )

c o r r e s p o n d t o t h e u s u a l W i g n e r c o e f f i c i e n t o f t h e g r o u p

S U ( 2 ) . T h e i n v a r i a n t s

[»Λΐ" 1 1[»ι«/"[« Ι»/ ! 1[ (7.11)

corresponds Wigner coefficients of rank 4. In opera-
tions with generating invariants one should keep in
mind that not all of them are linearly independent.
Thus, for instance, the identity

= 0 (7.12)

implies the following relation among the determinants
of order 2:

[U1li2][U3U4l + [U3li1][«2!i4]+[«l«4][«2«3] = 0, U, = {xtyi}. (7.13)

Therefore, in distinction from the Wigner coefficients
of rank 3, those of rank 4 are not unique and depend on
the choice of independent invariants (in other words,
on the method of coupling the angular momenta). Owing
to the relations of type (7.13) (syzygies) there appears
a host of forms in the theory of invariants, and many
possibilities arise for the choice of independent invari-

ants6 . The group-theoretic meaning of such relations
is that the Kronecker product of two irreducible repre-
sentations may contain the same irreducible represen-
tation Dj several times. The operator which disting-
uishes the basis functions of multiply occuring repre-
sentations is not contained in the group and must be
additionally specified, e.g., by specifying the coupling
scheme of the angular momenta. Equations (6.5) and
(6.6) illustrate two methods of constructing the generat-
ing invariants. The completeness property of the sym-
metric coupling method (6.6) implies the possibility of
representing the 6j-symbols in terms of linear com-
binations of the quantities rn:

„ «;2 ... R'in

« ή - 2 1 « η - 2 2 • • · « η -

, — m , / , — m 2 . . . j n — m n

. . . ; „ + mn ;'j — TO, j t — ms . . . /'„ — r

( 7 . 1 4 )

O n t h e o t h e r h a n d , t h e g e n e r a t i n g i n v a r i a n t f o r a n y

c o u p l i n g m e t h o d c a n a l w a y s b e w r i t t e n i n t h e f o r m o f

a l i n e a r c o m b i n a t i o n o f q u a n t i t i e s o f t h e t y p e ( 7 . 1 1 ) .

T h u s , t h e W i g n e r c o e f f i c i e n t o f r a n k 5 f o r t h e

( ( j l J 2 ) j l 2 J s ) j l 2 3 J 4 J ) - C O U p l i n g

(U h ia \ (in is fm Λ /7is3 A / \ / ia \ I /n
\mt m 2 m I 2 / \ T O , ' 2 m3 ml23)\m\2s m 4 m) \ml2 m'a)\mi23 η

c o r r e s p o n d s ( a p a r t f r o m t h e n o r m a l i z a t i o n ) t o t h e

g e n e r a t i n g i n v a r i a n t

M \wshl]
A

f1 [ttu.]

w h e r e

[uv] = {
ι = / ι + / ! - / « .

= «ι Η Τ.

Ρ»=

Ρ»
Expanding the invariant 1^ corresponding to the coup-
ling scheme A in terms of the invariants Ig, corre-
sponding to the coupling scheme B, we have

Making use of the expansion of invariants in powers of
the components of the spinors which make them up we
obtain relations between quantities and transformation
matrices. The generating invariants also throw light
on a series of other problems, of which the interrela-
tion of symmetries merits special attention.

8. The Interrelation of Symmetries

The generalized theory of angular momenta, which
in distinction from the classical theory, contains
formulas referring to higher symmetries, allows one
to analyze the interrelations of symmetries in a real
system. An essential role in such a theory is played
by the generating invariants. This is due to the fact

6 )One can select as independent invariants three- and higher-dimen-
sional determinants [ 6 1 ] . Although the use of such spatial ( 3 X 3 X 3
and higher) determinants seems promising for the generalized theory,
such problems have not yet been investigated.
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that the same quantity can be the generating invariant
for the C-G coefficients of different groups. The
methods of deriving and studying the c h a r a c t e r of such
interre lat ions among C-G coefficients was discussed
i n [ 5 6 ] , using a s an example the expression

π (8.1)
which represents the normalized product of six second-
order determinants raised to the powers pik. In ana-
logy to the way in which the third order determinant
raised to the J-th power plays the role of the generat-
ing invariant for the C-G coefficients of the group
SU(2) and for C-G coefficients of a special type of the
group SU(3), the expression (8.1) is the starting point
for the derivation of the C-G coefficients of different
groups. This expression can be treated as the basis of
the representation D(OPO) of the group SU(4)[59], by
attributing to the quantities Xj and yj the transforma-
tion properties of the basis vectors of the fundamental
representation D(100). On the other hand, attributing
to the pairs xi and yi the transformation properties of
spinors, one may consider them as the basis of the
generating invariants for the Wigner coefficients of
rank 4 of the group SU(2), of type (7.11). One may also
attribute to (8.1) the meaning of a basis for the group
SU(3). This yields the relation among the C-G coeffi-
cients of the groups SU(2), SU(3) and SU(4), based on
the relation (8.1). Such an approach can be used in
every concrete case. Int62] the symmetry of the C-G
coefficients was used to obtain a unique classification
of the invariants of the group SU(2) in terms of the
representations of the group SU(3), and of the invari-
ants of the group SL(2, C) in terms of the representa-
tions of SL(3, C) and its compact subgroup SU(3). The
transformation properties of the Lagrangians obtained
in this way were compared with symmetry properties
of elementary particles. Attributing to the quantitiesui> vi> wi *n (5.2) the meaning of basis vectors for the
representation D(10) of SU(3), one can write down a
relation which defines the contravariant representation
of SU(3):

(Λ,,!Λ,2ϋ?ΐ3!)1/2

Σ H2i=·'

«23

«33

π<
1/2*

( 8 . 2 )

On the other hand, if the quantities Vi, Wi, v2, w2, v3,
w3 in the right-hand side of (8.2) are formally con-
sidered as spinors of the group SU(2), the right-hand
side represents the normalized product of powers of
the minors of the determinant (5.2), and according to[7],
is an invariant of the group SU(2)

(Λ,,! Λ12! Λ.3!) 1 ' 2 (Λ,,! Λ12! « l s ! ) " !

v2

w2

v?,

w3

Rn Vi

W

v3

w-.

Rl2 V\

w,

v2

w2

h e r e

I2'i'!

- Σ (h h / 3 W ^ i i ;
m i-f-TH2-|-Tn3̂= 0

I " 2 , . i f f m i , , , i r " l i

Thus, all invariants of the group SU(2) can be con-
sidered as basis vectors in the space of the representa-
tion SU(3). The converse is also true.

In analogy to SU(2) the invariants of the proper

Lorentz group SL(2, C) form a basis for the represen-
tation of SL(3, C). The vectors ePQ of a canonical
basis, corresponding to the representation r(PQ) of
SL(2, C), are expressed in terms of the vectors

e' i, and e" _ , corresponding to the representa-
ΡΛι Ρ2Ι2

t i o n s T ^ Q j a n d T ( P 2 Q 2 ) , i n t h e fo l lowing m a n n e r

(8.4)

In the right-hand side of (8.4) a r e the usual Clebsch-
Gordan coefficients which can be written in the form
of 3 χ 3-symbols. Accordingly, any invariant of the
Lorentz group can be written in the form

Pi —Pi
[\-\-Pi

iJi- p3
ρ·ΛΡ->

,.PiQs
ψ3

( 8 . 5 )

T h e i n v a r i a n t ( 8 . 5 ) i s d e t e r m i n e d b y t h e s i x i n d i c e s :

χ. - - ft, 1- <?, + <?3. «·, = V. - Q-2 -;- ft,, ** = ft -t ft2 - ft,;
.π, + π2 -l· ."tr, - Λ + ' J

2 + 1 \ = η, κ. + κ2 -|- κ, = <?, + (Λ -f ft, = κ.

