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1. INTRODUCTION

J-HE question of the existence of time singularities in
the general cosmological solution of the gravitation
equations has been the subject of an earlier paper in
this journal[1]. Before we return to this question, let
us recall first the gist of the problem.

As is well known, modern cosmology is based on
the solutions first obtained by A. A. Friedman for the
Einstein equations. These solutions describe com-
pletely a homogeneous and isotropic world ("closed"
or "open" model, depending on whether the space is
closed or infinite).

The main property of these solutions is that they
are not stationary. The resultant concept of the expand-
ing universe is fully confirmed by astronomical data,
and by now it can be regarded that the isotropic model
gives, in general outline, an adequate description of
the modern state of the universe.

Another important property of the isotropic model
is the presence in it of a time singularity of the space-
time metric. The presence of such a singular point
denotes, in other words, that the time is finite.

But the adequacy of the isotropic model for the de-
scription of the modern state of the universe does in
itself not give grounds for expecting it to be just as
suitable for the description of the earlier stages of the
evolution of the world. Moreover, there is a question
of the degree to which the existence of a singular point
in time is in general an obligatory property of relativ-
istic cosmological models, and whether it is connected
with the specific simplifying assumptions on which they
are based.

Independence of these assumptions would denote that
the presence of the singularity is inherent not only to
particular solutions but also to the general solution of
Einstein's equations. A criterion of the generality of
the solution is the number of arbitrary functions of the

spatial coordinates contained in it. We have in mind
only "physically arbitrary" functions, the number of
which cannot be decreased by any suitable choice of the
reference frame. In the general solution, the number of
such functions should be sufficient for an arbitrary
specification of the initial conditions (the distribution
and motion of matter, the distribution of the gravita-
tional field) at some instant of time which is chosen to
be as the starting point. This number is equal to four
for empty space and to eight for a space filled with
matter (see t l ] , Sec. 1 or [2], Sec. 95).

To avoid misunderstandings, we emphasize immedi-
ately that for a system of nonlinear differential equa-
tions, such as Einstein's equations, the concept of a
general solution is not unique. In principle there can
exist several general integrals, each of which includes
not the entire manifold of conceivable initial conditions,
but only a finite part of it. Each such integral contains
the entire required aggregate of arbitrary functions
which, however, can be subjected to definite conditions
(such as inequalities). The existence of a general solu-
tion with a singularity therefore does not exclude the
additional existence of other general solutions having
no singularity*.

It is of course impossible to determine the general
integral in exact form for all of space and for all of
time, but this is not needed for the solution of the prob-
lem, for it suffices to investigate the form of the solu-
tion near the singularity. This would clarify also
another aspect of the problem, namely the character of
the evolution of the space-time metric in the general
solution on approaching the singular point. We empha-
size that when we speak of the singular point we have
in mind a physical singularity, wherein the density of

*For example, there are no grounds for doubting the existence of a
general singularity-free solution describing an isolated body with not
too large a mass.
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m a t t e r a n d t h e i n v a r i a n c e of t h e f o u r - d i m e n s i o n a l

c u r v a t u r e t e n s o r b e c o m e i n f i n i t e . We a r e i n t e r e s t e d

h e r e in t h e q u e s t i o n of t h e s i n g u l a r i t y in t h e c o s m o l o g i -

c a l a s p e c t . T h i s m e a n s t h a t w e a r e d e a l i n g wi th a

s i n g u l a r point r e a c h e d by a l l of s p a c e (and not b y a

l i m i t e d p a r t of s p a c e , a s in g r a v i t a t i o n a l c o l l a p s e of a

f in i te b o d y ) .

We s h a l l s e e t h a t t h e q u e s t i o n of t h e e x i s t e n c e of a

g e n e r a l s o l u t i o n wi th a p h y s i c a l s i n g u l a r i t y in t i m e c a n

b e a n s w e r e d in t h e a f f i r m a t i v e . In t h i s c o n n e c t i o n , l e t

u s s a y a few w o r d s a b o u t t h e r e l a t i o n b e t w e e n t h e s e

r e s u l t s a n d t h e e a r l i e r i n v e s t i g a t i o n s ( r e p o r t e d i n [ 1 ] ) ,

in w h i c h it w a s c o n c l u d e d t h a t t h e g e n e r a l s o l u t i o n h a s

no s i n g u l a r i t y .

S i n c e t h e r e i s no m e t h o d f o r i n v e s t i g a t i n g t h e s i n g u -

l a r i t i e s of t h e s o l u t i o n s of E i n s t e i n ' s e q u a t i o n s ,

s e a r c h e s for b r o a d e r c l a s s e s of s o l u t i o n s wi th a s i n g u -

l a r i t y m u s t b e c a r r i e d o u t , i n e s s e n c e , b y t r i a l a n d

e r r o r . O b v i o u s l y , a n e g a t i v e r e s u l t o b t a i n e d in t h i s

m a n n e r c a n n o t b e fully c o n v i n c i n g in i tsel f ; it i s r e -

s c i n d e d b y c o n s t r u c t i n g a s o l u t i o n w i t h t h e r e q u i r e d

d e g r e e of g e n e r a l i t y , a n d a t t h e s a m e t i m e a l l t h e

o b t a i n e d p o s i t i v e r e s u l t s p e r t a i n i n g t o t h e c o n c r e t e

s o l u t i o n s r e m a i n in f o r c e .

It i s n a t u r a l t o t h i n k , h o w e v e r , t h a t if a s i n g u l a r i t y

c a n e x i s t in t h e g e n e r a l s o l u t i o n of E i n s t e i n ' s e q u a t i o n s ,

t h e n c l u e s for i t s e x i s t e n c e s h o u l d b e p r e s e n t in t h e

g e n e r a l p r o p e r t i e s of t h e s e e q u a t i o n s t h e m s e l v e s ( a l -

t h o u g h t h e s e c l u e s m a y by t h e m s e l v e s b e insuf f ic ient

t o e s t a b l i s h t h e c h a r a c t e r of t h e s i n g u l a r i t y ) . T h e only

p r e s e n t l y known c l u e i s c o n n e c t e d wi th t h e f o r m of t h e

e q u a t i o n s (in t h e s y n c h r o n o u s r e f e r e n c e f r a m e , i . e . , in

t h e f r a m e in w h i c h t h e e l e m e n t of t h e i n t e r v a l i s

(the s p a t i a l l e n g t h e l e m e n t dl i s s e p a r a t e d f r o m t h e

t e m p o r a l i n t e r v a l d t , a n d x° = t i s t h e p r o p e r t i m e

s y n c h r o n i z e d o v e r a l l of s p a c e ) * . T h e e q u a t i o n R£

= To - T / 2 , w r i t t e n in t h i s r e f e r e n c e f r a m e , s h o u l d

c a u s e t h e m e t r i c d e t e r m i n a n t g t o v a n i s h w i t h i n a

f in i te t i m e , r e g a r d l e s s of any a s s u m p t i o n s c o n c e r n i n g

t h e d i s t r i b u t i o n of m a t t e r ( s e e [ 1 ] , S e c . 2 o r [ 2 ] , S e c . 9 9 ) .

B u t t h i s c l u e h a s d r o p p e d out a s s o o n a s i t s c o n n e c -

t i o n b e c a m e k n o w n with t h e p u r e l y g e o m e t r i c a l p r o p e r -

t i e s p e c u l i a r t o t h e s y n c h r o n o u s r e f e r e n c e f r a m e ,

n a m e l y t h e i n t e r s e c t i o n of t h e c o o r d i n a t e t i m e l i n e s

w i t h o n e a n o t h e r . I n t e r s e c t i o n o c c u r s , g e n e r a l l y s p e a k -

ing, on c e r t a i n e n v e l o p i n g h y p e r s u r f a c e s — t h e f o u r -

d i m e n s i o n a l a n a l o g s of t h e c a u s t i c s u r f a c e s of g e o -

m e t r i c a l o p t i c s ; it i s p r e c i s e l y h e r e t h a t g v a n i s h e s [ 3 ] .

T h u s , a l t h o u g h t h e s i n g u l a r i t y h a s a g e n e r a l c h a r a c t e r ,

it t u r n s out t o b e f i c t i t i o u s and not p h y s i c a l . It

v a n i s h e s w h e n t h e r e f e r e n c e f r a m e i s c h a n g e d . By t h e

s a m e t o k e n , t h e r e m i g h t s e e m t o b e no n e e d for f u r t h e r

s e a r c h e s for a t r u e s i n g u l a r i t y in t h e g e n e r a l s o l u t i o n .

T h e s i t u a t i o n c h a n g e d , h o w e v e r , a f t e r Penrose 1 - 4 - 1

d i s c o v e r e d a t h e o r e m t h a t c o n n e c t s t h e e x i s t e n c e of a

*We use the notation of the book I2]. Latin indices run through
values 0,1,2, and 3 and Greek indices through the three spatial values
1, 2, 3. The metric gj^ has a signature (+ ); γ α β = -go(j is a spatial
three-dimensional matrix tensor. In addition, we use a system of units
in which the velocity of light and the Einstein gravitational constants
are equal to unity.

s i n g u l a r i t y (of u n k n o w n c h a r a c t e r ) wi th c e r t i n q u i t e

g e n e r a l a s s u m p t i o n s h a v i n g no b e a r i n g on t h e c h o i c e of

t h e r e f e r e n c e f r a m e . O t h e r t h e o r e m s of s i m i l a r t y p e

w e r e d i s c o v e r e d s u b s e q u e n t l y by H a w k i n g [ 5 > 6 ] a n d by

G e r o c h [ 7 ] . It b e c a m e c l e a r t h a t s e a r c h e s of a g e n e r a l

s o l u t i o n wi th a s i n g u l a r i t y s h o u l d b e c o n t i n u e d .

2. KASNER'S GENERALIZED SOLUTION

L e t u s r e c a l l c e r t a i n p r o p e r t i e s of t h e p r e v i o u s l y

o b t a i n s i n g u l a r i t y - c o n t a i n i n g s o l u t i o n s t h a t s e r v e a s

t h e s t a r t i n g point f o r f u r t h e r g e n e r a l i z a t i o n .

