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INTRODUCTION

T H I S review i s devoted to the problem of symmetry
breaking in e lementary-part ic le theory and many-body
theory. A special examination of the problem of symme-
try in quantum field theory is necessary, s ince during
the last decade essential differences have been found
between the symmetry propert ies in quantum field
theory and in quantum mechanics . These differences
a r e due to the fact that the systems considered in field
theory have an infinite number of degrees of freedom.
In quantum mechanics a symmetry transformation
always c a r r i e s any vector of the Hilbert space of s tates
into a vector of this same space. Because of the con-
servation of expectation values this t ransformation is
unitary. An invariance of the Hamiltonian then always
leads to the existence of corresponding selection r u l e s
and conservation laws.

In quantum field theory t h e r e can be two types of
noninvariance of s tates .

1. A noninvariance of the same type as in quantum
mechanics, when a state of a given Hilbert space goes
over into a state of the same space. An example i s the
noninvariance of the one-part icle s tates of the free field
with respect to t ransformations of the inhomogeneous
Lorentz group.

2. A noninvariance of the ent i re Hilbert space of the
states of a system. The symmetry transformation i s
nonunitary and c a r r i e s any state vector of the given
space into a vector of a different Hilbert space of s tates .

The difference between the two types of noninvariance
can be seen easily from the example of the quantum
theory of many bodies. Suppose t h e r e a r e Ν atoms with
spin unity in an external magnetic field directed along
the ζ axis. In the ground state the spins of all the atoms
a r e directed along the ζ axis, and the wave function of

Ν
the ground state can be put in the form Φ0 = . Ώ ip?,

where #? is the eigenfunction of the spin operator S z

with eigenvalue unity, which t rans forms according to the
vector representat ion of the rotation group. The excited
states a r e described by wave functions that differ from
*° by having the spins of some number (-C N) of the
atoms not directed along the ζ axis. Φ0 and the excited
states above it form a Hilbert space Ho of s tates . The
state Φ0 i s invariant under rotations around the ζ axis.
The excited s tates a r e noninvariant under these rota-
tions, but Ho as a whole is invariant, since these s ta tes
go over into each other. Thus we see that if the ground
state is invariant, then the noninvariance of the excited
states i s of the first type.

Let us now consider rotations around the χ axis. The
ground state Φ0 itself is noninvariant under these rota-

tions and goes over into
N

= Π rf where m des-
1j

cribes an atom with spin turned through the angle θ

around the χ axis. Since the wave functions of atoms

with spin unity t ransform according to the vector r e p r e -

sentation of the rotation group, (ip°, tp&) = cos Θ. Conse-

quently,

p, tp

(Ψ», ) = .Π1 (ψ?.

and for Ν — <*>,* (Φ°, Φ#) — 0. Accordingly, the s tates
Φ° and Φ^ a r e orthogonal for all angles 0 < θ < 2π.
Similarly, any excited state above Φ0 i s orthogonal to
any state excited above Φ^. Thus Φ^ i s orthogonal to
any state of the Hilbert space Ho and therefore does not
belong to this space. The same i s t r u e for any state
excited above Φ θ . Consequently, we a r r i v e at the neces-
sity of considering Hilbert spaces Ηρ, in which the
states Φ0 and the s tates excited above them are con-
tained. In the spaces Ho, H e (0 < θ < 2ττ) t h e r e a r e
real ized various unitari ly nonequivalent representat ions
of observables1 2"6-1 (in the present case the spin opera-
tor s ) .

This noninvariance of Φ0 and the s ta tes excited above
it i s indeed a noninvariance of the second type. In
many-body theory a noninvariance of the second type i s
a macroscopic noninvariance of a state of a system.
F u r t h e r m o r e there always exists a noninvariant macro-
scopic observable, which behaves classically (see
Chapter 1). In our example the magnetization

m = Ν ™ 0 0 >j Σ Sj, where Sj i s the spin operator of the

j - t h part ic le, i s such a quantity. The value of such a
macroscopic quantity is the same for all vectors of a
fixed Hilbert space. The different values of these quan-
ti t ies correspond to different spaces.

In many-body theory a noninvariance of the ground
state i s always of the second type. In e lementary-part i-
cle theory the vacuum plays the ro le of the ground
state; it i s defined as a state invariant with respect to
space-t ime translat ions. A noninvariance of the vacuum
is always a noninvariance of the second type.

The concept of a noninvariance of the vacuum was
introduced by Heisenberg at the end of the 195O's . t 7 ' e ]

Heisenberg 's basic asser t ion was that the vacuum can-
not be a s tate invariant under the breaking of internal
s y m m e t r i e s : the proper t ies of the vacuum reflect those
of the world of physical phenomena, and therefore every-
thing that is broken in this world is broken for the vac-

*N -* °° is a usually postulated condition in many particle theory
and corresponds to the so-called thermodynamic limit (cf., e.g., ['],
Chapters 1 and 7).
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uum. After the appearance of Coleman's theorem/ 9 - 1

which a s s e r t s that " i n v a r i a n c e of the vacuum is invari-
ance of the w o r l d " , this proposition of Heisenberg 's
can be regarded a s proved (not only for continuous in-
terna l s y m m e t r i e s , but also for the d i scre te P, C P , and

Τ s y m m e t r i e suo,n:i ). Accordingly it follows from
Coleman's theorem that the vacuum in elementary-
par t ic le theory is noninvariant with respect to all the
broken s y m m e t r i e s : isotopic symmetry, which i s broken
by the electromagnetic and weak interact ions, the sym-
metry of the hypercharge group, which is broken by the
weak interact ions, the group SU(3), and also the C and
CP reflections. However, the vacuum can also be in-
variant even for a completely invariant interaction. In
many-part ic le theory the interaction i s invariant under
space rotat ions and t rans lat ions, and nevertheless the
ground state (vacuum) of a crystal i s noninvariant with
respect to these t ransformations, the ground state of a
ferromagnetic i s noninvariant with respect to rotat ions,
and so on. F u r t h e r m o r e the noninvariance of the vacuum
leads to the absence of the corresponding selection ru les
and conservation laws. For example, for the phonons of
a crystal the law of conservation of momentum is not
satisfied, and holds only up to a vector of the reciprocal
latt ice. Such a symmetry breaking, when the vacuum is
noninvariant with an invariant Hamiltonian, i s called
spontaneous. In e lementary-part ic le theory symmetry
breaking is usually regarded as nonspontaneous, but
t h e r e exist models which demonstrate the possibility of
a spontaneous symmetry breaking in this theory also
(see Chapter 7). A theory of spontaneous symmetry
breaking i s natural for c a s e s in which the existence of
an interaction breaking the symmetry is problematical,
for example in the case of the group SU(3), ' 1 2 ) 1 4 : | in the
explanation of the m a s s difference of muon and elec-
tron, U 2 ' 1 3 ] and also in the theory of CP v io la t ion, ' 1 5 ' 1 "
in K° decays which have not shown up in any other ex-
per iments , and so on.

At the present stage it is hard to decide which of the
symmetry breakings in e lementary-part ic le physics a re
spontaneous and which are not. This i s because in the
relat iv is t ic theory the symmetry propert ies of the
Lagrangian a r e unknown; one knows only the conserva-
tion laws and selection ru les in p r o c e s s e s involving
actual par t ic les . But spontaneous symmetry breaking
can lead to the same violations of conservation laws and
selection rules as the existence of symmetry-breaking
interact ions. We also note that in a number of cases it
i s possible to regard a symmetry breaking as a combi-
nation of a spontaneous breaking with a subsequent non-
spontaneous breaking. ' 1 7 191

A general feature of any symmetry breaking i s non-
invariance of the vacuum. We recal l that the invariance
of the vacuum ]0) with respect to the t ransformations of
a group U ( T ) = exp(iQr) means that the vacuum state i s
car r ied into itself by the t ransformations of the group:
U ( T ) | 0 ) = | 0 ) . If the group is a continuous Lie group,
the infinitesimal operator Q of the group then has the
property Q|0) = 0. If the vacuum is noninvariant, then
Q|0) * 0. Physically, noninvariance of the vacuum mani-
fests itself in the fact that there exist noninvariant
vacuum averages for certain local observables A T (x),
i .e., observables for which the commutator with a field
operator i s zero for spacelike intervals . This is equiva-

lent to the condition

Id

where |0) i s the vacuum, α(τ) = ( 0 | Α τ ( χ ) | 0 )
= ( 0 | U ( T ) A ( X ) U ( T ) " 1 | 0 ) , with U ( T ) = exp(ixQ), where Q
is the generator of the symmetry transformation. For
the invariant vacuum β = 0. Conversely, if for arb i t rary
local A(x) we have β = 0, then the vacuum i s invariant.
This i s proved in the framework of the axiomatic ap-
proach (cf., for example, t u ' 2 9 J ) . For the noninvariant
vacuum the generator Q does not exist as a Hermitian
operator in Hubert space (see Chapters 1 and 4), and
the s tates do not t ransform according to a unitary
representat ion of the symmetry group and cannot have
corresponding quantum numbers assigned to them.

We shall call noninvariant vacuum averages anomal-
ous averages. In many-body theory the presence of
anomalous averages i s associated with the existence of
noninvariant macroscopic class ical p a r a m e t e r s such as
magnetization, part ic le number density, and so on (see
Chapter 1). In e lementary-part ic le theory the physical
meaning of such anomalous averages is not c lear, but
there exist models in which they can be given the mean-
ing of mass , coupling constant, or part ic le number
density in a cosmological model (see Chapters 5, 7, and
8).

There is a change of an anomalous average when
there is a change of the vacuum. As can be seen from
our example from many-part icle theory, the transi t ion
from one vacuum to another already requi res a non-
unitary transformation. This means that the transit ion
cannot be described by the laws of quantum m e c h a n i c s ' 2 0 3

and requi res a different logical scheme, distinct from
that of quantum mechanics. In many-body theory this
scheme turned out to be class ical physics. In elemen-
tary-par t ic le theory the question as to the possibility
of many vacuums and the variation of the corresponding
anomalous averages r e m a i n s open (in a number of pa-
p e r s this variation i s associated with development in
t i m e , ' 2 i : l with the role of the gravitational f ield, ' 2 2 ' 2 3 3

with a new role of m e a s u r e m e n t s , 1 2 4 j 2 6 ] etc.).

In the theory of spontaneous symmetry breaking the
concept of the noninvariant vacuum is closely connected
with the degeneracy of the vacuum. The la t ter concept
means that the same system, with a fixed value of the
energy, can have different vacuums (ground states). The
t e r m degeneracy of the vacuum is used in two different
senses : 1) the existence of different Hilbert spaces of
the system, in each of which the vacuum is unique, and
which differ by different values of some class ical
p a r a m e t e r ; 2) the existence of different vacuums in a
single Hilbert space, in which case the value of the
class ical p a r a m e t e r i s not fixed—in nonrelativistic
theory this corresponds to the absence of complete in-
formation about the system (the presence of a s tat is t ics) .

If the value of the class ical p a r a m e t e r in question is
fixed and cannot vary, then we have the case of a single
noninvariant vacuum. Such a situation is possible in
elementary-part ic le theory. For example, the pari ty
noninvariance in the two-component theory of the neu-
tr ino i s due to the fact that the space-inversion t rans-
formation c a r r i e s the neutrino over into a nonexistent
state, since the neutrino is character ized by a definite
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helicity. Similarly, for continuous groups also, in the
case of a unique but noninvariant vacuum a symmetry
transformation takes the system over into a physically
nonexistent state.

With spontaneous symmetry breaking the transition
from one vacuum to another can be described as the ex-
citation of an infinite number of particles (infinite,
since with a change of the vacuum there is a change of
a macroscopic parameter, for example, the magnetiza-
tion of a ferromagnetic body), while there is no accom-
panying change of the total energy of the system, the
state remains translationally invariant, and the energy
of an individual particle must go to zero when its mo-
mentum goes to zero. This statement that when there
is spontaneous symmetry breaking particles of zero
mass must exist has been given the name of the
Goldstone theorem in the literature. Examples of
Goldstone particles are phonons and magnons in many-
body theory. In elementary-particle theory photons
could be such particles.

The present review is devoted to the problem of
vacuum invariance and spontaneous symmetry breaking
in quantum field theory. Owing to the fact that this prob-
lem arose first in many-body theory, we shall first ex-
pound the general properties of spontaneous symmetry
breaking in this theory (Chapter 1), and illustrate these
properties with examples from the theories of ferro-
magnetism (Chapter 2) and of superfluidity (Chapter 3).
We then give a formulation and proof of Coleman's
theorem (Chapter 4), which shows why the vacuum must
be noninvariant in elementary-particle theory, and then
expound the relativistic version of Goldstone's theorem
(Chapter 5). The physical meaning of this theorem, and
also its altered form when there is spontaneous sym-
metry breaking, are further discussed in Chapter 6. In
Chapter 7 we give some typical examples of spontaneous
symmetry breaking in elementary-particle theory (the
models of Nambu and Jona-Lasinio, of Goldstone, and
others). Finally, in connection with the problem of the
classical parameter in elementary-particle theory, we
examine in Chapter 8 the question of the quantization of
fields in a space-time with a nonstationary metric. In
this theory the vacuum changes with time, and its
change corresponds to a change of a quantity of the type
of a matter density; some authors1 2 2 '2 3·1 call this sort
of process the process of creation of matter with the
expansion of the universe.

