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I. INTRODUCTION

IT is well known that under sufficiently strong stresses
solids go over into plastic flow. harden, etc. The non-
linear dependence of the strain on the stress at large
stresses (2 10°—10° kg/cm?), where the deformation
is already inelastic, is of no interest to us. When
ultrasonic or hypersonic waves propagate, the ampli-
tude of the stresses usually does not exceed several
kg/cm?, and the deformation can be regarded as fully
elastic. However, as shown by results of numerical
experiments, under these conditions there are clearly
pronounced nonlinear effects such as generation of
acoustic harmonics, Raman scattering of sound by
sound, nonlinear acoustic resonance, and many others,
which are dealt with in the present article. According
to the nonlinear theory of elasticity, macroscopic non-
linear elastic properties of solids are determined, on
the one hand, by the nonlinear connection between the
components of the strain tensor and the derivatives of
the displacements with respect to the coordinates.

This feature of finite strains does not depend on the
physical properties of the deformed body and is usually
called geometrical nonlinearity. The physical non-
linearity is the consequence of the fact that the internal
energy of the deformed solid is not only a quadratic
function of the invariants of the strain tensor, but also
a cubic one etc. The physical nonlinearity is deter-
mined by the elastic moduli of third, fourth, and

higher orderst. The existence of both geometrical

and physical nonlinearity makes the generalized
Hooke’s law (the connection between the stresses and
the strains) also nonlinear, and its nonlinearities are
determined, generally speaking, by the geometrical
and physical nonlinearities simultaneously. Such a
phenomenological model of a nonlinear solid, however,
is not quite complete. It is shown by the experimental
results, in particular, that even in solids with the
simplest structure and properties (isotropic dielectrics)
the magnitude of the aforementioned nonlinear acoustic
effects depends on the residual internal stresses, and
in crystals it depends on the dislocations. These fea-
tures of real solids lead to nonlinear interactions that
are forbidden by the theory of elasticity of a homogene-
ous isotropic body. The nonlinear acoustic effects be-
come even more complicated when the solid is such
that there is a sufficiently strong coupling between the
elastic oscillations and excitations of another type, for

*Expanded version of a paper delivered at the scientific session of the
Division of General Physics and Astronomy of the USSR Academy of
Sciences on 16 January 1969.

+In accordance with the universally accepted terminology, the
elastic moduli in the linear Hooke’s law (where the internal energy of
the deformed solid is a quadratic function of the invariants of the strain
tensor) are called elastic moduli of second order.

example in piezo- or ferroelectrics or in ferromagnets
and ferrodielectrics. In these solids, one can observe
‘‘on the acoustic side’’ not only the aforementioned ef-
fects, but also nonlinear effects connected with the
nonlinearity of the piezoeffect and of the magnetostric-
tion effect (the nonlinear dependence of the mechanical
displacements on the electromagnetic field intensity).
These properties can be phenomenologically accounted
for in the internal energy.

We have discussed above the macroscopic non-
linearity of solids. The microscopic nonlinearity,
naturally, is determined by the nonlinearity of the in-
teratomic forces. The potential energy of the atom in
the field of all the remaining atoms of the crystal can
be expanded in a series about the equilibrium position
of the atom; besides the quadratic terms, this expan-
sion contains terms proportional to the cube, fourth
power, etc, The latter determine the nonlinear (some-
times called anharmonic) character of the interatomic
forces. Frequently this nonlinearity is called the
lattice nonlinearity. The lattice nonlinearity is re-
sponsible for a number of macroscopic well-investi-
gated phenomena, such as the thermal expansion of
solids (the change of the average interatomic distance
with change in temperature), the deviation from the
law of Dulong and Petit for the specific heat of a solid
at high temperatures. Thermal vibrations of atoms
about the equilibrium position can be represented as a
superposition of plane waves of different frequencies
and with different wave vectors, the so-called thermal
phonons. In the approximation of linear interatomic
forces, the phonons do not interact with one another,
The anharmonic character of the interatomic forces
leads to a possible ‘‘production’’ of a new phonon (or
phonons) as a result of the interaction of two (or more)
phonons, The phonon-phonon interactions play an im-
portant role in the explanation of a large number of
kinetic phenomena in solids, such as the thermal con-
ductivity of solids and the absorption of sound. Phonon-
phonon interactions are a part of a more general prob-
lem of the interaction of quasiparticles or elementary
excitations in solids. Great importance is being at-
tached of late to investigations of the interaction of
phonons with phonons, electrons, photons, and magnons,
and intensive research is going on in these fields.

The concept of the phonon as a quantum of lattice
oscillations pertained at first to very high oscillation
frequencies, where one could not ignore the discrete-
ness of the crystal-lattice structure. At the present
time it can be stated that, with the exception of singu-
larities determined by the discrete structure of the
lattice, the interaction of elastic waves at hypersonic
or even ultrasonic frequencies obeys the same selec-
tion rules as the phonon-phonon interactions. This ex-
plains why the term ¢‘phonon-phonon interaction’ is
now used not only for thermal phonons, but also for
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nonlinear interactions of artificially excited low-fre-
quency elastic waves (‘‘coherent’’ phonons).

Phonon-phonon interaction was experimentally
observed relatively recently in the propagation of
‘‘coherent’’ phonons of low energies—elastic waves at
ultrasonic frequencies!’?), The amplitude of the sound
pressure at which nonlinear distortion of the sinusoidal
elastic wave or generation of harmonics is clearly ob-
served does not exceed several atmospheres and lies
in the region which quite recently was still regarded as
belonging to linear acoustics. An investigation of these
effects makes it possible, on the one hand, to obtain
information on nonlinear elastic properties of solids,
and on the other hand, to ‘‘stimulate’’ phonon-phonon
interaction processes with coherent phonons. These
investigations yield much useful information for a more
detailed understanding of many kinetic processes in
solids. In addition, different nonlinear effects can
ultimately have certain practical applications,

In liquids, the nonlinear effects occurring during
the propagation of elastic waves have by now been suf-
ficiently well investigated!®), In isotropic solids, owing
to the possibility of propagation of both longitudinal and
transverse waves, the number of permissible nonlinear
interactions is much larger than in liquids, where
plane waves interact only when they propagate in the
same directions. Even more varied and complicated
is the nonlinear interaction of waves in crystals; in
this field there is still no more or less satisfactory
theory. The low efficiency of nonlinear conversion in
all the investigated solids limits the possibility of
practical application of different acoustic nonlinear ef-
fects. At the present time, incidentally, there are
known solids—piezosemiconductors—in which, owing
to the electron-phonon interaction, the effective elastic
nonlinearity is comparable in order of magnitude with
the nonlinearity of liquids, giving grounds for hoping to
use nonlinear phenomena in these solids for different
practical purposes in the future. Certain prospects of
practical utilization of nonlinear phenomena are ap-
parently uncovered in the case of surface Rayleigh
waves, where the nonlinear effects are sufficiently
strongly pronounced. Observation of harmonic genera-
tion and of nonlinear wave interaction uncovers addi-
tional possibilities of measuring the elastic moduli of
third order and, in final analysis, the anharmonicity of
the lattice. A comparison of the experimental results
with the theoretical model results yields additional in-
formation on the character of the forces of interatomic
interaction, in analogy with such parameters as the
equilibrium dimension of the crystal cell and the
second-order elastic moduli.

II. ELEMENTS OF NONLINEAR THEORY OF
ELASTICITY

We shall need in what follows certain results of the
nonlinear theory of elasticity. Let us stop to discuss
this theory briefly. (for details seel*"]),

1. Strains. The exact expression for the compon-
ents of the strain tensor* is

ey~ (MJL]’ Pl (1)

dxj " dx; dx; 9x;

*Repeated indices denote summation throughout this article.

where uj are the components of the displacement
vector, i,j=1,2,3; s=1,2,...,6, and the realized
transition from i, j to s is the one customarily used
in crystallography: 11 — 1,22 — 2, 33 — 3, 23 = 32
— 4,13 =31 — 5,and 12 = 21 — 6, The invariants of
the strain tensor are

Ii=uy =2+ M2+ M-
1 s
Iy = = (uh — k) = MMz -+ Nyl + M2z — (03 + 15 4 m9),

(2)
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2. Internal energy and third-order moduli. The in-
ternal energy of a deformed isotropic body should not
depend on the choice of the coordinate system. It is
invariant against rotation and displacement of the de-
formed body as a unit. This is possible only in the case
when the internal energy is a function of the invariants
of the strain tensor U = U(I,, L, I3, S), where S is the
entropy. Since the strains, and consequently also the
invariants, are small, U can be expanded in a series
about the undeformed state, The undeformed state will
henceforth be considered to be in equilibrium and
9U/81,| , = 0. Therefore the expansion begins with the
quadratic terms. The second-order moduli are defined
as the coefficients preceding the terms of second order
of smallness:

18U
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where p is the shear modulus and K the bulk modulus.
The coefficients preceding the quantities of third order
of smaliness give the third-order moduli:

oU
al,
83U

B

02U
O:n:A, el = —4m= —2A—4B,

| =4m 20 =24 1-6B+2C, (4)

where n, [, and m are Murnaghan’s third-order
moduli, A, B, and C are the Landau third-order
moduli. The next approximation would require the in-
troduction of four fourth-order moduli, five fifth-order
moduli, etc. We shall henceforth confine ourselves to
the second approximation only (we retain only terms
of third order of smallness in the expansion of the in-
ternal energy), and consequently to the five-constant
elasticity theory. The third-order moduli of certain
solids are given in Table I.

The situation is more complicated with crystals,
where the internal energy is invariant only against the
transformations characteristic of each crystal class,
In the general case, the internal energy U of a crystal
is a polynomial of the strain-tensor components

U= —;- Ciquuuupq-i";l- Ciipgralbijipglivas (5)
where Cijpq and Cijpgrs are the elastic moduli of
second and third order, respectively. This is the defi-
nition of third-order moduli after'™’, It is obvious that
Cijkimn = Cklijm = Cmnijk! = Cijmnk! = Ckimnij
= Cmnk/ij- In analogy with the procedure in linear
elasticity theory, we can introduce abbreviated sym-
bols for the third-order moduli, by changing over from
two indices to one using the rules mentioned above.

The third-order moduli of certain crystals are given in

e



780 L. K. ZAREMBO and V. A. KRASIL’NIKOV

Table II. Cubic crystals of the most symmetrical sub-
groups O, Oh, and TY have six independent third-
order moduli, those of the subgroups T and Th have
eight independent moduli., The independent third-order
moduli of different crystal classes are listed in Table
III. In the general case, an anisotropic solid has a total
of 216 third-order moduli. From the symmetry condi-
tions, however, one can obtain additional connections
between the third-order moduli. For a crystal with the
lowest symmetry of triclinic class, the number of
third-order moduli decreases to 56. The number of

moduli of order higher than the third increases rapidly
with increasing order. For example, a triclinic crystal
has 126 fourth-order and 352 fifth-order moduli.

As seen from the data of Tables I and II, most
presently-known third-order moduli were determined
from measurements of the dependence of the velocity
of the elastic waves on the static pressure, i.e., ac-
cording to!'® these are mixed (isothermal-adiabatic)
moduli. Acoustic methods of measuring different non-
linear effects, as will be shown below, make it possible
in principle to determine the adiabatic third-order
moduli.

Table I. Third-order elastic moduli of certain solids (x 107! n/m?)