T h e F r i e d m a n n s o l u t i o n i t se l f i s a p a r t i c u l a r c a s e

of a c l a s s of s o l u t i o n s c o n t a i n i n g t h r e e p h y s i c a l a r b i -

t r a r y f u n c t i o n s of t h e c o o r d i n a t e s ( s e e [ 1 1 , S e c . 4 ) . Al-

though t h e s p a c e in it i s i n h o m o g e n e o u s , b u t i t s c o n -

t r a c t i o n on a p p r o a c h i n g t h e s i n g u l a r point o c c u r s in a

" q u a s i - i s o t r o p i c " m a n n e r — t h e l i n e a r d i s t a n c e s in a l l

d i r e c t i o n s d e c r e a s e wi th t h e s a m e p o w e r of t h e t i m e .

J u s t a s in t h e fully h o m o g e n e o u s and i s o t r o p i c c a s e ,

t h i s c l a s s of s o l u t i o n s e x i s t s only for a s p a c e f i l led

with m a t t e r .

A m u c h m o r e g e n e r a l c h a r a c t e r i s p o s s e s s e d by a

c l a s s of s o l u t i o n s o b t a i n e d a s a g e n e r a l i z a t i o n of t h e

e x a c t p a r t i c u l a r s o l u t i o n (be longing t o K a s n e r [ 8 ] ) for a

f ield in v a c u u m , in w h i c h t h e s p a c e i s h o m o g e n e o u s , and

i t s m e t r i c in E u c l i d e a n , b u t d e p e n d s on t h e t i m e in a c -

c o r d a n c e with

dP = i 2"' d-J? + № dy* + f-vi dzl

(2.1)

( s e e [ 2 ] , S e c . 103) . H e r e p 1 } p 2 , a n d p 3 a r e t h r e e a r b i -

t r a r y n u m b e r s c o n n e c t e d w i t h one a n o t h e r by t h e r e l a -

t i o n s

Pt+Pi+P3 = pl+p\+pl = i. (2.2)

By v i r t u e of t h e s e r e l a t i o n s , only one of t h e t h r e e n u m -

b e r s i s i n d e p e n d e n t . T h e n u m b e r s p ^ p 2 , and p 3

n e v e r h a v e e q u a l v a l u e s , a n d e q u a l i t y of two of t h e m

t a k e s p l a c e only i n t h e t r i a d s (- 1 /·, , 2/3, %) a n d

( 0 , 0, 1 ) * . In a l l o t h e r c a s e s t h e s e n u m b e r s a r e d i f fe r-

e n t , a n d one of t h e m i s n e g a t i v e and t h e o t h e r two p o s i -

t i v e . If we a r r a n g e t h e m in t h e o r d e r

(2.3)Pi < ft < As,

t h e n t h e i n t e r v a l s of t h e i r v a r i a t i o n a r e

(2.4)

T h e n u m b e r s p1} p 2 , a n d p 3 c a n b e r e p r e s e n t e d in

p a r a m e t r i c f o r m :

Ps(«)= •

( « ) = -
(2.5)

All t h e d i f f e r e n t v a l u e s of p i , p 2 , and p 3 , s u b j e c t t o t h e

o r d e r g iven in (2.3), a r e o b t a i n e d if t h e p a r a m e t e r u

r u n s t h r o u g h v a l u e s i n t h e r e g i o n u > 1 . On t h e o t h e r

h a n d , t h e v a l u e s u < 1 c a n b e r e d u c e d t o t h e s a m e

r e g i o n b y u s i n g

Pi(iiu) = Pl(u) p2(Mu) = Ps(u),
= pz(u). (2.6)

*If (p,, p 2 , p 3 ) = (0, 0, 1) the space-time metric (1.1) with d/2 from
(2.1) can be reduced to Galilean form by the transformation t sinh ζ = f
and t cosh ζ = r, i.e., the singularity is fictitious and we are dealing ac-
tually with flat space-time.
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S = - V2 dv.aJdt - V^Sx? = 0,

FIG. 1

Figure 1 shows plots of p 1 } p 2 , and p 3 as functions
of l / u . We note that pi(u) and p 3 (u) a r e monotonically
increasing functions of the p a r a m e t e r u, and p 2 (u)
d e c r e a s e s monotonically.

In the general solution, a form analogous to (2.1)
pertains only to the limiting form of the metr ic (near
the singular point t = 0), i .e. , to the principal t e r m s of
its expansion in powers of t . In the synchronous re fer-
ence f rame, it is written in the form (1.1) with the
spatial element of length

dl- = (aHalii + Wmamii + &ιαιιβ)άϊ* dx&, (2.7)

a--tp', b = tp'«, c--tp". (2.8)

The three-dimensional vectors 1, m, and η determine
the directions along which the spatial distances change
in t ime in accordance with the power laws (2.8). These
vectors , and also the numbers p/, p m , and p n (which
as before a r e connected by relat ions (2.2)) a r e func-
tions of the spatial coordinates . We shall denote h e r e
the exponents by pj, p m , and pn, without stipulating
their sequence in increasing order ; on the other hand,
we shall reta in the symbols pi, p 2 , P3 for the numbers
in (2.5) satisfying the inequalities (2.3). The determin-
ant of the metr ic (2.7) is equal to

where

— # --= a-b-c-v- — t-v-.

where ν = 1 -m χ η . We also introduce a notation which
will be found useful la ter on*

λ = I rot 1

Since the exponents in (2.8) cannot be equal to one
another, the spat ia l m e t r i c in (2.7) i s an isotrop ic in
pr inc ip le . On approaching the s ingular point t = 0, the
l inear d i s t a n c e s in e a c h e l e m e n t of s p a c e d e c r e a s e in
two d i r e c t i o n s and i n c r e a s e in the third. The vo lume
of each e l e m e n t , on the other hand, d e c r e a s e s in pro-
port ion to t .

Let us t r a c e again ( s e e [ l 1 , S e c . 3) how a g r e e m e n t
between the m e t r i c (2.7) and the gravi tat ional equations
i s obtained and what d e t e r m i n e s the number of phys-
ica l ly arb i t rary coordinate functions in it. E i n s t e i n ' s
equations in vacuum in the synchronous s y s t e m a r e

*Here and below, all the symbols for vector operations (vector pro-
ducts, the curl and gradient operations, etc.) should be understood in
purely formal fashion, as operations on components (covariant) of the
vectors 1, m, and n—as if the coordinates x1, x2, and x 3 were Cartesian.

(2.11)

(2.12)

(2.13)

where καβ
denotes the t h r e e - d i m e n s i o n a l t e n s o r

and Ρ α α is the three-dimensional Ricci tensor, ex-
pres sea in t e r m s of the three-dimensional metr ic ten-
sor γαο in the same manner as Rik is expressed in
t e r m s of gik; it contains only spatial (but not temporal)
derivatives of γαβ.

Without defining the dependence of a, b , and c in
(2.7) on t, we have (in place of (3.12) in f l 1 )

vl = (20/a) IJ» + (26/6) mam» + (2clc) nan»,

where the dot denotes differentiation with respect to t .
Equation (2.11) takes the form

— Ro ~ Ο.ΙΆ -\- bjb -\- clc = 0. (2.14)

All the t e r m s in it a r e of second order in the l a r g e
(as t — 0) quantity 1/t. T e r m s of the s a m e order
a r i s e in Eqs . (2.12) only from t e r m s with the t ime de-
r ivat ives . If the components Ρ α β do not contain t e r m s
of st i l l higher order , then

— R\ = {abc)'/abc = 0, —fl!S= (abc)'/abc = O, — R" = (abc)'/abc = 0
(2.15)

(the indices I, m, and η denote the components of the
tensor in the directions of 1, m, and n — s e e [ 1 ] , Sec. 3).
These equations, together with (2.14), lead to expres-
sions (2.8) with exponents satisfying the conditions
(2.2).

But the fact that one of the exponents pj, p m , or p n

is negative causes t e r m s of higher order than t " 2 to
appear in the tensor Ρ α β . If the negative exponent is
P/(P/ = Pi < 0)> then these t e r m s contain the coordi-
nate function λ and when they a r e taken into account
the equations take the form

— R\ =-- (abc)'labc + W/2bV .--= 0,

— BZ -= {obey I abc — %V!2bV = 0,

- Rl = (aicYlabc - WI2bV --= 0. (2.16)

(2.10) T h e second t e r m s here a r e ~ r 2 ( p m + P n Pl\ w u h Pm
+ Pn ~ Pi ~ 1 + 2 | Pl I > 1*. To eliminate these t e r m s
(and by the same token, in order for the solution (2.7)
to be valid), it is necessary to impose on the coordi-
nate functions the condition

λ = 0. (2.17)

As to the three equations (2.13), containing only the
first derivatives of the metr ic tensor with respect to
t i m e , they lead to three relat ions that do not contain
the t i m e ; these should be imposed as the necessary
condition on the coordinate functions in (2.7) (Eqs.
(3.24) o f [ 1 ] ) . We a r e left thus with only four conditions
together with (2.17). These conditions re la te ten dif-
ferent functions of the coordinates : three components
each of the three vectors 1, m, and n, and one function

*We exclude from consideration the case (p 1 ; p 2 , p3) = (0, 0, 1), in
which the singularity of the metric is fictitious.
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in the exponents of t (one of the three functions p/,
p m , and p n , which are connected by relation (2.2)). In
determining the number of physically arbitrary func-
tions, it must be recognized also that the employed
synchronous reference frame admits also of arbitrary
transformations of the three spatial coordinates, with-
out affecting the time. Therefore the considered solu-
tion contains only 10 - 4 - 3 = 3 physically arbitrary
functions, or one less than necessary for the general
solution in empty space.