1. GENERAL PROPERTIES OF SYMMETRY BREAKING
IN MANY-PARTICLE THEORY

Spontaneous symmetry breaking is a widespread
phenomenon in many-body physics. In any nonrelativis-
tic many-body system there is breaking of the symme-
try of the ground state under transformations of the
Galilei group. Spontaneous symmetry breaking is often
encountered in phase transitions; for example, in
solidification the translational symmetry of the liquid
is lost and there remains only the discrete group of
translations by vectors of the crystal lattice. On going
through the Curie point in the theory of ferromagnetism
one must take into account a spontaneous breaking of
the symmetry with respect to the rotation group, and in
the theories of superconductivity and superfluidity the

transition from the normal to the superconducting or
the superfluid phase is accompanied by loss of gauge
invariance.

In the nonrelativistic domain spontaneous symmetry
breaking manifests itself in the fact that certain macro-
scopic parameters characterizing the physical system
in question are noninvariant with respect to the symme-
try transformations. The existence of macroscopic
parameters, invariant as well as noninvariant, is a gen-
eral property of many-body physics. By macroscopic
parameters we mean those characteristics of a physical
system whose variations are described by classical
physics, in distinction from the quantum "microscopic"
observables, which give us a view of the microscopic
nature of the system, described by quantum theory. Ob-
servables of these two types differ in the methods by
which they are measured. In fact, the methods of meas-
urement of micro-observables, such as the energy and
momentum of quasiparticle excitations, and of macro-
observables, such as density, temperature, and magne-
tization, are entirely different.

When there is complete information about a system
the macroscopic observables have exactly defined
values. To each of the values of a macroquantity there
corresponds a set of states of the physical system, dif-
fering from each other only by the values of the micro-
observables. The manifold of these states forms a
Hilbert space characterized by the given value of the
macroscopic quantity. There are different Hilbert
spaces for different values of the macroscopic variable,
and this fact manifests itself physically in the absence
of interference between states with different values of
macroscopic quantities. In each of these spaces the
micro-observables are described by operators which
realize unitarily nonequivalent representations of the
observables.

The value of a macro-observable in a given Hilbert
space can be obtained as an average over the volume Ω ,
of the form

) = lim ~ \ Β (χ) dsx,
Ω->οο J

( 1 . 1 )

w h e r e B ( x ) i s t h e c o r r e s p o n d i n g l o c a l m i c r o o b s e r v a b l e .

T h a t i t i s l o c a l m e a n s t h a t t h e c o m m u t a t o r o f B ( x ) w i t h

t h e c r e a t i o n ( a n d a n n i h i l a t i o n ) o p e r a t o r s o f t h e f i e l d ,

[ B ( x ) , a + ( y ) ] g o t o z e r o s u f f i c i e n t l y r a p i d l y f o r | x - y |

—* °o.

E x a m p l e s o f m a c r o q u a n t i t i e s a r e : t h e p a r t i c l e n u m -

b e r d e n s i t y

ρ = lim 4r [ a+ (x) a (x) d»x,
a

the kinetic energy density

ε = lim ~ f a+ (χ) ̂  ψα (χ) d3x and SO On.

Q u a n t i t i e s of t h e t y p e (1.1) c o m m u t e wi th a l l t h e

c r e a t i o n and a n n i h i l a t i o n o p e r a t o r s . F o r e x a m p l e , we

i n d e e d h a v e

o[6, a+ (y)] = lim ~ \ d*x [B (x), o+ (y)] =

b e c a u s e of t h e l o c a l n a t u r e of B(x). It c a n be shown t h a t

a l l q u a n t i t i e s of t h e f o r m (1.1) a l s o c o m m u t e w i t h e a c h
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other, so that they can be regarded as c numbers . In
theor ies with a translationally invariant ground state
(vacuum) the values of these observables a r e equal to
the vacuum expectations of the corresponding local
quantities:

lim
Ω-»οο

= lim _L ^ (0] Β ( = (0 [ Β (χ
(1.2)

We s h a l l show t h a t t o d i f f e r e n t v a l u e s of m a c r o q u a n -
t i t i e s t h e r e c o r r e s p o n d u n i t a r i l y n o n e q u i v a l e n t r e p r e -
s e n t a t i o n s of t h e o b s e r v a b l e s , which m e a n s t h a t a c h a n g e
of s t a t e of t h e s y s t e m i n w h i c h a m a c r o q u a n t i t y c h a n g e s
c a n n o t be d e s c r i b e d by a u n i t a r y o p e r a t o r . L e t aj(x) and
a^(x) b e c r e a t i o n and a n n i h i l a t i o n o p e r a t o r s in H i l b e r t
s p a c e Hj (i = 1, 2), a n d l e t bj b e t h e v a l u e i n H^ of t h e
m a c r o s c o p i c q u a n t i t y de f ined by (1.1) . L e t u s s u p p o s e
t h a t t h e r e p r e s e n t a t i o n s in q u e s t i o n a r e c o n n e c t e d by a
u n i t a r y o p e r a t o r , i . e . ,

a, (x) = Ua2 (x) U'\ a\ (x) = Uat (x) U~
T h e n

B,(x) = t / S 2 ( x ) t / - \ ( 1 . 3 )

w h e r e B j ( x ) i s t h e o p e r a t o r r e p r e s e n t i n g t h e m a c r o -
o b s e r v a b l e i n H j . T h e l i m i t i n ( 1 . 1 ) i s t o b e u n d e r s t o o d
i n t h e w e a k s e n s e , i . e . , a s c o n v e r g e n c e of t h e m a t r i x
e l e m e n t s . T h e n w e h a v e

, (χ) | ψ (1.4)

U s i n g (1 .3) , w e get

<i|-, I B, (x) | i|V. = ({/'Hi I B2 (x) | ί/-Η|:,; = <if21 Β2 (χ) [ ψ2; (ψ, ζ Η2). (1.5)

S u b s t i t u t i n g (1.5) i n (1.4) a n d u s i n g (1 .2) , w e h a v e

2 | JB2 (Χ) Ι ψ2) d3a: = <î 21 fe2 | ψ2> = i2. (1.6)

A c c o r d i n g l y , i f t h e r e p r e s e n t a t i o n s a r e e q u i v a l e n t , t h e
m a c r o q u a n t i t y h a s t h e s a m e v a l u e i n b o t h of t h e m .
C o n s e q u e n t l y , r e p r e s e n t a t i o n s c o r r e s p o n d i n g t o d i f f e r -
e n t v a l u e s a r e u n i t a r i l y n o n e q u i v a l e n t .

W e n o t e i n p a s s i n g t h a t t h e F o c k r e p r e s e n t a t i o n
o r d i n a r i l y u s e d f o r c r e a t i o n a n d a n n i h i l a t i o n o p e r a t o r s
d e s c r i b e s s y s t e m s w i t h z e r o d e n s i t y , i . e . ,

Ρ =
_ lim

Ω-
' (Ν/Ω) = 0 in any s tate of the system. Conse-

quently, all macroscopic bodies must be described by
representat ions unitari ly nonequivalent to the Fock
representat ion. With a change of the density, since it i s
a macroscopic p a r a m e t e r , there must be a change of the
representat ion (of the Hilbert space).

This division of observables into macroscopic and
microscopic allows us to define the concept of an exact
symmetry in the following way. A symmetry is exact if
the t ransformations corresponding to it do not change
the values of the m a c r o p a r a m e t e r s . In this case a sym-
metry operation takes the vectors of a given Hilbert
space into vectors of the same space, and can be des-
scribed by a unitary operator . The ground state
(vacuum) is not changed by the symmetry operations.

If, on the other hand, a symmetry t ransformation

*Owing to the translational invariance of the vacuum <0|B(x)|0) =
<0| exp (iPx) B(0) exp (HPx) | 0> = <0|B(0) |0> = b = const, where Ρ is the
momentum operator.

c h a n g e s t h e v a l u e of a m a c r o s c o p i c o b s e r v a b l e , t h e n i t
t a k e s a v e c t o r of a g i v e n H i l b e r t s p a c e in to a v e c t o r of
a d i f f e r e n t H i l b e r t s p a c e . In t h i s c a s e t h e s y m m e t r y
c a n n o t be d e s c r i b e d by a u n i t a r y o p e r a t o r , a n d if t h e
H a m i l t o n i a n i s i n v a r i a n t u n d e r t h e s y m m e t r y t r a n s -
f o r m a t i o n s t h i s m e a n s t h a t t h e r e i s s p o n t a n e o u s s y m -
m e t r y b r e a k i n g . T h e g r o u n d s t a t e i s t h e n n o n i n v a r i a n t .

F o r e x a m p l e , t h e n o n i n v a r i a n c e of t h e g r o u n d s t a t e of
any n o n r e l a t i v i s t i c m a n y - b o d y s y s t e m with r e s p e c t to
t h e G a l i l e i g r o u p i s due t o t h e fact t h a t in any a c t u a l
system the mean par t ic le number density ρ is different
from zero. This density is a macroscopic observable.
A macroscopic quantity i s also a function of the momen-
tum distribution function p(p) of the par t ic les , which
cannot be a constant. If p(p) were a constant, the system
would be character ized by an infinite energy density per
unit volume. Under Galilei t ransformations p(p) chan-
ges:

Ρ (Ρ)ϊ-* P(P') = Ρ (Ρ+ ""„),

where v0 i s the velocity of the motion of the reference
system. A change of p(p) requi res a t ransi t ion to a dif-
ferent Hilbert space, which means that the ground state
(vacuum) is noninvariant.

Conversely, noninvariance of the ground state of a
many-part ic le system leads to the appearance of a non-
invariant macroscopic p a r a m e t e r which i s not iden-
tically equal to zero. As was noted in the Introduction,
noninvariance of the vacuum or ground state manifests
itself through the existence of a nonvanishing vacuum
average α(τ) = (0 |A T (x) |0) * 0 of a local operator
A T (x) . Owing to the translat ional invariance of the
ground state aT can be represented as the vacuum aver-
age of the operator C T = l i m

x Jd3xAT(χ), which is the

~* Ω
corresponding noninvariant macro-observable. The
average of the operator C T over the vacuum |0) coin-
cides with the average over any normalized state φ(χ)
of the Hilbert space containing | 0 ) :

a, - (0 | Ax (x) 10) = <0 | Cx 10) =-- (ψ (χ) [ Cx j if (x)>.

We shall show that the generator Q of a t ransformation

AXl (x) -> AXi (x) - exp {iQ (τ2 - τ,)} Au (χ) exp { - iQ (τ, - τ,)},

w h i c h i s a c c o m p a n i e d by a c h a n g e of C T ( s o t h a t
C 7 i — C T 2 ) i s not a n o b s e r v a b l e ( m e a s u r a b l e ) q u a n t i t y .
In fact , a c c o r d i n g t o t h e q u a n t u m m e c h a n i c a l t h e o r y of
m e a s u r e m e n t , C 2 o : i i n a m e a s u r e m e n t of Q t h e s y s t e m i s
t a k e n o v e r in to a s t a t e d e s c r i b e d by an e i g e n v e c t o r of
t h e o b s e r v a b l e Q. B e c a u s e Q and C T do not c o m m u t e ,
t h e a v e r a g e v a l u e of C T in s u c h a s t a t e i s undef ined,
w h i c h c l e a r l y c o n t r a d i c t s t h e s t a t e m e n t p r o v e d a b o v e ,
that this average has the same value for any state φ(χ).
Accordingly, in the case of a noninvariant vacuum Q
cannot be measured and is not an operator in the Hilbert
space.* The physical meaning of this fact is that C T i s

*In the literature this sort of situation has been given the name
"superselection". [27·29] In the case of a continuous group one speaks
of continuous superselection, [28] and in that of a discrete group, of
discrete superselection.t30] For example, the discrete superselection rule
with respect to the baryon or electric charge in quantum field theory
manifests itself as the impossiblity of finding a system in an eigenstate
of an operator (C or CP) which does not commute with the operators
for these charges (if they are nonzero).
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a classical characteristic of the system, so that the
value of this quantity does not change in a measurement
(absence of Bohr complementarity).

On the other hand, the impossibility of representing
Q and U(T) = exp(iQr) by operators in the Hubert space
means, as we already indicated in the Introduction, that
there is breaking of the symmetry. In the case of an
invariant ground state (vacuum) C T = 0, so that a
change of the ground state from invariant to noninvar-
iant must be manifested physically as the appearance of
a new classical characteristic of the system, in accord-
ance with our earlier statements.

This sort of situation occurs in some phase transi-
tions: the new phase is characterized by a new param-
eter which is absent in the normal phase. For example,
in the transition of liquid helium from the normal to the
superfluid state this new parameter is the so-called
classical wave function of the condensate particles,

i

C T ==
 l i m

κ ν . , . . , J a*(x)e1 Td3x, which i s noninvariant

η ,_
under the gauge transformation a*(x) — a+(x)e T . In the
transi t ion of a metal from the normal to the super-
conducting state the gap function

Δ (x) = lim 4- \ f 6 (x, y — ζ) α+ (z) a* (y) cPz d3y,
Ω-κχ> ^ J JΩ

appears , where b(x, y— z) — 0 for fixed χ and |y— z |
—• <*>. Δ(χ) is noninvariant under gauge transformations.
In the transi t ion through the Curie point in a ferromag-
netic mater ia l a nonzero magnetization appears, which
i s noninvariant under rotat ions.