8 Murnaghan’s moduli Landau's moduli
Material é Remark*
23
E ! m n A B c
Polystyrene 8 —0.19+0.03 | —0,134+0.03 | —0.1::0.01 | —0.1+0.01 | —0.082:0.04 | —0.11+0.07 | MST
“Armco” iron 8 —0.3530.07 | —10.3+0.7 11611 1111 —15.8+6.2 12.326.9 MST
Nickel steel 535 ® —0.46 —5.9 —7.3 —17.3 —2.3 —1.8 MST
Steel C1018 10 — - —~5.7+0.3 | —5.7+0.3 — — M3
Steel 60 C2H2A u —3.4 —6.3 —7.6 —7.6 —~2.5 —0.9 M5T
« « 12 — — —1.6 —7.6 — — MST
Aluminum 6016-T6 10 — — —3.1-+0.1 —3.130.1 — — MS
Aluminum 1100-F 10 — — —4.820.4 | —4.8+0.4 — — MS
Fused quartz 10 — — —2.3+0.1 —2.34+0.1 — — M8
Glass (pyrex) 8 0.4440.4 0.9:40.5 4.243.5 42435 | —1.1842.35 | —1.32+2.6 MS5T
*The table lists both the adiabatic moduli, designated MS, and mixed moduli MmST (see below concerning methods of measuring third-order
moduli).
Table II. Third-order elastic moduli of crystals (x 107*2 dyne/cm?)
(in Bragger’s notation)
Crystal Reference Cr Cuz Cizs Cags Cras Crge C1ss Remark
2 —8.7 — — — - — — cs
15 —6.42 — — — — — — ¢S
18 —8.80 —0.57 0.28 0.27+0.01 | 0.264-0.01] —0.61--0.01 — ST
17 —8.60 —0.52 0.16 0.25 0.26 —0.57 — cST
NaCl 18 —5.45 —0.69 0.27 0.33 0.33 -0.63 — Theoretical
19 —8.644-0.08| —0.50£0.04 | 0.09:£0.08| 0.132:0.02 | 0.07-0.03| —0.59+0.01 — c?s
20 —8.340.8 — — — -~ - — cs
21 —8.43+0.33 | —0.5040.07 | 0.46::0.09| 0.26-4:0.01 | 0.29-£0.05 —0.60-0.04 — cTs
22 —8.2340.20| 0.0240.50| 0.53+0,07| 0.204-0.01 | 0.23--0.03| —0.61--0.03 — cTs
NaF 18 —7.14 —1.44 0.658 0.76 0.76 —1.28 - Theoretical
KBr 18 —4.64 —0.39 0,111 0.186 0.186 ~0.33 — Theoretical
18 —7.01 —0.224 0.133 0.118 0.127 —0.245 — cTs
Kcl 20 —7.440.7 - —_ —_ — — — cs
21 —7.264-0.39] —0.2440.04| 0.112:0.04| 0.160.01 | 0.23-00.04| —0.26--0.02 — cTs
18 —5.07 —0.458 0.148 0.207 0.207 —0.40 — Theoretical
KJI 18 —4.711 —0.314 0.074 0.145 . 145 —0.26 — Theoretical
BaF, 30 —5.84-+0.15 | —2.99::0.14 | —2.06-0.11 |—0.2712-0.001| —1.21--0.03 [—0.8894-0.019 — cTs
- 18 —20.7 —2.56 1.11 1.32 1.32 —2.42 — Theoretical
LiF { ot |—14.2340.30| —2.64:£0.28| 1.562:0.28| 0.942:0.06 | —0.8520.10 | —2.734:0.13 — TS
31 —7.46+0.2 | —4.0340.1 |—0.18:£0.3 | —0.47+0.1 | —0.5320.5 | —3.150.05 — cTs
32 —6.96--1.08 | —3.40-0.62 | 4-0.252:0.43 | —0.42:£0.06 | +0.1840.21 | —2.95--0.22 — cTs
Ge 23 - —2.940.3 |—0.2240.2 | —0.41:0.05 | —0.0840.09 | —3.03-0.09 — cTs
24 —7.104-0.06 | —3.89--0.03 | —0.184-0.06 [ —0.530.07 | —0.230.16| —2.92+0.08 — cTs
s 1 £ s S 1.5 8 s
* & Cfi e+ 207040756+ 3000 + 5050 — 18,69
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Table II (Continued)

Crystal Reference Ci1 Ci2 Cla3 Cyse Craa Ciee C1s5 Remark
24 —8.2540.10 | —4.51:0.05 [ —0.64+0.10 | —0.64:0.20| 0.12-4-0.25] —3.10+0.10 — cTs
Si 26 1 , oS s 1 s 8 .8 R
{ F Ot 08208+ aCTg T3 Oy 5 Clas=1986
InSb 25 —3.14£0.2 | —2.10-:0.2 | —0.48:0.1 | 0.00220.01| 0.09+0.1 |—1.18+0.1 — cTs
27 —15.0£1.5 | —8.54:1.0 | —2.5+1.0 |—0.16£0,1 |—1.3520.15| —6.452:0.1 — cTS at Te=
—=295° K
27 —19.54+2.0 | —11.541.5 | —4.2-:1.5 | +0.12.£0.1 | —1.2540.25 [ —7.25+-0.3 — ¢cTs at T
=77"K
27 —20.042.0 | —12.2441.5 | —5.0+1.5 0.254-0.08 | —1.324:0.2 | —7.050.25 — cTs at T
Cu =4,2"K
; 1 .5 s 1 s 8 s -
e & Ol H 05124205 14056+ 5 Clog + 5 Cl56— 27,6
29%) [ —14.2741.4 | —7.7640.8 | —2.65+1.5 | 1.47£1.6 | —0.062.3 | —7.7121.1 —
29%) | —14.2741.4 |—8.8720.8 | —1.77£1.5 | 0.661.6 [—0.6322.3 | —7.44+1.1 —
L 33 |—12,7120.22| —8.144-0.09 | —0.50£0.18 | —0,954-0.87 | —0.032-0.09 | —7.800.05 — cTs
Ag 33 —8.43+0.37| —5.29+0.18 | 1.89+0.37| 4-0.83+0.08| 0.56--0.26| —6.37+0.13 — cTs
Au 33 |—17.2040.21| —9.22-40.12 | —2.3340.49| —0.122-0.16 | —0.13:£0.32 | —6.48+0.17 — T8
MgO 31 |—48.954+1.5 | —0.95+0.9 | —0.69+2.2 1.4740.1 1.132:0.4 | —6.59+0.2 — [
Y4Fes0ys (YIG) 28 —23.340.8 | —7.1720.6 | —0.3341.3 | —0.97:00.16 | —1.48+0.29 — —3.064:0.14 s
Si0s (quartz) 34 —2.10 —3.45 —2.94 —1.34 — —2.0 ot
Cyuz~ - 042, Cjq=—= —1.63, Cyaq=—0.15, cm:ga 12, cm 002, Capp—: —3.32, Capg— —8.15, [ ©
Cagpz= —1.10, Cygqe= —2.76
*Three combinations of adiabatic moduli are determined, and the results of measurement of the mixed moduli C1 K in [ (first line) and in
[27] (second line) were used to calculate all six moduli.

Table III. Independent elastic third-order

moduli of crystals
Class Independent moduli
. 0,0h, Th Cyyq, C Ciog Cyse, C [
cubic J 0% 1o Cr1ay Croae Cuaser Crasr Cioe
\ 7. Th Cutts Ca12r Crazr Cazor Crasr Crger Cuazr Ciss
Hexagonal Cists Cuazy Cuaas Craz Cinzs Cr2zr Craas Ches
344 1551 3681 458
Tetragonal Cuts C113, Cuugr Crias Cpazr Cror Crasr Crag
Ci34r Cissr Cagey Cazss Cagg
Trigonal Cu1s Cit2y Ciszr Chaar C23r Cr2as Cragr Cisz
1310 Cissr Caazy Caz
. Ci11y Ciy2, Caz Cizar Crase 61331 Coagr Ca3
Orthorhombic C203, Cazar Crasy Cisse Cms. 244) Ca35
2680 Caasr Cassr Cagsr Case

\

3. Stresses. According to Murnaghan'®], the stress

tensor is
P

Oip = 0o

Y

6u,k) ¥,

(6)

where p and p, are the densities in the deformed and
undeformed states, respectively, p = po(1 + 1),
= |8uj/9xk + Bik|, and Y* is the transpose of the

matrix Y.

When cubic terms in the strain are taken into ac-
count in the internal energy, the generalized Hooke’s
law (6) has, besides linear terms, also terms that
depend quadratically on the strains, and these deter-
mine the elastic nonlinear effects in solids.

4. Equations of motion. The equation of motion has

the usual form

F2u;
P =

_ Qo
dxp

M

In the general case, for an isotropic solid, Eq. (7)

takes the form![®!

3%uy

32u;
Po g

dxp Oz

—n

—(K—{—

i
3

)

d2u;
dxy dz;

= (r 4 7) (Gt gt oo T2 e 52
(B4 4 B) (it b e 51
+ (K -3+ B) 5ot (4 +B)
X (o S ot S (B4 20) o (8)

The nonlinear terms in the right-hand side of (8) do

not vanish when all the three third-order moduli vanish

L

since the connection between the strain-tensor com-
ponents and the displacements (1) is nonlinear. This
geometrical nonlinearity is due to features of finite
strains in solids.
In crystals, Eq. (7) is too cumbersome to be given

here (see

[36]).

III. THEORY OF NONLINEAR WAVES IN SOLIDS

The nonlinear equation (8) is usually solved by suc-
cessive approximations: it is assumed that the ratio of
the displacement amplitude u, to the sound wavelength
A (the acoustic Mach number) is sufficiently small.
Then the terms (1/c3-8%/6t?) and 8%u/9xj9xy, in (8)
where c, is the phase velocity of the wave, are of the
order of uo/Az. Since the ratio of the third- and
second-order elastic moduli does not exceed several
times ten, the nonlinear terms of the type

(8%u/8x9xp) (9u/dxp) are of the order uj/r%

i.e., of

second order of smallness compared with the linear

terms.

We represent the displacement in the form of a sum

u=u U UL,

(9)

the prime denoting the order of smallness, for exam-
ple, u” ~ u’u,/r. Substituting (9) in (8), we obtain the
first-approximation equation
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224 a2ul 241
Poar —H T — (K+ ) oy =0 (10)
The second-approximation equation has the same form
as (8), but the quantities in the left-hand side are of
second order of smallness, and those in the right-hand
side of first order of smallness. Thus, the problem
reduces to a solution of system of linear equations with
appropriate boundary conditions. In the first approxi-
mation this is the usual wave equation (10), and in the
second approximation it is the inhomogeneous wave
equation, since the known solution of Eq. (10) is sub-
stituted in the right-hand side of (8).

1. Nonlinear interaction of waves propagating in one
direction, We shall henceforth consider a plane travel-
ing wave propagating in the direction of the Ox axis.,
The second-approximation equations (8) then take the
form (%

52ux o '9%u _ 82’ dux 6'-’41.{4 au; 82uz dus

72— =P 5 7{‘"‘3‘(012 Tz T 6_1) ’ (11)
Ruy  , Puy Puy dux | 0Pux duy 12
FTT I P> _5‘(512 ﬂ+ 022 _67) ’ ( )
Bz, 92y 82u; dux | Oux Ous
g2 6t G =P (_azz oz + o 5;) » (13)

where

= (K+51) [P0 ch=nipo Bi=3ct+—-(24+65+20), py=ct
1 A

+4: (7 +58)-

For a cubic crystal, a ‘‘pure’’ longitudinal wave can
propagate in the directions [100], [110], and [111]. If
the axis is directed along any of these directions, then
the second-approximation equation can be written in
the form (11) with uy ='u; =0 and with the values of
cj and gy listed in Table IVI*"), For directions differ-
ing from those indicated, the form of the equation does
not change, but the coefficients in this case have a
more complicated form!%®,

It follows from (11) that propagation of a plane longi-
tudinal wave (uy =uy = 0) excited by a source at
x = 0, ux(0, t) =ue(1l - cos wt) causes generation of a
second longitudinal harmonic

(14)

Un = ——ﬂ—éik—?;—g [1—cos 2 (ot — k,2)],
cl
where k] = w/c; is the wave number of the longitudinal
wave, The solution (14) was obtained with the boundary
condition ux(0, t) = 0. The linear growth of the second
harmonic with increasing distance is due to the fact
that no account was taken of the sound absorption. If
sound absorption is taken into account, then (14) takes
the form!®!