The attained degree of generality does not decrease
when matter is introduced: the matter is "written into"
the metric (2.7) with all its ensuing four new coordi-
nate functions needed for specifying the initial distri-
bution of its density and the three components of its
velocity. Namely, the evolution of the matter on ap-
proaching the singular point can be determined simply
from the equations of its motion in a specified gravita-
tional field. These equations are the hydrodynamic
equations

^)d{V^gmii)/dxi = 0, (2.18)

2 dxi / — axi u'u ax" ' (<5.19)

where u1 is the 4-velocity, and e and σ are the energy
and entropy densities of the matter (see, e.g.,[9], Sec.
125). For the ultrarelativistic equation of state
ρ = e/3, the entropy is σ ~ e 3 / 4 . The principal terms
in (2.18) and (2.19) are those with the time derivatives.
From (2.18) and the spatial components of (2.19) we
get

d (V-gulis
3'i)/dt = 0,

whence

abcu0e,3/i = const, «βε'/4 = const, (2.20)

where the constants stand for quantities independent of
the time. In addition, from the identity uiu* = 1 we
have (recognizing that all the covariant components u a

are of the same order of magnitude)

where u n i s the ve loc i ty component along the d i rec t ion

η connected with the largest (positive) degree of t (we
assume that p n = p3). From the foregoing relations we
get

ε ~ \/a'b2, •Vab (2.21)

or

ε~ ί-2(Ρ1+Ρ2) = ί -2(1-ρ 3 ) > Β α ~ f(l-I>s>/2. ( 2 . 2 2 )

W e c a n t h e n e a s i l y v e r i f y t h a t t h e c o m p o n e n t s o f t h e

e n e r g y - m o m e n t u m t e n s o r o f m a t t e r , i n t h e r i g h t s i d e

o f t h e e q u a t i o n s

/?S = r j - v 2 r , flg=rS-v2egr,

a r e i n d e e d o f l o w e r o r d e r i n 1 / t t h a n t h e p r i n c i p a l

t e r m s i n t h e i r l e f t s i d e s . O n t h e o t h e r h a n d , i n t h e

e q u a t i o n s R ^ = T ^ , t h e p r e s e n c e o f m a t t e r l e a d s o n l y

t o a c h a n g e o f t h e r e l a t i o n s i m p o s e d o n t h e c o o r d i n a t e

f u n c t i o n s t h a t e n t e r i n t h e s o l u t i o n ( s e e [ 1 ] , S e c . 3 ) .

T h e f a c t t h a t e b e c o m e s i n f i n i t e i n a c c o r d a n c e w i t h

( 2 . 2 2 ) c o n f i r m s t h a t w e a r e d e a l i n g i n t h e s o l u t i o n ( 2 . 7 )

w i t h a p h y s i c a l s i n g u l a r i t y a t a l l v a l u e s o f t h e e x p o n -

e n t s ( p i , p 2 , p 3 ) , w i t h t h e o n l y e x c e p t i o n o f ( 0 , 0 , 1 ) .

F o r t h e s e l a s t v a l u e s , t h e s i n g u l a r i t y i s n o t p h y s i c a l

a n d c a n b e e l i m i n a t e d b y t r a n s f o r m i n g t h e r e f e r e n c e

f r a m e .

T h e f i c t i t i o u s s i n g u l a r i t y c o r r e s p o n d i n g t o t h e e x -

p o n e n t s ( 0 , 0 , 1 ) i s t h e r e s u l t o f t h e i n t e r s e c t i o n o f

t h e c o o r d i n a t e t i m e l i n e s o n a c e r t a i n t w o - d i m e n s i o n a l

" f o c a l s u r f a c e . " A s i n d i c a t e d i n r i ] , S e c . 2 , t h e s y n -

c h r o n o u s r e f e r e n c e f r a m e c a n a l w a y s b e c h o s e n s u c h

t h a t t h e i n e v i t a b l e i n t e r s e c t i o n o f t h e t i m e l i n e s o c c u r s

o n s u c h a s u r f a c e ( i n p l a c e o f a t h r e e - d i m e n s i o n a l

c a u s t i c h y p e r s u r f a c e ) . T h e r e f o r e s o l u t i o n s w i t h a s u c h

f i c t i t i o u s s i n g u l a r i t y t h a t i s s i m u l t a n e o u s f o r a l l o f

s p a c e s h o u l d e x i s t w i t h t h e c o m p l e t e s e t o f a r b i t r a r y

f u n c t i o n s n e e d e d f o r t h e g e n e r a l s o l u t i o n . N e a r t h e

p o i n t t = 0 , i t a d m i t s o f a r e g u l a r e x p a n s i o n i n i n t e g e r

p o w e r s o f t ; i t w a s a n a l y t i c a l l y c o n s t r u c t e d i n [ 1 0 ] .

3 . O S C I L L A T O R Y A P P R O A C H T O T H E S I N G U L A R

P O I N T

O u t o f t h e f o u r c o n d i t i o n s t h a t h a d t o b e i m p o s e d o n

t h e c o o r d i n a t e f u n c t i o n s i n t h e s o l u t i o n ( 2 . 7 ) , t h r e e

c o n d i t i o n s , a r i s i n g f r o m t h e e q u a t i o n s R ^ = 0 , a r e

" n a t u r a l " ; t h e y a r e t h e c o n s e q u e n c e o f t h e v e r y s t r u c -

t u r e o f t h e g r a v i t a t i o n a l e q u a t i o n s . T h e " l o s s " o f o n e

m o r e d e r i v a t i v e f u n c t i o n i s d u e t o t h e i m p o s i t i o n o f t h e

a d d i t i o n a l c o n d i t i o n ( 2 . 1 7 ) .

T h e g e n e r a l s o l u t i o n , b y d e f i n i t i o n , i s p e r f e c t l y

s t a b l e . T h e a p p l i c a t i o n o f a n a r b i t r a r y p e r t u r b a t i o n i s

e q u i v a l e n t t o a c h a n g e o f t h e i n i t i a l c o n d i t i o n s a t a

c e r t a i n i n s t a n t o f t i m e , a n d s i n c e t h e g e n e r a l s o l u t i o n

a d m i t s o f a r b i t r a r y i n i t i a l c o n d i t i o n s , t h e p e r t u r b a t i o n

c a n n o t c h a n g e i t s c h a r a c t e r . F o r t h e s o l u t i o n ( 2 . 7 ) , o n

t h e o t h e r h a n d , t h e p r e s e n c e o f t h e l i m i t i n g c o n d i t i o n

λ = 0 denotes, in other words, instability with respect
to perturbations that violate this condition. The appli-
cation of such a perturbation should cause the model
to go over to another regime, which by the same token
will be already completely general. The perturbation,
of course, need not be considered as being small—the
transition to the new regime lies outside the region of
arbitrarily small perturbations.

An investigation based on such an approach can in-
deed be carried out. It leads to a picture of a complex
oscillatory approach to the singular point1·11"13]. We
still do not know all the details of this approach within
the widest limits of the general case (see Sees. 7 and
8). Its main properties and its character, however,
can be determined already from particular models that
permit far-reaching analytic investigations.

We have in mind models with a homogeneous spatial
metric of a definite type. As is well known, the as-
sumption that space is homogeneous, without any addi-
tional symmetry, still leaves a considerable freedom
in the metric. All the possible homogeneous (but
anisotropic) spaces are customarily classified, follow-
ing Bianchi, in nine types (see Appendix C). We are
interested here in spaces of type VIII and IX.

If the spatial metric is represented in the form (2.7),
then each of the types of the homogeneous spaces cor-
responds to a definite functional dependence of the
reference vectors 1, m, and η on the spatial coordi-
nates. The concrete form of this dependence is imma-
terial here. All that matters is that for a space of type
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VIII or IX the quantities λ, μ, and ν (2.10) reduce to

constants, and all the " m i x e d " products of the type 1

cur l m, 1 cur l n, m cur l 1, e tc . vanish. For a space of

type IX, the quantities λ, μ, and ν have the same sign

and we can put λ = μ = ν = 1 (simultaneous r e v e r s a l

of sign of al l t h r e e constants changes nothing). For a

space of type VIII, two constants have signs opposite

to that of the third; we can put, for example, λ = - 1

and μ = ν = 1*.

Our purpose is to determine the influence exerted

on the " K a s n e r r e g i m e " by the perturbation r e p r e -

sented in Einstein ' s equations by the t e r m s containing

λ. It was in this re spect that models with spaces of

type VIII and IX a r e suitable objects. Since all t h r e e

quantities λ, μ, and ν differ from zero, the conditions

(2.17) is certainly not satisfied, r e g a r d l e s s of the

direction 1, m, or η to which the negative degree of

the t ime per ta ins .

Einstein 's equations for the models in question can

be easily written down with the aid of the formulas

given i n [ 1 ] (Appendix C). They a r e of the form

ατβτ + «ti'-t -f βιΥτ =
= 1li (λ2α4 =δ2 — 2),ya'-c"- —

- i?i = (abcyiabc + (l/2a2f>V) [λ2α4 - (μί>2 - ve2)2] - 0,

- RZ - (abcyiabc + ( l/2aW) |μ26* - (λα2 - vc2)2] •= 0,

- Η", = (abcyiabc + (l/2a2fc2e2) {vV - (λα2 — μδ2)2] = 0,

(3.1)

( 3 · 2 )
m(the remain ing components R^, R m , R n , R m , R^, and

R^j van ish ident ica l ly ) . We note that the equations

contain only functions of the t i m e ; th i s i s a man i fes ta-

t ion of the homogene i ty of s p a c e . We e m p h a s i z e a l s o

that in th i s c a s e Eq. (3.1) and (3.2) a r e e x a c t equat ions,

the val idity of which i s not connected with the c l o s e n e s s

to the s ingular point t = Ot.

The t i m e d e r i v a t i v e s in (3.1) and (3.2) b e c o m e

s i m p l e r if w e introduce in l i eu of a, b, and c the ir

logari thms α, β, and y.

e--e*, b = e», c = ev, (3.3)

and the variable t is replaced by τ in accordance with

dt = abcdT. (3.4)

Then

2α τ τ = (μδ2 — vc2)2 —λ2α4,

2 β Τ Τ = ( λ α 2 - ν < : 2 ) 2 - μ 2 δ ί ,

2γτ τ =(λα 2 — μϋψ — vV,

V2 (a -}•• β -f γ) τ τ = α τβ, + «τγτ +

(3.5)

(3.6)

Adding Eqs . (3.5) t e r m by t e r m and replacing in the

left side the sum (a + β + γ)ττ m accordance with

(3.6), we obtain an equation containing only f irst deriv-

atives and constituting the first integral of the system

(3.5):

*The constants λ, μ, and ν are the so-called structural constants of
the group of motions of space (see (C.I 5)).

t Einstein's equations for homogeneous space in their exact form
contain, generally speaking, six different functions of the time-the
functions 7at>(t) in the metric (C.2). The fact that we have obtained in
this case a non-contradictory system of exact equations for a metric de-
fined only by three functions of the time ( γ π = a2, 7 2 2

 = b 2 , a n d 733 =

c2) is connected with the symmetry that leads to the aforementioned
identical vanishing of six components of the Ricci tensor.