For spontaneous symmetry breaking the noninvariant
macroscopic observables can be described by means
of the concept of quasiaverages introduced by
Bogolyubov.'3 1 '3 2·1 It i s well known that in stat is t ical
mechanics the average value (A) of any dynamical quan-
tity A is defined by the equation

, i v _ * ^ ! ? ? . (1.7)
1 ' Spe-P"»'

h e r e e~ & i s the density matr ix that descr ibes the
ground state of the system, where SS is the Hamiltonian
and β = 1/kT.*

If, however, there is a macroscopic quantity whose
change i s not accompanied by a change of the energy
(the vacuum is degenerate), then the averaging (1.7) con-
tains an extra averaging over the different values of
this quantity. Accordingly, to calculate averages with a
fixed value of the macroscopic p a r a m e t e r it i s neces-
sary to modify the definition (1.7) of the averages. The
modified definition of the averages for spontaneous sym-
metry breaking has been worked out by Bogolyubov, who
introduced into the t reatment an infinitely weak external
field which breaks the symmetry of the system. For
this purpose a new t e r m fSSjnt i s introduced into the
Hamiltonian Η of the system, where i / i s a small param-
eter . The new Hamiltonian 9βν= Χ + i ^ j n t no longer
commutes with the symmetry operation owing to the
unsymmetr ical added t e r m . In this case the average of
a dynamical variable A, defined by (1.7) and equal to
zero for ν = 0, will be different from zero for ν *• 0.

M o r e o v e r , it can r e m a i n different from z e r o even in
the limit ν — 0.

Following Bogolyubov, we give the name of the
quasiaverage (A) to this double l imit:

= lim limSp Ae
•+0 Ω-+οο S p e

(1.8)

*We note that there always exists a Hubert space such that in it the
average (1.7) for any fixed Τ can be written as an expectation with re-
spect to a translationally invariant vector (vacuum). [ 3 3 ]

It i s important to emphasize that the l imit ν — 0 must
be taken after the thermodynamic l imit. A difference
between (A) and (A) for some ,5fint indicates a spontane-
ous symmetry breaking. It is also easy to see that the
usual average is the quasiaverage further averaged over
the group of the broken symmetry.

Accordingly, the procedure of taking the l imit ν — 0
i s equivalent to the choice of a ground state, or, what is
the same thing, a concrete value of the macroscopic
p a r a m e t e r character iz ing the representat ion.

The point of view has been advanced' 3 7 · 1 that rea l sys-
t e m s have spontaneous symmetry breaking because they
a r e in an external field which does not have the com-
plete symmetry of the system. Owing to a further order-
ing which exists in some sys tems, the effect of singling
out a part icular one of the var ious vacuums (of fixing a
definite value of a macroparameter) can be secured by
means of a very weak external action.

We note that in nonrelativist ic many-body theory
every local change of state can be described as a pro-
duction of quasipart ic les . Let us consider a certain sys-
tem. We apply to it a local transformation of a spon-
taneously broken symmetry. F o r example, in the case
of a ferromagnetic, this corresponds to the situation in
which all the spins of the atoms in a certain subvolume
of the system a r e turned through the same angle relat ive
to the spins of the main set of a toms. If the interaction
in the system i s of finite range, the change of energy
caused by this local symmetry transformation i s pro-
portional to the a r e a of the boundary of the selected
subvolume Ω (i.e., Ε ~ Ω 2 / 3 ) . The number of excited
quasipart icles i s itself proportional to Ω . Consequently,
the energy per quasiparticle i s ~ Ω / Ω and goes to
z e r o for Ω —• », i .e., there must exist in the system ex-
citations with energies that go to zero in the dipole
limit. If there a r e long-range (for example, Coulomb)
forces the change of the energy will no longer be pro-
portional to Ω , since there i s a contribution to the
energy not only from the par t ic les that a r e near the
boundary of the subvolume Ω , but also from all the par-
t ic les in this subvolume. In this case an energy gap in
the spectrum of the quasipart icles can exist in the long-
wavelength l i m i t . ' 1 ' 3 9 3

The existence of gap-free excitations in the case of a
system with only short-range forces i s the content of
the nonrelativistic Goldstone theorem, which is also
known as the Bogolyubov " l / q 2 t h e o r e m " ' 3 1 ' 3 2 · 1 and as
the Hugenholtz-Pines theorem' 3 8 · 1 in the theory of
superfluidity. We can give a general formulation of
this theorem as follows:

Theorem. Let there exist a continuous symmetry
group G whose generators can be written in the form of
integrals of local densit ies over all space, and let the
Hamiltonian of the system (or the equations of motion)
be invariant with respect to this group. If the ground
state is noninvariant with respect to this symmetry
group and the interaction falls off sufficiently rapidly
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with the distance, then in the spectrum of the Hamil-
tonian there necessar i ly exists a branch of e lementary
excitations whose energy goes to zero a s the momentum
goes to zero (i .e., in the long-wavelength l imit).

The proof of this theorem i s given in a paper by
Lang ' 4 0 (or see the book by Hugenhol tz t l ] ) , and also
i n t 3 9 ' 4 1 ' 4 2 J . To prove the nonrelativist ic Goldstone
theorem we must consider the commutator of a genera-
tor Q of a spontaneously broken symmetry group with
some local operator A(x), [Q, A(x)] = i?(x), which i s such
that

η = (0 [ η (x (1.9)

T h e c o n d i t i o n (1.9) m e a n s t h a t t h e m a c r o s c o p i c q u a n t i t y

A T i s n o n i n v a r i a n t u n d e r t h e s y m m e t r y t r a n s f o r m a -

t i o n s . T h e e s s e n c e of t h e G o l d s t o n e t h e o r e m c o n s i s t s

of the asser t ion that the average <0|[Q, A(x)] [0) = η i s
different from zero only if there exist s tates \ip\) whose
energy goes to zero in the long-wavelength l imit, and
which a r e intermediate s tates in the matr ix element

Σ (01 <? Ι ψ;> (ψ; \Α(χ)\ 0). (1.10)

It can be seen from this that the proper t ie s of the
Goldstone excitations a r e closely connected with the
p r o p e r t i e s of the local density A(x) of the noninvariant
macroscopic quantity. When Galilei invariance of the
ground state is broken the momentum distribution func-
tion p(p) i s such a macroscopic quantity and the Gold-
stone excitations a re phonons.

Phonons a r e also the Goldstone par t ic le s associated
with the breaking of gauge invariance in superfluid
helium and with the breaking of the translat ional invar-
iance in crys ta l s . In a ferromagnetic the Goldstone
par t ic le s a r e spin waves (magnons) associated with a
local deviation of the spins of the atoms from the d i rec-
tion of the total magnetization (see Chapter 2).

In a superconductor there a r e no quasipart icles with
energy approaching zero for zero momentum. This i s
due to the p r e s e n c e of the long-range Coulomb interac-
tion. Therefore in the spectrum of the excitations of the
phonon type associated with local changes of the elec-
tron density there is a gap caused by the Coulomb inter-
action. These excitations a r e called plasmons and lead
to a screening of the Coulomb interaction. This situa-
tion has been studied in detail in papers by
A n d e r s o n . ' 4 3 " 4 "

We have expounded the character i s t ic proper t ie s of
spontaneous symmetry breaking in the nonrelativistic
region. The next two chapters a r e devoted to i l lustra-
tions of these proper t ie s with the concrete examples of
the Heisenberg ferromagnetic (Chapter 2) and the theory
of superfluidity (Chapter 3).

2. SYMMETRY BREAKING IN THE HEISENBERG
MODEL OF A FERROMAGNETIC

We shall examine the main proper t ies of spontaneous
symmetry breaking with the example of the Heisenberg
model of a ferromagnetic m a t e r i a l , t 3 4 - 3 6 ] in which it is
described as a set of stationary atoms with spin S loca-
ted at the s i tes of a latt ice. We assume that the spin is
y2 (in a system of units in which fi = 1).

In the simple case of a cubic latt ice the s i tes can be
numbered with three integers (n 1 ; n 2, n 3 ). We denote

this set of three integers by Z. Then the coordinates
of any site in the latt ice can be written as (^a , n 2a, n 3 a),
where a i s the latt ice constant.

The Hamiltonian of the model i s of the form

^ = ^ T n 5 , I ; " m < S ' " S m ) (n'm£Z)' (2.1)

where the spin opera tors s ( x \ s ( y ) , s ( z ) satisfy the
commutation re lat ions

lSin\S^)] = iS(n\m (2.2)

(the other re lat ions a r e obtained by cyclic permutation
of x, y, z). It i s convenient to introduce the operators

^ ^ S ^ ' + i t f . (2-3)

The commutation re lat ions for these opera tors a re

(2.4)

It i s seen that the operator Sn

+) i n c r e a s e s the projection
of the spin of atom " n " along the ζ axis by unity, and
the operator S^"' d e c r e a s e s it by unity. With the opera-
t o r s (2.3) the Hamiltonian (2.1) takes the form

« = 4 2 (2.5)

Since the system i s invariant under t rans lat ions by
lat t ice vectors , v n m depends only on the difference
( n - m): v n m = v ( n - m). Since the Hamiltonian (1.1)
involves the operators S n only through the sca lar prod-
ucts (S n , S m ) , the Hamiltonian i s invariant with respect
to the group of spin rotat ions SU(2). Under these rota-
t ions only the spins a r e t ransformed, not the latt ice.
Accordingly, the Hamiltonian of the model is invariant
with respect to the group of t rans la t ions Ζ and the group
of spin rotat ions SU(2).

Let us consider the state of a ferromagnetic des-
cribed by this model. We confine ourse lves to the sim-
plest s tates, i.e., those in which there a r e no corre la-
tions between the s tates of different atoms. In the
ground state of the ferromagnetic the spins of all the
atoms a r e in the same direction. Let 1 be the unit vec-
t o r in this direction. The s tate of the n-th atom is then
described by the vector φ η \ (in two-dimensional Hubert
space), which satisfies the equation

(•?,,, l ) < ! ' „ , - T | W 2 . ( 2 . 6 )

This equation defines ψ η ι up to a phase factor. The
scalar product of the vectors tp^ and i/-nj2 i s

(2.7)

where θ i s the angle between 1! and 12. The state of the
entire ferromagnetic, in which all spins a r e directed
along 1, can then be described by giving the s tates of all
the atoms: Φι = Π ^ n j . States in which the spins of all

the atoms except a finite number a re directed along 1,
and also l inear combinations of such s tates , differ from
* j only microscopical ly. We a r e h e r e considering the
case of an infinite number of atoms.^If the total number
of atoms Ν were finite, the number Ν of " i n c o r r e c t l y "
directed spins would have to be much smal ler than N.
If their number were of the same order as N, we would
have to speak of macroscopical ly different s tates .
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The states that differ microscopically from * i form
the Hilbert space H1. The spin observables of individual
atoms are described by operators in H^ and realize a
representation of the commutation relations (2.2).
States that differ in the direction of the total magnetiza-
tion (i.e., macroscopically different states) are ortho-
gonal to each other. In fact,

Ν

(Φΐι.Φΐϊ)= Π (Ψηί!, 'lJn!2)=[c0S-|]Ne i' l r<P -^—» 0.

It i s e a s y to s e e t h a t a l s o any s t a t e of H^1 i s o r t h o g o n a l

to any state of Η 2 . States belonging to the same Η a r e
characterized by the same value of the macroscopic

Ν
parameter (the magnetization) m = (1/N) Σ Sn.

We note that when we speak of the total magnetization
Ν

S = Σ S n we actually mean simply mN, where Ν is the
n=l

total number of atoms, and are neglecting the fluctua-
tions of S, which are of the order of S/N . The magne-
tization m commutes with all the individual spin opera-
t o r s S n . For example,

[mz, S(

n

x)]--= lim 4-[S'n\ •&*']= l iml- i- iSi . " '^ .

It i s e a s i l y v e r i f i e d t h a t m x , m y , and m z c o m m u t e with
e a c h o t h e r . C o n s e q u e n t l y , m b e h a v e s l i k e a c l a s s i c a l
q u a n t i t y ; in p a r t i c u l a r , a l l t h e c o m p o n e n t s of m a r e
s i m u l t a n e o u s l y m e a s u r a b l e a n d a r e c n u m b e r s i n t h e
H i l b e r t s p a c e H*. It i s not h a r d t o v e r i f y t h a t
m = ( * j , S n * i ) = 1/2. Al l o t h e r a v e r a g e s of p r o d u c t s
of the S n can be expressed in t e r m s of m. For Τ = 0°K,
m is the only macroscopic p a r a m e t e r .

Under spin rotations the magnetization transforms as
a vector, and the ground state Ψ^ goes over into a
ground state * i 2 . Consequently, under a rotation state
of the Hilbert space H*1 go over into states of a different
space Η 2 , where 12 i s obtained from li by the rotation
in question. If the ground state were invariant under
rotations, then ( ( φ ^ , Sn*i) would have to be equal to
zero. The fact that m is not zero means that there is
symmetry breaking. Since the Hamiltonian of the model
i s invariant, it i s a spontaneous symmetry breaking.