Table IV. Coefficients of second-approximation equation
for cubic crystals

Wave propagation
digecfiogn < B, — 3¢} l
[100] €11/ Ci11/po
{110] {e11+¢12+2c44)/ 200 (C1114+-3C132+12C1g6) /4po
(C114-6C115--12C 144+ 24C 160+ 2C 193 16C 450) |
[ (eqst 2egyHhew2po | et - 168+ 2C 125+ 16C 4 56)
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uy :—mé- 672N i) [1 —cos 2 (wf — k)], (’15)
16ayct
where o] = (41/3 + n')wz/Zpoc; is the attenuation co-
efficient of the longitudinal wave, and n and 5’ are
respectively the shear and bulk viscosity coefficients.
At small a;x, Eq. (15) goes over into (14), i.e., the
second harmonic increases linearly with the distance;
then the growth rate is slowed down by dissipative

losses. At a distance

zs=1n2/20, (16)

the second harmonic reaches a maximum and then de-
creases, It is possible to consider analogously the
occurrence of combination (summary or difference)
frequencies following simultaneous excitation of two
longitudinal waves of different frequencies, propagating
in the same direction in the solid. We note that, just

as in liquids, when a longitudinal wave of sufficiently
high intensity is excited in the solid, there should arise,
besides the second longitudinal harmonic, also longi-
tudinal higher harmonics—third, fourth, etc. The wave,
just as in the liquid, gradually assumes a sawtooth
form. The generation of these harmonics, as well as
the formation of the sawtooth wave, cannot be described,
strictly speaking, within the framework of the five-
constant theory of elasticity; it is necessary for this
purpose to take into account elastic moduli of higher
order,

When the source excites only a transverse wave,
polarized for example along the Oz axis (ux = uy = 0),
the second-approximation equation (13) is the homo-
geneous wave equation, At zero boundary conditions it
has only a zero solution, i.e., a transverse wave in an
anisotropic body does not generate a transverse second
harmonic. This result is quite obvious, since harmonic
generation becomes impossible if the stress changes
in absolute magnitude when the displacement sign is
reversed. Since the absolute magnitude of the shear
stress does not change when the shear direction is
reversed, no second harmonic is generated. This holds
true for an ideal isotropic solid. It can be shown that
no transverse second harmonic is generated in cubic
crystals (class m3m) in which a wave propagates only
the directions [100], [010], [001] and in the directions
of the face diagonals [110], [101], and [011]. In real
solids, owing to residual internal stresses and disloca-
tions, the generation of a second transverse harmonic
can be observed experimentally (see Chapter IV)[*°],

It follows from the form of (11) that a shear wave
gives rise to longitudinal oscillations of double the
frequency. This, however, is a typical example of the
non-synchronous nonlinear effect*, since the propaga-
tion velocity of the induced process (the longitudinal
wave) differs from the propagation velocity of the in-
ducing transverse wave. Indeed, at uy =uy = 0 and
uz(0, t) = wo(1 — cos wt), the solution of the first-
approximation equation has the usual traveling-wave

*Nonlinear wave interactions can be accompanied by synchronous
processes in which the resultant wave is continuously amplified in the
interaction region. Synchronous generation in three-wave interaction is
determined by the conditions (20); if they are not satisfied, then the
process is not synchronous (there is no continuous amplification of the
wave at the combination frequency).
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form. The solution of the second-approximation equa-
tion (11) is!®?

T )
Ux= 4er (a2—1)

sin [(ke — ky) ] cos [20t — (ke + k1) 2], (17)
where a = ¢j/cy. The absence of synchronism causes
the resultant harmonic to be ‘‘amplitude modulated’’

in space, and the period of the ‘‘modulation’’ is

(18)

where A; is the length of the longitudinal sound wave
at the frequency w. Since for most solids a ~ 2, the
period (18) is ~a;/2 ~ Ar, i.e., the period of the
“‘modulation’’ is of the order of the transverse wave-
length. When the damping is taken into account, the
longitudinal oscillations of double the frequency are
given by!®!

Bkt

W= DT bR i 9 (e — of) — 7 2 sin 2 (koo — ot)]. (19)
8ct (a2 —1)

Az=M/2(a—1),

The spatial oscillations then become smoothed out by
the exponential factor. We shall henceforth call these
“‘modulated’’ harmonics complicated harmonics.

We note that ‘‘modulated’’ harmonics are generated
in the nonsynchronous nonlinear effects also in media
having dispersion, for example, in nonlinear optics!*!],
and in the Propagation of capillary waves on the surface
of a liquid*®**), 1t is possible to let ¢ in (17)
formally tend to cj. Then, as the difference between
these velocities decreases, the period of the oscilla-
tions of the second-harmonic amplitude increases
more and more, and finally, on going over to synchro-
nous excitation ¢y = c¢j, Eq. (17) goes over into (14)
for gr = By and w, = u,.

If longitudinal and transverse waves propagating in
the same direction are simultaneously excited, the
interaction of the primary waves generates in second
approximation, besides the longitudinal second har-
monic (14) and the complicated longitudinal wave (17)
due to the transverse wave, also a complicated trans-
verse harmonic!®! whose spatial ‘‘modulation’’ period
is ~2Ax, where Ax is given by (18).

Nonsynchronous nonlinear effects in isotropic solids,
owing to the large difference between the velocities ct
and cj, have, as seen from (18), a very small period of
spatial oscillations. The ‘‘accumulation’’ of the gen-
erated harmonic during the propagation of the primary
wave, which is characteristic of synchronous effects,
is therefore missing. The amplitude of the complicated
wave is quite small. An experimental observation of
these waves is a very complicated task; these effects
have not yet been observed in traveling waves.

2. Nonlinear interaction of intersecting waves
(Raman scattering of sound by sound). We have con-
sidered above the interaction of plane traveling waves
whose propagation direction was the same. This,
generally speaking, is a particular case of the interac-
tion. Two propagation velocities and three waves (one
longitudinal and two transverse with mutually perpen-
dicular polarization directions), a superposition of
which can be used to represent any elastic wave in an
isotropic solid, uncover great possibilities for syn-
chronous nonlinear interaction of elastic waves when
they intersect at different angles. As follows from the
theory!®**] the conditions for synchronous interaction

Ky + ky=k; Ky~ Ky = Ky
Wy + Wy =ty Wy —Wy=wy
ky ky kg Ky

o

K, K
(s )2 [an )2, ()2 g (@) Wy
(L’y/ B 51} + /L‘z) iz/”z)/”z/cosa
FIG. 1. Three-phonon interaction: the law of conservation of the
energy and quasimomentum of phonons.

of excitation of a wave of frequency w; with wave
vector k; under the influence of two plane waves
(w1, Ki1; ws, ks ) are as follows (Fig. 1)

0 0y 22 g,

ky+ky - ks.
When these conditions are satisfied, the transfer of
energy from the interacting waves to the wave of com-
bination frequency occurs in such a way that the am-
plitude of the generated wave increases continuously
in the interaction region. The theory of**! does not
take absorption into account; it is qualitatively clear,
however, that the absorption of the waves should im-
pose an upper limit on the amplitude of the generated
waves. The general problem of nonlinear interaction
of two waves has never been considered before, in so
far as we know. The result of the interaction (20) is a
traveling wave.

The first of these conditions determines the fre-
quency of the combination wave, and the second the
direction of its propagation. Conditions (20) are ob-
tained also in a quantum-mechanical analysis of three-
phonon processes, where they are interpreted respec-
tively as the laws of conservation of the phonon energy
and quasimomentum®, The interaction corresponding
to conditions (20) could be called, by analogy with
Raman scattering of light, Raman scattering of sound
by sound, for here, too, the direction and frequency of
the scattered sound, generally speaking, differ from
the directions and frequencies of the interacting sound
waves.

We note that in media where there is only speed of
sound (gases and liquids), the condition (20) admits of
the interaction of only waves propagating in one direc-
tion; Eq. (20), naturally, is valid only for plane mono-
chromatic waves. In the case of non-plane waves (e.g.,
sound beams) and non-monochromatic waves (e.g.,
when working with pulses), a certain deviation from
conditions (20) is permissible; the degree of this de-
viation depends on the degree of non-monochromaticity
and non-planarity of the wave. Under the experimental
conditions one can produce waves that are sufficiently
close to plane and monochromatic; then the deviation
from (20) is determined by the experimental conditions.

The conditions (20) are necessary but far from suf-
ficient for a nonlinear interaction of two waves ac-
companied by formation of a traveling wave of com-
bination frequency. These conditions, for example,
admit of generation of a second transverse harmonic,

(20)

*In the analysis of thermal phonons of high energy (high frequency),
the momentum, as is well known, is conserved accurate to the recipro-
cal-lattice vector. For low-energy phonons, in which we are interested,
there is no need to take these Unklapp processes into account.
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which, as shown above, should not occur in an isotropic
body.

The solution of the equations of the nonlinear theory
of elasticity for two intersecting waves was found
in[**°]_ Three-phonon interactions were considered
quantum-mechanically int*®*], As shown in!**], when
account is taken of the three polarizations of the inter-
acting and scattered waves, and also of the formation
of both summary and difference frequencies, one can
conceive of a total of 54 types of interactions in an
isotropic solid (Table V). Some of these interactions,
however, are forbidden. The reasons for forbiddenness
are: A) failure to satisfy the synchronism conditions
(20) (or, equivalently, failure to satisfy the conserva-
tion laws for the energy and quasimomentum of the
interacting phonons); B) failure to satisfy the polariza-
tion conditions. Some of the interactions (C) are possi-
ble only when the waves propagate in one direction.
Finally, some interactions (D) are possible for inter-
secting waves. In Table V the transverse waves polar-
ized in the interaction plane are designated T, while
those polarized perpendicular to the interaction plane
are designated T'. We note that the table lists the re-
sults of the analysis of the interactions only from the
point of view of satisfaction of (20) and of the polariza-
tion conditions, while the interaction efficiency (or,
using the quantum-mechanical terminology, the inter-
action probability) was not taken into account. It is
seen from Table V that out of the 54 types of interac-
tion, 36 are completely forbidden, 10 are possible only
when the waves propagate in the same direction, and
finally 8 are possible for intersecting waves. The in-
teraction of waves propagating in the same direction
was considered in part in the preceding section. We
emphasize here that in a lossless medium the interac-
tion of waves propagating in the same direction is in
principle not subject to any limitation on the frequen-
cies of the interacting waves: waves of very low fre-
quency can interact with waves of very high frequency,
producing combination frequencies. When absorption
is taken into account, obviously, it is meaningful to
speak of interactions only in the case when the mean
“free’’ path of one of the waves, with high frequency,
~a7', where o, is its absorption coefficient, is larger
than the length of the other (low-frequency) wave X,
i.e., a1x2 < 1, In the opposite case the first wave has
time to attenuate before the parameters of the medium
can be modified significantly in any way under the in-
fluence of the second wave.

Unlike the interaction of waves propagating in the
same direction, Raman scattering, generally speaking,
is limited by a large number of conditions, and when
these conditions are satisfied, it is possible for a
limited region of interacting-wave frequencies.

