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CLESCH-GORDAN COEFFICIENTS, VIEWED FROM DIFFERENT SIDES

Ya. A. SMORODINSKII and L. A. SHELEPIN
P. N. Lebedev Physics Institute, USSR Academy of Sciences
Usp. Fiz. Nauk 106, 3-45 (January, 1972)

A generalized theory of angular momenta has been developed over the past few years. The new re-
sults account for a substantial change in the role played by Clebsch-Gordan coefficients both in
physical and in mathematical problems. This review considers two aspects of the theory of
Clebsch-Gordan coefficients, which forms a part of applied group theory. First, the close relation
of these coefficients with combinatorics, finite differences, special functions, complex angular
momenta, projective and multidimensional geometry, topology and several other branches of mathe-
matics are investigated. In these branches the Clebsch-Gordan coefficients manifest themselves as
some new universal calculus, exceeding substantially the original framework of angular momentum
theory. Second, new possibilities of applications of the Clebsch-Gordan coefficients in physics are
considered. Relations between physical symmetries are studied by means of the generalized angu-
lar momentum theory which is an adequate formalism for the investigation of complicated physical
systems (atoms, nuclei, molecules, hadrons, radiation); thus, e.g., it is shown how this theory can
be applied to elementary particle symmetries. A brief summary of results on Clebsch-Gordan co-
efficients for compact groups is given in the Appendix.
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1. INTRODUCTION

C LEBSCH-Gordan coefficients (C-G coefficients) have
long formed part and parcel of the mathematical appa-
ratus of theoretical physics. These coefficients have
been used in the computations of spectra—both atomic
and nuclear--and have been used in various parts of
scattering theory. Formulas and tables of various
types can be found in many textbooks and monographs
(and even in the ‘‘Pocket Diary for Physicists’’), How-
ever in the majority of cases the concept of G-G coef-
ficient is associated to formulas for the addition of
angular momenta, and to many physicists their theory
appears as a closed chapter.

In fact, in a certain sense, one may consider closed
only what we call the classical theory of C-G coeffi-
cients, related to the expansion of products of repre-
sentations of the three-dimensional rotation group (of
real three-dimensional space) into irreducible com-
ponents. Investigations over the last few years have
taken the theory of C-G coefficients outside the narrow
circle of its classical problems. The new develop-
ments are more and more intertwined with various
sections of algebra, multidimensional geometry,
topology, projective geometry, analytic function theory,
the theory of special functions, differential equations,
combinatorial analysis and the calculus of finite dif-
ferences. One could say that the theory of C-G coef-
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ficients takes on the character of a new kind of calcu-
lus, going far beyond the scope of the classical theory.

However, many of the newer aspects of the theory
of C-G coefficients can be found only in journal arti-
cles; the majority of these aspects are not fully de-
veloped and are not well known. At the same time this
branch of mathematical physics has good chances to
develop, and it seems useful to call attention to it,
This is also important from the viewpoint of physical
applications of the C-G coefficients, which have ex-
panded recently in connection with the discovery of
new symmetries of elementary particles, and also with
the necessity of analyzing the interrelation between
symmetries and the discovery of hidden symmetries in
complicated physical systems: atoms, nuclei, hadrons,
molecules. The theory of C-G coefficients is adequate
for the study of such systems, which reflect the com-
plicated character of the interactions of many particles.
It should also be stressed that the theory of C-G coef-
ficients, in distinction from the theory of characters of
representations, makes it possible to use all the infor-
mation stemming from the presence of symmetry in a
physical system.

Thus, the purpose of the present review is to attract
attention to the new aspects of the theory of C-G coef-
ficients, to tell about the wealth of interrelations in
this theory and to indicate a series of new possibilities
of applications,
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We shall restrict our attention below to the theory
of C-G coefficients of the compact group SU(2) (which
is also called the theory of angular momenta) and some
of its generalizations, but we also list the results for
C-G coefficients for other compact groups. The prop-
erties of C-G coefficients for noncompact groups, in
particular for the group O(2, 1), necessitate a separate
review article. The bases of the theory of angular
momentum were laid in the fundamental work of Wig-
ner!! and Racah!®**! with the purpose of carrying out
practical calculations in atomic and nuclear spectro-
scopy. In the 1940-s8 and 50-s8 the C-G and Racah coef-
ficients were studied in detail and tabulated; various
combinations of these coefficients were discussed:
generalized C-G coefficients, transformation matrices,
j-symbols; graphical methods were developed. Toward
the end of the fifties all concepts of angular momentum
theory were unified into a consistent formalism and
the theory seemed completed. The angular momentum
theory as of that time, which we will call ‘‘classical,’’
is exposed in a series of monographs!* ],

Therefore, the discovery by Regge!'*! of new sym-
metry properties of the C-G coefficients, overlooked
in all earlier investigations, came completely unex-
pected. This discovery was the starting point of the
new development of the theory”. Over the past decade
the theory of angular momenta was subject to qualita-
tive changes. Among the new problems which have ap-
peared in the past few years, one can indicate the
generalization of C-G coefficients to arbitrary com-
plex arguments, extension which was essential in con-
nection with Regge trajectories!!®l; generalizations of
the C-G coefficients related to the analysis of complex
physical systems; the close intertwining of the theory
of angular momenta and the theory of C-G coefficients
for compact groups. This situation of the theory makes
a review of its state useful, in spite of the fact that
owing to their incompleteness many of the questions
touched upon in this review are exposed only schemat-
ically.

We have considered it very important to indicate
directions which are almost undeveloped and would like
to stress that our enumeration of such directions is
probably incomplete, and that not all of those mentioned
will turn out in the future to be equally fruitful. Un-
doubtedly, new relations will be discovered in future
work,

The review consists of three parts. In the first part
we list briefly the results of the classical theory of
angular momenta and discuss the interrelations with
discrete and continuous mathematics. In the second
part we construct the generalized theory of angular
momenta on the basis of the new symmetries (the
Regge symmetry and higher ones) and discuss the
physical aspects. In the third part we analyze the re-
lation of the theory of C-G coefficients with geometric
and topological concepts. The Appendix gives a brief
listing of results in the theory of C-G coefficients for
compact groups.

DIt is characteristic that these symmetries are already contained in
the papers on hypergeometric functions [!*!4]. However, nobody ever
attempted to extract them from there.

I. C-G COEFFICIENTS AND THEIR RELATION WITH
DISCRETE AND CONTINUOUS MATHEMATICS

2. The Classical Theory of Angular Momenta

The first part of this review treats problems which
are directly related to the classical theory of angular
momenta, such as: the relation between the theory of
C-G coefficients and combinatorial analysis, the calcu-
lus of finite differences, the theory of special functions.
integral representations and also the construction of
C-G coefficients for complex angular momenta. How-
ever, first of all we must briefly discuss the classical
theory of angular momental’""!1, At the basis of this
theory lies the concept of C-G coefficients
(jijzmum, | jm) which implement a transformation from

the basis zpn‘llx ‘Pﬁz to the basis zpin, where jj, jo, i
are angular momenta and m,, m,, m are their projec-

tions. The C-G transformations are unitary, and thus
verify the equations

3 (Gadamana | im) (ogmams | 'm’) = 85:8mme, (2.1)
mmy
& (sfamam | m) (i ajam;ms | jm) = 8o (2.2)

The unitary relations (2.1) and (2.2) and the recurrence
relations which are obtained by means of the infinitesi-
mal operators of the group SU(2) allow one to compute
all the C-G coefficients. The arbitrariness in the
choice of phase is removed by imposing the supple-
mentary condition!'®

(2.3)

With this choice the C-G coefficients are always real.
The symmetry properties of the Wigner coefficient
(3j-symbol), which projects the product of three irre-
ducible representations on an invariant subspace and
is related to the C-G coefficient by the relation
it T2 Is
(mi my mg

(juefima | jm)>0.

) = (=" 2 )7 o fymymy | o —my),  (244)
are expressed by the equalities

(]1 Ja Js)=e(h' Jn 11)’ T

my m, my mi My ny

(2.5)

where € =1 if the permutation of the columns is even

and equals (-1)1"32"33 if the permutation of the col-
umns is odd or there is a change of the sign of the
projections; altogether there are 12 such symmetry
operations. (The additional symmetries which were
obtained by Regge! will be discussed in Chap. II.)
Usually the index j is assumed to be positive, integer
of half-integer (m takes on 2j + 1 values from -j to
+j). However, the matrix elements of the square of
the angular-momentum operator as well as the eigen-
value equations do not change under the substitution

j—oU=—j—1 (2.6)

and hence one may consider negative values of the
angular momenta in all formulas for the C-G coeffi-
cients(®1"), The state vectors (wave functions) corre-
sponding to j and J describe the same state and differ
only by a phase factor

| jm) = (—1)""™ [Tm). (2.7)
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Thus, the substitution (2.6) denotes a definite sym-
metry of the C-G coefficients.

The matrix elements of irreducible representations
of the group SU(2), i.e., the matrix elements D(w) of
finite rotations, are closely related to the C-G coeffi-
cients, If the rotation is parametrized by means of the
Euler angles o, 8, vy one can write the matrix elements

Dham'(a, 8, 7) in the form

Dl (0, By ) = € ™ Dl B) Y. (2.8)
The quantity
j (—pi-mmi-m G -mn
Do (B) = By ‘/ =l G =yl
m—m FIAE =Ty
EEC T IR C ATV R (2.9)
X = T (= cos )

is, up to a numerical factor, a Jacobi polynomialt*®,
The phase here has been chosen in agreement with(®],
such that

D = (= 1Y D, (2.10)

A different choice of phase has been made in''¥,

In special cases the finite rotation matrix can be
expressed in terms of spherical harmonics and
Legendre polynomials:

4 1/2
Do fer, B 9) = (572p) Y B, ),

, (2.11)
Doo (2, B, y) = P, (cosP).

The relation between the D]mm' and the C-G coeffi-
cients is given by the relations'®!

i L. . j R
D2y (©) Dy (0) = X (afamyma] jm) Dy () (Gijomimy | jm”),
- jimm?’

Anln J (2'12)
1 i i . :
e S. 5 Di}.lm; (@ By y) Dolyos (2, Bo %) Ditows (01, B, ) sinf dp da dy
b %

Ji s Ja Jo e Ja
E(ml m, m3) (m'l m, m;)
(2.13)
Important role in theory and applications are played
by various combinations of the C-G coefficients (or
Wigner coefficients) which are covariant sums of
products of such quantities, e.g., the expression which
appears when a scalar is formed from four or more
angular momenta (addition of more than two angular
momenta):

(j1dammsy | jigmaz) (Tiefsmaams | froaMuas) (J1esf Mygame | jm) - (2.14)
(expressions of the type (2.14) are called generalized
C-G coefficients). A special place among such com-
binations is occupied by the transformation matrices
(and their symmetric forms, the so-called j-symbols)
which implement the transition from one coupling of
the angular momenta {(e.g., in (2.14): ((juj2)jizis)jisid))
to another coupling, differing from the first by the
order in which the angular momenta are added. Arbi-
trary transformation matrices can be expressed in
terms of a sum of products of the simplest matrices—
the Racah coefficients, The relation between the trans-
formation matrix and the corresponding Racah coeffi-
cient and 6j-symbol is given by the formula

Sty

((G1J2) Fradsd | 71 Gads) Fasd) =V @ia+ 1) (Zhaat D W (udafins jrefas) (2.15)

VDT 1) (= sttt [1 1 Tl
Ja ] I3

(ftfzmlmzljm):[

According to the classical theory the 6j-symbol is in-
variant with respect to a permutation of columns with
a simultaneous permutation of any two pairs of angular
momenta which are situated in the same column (24
symmetry rules).

Transformations between different coupling schemes
of four angular momenta lead to 9j-symbols related to
the corresponding transformation matrix by

((Gsje) F1e Gal o) jaai | (FaJa) Jua (Fofa) Joal) =

i Jo T
=V Qi+ Zju+1Cis+1) 2t (fs Ja 134)
j13 Jaa 1
(2.16)
and satisfying 72 symmetry rules.

The theory becomes, of course, more complicated
for the transformation matrices occurring in the addi-
tion of a larger number of angular momenta, Little
has been done in this direction: there is not even an
established notation for the j-symbols, the problem of
their enumeration has not been solved, etc. The general
structure of the transformation matrices can be seen
from the following example. According to the definition

D (afamamy | jramag) (rgfsmazms | 712M123) (J1zafalmagama | jm) .
MyaMyag .

= 2 () jaeis) Trasiai | G17a) ua (ado) Fesd)
14723
X X (fuimma] jramys) (Jafsmams | jagiaz) (F1sfautmsias | Jm).
Miy™Mo3 (2‘17)

In (2.17) the transformation matrix defines a recoupling
between two coupling schemes with total angular mo-
mentum j and values of the intermediate momenta j,s,
jizz and jia, j23. Multiplying both sides of the equation
(2.17) by the appropriate C-G coefficients and carrying
out the required summation, we obtain

(((F172) F12Js) Juoadal | (F1is) ia (Fois) Fash)
=91 Z {J1jamuiy | framuz) (Frafsiiamia | jro: Mg} (Figafatmymime, | )

XA damymg | jram) (Gajsmams | Jasmas) (Frafssm gy | im).
(2.18)
The summation here goes over all projections of the
angular momenta. Equations of the form (2.18) give
general expressions for the transformation matrices.
For concrete computations there exist many tables of
C-G coefficients and of their combinations. The general
expression of the C-G coefficient can be written in the
form of a finite sum
s ot =0 G Fi— !
X (1t fa— D Gy -+ m)(fy— my)l (fo+ mp)! (fo— mo)t (F4-m)! (f— 'HJ!JW
— 1)z
x ;’ 2 (14 ja—T —2) @+ ] —jy ~my)! (ﬁz-f")"z—z)! (z-H7—Tetm)l (i—my—2)! *
(2.19)
There are other equivalent representations, which will
be analyzed in detail in Sec. 5.