When there is symmetry breaking in an infinite sys-
tem the symmerty transformations cannot be accom-
plished with unitary operators; that is, there does not
exist any unitary operator U that satisfies the relations

s W = U S ^ U " 1 (k = x, y, z), where S ^ ' is obtained

from s ' ' by the transformation in question (for exam-

ple, for a rotation around the ζ axis through angle φ

<Sji'—>S(n) = S^ cos φ-j-S1^1 sinq),

S<!» -> S^y = - SP sin φ + Λ"1 cos φ ,

We shall now show that in the Heisenberg model of a
ferromagnetic material there are gapless excitations.
The assertion that such excitations exist when there is
spontaneous symmetry breaking is the content of the
Goldstone theorem (see Chapter 1).

In the Heisenberg model the equation of motion is of
the form

Let us make a Fourier transformation

S" = ̂  Σ • S " '^ R " ' Sl±} = 4 Σ S^e^*n.
η η

T h e n i n t h e m o m e n t u m r e p r e s e n t a t i o n t h e e q u a t i o n s o f

m o t i o n a r e

- φ - ^ τ τ ^ - Σ [ » ( q ' ) - « ( q - q ' ) ] O & - (2.8)

We shall consider the case in which the ζ axis is
along the direction of the magnetization. It is easily
seen that

W 5 ' 5 ' ^ - m V = 4 V - (2.9)

Substituting (2.9) in (2.8), we get the equations of motion
in the form

-iSl

q-
}^<oB(q)S<k

(2.10)

where v(q) is the Fourier transform of the interaction
potential v n m :

Vnm = v (Rn - Rm) = 2 v (q) exp {iq (Rn - Rm)}.
9

The frequency wo(q) goes to zero for q — 0. Accordingly,
the operator Si"' i s the creation operator of a Goldstone
particle with momentum q, which in the present case is
a spin wave (magnon). For large N, up to t e r m s of order
N " 1 / 2 , the operators S*^', S' i J satisfy the commutation
relations (the ζ axis is in the direction of the total mag-
netization) :

T h e o p e r a t o r s s ( z ) , S ^ 1 ' a r e c o n n e c t e d w i t h t h e t o t a l s p i n

o p e r a t o r : s ( z ) = N " l / 2 S ( z ) = m ( z ) N l / a , S < i J = N - l / 2 S ( i > .

For Ν — oo, the S^z) diverge, but the S^' have meaning.

We have seen that spontaneous symmetry breaking in
a ferromagnetic is accompanied by the appearance of a
macroscopic quantity, the magnetization. Since in the
absence of an external field all directions are equivalent,
we have an infinite set of ground states corresponding
to different directions of the magnetization. The ener-
gies of all these states are equal. In field theory every
change of state can be described as the excitation of
quasiparticles. Macroscopic changes, of the type of a
rotation of the entire ferromagnetic, involve the appear-
ance of an infinite number of part icles. These quasi-
part icles excited in macroscopic changes must be con-
densed in a state with zero energy and zero momentum,
since the energy does not change in these changes, and
the state remains translationally invariant.

We shall show that a change of the direction of the
magnetization occurs with the condensation of magnons
with zero momentum, i.e., that for a change of the direc-
tion of the magnetization it is necessary that a number
~ Ν of magnons appear. The operator for the number of

magnons is Μ = Σ SiT'Si.*' = Σ S^'S'*' (the latter equal-
q 4 4 η

i ty fo l lows f r o m t h e u n i t a r i t y of t h e F o u r i e r t r a n s -
f o r m a t i o n ) . It i s w e l l known t h a t S ^ ' S ^ ' = % - S^ 2).

Σ 2Consequently, M = Ά Ν - Σ ? 2 ' . Then the magnetization
η η
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can be expressed in t e r m s of the number of spin waves
by the relation

— γ Zl " 2 Λ' ' (2.11)

I t c a n b e s e e n f r o m ( 2 . 1 1 ) t h a t f o r a c h a n g e of m i t i s

necessary that a number ~ Ν of spin waves be pro-
duced.

In concluding this chapter we note that in (2.10) we
have assumed that v(n — m) falls off sufficiently rapidly
for |n — m | —• » so that v(q) is nonsingular for q — 0.
If, on the other hand, there is long range interaction in
the system, then in general this condition i s not sat i s-
fied and a gap can appear in the spectrum of the mag-
nons. Obviously this i s due to the fact that with long-
range interact ions the gas of quasipart icles excited
when there is a macroscopic change in the system can-
not be regarded a s a f ree-part ic le gas for arb i t rar i ly
small densit ies .

3. SYMMETRY BREAKING IN THE THEORY OF
SUPERFLUIDITY

A typical example of spontaneous symmetry breaking
is given by the theory of the superfluidity of a nonideal
Bose gas. The Hamiltonian of this system in the coor-
dinate representat ion is of the form

(x) d*xνψ+[(

y (x)>+ (y)F (x-y) φ (y) ψ (χ).

(3.1)

I t i s e a s y t o v e r i f y t h a t t h i s H a m i l t o n i a n i s i n v a r i a n t

w i t h r e s p e c t t o t h e g a u g e t r a n s f o r m a t i o n

ψ ( χ ) ^ ε ί Ε ! ψ ( χ ) , ψ + (χ)->β-*<*ψ+(χ), ( 3 . 2 )

and t h i s l e a d s t o c o n s e r v a t i o n of c u r r e n t ,

P ( x , i ) = i|r (χ, ί ) ψ ( χ , t), J ( x , f)

= - L [ ( V f ( x , ί ) ) ψ ( χ , ί ) _ ψ + ( χ , ί ) ν ψ + ( χ , ί)],

d,p- VJ = 0.

( 3 . 3 )

( 3 . 4 )

S u p e r f l u i d i t y o f a B o s e g a s i s d u e t o t h e f a c t t h a t a t

l o w t e m p e r a t u r e s t h e n u m b e r of q u a s i p a r t i c l e s w i t h

z e r o m o m e n t u m i s of t h e o r d e r of t h e t o t a l n u m b e r of

q u a s i p a r t i c l e s , i . e . , t h e r e i s a c o n d e n s a t e i n t h e s y s t e m .

T h e p r e s e n c e of t h e c o n d e n s a t e m a n i f e s t s i t s e l f i n t h e

e x i s t e n c e of a n a n o m a l o u s a v e r a g e o v e r t h e g r o u n d

s t a t e ( v a c u u m ) | 0 ) ( s e e t h e I n t r o d u c t i o n ) :

<0 | -ψ I 0> = l i m - i \ (3.5)

w h e r e , owing t o t h e t r a n s l a t i o n a l i n v a r i a n c e , p0 i s a

c o n s t a n t . T h e a p p e a r a n c e of po 2 ** 0 m e a n s t h a t t h e r e

i s a new m a c r o s c o p i c c h a r a c t e r i s t i c of t h e s y s t e m — t h e

c l a s s i c a l wave funct ion of t h e c o n d e n s a t e , w h i c h i s non-

i n v a r i a n t u n d e r t h e g a u g e t r a n s f o r m a t i o n (3.2) . T h e fact

t h a t t h e H a m i l t o n i a n ,7£in (3.1) i s i n v a r i a n t u n d e r t r a n s -

f o r m a t i o n s (3.2) m e a n s t h a t w e h a v e s p o n t a n e o u s b r e a k -

ing of g a u g e i n v a r i a n c e .

In a c c o r d a n c e wi th t h e n o n r e l a t i v i s t i c G o l d s t o n e

t h e o r e m ( C h a p t e r 1), w i th c e r t a i n a d d i t i o n a l r e s t r i c t i o n s

on t h e i n t e r a c t i o n p o t e n t i a l V(x— y) we m u s t h a v e a g a p -

l e s s s p e c t r u m of e l e m e n t a r y e x c i t a t i o n s . *

F o l l o w i n g B o g o l y u b o v , 1 5 1 ' 5 2 3 w e s h a l l find t h e e x p l i c i t

f o r m of t h e s p e c t r u m of e l e m e n t a r y e x c i t a t i o n s and

show t h a t t h e r e i s no gap .

In t h e m o m e n t u m r e p r e s e n t a t i o n t h e H a m i l t o n i a n

(3.1) c a n be w r i t t e n i n t h e f o r m

ki.kj ( 3 · 6 )

w h e r e v(k) i s t h e F o u r i e r t r a n s f o r m of t h e i n t e r a c t i o n

potential, a£, a^ a r e the creation and annihilation opera-
t o r s , and Ω is the quantization volume.

To take the condensate into account explicitly we
make the canonical transformation ip(x) — φ(χ) = ψ(χ)
+ / 2 i a

form

k e t

po/2eia- In t h e m o m e n t u m r e p r e s e n t a t i o n i t t a k e s t h e

ak-
( 3 · 7 )

These opera tors have the same commutation relat ions
as the a operators . In t e r m s of the b operators , up to
constant t e r m s and t e r m s of o r d e r s higher than the
second, the Hamiltonian (3.6) takes the f o r m m

= Σ
(3 81

h e r e Ν i s the operator of the number of par t ic les , and μ
is the chemical potential, equal in first approximation
to Pov(0). The higher order t e r m s can be taken into ac-
count with perturbation theory. 36' can be diagonalized
by means of the Bogolyubov canonical transformation

fek = «kPk + ykPik, Uk = «-k, 1

The requirement that the new creation and annihilation
opera tors (the β operators) satisfy the Bose commuta-
tion re lat ions imposes on the rea l functions u^, vjj the
res t r ic t ion

A. (3.10)

The values of the coefficients u^, v^ a r e fixed by the
condition that t h e r e be no t e r m s of the type βίβΐ-^ in
the transformed Hamiltonian. The resul t is that up to
a constant

36'--^ Σ 8k(pkPk + PikP-k), (3.11)
k̂ O v '

w h e r e e ^ i s t h e e n e r g y of a n e x c i t a t i o n q u a s i p a r t i c l e .

F o r s m a l l v a l u e s of t h e m o m e n t u m ei, i s of t h e f o r m

ek = c | k | = ι k | yΡοκ(0) ( 3 . 1 2 )

* F o r a s i m p l e p r o o f f o r t h e m o d e l c o n s i d e r e d see [ 4 8 > 4 9 > 4 1 ] .

A c c o r d i n g l y , w e s e e t h a t e ^ — 0 f o r k -~ 0 , a s w a s t o

b e e x p e c t e d f r o m t h e G o l d s t o n e t h e o r e m . T h e e l e m e n -

t a r y e x c i t a t i o n s a r e p h o n o n s p r o p a g a t e d w i t h t h e s p e e d

o f s o u n d c .

4 . N O N I N V A R I A N C E O F T H E V A C U U M A N D

C O L E M A N ' S T H E O R E M

I n a L a g r a n g i a n f i e l d t h e o r y t h e e x i s t e n c e o f a s y m -

m e t r y i s e x p r e s s e d b y i n v a r i a n c e o f t h e L a g r a n g i a n

w i t h r e s p e c t t o a g r o u p o f t r a n s f o r m a t i o n s o f t h e f i e l d s .
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If t h i s group i s continuous, it fo l lows from N o e t h e r ' s
t h e o r e m that t h e r e e x i s t s a current-dens i ty four-vector
]μ(χ) which satisfies the local conservation law

5μ/"(ΐ) = 0 (4.1)

and which g e n e r a t e s the group t rans format ion in the
s e n s e that the change of any l o c a l operator A(y, t) i s
g iven by

6A(y, ί) = ί d>x[A(y, t), (4.2)

The operator A(y, t) is a function of the fields at the
time t. It is also assumed that the current j^(x) is
local, i.e., [A(y), j^(x)] = 0 for spacelike | y - x|, so that
the integral in (4.2) converges. If the symmetry is ex-
act, there exists a time-independent charge operator

^= f <PxjO(z).

The charge Q is the generator of the symmetry group,
i.e., (4.2) can be written in the form

, Q). (4.4)

It is important to note that (4.2) remains valid even if
Q does not exist as an operator [it is sufficient that
j°(x) exist].

We shall show that if the vacuum is noninvariant (i.e.,
if Q|0) * 0) Q cannot be an operator in Hilbert space,
and consequently the symmetry transformation takes
the vacuum out of H. Let us assume that Q is an opera-
tor in Η and Q|0) = \ψ). Then because Q commutes with
the momentum operator ρ, |ψ) is a translationally in-
variant state. Its norm is infinite,

s i n c e , | 0 ) and | ^ ) being trans lat ional ly invariant, the
matrix element <O|j°(x, ΐ)\ψ) is independent of x.
Consequently, our assumption is untrue and Q does not
exist as an operator in Hilbert space.

Coleman19J has put forward a theorem asserting that
invariance of the vacuum with respect to a group of
transformations means the invariance of the corre-
sponding Hamiltonian. It follows from this theorem that
the vacuum cannot be invariant with respect to a broken
symmetry* (if the vacuum were invariant, the Hamil-
tonian would be invariant under the same transforma-
tions) and a transformation of the broken symmetry (see
Introduction) cannot be represented by a unitary opera-
tor. The Coleman theorem was further discussed in
papers by Fabri and Picasso,L s 3 i Swieca,'5*3 and
others.1 1 0 '5 5 '5 6·1 For the case of a discrete symmetry
group (the P, CP, C, and Τ transformations) the proof
of the analogous theorem can be found i n u i ] (page 386),
where the theorem is given the statement that it is im-
possible to describe any broken symmetry with a uni-
tary operator.