As already mentioned in the Introduction, we confine
ourselves in this review to only phonon-phonon inter-
actions and we have considered above only the elastic
nonlinearity due to the lattice anharmonicity. In hyper-
sonic investigations, however (see Ch. IV), one en-
counters a problem in which a definite role can be
played (e.g., in the investigation of the generation of
harmonics in piezoelectric crystals) by harmonic gen-
eration due to causes other than the anharmonicity of
the lattice. Such causes include electrostriction and

Table V. Forbidden and allowed three-
phonon scattering processes for an iso-
tropic solid

Scattered waves
No.| Interaction waves @) + w2 0 — w2

EREEEEERNE:
1| Loy Lo C A B C D B
2| L) T(wg) D A B D D B
3| T{w) L(ws D A B A A B
4| T(w) T (wg) D C B . A C B
5| T (e T (o) D C B A B C
6| L{w) T (0g) B B A B B D
7| T {w1) L{wg) B B A B B A
8|7 () Tlwy) | B B | ¢ B | B c
| T(w) 7T (wg) B B C B B C

nonlinear piezoelectric effects, which can play a defi-
nite role, for example, in the excitation of hypersound
on the surface of a piezoelectric crystal partly placed
in a resonator. In addition, the alternating component
of the radiation pressure of an electromagnetic wave
of frequency equal to the second harmonic can turn out
to be significant theoretically. These questions are
considered in'*®!), where expressions are given for
the second-harmonic amplitude. In these expressions,
besides the elastic nonlinearity, account is taken also
of the electrostriction, the pressure of the electromag-
netic radiation, and the nonlinearity of the piezoelec-
tric effect. We shall not stop to discuss this here,
since we were unable to observe in our measurements,
at frequencies on the order of 10° Hz, the influence of
these factors on the second-harmonic amplitude (see
Ch. VI), at least for longitudinal waves, even in such a
strong piezoelectric and ferroelectric as lithium
niobate (at room temperatures), It is possible, inci-
dentally, that in other cases these factors are of defi-
nite significance.

3. Stimulated standing waves of finite amplitude in
solids. Other conditions being equal, nonlinear acoustic
effects in solids are as a rule weaker by 1—2 orders of
magnitude than in liquids. To separate the harmonics,
it is necessary to use here more sensitive apparatus,
This is discussed in detail in Ch. IV, where experi-
mental methods for studying nonlinear wave phenomena
in solids are discussed. We mention here that non-
linear effects in resonant acoustic systems, especially
for stimulated oscillations near resonant frequencies
and at high resonator Q values, become much more
strongly manifest than in a wave traveling in an un-
bounded medium{****), This uncovers additional possi-
bilities for investigating nonlinear properties of solids.
It was shown in'®*’ that at Reynolds numbers
Re =ku,-kL -Q larger than unity (u, is the amplitude
of the vibrational displacement exciting the resonator,
L its length, and Q the quality factor of the resonator),
the nonlinear effects are manifest in harmonic genera-
tion, and in the possibility of resonant excitation at
frequencies different from the linear resonant frequen-
cies. When Re > 1 all these effects are quite clearly
pronounced. The use of resonant oscillations is a very
sensitive method of separating nonlinear effects.

Longitudinal and transverse waves of finite ampli-
tude in a solid layer, and also nonlinear detection of
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an amplitude-modulated sound wave by means of a
solid rod excited by a longitudinal or a transverse
wave, were considered in'*®} with accuracy to quanti-
ties of second order of smallness. In particular, if
longitudinal or transverse standing waves of high fre-
quency w modulated by low frequency 2, which is the
natural frequency of the rod, are excited in a solid rod
clamped at midpoint, then three waves propagate in the
rod, the carrier w and the two sideband frequencies

w + . These waves interact in nonlinear fashion with
one another and the nonlinear elasticity of the rod
causes acoustic detection (separation of the low fre-
quency £). The amplitude of the longitudinal oscilla-
tions of a rod of length L at a low frequency €,

u$ | x=L, turns out in this case to equal

Biudmw2 C_Co (cos%cos %li) 1
UQ |xer == 3 0 qr— ©08 Qt
80 ( -——‘2’) sin =2
C <o

cos kL cos koL

[ cos kgl
x { ch 2oL +cos 2k L | ch2al4-cos 2k,L

" ¢h 20l +cos 2k3L —’} ’ (21)

Here B = 8}, @ = af, and ¢ = ¢} if a longitudinal high-
frequency wave is excited in the rod, and gj =8,

a = a1, and ¢ = c7 if a transverse wave is excited,
where c¢, is the velocity of the longitudinal waves in
the thin rod, m is the depth of modulation, k, = w/c,

k: = (w+ Q)/c, and ks = (w — ©)/c. In deriving this
expression it was assumed that the damping of the
sound of fundamental frequency is small over the length
of the rod, aL. < 1.

In concluding this chapter, let us discuss some
experimentally observable features that follow from
the theoretical results given above on nonlinear effects
in solids. First, is the observation of second longitud-
inal harmonics generated in a longitudinal wave. From
(15) we find that at the stabilization distance the har-
monic displacement amplitude reaches a maximum
value

2
() _ Bifiu} e,prr;u%z g
G Y 16 320

Re u,,

where €] = Bl/2cf is a dimensionless nonlinear parame-
ter, n = 2a7pci/w’ is the effective viscosity, Re

= pwugh/7 is the acoustic Reynolds number, and X is
the wavelength,

We see from this relation that (ug)max/uo ~ Re,
i.e., this ratio depends on the vibrational velocity pro-
duced by the sound source and by the effective viscosity
of the solid. As a characteristic example, we present
the value of (ug)max for a magnesium-aluminum al-
loy at ~ 4.5 MHz. For this alloy ¢~ 6, a7 = 8
x 107 em™, and ¢; = 6.26 x 10° cm/sec. From (16),
the stabilization distance is ~44 cm. At this distance
(ug)max = 4.3 X 10* u; if the voltage on the quartz
radiator is on the order of several hundred voits, then
U=~ 107 cm, i.e., (Ux)max/Uo = 4.3 X 107, At 4,5 MHz,
the magnesium-aluminum alloy has very small damp-
ing. Measurements in solids with large damping is
made difficult not only by the fact that the maximum
amplitude of the harmonics is small, but also by the
fact that the stabilization distance (16) is small in this
case, when it is practically impossible to carry out
measurements by the pulsed spectral method at dis-
tances smaller than or equal to the stabilization dis-

tance. On the other hand, work in a region more re-
mote than the stabilization distance causes the ampli-
tude of the harmonics to be much smaller than the
maximum value. It is useful to bear this in mind when
choosing the frequency band for the investigation of the
harmonics.

Nonsynchronous generation of a harmonic of the
type (17) leads, owing to the absence of accumulating
effects, to very weak distortions even in solids with
small damping. An estimate of (ug)max for this case
can be obtained by assuming that the distance over
which the harmonic grows is ~Ax/2, where Ax is the
period of the spatial ‘‘modulation’’ (18), at the charac-
teristic conditions considered above, and at u,
~ 107 cm, we get (ux)max/Uo = 107, which is lower
by two orders of magnitude than the corresponding
value in synchronous generation of the second har-
monic.,

A few words concerning the observation of Raman
scattering of sound by sound. In spite of the fact that
this is a synchronous effect, the amplitude of the
generated wave at the combination frequency is here
as a rule smaller than the maximum amplitude of the
synchronously generated second harmonic, owing to
the fact that the interaction region of the waves is
smaller here. It has already been noted above that
there is at present no theory of Raman scattering with
allowance for damping. However, it is possible that
since the amplitude of the displacement of the combina-
tion wave is ~ w?, it would be possible to obtain a large
effect at high frequencies. It must be said that although
the ratio of the amplitude of the combination wave to
the amplitude of the interacting waves is smaller here
by at least one order of magnitude than the analogous
quantity in second-harmonic generation, the separation
of a useful signal is a much simpler matter, since
there are more possibilities for verifying that the in-
teraction occurs in the medium (the reception direction,
the generally non-integer ratio of the frequencies, etc.
see below).

IV. EXPERIMENTAL METHODS AND CERTAIN
RESULTS OF AN INVESTIGATION OF NONLINEAR
WAVE PHENOMENA IN SOLIDS

At the present time there are already several dozen
experimental papers devoted to nonlinear phenomena
occurring when elastic waves propagate in solids. In
this chapter we shall stop briefly to discuss investiga-
tion of harmonic generation and generation of combina-
tion frequencies (both at ultrasonic and hypersonic
frequencies), the generation of transverse harmonics
due to crystal defects, combination scattering of sound
by sound, generation of harmonics in Rayleigh waves,
and nonlinear resonances in acoustic resonators.,
Finally, we shall describe recently developed optical-
acoustic methods for investigating nonlinear phenom-
ena in the propagation of elastic waves.

1. Study of the generation of harmonics of longitudi-
nal waves by the pulsed spectral method. In the first
studies of nonlinear acoustic effects in solids, a pulse
spectral method was used!**®], A block diagram of the
simplest setup for the observation of harmonic genera-
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FIG. 2. Block diagram of pulsed-spectral method of measuring har-
monics at ultrasound frequencies.

tion by such a method is shown in Fig. 2, The meas-
urement procedure itself may seem at first glance to
be very simple. However, owing to the relatively small
nonlinearity of the solids, the harmonics produced
when sinusoidal (at the radiator) elastic waves propa-
gate are small, and certain difficulties are involved in
proving that the harmonic generation occurs precisely
in the solid and is not connected with the nonlinearity
of the apparatus.

Figure 2 illustrates application of a radio pulse to
a piezoelectric plate 3 via a resonant circuit (rejection
filter) 2, which suppresses the possible second har-
monic of the sinusoidal-voltage generator 1, The am-
plitude of the pulse applied in'?) to an X-cut quartz
plate was 1000 V, but it is possible (using an amplifier
of higher sensitivity) to operate at voltages on the
order of only several dozen volts. Ultrasonic pulses
(with carrier frequency of several MHz) pass through
a solid sample 4 and are then received by piezoelectric
plate 5, the resonant frequency of which, 2f, is double
the fundamental frequency., The received pulse passes
then through a rejection filter 6, which suppresses the
signal of the fundamental frequency £, and is fed to a
resonant amplifier 7. This amplifier is tuned to the
second-harmonic frequency 2f and its gain 1000, The
second-harmonic pulses produced at the output of this
amplifier by the elastic nonlinearity in the sample are
then fed to the indicator 8. The character of the en-
velope of the series of pulses resulting from multiple
reflection from the end of the sample depends on the
impedances of these ends!?3%%]  The simplest case
is that of infinite impedance. Then the phase relations
between the first, second, and higher harmonics re-
main unchanged by reflection, and the second harmonic
(as well as the higher harmonics) increases with in-
creasing path traversed by the pulse. As the path is
increased, the dissipative losses assume an increasing
role. In this case, if the length of the sample is
shorter than the stabilization distance given by (18),
one observes a series of pulses, which first increase
(up to the stabilization distance) and then decrease.
The situation is somewhat more complicated if the
impedance of the end face opposite to the ultrasound
source is equal to zero (the boundary is absolutely
free). On reflection from a boundary with zero im-
pedance, the phase relations between the first and
second harmonics change for longitudinal waves in
such a way that after reflection the second harmonic
begins to decrease. Were there no attenuation, then
a purely sinusoidal wave would return to the radiator
(with a zero second-harmonic amplitude). If the re-
ception of the second harmonic is at a boundary with
zero impedance, then the amplitude of the first-
harmonic pulses decreases exponentially (the ampli-
tude of the pulses would remain constant without atten-
uation). Inthe case of finite impedance of the reflect-
ing end, the envelope of the pulses is intermediate be-

tween an exponentially-decreasing one {(zero imped-
ance) and a curve with 2 maximum (infinite impedance).
Under the experimental conditions it is easier to
realize the case of a free boundary, especially when
working with hypersonic frequencies (see below).