Since SU(3) is a subgroup of SL(3, C), each relat ivist ic
invariant is a bas i s vector of some reducible r e p r e s e n -
tation of SU(3). The invariants which differ in the o r d e r
of tpi, φζ, ψ3 can form the six components of a r e p r e -
sentation of SU(3). In order to construct a full bas i s it
is necessary, in general, to use invariants with other
φι, ψ2, ψ3· In some simple c a s e s the indices
[it ι7Γ2π3][κιΚ2Κ3] character ize directly the bas i s vectors

Μ χ1^^ of the representat ion D(ir/c) of SU(3) in a

symmetr ic b a s i s [ 4 4 1 . An example of the correspondence
between representat ions of the Lorentz group, accord-
ing to which t ransform the bas i s vectors ψι, ψ2, ψ3, and
the indices i s :

a ) [τ (»/„ 0) τ ('/, 0) τ (00)] —> (10011000],

b ) [τ (ι,<2 0) τ (00) τ ('Λ, 0) —> [0101 |000],

C) [τ (V, 0) τ (0 V2) τ (V2 Vs)l -» 1010] [100],

d) [τ (V2 V2) τ (V2

1!2) τ (00)1 - * [001] [001].

(8.6)

T h e c a s e s (a) a n d (b) differ by a p e r m u t a t i o n of t h e

vectors ψ .̂ The cases (c) and (d) correspond to the
reducible representat ion D ( l l ) + D(00) of SU(3),
spanned by a totality of 9 vectors . In addition to the
indices n{, /q one can formally introduce other indices :
JT, K, t h e h y p e r c h a r g e Υ = «ι - η ι + ι/ζ{τι - κ), t h e i s o -

spin Τ and the isospin projection t 3 = 72(712 - π 3 + «3
- K 2 ) . Thus, the invariant [T(y 20)T(y 20)T(00)] c o r r e -
sponds to three s tates (quarks), transforming accord-
ing to the representat ion D(10):

«p»:

[100)1000],

01011000).

|001] [000],

Υ

Υ

Υ

~~ 3 *
1

1

h

h

h

= 0,

1
~ 2 '
_ ' \

(8.7)

Such a classification also applies to the c u r r e n t s , since
the decisive element is the presence of the C-G coeffi-
cient.

The theory of C-G coefficients gives a prescr ipt ion
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for the classification of relativistic invariants accord-
ing to the representations of SU(3). Each of the tensors
which forms an invariant is, in distinction from the
latter, not a basis vector of a representation of SU(3),
i.e., there appears a new symmetry which character-
izes the interaction and the corresponding Lagrangians.
Let us classify the interactions of elementary particles
according to the representations of the group SU(3).
Consider the weak interaction Lagrangian

%y\ (1 +Τό) ψ/*γι (14 • γ») ψ*. (8.8)

Rewriting this expression in terms of 3 χ 3-symbols
we find that by its transformation properties the weak
current belongs to the octet representation of the group
SU(3), and according to what was said before, it corre-
sponds to the six basis vectors of D(ll)
[010] [001], [001] [010], [100] [001], [100] [010], [010| [100], [001] [100].

(8.9),
The first two vectors correspond to Υ = 0, ts = 1, i.e.,
belong to the strangeness-conserving currents. The
remaining vectors correspond to Υ = +1, ta = l/2, i.e.,
belong to strangeness-changing currents. The weak
interaction Lagrangian, as can be seen from (8, 9) is
also a member of the SU(3)-octet. These are the same
transformation properties as those ascribed to the
Lagrangian and currents by Cabibbo t63], based on the
experimental selection rules of the weak interactions,
with the participation of hadrons. The electromagnetic
interaction Lagrangian (#/μ#)Αμ is a sum of two in-
variants, constructed from three representations
[τ(01/2)τ(1/2/

/

2)τ()/

20)] of the Lorentz group, and conse-
quently form an incomplete set of basis vectors for
the SU(3) octet. For the electromagnetic interaction
there is also no contradiction between the transforma-
tion properties of the Lagrangian which follow from
the theory of C-G coefficients, and the properties de-
rived from the selection rules.

The fact that one obtains the right transformation
properties is also an indication that if one considers
the hadrons as a composite system, in distinction from
the quark model, there is, in principle, no necessity to
attribute to the subparticles the SU(3) quantum num-
bers, i.e., a fractional electric charge. These quantum
numbers may refer only to the interaction and to the
hadronic states in toto, in the same manner as the
groups 0(4) (0(5)) describe the hydrogen atom, but not
separately the proton and electron, i.e., the system as
a whole only. One may hope that further development
of the problem of interrelations between C-G coeffi-
cients will help carry out a "target-oriented" search
for elementary particle symmetries, to discoveries of
hidden symmetries in the theory of nuclei and molecu-
lar spectroscopy. In the light of the SU(3)-example
discussed above the idea of the concept of noninvari-
ance group, introduced by Eddington[e4], becomes
clearer. According to this concept, physical systems
can be characterized by symmetries which are not
symmetry groups of the Lagrangian or the Hamiltonian.
For example, in molecular spectroscopy one makes use
of the groups R(5) and O(4, 1) for the classifications of
the state of an electron in the field of many Coulomb
force centers^6 5 '6 7 1. Among other results on noninvari-
ance group one should point out the papers [ 6 a " 7 2 ] . In a
certain sense the three-body problem^73'7^ belongs to

this class of problems, and the generalized theory of
angular momenta could be quite essential for it. In
conclusion, we stress the fact that the technique of
C-G coefficients is particularly important for complex
physical systems, exhibiting a whole set of interre-
lated symmetries. Atoms, nuclei and hadrons are just
such systems. One may expect in the future a widening
of the sphere of applications of the theory of C-G coef-
ficients, in particular to include problems related to
the symmetries of leptons, the theory of coherent
states, etc.

ΙΠ. RELATIONS OF THE C-G COEFFICIENTS TO
GEOMETRY AND TOPOLOGY

9. Geometric Interpretation

This third chapter is dedicated to the least developed
part of the theory: the geometric and topologic inter-
pretation of the C-G coefficients. From general princi-
ples the relation to geometric concepts seems to be
quite natural. Already in 1872 in his famous
"Erlangen program" Felix Klein (cf.teo>75]) has devel-
oped the group-theoretic approach to geometry. A
typical example of a systematic exposition of geometry
on the basis of the symmetry concept is Bachmann's
monograph[7e], which also contains an extensive biblio-
graphy of the subject. The combinatorial aspects of the
theory of C-G coefficients, which were discussed above,
immediately implies a relation to finite geometries[24-1.

One should think that an investigation of the relation
to geometric characteristics should be useful also from
the viewpoint of geometrization of physical concepts
closely related to C-G coefficients.

Before discussing purely geometric problems we
briefly consider some graphical methods.