The following statements are direct physical conse-
quences of Coleman's theorem in elementary particle
physics:

1. In the theory of electromagnetic interactions the
physical vacuum cannot be an isotopically invariant
state.

*We emphasize that this applies to both Abelian and nonabelian
groups, such as SU(2) or SU(3), for example.

2. In the theory of weak in teract ions the phys ica l
vacuum cannot be a s ta te with z e r o s t r a n g e n e s s and
z e r o i s o t o p i c spin. Moreover , the vacuum cannot be a
Ρ -invariant state (nor CP, in the theory of K° mesons).

3. The physical vacuum cannot be invariant with
respect to the group SU(3), which is broken in all inter-
actions.

We shall formulate and prove Coleman's theorem in
the framework of relativistic local field theory.

Theorem. Let there exist a local four-current ]^(χ)
such that the charge Q = fj°(x, t)d3x is a self-adjoint
operator in the Hilbert space of states. Then the cur-
rent jM satisfies the local conservation law θ μ ϊ ^ χ , t)
= 0, and the charge Q does not depend on the time.

Proof. We have already shown that Q exists as an
operator only if

(?«)|o>=o. ( 4 # 5 )

Let us define the operators

φ (χ) = (5μ/μ (x), π (ζ) = θιψ (χ).

It t h e n f o l l o w s f r o m ( 4 . 5 ) t h a t

<0 I [<?, JX (0)] j 0>--<(0 j [ j j°(x, t)d>x, η (0)] | 0> = 0,

Differentiating with respect to the t ime and adding
t e r m s 9jj1(x, t) , which give zero when integrated over
d3x, since owing to local commutativity the t e r m s on an
infinitely remote surface do not contribute to the com-
mutator, we have (0\[f<p(x, 0)d3x, ττ(Ο)] |0) = 0. Applying
the Kallen-Lehmann expansion [p(«2) £ 0]

<0 | [φ (a:), φ (y)] ] 0) = f ρ (κ2) Δ (x-y, (ρ(κ·)»0)

and using the equation (e/8y°)A(x— y, /c2)| o_,,o
x - y

= - δ ( χ - y), we get Jp(K2)dK2 = 0, i .e., ρ(κ2) = 0. But

then we also have

<01 φ (ζ) φ (0) 10) = f
ί

from which, since the metr ic in the Hilbert space i s
positive, we get φ(χ)\0) = 0. The Federbush-Johnson
t h e o r e m , [ S 7 ] which s ta tes that if a local operator acting
on the vacuum gives zero the operator itself i s equal to
zero, then gives φ(χ) = θμί^1 = 0. It follows that the
charge i s conserved: Q(t) = Q(0).

In part icular it follows from Coleman's theorem that
if the Hamiltonian is noninvariant with respect to some
group, then the vacuum i s also noninvariant.

Let us make c lear why such a statement does not
hold in nonrigorous quantum field theory, which as sumes
the possibility of a unitary connection between the phys-
ical and mathematical vacuums. These vacuums a r e
connected with each other by the relat ion 1 0 ) ^

= S(0, - o o ) | 0 ) m , where S(0, -•») i s the half-way S ma-
tr ix. The symmetry breaking caused by the noninvar-
iance of S(0, —») with respect to the transformation in
question has the resul t that under the transformation
l°^ph S o e s o v e r i n t o l°'^ph = U | 0 ) p n , where U i s the
operator of the symmetry transformation. If an opera-
tor S(0, — ») actually existed (as is t rue in the case of
nonrelativistic quantum mechanics), then | 0 ) n would
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exist in the same Hilbert space as | 0 } m . In this same
would also exist, so that transformationsspace ICOp

b k p
of the broken symmetry would be represented by unitary
operators in this space. This, however, is the essential
difference between relativistic quantum field theory and
quantum mechanics—that, by Haag's theorem,ill>5S>
S(0, - « ) does not exist and | 0 } p n is not in the same
Hilbert space as | 0 ) m (this fact is sometimes expressed
in the words that " the mathematical vacuum is ortho-
gonal to the physical vacuum"). Therefore, if a trans-
formation of the group is represented by a unitary
operator on | 0 ) m , in the relativistic theory it does not
follow from this that it is also represented unitarily in
action on the physical vacuum; that is, in general (and by
Coleman's theorem, always), |0 '} p n is not in the same
Hilbert space as ΙΟ)^^. This means that there is no
representation of the broken symmetry by unitary
operators. Thus we see that there is a deep connection
between Coleman's theorem and Haag's theorem.

We shall now make some comments on the conse-
quences of Coleman's theorem in elementary-particle
theory. That the coupling constant of the interaction
breaking the symmetry is small is of no importance in
principle for Coleman's theorem; an arbitrarily small
symmetry breaking is enough to prevent the representa-
tion by unitary operators. Symmetry breaking in the
Hamiltonian means noninvariance of the vacuum, which
manifests itself in the existence of the anomalous aver-
age (O|[Q(t), A(x, t)]|0> * 0 .

In the axiomatic approach there is a proof'10-1 that in
a case of symmetry breaking there always exists a
local observable whose anomalous vacuum average
does not depend on the coupling constant at all. How-
ever, the specific form of this observable is still un-
known.

In a Lagrangian theory using the concept of a single
physical vacuum the noninvariant terms not taken into
account in the Lagrangian because of the smallness of
the coupling constant can nevertheless act on the invar-
iant part "through the noninvariant vacuum."

In other words, since the unique physical vacuum
must be noninvariant with respect to all broken symme-
tries, already in the theory of the strong interactions
the noninvariance of the vacuum must lead to anomalous
averages whose values cannot in general be expressed
analytically in terms of the coupling constants of the
interactions breaking the symmetry. In such a case
ordinary perturbation theory means that one assumes
that these averages are analytic, so that one can neglect
them if one neglects the corresponding interactions. An
alternative way is to construct the theory of broken
symmetries in two stages: one first considers a theory
with a symmetric Lagrangian but an unsymmetric vac-
uum (spontaneous symmetry breaking), and then uses
perturbation theory to take the noninvariant correction
to the Lagrangian into account. This approach, as we
shall see below (Chapter 7), already in the first stage
presupposes that we renounce perturbation theory and
the assumption that the anomalous averages are analytic
in the coupling constant (and then these averages are
also nonanalytic in the coupling constant of the interac-
tion which conserves the symmetry—see Chapter 7).
This approach differs physically from the perturbation-

theory method by taking into account the appearance of
new part ic les— Goldstone z e r o - m a s s bosons (Chapters
5 and 6). Inclusion of the noninvariant correct ion in the
Lagrangian leads to the appearance of a m a s s for these
par t ic les (see Chapter 6).

5. SPONTANEOUS SYMMETRY BREAKING AND
GOLDSTONE'S THEOREM

In the preceding chapter we have seen that the vac-
uum i s noninvariant if the Lagrangian is noninvariant.
But the vacuum can be noninvariant even with an invar-
iant Lagrangian. Such a symmetry breaking i s called
spontaneous. An important consequence of this is the
presence in the theory of z e r o - m a s s par t ic les . This
statement is known as Goldstone's t h e o r e m 1 5 9 ' 6 0 J (see
a l s o ' 6 1 " 6 4 3 ) . We shall here give the formulation and proof
of this theorem in the framework of relat ivist ic quantum
field theory, assuming, as usual, that the symmetry of
the theory can be expressed a s the conservation of a
local current j ^ ( x ) .

Theorem. In a local* translationally invariant field
andtheory with a conserved local four-current j

vacuum noninvariant with respect to the continuous
symmetry group whose generator i s the charge
Q = fj°(x, t)d3x there a r e necessar i ly par t ic les of m a s s
zero.

In other words, the theorem s ta tes that the conditions

3μ/Μ(χ, <)^o (conservation of current) (5.1)

(0\lQ, Φ{Χ)]\0)Φ0 (noninvariance of the vacuum) (5.2)
[here Φ(χ) i s some local operator] a r e compatible only
if there a r e z e r o - m a s s par t ic les in the theory. We shall
see from the proof of the theorem that these par t ic les
give a contribution to the matr ix element

Proof. Let us consider the spectral expansion of the
matr ix element <0|[j^(x), Φ(ν)] |0>:

<0|[/μ(ζ), Φ(2/)1|0;= \ p^eW-vWp,

ρμ(ρ) = Σ [δ4{Ρ- pe) (0 [u(0) \g){g\a>(0) jο

here jg) are intermediate states and form a complete
system. For ρ = 0 the intermediate states are not
states (p^) = 0 (states with p0 = 0 and p: = 0 are some-

times called "vacuumlike states" or spurions). We
shall show that the |g) are states with zero mass,

Pg = 0 ·
From considerations of relativistic invariance we have

Ρμ (Ρ) = P»g (p2) + P^ (Po) Q(p2)h (//) i

w h e r e e(p 0 ) = 1 if p 0 > 0, and e(p 0 ) = - 1 if p 0 < 0. O n

t h e o t h e r h a n d , by c u r r e n t c o n s e r v a t i o n , E q . (5 .1) ,

ΡμΡμ(Ρ) = 0, from which we have ρ μ ( ρ ) = ρ μ δ(ρ 2 )
x [Ce(p0) + D ] , where C and D a r e constants. The p r e s -

*The requirement that the theory be local is very essential; it replaces
the restrictions placed on the potential in the nonrelativistic formulation
(see Chapter 1).

Here (
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ence of δ(ρ ), in the case of nonzero C, D, is what was
to be proved. In fact, the expression (5.3) is nonzero
only owing to intermediate s tates with zero m a s s . But
it i s easily verified that the constant C is nonzero in the
case of noninvariant vacuum, since

<01 [<?, Φ (y)] 10) = (2n)3 J p0 (^) | p = 0 dp, = C

and is not zero owing to (5.2). D = 0 owing to locality.
The group of t ransformations with respect to which

the symmetry is broken according to (5.1) and (5.2)
does not necessar i ly have to be Abelian (commutative).
The possibility of considering nonabelian groups i s ex-
t remely important, s ince while in the case of an Abelian
group the theorem applies only to violation of the law
of conservation of hypercharge (strangeness) in elemen-
tary-par t ic le theory, in the case of nonabelian groups
the theorem also applies to the cases of the isotopic
group SU(2) and the group S U ( 3 ) , " 0 ' 6 5 ' 6 " and also to the
case of spontaneous breaking of the symmetry with
respect to the Lorentz group and the rotation
group. C67~69:l In the case of a nonabelian group one
needs not one but several vector (or axial-vector) cur-
r e n t s . For example, for the group SU(2) one needs
three, and for the group SU(3), eight such current s j "
(a i s an internal index). For the case of a nonabelian
group the constant C must be supplied with additional
indices:

Qa=\ j?(x, t)<Px (a = l,2, . . . , OT; a = l, 2, . . . ,n) .

For example, if Φ&(χ) a r e the opera tors of spinless
fields, then under the action of the transformation group
they undergo changes

α, Where , = BT%,Ob (α, 6 = 1 , 2 η),

a n d T a D a r e m a t r i x e l e m e n t s of t h e g e n e r a t o r s T *

(a = 1, . . . , m ) . In t h i s c a s e

α = Τ%(0\Φ,,\0). (5.5)

It must be emphasized that in the case of a nonabelian
group the par t ic les of m a s s zero a r e always connected
not with the fields with quantum numbers Φ ,̂ for which
(ΟΙΦ^ΙΟ) * 0, but with fields regarding which we in gen-
era l cannot assume anomalous proper t ie s of the type
( 0 | Φ α | 0 ) *• 0 [in (5.4) the commutator contains the field
ΦΆ, and C a * 0 owing to < 0 ^ b | 0 ) *• 0 in (5.5)].

Let us make clear what the property (0|Φ(·,|0) * 0
means and in what way it i s anomalous. In the Fock
representat ion for the field operators <0|Φ(χ)|0>
= <0|(Φ+(χ) + Φ"(χ))|0) = 0, where Φ*(χ) and Φ"(χ) a r e
the positive and negative frequency p a r t s of the field
operator. Therefore for the part icular case in which
Φ(χ) is a field operator, noninvariance of the vacuum
means that we a r e considering a nonfock representat ion
of the field Φ(χ). The transi t ion from a field Φ'(χ), for
which (0|φ'(χ) |0> = 0 to a field Φ(χ) with <0|Φ(χ)|0> * 0
can be accomplished easily by adding constants to the
field [necessari ly constants, s ince owing to the t rans la-
tional invariance of the vacuum (0|Φ(χ) |0) does not de-
pend on the coordinates] . In physical applications
<0|Φ(χ)]0) ^ 0, where Φ i s a field operator, i s encoun-
tered, for example, in the relat ivist ic theory of K°
mesons of Salam and Ward,' 7 0 · 1 in the transi t ion from

strong to weak interactions, when it i s assumed that
(0|K°(x)|0> * 0. Here there is spontaneous breaking of
the symmetry with respect to the hypercharge group
and the isotopic group SU(2). The anomalous vacuum
average that appears is identified with the weak interac-
tion constant. Owing to the nonabelian nature of the iso-
topic group this situation has the consequence that on
the hypothesis a s to the isotopic proper t ies of Κ mesons
(K mesons t ransform as isospinors) the condition
(0|K°(x)|0) *• 0 means that there a r e par t ic les with m a s s
zero and the quantum numbers of IC and K" mesons.
Then, if one identifies these with the actual Κ mesons,
the appearance of the i r m a s s must be explained on the
bas i s of a different, nonspontaneous, symmetry breaking
(see the al tered formulation of the Goldstone theorem
for nonspontaneous symmetry breaking in the following
chapter).