On the other hand, the C-G coefficients and their
combinations can be expressed in terms of special v
values of generalized hypergeometric functions®
(cf. Sec. 5):

(Jyjamyny | Jm)
:(_1)52+m2[ _ I(l:"r'f{'-'_fzi)! (ig+iz—g’)! (,""’,‘” (i —m! (2 +1) : ]1/2
G—ir+ i)V GrTe+ T DUG A+ m) (g Am)? (72 — ma) (72 - ma)]

(+1atmy! i fi— iy iy, — =M fy—a—m
Xy e (T T e i (2.20)
+1, —j—ja—mg ). )
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From the expressions (2.19) which express the C-G
coefficients and their combinations in terms of com-
plicated sums over factorials one can glean the rela-
tion of the C-G coefficients to discrete mathematics,
whereas the expression (2.20) indicates a connection
with the theory of special functions and of differential
equations.

3. The Relation of C-G Coefficients with Combinatorics
and the Calculus of Finite Differences

By their very nature the C-G coefficients belong to
discrete mathematics: their arguments range over a
discrete set of values, and their numerical value is
expressed in terms of a sum of products of factorials.
Therefore it is quite natural that in the analysis of the
C-G coefficients and their combinations one can make
use of combinatorial analysis. Such formulas have
been used, e.g., in!®?", to establish transformations
between expressions of the C-G coefficients derived
by various authors., However, the relation between
combinatorics and the theory of angular momenta is
more profound than might appear at a first glance,
Combinatorial analysis'**»**) studies various compli-
cated sums of factorials and binomial coefficients,
Sums which are covariant with respect to some group
or sums related to C-G coefficients are of interest in
applications. Therefore a series of formulas from
combinatorial analysis can be translated into the
language of C-G coefficients. Consider, for example,
the known relations

1 'al
2 A G-l (c—s) @—b—ctal _ bl (a—b) @a—cy * (3.1)
L
(a—l b+ (a—c)) ¥l (a+-b- D)t (3 2)
2 sic—a)l  cl@fd—c+1)f °* *

The Vandermonde formula (3.1) can also be expressed
in terms of binomial coefficients in the form

() =3 )

Rewritten in terms of the C-G coefficients these rela-
tions have the form

(3.3)

+2\ Urfomymy | ji+ jam) =1, (3.4)

ml My=m

m_z Uamimy| ji+ jam) = 21 +4 (3.5)
=TTy

The transition from Egs. (3.4) to (3.5) is simply the
symmetry of the C-G coefficients.
The second Vandermonde formula, which occurs for
the substitution j — J
1
)2

(—1)» (y—x—:n—i)=z(_1)a (!l+:"- (3.6)

corresponds to a C-G coefficient analogous to (3.4), but
with negative angular momentum.

Another example is the product of two Fibonacci
numbers'?®), defined by

uM:é i P 2": (2,

i=1 i=1

and given by the formula
u‘25‘u2)2= 2 (%‘ i+ my) ‘é‘ o+ mo) mym, ,% (GrtJat my+my) my+ mz)

™My
fit7: )
x (i1+iz—m:—mz .

(3.7)

The product of three Fibonacci numbers can be ex-
pressed in terms of a combination of two such C-G,
etc. We note that here the argument of the angular
momentum contains the projection m.

The equations (3.4), (3.5), (3.7) are illustrations of
the interrelation between combinatorics and angular-
momentum theory, It is likely that many other formu-
las from combinatorial analysis can be expressed in
terms of the C-G coefficients.

As regards the combinatorial properties of the
arguments in the C-G coefficients, their relation with
the theory of magic squares, block-schemes, and
finite geometries seems to be taking shape at the pres-
ent time. However, it is more convenient to discuss
these questions within the framework of the generalized
theory of angular momenta, to which Chapter II is
dedicated.

Another branch of discrete mathematics directly
related to the C-G coefficients is the calculus of finite
differences. We recall some basic definitions?%271,

1. Generalized power (the analog of ordinary power):

z!
o] G 2 (3.8)
0, z<<H.
Its properties are:
I(ﬂ-) e z(m) ($ __m)('!l—m)’
(-I-}-i)(m:(.l‘—}—i) .Z"'-”. } (3 ‘9)

2. Finite differences (the analogs of derivatives):
Mnf(x)y=[f(z+1)—f(2),
APf (z) = Anf (z+ h) — Anf (2),

(3.10)
APF @) =3 (=" (}) F =+ kh).

k=0
3. Operations with generalized powers (analogs of
differentiation and integration):

Az = kyth=1),

(n4-1 )("-H) (3.11)

2 ™ = o

The calculus of finite differences preserves the basic
properties of the analogues indicated above,

In a cycle of papersi®:*®®] Ansary has shown that
the numerical value of the C- G coefficients is deter-
mined by the expansion of the quasi-binomial

((az—by)™ = 2 (—

according to the equatmn

(3.12)

n (n—-a), (n—a) (o), (a)
( a) a x %y

a Py 12 ¢ ela"—7") 172

M2 £ @@V on gy oy for (@
o BV |=N m—a’,—[;(a»_w R I (S R )
o BT (3.13)

where the square matrix has the meaning of a Wigner
coefficient. (Its arguments and symmetries are the
same, up to a phase factor!**],) N’ is a normalization
factor.

However, in order to apply finite-difference methods
to the theory of C-G coefficients it is more convenient
to use in place of (3.13) the relations derived in!'",
The quantity

P, ) = (— 1) e (k=2 G0 (3.14)
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is the difference analogue of a Jacobi polynomial, The
C-G coefficients can be expressed in terms of these
quantities by means of the formula

(J1jmymy | jm)

= By, moom V(flﬁ‘ffiz)! (e +i—i} (ilffz—l')! (27 + 1! ()'_4"”)! J—m)!
R G472+ D! Gr—m) (- m)! a—ma)l (j2 -+ ma)!
X T3 (u, k),
(3.15)
where
k= f1+l2'z+i L= fH‘I'Zz—f +my,

s=j—Jy-F fa a=(j,—m)—(j+m), ﬁ:(].t‘f‘mq)*(l.“lrm)-

Equations analogous to (3.14) and (3.15) can be con-
structed for some combinations of C-G coefficients. On
the other hand, since one can express different rela-
tions in the calculus of finite differences in terms of
C-G coefficients, it is not excluded that some of the
problems of the theory of finite differences, namely
finite difference equations, approximate calculation,
approximations, could also be expressed in terms of
C-G coefficients. This whole range of problems re-~
quires careful further examination,

4, Clebsch-Gordan Coefficients and Continuous
Transformations

The C-G coefficients are closely related to continu-
ous transformations, Here one can distinguish three
different basic lines of development. The first is the
obvious relation to Lie groups, infinitesimal transfor-
mations, the corresponding differential equations and
their solutions, i.e., the special functions; the second
line of approach is that of integral representations of
the C-G coefficients; the third line consists in general-
izing the C-G coefficients to continuous, and in general
complex values. The relation with special functions
(in particular, hypergeometric functions) are discussed
below, in Chap. II (Sec. 6) on the basis of the symmetry
of the C-G coefficients derived by Regge; in this sec-
tion we briefly discuss the second and third lines.

An integral representation of the C-G coefficients
is based on the relation (2,13}, Since, according to
(2.13) the C-G coefficients are defined as an integral
of a product of three D-functions, using the differential
representation of one of the D-functions and substitut-
ing for the first degenerate C-G* and for the other
two D-functions the appropriate expressions, we obtain
the integral representation
(yjymymy | jm)

_ =y itk [ 20 Uk Gy by M Gyt by DY _ J"“’
U= ma) G m) o= ma) ot ma)l( — m W+ 1= 1)V G —fr-7a)!
=1 s
% g (1 ~x)j1-ml (,1 +I)iz'm2 a-m [(1 _x)J'*J'H-J‘z (1 ) i jlfizl d.[(4 '1)

v
—1

T gttt
2

dzi—™

These representations yield the usual series for the
C-G coefficients. Making use of the symmetry among
different C-G coeificients one can also obtain other
integral representations.

The third point of the interrelations between C-G
coefficients and continuous transformations refers to
a complexification of the variables. The generaliza-
tion carried out below of the C-G coefficients of the

* (1'1 Iz 7 ): (27 +4-1) 2! (2/)! ]‘/2
It —Jz —ittia Grtie— N Gitfa-+i+ 1! .

group SU(2) is based on the properties of the represen-
tations of the group O(4) and of the Lorentz group
SL(2, C). As is well known, the six generators of the
group O(4) satisfy the commutation relations
M, M] = ieM,
[M, Nj]=ieN,
[N, Nj=isM.
Let us denote the appropriate quantum numbers by
M, N, m, n (integers). Introducing the linear combina-
tions

(4.2)

A=1(M+N), )

B—:%(M—N), (4.3)

each three new generators satisfy the commutation
relations of the group SU(2)

[A, Al =ieA, )
[B, Bj= ieB, | (4.4)
(AB|=0. J

Let us denote the quantum numbers belonging to these
generators by 1, my, 1B, mp; this allows one to ex-
press the matrix elements of the operator N in terms
of the known matrix elements of the operators A and
B, Since

M=A-+B, N=A-B,

the matrix element will depend on two C-G coefficients
of the form

T -

3 Ty 3 {4.5)

where Jm are the quantum numbers of the operators
M and N, and /2(nz M) and Y.(m + u) are the quan-
tum numbers of the operators A, A; and B, B; respec-
tively. This matrix element can be written in the form

(n—}—M n—Mm-4-um—p \ ,m)

61y (6) = [ IR EIENL |8 (neE MM ) )

RCEFRITEES 22 TE E

h;M n—2M m_l—ﬂ, m_u i]m) mgM).  (4.8)
This formula can be generalized to the Lorentz group.
The six generators of the Lorentz group satisfy the
commutation relations

X it (

M, M]=ieM,
iM, N]=eN, } 4.7
(N, Nj= —ieM.

Their eigenvalues have the form ¢ = -1 +ip, v, J, m

(p is real, the other numbers are integers or half-
integers). Introducing the (nonhermitian) generators

(4.8)

we are led to complex eigenvalues and to the commuta-
tion relations of the complex rotation group SU(2, C)

{F. F]=icF, }

F=DM+iN, K=M—;N,

K, K] =ieK,

[F, K]=0.
As a result of this we obtain for the matrix element of
N: (a boost” by the “‘hyperbolic angle” §) a for-
mula®®**) analogous to the one for O4):

—h-Lico

(4.9)

. £t o4y g G —v o—v|
A ms (8) =N 5 gm(_,_! =, —t+——2—”;Jm)
~k—ico
o+v O—w o—v g—vV ,
) (T T =T, 1+ 2 m) (4.10)

X exp[—0(2t—c+v+m)] (-+ for Im¢ 3= 0),

YA boost is a pure, rotation-free, Lorentz transformation.
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or simpler
~hk+io0 N
- +int 1 _
Bomr @ =N § ari (52 O 4 5 —t+ 5 |Im)
—k—~ico
X (g—;_—v. a;z_—v, t—}-%. —l+%l."m) e~28t

(4.11)
where the normalization factor is

i T(o—J'+1)T(e+J'+2)
2 Tle—~J+)T(o+7+2 °

N=

These formulas contain quantities which are related to
the C-G coefficients, but for two mutually complex
conjugate angular momenta

h=g (=49, =g (—1+ip—v  (=J). (4.12)
The “‘projections’’ of these angular momenta become
continuous.

More general C-G coefficients occur for nonunitary
representations. However, the theory of these objects
is not yet developed.

If one replaces the generators F and K by the

generators

fx.y= _l'Mx,y’i'Nx,V:
fz='Mz'+'isz

ke y=iMy ,+ Ny y,

by M,—iN,, (4.13)

these generators form two algebras of the three-dimen-
sional Lorentz group O(2, 1)

[fxy fy] = ifzy [kx, ky]= ikz, )
[fyv le = _if:m [kyv kzl= - ikxy [f, k]=0 } (4 .14)
[flv fx]= _ifyy [kzy kx] == —iky,

In this case, the computation of the matrix elements
leads to a theory of C-G coefficients for the group

0(2, 1)P*»*. the properties of these coefficients go
beyond the framework of the present review article.

In conclusion we write out the expressions of the
C-G coefficients with the correct phase and normali-
zation factors

(Jujamymy | jm) = eFintiztma) [T (j — j, —mg+1, 2j;+2)]?
[ (f1+m1+1»j1—m1+1:js—m3+1vj1+f2_fa+17 Jitjatja+2 )]”2
Jo-tmet 1, jo—mat1, jy+my+d, —jid-jatjs+1

X sFy(jy—Jo—Jis 1—Je+ s+ 1 hi—m+- 45 i —ja—ma+1, 2§, +-2; 1);
(4.15)
here
PR g =T me=dm
=%, my=—t, jy=J or J', o=—1+4ip;

p and m are€ arbitrary real numbers,

The hypergeometric function (and accordingly, the
C-G coefficients) remain terminating series (finite
sums) even after complexification. In the form above
the series terminates for j;, - jo ~js+z-1=~-J +2
— 1 vanishing.

Nonterminating series are characteristic for the
noncompact group 0O(2, 1).