(3.7)

This equation plays the ro les of a constraint imposed

on the initial conditions of (3.5).

The Kasner reg ime (2.8) is a solution of Eqs . (3.5)

when it is possible to neglect in them all t e r m s in the

right-hand s ides . But such a situation cannot continue

(as t — 0) without l imit, since some of these t e r m s

always i n c r e a s e . Thus, if the negative exponent per-

tains to the function a( t ) (p/ = p ^ , then the perturba-

tion of the Kasner regime is due to the t e r m s X 2a 4;

The remaining t e r m s will d e c r e a s e with decreas ing t .

Retaining in the right s ides of (3.5) only these t e r m s ,

we obtain the system

a™ = - VJW, βτ τ = Ϊ Τ τ - V2>.V (3.8)

(see (2.16); we put henceforth λ2 = 1). The solution of

these equations should descr ibe the evolution of the

m e t r i c from the initial s tate, in which it is described

by formulas (2.8) with a definite set of exponents (with

PI < 0). Let pi = plt p m = p 2 , and p n = p 3 , so that

a~lT1, b~tn, c-t'". (3.9)

Here

abc = \t, τ = Λ"1 In ί-Γ const, (3.10)

where Λ is a constant. Therefore the initial conditions

for Eqs . (3.8) a r e formulated in the form*

ατ = ΑΡι, βτ = Λρ2, γ τ - Λ ρ 3 a s τ - ^ ο ο . (3.11)

Equations (3.8) can be readi ly integrated; i ts s o l u -

t ion sat is fy ing the condition (3.11) i s

] (

c1 = c;eZA<P3-l"l>Tch (21 p, | Λτ), J

where b 0 and c 0 a r e two addit ional cons tants .

It i s e a s y to verify that the asymptot ic form of the

function (3.12) as τ -~ °° indeed coincides with (3.9).

The asymptotic expressions for these functions and

the function t ( r ) as τ — - °° i s t

E x p r e s s i n g a, b, and c a s functions of t, we obtain

where

H e r e
abc = A't, Λ' = (1 — 21 pj |) Λ.

(3.13)

(3.15)

*We recall once more that we are considering the evolution of a model
in the direction t ->· 0; therefore the "initial" conditions correspond to a
later and not to an earlier time.

tWe note that the asymptotic values of a r , βτ, and yT and τ -• —°°
can be obtained also without completely solving the equations (3.8). It
suffices to note that the first of these equations has the form of uniform
motion of a "particle" in the field of an exponential potential well, and
α plays the role of the coordinate. In this analogy, the initial Kasner re-
gime corresponds to free motion with constant velocity α,. = Λρ[. After
being reflected from the wall, the particle moves freely with velocity
οίτ = -Λρ,. Noting also that aT + βτ = const and aT + yT = const by
virtue of (3.8), we find that βτ and yT take on the values βτ = Λ(ρ 2 +
2p 1 )and7 7 . = A(p 3 + 2p,).
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Thus, the action of the perturbation leads to re-
placement of one Kasner regime by another, and the
negative exponent of t is transferred from the direc-
tion 1 to the direction m: if previously p/ < 0, we
have now p m < 0. During the course of the change, the
function a(t) goes through a maximum, while b(t)
goes through a minimum; the previously decreasing
quantity b begins to increase, and the increasing
quantity a begins to decrease, while the function c(t)
continues to decrease. The perturbation itself
(X 2 a 4 a in (3.8)), which was previously increasing, be-
gins to decrease and attenuates. Further evolution
leads in analogous fashion to an increase of the per-
turbation expressed by the terms with μ2 (in place of
λ 2 ) in Eqs. (3.5), to another alternation of the Kasner
regime, etc.

The rule for the interchange of the exponents (3.14)
is conveniently represented with the aid of the
parametrization (2.5):

t h e n Ρ ί = Ρ ί ( » — 1 ) . p'm = pt(.u—i),

= Pa("), Ί

= ρ3(«—1)· /

T h e l a r g e r of t h e two p o s i t i v e e x p o n e n t s r e m a i n s p o s i -

t i v e .

T h i s a l t e r n a t i o n of t h e " K a s n e r e p o c h s " wi th t h e

s w i t c h i n g ( " b o u n c i n g " ) of t h e e x p o n e n t s p ; , p m , a n d

p n in a c c o r d a n c e wi th t h e r u l e (3.16) c o n t a i n s t h e k e y

t o t h e u n d e r s t a n d i n g of t h e c h a r a c t e r of t h e e v o l u t i o n

of t h e m e t r i c a s t h e s i n g u l a r p o i n t i s a p p r o a c h e d .

T h e s u c c e s s i v e a l t e r n a t i o n s (3.16) and t h e s w i t c h i n g

of t h e n e g a t i v e e x p o n e n t ( p i ) b e t w e e n t h e d i r e c t i o n s

1 a n d m c o n t i n u e s u n t i l t h e i n t e g e r p a r t of t h e i n i t i a l

v a l u e of u i s e x h a u s t e d and u b e c o m e s l e s s t h a n o n e .

T h e v a l u e u > 1 i s t r a n s f o r m e d in to u < 1 in a c c o r d -

a n c e wi th (2 .6) . At t h i s i n s t a n t , t h e e x p o n e n t p/ o r p m

i s n e g a t i v e , and p n b e c o m e s t h e s m a l l e r of t h e t w o

positive numbers ( p n = p2). The next series of alter-
nations will already switch the negative exponents be-
tween the directions η and 1 or between η and m.
For an arbitrary (irrational) initial value of u, the
alternation continues without limit*.

In an exact solution of the equations, the exponents
Pl> Pm> a n d Pn lose, of course, their literal meaning.
We note that a certain "fuzziness" in the definition of
these numbers (and consequently also of the parameter
u), introduced by this circumstance, while small,
makes the consideration of any preferred (say,
rational) values of u meaningless. This is precisely
why a real meaning is possessed only by the regulari-
ties inherent in the general case of arbitrary irrational
values of u.

Thus, the evolution of the model towards the singu-
lar point consists of successive periods (we shall call
them eras), during which the spatial scales oscillate
along two axes and decrease monotonically along the
third; the volumes decrease approximately in propor-
tion to t. On going from one era to the next, the

*Note added in proof. The introduction of the nondiagonal compo-
nents 7ab(t) into the metric (see the footnote on p. 749) leads to cer-
tain new properties of the model, namely rotation of the axes to which
the exponents of the Kasner epochs belong; this question is investigated
in an article by the authors in Zh. Eksp. Teor. Fiz. 60, No. 3 (1971)
[Sov. Phys.-JETP 33, No. 3 (1971)].

direction along which the monotonic decrease of the
distances occurs switches over from one axis to the
other. The sequence of this switching acquires
asymptotically the character of a random process.
The same character is acquired also by the sequence
of alternations of the lengths of the successive eras
(by length of an era, to distinguish it from the time
duration, we mean the number of Kasner epochs that
alternate in it).

The successive eras condense on approaching t = 0.
But the natural variable for the description of the time
variation of this evolution is not the world time t it-
self, but its logarithm In t, with respect to which the
entire process of approaching the singular point
stretches out to - °°.

According to formulas (3.12), the particular func-
tion (a, b, or c) that passes through a maximum during
the alternation of the Kasner epochs, has a value at the
maximum

' ) ! (3.17)

(it i s a s s u m e d h e r e t h a t t h i s v a l u e i s l a r g e c o m p a r e d

with b 0 a n d c 0 ) ; in (3 .17), u i s t h e v a l u e of t h e p a r a m e -

t e r c o r r e s p o n d i n g t o t h e e p o c h p r e c e d i n g t h e a l t e r n a -

t i o n . F r o m t h i s it i s e a s y t o c o n c l u d e t h a t t h e h e i g h t s

of t h e s u c c e s s i v e m a x i m a d e c r e a s e g r a d u a l l y d u r i n g

t h e c o u r s e of e a c h e r a . I n d e e d , in t h e next K a s n e r

e p o c h t h e p a r a m e t e r h a s a v a l u e u ' = u - 1, and t h e

constant Λ is replaced, according to (3.15) by Λ'
= Λ(1 - 2 | pi(u) | ) . Therefore the ratio of the heights
of successive maxima is

and finally

«max V u V u ' (3.18)

So far we have considered the solution of Einstein's
equations in empty space. Just as for a pure Kasner
regime, matter does not change the qualitative proper-
ties of this solution and can be "written into" it if its
reaction in the field is neglected.

However, if this were done for the model in question,
taken to mean the exact solution of Einstein's equations,
then the resultant picture of the evolution of the matter
would have no general character at all, and would be
specific precisely for the high symmetry possessed by
this model. Mathematically this specific feature is
connected with the fact that the components R^ of the
Ricci tensor vanish identically for the considered
homogeneous spatial geometry, and therefore the
gravitational equations would not admit of motion of
matter (which leads to non-zero components T^ of the
energy-momentum tensor)*.

This difficulty disappears if we consider the model
as consisting only of the principal term of the limiting
form (as t — 0) of the metric and "write in" the
matter with an arbitrary initial distribution of the
density and velocity. Then the evolution of the matter
is determined by its general equations of motion (2.18)

*In others words, the synchronous system should also be co-moving
with respect to the matter. By putting in (2.20) ua = 0 and u° = 1, we
would obtain e ~ (abc)'4/3~ t"4/3.
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and (2.19), which lead to formulas (2.22). During each
Kasner epoch, the density increases like

e - r 2 ' 1 - » , (3.19)

where p 3 , by agreement, is the largest of the numbers
Pi, p 2 , and p 3 . The density of mat ter increases mono-
tonically during the ent ire evolution towards the singu-
lar point.