In the general case the operator Φ(χ) [or Φ&(χ) in
(5.2)] is not the operator of the fundamental field, as in
the example we have given. It can be some combination
(bilinear or more complicated) of other fields consid-
ered at a point (in a finite region) of space-time. For
example, in the model of Nambu and Jona-Lasinio' 7 1 ' 7 2 - 1

to be analyzed la ter (Chapter 7), Φ(χ) = Ψ(χ)Ψ(χ), where
Φ i s a spinor field of m a s s zero. Then (0|Φ|0>
= (0|ΦΦ|0) * 0 means spontaneous breaking of CP in-
variance and s t rangeness in K° decay 1 1 6 1 one assumes
not <0|K°(x)|0> * 0, but <0|K°(x)K°(x)l0> * 0, i.e.,
Φ = Κ°(χ)Κ°(χ), and so on. In these examples the appear-
ance of anomalous averages is due to the fact that the
fields a r e not described by the Fock representat ion and
the transi t ion from the bare vacuum to the physical vac-
uum can no longer be made by adding constants to the
field, but is obtained by a Bogolyubov transformation
(Chapter 8). The Goldstone theorem we have proved
applies to these cases also.

Finally we note that in the proof of the theorem we
have used concepts such as conserved current and a
charge which is an integral over space of the zeroth
component of the current densi ty . In the case of a non-
invariant vacuum, however, (see Introduction and Chap-
t e r 4) the charge must not be given the meaning of an
operator in Hilbert space, and this makes our argument
nonrigorous. But the point is that in the proof of Gold-
stone's theorem the existence of the charge a s an
operator in Hilbert space is indeed not required; it i s
enough to know i ts commutation proper t ies with the
field, [Q, Φ]—in other words, it suffices that it exist as
an " o p e r a t o r on the operators Φ(χ)" (a so-called auto-
morphism). A r igorous derivation of Goldstone's
theorem, with the definitions of all the mathematical
concepts used, i s given in axiomatic quantum field
theory. C 6 6 ' 7 3 ' 7 1 ]

6. THE PHYSICAL MEANING OF GOLDSTONE'S
THE ORE Μ IN ELEMENTARY-Ρ ARTICLE THEORY

Goldstone's theorem i s essential for the determina-
tion of the type of a symmetry breaking, i.e., whether
or not it i s spontaneous. Only two m a s s - z e r o par t ic les
a r e known to us , the photon and the neutrino. But these
par t ic les a r e obviously insufficient if we regard the
breaking of such symmetr ies as SU(2) or SU(3), for
example, as spontaneous. [ 6 5 > 7 5 ] Moreover, there i s not
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a single physical example of spontaneous symmetry
breaking with the neutrino (or, m o r e generally, any
fermion) as the Goldstone part ic le . An objection against
a Goldstone neutrino i s the fact that already the sim-
plest condition for symmetry breaking, (0 |Ψ|0) * 0,
where Φ is a spinor, contradicts hot only Lorentz in-
variance but also the Pauli principle. Among the var-
ious efforts in the direction of a Goldstone interpreta-
tion of neutrinos we may indicate two p a p e r s ' 7 6 ' 7 7 3 in
which the attempt i s made to avoid the difficulties that
a r i s e in the theory by introducing an indefinite metr ic
in the space of s ta tes . The interpretat ion of the photon
as the Goldstone part ic le in a theory with (0 |Αμ(χ) |0)
= bμ * 0 also leads to a contradiction with relat ivist ic
invariance (the vacuum cannot be a relativist ical ly in-
variant state if bμ * 0). Nevertheless, we shall see
below that t h e r e exis ts a model 1 6 7 ' 6 8 · 1 with the photon
(and also with the graviton) as a Goldstone part ic le , in
which the indicated violation of relat ivist ic invariance
does not manifest itself physically.

The difficulties associated with the attempt to inter-
pret the Goldstone par t ic les directly a s physical par t i -
cles with m a s s zero have led to a tendency to regard
Goldstone's theorem as an argument against the con-
sideration of the very possibility of spontaneous symme-
try breaking in e lementary-part ic le physics. F r o m this
point of view the Goldstone theorem reduces to a tr iv ia l
statement about the proper t ie s of fields with m a s s zero.
In fact, suppose there exists a free sca lar field with
m a s s z e r o [ 8 1 ] and with the equation of motion \ϋφ(χ)
= 0. This equation can be understood as the conserva-
tion law of a " l o c a l c u r r e n t " θμίμ(χ) = 0, with ]μ(χ)
= θ μ ^ ( χ ) . The corresponding Abelian group (invariance
of the Lagrangian with respect to which group leads to
conservation of the current) has as its generator
Q = fdo<p(x)d3x and leads to the t ransformation

U (η) φ (χ) U-1 (η) = φ (χ) + η, U = exp (ίη(?),

w h i c h f o l l o w s f r o m t h e c o m m u t a t i o n r e l a t i o n s

[00φ(χ), ψ(χ')]δ(χ»~χ<ι1)=: -ίδ(χ-χ').

( 6 . 1 )

The equation Π<^ = 0 i s obviously invariant with respect
to (6.1) for η = const. But (6.1) means a transit ion to
fields φ'(χ) = φ(χ) + η, for which <0|cp'(x)|0> = η * 0;
that i s , a nonzero anomalous average appears . In this
case Goldstone's theorem reduces to the trivial r e m a r k
that the field φ is a z e r o - m a s s field, which is already
obvious from the field equation \3ψ = 0. An analogous
t reatment i l lustrating Goldstone's theorem for a free
field of m a s s zero can be c a r r i e d out for the case of
fields with nonzero spin. ' 8 O J

There a r e , however, several arguments indicating
that the situation with Goldstone's theorem in elemen-
tary-par t ic le physics i s not so simple as this . These
a r e as follows.

1. It does not follow from the proof of the Goldstone
theorem that the Goldstone s tates must exist as free
asymptotic fields. The corresponding par t ic les can be
purely virtual. Electrodynamics gives a typical example
of such a situation. In the Lorentz gauge 9μΑμ = 0 the
field equations a r e Π Α = ε ο ]μ(χ), where δμίμ = 0, and
a r e invariant with respect to the gauge transformation

(6.2)

where η μ i s a constant four-vector. According to the
commutation re lat ions the generator of the t ransforma-
tion (6.2) is

L (η) = j

s o t h a t t h e f i e l d e q u a t i o n s c a n b e u n d e r s t o o d a s t h e

" c o n s e r v a t i o n o f a c u r r e n t " : d u J u > 1 = 0 , w h e r e j " ^

= 8|,Αμ — eoX^Ji,. In this case Goldstone's theorem
simply s tates that it i s necessary that m a s s - z e r o par-
t ic les exist in the theory under the condition (0|Αμ |0)
* 0, where |0) i s the vacuum. But the cases <0|Αμ|0)
= 0 and <0|Αμ|0) * 0 differ only by the transformation
(6.2), which nas nothing to do with physical photons, so
that the Goldstone bosons here a r e not physical par t i-
cles and reduce to the unphysical longitudinal and t ime-
like photons, whose number changes under gauge t r a n s -
format ions . [ 3 0 J

2. One can construct a model of electrodynamics
without photons. t 6 7 ' 6 8 ] This is a theory in which the
original Lagrangian contains only the interacting elec-
tron-posi tron field. In this theory the photons a r i s e as
Goldstone par t ic le s owing to spontaneous symmetry
breaking. An example of such a theory is Bjorken's
m o d e l . " 7 3 The original Lagrangian i s of the form

χ), x), (χ)], (6.3)

where Ψ(χ) is a spinor field of m a s s m and G is the
coupling constant. In this theory it i s assumed that the
vacuum |0) i s not a Lorentz invariant and C P T invar-
iant state, so that

<0 i [ Ψ (x), γ μ Ψ (x)\ 10) = (01 /μ (χ) Ι 0> = / η μ φ 0. (6.4)

A c c o r d i n g l y we h a v e a t h e o r y wi th a L o r e n t z i n v a r i a n t

and C P T i n v a r i a n t L a g r a n g i a n , but wi th a n o n i n v a r i a n t

v a c u u m . T h e p r o p e r t y (6.4) a s s u m e s t h e p r e s e n c e of a

n o n z e r o c h a r g e d e n s i t y of t h e v a c u u m , so t h a t t h e v a c -

u u m i s not a c h a r g e - i n v a r i a n t s t a t e . Owing t o t h e t r a n s -

l a t i o n a l i n v a r i a n c e of t h e v a c u u m F i s a c o n s t a n t a n d

η μ i s a unit vector, which is assumed i n t 6 7 ] to be t ime-
like. One then examines the Feynman diagrams in per-
turbation theory with the Lagrangian (6.3) and the
anomalous averages (6.4) and shows that a certain c lass
of the diagrams i s equivalent to the d iagrams of the
usual quantum electrodynamics with intermediate pho-
ton l ines. The photon Green ' s function that appears
(there was no photon field in the Lagrangian) contains
along with a par t identical with the usual photon propa-
gator a part which depends on the noninvariant anomal-
ous averages. However, the contribution of this par t to
the corresponding diagrams (as well a s the contribution
of a number of new d iagrams different from the dia-
g r a m s of standard e lectrodynamics 1 6 7 3 ) turns out to be
inversely proportional to GA2, where G is the coupling
constant in (6.3) and Λ i s an effective cutoff necessary
for the derivation of the conditions of existence of the
nonvanishing anomalous averages. Accordingly this
theory is equivalent (as shown with the perturbation-
theory d i a g r a m s ' 6 7 3 ) to ordinary quantum electro-
dynamics in the limit G — °° or Λ — °o. F o r a more
detailed acquaintance with this theory we refer the
r e a d e r to the original p a p e r s . ' 6 7 ' 6 8 3

This model i s a theory in which a spontaneous break-
ing of Lorentz invariance i s unobservable, and the



810 G R I B , D A M A S K I N S K I I , a n d M A K S I M O V

Goldstone bosons (their appearance in the models oiLe71

and'683 i s essentially due to the asymmetry of the vac-
uum) a r e physical par t i c les , photons.

3. Pa r t i c l e s of zero m a s s may not appear in a theory
with spontaneous symmetry breaking if the local current
operator itself cannot be defined as an operator in
Hilbert space, since it may be singular when the argu-
ments of the opera tors in t e r m s of which the current i s
expressed coincide. Some authors182·1 suppose that in
such a theory there i s " loca l spontaneous symmetry
breaking." This situation (unlike the " g l o b a l " symme-
try breaking for which Goldstone's theorem applies) i s
possible in theor ies with an interaction which is strongly
singular on the light cone. An example of such a theory
is the electrodynamics of par t i c les of zero m a s s , in
which the fermions acquire a m a s s through the spon-
taneous breaking of y5 symmetry. lB2'ml in this theory
one can redefine the axial-vector current operator
(taking vacuum polarization into account), but the new
current will no longer be conserved.183·1

4. Goldstone par t ic les may not a r i s e if there were
certain m a s s - z e r o fields in the original Lagrangian. It
i s known from the nonrelativist ic example of the theory
of superconductivity that the Goldstone excitations in
this theory acquire m a s s owing to the presence of the
long-range Coulomb interaction1*3 '44 '84 and manifest
themselves a s plasmon vibrations. Therefore in re la -
t ivist ic theory also there a r e at tempts to construct
analogous examples of spontaneous symmetry breaking
without the appearance of m a s s - z e r o par t ic les (here
the original z e r o - m a s s vector fields acquire a finite
mass , so that there a re no z e r o - m a s s physical par t i -
cles at all in the t h e o r y ) . l a 5 ' m This effect of a long-
range interaction in the original Lagrangian, which
leads to failure of the Goldstone theorem in the non-
relat ivis t ic domain (see Chapter 1), i s possible in a
relat ivis t ic theory owing to violation of the condition of
locality, whose significance for Goldstone's theorem we
indicated in the preceding chapter. In fact, a peculiarity
of the quantum theory of z e r o - m a s s vector fields i s the
possibility of using the Coulomb (radiation) gauge. An
advantage of this gauge i s that there i s no indefinite
metr ic in the space of s ta tes , but this i s achieved at the
pr ice of renouncing explicit Lorentz invariance (never-
the less there i s no physical manifestation of this non-
invariance) and locality.C87] Because of the lack of
locality, there i s no Goldstone theorem, and spontaneous
symmetry breaking i s possible without z e r o - m a s s par -
t ic les . Since the theory is gauge invariant, the final r e -
sults must not depend on the gauge, and therefore we
can state that in a Lorentz invariant gauge (with which
an indefinite met r ic i s necessary) these par t ic les will
appear but will be unphysical because of the indefinite
met r ic .

One model of this sort has been proposed by
Kibble. I87J This is a model of the Yang-Mi l l s ' 8 " type,
and descr ibes the interaction of complex scalar (pseudo-
scalar) fields with mass and vector fields with zero
mass . The model possesses the property of local gauge
invariance.C88:i The author shows that the condition of
noninvariance of the vacuum with respect to the SU(2)
group of intrinsic t ransformations leads to the appear-
ance of a mass of the vector fields, and Goldstone zero-
mass par t ic les do not appear.