In the classical theory of angular momenta graphical
methods have been developed by Yutsis, Levinson and
Vanagas[8] (cf. also[91). The C-G coefficients were
represented by a three-line vertex (Fig. la) and the
summation over projections by joining lines together
(Fig. lb). The Regge symmetry implies a natural
generalization of this approach, by assigning to the
Wigner coefficient 9 free line-ends (Fig. 2,a) and all
the other known graphical methods are obtained as
special cases of this1771. The reduction of the graphical
methods is illustrated in Fig. 2. Figure 2b corresponds
to the jm-formulation of the theory, when the summa-
tion is carried out over the upper row and over the
columns of the two lower rows; Fig. 2c corresponds to
summation over triads (j-symbols); Figs. 2d and e are
simplified graphs; cf. alsot8]); Fig. 2f represents the
usual summation over projections'̂ 1, and Fig. 2g cor-
responds to the graph of the R-symbol, considered as
the metric matrix in the representation space of the
group SU(3). The indicated methods may turn out to be
useful in the discussion of nonstandard combinations of
C-G coefficients.

FIG. 1. Graphs of the classical
theory.



C L E B S C H - G O R D A N C O E F F I C I E N T S 15

FIG. 2. Reduction of the graphi-
cal methods.

FIG. 3. Geometric interpreta-
tion of the Regge symbol.

The geometric interpretat ion of the Wigner coeffi-
cient is also closely related to the Regge symmetry 1 1 2 1 .
We shall use t r iangular (barycentric) coordinates in
the plane. Consider an equilateral t r iangle, the s ides
of which serve as coordinate axes . The values of the
coordinates a r e counted perpendicularly to the axes,
with positive values lying in the inter ior of the t r iangle .
For any point the sum of the three tr iangular coordi-
nates is a constant equal to J . We shall consider the
values of the three lines of the Regge symbol as coordi-
nates of three points. Since the Rik a r e nonnegative
integers , these points lie at the vert ices of a coordi-
nate net (Fig. 3). If two points a r e given in this system,
the third is automatically defined. The 72 symmetry
rules allow us to permute the axes and the points and
in a certa in sense to exchange their p laces . Thus, the
Regge symmetry consists of the permutation sym-
metry (where any two of the three points can be inter-
changed), the coordinate symmetry, and the r e p l a c e -
ment of axes by points and v ice-versa . As an example,
Fig. 3 i l lus t ra tes the graphical representat ion of the
symbol

5 i ° = r / s "/s 3 W 3 * '2\
VI- -V, i) \2 0 — 2)

When considering the addition of fixed angular momenta
j ' and j " one may also use a coordinate net consisting
of equilateral t r i a n g l e s [ 7 7 ] (Fig. 4a). The coordinates
a r e defined as the distances from the axes OM and ON.
The angular momentum j with projection m is r e p r e -
sented by the point with coordinates (j - m, j + m), the
projection is the distance from the point to the bisector
of the coordinate angle. When the angular momenta
{ j ' m ' } and j j " m " } a r e added, the points corresponding

FIG. 4. Addition of angular momenta.

to the result ing angular momenta { jm} a r e situated on
a vert ical at a distance m' + m" from the bisector and
between horizontal lines corresponding to j ' + j " and
| j ' - j " | (Fig. 4,b).

For a rb i t rary η χ η-symbols the generalization of
the described geometric construction is obvious.
Whereas for the 3 x 3-symbol the values of Rik a re the
barycentr ic coordinates of three points in a plane, for
the 4 χ 4-symbol the values of Rik will be represented
by barycentr ic coordinates of four points in space.
The coordinate system is given by a regular t e t r a -
hedron. The coordinates of a point a r e its distances
from the sides of the te t rahedron. The sum of the four
coordinates of a point as well as the sum of the d i s-
tances of al l four points from a given coordinate plane
a r e constant and equal to J . For an a rb i t ra ry n x n-
symbol the values of Rik a r e the barycentr ic coordi-
nates of η points in an (n - l )-d imens ional space.
These points form a regular (n - l)-dimensional
simplex; the coordinate system is defined by this
(n - l )-s implex. The position of the points of an n-
simplex within the regular coordinate simplex defines
the numerical value of the η χ η-symbol. The deter-
mination of the numerical values of the η χ η-symbols
by this geometric method was discussed with the Wig-
ner symbol as an example i n [ 7 7 ] . Different types of
combinations of η χ η-symbols of various ranks, in-
cluding their numerical values, as well a s the symbols
themselves , can be discussed in the language of higher-
dimensional geometry, which thus can be used to ex-
p r e s s the generalized theory of angular momenta.

Together with η-dimensional geometry, the relation
with projective geometry is of great interes t^ 7 8 ' 7 9 1 .
Giovannini and Smith [ 4 6 ] who have considered the
η χ η-symbols as magic squares , have also c a r r i e d
through this generalization. In distinction from the
η χ η-symbols, which have nonnegative integers as
their e lements, the Q n -symbols introduced i n [ 4 6 ] have
as elements Rik arb i t rary rat ional numbers . At the
s a m e t ime one r e q u i r e s , as before, that £ ) Rik

i
= Σ/Rik = J . The algebra Q n is a vector space over

k
the rat ional number field. The totality of subspaces of
this space forms a projective geometry satisfying the
appropriate axioms t 7 8 > 7 9 1 . The symmetry between rows
and columns in the Q n -symbols corresponds to the
duality between points and straight lines in projective
geometry. Based on the magic-square representat ion
of the 6j-symbol (6.11), Geovannini and Smith [ 4 6 ] in-
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terpret the well-known relations [ 8 0 ]

lim
/-/3 ia-h ; 3 -;7 (g .

as a projection of the vector space Q4 onto a certain
subspace. As a whole, the relation between C-G coeffi-
cients and projective geometry is not sufficiently de-
veloped. It is conceivable that problems related to
finite rotation matrices 1 5 1 1 and to vector parametriza-
tions of the rotation and Lorentz groups1 8 1 '8 2 1 are also
associated to these ideas. However, this direction re-
quires further research. As regards multidimensional
geometry, one has to stress particularly the aspects
relating the C-G coefficients to algebraic topology.

10. Angular Momentum Theory and Topology

The theory of angular momenta can make effective
use of the methods of algebraic topology^83'841. Various
combinations of C-G and Racah coefficients are char-
acterized by topological invariants—Betti groups
(homology groups).

At present the sphere of applications of topological
methods to physics is perpetually growing: general
relativity [ 8 5"8 7 1, solid state physics t 8 8 > 8 9 ], quantum field
theory t 9 0 ' 9 2 ] .

Topology as a branch of mathematics originated
toward the beginning of the twentieth century, mainly
through the work of Henri Poincare, who studied the
structure of complicated geometric multidimensional
formations. In distinction from analytic geometry,
where the structure of a complex body is defined by a
system of inequalities or the equations of the bounda-
ries, the topological approach decomposes multidimen-
sional geometric objects into their simplest elements,
called simplexes.

A simplex is an elementary building-block, from
which complicated geometric figures-polyhedra can be
built according to definite rules. The scheme for de-
composing a polyhedron into simplexes is called a
complex. A line-segment, a triangle, a tetrahedron
are, resepctively, simplexes of the one-, two- and
three-dimensional space. In general an r-dimensional
simplex [ a o a ! . . , a r ] is defined as the set of points

ζ--.Σναι, ( I O . I )

w h e r e a 0 , a 1 ; . . . , a r i s a s y s t e m o f i n d e p e n d e n t p o i n t s

of the space R n ( r s n) and λ°, λ 1 , . . . ,λΓ are real
numbers satisfying the conditions

'>0; i = 0, 1 r). (10.2)

The quantities [aoai.. . a ^ a i * ! . . . a r ] are called the
(r - l)-edges of the simplex A r . A finite set of
simplexes form a complex K, if Κ contains together
with each simplex its edges and any two simplexes in
Κ either do not intersect, or their intersection is an
edge of either simplex (correct incidence relations).
This defines the structure of the polyhedron, which is
the set of all points of the complex.