The foregoing analysis must be supplemented be-
cause of the following c i r c u m s t a n c e :

Each (s-th) e r a corresponds to a s e r i e s of values of
the p a r a m e t e r u, s tar t ing with a certain maximum
value u i ^ x , and reaching a minimum u^\n < 1 via

α , , — β τ τ = £ 4 β _ e 4a,

the values u ^ - 1, u ^ a x - 2 , . . . We put

" S n = ^ " , u £ L = *<'> + *<·>, ( 3 . 2 0 )

i . e . , k < S ) = [ u ^ ^ x ] ( t h e s q u a r e b r a c k e t s d e n o t e t h e

i n t e g e r p a r t o f t h e n u m b e r ) . T h e n u m b e r k ( S > d e t e r -

m i n e s t h e l e n g t h o f t h e e r a , m e a s u r e d i n t e r m s o f t h e

n u m b e r o f t h e K a s n e r e p o c h s i t c o n t a i n s . F o r t h e n e x t

e r a w e h a v e

I n a n u n l i m i t e d s e q u e n c e o f s e r i e s o f n u m b e r s u , m a d e

u p i n a c c o r d a n c e w i t h t h e s e r u l e s , t h e r e w i l l b e o b -

s e r v e d a r b i t r a r i l y s m a l l ( b u t n e v e r v a n i s h i n g ) v a l u e s

o f x < S ) , a n d a c c o r d i n g l y a r b i t r a r i l y l a r g e l e n g t h s

L a r g e v a l u e s o f t h e p a r a m e t e r u c o r r e s p o n d t o

K a s n e r e x p o n e n t s

ρ, χι — ilu, p 2 « l / u , p, = l — 1/u2, (3.22)

c l o s e t o t h e v a l u e s ( 0 , 0 1 ) . Two v a l u e s c l o s e t o z e r o

a r e by t h e s a m e t o k e n c l o s e t o e a c h o t h e r , a n d c o n s e -

q u e n t l y t h e l a w s of v a r i a t i o n of t w o of t h e t h r e e t y p e s

of " p e r t u r b a t i o n s " — t h e t e r m s on t h e r i g h t s i d e s of

(3.5) (the t e r m s with λ, μ, and ν)—are c lose . If at the
s t a r t of such a long e r a the absolute magnitudes of
these t e r m s a r e also close to each other at the instant
of alternation of two Kasner epochs (or if this is so
stipulated in the initial conditions), then they will con-
tinue to be close to each other during the greater part
of the ent ire duration of the e r a . In such a case (which
we shall call the case of smal l oscil lations), the in-
vestigation based on a consideration of the action of a
perturbation of only one type is no longer valid. An
analysis of the evolution of the metr ic then r e q u i r e s
simultaneous account of two " p e r t u r b a t i o n s " ; this is
done in Sec. 4.

4. EVOLUTION OF MODEL UNDER THE INFLUENCE
OF TWO PERTURBATIONS

Thus, we consider a long e r a , during which two out
of the three functions a, b , c (assume that these a r e a
and b) experience smal l osci l lat ions, and the third (c)
d e c r e a s e s monotonically. The lat ter becomes smal l
rapidly; let us consider the solution of the equations
precisely in this region, where c can already be
neglected in comparison with a and b . We first per-
form this calculations for a model of type IX, and a c -
cordingly we put λ = μ = ν = l . [ 1 2 ] .

After neglecting the function c, the first two equa-
tions of (3.4) yield

(4.1)

(4.2)

and as a third equation we use (3.7), which takes the
form

Vx Κ + βτ) = - αΤβτ + Vi (β2" - e^f. (4.3)

We w r i t e t h e s o l u t i o n of (4.1) in t h e f o r m

where a 0 and ξ 0 a r e positive constants, and r 0 stands
for the upper l imit of the e r a with respect to the
variable r . We shall find it convenient to introduce
a new variable (in place of T)

= Ιοβχρ{(2«;/|0)(τ-τ0)}.
Then

W e a l s o t r a n s f o r m ( 4 . 2 ) a n d ( 4 . 3 ) , i n t r o d u c i n g t h e

symbol χ = a - β:

(Α Δ)

( 4 . 5 )

(4.6)

l)- (4.7)

A decrease of τ from τ0 to -=° corresponds to a
decrease of ξ from ξ 0 to z e r o . The long e r a of inter-
est to us, with close values of a and b (i.e., with
smal l χ) is obtained if ξ 0 is a· very large quantity.
Indeed, at large ξ the solution of (4.6) in the first ap-
proximation (in l/ξ) is

where A is a constant; the factor 1/VT makes χ a
smal l quantity (and consequently we can make in (4.6)
the substitution sinh 2χ » 2χ)*.

F r o m (4.7) we now obtain

Vi = lUl (X| + X2) = A\ γ = A* (| - la) + const.

After determining a and β from (4.5) and (4.8) and
expanding ea and e ^ in accordance with the assumed
approximation, we obtain finally**:

a \ = a o j / ^ ^ l ± A _ s i n { l _ ^ t (4.9)

c = Coe-^(lo-S). ( 4 > 1 0 )

On the other hand, the connection between the variable
ξ and the t ime t is obtained by integrating the defini-
tion dt = abc dr , and is given by the formula

<//„ = * - " (£.-£>. (4.11)

The value of the constant c at ξ = ξ 0 should already be
c 0 <C a 0 .

We turn to the region ξ C l . The principal t e r m s in
the solution of (4.6) a r e

χ = α — β =/c In ξ + const,

w h e r e k i s a c o n s t a n t ly ing in t h e i n t e r v a l - 1 < k < 1;
t h i s c o n d i t i o n e n s u r e s s m a l l n e s s of t h e l a s t t e r m in

*The constant in the argument of the sine function need not neces-
sarily coincide with the constant £0 in (4.4)-(4.5); by setting them
equal, however, we do not change the character of the solution at all.

*In a more exact calculation, a slowly varying logarithmic term ap-
pears in the argument of the sine function, and a pre-exponential factor
appears in the expression for c(£) (see Appendix B).



752 B E L I N S K I I , L I F S H I T Z , and KHALATNIKOV

(4.6) (sinh 2χ contains ξ * and £~ 2 k )- After determin-
ing α, β, and t, we obtain

O ~ - 5 ι Ο ~ t, , C ~ t, , ί ~ ξ . ( 1 . 1 ' /

T h i s i s a g a i n t h e K a s n e r r e g i m e , w i t h t h e n e g a t i v e

p o w e r o f t p e r t a i n i n g t o t h e f u n c t i o n c ( t ) * * * .

T h e r e s u l t s a g a i n l e a d t o q u a l i t a t i v e l y t h e s a m e

p i c t u r e o f e v o l u t i o n o f t h e m o d e l a s d e s c r i b e d i n S e c . 3 .

W e s e e t h a t d u r i n g a l o n g t i m e ( c o r r e s p o n d i n g t o a

large decrease in value of ξ), two of the functions
(a and b) oscil late and r e m a i n close to each other in
magnitude ((a - b)/a ~ l/VT); at the s a m e t ime, the
mean values of the functions a and b decrease slowly
(~ VT). The oscillations occur with a constant period
with respect to the variable ξ : Δξ = 2ττ (or, equiva-
lently with a constant period in the logarithmic t i m e :
Δ In t = 2irA2). The third function, on the other hand,
d e c r e a s e s monotonically approximately like c = c o t / t o .

Such an evolution continues until we get ξ ~ 1 and
formulas (4.9) and (4.10) a r e no longer valid. Its t ime
duration corresponds to a change of t from t 0 to a
value t i connected with ξ 0 by

A%=ln(toltt). (4.13)

On the other hand, the connection between ξ and t
during this entire t ime can be represented in the form

ξ/ξβ=1η(ί/ί1)/1η(ί0/ί,). (4.14)

Then, as can be seen from (4.12), the decreasing
function begins to increase, and the functions a and b
begin to d e c r e a s e . This Kasner epoch will continue
until the t e r m s c 2 / a 2 b 2 in (3.1) become ~t~2 and the
next s e r i e s of oscil lations begins.

The laws governing the variation of the density of
mat ter during the considered long e r a is obtained by
substituting (4.9) in (2.21):

β-ί&Λ)·. (4.15)

The density increases by a factor ξ2, during the t ime
that ξ changes from ξ 0 to ξ ~ 1.

We emphasize that although the function c ( t ) var ies
approximately in proportion to t, the metr ic (4.9) does
not coincide in any way with the Kasner metr ic with
exponents (0, 0, 1). The lat ter corresponds in this
case to the exact solution obtained by T a u b [ 1 5 ] ; in this
solution, which is consistent with Eqs . (3.5)—(3.6),

2 , 2 ρ ch(2pt+6i) 3 2/J ( 4 . 1 6 )
a ~ ~2 ch2(pt + 62) ' ° ~ ch (2ρτ + δ() '

where ρ, δι, and δ2 a r e constant. In the limit as
T — °°, the substitution e p T = t yields a = b = const
and c = const-t. In this m e t r i c , the singularity at
t = 0 is not physical.

Let us turn to the analogous investigation for the
model of type VIII, putting now λ = - 1 and μ = ν = 1
in (3 .5)-(3 .7) ί 1 3 1 .

If the function a d e c r e a s e s monotonically during the
long e r a , then nothing is changed in the investigation

*By replacing sinh 2χ by 2χ in (4.6) and by solving this equation
for all £, we obtain χ = Cj Jo({) + c2N0(£), where J o and N o are Bessel
functions of the first and second kind. This solution effects the inter-
polation between the limiting cases and makes it possible to connect, in
order of magnitude, the constant parameters in (4.9) and (4.12).

p r e s e n t e d above : after neg lect ing a 2 in the r ight s ide
of (3.5) and (3.7), we return to the s a m e equations
( 4 . 6 ) ~ ( 4 . 7 ) (with sui table change of notation). Some
changes o c c u r , however, if the function b or c i s
the monotonical ly d e c r e a s i n g one; a s s u m e that th i s i s
c .

Using the s a m e notation, we get a s be fore Eq. (4.6),
and accord ing ly the prev ious e x p r e s s i o n s (4.9) for the
functions a ( £ ) and b ( £ ) . On the other hand, (4.7) i s
r e p l a c e d by

Vel (2χ| + ch 2χ +1).