In conclusion we point out that the Goldstone par t ic les
acquire a nonzero mass if on the spontaneous symmetry
breaking there i s superposed an additional nonspon-
taneous symmetry breaking. By this we mean that the
complete Lagrangian can be divided into two pa r t s , one
invariant and the other noninvariant. The vacuum state
of the invariant part of the Lagrangian is assumed non-
invariant, i .e . , there i s a spontaneous symmetry break-
ing for this par t of the Lagrangian. According to
Goldstone's theorem there a re then ze ro m a s s par t ic les .
The noninvariant par t of the total Lagrangian can be
taken into account with perturbation theory and leads to
the appearance of a m a s s for the Goldstone par t ic les .
This effect of the appearance of a m a s s when the sym-
metry breaking is by stages can be formulated as a
modified Goldstone theorem'1 7 ·1 :

Theorem. In a local field theory with part ial ly con-
served current and noninvariant vacuum there must
exist Goldstone bosons with finite m a s s .

To prove the theorem we consider117·1 a Lagrangian
with the density X = x0 + €^Φ^, where Xo i s invariant
with respect to some, in general nonabelian, group G,
the Cj a re constants, and the 3>j a r e local fields which
form a bas i s of a definite representat ion of the group G.
The c u r r e n t s J a , which are conserved for €j = 0, will
for £j * 0 satisfy a condition of "pa r t i a l conservat ion"
and commutation relat ions associated with the t r an s -
formation of the fields 4>j according to a representat ion
of the group:

(6.5)

r< ')· (6.6)

where Τ?· i s the r e a l ant i symmetr ic m a t r i x of the gen-

erator T a . We define one-point and two-point functions

λι = <0|Φ,|0), (6.7)

Δ,; (ρ2) = i j d'xe-tv* <0 | Τ {Φ; (χ), Φ; (0)} 10). (6.8)

We a s s u m e t h a t o w i n g t o t h e n o n i n v a r i a n c e of t h e v a c -

u u m t h e r e a r e c e r t a i n Xj * 0. F r o m (6.5) and (6.6) it i s

e a s y t o d e r i v e

ei2tjXj = 0, ( 6 < 9 )

Δ,ΐ ' ίΟμ^ε?, (6.10)

where X a = T a

k X k , e a = T a

f c e k . Equation (6.10) i s the
resul t we need. In fact, if we had £j £ 0 and Xj * 0,
this would be the case of the ordinary Goldstone
theorem, since Ajj(O) = 0 would mean that there was a

singularity of Ay(p2) at p 2 = 0. If, on the other hand,
ej *• 0 (i.e., if there is symmetry breaking in the
Lagrangian) then no z e r o - m a s s par t ic le s appear. More-
over, certain a r g u m e n t s ' 1 7 1 can be given in favor of a
l inear dependence of A:j(p2) on p 2 , so that Δ(ρ2)
= Ζ ί Λ ρ 2 + μ 2 ) " ^ 1 7 2 , where Z l / 2 i s a positive wave-func-
tion renormalizat ion matr ix and μ 2 i s a m a s s matr ix .
It can then be seen from (6.10) that μ 2 -* 0 for t j — 0.
We note that in this proof, as in the Goldstone theorem
given ear l i e r , the Φ; a re not necessar i ly the fundamen-
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tal field; the Φ^ can be complex s t r u c t u r e s made up of
other fields. That the Φ^ a r e s c a l a r s i s due to the
Lorentz invariance of the Lagrangian X. The modified
Goldstone theorem allows u s to s ta te that a m a s s will
appear for the par t ic le s even if t h e r e a r e only m a s s l e s s
t e r m s in the original Lagrangian. It is well known'1 8 '1 9-1

that in the theory of strongly interacting par t ic le s
(hadrons) t h e r e i s a higher symmetry SU(3) ® SU(3)
(chiral symmetry) in the case of m a s s l e s s par t ic les .
Breaking of the chiral symmetry in the Lagrangian
allows us to conclude from the modified Goldstone
theorem that m a s s e s will appear for the Goldstone
bosons and to derive a number of experimentally ver i-
fiable re lat ions between these m a s s e s 1 1 7 ' 8 9 ' 9 0 ^ (as we
shall see in the next chapter, the original spontaneous
symmetry breaking owing to noninvariance of the vac-
uum allows us to get a nonzero m a s s for the fields ap-
pearing in the axial currents) . The modified Goldstone
theorem i s naturally connected with the Gell-Mann-
Levy191-1 hypothesis of par t ia l conservation of the axial-
vector current (PCAC), according to which the axial-
vector current \], A satisfies the relation

ί ί = 1 , 2 , 3

\i=l, . . . , ί

f o r SU(2),

,8 for 5ί/(3),

where m f f i s the m a s s of the ν meson, Φ* i s the
Heisenberg operator of the interacting pion field, and

(6.11)

= 0.96 m^). It i s seen from
^

bjj i s a form-factor [bff(

(6.11) that 8 μ ^ Α = 0 if r 4 = 0.

Accordingly, from the point of view of the modified
Goldstone theorem the Goldstone par t ic les can be the π
mesons in the case of the group SU(2) and an octet of
mesons in the case of SU(3).

7. RELATTVISTIC MODELS OF SPONTANEOUS
SYMMETRY BREAKING

In the present chapter we shall p resent some typical
models of spontaneous symmetry breaking in relat iv is-
tic field theory. A feature of these models i s that one
renounces the use of ordinary perturbation theory, since
the result ing express ions a r e nonanalytic in the coupling
constant. Spontaneous symmetry breaking is closely
connected with the transi t ion to the physical vacuum—a
transi t ion which, according to Haag 's theorem/ 1 1 ' 5 8 - 1

which we have a lready mentioned, cannot be regarded
as a t ransformation in the Hilbert space of the bare
par t ic les . F r o m this point of view the models of spon-
taneous symmetry breaking a r e examples of situations
in which the symmetry proper t ie s of the physical par t i-
cles a r e different from those of the bare par t ic les .
Therefore some a u t h o r s ' 9 2 " 9 ^ prefer to speak not so
much of spontaneous symmetry breaking as of a change
of symmetry in the transi t ion from the mathematical
vacuum to the physical vacuum. In par t icular , there
exists a model of spontaneous (dynamic) production of
symmetry, l 9 5 : > in which the symmetry of the physical
fields i s higher than the symmetry of the bare par t ic les .

Here we shall deal in detail with two typical models
of spontaneous symmetry breaking, and shall confine
ourselves in other cases to re ferences to the original
papers .

1. The first attempt to apply the idea of the nonin-
variant vacuum to obtain physical par t ic le s with finite

m a s s from z e r o - m a s s par t ic les , in analogy with the ap-
pearance of the gap in the theory of superconductivity,
was made in papers by Nambu and J o n a - L a s i n i o m ' 7 2 : l

and by Vaks and L a r k i n . [ 9 6 > 9 7 ] We shall f irst point out
why models in which the m a s s of the physical par t ic les
is different from zero for z e r o - m a s s bare par t ic le s a r e
so interesting.

F i r s t , in the case of fermion fields a z e r o bare m a s s
leads to the presence of a special symmetry of the bare
fields (the so-called y 5 invariance), which is broken
when a m a s s of the physical fields appears . However, a
" t r a c e " of this original symmetry remains : the original
exact symmetry manifests itself physically as a broken
symmetry, and, a s we know from the theory of strong
interact ions, the existence of a broken symmetry is
sufficient for the prediction of experimentally verifiable
facts. Thus recently a number of papers have ap-
peared 1 1 8 ' 1 9 - 1 which propose to use as the broken sym-
metry of the strong interact ions not simply SU(3), but
the so-called chira l group SU(3) <g) SU(3), which is exact
if the par t ic le m a s s e s a r e zero.

Second, in these models the non-zero part ic le m a s s
i s a function of the other p a r a m e t e r s of the theory, such
as the coupling constant. This possibly indicates a way
in which one may find the answer to the question as to
why the par t ic le s have definite m a s s e s . Usually the
m a s s i s regarded a s an external p a r a m e t e r of the theory
and the question of i ts origin is not ra i sed.

The original Lagrangian oi171'721 i s a γ5 invariant
Lagrangian describing the four-fermion interaction of
certain fermions with zero bare m a s s . The Lagrangian
density is

where g0 i s a coupling constant which i s assumed to be
positive. By y 5 invariance we mean invariance under
the t ransformations

ψ __> ψ ( 7 . 2 )

which leads to conservation of the helicity

We a s s u m e that t h e physical par t ic le s have a non-
zero m a s s (which means breaking of the y 5 invariance).
In this case the standard perturbation theory, in which

= g o [ ( * * ) 2 - a r e y 5 in-
variant, cannot be applied. The fundamental idea o f m ' 7 2 J

i s that the free-field Lagrangian X'o i s chosen to have
the symmetry of the physical fields, in the form

t-ZS) --=%'„ + Zlnf ( 7 . 3 )

w h e r e Xg = - m W , a f t e r w h i c h £[ni c a n b e t a k e n i n t o

a c c o u n t w i t h p e r t u r b a t i o n t h e o r y . T h i s c h o i c e of X'o i s

c o n n e c t e d w i t h t h e a s s u m p t i o n t h a t t h e p h y s i c a l v a c u u m

i s y 5 n o n i n v a r i a n t . A c c o r d i n g t o C o l e m a n ' s t h e o r e m

(Chapter 4) the vacuum |Φ(ηι)) for X'o i s also y5 non-
invariant. The change to a "d i f fe rent" vacuum, ex-
p r e s s e d in the change from Xo to x'o, means the consid-
erat ion of a different and unitary-nonequivalent r e p r e -
sentation of the canonical anticommutation relat ions. In
fact, let

γμ^μΨ< 0 ) (x) --•' 0, ( γ μ 3 μ + m) >F(m> (x) = 0.

W e s h a l l a s s u m e t h a t t h e i n i t i a l c o n d i t i o n s a r e t h e s a m e

f o r t h e t w o f i e l d s :
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at x° = 0. Here

Ρ ι σ ) p - σ ) eiP P i σ )

(7.4)

(7.5)

where λ = 0 or m, and ι ι ( λ )(ρ, σ) and ν ( λ ) ( ρ , σ) a r e

normalized spinor eigenfunctions for par t ic les and anti-
par t ic le s with momentum ρ and spin projection σ along
the direction of the momentum. The operators a/^\,

satisfy the commutation re lat ions
(λ) (λ) (λ)

. σ),

. σ).

ρ', σ)}+ =

*(λ) (Ρ'. σ)}+ =

It follows from (7.4) that the operators for the par t ic le s
with m a s s a r e connected with those for the m a s s - z e r o
par t ic les by a Bogolyubov transformation (through a
somewhat m o r e complicated one than in the theory of
superconductivity, owing to the p r e s e n c e of antiparti-
cles):

a(m) (P. σ) = Ιρθ(θ) (Ρ, σ) + ηρ&ίο> ( — Ρ. σ),
( —ρ,σ), Ι „

/

The connection between the vacuums |Φ(0)) and |Φ(ΐη)),
defined by

«№ (Ρ, σ) ΙΦ (λ)) = 6(i) (Ρ, σ) ΙΦ (λ)) = 0
(λ = 0 or m), ( 7 · 7 )

can be derived from (7.6) and (7.7) and is

The sca lar product

{Φ (0) Ι Φ (m)> = exp ( 2 In ξρ) = Π ξρ

(7.8)

(7.9)

goes to zero when the normalization volume Ω goes to
infinity ( | ξ ρ | < 1), so that in a translationally invariant
theory |Φ(0)) and |Φ(ηι)) a r e orthogonal to each other.
The expression (7.8) for |Φ(ηι)) of course has only a
formal meaning [in the m o r e r igorous axiomatic theory
the concept of the noninvariant vacuum is formulated
without the use of expansions of the form (7.8)], but it
enables us to see the feature of y 5 noninvariance of
|Φ(πι)), which leads to an infinite degeneracy of the
vacuum. In fact, under the transformation (7.2)

| Φ (

= Π { ξ ρ - η Ρ β

| Φ (m)>, = e-*« | Φ (

, ±)6f O )(-p,

( 7 . 1 0 )

and w e h a v e τ < Φ ( π ι ) | Φ ( π ι ) > τ ' = 0 [ τ ' * T ( m o d 2 7 r ) ] . A c -
c o r d i n g l y , t h e r e i s a n in f in i te s e t of v a c u u m s | Φ ( ΐ η ) ) τ

(0 :£ τ £; 2ir). But a l l of t h e s e v a c u u m s r e d u c e e s s e n -
t i a l l y t o a p h y s i c a l l y e q u i v a l e n t d e s c r i p t i o n of t h e s y s -
t e m , s o t h a t t h e only a c t u a l d i f f e r e n c e i s t h a t b e t w e e n
|Φ(0)> and | Φ ( η ι ) ) , s i n c e t h e y 5 n o n i n v a r i a n c e of | Φ ( η ι ) ) ,
a l l o w e d for i n t h e Bogolyubov t r a n s f o r m a t i o n (7.6),
m a n i f e s t s i t s e l f i n t h e e x i s t e n c e of t h e a n o m a l o u s a v e r -
a g e ( Φ ( ΐ η ) | Φ ψ | Φ ( η ι ) } , w h i c h i s i d e n t i f i e d wi th t h e m a s s .