We note that the phase of a transverse wave re-
flected from a free boundary remains unchanged, and
therefore the second-harmonic amplitude for trans-
verse waves should continue to increase up to the
stabilization distance also after reflection from ends
having zero impedance. In the reception of the second
harmonic as shown in Fig. 2, the impedance of the
receiving end of the sample depends significantly on
the features of the acoustic contact between the plate
5 and the sample; the end of the sample is here in
contact with a liquid film (if longitudinal waves are
received) or a solid splice (when transverse waves are
received). Located behind the film is a resonant plate
for the second harmonic (quarter-wave plate for the
first harmonic). Under certain conditions, the latter
makes it possible to obtain a sufficiently high imped-
ance, at which a growing series of second longitudinal
harmonic pulses can be observed.

Figure 3 shows such a series of second-harmonic
pulses (longitudinal waves) in a sample of magnesium-
aluminum alloy!?)*, As the wave traverses the dis-
tance from the radiator, the second-harmonic pulses
increase, reach a maximum (stabilization distance de-
termined by (16)), and then decrease as a result of the
predominant influence of the dissipative processes.
We note that in this study the dependence of the second-
harmonic amplitude on the distance traversed by the
wave was determined also for samples with different
lengths (leaving the experimental conditions un-
changed). Figure 4 shows this dependence in rods of
magnesium-aluminum alloy of different lengths (funda-
mental frequency 5 MHz).

In the cited paper!?], the measured value of the
second-harmonic amplitude and expression (14) were
used to determine the ratio of the combination of
three third-order elastic moduli €] to the second-
order moduli for a number of single crystals (Al,
NaCl, KCl, LiF), which turned out to be in good agree-
ment with Bridgman’s data obtained from measure-
ments of the hydrostatic compressibility.

At hypersonic frequencies, a number of indirect
symptoms of nonlinear distortion and interaction of
hypersonic waves of frequency 9 x 10° Hz at helium
temperatures were observed in[m, for example, an
increase of the absorption with increasing hypersound
intensity.

FIG. 3. Series of second-har-
monic pulses (10 MHz) in magne-
sium-aluminum alloy. Voltage of
S MHz radiator is 1000 V (maxi-
mum). Rod length 7.5 cm.

*Calculated sound intensity ~1 W/cm?, sound-pressure amplitude ~6
atm, vibration-displacement amplitude ~7 X 1078 cm.
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FIG. 4. Dependence of the amplitude (voltage V, on the receiving
plate in mV) of the second harmonic (10 MHz) on the distance from
the radiator in magnesium-aluminum alloy at a radiator voltage 1000 V:
O-—determined from amplitude of first pulse on rods of different lengths,
@®@-—sccond and third pulses on a rod 30 cm long, A—second and third
pulses on a rod 45 c¢cm long.

The first experiments with the pulsed spectral
procedure, analogous to the procedure used inf*»?] at
ultrasonic frequencies, were performed for hypersound
inl*®%]  In these investigations, at helium tempera-
tures, second-harmonic generation was observed in
X-cut quartz. The excitation of the quartz (as well as
the reception of hypersound) was by placing the crystal
in a microwave resonator at the antinode of the high-
frequency electric field, i.e., from the surface of the
crystal. This method, developed by K. N, Baranskii!®"]
and further extended inf®’ by different modifications,
is now widely used. A second harmonic was observed,
however in!*®%} and was attributed by the author to
nonlinear phenomena occurring on the crystal surface
itself when the crystal is surface-excited. Further
research, including some by Carr himself!*), does not
confirm this conclusion,

Let us stop to discuss briefly the experimental pro-
cedure used by us!®l; a similar procedure was used in
other investigations!®**%%], Figure 5 shows a block
diagram of a setup for observing at 400 MHz harmonic
generation in a single-domain crystal of lithium nio-
bate in which hypersound propagates along the z axis.
Here PG is a pulse generator, HFG a high-frequency
generator, DL a delay line. The receiving channel con-
sists of a heterodyne H, a mixer M, an intermediate-
frequency amplifier IFA, and a detector D. The band-
width of the receiving channel is 4 MHz, the maximum
sensitivity is 107** W, R, and R, are coaxial resonators,
and Cr is a single-domain LiNbQ; sample. The excita-
tion and reception of the waves were effected from the
surface, in resonators R, and R, tuned respectively to
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FIG. 5. Block diagram of pulsed-spectral method of measuring har-
monics at microwave frequencies.

the signal frequency and to double this frequency. A
rejection filter (attenuation 48 dB) is connected in the
channel between HFG and R, and is tuned to the fre-
quency of the second harmonic, so as to exclude the
excitation of the crystal by the double frequency due to
the nonlinear distortion factor of the generator. A re-
jection filter tuned to the fundamental frequency (at-
tenuation 25 dB) is connected between R, and M to
prevent appearance of a false second harmonic in the
receiving channel, The LiNbQ; crystal had a diameter
1.3 cm and a length 3.36 cm. The ends of the crystal
were optically plane-parallel and polished. The radio
pulse duration was 3 psec, and the peak power on the
order of several watts.

An oscillogram of a series of second-harmonic
pulses is shown in Fig. 6. The first pulse is the prob-
ing pulse, and the second is the start of the series of
longitudinal ultrasonic pulses at double the frequency;
the third, sixth, and ninth pulses constitute a series of
transverse double-frequency pulses, since both types
of waves are simultaneously excited in the crystal. A
number of control measurements have shown that the
observed second harmonic is not due to different ap-
paratus nonlinearities. The loss due to the double
electromechanical conversion amounted to 50 dB at the
fundamental frequency and about 65 dB at the double
frequency. An estimate of the longitudinal second-
harmonic radio-signal power at the receiver output
gave values 107°—107'° W for different conditions. The
first-harmonic power was of the order of 10° W,
meaning that the second-harmonic amplitude was
(0.35—0.12)% of the first-harmonic amplitude, The
intensity of the sound and other parameters of the
sound field can be approximately calculated from the
electromagnetic power and the losses to a single elec-
tromechanical conversion. Indeed, if the electromag-
netic power is Pem and the conversion loss is y,
then Pac = yPem. For a plane wave, the intensity, as
is well known, is Y = 27%pc®(uo/1)?, where p is the
density, ¢ the speed of sound, £ =u,/x the amplitude
of deformation in the acoustic field. From these rela-
tions we get £ = Pac/27%pc®8 (S is the beam cross
section area) and

2 2n2pe3S Py 1172
=T

FIG. 6. Oscillogram of longitudinal and transverse second harmonic
in LiNbO;. Fundamental frequency f; = 400 MHz. Excitation from the
surface, propagation along the z axis. Sample length 3.36 cm, diameter
1.3 cm. First pulse—induction, second—longitudinal wave, f, —800 MHz,
third —transverse wave, f, = 800 MHz, fourth and fifth—longitudinal and
sixth—transverse.
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where the indices 1 and 2 correspond to the first and
second harmonics., This formula makes it possible to
estimate the acoustic deformations and displacements
from the measured electromagnetic power of first and
second harmonics. In our case, at Pem on the order
of several watts, the amplitudes of vibration displace-
ments were of the order of 107'° cm at the fundamental
frequency and of the order of 10™'® at the second har-
monic. The absolute parameters of the acoustic field
were measured by applying to the receiving channel
first the received signal and then an amplitude-cali-
brated signal from a separate generator. The formula
given above makes it possible to determine £,/£3
from the first received pulse. The deformation ampli-
tude for the second harmonic propagating along the z
axis of the sample, at distances much smaller than the
stabilization distances, is according to (14)

B = ¢ DiBekih,

where T'; =3 + (Cgs/cg = - Bl/cf is the effective non-
linear parameter (here cg is the elastic modulus of
second order, and Cg3 is the elastic modulus of third
order at constant induction D). Using this relation, we
can determine the effective value of the nonlinear
parameter for LiNbQO; along the z axis, namely, I'j
=1.4+0.9.

We note that in other investigations of harmonic
generation at hypersonic frequencies there were no
indications of excitation of a transverse second har-
monic. A decreasing series of the second transverse
harmonic is clearly seen on the oscillogram of Fig. 6.
Generation of the transverse second harmonic under
the influence of a transverse wave in an anisotropic
solid or in a cubic crystal (for propagation in the
directions [100], [010], [001], and [111]) is possible, as
already indicated in Ch. III, only in the presence of
imperfections in the crystal (dislocations, internal
stresses, etc.). Under experimental conditions of this
work, the transverse harmonic could result also from
anisotropy.

When the electromagnetic pulse power was increased
to 10 W, it was possible to observe also a third longi-
tudinal harmonic at a frequency 1200 MHz.

In accordance with!®®}, the measured value of I' for
piezoelectrics and ferroelectrics may include, gen-
erally speaking, both the lattice nonlinearity and the
nonlinearity that can result from surface excitation of
hypersound. Therefore the separation of the lattice
second harmonic entails certain difficulties in the case
of surface excitation of piezoelectrics. Since, as al-
ready noted, the nonlinear effects are small, it is
necessary to cope with a large number of other factors
producing second harmonics on the surface of the
crystal, not connected with the anharmonicity of the
lattice.

We shall call this the surface harmonic. One of the
causes of the occurrence of a surface harmnnic is the
pressure of the electromagnetic radiation (since it is
proportional to the square of the field intensity, we
have here besides the fundamental component also a
pressure component that varies at double the fre-
quency). This second harmonic due to the pressure of

the electromagnetic radiation could be observed ex-
perimentally by placing in a resonator one end of a
non- piezoelectric dielectric (corundum}), on the other
end of which there was sputtered a film of cadmium
sulfide used as a second-harmonic receiver/®%,
Another cause of the generation of a surface second
harmonic may be the electrostriction effect. This
second cause must be particularly taken into account
when hypersound is excited in ferroelectrics, particu-
larly lithium niobate or tantalate. Finally, a third
cause of excitation of a second harmonic on a surface
of a piezoelectric crystal plate in a resonator may be
the nonlinearity of the piezoelectric effect. Separation
of the second harmonic due to the anharmonicity of the
lattice is quite complicated also because of other al-
ready mentioned reasons.

Returning tol®?) it should be pointed out that the
correction for the radiation pressure of the electro-
magnetic waves, as shown by an estimate on the basis
of!®l is smaller by three orders of magnitude for
£2/&o that its mean experimental value. Thus, the
radiation pressure makes no essential contribution to
I"; in the described experiments, even though it can
lead in principle to the appearance of an acoustic
second harmonic and was observed experimentally in
corundum!®®), As to the electrostriction effect and the
nonlinearity of the piezoelectric properties one can
expect the surface second harmonic to make a definite
contribution to the total second-harmonic amplitude,
since lithium niobate is ferroelectric.

The value of the surface second harmonic can be
determined for a piezoelectric sample by studying the
behavior of the summary or difference frequencies ap-
pearing when two longitudinal or transverse waves
propagating in the same direction interact. As pro-
posed in!l®®, one can proceed for this purpose as fol-
lows: After applying a pulse of frequency f, to a con-
verter at the instant of time t,, a delay is introduced,
amounting to the time 27 required for the elastic
pulse to traverse the length of the sample and to re-
turn to the radiator after reflection. At the instant t,
+ 27, an electromagnetic pulse of frequency f, is ap-
plied. From that instant on, both pulses of frequency
f, emitted at the instant t, and of frequency f, emitted
at the instant t, + 27— propagate in the crystal to-
gether, and a nonlinear interaction occurs between the
waves of frequencies f; and f,. This eliminates the
possible nonlinear interaction and production of har-
monics by electromagnetic excitation of the surface of
the piezoelectric sample, since the electromagnetic
pulses of frequencies f; and f, no longer act simul-
taneously at the surface of the piezoelectric. Using
such a procedure for propagation in lithium niobate
along the z axis and the setup described above!®?
(see Fig. 5), we observed, together with K. K. Ermilin,
the formation of longitudinal and transverse waves at
the difference frequency 805 MHz by interaction of two
collinear hypersonic beams with frequencies f,
= 1205 MHz and f, = 400 MHz,

We call attention to the fact that excitation of the
crystal led to simultaneous generation of both longi-
tudinal and transverse waves. It turned out here that
in the case of surface excitation of longitudinal waves,
within a measurement error of not more than 5—7%,




NONLINEAR PHENOMENA IN THE PROPAGATION OF ELASTIC WAVES IN SOLIDS 789

it was impossible for a difference-frequency wave to
occur as a result of electrostriction or nonlinearity of
the piezoeffect.