The principal term at large ξ is now

(4.17)

so that

, = t/t0 = exp { - V, (1J - (4.18)

As before, the dependence of c on t is given by
c = cot/to, but the connection between the variable ξ
and the time is altered. The duration of the long era
will be connected with ξ0 by

ξο=/81η(ίο/*ι). (4.19)

On the other hand, ξ 0 determines the number (equal to
ξο/2ττ) of oscil lations of the functions a and b during
the e r a . At a given duration of the e r a in t e r m s of the
logarithmic t ime (i.e., at a given rat io t o / t i ) , the num-
b e r of oscillations for the model of type VIII will,
generally speaking, be smal ler than for the model of
type IX. We now obtain for the period of the oscil la-
tions Δ In t = ττξ/2; in contras t to the case of the
model of type IX, the period does not remain constant
now during the long e r a , but d e c r e a s e s slowly together
with ξ.

5. EVOLUTION OF MODEL IN THE ASYMPTOTIC
REGION OF ARBITRARILY SHORT TIMES

The long e r a s of the type investigated in Sec. 4
violate the " r e g u l a r " course of the evolution, de ter-
mined by the ru les established in Sec. 3; this makes it
difficult to investigate the evolution in t ime intervals
spanning severa l e r a s . It can be shown, however, that
such " a n o m a l o u s " cases cease to appear in the as the
model evolves spontaneously towards the singular point
in the asymptotic region of arb i t rar i ly short t imes t,
sufficiently far from the initial instant at which the
a r b i t r a r y initial conditions a r e specified. Even in long
e r a s , both oscillating functions remain so different
during the instants of alternation of the Kasner epochs,
that the alternations themselves occur under the influ-
ence of only one perturbation. The present and suc-
ceeding sections a r e devoted to an analytic and s ta t i s-
t ical analysis of the evolution of homogeneous models
in such an asymptotic r e g i o n [ 1 4 ] . All the resu l t s pertain
equally well to models of type VIII and IX.

During each Kasner epoch we have abc = At, i.e.,
a + / 3 + y = l n A + l n t . On going from one epoch to
another, the constant In Λ changes by an amount of the
o r d e r of unity (see (3.15)). In the asymptotic region of
arbi t rar i ly large values of | In 11, however, we can
neglect not only these changes, but the ent ire constant
Ι η Λ . In other words, the employed approximation cor-
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responds to neglecting al l the quantities the ra t io of
which to I In 11 tends to zero as t — 0. We then have

where Ω denotes the " logar i thmic t i m e "

Ω = —Int.

(5.1)

(5.2)

In the same approximation, we can regard the a l t e r -
nations of the epochs as instantaneous. We can also
neglect the constant in the right side of condition (3.17),
«max = ( Yz) l n ( 2 I Pi Ι Λ.), which determines the in-
stants of al ternation, i .e., we choose this condition in
the form a = 0 (or s i m i l a r equations for β and γ, if
the initial negative exponent pertains to the functions
b or c ) * . We thus put

a i = 0, (5.3)

so that the quantities α, β, and γ run through only
negative values connected with one another at each in-
stant of t ime by the relat ion (5.2).

By regarding the alternations of the epochs as in-
stantaneous, we neglect the widths of the t ransi t ion
regions compared with the lengths of the epochs them-
selves; this condition is indeed satisfied (see the foot-
note on p . 000 below). On the other hand, the r e p l a c e -
ment of (3.17) by (5.3) r e q u i r e s that ln( | ρ ι | Λ) be
smal l compared with the amplitudes of the oscil lations
of the corresponding functions α, β, and γ. But on
going from one e r a to the next there can appear, a s
noted in Sec. 3, very smal l values of | p x | , and neither
these values nor the probability of their occurrence
a r e connected in any way with the oscillation amplitude
attained by that instant of t i m e . One cannot exclude
therefore, in principle, the appearance of smal l values
of | pi | such that the required condition is violated.
Such a strong decrease of <*rnax c a n ^ e a c * *° different
specific s i tuations, in which the joining together of the
Kasner epochs by means of the rule (3.16) becomes
incorrect (including also the situation investigated in
Sec. 4). This question was investigated also in1·22-1.
These " d a n g e r o u s " situations would violate the rules
employed below for the s tat i s t ica l analysis in Sec. 6.
However, a s already mentioned, the probability of such
violations tends asymptotically to z e r o ; we shal l r e t u r n
to this question at the end of Sec. 6.

Let us consider an e r a that contains k Kasner
epochs, corresponding to a p a r a m e t e r u running
through the values

= 0, 1, ft — 1 , (5.4)

and let the functions oscillating during that e r a be a
and β (Fig. 2)t .

We denote the instants of the s t a r t of the Kasner
epochs with p a r a m e t e r s u n by Ω η · At each of these

*By the same token, we neglect the effect of gradual lowering of the
maxima of the oscillating functions during the era, described by formula
(3.18).

tThe definition of the limits of the era in accordance with (5.4) is
natural in the sense that it unifies all the epochs during which the third
function, 7(t), decreases monotonically. If the era is defined in accord-
ance with the sequence of values of u from k + χ to 1 + x, then the
monotonic decrease of 7(t) would continue also during the first epoch
of the next era.

nn n, n.

FIG. 2

instances, one of the quantities a or β, is equal to
zero, and the other has a minimum. The values of a.
or β at the success ive minima, i .e., at the instants of
Ω η , will be denoted by

o , = - 8 A (5.5)

(without distinguishing between the minima of a and
β). The quantities 5 n , which m e a s u r e these minima in
units of the corresponding Ω η , can have values be-
tween 0 and 1. The function y, on the other hand,
d e c r e a s e s monotonically during the given era ; accord-
ing to (5.1), its value at the instant Ωη is

γη=-Ωη(1-δη). (5.6)

During the epoch that begins at the instant Ω η and
ends at the instant Ωη+ι, one of the functions, a or β,
increases from - δ η Ω η to z e r o , and the other decreases
from zero to - δ η + 1 Ω η + ι , in accordance with the r e -
spective l inear laws

const -\-1 pi (un) ΙΩ and const — p2 («„) Ω.

From this we obtain the r e c u r r e n c e relation

δπ+ιΩτι-Μ = [(1 + Un)lun] 6ηΩη = [(1 + U0)/Un] δ(,Ω0 (5.7)

and for the logar i thmic duration of the epoch we get

Δ = Ω --Q - / ( " " > δ Ο. - " ° " ) " + °"-Ι>Α (5.8)

where we put for brev i ty f ( u ) = 1 + u + u 2 . For the
total duration η of the epochs we can obtain the formula

Ωη - Ω ο = \n (η -1) + "' '""-1' 1 &.Ω.. (5.9)

We see from (5.7) that | α η + ι | > Ι <*η I, i .e., the
swing of the oscillations of the functions α and β in-
c r e a s e s during the ent ire e r a , whereas the coefficient
δη can also be smal l . If the depth of the minimum at the
s t a r t of the e r a was large, then it will no longer become
smal l in the succeeding minima; in other words, the
difference | α - β | r e m a i n s large at the instants of
alternation of the Kasner epochs. We emphasize that
this statement does not depend on the length k of the
era , s ince the alternations of the epochs will be de-
termined by the usual rule (3.16) also for long e r a s .

The amplitude of the last oscillation of the function
α or β in a given e r a is connected with the amplitude
of the first oscillation by the relation | uk-i |
= | a 0 l(k + x)/( 1 + x). Already at lengths k amounting
to only severa l units we can neglect χ compared with
k, so that the increase of the amplitude of the oscil la-
tions of the function a or β is proportional to the
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l e n g t h o f t h e e r a . F o r t h e f u n c t i o n s a = e w a n d b = e 0
t h i s m e a n s t h a t if t h e a m p l i t u d e o f t h e i r o s c i l l a t i o n s a t
t h e b e g i n n i n g o f t h e e r a w a s A o , t h e n a t t h e e n d o f t h e
e r a it w i l l b e A £ / ( 1 + X ) .

D u r i n g t h e c o u r s e o f t h e e r a , a n i n c r e a s e t a k e s
p l a c e a l s o i n t h e d u r a t i o n ( in l o g a r i t h m i c t i m e ) o f t h e
s u c c e s s i v e K a s n e r e p o c h s ; f r o m ( 5 . 8 ) i t i s e a s y t o
conclude that Δη+ι > An·* The total duration of the e r a
is

(the t e r m with l/x is due to the last, k-th epoch, the
duration of which is large at smal l x; see Fig. 2). The
instant Ω k of termination of the k-th epoch of the given
e r a is at the same t ime the instant Ωά of the s t a r t of
the next e r a .

In the f irst Kasner epoch of the new e r a , the f irst
to increase is the function y, from the minimum value
yk = ~ Ω ^ 1 - 6k) reached by it in the preceding e r a ;
this value will play the role of the initial amplitude
δ0Ωά of the new s e r i e s of osci l lat ions. For it we
readily obtain

; = (δ;1 (5.11)
Obviously, δ 0 Ω 0 > δοίϊο· Even at not very large lengths
k, the increase of the amplitude is quite appreciable :
the function c = e ^ begins to oscil late from the ampli-
tude Αό ~ A^ . (We disregard the aforementioned
" d a n g e r o u s " cases of very strong lowering of the
upper limit of the oscil lations.)

According to (3.19), the increase of the density of
m a t t e r during each of the f irst (k - l )- s t epochs is
given by the formula

In (βη+,/εη) = 2 [1 — p3 («η)] An+1.

F o r t h e l a s t , k - t h e p o c h o f t h e g i v e n e r a i t m u s t b e
recognized that when u = χ < 1 the largest exponent
is p 2 (x) (and not Ps(x)). As a resul t we obtain for the
increase in density during the entire e r a

(5.12)
Consequently we have ej/eo ~ Ao already at not very
large values of k. During the next era (with length k')
the increase of the density will be even faster because
of the increase in the initial amplitude A'o, namely
ei'/ei ~ A0

2k' ~ A*^' etc. These formulas illustrate
the vigorous character of the increase in the density
of matter.