This example indicates the possibility of a com-
plete complexification of the C-G coefficients and
their utility in the theory of complex angular momenta,

In conclusion of this section it is necessary to note
that both the investigation of the relations for C-G
coefficients with differential and integral representa-
tions and their generalization to complex values of the
variables require, in general, the usé of symmetries

higher than SU(2), i.e., appeal to the theory of Lie
groups, both compact and noncompact.

II. SYMMETRIES OF THE C-G COEFFICIENTS AND
OF THEIR COMBINATIONS

5. The Regge Symmetry. Relations of the C-G Coef-
ficients with Special Functions

In this second part of our review we consider the
generalized theory of angular momenta. This theory
is constructed on the basis of new quantities, the
n x n-symbols™®), which are closely related to the
symmetries of the C-G coefficients and their combina-
tions. The starting point of this development was the
discovery by Regge of new symmetry properties of the
C-G coefficients, not contained in the classical theory
of angular momenta. We consider below the direct
consequences of the Regge symmetries, including a
reformulation of the theory of angular momenta in the
so-called R-representation, and an investigation of its
relation to generalized hypergeometric functions. Ac-
cording to Regge!'?] the Wigner 3j-symbol can be
represented in the form

—htlatis fi—Jatis futa—is

(jl 2 ]3)= Ji—my Jo—m, Ja—my |=
M e T Jit-my Jatmy Js-+-mg (5.1)
Ry Ry, Ry )
=Ry Roy Ruosj=|Ru|,
\R3l R32 R33

where the 3 X 3 square symbol || Rjk|| is the coeffi-
cient in the expansion of the J-th power of the determin-
ant?:

A R Ry Ryy Ry
juy Uy wy| =V (TFT+T) 3[Ry Ba Ry
{u3 U3 Wy Ry Ry, Ry

2 Ryp=d
%

Riyy, Riz Ry, Rot ), Re Rz, Ray, R32,,R33
g M ug Bug ) oy By g2y F i Sty

7 B Rual Brgt Rl Rog) Rl Ry Rog) R 72 5.2)
The entries of the symbol || Rjx|| are nonnegative
integers. The sum of the elements in all rows and
columns is the same and equals j; + j2 + js =J. The
numerical value is invariant under permutations of
rows and columns and with respect to transposition,
and is multiplied by (-1)Y under odd permutations.

In distinction from the 12 symmetries of the classi-
cal angular momentum theory, corresponding to permu-
tations of only the last two rows in the table, the sym-
bol (5.1) exhibits 72 symmetry properties. (Transposi-
tion with respect to the second diagonal does not yield
a new symmetry transformation.) These properties
are hard to understand if one remains within the frame-
work of three-dimensional space. In computing the
C-G coefficients we study in fact a method of separat-
ing a single SU(2) group in the direct product SU(2)

X SU(2) (addition of two angular momenta). This can be
achieved by two essentially different methods. The
transition from one method to the other scrambles the
angular momenta and their projections. One should
also remark that within the group O(4) = SU(2) x SU(2),
} and m appear more or less with equal rights and

4 The normalization in Eq. (5.2) differs from Regge’s paper {!2].
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are scrambled in different reductions,

In(®%%"] it was indicated that there are definite func-
tional relations between various Racah coefficients.
These relations correspond to a new symmetry of the
Racah coefficients (6j~symbols). Substituting into the
definition of the 6j-symbol

{f: Ja ]‘12}_2(]'1 Jo Jn )(fxz Js f)
JaJ Jum my My —Myy ) \Myy My —m

X( A 123)( o0 )(—1)“,
— Ny —m, m23 —my m — Mgy .

a=j1+jz+j12+j3+j23+j+'m+mza+m3‘ (5.3)

the Regge symbols according to (5.1), we obtain new
symmetries of the 6j-symbol, which is conveniently
considered in the form*®

RH RZi ‘R31 R“
R12 BZZ RSZ R4?
Rl3 st RS3 R43

Jiti—Ja JAJs—Jw Jatii—Ju it je—inl
j1+j12_—j2 j3+j23"j2 j3+j12—_j j1+j23—j
Jtiwe—is j+iea—i Jotie—i ja—Js—1Ts
Tty Tty Tty T4y
T+ Y ZatYs Tztys 24+y21 .
Tyt Yz To+Ys ZT3+Ys 14+y3i‘
(5.4)
Here all 12 elements are nonnegative integers. The
differences between corresponding elements of rows
and columns turn out to be constants, All in all there
are 31X 4! = 144 symmetry rules which follow from
(5.1) and (5.3). We shall designate the quantities (5.1)
and (5.4) as R-symbols. Since many quantities in the
theory of angular momenta can be expressed in terms
of combinations of Clebsch-Gordan and Racah coeffi-
cients, they can also be expressed as combinations of
R-symbols. An essentially new element in the R-nota-
tion is the fact that we no longer distinguish here
angular momenta from their projections. Linear com-
binations of j-s can play the roles of projections m
and vice-versa. The R-notation contains, obviously,
more information than the jm-notation. It also yields
a series of new relations between the C-G coefficients,
the Racah coefficients and the transformation
matrices'™®, Thus, the first and second recurrence
relation between the R-symbols has the form
Ry Ry, Rg Ry, Ry Ry
HZi R22 1?25‘{-1 R21+1 HZZ B23
Ry Ry Ryp—1 | Ry —1 Hay Rsa‘
RM R12 H13
Ry Rpp+1 Ry
RSI R32_'1 R33
This leads to recurrence relations which were not
contained in the usual theory of angular momenta. For
instance,

L

V Rys (R + 1)+ V Ry (R 1)

Vﬁzz (Ry+1)= 0.
(5.5)

+

s+ 1) 1+ m+1) (r—my)
2(j3+1) 3+ ma+1) (j3—~ms3)
X (Jy—="afs my—1s My ja4-Y/, my—1/y)
%3+ 1) GoFmz+1) (2 —mz)
+V4 D T
Here are two more examples of new equations de-
rived in this manner in the jm-notation. The ortho-
gonality relation:

2(f1+"+'? Jetr—v mytr+y myt+r—ylj; my42r)

(irjamymy | jams) =

(5.6)

XUrtr+y" Jebr—y miAr+y metr—v'li mat2r)
fitia—mi—myLdrdt
X %1 =8y

(5.7)

Ui Jo—y my mz—1/2|j3+1«’2 m3—1/,).

Relations between the 6j- and 3j-symbols:

(_1)ila+52—ix(j’ jz j12 )( ]l'f fs ])
My My Mg/ \ — My, My M
:(_1)252 (——1)C+ﬁ(2c+1){1/2 (jiJf.' Ja—m) Yy (7'1‘}.'.7.2‘*‘ miz)jﬂ}
¢ 73 7 ¢
X(ja s (Ji+ Jo+ my,) C)(
my Yy (fa— fa—my-+my) B

Yo (Jitia—my) ] c)

Ye(jr—Jatmy—my) m —B ’
(5.8)

where m}; = j2 — j;. The Racah coefficient here de-
pends not only on the angular momenta j but also on
their projections m. In this sense the distinction be-
tween the j- and jm-symbols disappears. From rela-
tions for third-order determinants and their expansions
according to (5.1) and (5.2) follow a series of new rela-
tions between combinations of C-G coefficients and their
combinations. We list several examples®®),

If the determinant in the left-hand side of (5.1) has
two identical rows vi = uj, since the equation must be
valid for arbitrary values of uj and wij, we obtain the
relation

Ru Riz RlB
Ry Roy Rogl(Ry ! Rypl Ryl Ryl Ry Byp) 2 =0, (5.9
RyptRop=J~Ryy R; RJ: R; o it st Bt Moo’ ol (6.9)
In the jm-notation, this yields for even J
o da _ _ s
S I eemt et mt] =0, (5.10)

Splitting tile J-th power of the determinant into a
product of determinants raised to powers J,, J2,...,Jp
(J1 + J2 +...+Jy = J), expanding the determinants ac-
cording to Eq. (2.2), and equating the coefficients of
equal powers, we obtain

TR L (BT L (T 1)
PRl =] TEoE ] 2

|| Ain] ...

4 (n;
At AR =Rip

) 1/2
A ——élﬁfl—‘ ’
UAih! e 4 (5.11)

where || Rik|| and || A(ﬁ{’ll (r =1,...,n) are the

Regge symbols corresponding to the indicated deter-
minants,
For Jy=J2=.,.=J, =1 the symbols || A‘F'|| re-

i
duce to first-order symbols, equal to :1:(2)'1/2, the sign

being determined according to the distribution of units
in the symbol, Substituting them into (5.11) we obtain
a numerical expression for the Regge symbol

1 Ben

W i 1

Pl pa! p3l an! g2t gyt

. (5.12)

The summation here is over all admissible values ac-
cording to the scheme

117: Ot Paqs Prt g ”Ru Ry Ryl
Py Q3 Pt e Pyt = Ry Ry Hys). (5-13)
iP3+ 92 Pot Gy Pit@s| Ry Ray Ry 2

The numerical value of the 6j-symbol, represented in
the form (5.4) is given by the expression

Rip! 172
[11,. ik Z(__])zu_%“'
U(i‘ Rip-+1)! u‘fi‘-ykl
7R

where z = J,Xj + J yk. The summation goes over all
i k

admissible values of xj, yk (xj + yk = Rik), in analogy

with Eq. (5.13).

(5.14)
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The symmetries discovered by Regge not only allow
one to formulate the R-representation of the theory of
angular momenta, which contains a large quantity of
new equations, but are also essential for the analysis
of the relation between C-G coefficients and hypergeo-
metric functions. For this purpose one must extend
the Regge definition, removing the nonnegativity re-
quirements for all entries of the table, We shall as-
sume then that the table denotes the same C-G coef-
ficient if one carries out in it one of the two independ-
ent substitutions (cf. (2.6))

]'1——>*j1——-1 (5-15)
or
jo—> —fa—1, ja—= —j—1. (5_16)
A third substitution (three negative momenta)
fr=> =it o ==, fs — 1, (5.17)

is obviously the product of the first two. One can, of
course, obtain other substitutions by combining these
with permutations. After this completion one can con-
sider that there exist 72 x 4 = 288 identical C-G coef-
ficients with positive or negative values of j. If one
considers the permutations of the angular momenta
(123) and the substitutions j — -j — 1 as trivial opera-
tions, then the permutation P of the first row of the
Regge symbol with the second or third row and the
transposition T will be nontrivial. This gives three
nontrivial operations (e.g., P2, T, P;oT). Together
with the initial one, they yield four nontrivial forms of
the C-G coefficients. As such one can select the
formulas of Wigner (cf.'**!, van der Waerden!*"],
Racah (cf.['?) and Majumdar(*!],

Looking at any of the formulas that express the C-G
coefficients in the form of a finite sum (e.g., (2.19)) it
is clear that in all of them the summation variable 2z
occurs in five factorials. This immediately raises the
suspicion of a connection with the generalized hyper-
geometric function of the type pFq with p +q =5.

We recalll*! that the generalized hypergeometric
function is defined by the series (in general, an infinite
series):

(P2 (P2)z .- (Pp)z xZ

pFa(p1Py -+ Ppi Q12 - - - Ia} 1)=21 W0 e g T (5.18)
where, e.g.,
_ Ttz gtz
K R T R ]
Using the identity
(a—3z)] - (—a—1)! (— 1) (5.19)

al (—a-++z—1)!

one can change the sign of the summation variable,
transfering the appropriate factorial from the numera-
tor to the denominator, or vice versa,

One can thus reduce all sums to a standard form
(with a plus sign in front of z)*, and we see that (up to
a factor) all four forms of the C-G coefficient repre-
sent values of the function sF, for x = 1, Without cal-
culating the numerical factor (one example is contained

9 A change of sign of all z is nothing other but a reversal of the
finite sum: the last term becomes first, etc.

in Eq. (2.20), we only list the values of the arguments
of the function sF: for all four fundamental forms of

the Wigner coefficient (1123° ) (for greater clarity

m;myms
we write the arguments of the hypergeometric function
in columns, omitting, as usual, the variable x = 1):

Wigner’s form
Ji—my+1 —j—Ja—my
3Fy —Jj—m  ji—jy—m+1],

5.20
—Jj+ii—1 ( )
van der Waerden’s form
—h—lht+i i—jatm+1
el —ibmy j—ji—my 1}, (5.21)
—Je—my
Racah’s form
Jitmy4+1 —j—j,4m,
ol —j+m jo—jt+m+1], (5.22)
—jitm
Majumdar’s form
Jitia—i+1 —2j
3y —j—m ji—j—my+1]- (5.23)
Ji—Je—J

The functions 3;F. appearing in connection with the
classical C-G coefficients are not arbitrary functions
(even if one forgets about the fact that we have set

x = 1). These functions are distinguished by the fact
that they degenerate into finite sums. It is proved in
monographs on generalized hypergeometric functions
(c£.['%]) that there exist altogether 18 such functions.

In proving this one assumes, however, that the series
for ;F; terminates for a highest coefficient equaling a
negative integer, with all other numbers remaining
arbitrary. If two coefficients are negative integers one
can show that the number of terminating series is
larger and equals 24. Recognizing that permutations of
the arguments of the same type (those which are in the
same columns in the above formulas) lead to equations
of a different form for the C-G coefficients, one obtains
altogether 24 x 3! x 2! = 288 different forms for the
C-G coefficients, a result obtained above from an analy-
sis of the symmetries.