2. Generation of transverse harmonic. According to
nonlinear theory of elasticity, as shown in Ch. III, no
generation of the second harmonic in a transverse wave
should be observed in isotropic bodies in the second
approximation. This is caused by the fact that there
are no quadratic terms for the shear deformation in
the nonlinear Hooke’s law, owing to the equivalence of
the shear in the forward and backward directions, We
note that the phonon energy and quasimomentum con-
servation laws (20), as already indicated, admit of the
possibility of ‘‘merging’’ of two transverse phonons
having equally directed quasimomenta, but owing to the
form of the elastic energy the probability of such an
interaction is zero. In crystals, for an arbitrary propa-
gation direction, interactions of this kind are in gen-
eral not forbidden. It can be shown, however, that, say
for a crystal of cubic symmetry of class m3m, there
are definite directions [100] and [110] (in which the
propagation of the ‘‘pure’’ shear wave is possible),
where no transverse second harmonic generation oc-
curs. Its generation becomes possible if a longitudinal
wave propagates in addition to the shear wave (see
Ch. III). This, however, is a case of nonsynchronous
generation, and for traveling plane waves there is no
spatially-growing second transverse harmonic; its
amplitude varies periodically in space with a period
on the order of the longitudinal wavelength, Nonsyn-
chronous generation in solids, where the difference
between the velocities of the longitudinal and trans-
verse waves is large, leads to very small nonlinear
effects.

Experiments have shown!*®! that in solids with
relatively small damping (polycrystalline magnesium-
aluminum alloy, aluminum, duraluminum) and also in
pure single crystals of aluminum (99.95% Al), cadmium,
and zine, a second shear harmonic can be relatively
easily separated if sound propagates in the [100] direc-
tion. The magnitude of this harmonic is smaller by one
or two orders of magnitude than the magnitude of the
longitudinal harmonic generated in the longitudinal
wave, In single crystals of metals, the amplitude of
the generated harmonic observed in'*! was strongly
dependent on relatively weak external actions-the
local action of force or a small local heating.

The influence of an external force on an aluminum
single crystal is shown in Fig. 7. The influence of the
external force is too small to be able to propose some
change in the lattice nonlinearity. In addition, the de-
pendence of the effect on the point of application of the
force, the characteristic relaxation effects (the in-
crease of the shear-harmonic amplitude upon flexure
of single crystals of cadmium and zinc, followed by a
gradual slow return of the harmonic to its previous
value after the removal of the force), all are charac-
teristics of the defect structure of the crystal. We note
that the stresses applied to the sample, as seen from
Fig. 8, were smaller than the light slippage stresses,
which for Al amount to several kg/mm?, Still smaller
(not more than several kg/cm?®) were the alternating
shear stresses in the ultrasonic wave.

Although a second shear harmonic was indeed

FIG. 7. Oscillograms of second
shear harmonic in aluminum single
crystal at different loads: a) without
load, b) load 1 kg, c) load 5 kg. The
direction of the force producing the
load coincides with the direction of
the wave polarization. The pulses of
the second transverse harmonic are
marked by the indices s; (i is the
number of the pulse); M is electrical
interference. Pulses whose amplitude
remains unchanged under load con-
stitute the second harmonic of the
longitudinal wave produced by ex-
ternal radiation of a longitudinal
wave by means of a BT-cut quartz
plate.
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FIG. 8. Ratio of the amplitude of the second shear harmonic (under
the influence of a force F), A, (F), to the harmonic in the presence of a
force, A, (0O), as a function of F for different distances from the sound
source.

generated in polycrystalline metals, it was impossible
to change its amplitude by means of weak external ac-
tion; this indicates probably that the metal in the
single-crystal grains is hardened to a sufficient degree
and the stresses produced by the external forces are
small compared with the internal stresses.

The microscopic role played by defects for phonon
scattering is obvious: forbidden phonon-phonon inter-
actions become possible near the defects. Macroscop-
ically (for waves much longer than the dislocation
dimension), the influence of the crystal effects can
also be observed. The possible cause of this are the
residual internal stresses produced by the dislocations.
Their influence is qualitatively obvious; they cause
Hooke’s law for shear strains to contain, besides terms
with odd powers of the strains, also terms with even
powers, i.e., shear strains behave differently with
respect to stresses of the same absolute magnitude,
depending on the stress direction, The situation here
becomes analogous to that of longitudinal waves, when
different stresses have to be applied in order to obtain
compression and rarefaction of equal absolute magni-
tude.

A shear second harmonic can arise only if the num-
ber of regions in the crystal, where the shear in a
positive direction requires larger stresses than in the
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opposite direction, when averaged over the crystal, is
not equal to the number of regions of opposite sign*.

In the propagation of an elastic wave, the latter
“‘counts’’ all the regions; in the positive regions the
phase of the harmonic is opposite to the phase in the
negative regions, Qualitatively, this mechanism of
generating the shear harmonic was confirmed also
experimentally: 1) the action of an external force is
most effective when the force direction coincides with
the direction of the wave polarization; the action of the
external force has practically no effect when its direc-
tion is perpendicular to the direction of the shear-wave
polarization; 2) the integral character of the effect can
be seen from the fact that the magnitude of the observed
second harmonic depends not on the stress produced
by the external force but on the force itself (the dimen-
sions of the contact between the pressing rod and the
crystal play no role, only the magnitude of the load
matters).

It should be stated that the influence of an external
static pressure depends naturally on the number and
locations of the positive and negative regions for a
given force direction and for a given shear-wave
polarization. Therefore, application of an external
static force at different points can both increase or
decrease the generated second harmonic (see Fig. 8).

An analogous effect was subsequently observed in
the propagation of longitudinal waves in single crystals
and polycrystals of aluminum; the stretching (or
compression) of the crystal in the propagation direc-
‘tion of the longitudinal ultrasound wave caused the
second longitudinal harmonic to change[“]. Here, too,
the static stresses are insufficient to attribute the ob-
served phenomena to a change in the lattice nonlinearity.
Like in the case of shear waves, they are due to the
influence of the defect structure on the elastic non-
linearity of solids.

Notice should be taken of the double role played by
the dislocations in the distortion of the finite-amplitude
waves. At small external static stresses, prior to the
detachment of the dislocations, the external stresses
‘bend’’ the dislocation loops more strongly and lead to
an increase of the effective nonlinearity, and conse-
quently to an increase of the amplitude of the generated
wave. Further increase of the static stress leads to a
detachment of the dislocations at the point where they
are strongly pinned, and to an elongation of the disloca-
tion loops as well as to the appearance of new disloca-
tions. This increases not only the effective nonlinearity,
but also the damping of the elastic wave. Other condi-
tions (wave amplitude, frequency, etc.) being equal, this
damping decreases the magnitude of the generated
second harmonic.

Continuation of!**! in our laboratory has demon-
strated that in aluminum crystals subjected to prior
plastic deformation the second harmonic was more
strongly dependent on small static stresses than prior
to application of the plastic deformation. This result
is natural, since prior plastic deformation increases
the dislocation density. It should be stated that although
plastic deformation greatly increases the number of

*For simplicity, we shall henceforth call these positive and negative
regions.

L. K. ZAREMBO and V. A, KRASIL’NIKOV

dislocations, there is nevertheless no sharp increase in
the number of the stressed microregions of the same
sign, since the amplitude of the harmonic increases in
this case by not more than 2—3 times.

In this respect, results obtained in our laboratory
on lithium-fluoride crystals are also distinct. In
alkali-halide crystals the dislocations are pinned more
rigidly and these crystals, as a rule, are much less
plastic. Therefore the action of an external static
force (even much larger than in the case of aluminum
crystals) in these crystals does not lead to a change in
the transverse-harmonic amplitude. The influence of
dislocations on the generation of a transverse harmonic
can be determined here by using samples with differ-
ent dislocation densities. One of the main difficulties in
performing experiments of this type is the creation of
identical radiation and reception conditions, so as to be
able to compare the resuits,

More or less equal conditions were attained in
these experiments by effecting the reception through a
buffer made of fused quartz, and effecting the contact
between the radiator and the samples and between the
samples and the buffer with the aid of vacuum grease
(this introduced an error of ~ 5—7% in the measure-
ments). The magnitude of the second transverse har-
monic was determined in an unhardened LiF single
crystal with dislocation density 10°--10% in a2 medium-
hardened LiF sample with dislocation density 10*—-10°,
and in a strongly hardened LiF sample with 107 dislo-
cations per cm®, The dislocation density was deter-
mined by counting the etch pits on the cleaved surface
of the single crystal*. The measurement results have
shown that in spite of a dislocation-density difference
amounting to four orders of magnitude, the transverse
harmonic in the last of these samples was only twice
as large.

In view of the very small number of experiments,
it is still too early to draw any final conclusions, but
it is obvious that cancellation of the positive- and
negative-stress microregions (obtained as a result of
the fact that the ultrasound reveals the averaged ef-
fect) leads to generation of a relatively weak trans-
verse harmonic, smaller than in the case of longitudi-
nal waves,

3. Raman scattering of sound by sound. We have
described above experimental methods and results on
nonlinear distortion of waves propagating in the same
direction. In solids, as already mentioned in Ch, III,
unlike in liquids (without dispersion), the so-called
Raman scattering of sound by sound, with formation of
plane traveling waves of combination frequencies, is
possible if the energy and quasimomentum laws are
satisfied for plane traveling waves. When these laws
or the resonance conditions (20) are satisfied, inter-
actions can occur when the waves intersect at a certain
angle, As follows from Table V, such interactions can
be quite numerous in the case of three-wave processes.

The Raman scattering of sound by sound was inves-
tigated experimentally in a number of studies!®®"],

A block diagram of the setup for the study of such
scattering is shown in Fig. 9l Two converters (e.g.,

*The crystals were prepared by B. A. Reznikov, and the authors take
the opportunity to express their gratitude.
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FIG. 9. Block diagram of setup
for the investigation of Raman scat-
tering of sound by sound.

quartz plates suitably cut) S; and S, are excited by an
alternating voltage from the generators G, and G; (V,
and V, are voltmeters). These converters radiate
longitudinal or transverse waves of different frequency
into the solid-body block A; in["""] the measurements
were performed in a block of polycrystalline aluminum,
These waves intersect, in the form of ultrasonic beams,
at an angle «. The combination-frequency wave scat-
tered at the angle g is received further by a receiver
R, the resonant frequency of which is equal to the com-
bination frequency. F, and F, are rejection filters,
which block each of the interacting frequencies, TA is
an amplifier turned to the combination frequency, O is
an indicator, and M is a pulse modulator. The genera-
tor G, operates in the cw mode and G, in the pulsed
mode, Naturally, the received scattered signal is
pulse-modulated. It is possible to use the pulsed mode
also for generator G,. In this case, however, the
pulses from G, and G, must arrive simultaneously in
the interaction region, In Fig. 9, R, and R, are con-
trol receivers. Inl") in the study of the interaction
T(w) + T(w) = L(2w) at a frequency 3 MHz, the scat-
tered signal produced voltages on the order of a frac-
tion of a millivolt in the X-cut-quartz controlled
resonant receiver when 750 V was applied to the os-
cillators S; and S,. This amounts to 10°—10"* of the
voltage on one of the control receivers.,

Experiments on Raman scattering of sound by sound
agree in general with the theory developed in Ch. III.
We call attention to the fact that experiments on Raman
scattering of sound by sound can be regarded as modu-
lation of nonlinear interactions between thermal pho-
nons or between coherent and thermal phonons, carried
out on coherent phonons of relatively low energy.