6. STATISTICAL ANALYSIS OF THE EVOLUTION OF
THE MODEL ON APPROACHING THE SINGULAR
POINT
The sequence of the length k<S) of the successive

eras (expressed in terms of the number of Kasner
epochs contained in them) acquires asymptotically the
character of a random process. The source of this
statistical behavior is the rule (3.20)—(3.21), accord-
ing to which the transition from one era to the next is

*We note also that these durations are large compared with the
widths of the transition regions between epochs; according to (3.12),
these widths are large at small |p t I (i.e., large u) and amount to ~ 1/lpil
~ u. But even in this case Δ η ~ u n | a n | > u n .

d e t e r m i n e d in a n inf ini te n u m e r i c a l s e q u e n c e of v a l u e s
of t h e p a r a m e t e r u .

We c a n c h a n g e o v e r t o a s t a t i s t i c a l d e s c r i p t i o n of
s u c h a s e q u e n c e by c o n s i d e r i n g in l i e u of t h e i n i t i a l
v a l u e u m a x = k ( 0 ) + x < 0 ) , v a l u e s in w h i c h x l u > a r e
d i s t r i b u t e d in t h e i n t e r v a l f r o m 0 to 1 in a c c o r d a n c e
wi th a c e r t a i n p r o b a b i l i t y l a w . T h e n t h e v a l u e s of x ' S ) ,
w h i c h t e r m i n a t e e a c h ( s - t h ) s e r i e s of n u m b e r s , wi l l
a l s o b e d i s t r i b u t e d i n a c c o r d a n c e wi th c e r t a i n l a w s . It
c a n b e s h o w n ( s e e Appendix A) t h a t wi th i n c r e a s i n g s
t h e s e d i s t r i b u t i o n s t e n d t o a d e f i n i t e s t a t i o n a r y ( i n d e -
p e n d e n t of s ) p r o b a b i l i t y d i s t r i b u t i o n w ( x ) , in w h i c h
t h e i n i t i a l c o n d i t i o n s a r e a l r e a d y c o m p l e t e l y " f o r -
g o t t e n " :

(1+*)1η2 ( 6 . 1 )

F r o m t h i s w e c a n f i n d t h e p r o b a b i l i t y d i s t r i b u t i o n o f
t h e l e n g t h s o f t h e s e r i e s k :

W(k) = (In 2)-1 In [(ft + \flk (k + 2)J. ( 6 . 2 )

These formulas give grounds for investigating the
stat is t ical propert ies of the evolution of the m o d e l [ 1 4 ] .

A complicating factor in such an investigation is the
slow r a t e of decrease of the distribution function (6.2)
at large values of k:

W (k) « № In 2. (6,3)

T h e m e a n v a l u e k, c a l c u l a t e d in a c c o r d a n c e wi th t h i s
d i s t r i b u t i o n , d i v e r g e s l o g a r i t h m i c a l l y . F o r a s e q u e n c e
cut off at a very large but finite number Ν we would
obtain k ~ In N. However, in this case the meaning of
the mean value is very limited because of its instabil-
ity, namely, a slow decrease of W(k) causes the fluc-
tuations of the number k to diverge even more rapidly
than its mean value. A m o r e adequate character i s t ic
of the propert ies of the sequence in question is the
probability that a number randomly chosen from it be-
longs to a s e r i e s of length K, where Κ is la rge . This
probability is equal to In K/ln N. It is smal l if 1 -C Κ
<§C N. In this sense one can say that a number chosen
randomly from the sequence has a large probability of
belonging to a long s e r i e s .

Let us write out again the r e c u r r e n c e formulas
which determine the ru les for the transi t ion from one
e r r o r to the next one. The index s numbers the suc-
cessive e r a s (and not the Kasner epochs in one e r a ! ) ,
start ing with a certain chosen initial e r a ( s = 0). i2< S )

and £ < S ) denote respectively the initial instant of t ime
and the initial density of mat ter in the s-th e r a ; 6sSls
is the initial amplitude of the oscillations of that pair
from among the functions α, β, and y, which experi-
ences oscillations in the given e r a : k ( S ) is the length
of the s-th e r a and x ( S > determines the length of the
next e r a in accordance with the formula k ( S + 1 )

= [ l / x ( S ) J . According to (5.10)-(5.12) we have

» ) - * . (6.4)

>y · (6.5)

In (ε('+"/ε(ί)) = 2 (ft('> + xw -1) 6 ( < )Ω (" (6.6)

(in (6.4) we introduce the symbol ξ 8 for future use) .
The quantities 6 ( S ) (which run through values from

0 to 1) also have their own stationary s tat i s t ical dis-

> = _
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tr ibution. It satisfies an integral equation expressing
the fact that the quantities 6 ( S ) and δ(8+1), which a r e
connected by (6.5), have the same distribution; this
equation can be solved numerically ( s e e [ 1 4 ] ) . In view
of the absence of any s ingularit ies in (6.5), the d i s t r i -
bution has a perfectly stable c h a r a c t e r ; the mean values
of δ or its powers calculated from this distribution
a r e definite finite numbers . In part icular , the mean
value of δ is Έ = 0.52.

Let us examine the s tat i s t ical connection between
the large t ime intervals Ω and the number s of the
e r r o r s alternating during that t i m e .

Repeated application of (6.4) yields

(6.7)

A direct averaging of this equation, however, would be
meaningless, since the slow decrease of the function
W(k) makes the mean values of e ^ s unstable in the
sense indicated above. This instability is eliminated by
taking the logar i thm: the "doubly l o g a r i t h m i c " t ime
interval

τ^1η(Ω<"/Ω<°>)= 2 ξ, (6.8)

is expressed by the sum of the quantities ξρ, which
have a stable s tat i s t ica l distribution. The mean values
of ξ 8 , and also of thei r powers (calculated from the
distributions of the quantities x, k, and δ) a r e finite;
a numerical calculation yields ~ζ = 2.1 and "ξ5 = 6.8.

Averaging (6.8) at a given s, we obtain

τ, = 2,1s, (6.9)

w h i c h y i e l d s t h e m e a n d o u b l y - l o g a r i t h m i c t i m e i n t e r -

v a l n e e d e d for s s u c c e s s i v e e r a s t o o c c u r .

On t h e o t h e r h a n d , t o c a l c u l a t e t h e m e a n - s q u a r e

f l u c t u a t i o n of t h i s q u a n t i t y we w r i t e

(τ,
p, ci=0

In t h e l a s t e q u a t i o n we t o o k into a c c o u n t t h e fact t h a t

in the stat ionary l imit the s tat i s t ica l corre lat ion b e -
tween ξ ( δ ) and § ( S ) depends only on the difference
| s - s ' | . In view of the presence of a r e c u r r e n c e

S e £5 8 S 1 )
a n drelat ion between x ( S ) , k® >, δ<£5) and x ' 8 * 1 ' , k ( S + 1 ) ,

6 < s + 1 > this corre lat ion, s t r ict ly speaking, differs from
z e r o . It d e c r e a s e s , however, very rapidly with in-
creas ing | s - s ' | , and a numerical calculation shows
that already at | s - s ' | = 1 we have IssTHs ~ ? 2

= - 0 . 4 . Retaining the first two t e r m s in the sum over
p, we obtain

as s -> » , the relat ive fluctuation (i.e., the rat io of
the mean square fluctuation (6.10) to the mean value
(6.9)) tends consequently to z e r o like s" 1 / 2 . In other
words, the s tat i s t ical re lat ion (6.9) becomes almost
cer ta in at large s . Of course , this certainty is the
consequence of the fact that, according to (6.8), T S can
be represented by a sum of a large number of quasi-
independent t e r m s (i.e., it is of the same origin as the
certainty of the values of the additive thermodynamic
quantities of a macroscopic body). It follows hence
that the probabilities of the different values of T S (at

a g i v e n s ) h a v e a G a u s s i a n d i s t r i b u t i o n :

p(-r s)^exp{-(T,-2,ls)V4s}. (6.11)

T h e c e r t a i n c h a r a c t e r of t h e r e l a t i o n (6.9) m a k e s it

p o s s i b l e a l s o t o i n v e r t i t , i . e . , t o r e p r e s e n t it a s t h e

d e p e n d e n c e of t h e a v e r a g e n u m b e r of e r a s S T , w h i c h

a l t e r n a t e i n a g i v e n i n t e r v a l of d o u b l y - l o g a r i t h m i c

t i m e T :

«, = 0,47τ. (6.12)

T h e c o r r e s p o n d i n g s t a t i s t i c a l d i s t r i b u t i o n i s g iven by

t h e s a m e G a u s s i a n d i s t r i b u t i o n , in w h i c h t h e r a n d o m

q u a n t i t y i s now s T a t a g i v e n r :

p (st) ^ exp { - (s, - 0,47τ)70,43τ}. (6.13)

T u r n i n g t o t h e d e n s i t y of m a t t e r , we r e w r i t e (6.6),

wi th a l l o w a n c e for (6.7), in t h e f o r m

In In = η» xW - 1)Ω<0)]

a n d t h e n , f o r t h e t o t a l c h a n g e of e n e r g y d u r i n g s e r a s ,

l n l n | w = l n S e x p { S 6 , + i p } - (6.14)

T h e m a i n c o n t r i b u t i o n t o t h i s e q u a t i o n i s m a d e b y t h e

l a s t t e r m of t h e s u m o v e r p , w h i c h c o n t a i n s t h e e x p o -

n e n t i a l wi th t h e l a r g e s t a r g u m e n t . R e t a i n i n g only t h i s

t e r m a n d a v e r a g i n g (6.14), w e o b t a i n i n i t s r i g h t s i d e

a n e x p r e s s i o n for s j c o i n c i d i n g wi th (6 .9) ; a l l t h e r e -

m a i n i n g t e r m s in t h e s u m (and a l s o t h e t e r m s ?}p in t h e

e x p o n e n t s ) l e a d only t o c o r r e c t i o n s of r e l a t i v e o r d e r

1/8.