Thus, all functions s;F, which degenerate into finite
sums are C-G coefficients. This result allows us to
suspect that the other functions sF. (for x = 1) are
somehow related to generalized C-G coefficients. We
have already encountered one example of such a
generalization to complex arguments in Sec. 4, The
relation between C-G coefficients and generalized
hypergeometric functions is not an isolated fact. Vari-
ous combinations of C-G coefficients can also be ex-
pressed in terms of generalized hypergeometric func-
tions. Thus, Minton'®! has shown that the Racah coef-
ficient satisfies the formula

W (abed; ef) = A (abe) A (cde) A (acf) A (bdf) [T (e + f -+ 1 — F—c)] !
r a+b+c+d+ 2
XU ettt —e, crdtl—e, a retd—f, btd+i—f, et fdl—a—d
X File—a—b,e—c—d, f—c—a, f—b—d; —a—b—c—d—1,
et+f+t—a—d, e f+t—b—c; 1),
(5.24)
where we have used the notation
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G — M — 1/2
A(:ryz):{r[lfyt z, 24+z24+1—y, y+z+1 r‘l} '

z+y+z+2
a, b ...y _T@r®
I1(p,r1 ...)“’I‘(p)ﬂq)...'

All properties of the C-G and Racah coefficients follow
from those of the functions sF, and ,Fs. The results
for higher-order symbols are similar, and one can
formulate a theory of angular momenta in the language
of generalized hypergeometric functions mFp with the
argument x = 1.

Such a formulation opens up several directions for
further investigations. Thus, since the C-G coefficient
is a solution of the differential equation for ;F, at
x = 1, and on the other hand, also a solution of a differ-
ence equation, there arises the problem of the relation
between these two equations. It is also interesting to
study the role of hypergeometric functions for values
of x = 1 in the general theory of C-G coefficients.
Thus, generalized hypergeometric functions and special
degenerate cases of these (Bessel functions, Legendre
functions, Jacobi, Chebyshev, and Hermite polynomials,
etc.) are closely tied to the theory of C-G coefficients.
An investigation of these aspects is essential both for
the theory of special functions and for the physical ap-
plications.

6. Higher Symmetries

The Regge symmetry considered in the preceding
section means, essentially, that an SU(3) symmetry is
present in the theory of C-G coefficients of the SU(2)
group. The J-th power of the determinant occurring in
the left-hand side of Eq. (5.2) is an invariant of the
group SU(3) and the symbol || Rik|| is a special form
of Wigner coefficient for the group SU(3) (at the same
time it is a general Wigner coefficient of the group
SU(2)). Together with the SU(3) symmetry an essential
role may also be played in the theory of angular mo-
menta by other symmetries, higher than SU(3)
(*‘higher symmetries’’). Thus, by analogy to the square
3 x 3 symbol || Rjk || one can construct n X n symbols,
corresponding to an arbitrary SU(n) group, and occur-
ring in the expansion of the J-th power of a determinant
of rank n'®), For the group SU(4) the expansion of the
type (5.1) takes on the form of rank

! wy vy bl ‘ Ry Ryp Ryy Ryg H uRuszlem 4
Jla Ur Wa bl s Ry Roy Ryy Ry

{22 v wa 15 V- +1) Z Ry Ran Rug Hag (“ By

| ug vs wy tal i IHM Ry Rua Ry (6.1)

Here the 4 x 4 symbol ||Rjk|| already exhibits
41 x 41 x 2 = 1152 symmetry rules (permutations of
rows and columns and transposition), For the group
SU(n) the n x n symbol || Rjk|| corresponding to the
expansion

’ “ik

]
(UR Rt 72

fiean | = i T 1) F 1 Rl 777 (6.2)

will exhibit n! X n! X 2 symmetries,

In the discussion of the n X n-symbols there appear
essentially new combinations of the C-G coefficients.
As an example, we consider the group SU(4). Expand-
ing the determinant with respect to a column, we obtain

J
Uy Uy Wy by

Uy Uy Wyt
2 Y2 Wy P2} ! I (RugRizgRiagRe
uy Uy Wy By ARyl Ryl Ryl Rygl > 72 78
Ryp<d
g U, W, % ik
R R "
Wy Wy Wy “lwx wywy | Wy Wy B3|y, wolw
K (v, vy vy vy Uy Uy Uy Uy Uy Dy Uy u3
Uy U Uy, Wy Uy Uy | Ugpls By Uy Uy U
(6.3)

Making use of the relations (5.1) and (6.3) we obtain!®®

Ry Ry Ry Ry
Ry Hyy Ryy Ry

ENERY =
VDN B Ry R R
RM Rn R43 R4~1
(I] Poaty
iR
‘VU Ru AR RN (6.4)
i l 20 7 3a” éa')
2_‘, BP =Ry, B=1.2.3,4
+a az=f
%%Bl%%% B By, B | By By By
B, B,, B, B’ B, BL, | | B, B‘ B;,| B B, Bl
IB B Bu H Bia le NB B‘:I | B:l B}z B:a!

In distinction from the convention of summing over
combinations of two symbols, which is usual in the
theory of C-G coefficients, here the summation goes
over combinations of three symbols. A similar expan-
sion can also be written for the 5 X 5-symbol; in this
case four symbols participate in one summation, etc.
We stress that each symbol (which is a factor in (6.4)
or a similar equation) is a Wigner coefficient. The
method of combining these is quite distinct from the
usual method.

The direct physical interest in introducing the
n X n-symbols consists in a generalization of the con-
cept of recoupling. In the classical theory the general-
ized C-G coefficients which appear in the addition of
several angular momenta, are defined by specifying
the intermediate momenta in the coupling scheme.
Thus, the invariant formed from four spinors x;yi
{(i=1, 2, 3, 4) has the form

Ji de Ji Js g (e ’

1 e Jie 12 J3 J4 i 2 ] _m,
————— I i .

% (m1 my mu)(-m,z my m4) [;[ (Fi—mal (ji 4 ma)! l:[

(6.5)
This is a consistent coupling scheme. In the case (6.5)
the coupling is defined by specifying one intermediate
angular momentum. One can generalize the concept of
coupling scheme by means of n X n-symbols; the new
coupling schemes which appear are superpositions of
couplings like (6.5), forming a complete system:
Ry, R, Ry Ry,

N 172
s Ry, Ry Ry Ry, [T
Ju— iy fammy js—my Ja—mg || ]G m i)V Ga - ma)! 6)
Jitmy jotme Jitmg jibmlc ot (6'
% lI 1-:1“’"iyzi+mi_

™
i

Since all angular momenta occurring in (6.6) are on an
equal footing, one may call this coupling scheme sym-
metric. The transition between different coupling
schemes (recoupling) is defined by the transformation
matrix

HU [{12 1{13 RM

2 Ry, R,, R,, Ry, (j1 2 frz) Ji2 J3 Ja (6.7)
SNiv—my Jo—my Ja—mg ja—mg || \my my mi )\ —myy mym, )"

! Jimy Jabmy jibmg jobmyg
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which extends the usual theory of transformation
matrices.

The investigation of the n X n-symbols is in many
respects analogous to Sec. 5. We list the explicit ex-
pression for the n X n-symbols, obtained by the same
method as Eq. (5.12)1#%%],

n 1/2 E Py
_I:f.[hLi Rih!] 2(_1)“] ! "
I REVERY] M 2,

... ln

in

R“ Ry (6.8)

R Hnn

Here [I] denotes the set ({,...l,;) determined by the
odd permutations, and (I,...I,) denotes all the permu-
tations of the indices. The summation is carried out
over all nonnegative integers satisfying a system of D?
equations of the form

Ry = By gty (6.9)

... 1n

analogous to the Eq, (5.13) for the 3 x 3-symbol.

The problems of the algebraic structure of the
generalized theory are of great interest. Giovannini
and Smith'*® have considered the n x n-symbols as
magic squares (magic squares have the property that
the sum of the entries in all rows and columns is the
same, where the entries are nonnegative integers).
They have pointed out the special significance of the
n X n-symbols, which are the coefficients of the expan-
sion of the determinant to the power J =1, from which
one can construct a symbol of arbitrary rank, These
symbols form a group of n X n-matrices isomorphic
to the symmetric group (permutation group) Sp. We
note that the Racah coefficient (6j- symbol) can also be
represented in the form of a magic square . In the
notation (5.4) this coefficient was listed as a 3 X 4
table. The latter is part of a more general 4 X 4
table, corresponding to the magic square (the symbol
to the right is given for illustration of a different order
of arrangement of the arguments)

¥y Lot YLy Y Xat Y
TyH Yo Tyt Yo 1i+y2x4‘l‘y2
Zy Y3 Tph Yy Ty Yy Xty
2yt Y 22y 2374y, xz.*yg

(6.10)

Zi Y1 Lyt Yy Zat Yy T3-F Y
Ty~ Yo L3 Yy Dyt Yy 4t Y _
Ta-bYs o+ Yy Tt Y X+
Tyt Ya TiFYs Ty Y Xg F U

In the j-notation the symbol ‘?iz;a
0ds

the form (the form given here differs from that in[**})
Jot+is—iy Ji - Jo—1Js Js-tiatia
Jitia—is Jotis His Jitia—is|,
Jotis—Js Jitietis Jatis—Jo Jotia—ia
|]1'l Jod o Jetis—is Jatis—is JsTis—i2
A discussion of 3j-, 6j-, and n X n-symbols as magic
squares is important not only from the viewpoint of
symmetry, but has a deeper combinatorial meaning.
Thus, a special case of magic squares are the so-
called latin squares, in which the integers a,...ap are
arranged in such an order that each integer appears
once and only once in each row and each column. Their
theory is closely related to the general theory of
block-schemes!®*%*") and thus with problems of
control theory, experiment planning, and coding. In
this connection it is interesting to note a definite dis-
tinction between the 3 x 3-symbols and higher-rank
symbols. The 3 x 3-symbols (considered as magic
squares) are defined by specifying all their 9 elements.

} can be written in

]x+]5“]n
Jatia—J;

(6.11)

The condition of ‘‘magicity’’ for a fixed sum J yields
five independent relations. Writing the elements in the
form of a Regge table we can define four of them arbi-
trarily, e.g., j1jomim,, Since mg = —m,; - m, and the
sum j, + j2 + js = J has been fixed, the magic 3 x 3-
square completely determines the C-G coefficient, In
other words, a C-G coefficient is determined by 9
positive integers and the condition that the square be
magic.

For 4 x 4-squares this situation no longer prevails,
The listing of the entries does not determine the magic
square uniquely (i.e., up to permutations). In this con-
nection we note that the Racah coefficients are also
not completely determined by simply listing the ele-
ments of the table—one must also indicate the order
in which they occur in the table, '

For combinatorial applications the transformed
n X n-symbols (| Rjk|) might present some interest.
These symbols are the coefficients in the expansion of
an arbitrary determinant

i | —ZﬂRmbHu“w (6.12)

They are a direct generalization of the binomial coef-
ficients

/By Ryl
\ H‘.’l R22 //'
which occur in the expansion for n = 2;
Uy “12 / Ry R\
R R R, R
Uy Usgp ’Rm Ry l/ U (6.13)

The properties of the symbols (| Rjk|) are obtained
from the properties of the determinants according to
the method of Sec. 5. The Vandermonde formula (3.1)
can be rewritten in these notations:

2’ / ]2+m2) Jo— m"«" ‘]1‘*‘”’/1 Ji—my \
'n1+'"a‘7n\ Jammy jat-my /\ Jr—my j‘—\—-m1!/
=/’f1+fz‘f'm Jitja—m \
\ivtia=m jitja+m]/’

(6.14)

In spite of the importance of the new symmetries of
the C-G coefficients and their combinations, the total
number of papers on this subject is relatively small,
In addition to the already quoted papers, one should
particularly point out the papers'®®®! where it is
shown that the use of the Regge symmetries has defi-
nite advantages for computer calculations, the paper!*®,
where the Regge symmetries were discussed on the
basis of the theory of entire analytic functions, and the
paperst?2%27  where the Regge symmetry was dis-
cussed on the basis of the quasibinomial representa-
tions of the C-G coefficients and the relation between
the symmetries of the squares in (3.14) and (3.15) and
the Regge symbols was pointed out. On the basis of
Schwinger’s boson operator technique!®®!, Bincer!®!

has proposed the interpretation of the Regge and higher
symmetries as reduction symmetries. The Regge
symmetry is related to different ways of reducing the
Kronecker product, expressed in terms of boson opera-
tors. It was shown that in the classical limit the Regge
symmetry is equivalent to the m «— ;. symmetry in
the finite rotation matrix D}n“. A number of other as-
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pects related to the new symmetries are discussed in
in[52,53,541

7. Generalized Angular Momentum Theory

The new symmetries, combinations, and methods of
coupling of the C-G lead to a generalization of the
theory of angular momenta, The object of the general-
ized theory are the n X n-symbols of various ranks
and their possible combinations, as well as the appro-
priate generating invariants!**»**»*®], The classical
theory of angular momenta is a special case, contain-
ing the restricted class of combinations of 3 X 3-sym-
bols. The generalized angular momentum theory
generates a wide variety of new forms, presenting in-
terest both from the viewpoint of mathematics and its
applications. Even consideration of combinations of
3 X 3~symbols corresponding to Wigner coefficients
yields many new facts. In the usual construction of
combinations of C-G coefficients (jm- and j-symbols)
there occur two types of invariant summation, dyadic
and triadict®™, The dyadic method corresponds to
summing over the projections of the angular momentum
(with respect to two elements of the Regge symbol);
the triadic method corresponds to a combination of
transformation matrices and involves a sum over a
triad of angular momenta (the upper row (R,;, Ry, Rys)
of the Regge symbol (5.1). However, from the view-
point of the generalized theory, according to (5.2) all
Rjk entering in the 3 x 3~symbols are to be treated on
an equal footing, Therefore for invariant summation of
products of Regge symbols (the construction of com-
binations) one may select any elements Rjk (three ele-
ments for triadic summation, two for dyadic summa-
tion, from any row or column). Thus, in addition to the
usual summation of Regge symbols, carried out over
R21R31, R22R32, R23R33, RuRlsz, one can consider in-
variant expressions obtained by summing over
R1iR 2R3, R21R22R23 or over R:;Rsi, Rzszs, Rs2Ras,
etc. This yields a rich class of ‘‘nonstandard’’ com-
binations. However, up to the present, only a small
number of such combinations has been investigated or
used, Combinations of the form