In the introduction to this article we already indi-
cated that nonlinear interaction between thermal pho-
nons is of great importance in thermal conductivity,
and nonlinear interaction between coherent phonons
and thermal phonons explains the absorption of sound
in dielectric crystals.

As far back as in 1935, on the basis of the assump-
tion of nonlinear interaction between an acoustic wave
(coherent phonons) and Debye waves (thermal phonons)
resulting from the lattice anharmonicity, L. D. Landau
and Yu. B, Rumer [*] developed a theory for the ab-
sorption of high-frequency sound in solids (the “LR”’
theory). According to this theory, the interaction be-
tween the coherent and thermal phonons gives rise to
a third phonon, and some of the energy of the coherent
phonon is transferred to the produced thermal phonon;
the sound wave loses energy.

Such direct linear interactions between coherent and
thermal phonons can occur, however, only if the length
of the sound wave )g¢ 18 much shorter than the mean
free path aph of the thermal phonon. Only then is a
noticeable accumulation of the result of this interaction
possible. This defines the condition for the applicabil-
ity of the ““LR’’ theory, namely Aac < Iph. Such con-
ditions are satisfied at low temperatures and at hyper-
sonic frequencies. Since Iph = cTph, where c is the
velocity of the phonon and 7y}, the relaxation time (the
phonon lifetime), this condition can also be written in
the form w 7pp > 1 (w—frequency of the sound), since
we are considering normal or N-processes and there
is no dispersion.

In the proposed three-phonon process it is neces-
sary to satisfy the energy and quasimomentum condi-
tions (20). Since in solids the velocity of the longitudi-
nal waves c¢] always exceeds the velocity of the trans-
verse waves cr, it follows from the conditions (20) and
the “LR’’ theory that in an isotropic medium without
dispersion, a low-frequency longitudinal sound wave
can interact only with a high-frequency longitudinal
wave of thermal origin, and give rise as a result of
the interaction to a third longitudinal wave only if all
three waves are collinear*®., For transverse sound
waves; on the other hand, there is no such strong
limitation; in this case noncollinear interactions with
thermal waves are possible, For this reason, the ab-
sorption coefficient @; for longitudinal waves should
be much smaller than the absorption coefficient a7, for
transverse waves. An attempt to explain the phonon
absorption of longitudinal waves by taking into account
four phonon processes was made in!"?!, Experiments
have shown later that the contribution of such pro-
cesses to the absorption of longitudinal waves is, how-
ever,not appreciable. As to the dependence of a7 on
the frequency « and on the temperature T, according
to “LR’’ theory we have here ar ~ wT? if Aa¢ < Iphf-

The other limiting case xg¢ > Iph was considered
by A. I. Akhiezer!™], In this case there is no direct
nonlinear interaction between the coherent and thermal
phonons. The acoustic waves change the equilibrium
state of the thermal phonons, which then, again as a
result of a nonlinear interaction, but now between the
thermal phonons themselves, relax anew to their equili-
brium state. In["! an attempt was made to develop
a theory covering both the case rac > Iph and the case
Aac K lph.

The development of the experimental technique of
hypersonic measurements, following the work by K. N,
Baranskii!®®!, has made it possible to perform a num-
ber of investigations on the absorption of longitudinal
and transverse waves in a number of single crystals
(quartz, ruby, sapphire, ruby spinel, etc.) at high hy-
personic frequencies in a wide range of temperatures—
from the temperature of liquid helium to room tem-
peratures(®"") These investigations have shown
that at low temperatures the absorption of both longi-

*Strictly speaking, it is necessary to take into account also other non-
forbidden interactions (see Table V). This problem has not yet been theo-
retically analyzed.

tIn many crystals this condition is satisfied at frequencies on the
order of several GHz at a temperature close to 10°K.
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tudinal and transverse hypersonic waves in high-
grade dielectric crystals is very small, and is appar-
ently determined only by the crystal defects (the so-
called residual attenuation). With increasing tempera-
ture, starting with a temperature close to that of liquid

helium, the absorption of the transverse waves increases

and in the region w7ph 3> 1 it agrees in general satis-
factorily with the conclusions of the ‘‘LR’’ theory. On
the other hand, for the case of longitudinal waves, «j
under these conditions, in contradiction to the conclu-
sions of the ‘‘LR’’ theory, is of the same order of
magnitude as a7, and a similar dependence on @ and
T*.

An attempt to explain the contradiction was made
in(®*] 1t was noted that owing to the energy-time
uncertainty relation, exact satisfaction of the conser-
vation laws is not essential for the interaction of co-
herent phonons with thermal ones, in view of the finite
relaxation time of these phonons. For this reason,
longitudinal sound waves can interact nonlinearly with
longitudinal thermal phonons if all three waves are not
exactly but only approximately collinear, Allowance
for almost-collinear interaction has made it possible
to explain qualitatively the absorption of the longitudi-
nal waves., According to these papers, the absorption
coefficient of the longitudinal waves, like ar, is pro-
portional to wT*.

To check on the theory of interaction of almost-
collinear longitudinal phonons, the following experi-
ment was performed inl®], Two longitudinal plane
waves—one of relatively low frequency (7—50 MHz)
and the other of high frequency (200—100 MHz) could
propagate in a block of fused quartz in such a way that
the angle between the propagation directions of these
waves could be varied. At the same time, the condition
of the “LR’’ theory wTph 3> 1 was satisfied in the ex-
periment, if it is assumed that the high-frequency wave
represents a thermal longitudinal phonon, and the low-
frequency wave a longitudinal coherent phonon, These
experiments were performed at room temperatures
using the following procedure (Fig. 10): The low-fre-
quency radiator was secured to a goniometer and

Goniometer
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measurements of the dependence of
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nal waves of low and high frequency.
1-low-frequency X-cut quartz plate

4—hybrid junction, 5—high-frequency
generator, 6—low-frequency generator,
7—delay line, 8—synchronizer, 9—de-
lay line, 10—combination-frequency
receiver.

*A detailed discussion of this entire complicated problem of phonon
absorption of sound can be found, for example, in the reviews [3%:3!].
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FIG. 11. Angular dependence of the amplitude of the difference
frequency in fused quartz. Input frequency 300 and 20.6 MHz. Thick
line—theoretical curve, sample—cylinder 5.08 cm long and 2.44 ¢cm in
diameter.

could be inclined at a certain angle, being situated in
a vessel with water, Part of the low-frequency pulse
signal (a pulse method was used) entered the sample.
The high-frequency pulse from a converter fastened to
the lower part of the sample, was applied at such an
instant of time, that after being reflected from the
upper surface, the two pulses (of low and high fre-
quency) propagated together and interaction occurred
between them, Such an experimental scheme has made
it possible to measure the amplitudes of the summary
or difference frequencies as functions of the angle be-
tween the propagation directions of the longitudinal
waves. The theory developed for this case in the cited
paper, as seen from Fig. 11, is in sufficiently good
agreement with the experiments*,

Thus, the results of!®! agree on the whole with the
conclusion that almost-collinear interactions of longi-
tudinal waves can play an important role in the explana-
tion of the absorption of longitudinal waves when the
condition w7ph > 1 is satisfied.

Summarizing, we can state that experiments on
Raman scattering of sound by sound are of appreciable
significance when it comes to increasing our knowledge
of phonon-phonon interactions.

4, Generation of harmonics in Rayleigh waves.
Since the Rayleigh surface wave is localized only in a
thin layer near the surface, the elastic-energy density
in such a wave, other conditions being equal, is larger
than in an exchange wave, The dispersions of Rayleigh
waves therefore exhibit no nonlinear phenomena, and
harmonic generation!®® is strongly manifest in the
propagation of these waves.

Int®] the generation of harmonics in a surface
wave was investigated in X-cut quartz in the direction
of the Y axis. The sample was in the form of a rec-
tangular plate 160 x 60 x 5 mm with Y axis along the
large side. A surface wave of fundamental frequency
11 MHz was excited by using a wedge; a voltage up to
200 V was applied to the quartz plate from a 20-W
push-pull amplifier. The surface-wave receiver was a
variable-phase converter (metal grid), the period of

*We note that qualitatively a similar dependence of the amplitude of
the combination frequency should be obtained because the interaction
was investigated using bounded sound beams. It is impossible to estimate
the periodicity of the oscillations of the combination-frequency ampli-
tude, resulting from the fact that the beams are bounded, since not all
the experimental data are quoted in [%%].
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which corresponded to the length of the surface wave
and amounted to 3 x 1072 ¢cm at the fundamental fre-
quency 11 MHz, and was accordingly half as large at
the second-harmonic frequency. The converter-
receivers were prepared on a glass plate and could be
moved freely over the surface of the quartz. The con-
version loss was approximately 40 dB, for the wedge
with the quartz plate and 40 and 45 dB for the variable
phase converters at 11 and 22 MHz, respectively. A
beam of surface waves radiated in the Y direction in
the YZ plane was deflected from this axis by 11°,
since the direction along the Y axis in the X-cut
quartz is not a principal one and the angle between the
phase and group velocities for the surface waves
pro[pa]gating in the Y direction amounts to, theoretically,
10°19°0,

According to!®®, the amplitude of the second har-
monic of a Rayleigh wave propagating in a-quartz
along the Y axis is determined by the expression
uy = 0.18us’k’x, where u; is the amplitude of the
fundamental-frequency wave at the radiator and k is
its wave number*. The results obtained in!®' for the
dependence of the second-harmonic amplitude on the
distance between the converter at an angle 11° to the
Y axis are shown in Fig. 12, As seen from this figure,
the second-harmonic amplitude increases in proportion
to the distance and reaches a maximum at x~ 10 cm.
Estimates made in the cited paper show that at distances
close to the stabilization distance (~ 10 cm), at a
maximum acoustic-energy flux density in the surface
wave ~0.5 W/cmz, the ratio of the displacement am-
plitude at the second harmonic to the displacement
amplitude at the fundamental frequency is ~ 0.5%.

Just as for volume surface waves, investigations of
nonlinear phenomena in the propagation of surface
waves are of great importance for the understanding
of the mechanism of absorption of these waves, In!*!),
the damping of Rayleigh waves in a quartz crystal was
investigated experimentally at frequencies close to
1 GHz and at low temperatures. It was found that the
coefficient of absorption of Rayleigh waves is aRr
~ »T* i.e., it has approximately the same dependence
on w and T as for volume elastic waves. A theoretical
analysis of Rayleigh-wave absorption caused by non-
linear interaction of these waves with thermal surface
waves, as a result of the anharmonicity of the lattice,
was carried out in!®,

5. Nonlinear resonances in acoustic high-Q reso-
nators, It was mentioned in Ch. III that in the case of
induced oscillations of nonlinear resonators, if one of
the frequencies resulting from the nonlinearity coin-
cides with one of the natural frequencies of the reso-
nator, one can expect the occurrence of certain singu-
larities or ‘‘nonlinear resonances.’’

Figure 13 shows the block diagram for the observa-
tion of the detection of a modulated acoustic signal by
the nonlinear elasticity of a resonator in the form of
a metallic rod!®*), The modulation method of observing
nonlinearity in solid samples in the form of rods having
a large acoustic Q is very sensitive and makes it pos-

*The numerical coefficient of this formula was obtained in [*¥] with
account taken of known data for the elastic moduli of second and third
orders for quartz (see Table I1).
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FIG. 12. Dependence of the output voltage of the second harmonic
of the Rayleigh wave in a quartz plate (propagation along the Y axis) on
the distance between converters. Fundamental frequency 11 MHz.