An important application of topology is the possibil-
ity (in the obvious absence of geometric intuition in
higher dimensions) to characterize the structure of

complicated polyhedra by their topological invariants:
the homology groups (Betti groups). The homology
groups are defined as follows [93~951. One introduces the
concept of chain

WM, (10.3)

where r * are integers, and A s the set of all s-dimen-
sional simplexes of the complex K. The associated
set of all (r - 1 )-dimensional edges of the simplexes
A is the boundary Δχ of the chain x:

= 2
i-0

(10.4)

The boundary ΔΑΓ of a simplex is determined accord-
, ing to the symbolic expression

η

A 4 ' = 2 ( - l ) « - £ 4 j l . ( 1 0 . 5 )

A n r - c h a i n i s c a l l e d a c y c l e i f i t s b o u n d a r y v a n i s h e s .

T h e c o l l e c t i o n o f c y c l e s f o r m s a n a b e l i a n g r o u p Z r . A

c y c l e i s s a i d t o b e h o m o l o g o u s t o z e r o i f i t i s t h e

b o u n d a r y o f a n ( r + l ) - c h a i n i n K . T h e s e b o u n d a r y -

c y c l e s a l s o f o r m a g r o u p B r , w h i c h i s a s u b g r o u p o f

Z r . T h e f a c t o r - g r o u p s H r = Z r / B r a r e t h e h o m o l o g y

g r o u p s . T h e y a r e a b e l i a n g r o u p s a n d a r e c o m p l e t e l y

d e t e r m i n e d b y t h e i r i n v a r i a n t s : t h e B e t t i n u m b e r s p r

( t h e n u m b e r o f i n f i n i t e c y c l i c s u m m a n d s i n t h e c a n o n i -

c a l d i r e c t s u m d e c o m p o s i t i o n o f H r ) , a n d t h e t o r s i o n

c o e f f i c i e n t s t q ( e s s e n t i a l l y t h e o r d e r s o f t h e f i n i t e

c y c l i c g r o u p s i n t h e s a m e d e c o m p o s i t i o n ) .

T h e i n d i c a t e d c o n c e p t s a r e e a s i l y v i s u a l i z e d o n

u s i n g a s a n e x a m p l e t w o - d i m e n s i o n a l c o m p l e x e s : a ) A

plane with η noles. Here each line is a chain, any
closed line is a cycle; if there is no hole inside a
closed line, the cycle is homologous to zero; the one-
dimensional Betti number p 1 is equal to the number of
holes n. b) For a sphere p2 = 1, p1 = 0, p° = 1. The
zero-dimensional Betti number p° always equals the
number of disconnected pieces of the polyhedron. The
topological concepts, which are trivial in simple cases,
are important characteristics of the structure of
multidimensional manifolds.

We note that the classification of polyhedra is a
narrow branch of combinatorial topology, which prac-
tically does not use the modern topologic techniques,
based on the simultaneous use of both homology and
cohomology, closely related to the classification of
differential operators'^601. (In distinction from Eq.
(10.3) a cochain y s is defined on the simplexes A s by
the linear functional (y s A

s ) = Tj. One then defines
cocycles, coboundaries, the appropriate abelian groups,
and their quotient, the cohomology groups.) The
modern topological machinery allows one to analyze
the analytic structure of multidimensional integrals,
and to study their singularities^90"921; this approach
reduces differential and integral relations to purely
algebraic ones. In order to apply the topological
methods to the theory of angular momenta it is neces-
sary to associate to the concepts of the latter (angular
momenta, C-G, Racah and other coefficients, etc.)
geometric objects in multidimensional spaces, i.e.,
polyhedra. We shall consider the triangle with sides
jii h, J3 a s t n e geometric image of the Wigner coeffi-



C L E B S C H - G O R D A N C O E F F I C I E N T S 17

c i e n t (cf. t h e t h r e e p o i n t s i n a t r i a n g u l a r c o o r d i n a t e
n e t , F i g . 3, a s w e l l a s t h e g e o m e t r i c i n t e r p r e t a t i o n ^ 1 1 ) .
T h e n t h e 6 j - s y m b o l (with four f a c e s w h i c h a r e C - G
c o e f f i c i e n t s ) i s r e p r e s e n t e d by a t e t r a h e d r o n . T o a n y
c o m b i n a t i o n of C - G c o e f f i c i e n t s , j - s y m b o l s , one c a n
a s s o c i a t e a d e f i n i t e p o l y h e d r o n , c o n s t r u c t e d f r o m t h e
i n d i c a t e d s i m p l e x e s . Due t o t h e s t r u c t u r e of t h e c l a s s i -
c a l t h e o r y of a n g u l a r m o m e n t a t h e c o r r e c t i n c i d e n c e
c o n d i t i o n s for s i m p l e x e s a r e a u t o m a t i c a l l y v a l i d . (Of
c o u r s e , t h e u s u a l g r a p h s ' - 8 1 (c f . F i g . 1) c a n a l s o b e
c h a r a c t e r i z e d t o p o l o g i c a l l y . H o w e v e r , h e r e t h e r u l e s
of f o r m a t i o n of c o m p l e x e s do not c o r r e s p o n d t o t h e
r u l e s of c o m b i n a t i o n of t h e C - G c o e f f i c i e n t s . ) T h e
homology (Betti) groups of the complex Κ a r e invari-
ants of the polyhedron, and a r e thus character i s t ic for
the combinations of C-G coefficients, to which the
polyhedron is associated. It should be s t r e s s e d here
that not al l propert ies of the geometric concepts a r e
reflected by the topological invariants, and some essen-
t ia l geometric features a r e lost in this p r o c e s s . The
determination of the Betti numbers for combinations of
C-G coefficients reduces either to a direct computation
of al l the cycles of given dimension, of the cycles which
a r e homologous to zero or to one another, or to a use
of the Mayer-Vietoris formula 1 9 6 1 which re la te s the
Betti numbers of the complexes K i ; K A , K B , K O , where

K A C K I , KO C K I , such that Κ Α υ K B = K[, Κ Α η K B
= Ko (the Mayer-Vietoris formula is an analog, sui
generis , of Clebsch-Gordan expansions in topology).
For the description of concrete polyhedra it i s conven-
ient to use a collection of complexes K s ( s = 0, 1,
2 , . . . a r e the dimensions of the complex). Then, in the
three-dimensional case a polyhedron is described by
the following collection of Betti numbers p | :

Pi P\ P\ P\

PI P\ P\ (10 6)
PIPI

pi

As examples we indicate the collections (10.6) for the
Racah coefficient and the combination
Σ ( j j 2 m 1 m 2 | j i 2 m i 2 ) ( j 1 2 j 3 m 1 2 m 3 | jm), respectively

(10.7)

I n t M 1 , where concrete examples of topological c h a r -
acter izat ions of combinations of C-G coefficients a r e
given, use has been made of the collection of Betti
numbers pi, p 2 , pi, p? — 1. The topological approach
turned out to be effective for a s e r i e s of problems of
angular momentum theory, including an enumeration
and classification of j - symbols , derivation of relat ions
among j - symbols , and an analysis of the s t ructure of
various combinations. A simple topologically covariant
t r e a t m e n t of the theory of angular momenta 1 8 4 1 a lready
leads to interest ing r e s u l t s . We denote the metr ic

matr ix -Π ,} corresponding to the one-dimensional
L mm ' "

simplex [aia 2 ] by X 1 2; the Wigner coefficient
JJ1J2J3 I c o r r e S p O n ( j i n g to the two-dimensional
(m 1 m 2 m 3 j
s implex [aia 2 a 3 ] will be denoted by Xl2s; the 6j-symbol

J1J2J12I

4310
100

10
1,

420
10
1.

w i l l b e d e n o t e d b y X i 2 s 4 . I n t e r m s o f t h e

X ^ o n e c a n w r i t e d o w n a n y r e l a t i o n w h i c h d o e s n o t

d e p e n d o n t h e c o n c r e t e v a l u e s o f t h e a n g u l a r m o m e n t a .