(iiavva | V) (T Tt 8, | T1), (7.1)
where ji+v; = -Ty+Te+T,jo +¥2 =T, - T2 + T, and
(];];lev-’z | JV) Gufavyve | J9) (ThT oty | T't), (7_2)

where ji +¥1=—j1+ja+j,jo+ vz =j1— ja+1i,j1+v1
==T,+T2+ T, jz +¥2=T, - Tz + T, both derived from
the usual generalized C-G coefficients'®) by means of
the Regge symmetries, are of importance in the theory
of C-G coefficients for the SU(n)-groups. Another
special form of ‘‘nonstandard’’ combinations, contain-
ing simultaneously dyadic and triadic summations, are
the formulas obtained by Vanagas and Batarunas!®®!
with the aid of the characters of the symmetric group.
Of interest is also the formula obtained with the aid of
dyadic summations over elements situated in different
rows and columns:

Ry+n Ry—=xn R .
S0 Ry Radx Raox])
® By —n Ry Ryt+x|’

=(—p™ “

Toral Rl (F — Bogl (4 — Figg)? * {7.3)

Although it is premature to talk about physical applica-
tions of the ‘‘nonstandard’’ combinations one may ex-
pect a change in this situation in the future. The com-
pletely new coupling types (6.4) seem to be very
promising, as well as the use of various combinations
of n x n-symbols of higher rank than the Regge sym-
bols. In this connection it is interesting to note that
according tol***%] the C-G coefficients of the group
SU(n) can be constructed as combinations of n x n-
symbols, i.e., the theory of C-G coefficients of higher
groups is an integral part of the generalized angular
momentum theory. However, the investigation of this
group of problems is still in its infancy.

In addition to the consideration of n X n-symbols
and of their combinations, an important part of the
generalized theory are the generating invari-
ants#%%%%%:%)  gince higher symmetries manifest
themselves in the generalized theory, particularly sym-
metries corresponding to the groups SU(n) (and other
semisimple Lie groups), it becomes necessary to use
fully the theory of invariants of the classical groups.
This theory discussed in detail in Weyl’s book!®®,

In analogy with the way in which a Wigner coeffi-
cient combines three irreducible representations into
an invariant (and the generalized Wigner coefficient
combines several such representations), one can asso-
ciate combinations of n X n-symbols of different ranks
with definite generating invariants. According to (6.1)
the role of generating invariant for the n x n-symbol
is played by the determinant of rank n, raised to the
J-th power. In particular, for the Wigner symbol (the
3 x 3-symbol), it is (Eikluliuzkulil)J, and for the metric
RURE )it s (eppuinuz)?
The generating invariants of any standard combinations
of C-G coefficients of the group SU(2) can be con-
structed by means of the tensors <jk; and €,,. Thus,
e.g., the generating invariant for the product of two
C-G coefficients, summed over the projections m, and
m,, is of the form

tensor (the 2 x 2-symbol

J ’ ”
(eumnttittamitsn)” (@rmenatiometian)” ()™ (euu)™. (7.4)

Here the Latin indices [, m, n take on the whole set of
possible values 1, 2, 3; the underlined latin indices
!, m, n take on only the value 1; the Greek indices A,
i, v corresponding to I/, m, n take on the remaining
values 2 and 3. In this notation the generating invariant
for the Racah coefficient (6j-symbol) can be written in
the form

(€tomngtt} 1 tmytiyn)” (Eromangttl s Womstthng)

(7.5)

J J
hs (alammu"{_,au?}@u’a@) ¢ (Eumam”hauiyu‘:‘%y) *
B B B B By B
X (EMM) i (Eu«us) ' (evlva) " (67‘37»4) & (SHZMA) " (6\12\‘3) %,

Similarly one can write out the generating invariants
for an arbitrary combination of Wigner coefficients
and for any transformation matrix. The expansion co-
efficients of the generating invariants for expansions
in powers of ujk are combinations of Wigner coeffi-
cients., Thus, the product of Wigner coefficients corre-
sponding to the generating invariant (7.4) is

Ry Ry Ry, R;l R, R’lﬁ R, 1{’2l R,y 1{;2
2 R:'( Rzz st H21 Rzz st * R R' N‘ R R' * (7-6)
Ry By Rg] || 25, £, 425, |77 7o) AT T
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The summation is carried out over repeated Rjk; the
6j~-symbol corresponding to the generating invariant
(7.5) is

R;!. R;z H:!
R, R, R,
Ry Ry, Ry,
]Rh R,
Ry Ry,

R} R, Ryl

Ry RS, Ry

By R, Ry,
Ry R}, R,

R} R;, R
Ry Ry, R,
B3y B3, S, || 13 RS, Ry, 11| RS, Ry, Ry,
Ry Ry ||| Res RS ||| RS RS V) RS, RS,
e el i el )
(7.7)

Ry RS\ Ry RS ||| B3, B, RS, RY,
All combinations of the classical angular momentum
theory can be expressed in terms of a sum of products
of 2x 2-symbols and 3 x 3-symbols. An example of a2
generating invariant for combinations of n X n-symbols
of higher rank is given by the expression

l

y . )

J
Uy Vo Wy Ly 1 éik' Iy Yy J2
1 I
ug vy wy 8gny (” )
By 22 92 - 6”;""1 :
k3

63k; T3 Y3

(7.8)

2

o LUy vy Wy Son,

Uy Uy Wy B3y
The coefficients in the expansion of (7.8) are given by
the combinations

Ry Ry Ry Ry Rys Ry B
Z 221 11';22 1;23 224 Ri Ry Rul. (7 .9)
RzaR3sRa4 31 32 a3 34 R R R
Ry Ry flyg Ry, 4 Tas Tlas

The possibility of formulating the generalized theory
of angular momenta in terms of generating invariants
makes the role of the latter quite prominent, allowing
one to solve applied problems directly in terms of the
invariants. The theory of invariants'®) which has been
actively developed at the end of the last century, thus
acquires new applications. Let us consider as an ex-
ample the methods of coupling angular momenta, Out
of k spinors uj (i =1,...,k) of the group SU(2) one
can construct generating invariants for the Wigner
coefficients of rank k. (Here the rank corresponds to
the number of component angular momenta; the nota-
tion [ uyjuk ] corresponds to the determinant.) The in-
variants

(R RET VRN e PRVR B

(7.10)

correspond to the usual Wigner coefficient of the group
SU{(2). The invariants
ot (7.11)
corresponds Wigner coefficients of rank 4. In opera-
tions with generating invariants one should keep in
mind that not all of them are linearly independent.
Thus, for instance, the identity
Ty Iy X3 I,
Y1 Y2 Y3 Ya
Ty Xy Ty Xy
Y1 Y2 Ys Ys
implies the following relation among the determinants
of order 2:

fregtig 12 [uagas] 3 (10420110 [aatis} A% [1ag4) % [10324]

=0 (7.12)

[wyuts] [Ustbal + [Uatt] [Uateq) + [2g2a) [Ugtta]l = 0, wy = {Zuy:}. (7.13)
Therefore, in distinction from the Wigner coefficients
of rank 3, those of rank 4 are not unique and depend on
the choice of independent invariants (in other words,
on the method of coupling the angular momenta). Owing
to the relations of type (7.13) (syzygies) there appears
a host of forms in the theory of invariants, and many
possibilities arise for the choice of independent invari-

and SHELEPIN

ants®, The group-theoretic meaning of such relations
is that the Kronecker product of two irreducible repre-
sentations may contain the same irreducible represen-
tation Dj several times, The operator which disting-
uishes the basis functions of multiply occuring repre-
sentations is not contained in the group and must be
additionally specified, e.g., by specifying the coupling
scheme of the angular momenta. Equations (6.5) and
(6.6) illustrate two methods of constructing the generat-
ing invariants. The completeness property of the sym-
metric coupling method (6.6) implies the possibility of
representing the 6j-symbols in terms of linear com-
binations of the quantities 7p:

Ry Ry, - R l R, R, . R,
Tn=2 Rn-z( Rn-zz . Rn—zn R;._m Hn_gz Rn—zn
mllfi=my Jo—my o jo—ma ([l my fobmy . Jadmy
fibmg fobmy o dmalliifi—my ja—my .. fa—mn
(7.14)

On the other hand, the generating invariant for any
coupling method can always be written in the form of
a linear combination of quantities of the type (7.11).
Thus, the Wigner coefficient of rank 5 for the
((§1j2)jizis)ires jaj}-coupling

T12

il ]-2 jﬂ il? j3 j123, j123 jA ] ] jlﬂ

] , L , J(7.15)
My My Mg/ \Myy Mg Mygz) \Mypy My M] \Myg Myy] \Myp3 Mypg
corresponds (apart from the normalization) to the

generating invariant

X ol {uean® [ver) ™ (wen ™ fwene)® [orma Y™ (ts14 (tea 1 (s24p) ™

2 [,w]ﬁxz [uw]ﬂ‘a [vw]B2s [ut]P’“ [Ut]Bu [us]Bi5 [we)}B34 (5] P38 [s¢]P48 [n5]B28
= L]

1
L]pa (7.16)
where

[wo] = (e"uivn), [uens) = (e"wen)) =uy u 7. 1.,
512’141:]'1‘*‘.72—]'121 ﬁx‘s+ﬁza=AIy ﬁibsA:1
Bis+PBia+Bis=4a Baa+ Bas =45, B+ Paa+ Paa= A7,
Baz 4 Baa - Pas = 4s, Bra-tPBos +Bis+Bas =4, By +Bos+ Pas = 47,

Expanding the invariant Ip corresponding to the coup-
ling scheme A in terms of the invariants Ig, corre-
sponding to the coupling scheme B, we have

IA:QCA,BIB' (7'17)
Making use of the expansion of invariants in powers of
the components of the spinors which make them up we
obtain relations between quantities and transformation
matrices. The generating invariants also throw light
on a series of other problems, of which the interrela-
tion of symmetries merits special attention.

8. The Interrelation of Symmetries

The generalized theory of angular momenta, which
in distinction from the classical theory, contains
formulas referring to higher symmetries, allows one
to analyze the interrelations of symmetries in a real
system. An essential role in such a theory is played
by the generating invariants., This is due to the fact

6 One can select as independent invariants three- and higher-dimen-
sional determinants [%!]. Although the use of such spatial (3 X 3 X 3
and higher) determinants seems promising for the generalized theory,
such problems have not yet been investigated.
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that the same quantity can be the generating invariant
for the C-G coefficients of different groups. The
methods of deriving and studying the character of such
interrelations among C-G coefficients was discussed
in'®® using as an example the expression

P %9172
¢"ih (zye) = [ H Pih‘] ‘<]y:£4

which represents the normalized product of six second-
order determinants raised to the powers pjk. In ana-
logy to the way in which the third order determinant
raised to the J-th power plays the role of the generat-
ing invariant for the C-G coefficients of the group
SU(2) and for C-G coefficients of a special type of the
group SU(3), the expression (8.1) is the starting point
for the derivation of the C-G coefficients of different
groups. This expression can be treated as the basis of
the representation D(OPQ) of the group SU(4)1**) by
attributing to the quantities x; and yj the transforma-
tion properties of the basis vectors of the fundamental
representation D(100). On the other hand, attributing
to the pairs xj and yj the transformation properties of
spinors, one may consider them as the basis of the
generating invariants for the Wigner coefficients of
rank 4 of the group SU(2), of type (7.11). One may also
attribute to (8.1) the meaning of a basis for the group
SU(3). This yields the relation among the C-G coeffi-
cients of the groups SU(2), SU(3) and SU(4), based on
the relation (8.1). Such an approach can be used in
every concrete case. In'®! the symmetry of the C-G
coefficients was used to obtain a unique classification
of the invariants of the group SU(2) in terms of the
representations of the group SU(3), and of the invari-
ants of the group SL(2, C) in terms of the representa-
tions of SL(3, C) and its compact subgroup SU(3). The
transformation properties of the Lagrangians obtained
in this way were compared with symmetry properties
of elementary particles. Attributing to the quantities
uj, vi, wi in (5.2) the meaning of basis vectors for the
representation D(1G) of SU(3), one can write down a
relation which defines the contravariant representation
of SU(3):

D
Zi Tn k

’ A
Yi Yn (8 )

YRRy p— Ry Ry Ryl HL}?ZinSi

Bk it St NS Viry g Y Ry Ry Ryllet .

(Rul Rual R zgﬂ miﬁoPnJ“&”“wﬂ
=t iR R (8.2)

On the other hand, if the quantities v,, w,, Vs, wa, V3,

ws in the right-hand side of (8.2) are formally con-
sidered as spinors of the group SU(2), the right-hand
side represents the normalized product of powers of
the minors of the determinant (5.2), and according to!”,
is an invariant of the group SU(2)

U?“U}Z‘“U?“’ ' vy U3 Rt vy vy Riz vy v, Ry
By Riol RV 2™ (Ryy] Ryl Rig)¥2 Jwy wal [y wy|  wy w,
- 2 J1 Tz I3 11"" 1rj2 111]’3 .
m, m, my ‘my bmallmg?
N my-+motmg=0 =
ere
(26 JW dybmy iemy
vl ’
((u+mx>'(zﬁm o e (®.3)

Thus, all invariants of the group SU(2) can be con-
sidered as basis vectors in the space of the representa-
tion SU(3). The converse is also true.