By p u t t i n g L in t h e f o r m (7.3) , N a m b u and J o n a -
L a s i n i o t h e n c a l c u l a t e t h e p r o p e r - e n e r g y p a r t
Σ ( ρ , m , go, Λ) w h e r e Λ i s a cutoff, s o t h a t t h e p h y s i c a l
p a r t i c l e s a t i s f i e s t h e e q u a t i o n

», ? Ο ,Λ)]Ψ = Ο,

if ( i y p + ΐη)Ψ = 0, i . e . ,

m = S(/>, m, g0, A)j (iVp+ m ) T =o· ( 7 - H )

F r o m (7.11), calculating Σ in first o r d e r by perturba-
tion theory and using the expression S m for the propa-
gators, 1 3 0 · 1 we get a necessary condition for the exis-
tence of a nontrivial solution (m * 0)

(7.12)1 = — J ^ L f dip Fh A)

where F(p, Λ) i s the cutoff form-factor. F r o m (7.12) we
can find a connection between m, g0, and Λ. F o r a
Lorentz invariant cutoff at ρ 2 = Λ2 we get the relation

2 π 3 . m2 , / Λ2 , , \ in Η Ο\

— Γ Γ = 1 Tj-ll - Γ + 1 > ( ' - I 3 )

f r o m w h i c h i t c a n b e s e e n t h a t a n o n t r i v i a l s o l u t i o n e x -
i s t s o n l y f o r

0 < - | | 5 . < i . ( 7 . 1 4 )

W e s e e f r o m ( 7 . 1 3 ) a n d ( 7 . 1 4 ) t h a t t h e r e s u l t i n g t h e o r y
i s n o n a n a l y t i c a t g 0 = 0 ; m c a n n o t b e e x p a n d e d i n a
p o w e r s e r i e s i n g 0 .

I n L 7 1 ' 7 2 : l t h e r e i s f u r t h e r d i s c u s s i o n o f t h e q u e s t i o n o f
t h e G o l d s t o n e t h e o r e m ( C h a p t e r s 5 a n d 6 ) . T h e t h e o r y
in question i s a theory with a γ5 invariant Lagrangian
but a noninvariant vacuum. In it the axial current

3μ7μ5 = 0> 7μ5 = ίΨγ μ γ 5 Ψ. ( 7 . 1 5 )

i s c o n s e r v e d . T h e D i r a c e q u a t i o n f o r a p a r t i c l e w i t h
m a s s d o e s n o t c o n s e r v e t h i s t y p e of c u r r e n t , s i n c e

γίΨ
<"'>· (7.16)

T h e q u e s t i o n a r i s e s , how a r e (7.15) and (7.16) t o be
r e c o n c i l e d ? T h e a n s w e r p r o p o s e d i n 1 7 1 ' 7 2 · 1 i s t h a t owing
t o p o l a r i z a t i o n c o r r e c t i o n s t h e c u r r e n t j m u s t be

r e d e f i n e d . In p a r t i c u l a r , b e t w e e n o n e - n u c l e o n s t a t e s i t
w i l l h a v e t h e f o r m

w n e r e

T h e n E q s . ( 7 . 1 5 ) a n d ( 7 . 1 6 ) c a n b e c o m p a t i b l e i f

Χμ (ρ', ρ) = I

w h i c h c o r r e s p o n d s t o t h e a p p e a r a n c e o f a p o l e at q 2 — 0 ;
i . e . , a G o l d s t o n e b o s o n ( m = 0 ) a p p e a r s w i t h t h e q u a n -
t u m n u m b e r s o f a n u c l e o n - a n t i n u c l e o n p a i r ( a p s e u d o -
s c a l a r m e s o n w i t h m = 0 ) .

A n o b v i o u s s h o r t c o m i n g of t h e m o d e l o f N a m b u a n d
J o n a - L a s i n i o i s t h e e x p l i c i t d e p e n d e n c e o n t h e c u t o f f
p a r a m e t e r Λ, whose physical meaning i s still unclear.

2. In the case of scalar (or pseudoscalar) fields
Goldstone C 5 e ] has proposed a simple example of a non-
tr iv ia l symmetry breaking with the appearance of
bosons of m a s s zero.

Let the Lagrangian for interacting charged scalar
fields

ι ι
φ = -y=- (φι + <φ2) a n d φ * = π · ( φ ι — 'Φζ)



SYMMETRY BREAKING AND INVARIANCE OF THE VACUUM 813

be of the form

X - <?μφ*<νρ - μ;φ*φ —ητ- (φ*φ) 2 = δμφ*£>μφ - V ( φ ' φ ) , (7.17)

where μ2, < 0. The Lagrangian (7.17) i s invariant under
the transformation φ — φβϊα, φ* —• cp*e~ia (or Κφι
= φ2). The function Υ(φ*φ) has a maximum at φ * , φ
= 0, and therefore it i s natural to suppose that the vac-
uum |0>, for which <0|V|0> = 0, is unstable, so that the
states of the system a r e to be looked for on a vacuum
|0') such that <0' |V|0') *• 0. This can be done by setting
<0' |V|0') = χ * 0, where χ i s determined from the con-
dition that the total energy be a minimum

dip*
0'~W0'|cpV'(if*<p)|0'> = 0.

Carrying out t h e calculations, we get | χ | 2 = - 3 μ ο / λ ο .
The difference of χ from zero can be taken into account
explicitly by making a canonical transformation

φ = φ ' + ζ· (7.18)

Choosing χ r e a l and substituting (7.18) in (7.17), we get

i .e., instead of two fields with imaginary m a s s φι and
φ 2 (or φ and φ*) we get a field with the real m a s s
2 ι / 2 μο and a field with m a s s zero . The Lagrangian
(7.19) is a lready noninvariant with respect to the t r a n s -
formation ϋφ[ = φ ' 2 . This i s obviously due to the t r a n s -
formation (7.18), s ince it i s this transformation that has
explicitly introduced an asymmetry between ψι and φ 2 .
In t e r m s of φ λ and φ 2 the t ransformation (7.18) with
r e a l χ means a change to φ'χ and φ'2 according to the
formulas

In (7.19) t h e r e is also obvious breaking of the symmetry
with respect to the gauge transformation indicated
above, which i s due to the noninvariance of the vacuum,
which manifests itself in (0' |<p|0') = χ * 0.

The main features of the model a r e :

a) the initial fields φ and φ * (or φ χ and φ2) a r e char-
acter ized by a negative value of the square of the m a s s
(an imaginary mass) , but the physical par t ic les acquire
a rea l m a s s and a zero mass , respectively;

b) the fields φ[ and φ'2 interact with each other, so
that the Goldstone bosons φ[ act as physical part ic les ;

c) the theory i s nonanalytic in the coupling constant
λ 0, as is seen from the expression given for χ.

The models of Nambu and Jona-Lasinio and of
Goldstone a r e examples of nontrivial relat ivist ic models
of spontaneous symmetry breaking.

To conclude this chapter we shall briefly l ist some
other models of spontaneous symmetry breaking in
e lementary-par t ic le theory.

a) Breaking of SU(3). A model of spontaneous break-
ing of SU(3), of the type of the model of Nambu and
Jona-Lasinio, which we have analyzed, has been con-
structed i n 1 1 2 ' 9 8 · 1 . Instead of a single spinor field Φ with
z e r o m a s s in Eq. (8.1), in the model of SU(3) breaking
a tr iplet of spinor fields is taken. A nonlinear interac-
tion of the self-action type [as in (7.1)] i s invariant with
respect to SU(3). The vacuum is assumed invariant only
with respect to the isospin rotation group and the hyper-

charge group. As in the model of Namby and Jona-
Lasinio, the noninvariance of the vacuum with respect
to the full symmetry group of the Lagrangian leads to
the appearance of nonzero m a s s e s for the par t ic les , and
relat ions determined by the Gell-Mann-Okubo formula
hold between these m a s s e s .

A model of spontaneous breaking of SU(3) (and also
of the group R O ( n ) of internal ro ta t ions ' 9 9 3 ) can also be
constructed in analogy with the Goldstone model; the
basic fields in this model a r e not spinor fields, but
sca lar s .

An open question in these models is that of the phys-
ical meaning of the Goldstone bosons.

A model of spontaneous breaking of SU(3) without
m a s s l e s s par t ic les can be constructed in analogy with
the Kibble model (see Chapter 6), to which the Goldstone
theorem does not apply owing to pecul iar i t ies of the
quantization of the vector fields (cf. the corresponding
model i n I 1 4 J ) .

b) Explanation of the m a s s difference of the muon
and the electron. This problem is t reated i n U 2 > 1 3 J . In
these papers isotopic propert ies a r e ascr ibed to the
muon and the electron: an isotopically invariant
Lagrangian i s taken for the bare fields with zero m a s s .
The vacuum is assumed to be an isotopically noninvar-
iant s tate, so that spontaneous symmetry breaking leads
to the appearance of a m a s s difference between the par-
t ic les . This i s interpreted as the m a s s difference of the
physical muon and electron. In these models difficulties
a r i s e associated with the physical interpretat ion of the
Goldstone bosons.

c) Spontaneous breaking of CP invariance. According
to the idea of spontaneous breaking of C P , the violation
of CP invariance in the decays of K° mesons is not due
to the existence of a new CP-noninvariant interaction,
but to CP noninvariance of the vacuum with an invariant
Lagrangian. in ' 1 5 ' 9 9 · 1 C P noninvariance of the vacuum
manifests itself in the existence of a CP-noninvariant
vacuum average ( 0 | ^ | 0 ) for a certa in field with which
the K° mesons interact . The Lagrangian of this field is
of the form of the Lagrangian in the Goldstone model.
The breaking of C P i s then a breaking of the symmetry
under R-reflection (see discussion of the Goldstone
model above).

jnii6,iooj S p O n t a n e o u s breaking of CP i s associated
not with the existence of a new field φ(χ), but with the
p r o p e r t i e s of the K° mesons themselves; h e r e <0|K°K°|0>
* 0 , i .e., φ(χ) = Κ°(χ)Κ°(χ).

Models of spontaneous breaking of C P reduce
phenomenologically to models of the Wolfenstein super-
weak interact ion. [ 1 0 i : l

Other interest ing models which use the concept of
noninvariance of the vacuum a r e the models of breaking
of SU(3) (8> SU(3) in strong-interaction theory, which we
have already mentioned ear l ie r , and also the calculation
of the Cabibbo angle, which plays an essential part in
the definition of the c u r r e n t s in the weak interac-
tion. UO2-1O6]

8. PROPERTIES OF THE VACUUM AND THE

CURVATURE OF SPACE-TIME

We here consider an interest ing property of field
quantization in space-t ime with a nonstationary m e t r i c .
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The theory of a quantized field in such a metr ic (with
the gravitational field not quantized) i s equivalent to the
quantum theory of a field interacting with an external
c lass ical field. As i s well known, t l 0 7 : i in the case of an
external field depending on the t ime it i s necessary to
take into account the production of rea l par t ic les by this
field, which i s interpreted by a number of
a u t h o r s " 2 ' 2 3 ' 1 0 8 ' 1 0 9 3 a s the production of m a t t e r in the
expansion of the universe. The vacuum state, defined
as a state invariant with respect to the symmetry group
of the Lagrangian, is noninvariant under t rans la t ions
in t ime, so that each instant of t ime has i t s own vacuum
corresponding to it. The change of the vacuum with t ime
is accompanied by the change of a certain class ical
quantity, defined as the number density of the par t ic les
in the vacuum and interpreted i n t 2 2 ' 2 3 J a s the c lass ical
mat ter density, in analogy with what i s done in the ex-
amples from nonrelativist ic physics which we gave in
Chapter 1, where a change of the vacuum is necessar i ly
associated with a change of some class ical quantity.
However, calculations' 2 3 · 1 for the sca lar (pseudoscalar)
π-meson field in the quasieuclidian Fr iedman model
gave for the present stage of evolution of the universe a
value for this density of the o r d e r « (mH2/l6(2ir)3)sin2mT)
« ΙΟ"4 6 cm" 3 , where η plays the par t of the t ime, Η is
Hubble's constant, and m i s the m a s s of the part ic le .
This small value indicates that the effect of mat ter
production i s unimportant at the present t ime, but it can
have been important at ear ly stages of the evolution of
the universe. In par t icular it i s possible that all of the
matter in the universe originated in such a w a y . l l 0 9 ] To
elucidate this question it is necessary to make a com-
bined t reatment of quantum field theory and the Einstein
equations.

A nonvanishing matter density in the vacuum can also
lead to consequences such as the appearance of a non-
zero cosmological constant (see the review by Ya. B.
Z e l ' d o v i c h a i 0 ] ) . An interest ing question in theor ies
that connect proper t ies of the vacuum with macroscopic
character i s t ic s in cosmology i s that of the macroscopic
consequences of noninvariance of the vacuum in elemen-
tary part ic le theory (Coleman's theorem) with respect
to t ransformations such as spatial reflection, the C P
reflection, and gauge transformations of the s t rangeness
(hypercharge). In par t icular C P noninvariance of the
vacuum can have the consequence that the corresponding
macroscopic quantity is different from zero only for
par t ic les . If th is quantity i s identified with the mat ter
density in the universe, i ts being equal to zero for anti-
matter will manifest itself physically a s the absence of
antigalaxies.
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