A s a l r e a d y r e m a r k e d , t h e s u m m a t i o n i s c a r r i e d o u t

o v e r g e n e r a l s i m p l e x e s , a n d w i l l b e d e n o t e d b y i n c l u d i n g

t h e s i m p l e x e s t o b e s u m m e d o v e r i n s q u a r e b r a c k e t s .

T h u s , t h e 6 j - s y m b o l a n d t h e c o n t r a c t i o n o f t w o 6 j -

s y m b o l s c a n b e w r i t t e n r e s p e c t i v e l y i n t h e f o r m ( t o t h e

r i g h t a r e t h e t r a d i t i o n a l n o t a t i o n s )

x.,« = №2A«XnA24l == \i12 / 3

Ι Λ M Λ 1 4

( 1 0 . 8 )

„ „ „ ί < ) .
34 Λ 1 ) Λ 2 4 * < Λ 4 5 Λ 3 6 Α 2 5 ,

( 1 0 . 9 )

T h e j - s y m b o l s a r e c l o s e l y r e l a t e d t o t r a n s f o r m a t i o n

m a t r i c e s , w h i c h d e t e r m i n e t h e t r a n s i t i o n b e t w e e n

v a r i o u s a n g u l a r m o m e n t u m c o u p l i n g s c h e m e s . T h e

u s u a l n o t a t i o n ( b u t i n t e r m s o f t h e X i k . . . ) o f t h e

t r a n s f o r m a t i o n m a t r i c e s h a s t h e f o r m

( 1 0 . 1 0 )

F o r a p p l i c a t i o n s , h o w e v e r , t h e f o l l o w i n g n o t a t i o n i s

m o r e c o n v e n i e n t

5 I •^136^156^45(1^245)· ( 1 0 . 1 1 )

T h i s e x p r e s s i o n c a n b e r e w r i t t e n i n t e r m s o f a c o n -

t r a c t i o n o f 6 j - s y m b o l s

The operation ru les with t ransformation m a t r i c e s in

the form (10.11) reduces to contracting repeated

Xikl, e-g-,

(Α ι-^λ-^&Λ^Λ^ο Ι Λ ΐ 2 0 Λ 2 , ΐ5.Χ 2 Β 6 Λ 4 5 6 ) (Λ,23-^-134X347X148 I A 1 2 8A.,37X 27 8A' 47 8)

— {^•^4b^-UG^i2»^-2^'i^-218^4iS \ ^120*^236 ^ 2 56-^456^347-^148)-

( 1 0 . 1 3 )

N o t e v e r y t r a n s f o r m a t i o n m a t r i x c a n b e r e p r e s e n t e d

i n a f o r m o f t h e t y p e ( 4 . 1 1 ) o r ( 4 . 1 2 ) , e . g . , t h e 9 j -

s y m b o l . H o w e v e r a 9 j - s y m b o l c a n b e c o n s i d e r e d a s a

1 2 j - s y m b o l o f t h e s e c o n d k i n d w i t h o n e o f t h e R a c a h

c o e f f i c i e n t s o f a s p e c i a l f o r m

f / T / 1

Xi'i ή

Symbolically, the 9j-symbol can be represented in the
form

r V V V V 1 /4 f\ 4 Λ \
( A 1 2 : ! 4 A 2 3 4 5 A i 2 4 e ^ ( 2 4 ) ( 5 e i l · ( 1 0 . 1 4 )

H e r e Y ( i k ) ( j m ) i s a s p e c i a l v a l u e o f t h e R a c a h c o e f f i -

c i e n t , w i t h X i k = X j m , X i ; = x k m > x w = x i m . T h e n o t a -

t i o n i n t h e o t h e r s i m i l a r j - s y m b o l s i s a n a l o g o u s . T h u s ,

a n y j - s y m b o l c a n b e r e p r e s e n t e d i n t o p o l o g i c a l f o r m

a s a c o m b i n a t i o n o f R a c a h c o e f f i c i e n t s . T h e s t r u c t u r e

o f s u c h c o m b i n a t i o n s i s c o n s i d e r a b l y m o r e c o m p l e x

t h a n t h e s t r u c t u r e o f c o m b i n a t i o n s o f C - G c o e f f i c i e n t s .

H o w e v e r , d i f f e r e n t c o m b i n a t i o n s o f R a c a h c o e f f i c i e n t s

c a n b e r e d u c e d t o t h e s t a n d a r d f o r m w i t h t h e h e l p o f

t h e r e l a t i o n s

r y γ γ ι r y y ι / 1 rt 1 C \
l A l 3 4 5 A 2 3 4 5 A 1 2 4 5 J — I A 1 2 3 4 A 12351» ( l U . l D j

ι V y Υ Υ Υ ι Ι 1 2 34 1235 A i256 I / i Γ» 1 fi\

ίΛ12β7Λ1247Λ2347Λ2367-Λ2567Ι — V I ' H * * , 1 0 J

L A i347 A1357 A1567j

A1345 A i456 A14Q7 A1478

js j J23J'
corresponding to three-dimensional simplex

,γ ν Υ Υ Υ Υ ι Γ
1 Λ 1 2 3 4 Λ 1 2 3 5 Α 1 2 5 β Α 1 2 β 7 Λ 1 2 7 8 Λ 1 2 4 β Ι —

Ι
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ΓΧ 1 2 34 X2345 Xj367"| f ^1267 ^1078 ~| Γ^2349 ^1234 Xl347~|

I Xj240 ^2456 ^2567 = I ^1237 -^1378 -^3578 I = I ^2369 Xl23S ^1357 I .

|_X1 4<,8 X4M8 X6078J L ^1848 A M S 8 J |_ Χ|25β ^1567 J

( 1 0 . 1 8 )

F o r c o m b i n a t i o n s o f R a c a h c o e f f i c i e n t s t h e g r a p h i -

c a l m e t h o d i s q u i t e u s e f u l . F i g u r e 5 a r e p r e s e n t s t h e

6 j - s y m b o l . H e r e f o u r l i n e s o r i g i n a t e i n o n e v e r t e x , t h e

l i n e s c o r r e s p o n d i n g t o t h e C - G c o e f f i c i e n t X i k / · F i g u r e

5 b r e p r e s e n t s t h e 1 2 j - s y m b o l . F i g u r e 6 r e p r e s e n t s

g r a p h i c a l l y t h e e q u a t i o n s ( 1 0 . 1 5 ) — ( 1 0 . 1 8 ) , w h i c h a l l o w s

o n e t o r e d u c e v a r i o u s g r a p h s t o t r e e - l i k e d i a g r a m s

w i t h a d o u b l e l i n e , o f t h e t y p e r e p r e s e n t e d i n F i g . 7 .