In analogy to SU(2) the invariants of the proper

Lorentz group SL(2, C) form a basis for the represen-
tation of SL(3, C). The vectors e of a canonical
basis, corresponding to the representation 7(PQ) of
SL(2, C), are expressed in terms of the vectors

/P1Q1

®pa, 204 €pyg,
tions 7(P,Q,) and 7(P.Q:), in the following manner

, corresponding to the representa-

= 2 (PyPypip: | Pp) (@10:9:9: | Qg) e’ﬁl‘ﬁ‘e"ﬂg’-

Pibe
Q192

In the right-hand side of (8.4) are the usual Clebsch-~
Gordan coefficients which can be written in the form
of 3 x 3-symbols. Accordingly, any invariant of the
Lorentz group can be written in the form

(8.4)

=P Lot Py Py—=Dav Py PPy Dy
! Pi—py Py —py Py—ps
pi2ps P+p Py+—p, Py py
19243
U|"(\)1'1’(j "‘03 11— 02+Qs QHrQe—Qa
x| Oi—g Qs—q, Qs —4s "len‘lflﬁzz‘} 5)331‘:
| Qi +q Qatqu Q53 (8.5)
The invariant (8.5) is determined by the six indices:
dy= "‘/)1'.“1)2’*“1)3-, .7[2:/’!—[’2;% Py ~73:/}1’V /leél):h
= — Q4 Qe+ U M= — Qs+ @y, %y =0, Qs — Q4

T b Mg = Py Py Py=n, n b vy-b =0+ 0y + @y = x.
Since SU(3) is a subgroup of SL(3, C), each relativistic
invariant is a basis vector of some reducible represen-
tation of SU(3). The invariants which differ in the order
of 1, P2, Y3 can form the six components of a repre-
sentation of SU(3). In order to construct a full basis it
is necessary, in general, to use invariants with other
¥1, P2, Ps. In some simple cases the indices
[mim2ms ) [ k1k2ks | characterize directly the basis vectors
LBV PUES
K1K2Ks
symmetric basis®*], An example of the correspondence
between representations of the Lorentz group, accord-
ing to which transform the basis vectors ., ¢z, s, and
the indices is:

of the representation D(nx) of SU(3)ina

a) (v (*/; 0) T+, 0) 7 (00)} — {1001 1000],

b) [T (g 0) T (00) T (/5 0) —> [010] [000], (8.6)
c) [* (/2 0) T(0 V) T (1 Vo)1 — 1010] [100], ’
d) [t (Y5 Y2) T (Ve Y) T (00)] — [001] [001].

The cases (a) and (b) differ by a permutation of the
vectors yp;. The cases (c) and (d) correspond to the
reducible representation D(11) + D(00) of SU(3),
spanned by a totality of 9 vectors. In addition to the
indices 7y, xj one can formally introduce other indices:
7, «, the hypercharge Y = k; — 7, + Yo(7 — k), the iso-
spin T and the isospin projection ts = Yo{ms ~ 7s + K3

- k2). Thus, the invariant [7(7,0)7(/:0)7(00)] corre-
sponds to three states (quarks), transforming accord-
ing to the representation D(10):

@i [00}{000), Y=—3, =0, |
«r 101011000]. Y =, ty= 1, l (8.7)
o [001]1000], Y == % =~

Such a classification also applies to the currents, since
the decisive element is the presence of the C-G coeffi-
cient.

The theory of C-G coefficients gives a prescription
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for the classification of relativistic invariants accord-
ing to the representations of SU(3). Each of the tensors
which forms an invariant is, in distinction from the
latter, not a basis vector of a representation of SU(3),
i.e., there appears a new symmetry which character-
izes the interaction and the corresponding Lagrangians.
Let us classify the interactions of elementary particles
according to the representations of the group SU(3).
Consider the weak interaction Lagrangian

Bava (4 +75) Prtbeya (1 4-75) Yo, (8.8)

Rewriting this expression in terms of 3 X 3-symbols
we find that by its transformation properties the weak
current belongs to the octet representation of the group
SU(3), and according to what was said before, it corre-
sponds to the six basis vectors of D(11)

{010} [001], [001] [010], {100] {001], [100] {010}, (020} [100], [001] {100].
The first two vectors correspondto Y =0,ts =1, i.e.,
belong to the strangeness-conserving currents. The
remaining vectors correspond to Y = +1, ts = /s, i.e.,
belong to strangeness-changing currents. The weak
interaction Lagrangian, as can be seen from (8, 9) is
also a member of the SU(3)-octet. These are the same
transformation properties as those ascribed to the
Lagrangian and currents by Cabibbo!®), based on the
experimental selection rules of the weak interactions,
with the participation of hadrons. The electromagnetic
interaction Lagrangian (§,$)A, is a sum of two in-
variants, constructed from three representations
[7(0%2)7(Y2Y2)T(/20)] of the Lorentz group, and conse-
quently form an incomplete set of basis vectors for
the SU(3) octet. For the electromagnetic interaction
there is also no contradiction between the transforma-
tion properties of the Lagrangian which follow from
the theory of C-G coefficients, and the properties de-
rived from the selection rules,

The fact that one obtains the right transformation
properties is also an indication that if one considers
the hadrons as a composite system, in distinction from
the quark model, there is, in principle, no necessity to
attribute to the subparticles the SU(3) quantum num-
bers, i.e., a fractional electric charge., These quantum
numbers may refer only to the interaction and to the
hadronic states in toto, in the same manner as the
groups Of(4) (O(5)) describe the hydrogen atom, but not
separately the proton and electron, i.e., the system as
a whole only. One may hope that further development
of the problem of interrelations between C-G coeffi-
cients will help carry out a ‘‘target-oriented’’ search
for elementary particle symmetries, to discoveries of
hidden symmetries in the theory of nuclei and molecu-
lar spectroscopy. In the light of the SU(3)-example
discussed above the idea of the concept of noninvari-
ance group, introduced by Eddington!®!, becomes
clearer. According to this concept, physical systems
can be characterized by symmetries which are not
symmetry groups of the Lagrangian or the Hamiltonian,
For example, in molecular spectroscopy one makes use
of the groups R(5) and O(4, 1) for the classifications of
the state of an electron in the field of many Coulomb
force centers!®®"1, Among other results on noninvari-
ance group one should point out the papers!®-"), Ina
certain sense the three-body problem!™:" belongs to

.

this class of problems, and the generalized theory of
angular momenta could be quite essential for it. In
conclusion, we stress the fact that the technique of
C-G coefficients is particularly important for complex
physical systems, exhibiting a whole set of interre-
lated symmetries. Atoms, nuclei and hadrons are just
such systems. One may expect in the future a widening
of the sphere of applications of the theory of C-G coef-
ficients, in particular to include problems related to
the symmetries of leptons, the theory of coherent
states, etc.

II. RELATIONS OF THE C-G COEFFICIENTS TO
GEOMETRY AND TOPOLOGY

9. Geometric Interpretation

This third chapter is dedicated to the least developed
part of the theory: the geometric and topologic inter-
pretation of the C-G coefficients. From general princi-
ples the relation to geometric concepts seems to be
quite natural, Already in 1872 in his famous
“Erlangen program’’ Felix Klein (cf.!*»™) has devel-
oped the group-theoretic approach to geometry, A
typical example of a systematic exposition of geometry
on the basis of the symmetry concept is Bachmann’s
monograph!™, which also contains an extensive biblio-
graphy of the subject. The combinatorial aspects of the
theory of C-G coefficients, which were discussed above,
immediately implies a relation to finite geometries(*!!,

One should think that an investigation of the relation
to geometric characteristics should be useful also from
the viewpoint of geometrization of physical concepts
closely related to C-G coefficients,

Before discussing purely geometric problems we
briefly consider some graphical methods.

In the classical theory of angular momenta graphical
methods have been developed by Yutsis, Levinson and
Vanagas'® (cf. also!®). The C-G coefficients were
represented by a three-line vertex (Fig. 1a) and the
summation over projections by joining lines together
(Fig. 1b). The Regge symmetry implies a natural
generalization of this approach, by assigning to the
Wigner coefficient 9 free line-ends (Fig. 2,a) and all
the other known graphical methods are obtained as
special cases of this{™, The reduction of the graphical
methods is illustrated in Fig. 2. Figure 2b corresponds
to the jm-formulation of the theory, when the summa-
tion is carried out over the upper row and over the
columns of the two lower rows; Fig. 2c corresponds to
summation over triads (j-symbols); Figs. 2d and e are
simplified graphs; cf. also'®)); Fig. 2f represents the
usual summation over projections["], and Fig. 2g cor-
responds to the graph of the R-symbol, considered as
the metric matrix in the representation space of the
group SU(3). The indicated methods may turn out to be
useful in the discussion of nonstandard combinations of

C-G coefficients.
: J;

2

FIG. 1. Graphs of the classical
theory.

a) b)
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FIG. 3. Geometric interpreta-
tion of the Regge symbol.
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The geometric interpretation of the Wigner coeffi-
cient is also closely related to the Regge symmetry!*®,
We shall use triangular (barycentric) coordinates in
the plane. Consider an equilateral triangle, the sides
of which serve as coordinate axes. The values of the
coordinates are counted perpendicularly to the axes,
with positive values lying in the interior of the triangle.
For any point the sum of the three triangular coordi-
nates is a constant equal to J. We shall consider the
values of the three lines of the Regge symbol as coordi-
nates of three points. Since the Rjk are nonnegative
integers, these points lie at the vertices of a coordi-
nate net (Fig. 3). If two points are given in this system,
the third is automatically defined. The 72 symmetry
rules allow us to permute the axes and the points and
in a certain sense to exchange their places. Thus, the
Regge symmetry consists of the permutation sym-
metry (where any two of the three points can be inter-
changed), the coordinate symmetry, and the replace-
ment of axes by points and vice-versa. As an example,
Fig. 3 illustrates the graphical representation of the
symbol
g i g‘=(l/2 7, 3)=(3 1 ;z)_

11 4 Yo =3 1 20 -2

When considering the addition of fixed angular momenta
j’ and j” one may also use a coordinate net consisting
of equilateral triangles!”™ (Fig. 4a). The coordinates
are defined as the distances from the axes OM and ON.
The angular momentum j with projection m is repre-
sented by the point with coordinates (j — m, j + m), the
projection is the distance from the point to the bisector
of the coordinate angle. When the angular momenta
{j'm’} and {j"m"} are added, the points corresponding
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FIG. 4. Addition of angular momenta.

to the resulting angular momenta {jm} are situated on
a vertical at a distance m’ + m” from the bisector and
between horizontal lines corresponding to j* +j” and
1" =3"| (Fig. 4,b).

For arbitrary n X n-symbols the generalization of
the described geometric construction is obvious.
Whereas for the 3 X 3-symbol the values of Rjk are the
barycentric coordinates of three points in a plane, for
the 4 x 4-symbol the values of Rjik will be represented
by barycentric coordinates of four points in space.
The coordinate system is given by a regular tetra-
hedron. The coordinates of a point are its distances
from the sides of the tetrahedron. The sum of the four
coordinates of a point as well as the sum of the dis-
tances of all four points from a given coordinate plane
are constant and equal to J. For an arbitrary nx n-
symbol the values of Rjk are the barycentric coordi-
nates of n points in an {n -1)-dimensional space.
These points form a regular (n — 1)-dimensional
simplex; the coordinate system is defined by this
(n - 1)-simplex. The position of the points of an n-
simplex within the regular coordinate simplex defines
the numerical value of the n X n-symbol. The deter-
mination of the numerical values of the n X n-symbols
by this geometric method was discussed with the Wig-
ner symbol as an example in'""), Different types of
combinations of n x n-symbols of various ranks, in-
cluding their numerical values, as well as the symbols
themselves, can be discussed in the language of higher-
dimensional geometry, which thus can be used to ex-
press the generalized theory of angular momenta.

Together with n-dimensional geometry, the relation
with projective geometry is of great interest!"®7],
Giovannini and Smith'*®) who have considered the
n X n-symbols as magic squares, have also carried
through this generalization. In distinction from the
n X n-symbols, which have nonnegative integers as
their elements, the Q,-symbols introduced in'*®) have
as elements Rjk arbitrary rational numbers. At the
same time one requires, as before, that Z) Rik

i
= )5 Rjk = J. The algebra Qp is a vector space over
k

the rational number field. The totality of subspaces of
this space forms a projective geometry satisfying the
appropriate axioms!"®™], The symmetry between rows
and columns in the Qp-symbols corresponds to the
duality between points and straight lines in projective
geometry. Based on the magic-square representation
of the 6j-symbol (6.11), Geovannini and Smith!*®? in-
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terpret the well-known relations(®”

lim { J1 Ja J1z }=( n Ja Jiz )
pro jatp j+p jstp J=Js jaz—1Js ja—J
as a projection of the vector space Q. onto a certain
subspace. As a whole, the relation between C-G coeffi-
cients and projective geometry is not sufficiently de-
veloped. It is conceivable that problems related to
finite rotation matrices'®") and to vector parametriza-
tions of the rotation and Lorentz groups!®»»® are also
associated to these ideas. However, this direction re-
quires further research. As regards multidimensional
geometry, one has to stress particularly the aspects
relating the C-G coefficients to algebraic topology.

9.1)

10. Angular Momentum Theory and Topology

The theory of angular momenta can make effective
use of the methods of algebraic topology!®+*, various
combinations of C~G and Racah coefficients are char-
acterized by topological invariants —Betti groups
(homology groups).