FIG. 13. Block diagram of the modu-
lation method of investigating nonlinear
elasticity of solids.

sible to observe the nonlinear interaction of elastic
waves at sound and ultrasound intensities regarded
until recently as the exclusive domain of linear acou-
stics. In the block diagram, 1 is a high-frequency
generator-modulator with high frequency stability. The
modulator signal is fed to a high-frequency generator
2. The modulator signal then passes through a rejec-
tion filter 3 tuned to the modulation frequency. Beyond
this filter, the signal is fed to a piezoelectric converter
5 (X-cut quartz plate) secured to the rod 6. The waves
propagating in the rod thus have frequencies corre-
sponding to the components w and w + & of the spec-
trum of the modulated signal, As a result of the non-
linear interaction of these waves with one another, a
low-frequency (modulation) wave is separated, i.e.,
detection is effected by the nonlinear elasticity of the
rod. If the modulation frequency coincides with one of
the natural frequencies of the rod, resonance takes
place. In the block diagram, 7 is a ferromagnetic thin
plate glued to the rod (if this rod is not magnetic), 8

is a contactless magnetoelectric receiver, 9 a receiver,
10 an oscillograph, and 4 and 11 voltmeters,

At high Q of the rod, the detected signal is quite
large. The amplitude of the acoustically-detected sig-
nal depends not only on the equality of the modulation
frequency to the natural frequency of the rod, but in the
case when the damping of the carrier over the length
of the rod is small, it depends also on this carrier
frequency. Figure 14 shows a plot of the amplitude of
the longitudinal oscillations of the rod at the resonant
frequency © against the carrier frequency w1, A
characteristic triple ‘‘resonance’’ is seen, connected
with the fact that there are three frequencies in the
spectrum, the carrier and the two side bands; the
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u”

FIG. 14, Amplitude of low-frequency oscillations of aluminum rods

excited by modulated oscillations vs. the carrier frequency. Solid curves—

in accord with formula (21); the points denote the experimental results
for a rod 25 cm long, and the crosses for a rod 75 ¢cm long.

maxima correspond to the condition when the rod
resonates not only at the frequency @ but also at one
of the side bands. The same figure shows the calcu-
lated curves for the expression in the curly brackets
of formula (21). The calculated curves were normalized
to one of the maxima of the experimental curves, taken
for aL =0.,05 and oL =0.,15, where a is the attenua-
tion coefficient and L the length of the first and second
rods, respectively, The abscissas represent the de-
tuning in units of wL/c] relative to the frequency wo,
at which cos kjL = 0, The results presented here cor-
respond to a Reynolds number Re = uk®*a ~ 0.05,

The observation of nonlinear effects at such a small
nonlinearity is made possible by the use of a resonance
measurement method and by the high Q of the rod
(~ 10%). Similar measurements were made in"? with
transverse waves. It can be assumed that because of
its simplicity and high sensitivity, the procedure de-
scribed above will find use in the investigation of non-
linear acoustic effects.

We note that an experiment similar in principle to
that described above was carried out in!®*), where an
X-cut quartz plate was placed in a microwave resona-
tor. The electromagnetic field excited elastic oscilla-
tions in the plate. Owing to the lattice nonlinearity,
and in this case also to the nonlinearity of the piezo-
electric properties, a constant voltage should be pro-
duced across the electrodes of the plate. In this in-
vestigation, microwave radiation of 3 GHz was modu-~
lated by pulses, and the quartz plate, the Q of which at
the carrier frequency was ~ 6 x 10% detected the
pulses. The detection effect was, naturally, maximal
when the carrier frequency coincided with one of the
natural frequencies of the piezoelectric plate (at the
lowest natural frequency, approximately 20 MHz, this
was approximately the 100th overtone of the plate). An
estimate given in the cited paper for the contribution
of various types of nonlinearities shows that the effect
of the nonlinearity of the piezoelectric properties on
the detection is smaller by approximately one order of
magnitude than the effect of lattice nonlinearity.

6. Optical methods of investigating nonlinear
acoustic phenomena. Gas lasers with their large spec-
tral light-flux density have uncovered new possibilities

of investigating nonlinear acoustic effects in solids, by
using the phenomenon of light diffraction by ultrasonic,
and especially hypersonic waves,

The investigation of small nonlinear distortions of
an elastic wave by the light-diffraction method en-
counters, however, a number of difficulties. It might
seem that in diffraction by an elastic wave of compli-
cated form it would be possible to estimate the spec-
trum of the elastic wave from the occurrence of
spectra of higher order. This is not the case, however,
since in Raman-Nata diffraction, even by a sinusoidal
phase grating, spectra of higher order than the first
appear, When the diffraction is observed with standard
helium-neon lasers, diffraction of the light flux in the
spectra of higher order than the first, due to the
Raman-Nata diffraction, is larger by at least two
orders of magnitude than diffraction of the light flux
due to diffraction by acoustic harmonics. Similar dif-
ficulties arise also when it comes to separate com-
bination frequencies, unless spatial and temporal
selection is effected. In this respect, certain doubts
can be cast on the results of!**), where the authors ob-
served the second harmonic at a frequency 21.4 MHz
in a NaCl crystal 15 cm long in the Raman-Nata dif-
fraction region.

In{®®), nonlinear interaction of two oppositely
traveling shear ultrasonic pulses with frequencies 265
and 60 MHz was investigated in fused quartz, Accord-
ing to the synchronism conditions (20), a longitudinal
wave should be produced in this case with a frequency
equal to the sum of the frequencies of the interacting
waves. A pulse of combination frequency was revealed
by Bragg diffraction of the beam of a helium-neon
laser; the signal was observed by electronic circuitry
with storage, The intensity of the interacting waves
was several W/cm?, It was established with the aid of
a number of control experiments that the combination-
frequency pulse is produced precisely as a result of
the nonlinear interaction of two T-pulses.

It should be noted that in the case of Bragg diffrac-
tion the difficulties encountered in Raman-Nata dif-
fraction do not arise*. The most thorough work on the
optical method of observing harmonics was published
in 19681°"1f, The experimental setup is shown in Fig.
15. Light from a stationary helium-neon laser is in-
cident on the investigated transparent crystal, which
can be moved along the sound propagation direction,
with the Bragg angle gp kept constant. This light is
diffracted by a longitudinal hypersonic wave (frequen-
cies from 500 MHz upward were used) at an angle 6p
satisfying the Bragg condition sin ¢g = 1»/2A, where A
is the wavelength of the light and A the wavelength of
the sound. Since the angle #p depends on A, the har-
monics produced by propagation of the hypersonic
waves can be investigated independently, by making
measurements at angles dp(w), 6B(2w),...

Such a procedure makes it possible to trace the in-

*We note that a theoretical analysis and an experimental study of
Bragg diffraction of light by ultrasound was carried out by S. M. Rytov
{°¢] back in 1937. Although this investigation was carried out for ultra-
sound propagating in a liquid, its results are applicable to a considerable
degree also to Bragg diffraction of light by elastic waves in solids.

tSee also [*8].




NONLINEAR PHENOMENA IN THE PROPAGATION OF ELASTIC WAVES IN SOLIDS 795

1, ‘0
G5fw) &120) /A (20)= M)
!
|
|
|
1
~lpu

1

|

i ’ FIG. 15. Diagram of setup for
! harmonic analysis with the aid of

Bragg diffraction. The change of
l \ the amplitude of the harmonic
2 N with changing distance x is deter-

mined by moving the resonator 1
with the crystal 2 relative to the
stationary light source 4 and pho-
tomultiplier 3.

&
Z

i/ |-
/ E »

£
crease and decrease of the harmonics with increasing
distance in the crystal, by moving the crystal relative
to the laser beam, This is the great advantage of this
method over the method of piezoelectric perception of
the harmonics, referred to above, although the optical
method has its own shortcomings. Another conven-
ience of the method is that at a small ratio of the in-
tensity of the diffracted light to the intensity of the
incident light, the intensity of the diffracted light is
proportional to the intensity of the sound and is inde-
pendent of the frequency. This method therefore gives
a direct and exact determination of the relative inten-
sity of the harmonic, and many difficulties connected
with the calibration of the converters for the absolute
measurement of the sound field are eliminated.

The longitudinal waves were radiated by a ZnO
plate with lithium admixture and with a resonant fre-
quency 25 MHz. This plate was placed in a coaxial
tunable resonator and was excited at the harmonics;
the conversion loss was about 10 dB. The pulse dura-
tion was 0.5--2.,5 usec, the pulse power (peak) 1-10 W.
A helium-neon laser with power 2 MW and light-spot
diameter 1 mm was used. The amplitude of the vibra-
tional displacement at 500 MHz was larger by almost
two orders of magnitude than in!®%2%%%%],

Figure 16 shows the distance dependence of the
harmonics produced by a 562-MHz longitudinal wave
propagating in a quartz crystal along the z axis, The
solid lines correspond to the theoretical values ob-
tained under the condition that the distance L,
= 22/ Bjwvo at which the break is produced (here c is
the velocity of the longitudinal wave, w is the cyclic
frequency, v, is the amplitude of the velocity of the
first harmonic at the radiator, and g3; is the combina-
tion of the nonlinear third-order moduli) equals 2.38
cm and that the absorption coefficient is « = 0.0866
cm™, As seen from the presented experimental data,
the second-harmonic amplitude reaches 20% of the
fundamental, i.e,, the waveform is quite distorted.

Figure 17 shows the results of measurement of the
harmonics at 708 MHz for a wave propagating along
the z axis of quartz. The abscissas represent the
dimensionless distance; the vertical dash-dot line
marks the dimension of the crystal. The solid curves
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FIG. 17. Behavior of the harmonics of a longitudinal wave.

are theoretical; they are constructed at L, = 1.45 and

a =0.138 cm™. Here d/A = 70 (d—radius of the
rotating plate), and it can be assumed that the meas-
urements are carried out in a plane wave. As seen
from Fig. 17, after reflection from the free surface of
the crystal, the amplitude of the second harmonic de-
creases, reaches a minimum, and then again increases,
in accord with the fact that when the longitudinal wave
is reflected from the free boundary the phase reverses
sign.

We have considered above nonlinear wave processes
in elastic waves, when these waves were excited with
the aid of various electromechanical converters.

The generation of high-frequency hypersound with
frequencies on the order of 10'° Hz occurs in stimu-
lated Mandel’shtam-Brillouin scattering (SMBS). The
scattering of light obtained by focusing a giant laser
pulse in a transparent medium, is accompanied by
amplification of the elastic (hypersonic) wave from
which this scattering takes place[sg]. Theoretical esti-
mates and experiment!!%%1°] ghow that at room tem-
peratures the intensities of the resultant hypersound
are in this case small. Thus, at room temperatures in
fused quartz, the maximum power of the hypersound
produced in fused quartz with the aid of light from a
Q-switched 80-MW/cm? laser is 107* W, Naturally, at
such a low hypersound power, the nonlinear phenomena
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capable of occurring in this case are small. At the
same time, at low helium temperatures, when the ab-
sorption of the hypersound in such single crystals as
quartz, ruby, sapphire, etc. is very small and the in-
tensities of the hypersound produced in SMBS become
appreciable, the nonlinear phenomena can become sig-
nificant. It is indicated in a number of papers[°91%%103]
in particular, that nonlinear acoustic phenomena that
lead to the formation of sawtooth waves may be one of
the causes of damage to transparent crystals at low
temperatures by powerful laser radiation. Apart from
indirect data and a number of theoretical estimates,
however, there are still no direct measurements of
the intensity of hypersound generated in SMBS at low
temperatures. There are all the more no experiments
on direct observations of harmonic generation in the
hypersonic wave of SMBS. So far there is only one
experiment!®] in which the appearance of a second
harmonic from hypersound of fundamental frequency
5x 10° Hz was observed in SMBS, In that study, the
SMBS was excited by the focused beam of a ruby laser,
with power 1—5 MW; the second hypersound harmonic
was revealed by scattering the second harmonic of
light with A = 3470 A, generated with the aid of an ADP
crystal, at a Bragg angle 180°.
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