I n a d d i t i o n t o t h e a b o v e p r o b l e m s , t h e t o p o l o g i c a l

m e t h o d a l l o w s o n e t o c o n s i d e r h i g h e r - o r d e r s i m p l e x e s ,

c o r r e s p o n d i n g t o s o m e s u p e r s y m b o l s , w h i c h d e f i n e t h e

t r a n s i t i o n s b e t w e e n v a r i o u s c o u p l i n g s c h e m e s o f R a c a h

c o e f f i c i e n t s , s i m i l a r t o t h e w a y i n w h i c h t h e R a c a h c o -

e f f i c i e n t d e t e r m i n e s t h e t r a n s f o r m a t i o n b e t w e e n v a r i o u s

c o u p l i n g s c h e m e s o f C - G c o e f f i c i e n t s . H e r e , i n d i s t i n c -

t i o n f r o m ( 1 0 . 1 4 ) , t h e 9 j - s y m b o l p l a y s a n i n d e p e n d e n t

r o l e , f o r m i n g p a r t o f t h e b o u n d a r y o f t h e f o u r - d i m e n -

s i o n a l s i m p l e x . T h e p r a c t i c a l c o n s t r u c t i o n o f t h e f o u r -

d i m e n s i o n a l s i m p l e x e s ( a n d o f t h e c o r r e s p o n d i n g p o l y -

h e d r a ) i s b a s e d o n u s i n g t h e f o r m ( 6 . 1 1 ) f o r t h e 6 j -

s y m b o l .

T h e r e l a t i o n s h i p b e t w e e n C - G c o e f f i c i e n t s a n d

t o p o l o g y i m p l i e s t h e p o s s i b i l i t y o f u s i n g h o m o l o g y

g r o u p s f o r a c h a r a c t e r i z a t i o n o f p h y s i c a l s t a t e s i n

p r o c e s s e s t a k i n g p l a c e i n c o m p l e x a t o m i c s y s t e m s .

T h e w a v e f u n c t i o n o f a c o m p l e x s y s t e m ( e . g . , a n a t o m

w i t h a d e f i n i t e w a y o f c o u p l i n g s e v e r a l a n g u l a r m o -

m e n t a ) c a n b e c h a r a c t e r i z e d b y m e a n s o f h o m o l o g y

g r o u p s . T h e s a m e i s t r u e o f t h e m a t r i x e l e m e n t s f o r

s u c h a s y s t e m . T h e t o p o l o g i z a t i o n o f t h e t h e o r y w h i c h

o c c u r s i n t h i s w a y i n v o l v e s t h e u s e o f t h e n e w q u a n t u m

n u m b e r s P g a n d o f t h e c o r r e s p o n d i n g s e l e c t i o n r u l e s .

T h e p o s s i b i l i t i e s o f t h e t o p o l o g i c a l a p p r o a c h a r e n o t

l i m i t e d t o t h e a b o v e . A s a l r e a d y i n d i c a t e d , t h e g e n e r a l -

i z e d t h e o r y o f a n g u l a r m o m e n t a i n c l u d e s t h e h i g h e r

s y m m e t r i e s . A t t h e s a m e t i m e , t h e d i f f e r e n t i a l o p e r a -

t o r s w h i c h c h a r a c t e r i z e d e f i n i t e L i e g r o u p s , a r e d e -

s c r i b e d b y c o h o m o l o g y g r o u p s , a n d c a n b e s p e c i f i e d i n

t e r m s o f t h e a p p r o p r i a t e B e t t i n u m b e r s ' ^ 7 0 ' 9 7 1 . T h e

s i m u l t a n e o u s p r e s e n c e o f h o m o l o g y a n d c o h o m o l o g y

g r o u p s d e t e r m i n e s s t r u c t u r e s i n t h e t h e o r y o f C - G

c o e f f i c i e n t s w h i c h a r e r e l a t e d t o t h e u s e o f m o d e r n

t o p o l o g i c a l m e t h o d s w h i c h a r e a n a l o g o u s t o t h o s e u s e d

i n q u a n t u m f i e l d t h e o r y f o r a n a l y z i n g t h e a n a l y t i c p r o p -

X
F I G . 5. T h e 6 j-symbol a n d t h e 12 j-symbol .

b)

b)

F I G . 7 . A tree-l ike graph w i t h a d o u b l e

l ine.

e r t i e s o f F e y n m a n i n t e g r a l s [ 9 0 ~ e 2 ] . T h e s e p r o b l e m s a r e

a l m o s t c o m p l e t e l y u n d e v e l o p e d a n d o n e c a n h a r d l y s a y

a n y t h i n g a t p r e s e n t a b o u t t h e i r p r a c t i c a l v a l u e .

1 1 . R e l a t i o n s B e t w e e n t h e C - G C o e f f i c i e n t s a n d

M u l t i d i m e n s i o n a l C o m p l e x I n t e g r a l s

A m o n g t h e v a r i o u s g e o m e t r i c r e l a t i o n s b e t w e e n

C - G c o e f f i c i e n t s a t t e n t i o n s h o u l d b e g i v e n t o t h e

H i l b e r t s p a c e s F n , t h e e l e m e n t s of w h i c h a r e e n t i r e

a n a l y t i c f u n c t i o n s . T h e u s e of t h e H i l b e r t s p a c e s F n

i n t h e s t u d y of t h e r o t a t i o n g r o u p i s b a s e d o n t h e f a c t

t h a t t h e i r r e d u c i b l e r e p r e s e n t a t i o n s of t h a t g r o u p c a n

b e o b t a i n e d b y c o n s i d e r i n g h o m o g e n e o u s p o l y n o m i a l s

of two complex variables (for the group SU(n)—of η
complex variables). All these polynomials a r e elements
of F 2 and can be discussed simultaneously. A sys-
tematic discussion of the relat ion between C-G coeffi-
cients and multidimensional complex integrals was
c a r r i e d out by Bargmann t 4 9 ] on the bas i s of the Hilbert
spaces F n . According to Bargmann, the elements of
F n a r e entire analytic functions f(z), where
ζ = (z i , Z 2 , . . . , z n ) is a point of a complex n-dimen-
sional Euclidean space. Any such function f(z) admits
everywhere a power-ser ies expansion

:\ ( n . i )f (z) — 2j ahA2...hnzi'z22 •

T h e i n n e r p r o d u c t of t w o e l e m e n t s f, f F i s d e f i n e d b y

(//')= J Τΰί/'Μ djM*), ί1 1·2)

where the measure is defined by

<ίμΛ(ζ) = π - " β χ ρ ( - Ζ 2 ) \\dxhdyk (z = x+iy).