At present the sphere of applications of topological
methods to physics is perpetually growing: general
relativity®*-*"), solid state physics!®»®) quantum field
theory!®% %],

Topology as a branch of mathematics originated
toward the beginning of the twentieth century, mainly
through the work of Henri Poincaré, who studied the
structure of complicated geometric multidimensional
formations. In distinction from analytic geometry,
where the structure of a complex body is defined by a
system of inequalities or the equations of the bounda-
ries, the topological approach decomposes multidimen-
sional geometric objects into their simplest elements,
called simplexes.

A simplex is an elementary building-block, from
which complicated geometric figures-polyhedra can be
built according to definite rules. The scheme for de-
composing a polyhedron into simplexes is called a
complex. A line-segment, a triangle, a tetrahedron
are, resepctively, simplexes of the one-, two- and
three-dimensional space. In general an r-dimensional
simplex [a0a;...ar] is defined as the set of points

o= 3 iy, (10.1)

i={
where ao, a;,...,4r is a system of independent points
of the space Rp(r =n) and A% A%, ... AT are real
numbers satisfying the conditions
T

Sat=1
i=0

(AM20; i=0, 1, ..., M. (10.2)
The quantities [ag@:...2j-12js1...ar]) are called the
(r - 1)-edges of the simplex AF. A finite set of
simplexes form a complex K, if K contains together
with each simplex its edges and any two simplexes in
K either do not intersect, or their intersection is an
edge of either simplex (correct incidence relations).
This defines the structure of the polyhedron, which is
the set of all points of the complex.

An important application of topology is the possibil~
ity (in the obvious absence of geometric intuition in
higher dimensions) to characterize the structure of
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complicated polyhedra by their topological invariants:
the homology groups (Betti groups). The homology
groups are defined as follows!®%), One introduces the
concept of chain

4

(10.3)

z =214,

af

where 7! are integers, and A$ the set of all s-dimen-
sional simplexes of the complex K. The associated
set of all (r - 1)-dimensional edges of the simplexes
A is the boundary Ax of the chain x:

n
Az= 3 1AAL
=0

(10.4)

The boundary AAT of a simplex is determined accord-
ing to the symbolic expression

n

AL =3 gyt

=0

dAr
dat *

(10.5)

An r-chain is called a cycle if its boundary vanishes.
The collection of cycles forms an abelian group Z¥. A
cycle is said to be homologous to zero if it is the
boundary of an (r + 1)-chain in K, These boundary-
cycles also form a group BY, which is a subgroup of
ZT. The factor-groups HY = ZT/BY are the homology
groups. They are abelian groups and are completely
determined by their invariants: the Betti numbers pr
(the number of infinite cyclic summands in the canoni-
cal direct sum decomposition of HY), and the torsion
coefficients tyq {essentially the orders of the finite
cyclic groups in the same decomposition),

The indicated concepts are easily visualized on
using as an example two-dimensional complexes: a) A
plane with n noles. Here each line is a chain, any
closed line is a cycle; if there is no hole inside a
closed line, the cycle is homologous to zero; the one-
dimensional Betti number p' is equal to the number of
holes n. b) For a sphere p° =1, p' =0, p°=1. The
zero-dimensional Betti number p° always equals the
number of disconnected pieces of the polyhedron. The
topological concepts, which are trivial in simple cases,
are important characteristics of the structure of
multidimensional manifolds.

We note that the classification of polyhedra is a
narrow branch of combinatorial topology, which prac-
tically does not use the modern topologic techniques,
based on the simultaneous use of both homology and
cohomology, closely related to the classification of
differential operators'®), (In distinction from Eq.
(10.3) a cochain yg is defined on the simplexes AiS by
the linear functional (ysAf) = 7. One then defines
cocycles, coboundaries, the appropriate abelian groups,
and their quotient, the cohomology groups.) The
modern topological machinery allows one to analyze
the analytic structure of multidimensional integrals,
and to study their singularities®®~*?); this approach
reduces differential and integral relations to purely
algebraic ones. In order to apply the topological
methods to the theory of angular momenta it is neces-
sary to associate to the concepts of the latter (angular
momenta, C-G, Racah and other coefficients, etc.)
geometric objects in multidimensional spaces, i.e.,
polyhedra. We shall consider the triangle with sides
j1, J2, js as the geometric image of the Wigner coeffi-
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cient (cf. the three points in a triangular coordinate
net, Fig. 3, as well as the geometric interpretation!'),
Then the 6j-symbol (with four faces which are C-G
coefficients) is represented by a tetrahedron. To any
combination of C-G coefficients, j-symbols, one can
associate a definite polyhedron, constructed from the
indicated simplexes. Due to the structure of the classi-
cal theory of angular momenta the correct incidence
conditions for simplexes are automatically valid, (Of
course, the usual graphs!® (cf. Fig. 1) can also be
characterized topologically. However, here the rules
of formation of complexes do not correspond to the
rules of combination of the C~G coefficients.) The
homology (Betti) groups of the complex K are invari-
ants of the polyhedron, and are thus characteristic for
the combinations of C-G coefficients, to which the
polyhedron is associated. It should be stressed here
that not all properties of the geometric concepts are
reflected by the topological invariants, and some essen-
tial geometric features are lost in this process. The
determination of the Betti numbers for combinations of
C-G coefficients reduces either to a direct computation
of all the cycles of given dimension, of the cycles which
are homologous to zero or to one another, or to a use
of the Mayer-Vietoris formula®® which relates the
Betti numbers of the complexes K,, KA, KB, Ko, where
KA C K;, Ky € K, such that KA U KB = K, KA N Kp
= K, (the Mayer-Vietoris formula is an analog, sui
generis, of Clebsch-Gordan expansions in topology).
For the description of concrete polyhedra it is conven-
ient to use a collection of complexes Kg (s =0, 1,
2, ... are the dimensions of the complex). Then, in the
three-dimensional case a polyhedron is described by
the following collection of Betti numbers pf:
P, i P3PS
o
P, P
p
As examples we indicate the collections (10.6) for the
Racah coefficient and the combination
¥ (jyjemyma| jiomyz) (jizjsmiams| jm), respectively

(10.6)

m
12 4310 420
100 10

1,

In{®] where concrete examples of topological char-
acterizations of combinations of C-G coefficients are
given, use has been made of the collection of Betti
numbers p3, p3, pi, P — 1. The topological approach
turned out to be effective for a series of problems of
angular momentum theory, including an enumeration
and classification of j-symbols, derivation of relations
among j-symbols, and an analysis of the structure of
various combinations. A simple topologically covariant
treatment of the theory of angular momenta(®! already
leads to interesting results. We denote the metric
matrix {Jm m’} corresponding to the one-dimensional

simplex [a;a.;} by X,»; the Wigner coefficient
J1izis

m;msmms
simplex [a,2:a3) will be denoted by X,zs; the 6j-symbol
jiiziie
Js§ Jes

corresponding to the two-dimensional

, corresponding to three-dimensional simplex

[aia.23a4] will be denoted by X;zs4. In terms of the

Xik ... one can write down any relation which does not
depend on the concrete values of the angular momenta.
As already remarked, the summation is carried out
over general simplexes, and will be denoted by including
the simplexes to be summed over in square brackets.
Thus, the 6j-symbol and the contraction of two 6j-
symbols can be written respectively in the form (to the
right are the traditional notations)

X Xos X
X:zs;:[XszMXmel": {Xh X- X”}’ (10-8)
34 Ag Aoy
X Xp3 X Xo3 X X
XX 4{ 17 A3 m}{ 23 A2e Ayl
Kdanal = {27 HEE ) @0.9)

The j-symbols are closely related to transformation
matrices, which determine the transition between
various angular momentum coupling schemes. The
usual notation (but in terms of the Xjk .. ) of the
transformation matrices has the form
(X 36X 46) X34 X 20) X123 X13) X 12K 15X 05 | ((X56X13) X16X15) X6 X 16) XysX24Xas).
(10.10)
For applications, however, the following notation is
more convenient

(X 0X 230X 120X 505 | X 136X 156X 450X n5)- (10.11)

This expression can be rewritten in terms of a con-
traction of 6j-symbols

[X1346X1234X1245X1456]- (10-12

The operation rules with transformation matrices in
the form (10.11) reduces to contracting repeated
Xikl, €.8.,

(X'HRXMBXIMXMGI X120X235X256X456) (X123X134X347X|48 [ X125X237X218X418)

= (X345X146X12SX237X278X478 i XI2GX235X256X455X347X148)-

(10.13)

Not every transformation matrix can be represented
in a form of the type (4.11) or (4.12), e.g., the 9j-
symbol. However a 9j-symbol can be considered as a
12j-symbol of the second kind with one of the Racah
coefficients of a special form

{J"J"’J'}_

77

Symbolically, the 9j-symbol can be represented in the
form

[Xl234X‘2315X1216Y(24)(56)]‘ (10 .14)

Here Y(ik)qm) is a special value of the Racah coeffi-
cient, with Xjk = Xjpm, Xij = Xkm, Xk/ = Xim- The nota-
tion in the other similar j-symbols is analogous. Thus,
any j-symbol can be represented in topological form

as a combination of Racah coefficients. The structure
of such combinations is considerably more complex
than the structure of combinations of C-G coefficients.
However, different combinations of Racah coefficients
can be reduced to the standard form with the help of
the relations

[X1345X2345X1245] = meaaszaa], (10.15)
X934 Xioas Xpo
[meX1247X2347X2357X2567]=[Xj:: Xi:f,: Xi;:]v (10.16)
Xisas Xuse Xpagr Xuars
N X 056X 1007X 1278 X == ’ ,
(X 193X 1236 X 1056 X 1987 X 1278 X 12851 [Xzsu Xosss Xogsr qus] (10.17)
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X Xoss Xousr Xier Xgors Xoaso Xiose Xyawr
Xipao Xaass Xoser | =] Xiear Xizs Xaszs | = | Xoaeo Xiose Xyasr | .

Xuos Xises Xsors Xiss Xaas Xizse Xiser
(10.18)

For combinations of Racah coefficients the graphi-
cal method is quite useful. Figure 5a represents the
6j-symbol. Here four lines originate in one vertex, the
lines corresponding to the C-G coefficient Xjk;. Figure
5b represents the 12j-symbol. Figure 6 represents
graphically the equations (10.15)—(10.18), which allows
one to reduce various graphs to tree-like diagrams
with a double line, of the type represented in Fig. 7.

In addition to the above problems, the topological
method allows one to consider higher-order simplexes,
corresponding to some supersymbols, which define the
transitions between various coupling schemes of Racah
coefficients, similar to the way in which the Racah co-
efficient determines the transformation between various
coupling schemes of C-G coefficients. Here, in distinc-
tion from (10,14), the 9j-symbol plays an independent
role, forming part of the boundary of the four-dimen-
sional simplex. The practical construction of the four-
dimensional simplexes (and of the corresponding poly-
hedra) is based on using the form (6.11) for the 6j-
symbol.

The relationship between C-G coefficients and
topology implies the possibility of using homology
groups for a characterization of physical states in
processes taking place in complex atomic systems,
The wave function of a complex system (e.g., an atom
with a definite way of coupling several angular mo-
menta) can be characterized by means of homology
groups. The same is true of the matrix elements for
such a system. The topologization of the theory which
occurs in this way involves the use of the new quantum
numbers pg and of the corresponding selection rules,

The possibilities of the topological approach are not
limited to the above. As already indicated, the general-
ized theory of angular momenta includes the higher
symmetries. At the same time, the differential opera-
tors which characterize definite Lie groups, are de-
scribed by cohomology groups, and can be specified in
terms of the appropriate Betti numbers!™°"1, The
simultaneous presence of homology and cohomology
groups determines structures in the theory of C-G
coefficients which are related to the use of modern
topological methods which are analogous to those used
in quantum field theory for analyzing the analytic prop-

X
nUY WIE
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d)
FIG. 6. Graphical interpretation of relations between the j-symbols.

FIG. 5. The 6j-symbol and the 12j-symbol.

FIG. 7. A tree-like graph with a double
line.

erties of Feynman integrals!®>®], These problems are
almost completely undeveloped and one can hardly say
anything at present about their practical value.

11. Relations Between the C-G Coefficients and
Multidimensional Complex Integrals

Among the various geometric relations between
C-G coefficients attention should be given to the
Hilbert spaces Fy, the elements of which are entire
analytic functions. The use of the Hilbert spaces Fp
in the study of the rotation group is based on the fact
that the irreducible representations of that group can
be obtained by considering homogeneous polynomials
of two complex variables (for the group SU(n)—of n
complex variables). All these polynomials are elements
of F; and can be discussed simultaneously. A sys-
tematic discussion of the relation between C-G coeffi-
cients and multidimensional complex integrals was
carried out by Bargmann!®! on the basis of the Hilbert
spaces Fp. According to Bargmann, the elements of
Fj, are entire analytic functions f(z), where
z =(zy, Z,...,25) is a point of a complex n-dimen-
sional Euclidean space. Any such function f(z) admits
everywhere a power-series expansion

(11.1)

hy_ha
F@= 2 Onng..anZidd ou. 2m,
kg by

The inner product of two elements f, f' F is defined by

(ff')=jmf'(z)dun (), (11.2)

where the measure is defined by

dpn (z) = " exp ( —22) [h]dlk dyx (z=z+iy).

In discussing the Kronecker product Dj 1xDj2 of two

representations of SU(2), Bargmann'®! makes use of
the space Fs and shows that the generating function of
the Wigner symbol can be written in the form

@ (eFm) = exp (D (%, & ), (11.3)
where
Ty Ty T3
D(r,8, =48 & & . (11.4)
M M2 M

and 7 = (7.T2Ts), £ = (£1£2£3), n = (n1n27s) are triples
of complex numbers. The Wigner coefficient is defined
by expanding the generating function in powers of

T?, 5%, n{. For fixed 7 the generating function

& = ®(7, £, 1) is an element of Fe:

(@, @)= [ [ [ P D@ & W) exp D (5. &, 1) diss () ] i @)- )
11.5

It can be seen from Eqs. (11.3) and (11.4) that the
generating function satisfies the Regge symmetry.
The generating function for the Racah coefficient can
be expressed in the form of an integral over a product
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of four generating functions & and is an element of
F2. The substantial advantages of Bargmann’s method
consist in the fact that the formulas can be written
simultaneously for all C-G coefficients, independently
of the concrete values of the angular momenta. This
method can be easily generalized to arbitrary combina-
tions of the C-G coefficients. By analogy to (11.5), the
generating functions for these combinations can be
expressed as multidimensional complex integrals.
Such formulas encompass all special values of the
combinations obtained in the expansions of type (11.1).
Thus, the topological investigation of combinations of
C-G coefficients carried out in Sec. 11 is closely re-
lated to the topological characteristics of multidimen-
sional complex integrals. On the other hand, Fotiadi,
Froissart, Lascoux and Pham'® have proposed to
make use of homological algebra methods in the inves-
tigation of the analytic structure of multidimensional
Feynman integrals occurring in quantum field theory.
Thus there appear diverse (and hopefully, fruitful)
relations between the theory of C-G coefficients with
geometric and topological concepts on the one hand,
and complex integrals, on the other.

12, Conclusion

In this necessarily condensed review we have at-
tempted to show to what extent the formulas of the
theory of C-G coefficients are related to other chapters
of modern mathematics. The majority of these rela-
tions became apparent only during the past few years,
and there is no doubt, that this circle will be enlarged.
Among the closest-lying directions of development of
the theory one should mention generalizations to other
compact Lie groups, different from SU(2). The theory
of C-G coefficients which exists at this moment also
contains the C-G coefficients of the semisimple Lie
groups, with the C-G coefficients of SU(2) being the
basis of the whole theory (cf.[%*:%5,5%,56,88-1001) © A gecond
promising direction is the study of C-G coefficients
for values of their arguments different from integers
and half-integers. This direction is closely related to
the theory of special functions. Without doubt, investi~
gations will continue into the group-theoretic, com-
binatoric and geometric aspects of the theory of C-G
coefficients. To the authors of this review the present
state of the theory of C~G coefficients appears as a
collection of fragments, giving a quite hazy impression
of the whole picture. The reason for writing this re-
view was to call to the attention of the readers the
great variety of unsolved (and even unformulated)
problems.

Only the future will tell how important the role of
C-G coefficients will be for physics. However the
consistency and beauty of the theory in statu nascendi,
on the one hand, and the continuous widening of the
physical applications, on the other hand, force one to
think that the physical side of the theory of C-G coef-
ficients is quite important. The use of C-G coefficients
in physics is still rather limited, in spite of their
various applications. This is related to the insufficient
development of the theory and to the underestimation
of their role and effectiveness.

APPENDIX

THE CLEBSCH-GORDAN COEFFICIENTS OF COM-
PACT GROUPS

The theory of C-G coefficients of higher compact
groups which contain the group SU(2) (O(3)) as a sub-
group, has much in common with the classical theory
of angular momenta and, as was mentioned in Section
12, should in the future become a new branch of the
generalized theory. However, at present, the problem
of creating a theory of C-G coefficients which is con-
venient for physical applications is far from being
completed. From this point of view a detailed review
of results for the higher groups seems to be prema-
ture. Below we briefly go over the peculiarities, the
principles of computational methods, and the problem
of tabulation for the C-G coefficients of the higher
compact groups.

Compared to the classical theory of angular mo-
menta, the general theory of C-G coefficients of com-
pact groups exhibits a series of peculiarities. First,
multiplicities may appear in the Clebsch-Gordan
series (for the group SU(2) the same representation
may appear with multiplicity higher than one only for
the addition of several angular momenta). In order to
distinguish the multiply occurring representations one
makes use of an external factor, not contained in the
group (in the group SU(2) this factor is the order in
which the angular momenta are coupled). A second
important peculiarity is the nonuniqueness in the de-
termination of the canonical basis, its dependence on
the choice of a chain of subgroups. Various reduction
schemes in terms of subgroups may be essential for
different concrete physical problems, where a hier-
archy of physical symmetries is observed. We note
that in the presence of a chain of subgroups the C-G
coefficients can be factorized in terms of the subgroups.
Thus, the SU(3) C-G coefficients in the chain SU(3)

D SU(2) consist of a C-G coefficient of SU(2) and an
isoscalar factor. For more complicated chains there
appears a system of factors. One has to keep in mind
these peculiarities both in computing the C-G coeffi-
cients and in using data from the literature, in particu-
lar tables. In the presence of multiplicities the factor
distinguishing the multiple representation is not con-
tained in the group, depends on the concrete problem
at hand and often has the character of a convention.
Therefore one must first construct C-G coefficients
corresponding to a Clebsch-Gordan series not contain-
ing multiple representations., These coefficients are
uniquely determined and it makes sense to tabulate
them. The tabulation of C-G coefficients for higher
groups is just as unjustifiable as the tabulation of
generalized C-G coefficients in the theory of angular
momentat®®!,

It is also necessary to indicate that the transition
between C-G coefficients of the same group, but for
different schemes of reduction (with respect to sub-
groups) is considerably more complicated than their
direct computation. The results obtained by means of
one reduction scheme are useless for another reduc-
tion scheme, Therefore it is imperative to understand
the limited character of formulas and tables of C-G



20 SMORODINSKII and SHELEPIN

coefficients and the conditions in which they have been
derived, before making use of them. For the C-G co-
efficients of higher groups some of the other concepts
known in the case of SU(2) undergo certain changes.
Thus, for the Wigner coefficients of the general case
there is no longer any symmetry with respect to per-
mutation of the representations('°!,

The theory of Lie algebras, which is exposed in a
series of reviews and monographs[®1®-1%] jg at the
basis of the general theory of C-G coefficients for
compact groups. All simple Lie algebras have been
classified and studied; there are four infinite families
of ‘‘classical’’ groups corresponding to these algebras:
the unitary unimodular groups SU(n)(n = 1), the ortho-
gonal groups SO(2n + 1)(n = 2) and SO(2n) (n = 3),
the symplectic groups Sp(2n) and the five ‘‘excep-
tional’’ groups: Gs, ¥4, Es, E7, Eq. The Lie algebras
allow one, in principle, to determine any quantities
characterizing the appropriate groups. However, there
is a large gap between the general formulation and

realistic computational schemes for physical problems,

In the discussion of concrete methods for the construc-
tion of C-G coefficients one may, conventionally,
distinguish three approaches:

1. The starting point of the infinitesimal approach
are the commutation relations between the operators
representing the Lie algebra. It is convenient to write
these commutation relations in the Cartan-Weyl basis,
containing I mutually commuting operators Hj (with
[Hi, H] =0,1,3 =1, 2,...,1 (I denotes the ‘‘rank’’ of
the group) and T - 1 noncommutmg operators E, (r
is the dimension of the Lie algebra). These operators
define the root vectors ri(a) ({Hj, Ey = ri(a)Ey), the
weights m = (m,,..., m,) of the representation (Hjy
= mlzp) and the matrix elements of the representation
of the group[mci 21071 1n[1973 there were also considered
methods for the constructxon of C-G coefficients. The
basis plays an important role in such a construction,
The problem of constructing and labeling a canonical
basis was discussed in'***!°], The basis vectors of
irreducible representations are labeled by means of
the eigenvalues of the additive operators, [Hj] = mj,
and also by the eigenvalues of some nonadditive opera-
tors, such as the Casimir operators!'®®1%%!!)  Thys,
for the representations of the groups SU(n),
D(P,,...,Ppn-,) the signature may be related to the
Casimir operators of that group. As nonadditive
parameters one may select the Casimir operators Ka
of the groups SU(n - 1),...,SU(2) (« = .,n,
=2,...,k) i.e,, the labeling of the canomcal basis con-
sists of the three blocks of numbers | P,,..
(K% [HiD.

The calculation of matrix elements of the represen-
tations and of C-G coefficients in the infinitesimal
method is a rather lengthy and complicated affair.
Each group and reduction scheme requires a separate
discussion. We indicate some papers containing con-
crete computations of matrix elements (SU(3)!"%* %)
SU(4)[“4] SU(6)[“5 us] S (6)[117 us] G: [119] F. [120]
SO(5)1#t 122]) and to the calculation of the Clebsch—
Gordan coefficients by means of the infinitesimal
method (SU(3)[122,128-126]’ SU(G)[ue,xﬂ-mo] SU(n)[lﬂl],
SO(5)112-*4]) " Further development of this approach
presents great methodical interest.

L] Pn";

2, A second approach, related to the use of algebraic
methods, is closest in ideology to the classical theory
of angular momenta, An essential element in this ap-
proach is the definition of a polynomial basis. The
problems of construction of a polynomial basis were
discussed in a series of papers (SU(3)!!*®-158]
SU4)I3%, 8O(5)[1°-121 g0(n)l*3-14%)), An 1mportant
special case of a polynom1al basis is the symmetric
basis introduced for the groups SU(n)!**»**»**), Charac-
teristic properties of this basis are:

a) Redundancy (not all components are linearly
independent, aithough the expansions in terms of the
basis are unique),

b) Symmetry (the contraction of an arbitrary basis
vector of the representation D(P,,...,Pn-,) of SU(n)
with the conjugate vector yields a product of determin-
ants of order (n + 1) raised to the powers P,

P, ...,Pp-y, i.e., there is a close relation ton x n-
symbols).

c) Factorization (the symmetric basis consists of
separate factors which are bases of the representa-
tions D(P00...), D(0Q0...), D(OOR...)...) These
properties are convenient for the construction of
transformations among different reduction schemes,

The polynomial basis allows for a wide use of
generating invariants, a method which permits one to
study the structure and interrelation between C-G
coefficients of different groups!®®>®!, An important
stage in the development of an algebraic computation
scheme were the papers!®™ ! where for the compu-
tation of individual C-G coefficients use was made of
the rules for combining them in order to form more
general coefficients. Among the other papers on the
algebraic method it is worth mentioning!**-!*!1, In
spite of known difficulties (finding the construction
rules, computation of the normalization), the algebraic
approach allows one to obtain results which are of
general validity for a given group. It is, of course,
incorrect to compare it directly with the infinitesimal
method, since in algebraic calculations one makes
widespread use of the knowledge of general properties
of representations, which in turn are derived with the
help of Lie algebras,

3. A third direction in the theory of C-G coefficients
is based on the close interrelation between representa-
tions of the semisimple Lie groups and the representa-
tions of the symmetric group, 7£!°!. For a long time
this approach played the main role in applications and
was related to the calculation of fractional parentage
(‘‘genealogic’’) coefficients. The latter are the factors
in the C-G coefficients of higher groups. They are
quite convenient for the construction of wave functions
for many-particle systems exhibiting definite permu-~
tational symmetries, The results of this approach are
systematized in the monographs!'*-%¢!, The computa-
tional machinery of the symmetric group is a useful
tool in the representation theory of compact Lie groups.
A characteristic example is the pletism method!**6-15%],
The relationship between the matrix elements and the
C-G coefficients of the symmetric group =y and the
C-G coefficients of the compact Lie groups has been
discussed in several papers!!®®'®!], The reduction co-
efficients (S-coefficients) have been defined in!**®;
these eoefficients realize the reduction of the space
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RI=R xR x...x R into spaces irreducible with re-
spect to 7§ x G (R is the representation space of the
group G, corresponding to the symmetry of the physi-
cal system under consideration). The S-coefficients
define formally the relation between the computational
machinery of the symmetric group and the compact
groups.

Notwithstanding the accomplishments in all direc-
tions of investigation of the C-G coefficients of the
higher groups, the fragmentary character of the results
still needs to be overcome. A series of papers have
computed tables of the C-G coefficients (and factors)
for various groups, with applications in view. We point
out the tables of isoscalar factors for the group
SU(3)[11,162,183] the numerical tables, obtained with the
help of computers, for the reduction SU(3) > SU(2),
the tables of isoscalar factors of the groups SU(4)!!*],
SU(6)!*®], the tables of reduction coefficients for
D(11) x D(11) x D(11) of SU(3)!***), and the table of
C-G coefficients of the group SO(5)!'*2,1%8]

Acknowledging a certain value of these tables (if
one takes into account the limitations listed above),
one should remark that the reduction of the factors of
the C-G coefficients of higher groups to the C-G coef-
ficients of the groups SU(2) (or their combinations)
makes such tables practically unnecessary. Thus, the
reduction of some isoscalar factors of the group SU(3)
to the C-G coefficients of SU(2)!*°®] makes a large
portion of the tables!''*!%) yseless. Quite important
and interesting is an analogous result for SO(5)1%,
Further development of the problem of reduction of
the C-G coefficients for the compact groups to C-G
coefficients of the group SU(2) would allow one to use
ready-made universal tables of the C-G coefficients
of SU(2), in place of the new tables. The methodical
importance of such a reduction was already mentioned
in Sec, 12, from the point of view of a unified theory of
C-G coefficients.

The latter is important also for the theory of C-G
coefficients of noncompact groups. Insofar as the
physical aspects of the problems of higher symmetries
are concerned, this set of problems is undergoing a
significant revision (cf. Section 8) and the set of physi-
cal objects to which one applies the theory of C-G
coefficients of compact groups is also expanding (cf.,
e.g., the coherence problem!'-1681),
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