I n d i s c u s s i n g t h e K r o n e c k e r p r o d u c t D j 1 x D j 2 of t w o

r e p r e s e n t a t i o n s of S U ( 2 ) , B a r g m a n n [ 4 9 ] m a k e s u s e o f

t h e s p a c e F 6 a n d s h o w s t h a t t h e g e n e r a t i n g f u n c t i o n of

t h e W i g n e r s y m b o l c a n b e w r i t t e n i n t h e f o r m

Φ(τξη) = β χ ρ ( ΰ ( τ , ξ, η)), (Π.3)

where

( Π > 4 )

F I G . 6 . Graphica l i n t e r p r e t a t i o n o f r e l a t i o n s b e t w e e n t h e j - s y m b o l s .

f

Ο (x, I, η)= ξ, ξ, ξ,Ι,

Ιΐι % η» Ι
and τ = (ΤιΤ2τ3), ξ = ( ξ ι ξ 2 ξ 3 ) , η = (ijif)2T}3) a r e t r i p l e s
of c o m p l e x n u m b e r s . The Wigner coef f ic ient i s defined
by expanding the generat ing function in p o w e r s of

Tf> ?k' rH' F o r f i x e d r t h e S e n e r a t i n g function
Φ Τ = Φ ( Τ , ξ, η) i s an element of F e :

(Φτ> Φ,-) = f Γ f exp ψ (τ, ξ, η)) exp D (τ, Ι, η) άμ, (η)Ί άμ3 (ξ).
J J (11.5)

It can be seen from E q s . (11.3) and (11.4) that the
generating function satisfies the Regge symmetry .
The generating function for the Racah coefficient can
be expressed in the form of an integral over a product
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of four generating functions Φ and is an element of
F12. The substantial advantages of Bargmann's method
consist in the fact that the formulas can be written
simultaneously for all C-G coefficients, independently
of the concrete values of the angular momenta. This
method can be easily generalized to arbitrary combina-
tions of the C-G coefficients. By analogy to (11.5), the
generating functions for these combinations can be
expressed as multidimensional complex integrals.
Such formulas encompass all special values of the
combinations obtained in the expansions of type (11.1).
Thus, the topological investigation of combinations of
C-G coefficients carried out in Sec. 11 is closely re-
lated to the topological characteristics of multidimen-
sional complex integrals. On the other hand, Fotiadi,
Froissart, Lascoux and Pham [ 9 0 ] have proposed to
make use of homological algebra methods in the inves-
tigation of the analytic structure of multidimensional
Feynman integrals occurring in quantum field theory.
Thus there appear diverse (and hopefully, fruitful)
relations between the theory of C-G coefficients with
geometric and topological concepts on the one hand,
and complex integrals, on the other.

12. Conclusion

In this necessarily condensed review we have at-
tempted to show to what extent the formulas of the
theory of C-G coefficients are related to other chapters
of modern mathematics. The majority of these rela-
tions became apparent only during the past few years,
and there is no doubt, that this circle will be enlarged.
Among the closest-lying directions of development of
the theory one should mention generalizations to other
compact Lie groups, different from SU(2). The theory
of C-G coefficients which exists at this moment also
contains the C-G coefficients of the semisimple Lie
groups, with the C-G coefficients of SU(2) being the
basis of the whole theory (cf.r«,«,55,56,98-100]^ A s e c o n d
promising direction is the study of C-G coefficients
for values of their arguments different from integers
and half-integers. This direction is closely related to
the theory of special functions. Without doubt, investi-
gations will continue into the group-theoretic, com-
binatoric and geometric aspects of the theory of C-G
coefficients. To the authors of this review the present
state of the theory of C-G coefficients appears as a
collection of fragments, giving a quite hazy impression
of the whole picture. The reason for writing this re-
view was to call to the attention of the readers the
great variety of unsolved (and even unformulated)
problems.

Only the future will tell how important the role of
C-G coefficients will be for physics. However the
consistency and beauty of the theory in statu naseendi,
on the one hand, and the continuous widening of the
physical applications, on the other hand, force one to
think that the physical side of the theory of C-G coef-
ficients is quite important. The use of C-G coefficients
in physics is still rather limited, in spite of their
various applications. This is related to the insufficient
development of the theory and to the underestimation
of their role and effectiveness.

APPENDIX

THE CLEBSCH-GORDAN COEFFICIENTS OF COM-
PACT GROUPS

The theory of C-G coefficients of higher compact
groups which contain the group SU(2) (O(3)) as a sub-
group, has much in common with the classical theory
of angular momenta and, as was mentioned in Section
12, should in the future become a new branch of the
generalized theory. However, at present, the problem
of creating a theory of C-G coefficients which is con-
venient for physical applications is far from being
completed. From this point of view a detailed review
of results for the higher groups seems to be prema-
ture. Below we briefly go over the peculiarities, the
principles of computational methods, and the problem
of tabulation for the C-G coefficients of the higher
compact groups.

Compared to the classical theory of angular mo-
menta, the general theory of C-G coefficients of com-
pact groups exhibits a series of peculiarities. First,
multiplicities may appear in the Clebsch-Gordan
series (for the group SU(2) the same representation
may appear with multiplicity higher than one only for
the addition of several angular momenta). In order to
distinguish the multiply occurring representations one
makes use of an external factor, not contained in the
group (in the group SU(2) this factor is the order in
which the angular momenta are coupled). A second
important peculiarity is the nonuniqueness in the de-
termination of the canonical basis, its dependence on
the choice of a chain of subgroups. Various reduction
schemes in terms of subgroups may be essential for
different concrete physical problems, where a hier-
archy of physical symmetries is observed. We note
that in the presence of a chain of subgroups the C-G
coefficients can be factorized in terms of the subgroups.
Thus, the SU(3) C-G coefficients in the chain SU(3)
3 SU(2) consist of a C-G coefficient of SU(2) and an
isoscalar factor. For more complicated chains there
appears a system of factors. One has to keep in mind
these peculiarities both in computing the C-G coeffi-
cients and in using data from the literature, in particu-
lar tables. In the presence of multiplicities the factor
distinguishing the multiple representation is not con-
tained in the group, depends on the concrete problem
at hand and often has the character of a convention.
Therefore one must first construct C-G coefficients
corresponding to a Clebsch-Gordan series not contain-
ing multiple representations. These coefficients are
uniquely determined and it makes sense to tabulate
them. The tabulation of C-G coefficients for higher
groups is just as unjustifiable as the tabulation of
generalized C-G coefficients in the theory of angular
momenta [ 5 5 1.

It is also necessary to indicate that the transition
between C-G coefficients of the same group, but for
different schemes of reduction (with respect to sub-
groups) is considerably more complicated than their
direct computation. The results obtained by means of
one reduction scheme are useless for another reduc-
tion scheme. Therefore it is imperative to understand
the limited character of formulas and tables of C-G
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coefficients and the conditions in which they have been
derived, before making use of them. For the C-G co-
efficients of higher groups some of the other concepts
known in the case of SU(2) undergo certain changes.
Thus, for the Wigner coefficients of the general case
there is no longer any symmetry with respect to per-
mutation of the representations1 1 0 1 1.

The theory of Lie algebras, which is exposed in a
series of reviews and monographs Ι· 6 0 ' 1 0 2 ~ 1 0 β ] , is at the
basis of the general theory of C-G coefficients for
compact groups. All simple Lie algebras have been
classified and studied; there are four infinite families
of "classical" groups corresponding to these algebras:
the unitary unimodular groups SU(n)(n 2 1), the ortho-
gonal groups SO(2n + l ) ( n 2 2) and SO(2n) (n > 3),
the symplectic groups Sp(2n) and the five "excep-
tional" groups: G2, F 4 , E6, E7, E 8 . The Lie algebras
allow one, in principle, to determine any quantities
characterizing the appropriate groups. However, there
is a large gap between the general formulation and
realistic computational schemes for physical problems.
In the discussion of concrete methods for the construc-
tion of C-G coefficients one may, conventionally,
distinguish three approaches:

1. The starting point of the infinitesimal approach
are the commutation relations between the operators
representing the Lie algebra. It is convenient to write
these commutation relations in the Cartan-Weyl basis,
containing I mutually commuting operators Hj, (with
[Hi, Hj] = 0, i, j = 1, 2 , . . . ,1 (I denotes the " rank" of
the group) and r - 1 noncommuting operators E a ( r
is the dimension of the Lie algebra). These operators
define the root vectors ri(a) ([Hj, E a = r i ( a ) E a ) , the
weights m = ( m j , . . . , mi) of the representation (Ηίψ
= ηΐίψ), and the matrix elements of the representation
of the groupf103'1071. In ' 1 0 7 ' there were also considered
methods for the construction of C-G coefficients. The
basis plays an important role in such a construction.
The problem of constructing and labeling a canonical
basis was discussed inC1 0 8-1 1 0], The basis vectors of
irreducible representations are labeled by means of
the eigenvalues of the additive operators, [Hj] = mj,
and also by the eigenvalues of some nonadditive opera-
tors, such as the Casimir operators 1 1 0 8 ' 1 0 9 ' 1 1 1 3 . Thus,
for the representations of the groups SU(n),
D ( P i , . . . , Pn-i) the signature may be related to the
Casimir operators of that group. As nonadditive
parameters one may select the Casimir operators K^
of the groups SU( η - 1 ) , . . . , SU(2) (κ = 2 , . . . , η,
= 2 , . . . , κ) i.e., the labeling of the canonical basis con-
sists of the three blocks of numbers | P i , . . . , Pn-iJ

The calculation of matrix elements of the represen-
tations and of C-G coefficients in the infinitesimal
method is a rather lengthy and complicated affair.
Each group and reduction scheme requires a separate
discussion. We indicate some papers containing con-
crete computations of matrix elements (SU(3) [ 1 1 2 > U 3 ],
SU(4)t114i, SU(6)t115'116l, Sp(6)t117'1181, G2

[U9\ F j 1 2 0 ] ,
SO(5) r i 2 1 '1 2 2 ]) and to the calculation of the Clebsch-
Gordan coefficients by means of the infinitesimal
method (SUOP 2 2 ' 1 2 3 - 1 2 6 ], su(6)tU6'127-13°l SU(n)t131l,
SO(5)[132~134]). Further development of this approach
presents great methodical interest.

2. A second approach, related to the use of algebraic
methods, is closest in ideology to the classical theory
of angular momenta. An essential element in this ap-
proach is the definition of a polynomial basis. The
problems of construction of a polynomial basis were
discussed in a series of papers (SU(3) [ 1 3 5~1 3 8 ],
SU(4)t139l, SO(5)t140-142], SO(n)t143-145l). An important
special case of a polynomial basis is the symmetric
basis introduced for the groups SU(n)[44>45>55]. Charac-
teristic properties of this basis are :

a) Redundancy (not all components are linearly
independent, although the expansions in terms of the
basis are unique).

b) Symmetry (the contraction of an arbitrary basis
vector of the representation D ( P i , . . . , Pn-ι) of SU(n)
with the conjugate vector yields a product of determin-
ants of order (n + 1) raised to the powers Pi,
P2, · · · , Pn-i, i-e., there is a close relation to η χ n-
symbols).

c) Factorization (the symmetric basis consists of
separate factors which are bases of the representa-
tions D(P00. . . ) , D(0Q0...), D(OOR...). . .) These
properties are convenient for the construction of
transformations among different reduction schemes.

The polynomial basis allows for a wide use of
generating invariants, a method which permits one to
study the structure and interrelation between C-G
coefficients of different groups t 5 5 ' 5 6 1 . An important .
stage in the development of an algebraic computation
scheme were the papers [ 1 3 7~1 3 8 ], where for the compu-
tation of individual C-G coefficients use was made of
the rules for combining them in order to form more
general coefficients. Among the other papers on the
algebraic method it is worth mentioning1"6"1 5 1 '. In
spite of known difficulties (finding the construction
rules, computation of the normalization), the algebraic
approach allows one to obtain results which are of
general validity for a given group. It is, of course,
incorrect to compare it directly with the infinitesimal
method, since in algebraic calculations one makes
widespread use of the knowledge of general properties
of representations, which in turn are derived with the
help of Lie algebras.

3. A third direction in the theory of C-G coefficients
is based on the close interrelation between representa-
tions of the semisimple Lie groups and the representa-
tions of the symmetric group, jrft6<>1. For a long time
this approach played the main role in applications and
was related to the calculation of fractional parentage
("genealogic") coefficients. The latter are the factors
in the C-G coefficients of higher groups. They are
quite convenient for the construction of wave functions
for many-particle systems exhibiting definite permu-
tational symmetries. The results of this approach are
systematized in the monographs [ 1 5 2"1 5 6 ]. The computa-
tional machinery of the symmetric group is a useful
tool in the representation theory of compact Lie groups.
A characteristic example is the pietism method [ 1 5 6~1 5 9 ].
The relationship between the matrix elements and the
C-G coefficients of the symmetric group irf and the
C-G coefficients of the compact Lie groups has been
discussed in several papers [16°'161]. The reduction co-
efficients (S-coefficients) have been defined in [ 1 0 0 ] ;
these coefficients realize the reduction of the space
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R* = R x R x . . . x R into spaces i rreducible with r e -
spect to iff x G (R is the representat ion space of the
group G, corresponding to the symmetry of the physi-
cal system under consideration). The S-coefficients
define formally the relation between the computational
machinery of the symmetr ic group and the compact
groups.

Notwithstanding the accomplishments in all d i r e c -
tions of investigation of the C-G coefficients of the
higher groups, the fragmentary c h a r a c t e r of the r e s u l t s
st i l l needs to be overcome. A s e r i e s of papers have
computed tables of the C-G coefficients (and factors)
for various groups, with applications in view. We point
out the tables of i soscalar factors for the group
SU(3) [ 1 1 V 6 2 > i e 3 ] , the numerica l tables, obtained with the
help of computers , for the reduction SU(3) D SU(2),
the tables of i soscalar factors of the groups SU(4) [ 1 1 4 ] ,
SU(6) [ 1 1 6 ] , the tables of reduction coefficients for
D ( l l ) x D ( l l ) χ D ( l l ) of SU(3) t l 6 5 ] , and the table of
C-G coefficients of the group SO(5) [ 1 3 2> 1 3 8 ]

Acknowledging a cer ta in value of these tables (if
one takes into account the limitations listed above),
one should r e m a r k that the reduction of the factors of
the C-G coefficients of higher groups to the C-G coef-
ficients of the groups SU(2) (or their combinations)
makes such tables practically unnecessary. Thus, the
reduction of some i soscalar factors of the group SU(3)
to the C-G coefficients of SU(2) [ 5 5> 9 8 ], makes a large
portion of the t a b l e s [ 1 1 2 ' 1 6 2 ' u s e l e s s . Quite important
and interest ing is an analogous resu l t for SO(5) [ 9 9 ] .
Fur ther development of the problem of reduction of
the C-G coefficients for the compact groups to C-G
coefficients of the group SU(2) would allow one to use
ready-made universal tables of the C-G coefficients
of SU(2), in place of the new tab les . The methodical
importance of such a reduction was already mentioned
in Sec. 12, from the point of view of a unified theory of
C-G coefficients.

The latter is important also for the theory of C-G
coefficients of noncompact groups. Insofar as the
physical aspects of the problems of higher symmetr ies
a r e concerned, this set of problems is undergoing a
significant revision (cf. Section 8) and the set of physi-
cal objects to which one applies the theory of C-G
coefficients of compact groups is also expanding (cf.,
e.g., the coherence prob lem 1 1 6 6 " 1 6 8 1 ) .
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