We t h u s h a v e

In In (e<s>/e<°>) = In (Q(s)/Q(0)). (6.15)

By v i r t u e of t h e a l m o s t c e r t a i n c h a r a c t e r of t h e c o n n e c -

t i o n b e t w e e n T S and s , w h i c h we h a v e e s t a b l i s h e d

a b o v e , r e l a t i o n (6.15) c a n b e w r i t t e n in t h e f o r m

In ln (ετ/ε<°>) = τ o r In ln (ε<·>/β«») = 2,1s,

w h e r e it d e t e r m i n e s t h e v a l u e of t h e d o u b l e - l o g a r i t h m

of t h e d e n s i t y i n c r e a s e , a v e r a g e d o v e r a s p e c i f i e d

doubly-logarithmic t ime interval τ or over a specified
number of e r a s s .

We emphasize once more that stable s tat i s t ica l re la-
tions exist just for doubly-logarithmic t ime intervals
and density increments . On the other hand, for quanti-
t ies such as l n ( e ( S ) / e t 0 ) ) the relat ive fluctuation in-
c r e a s e s exponentially with the increasing averaging
region, thereby depriving the mean-value concept of a
stable meaning.

It remains to show that the dangerous cases men-
tioned in Sec. 5, which violate the regular course of
the evolution as expressed by the r e c u r r e n c e relat ions
(6.4)—(6.6), do not a r i s e in the asymptotic limiting
r e g i m e .

The dangerous cases a r e those in which excessively
smal l values of the p a r a m e t e r u = χ (and hence also
| pi j & x) appear at the end of the e r a . We choose as
the cr i ter ion for the selection of such cases the in-
equalities

<"> exp | α<·> (6.16)

w h e r e | a'S) | i s t h e i n i t i a l d e p t h of t h e m i n i m a of t h e

•T
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oscillating functions in the s-th era (it would be pre-
ferable to take the final amplitude, but this would only
strengthen the selection criterion).

The value of x<0> in the initial era is specified by
the initial conditions. The dangerous values lie in the
interval δχ' 0 > ~ exp ( - | α ( 0 ) | ) , and also in those inter-
vals that lead to the dangerous case in succeeding e r a s .
In o r d e r for x < S ) to fall in the dangerous interval

6 x(S) „ β χ ρ ( - | a ( S ) | ) , the initial value of x ( 0 ) should
lie, according to (A.7), in an interval of width δ χ ( 0 )

~ 6 x ( S ) / k ( 1 ) 2 . . . k ( S ) 2 . Altogether, consequently, in an
initial unit interval of all possible values of x< 0 ), the
values leading to the appearance of the dangerous case
lie in a fraction λ of this interval, with

exp (-[α») I)
> 2,1(2) 2 *<«» ( 6 . 1 7 )

(the interval sum is taken over all k ( 1 ) , k ( 2 ) , . . . , k ( S )

from 1 to <*>). It is easy to see that this series con-
verges to a value λ <IC 1, the order of magnitude of
which is determined already by the first term in (6.17).

It suffices to prove this by strongly majoring the
series, and to this end we put | a'S) | = (s + 1) | a<0) | ,
independently of the lengths of the eras k ( 1 ), k ' 2 ) , . . .
(Actually the | a ' S ) | increase much more rapidly; even
in the most inconvenient case k ( 1 ) = k ( 2 ) = . . . = 1, the
values of | a ( S ) | increase more readily like q s | a < 0 ) j
with q > 1.) Noting that

we then obtain

χ = exp (-1 a<° [(JI2/6) exp (-1 a'»» |)]* « exp (-1 a"" |

q. e . d .

If t h e i n i t i a l v a l u e x < 0 ) l i e s o u t s i d e t h e d a n g e r o u s

section λ, then the dangerous cases do not a r i s e at a l l .
On the other hand, if it l ies in this section, then a
dangerous case occurs , but after leaving this section
the model beings a " r e g u l a r " evolution with a new
initial value, which can only accidentally (with a proba-
bility λ) fall in the dangerous interval. Repetitions of
such cases can lead to a dangerous situation with
probabilities only λ2, λ 3 , . . . , which tend asymptotically
to z e r o . This reasoning proves the foregoing s ta te-
ment.

7. CONSTRUCTION OF A GENERAL SOLUTION FOR
A LONG ERA WITH SMALL OSCILLATIONS

In Sees. 3—6 we investigated the evolution of the
metr ic near the singular point using spatially-homo-
geneous models as examples . F r o m the character of
this evolution it is c lear that the analytic construction
of a general solution with a singularity of this type
should be car r ied out separately for each of the main
elements of the evolution: for the Kasner epochs, for
the process of a l ternation of the epochs under the in-
fluence of the " p e r t u r b a t i o n , " for a long e r a with
simultaneously acting perturbations of two types . The
answer to the f irst question is obvious: during the
Kasner epoch (i.e., so long as the perturbations a r e
smal l ) , the metr ic is given by expression (2.7) without
the additional condition (2.17). In the present section

we answer the third of the posed questions, namely we
construct a solution for a long e r a with smal l oscil la-
tions of the oscillating functions, considered in Sec. 4
for the part icular case of homogeneous models . We
shall show that the t ime dependence of such a solution
exhibits a far-reaching analogy with the solution that
holds in the part icular cases of homogeneous models,
and the lat ter a r e obtained from the general solutions
by a special choice of the arb i t rary functions contained
in i t*.

The construction of the general solution is best c a r -
r ied out, however, in a reference frame differing some-
what from the synchronous one. Namely, we assume as
before that g o a = 0, but in place of the condition g 0 0

= 1 we choose gOo = -g33. Introducing again the spatial
metr ic tensor γαβ = - ξαβ, we thus have

goO = ?33, ?oa = O. (7.1)

We denote the preferred spatial coordinate by x 3 = z,
and denote the tempora l variable by x° = ξ (to disting-
uish it from the proper t ime t ) ; we shal l see that ξ
corresponds precisely to the variable introduced in
Sec. 4 for the homogeneous models . Differentiation
with respect to ξ and ζ will be denoted by a dot and
by a pr ime, respectively. The Latin indices a, b, and
c in this section assume values 1 and 2, correspond-
ing to the spatial coordinates x 1 and x 2 , which will
also be denoted by χ and y. Thus, the metr ic takes
the form

ds* = V33 (dl1 - dz1) - yab dxa dx" - 2Ία3 dx° dz. (7.2)

As we shall see, the solution corresponding to our
problem is obtained assuming the inequalities

(7.3)

(these conditions generalize the condition for the
smallness of one of the functions a2, b 2 , or c 2 com-
pared with the other two, as was postulated in the
homogeneous models).

The inequality (7.4) denotes that the components
ya3 are small in the sense that for any ratio of the
displacements dx a and dz one can omit from the
square of the spatial length element dl2 the terms with
the products dxadz. Thus, the first approximation to
the solution will be the metric (7.2) with y a 3 = 0t.

ds* = V33 № - dz') - yab dxa dx\ (7.5)

By c a l c u l a t i n g t h e c o m p o n e n t s of t h e R i c c i t e n s o r

R°, R° , Rl, and R ^ f r o m t h e m e t r i c (7.5), we c a n

e a s i l y ver i fy t h a t b y v i r t u e of t h e c o n d i t i o n (7.3) a l l

t h e t e r m s in t h e s e c o m p o n e n t s , c o n t a i n i n g d i f f e r e n t i a -

t i o n wi th r e s p e c t t o t h e c o o r d i n a t e s x a , a r e s m a l l c o m -

p a r e d wi th t e r m s c o n t a i n i n g d e r i v a t i v e s with r e s p e c t

to ξ and ζ (the ra t io of the former to the la t ter is
~y33/yab)· I n other words, to obtain the equations of

the main approximation it is necessary to differentiate
y33 and y a b in (7.5) a s if they were independent of x a .
Putting

= «ob, , | = (7.6)

*The material in this section is based on [15>16].

t We call attention to the fact that this metric admits of additional
arbitrary transformations of the type.
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w e o b t a i n t h e f o l l o w i n g e q u a t i o n s * * :

2β*(Λ5-Λ;) = λψ' + κψ —it —λ' —-ίκΚ —1λίΧ = 0. (7.9)

The rais ing and the lowering of the two-dimensional
indices is c a r r i e d out h e r e with the aid of yab· κ and
λ a r e the contractions of K | and λ | , with

x = 2G/G, % = 2G'IG. (7.10)

As to the Ricci-tensor components R a and R a , they
vanish identically in such a calculation. In the next ap-
proximation, however (i.e., when account is taken of
smal l ya.3 and of the derivatives with respect to χ and
y), they determine the values of y a 3 from the already
known y 3 3 and y a b ·

The contraction of Eqs . (7.7) yields G" - G = 0,
whence

G = ft(x,y, l + z) + h(x, y, 1-z)- (7.11)

We can have h e r e different c a s e s , depending on the
values of Ν = g i k G , iG, k, i-e., depending on the char-
acter of the variable G. In the approximation in ques-
tion, g 0 0 = y 3 3 » y a b , and therefore Ν ~ g°°(G)2

- y

3 3 ( G ' ) 2 = 4y 3 3f 1f 2 . The t ime s ingulari t ies of inter-
est to us resul t from the case Ν > 0 (G is t ime-l ike) .
Putting in (7.11) fi = (/^Κξ + ζ ) s i n y and f2

= (Yz){i - z ) s in y, we r e p r e s e n t G in the form

G--lsiny. (7.12)

Such a choice does not make the analysis less general ;
it can be shown that it is made possible (in the main
approximation considered h e r e ! ) simply by the r e -
maining s t i l l - p e r m i s s i b l e variable t r a n s f o r m a t i o n s t .
The factor sin y is introduced in (7.12) for convenience
in subsequent comparison with the homogeneous
models . When (7.12) is taken into account, Eqs . (7.7)—
(7.9) take the form

ψ' = ± ξ κ χ (7-15)

The fundamental equation here is (7.13), which deter-
mine the components y a b ; the function φ is then de-
termined by simply integrating Eqs . (7.14)—(7.15).

The variable ξ runs through values from 0 to °°.
Let us consider the solution of (7.13) in two limiting
regions, ξ > 1 and ξ C 1.

In the region of large ξ we can (as is confirmed by
the resul t ) seek a solution in the form of an expansion
in 1//ξ:

i, = ik.b(*, y, z) + O(l/|/l)], (7.16)

*On the other hand, the equation R° + R3 = 0 is a direct conse-
quence of the system (7.7)-(7.9), if G Φ 0 or G' Φ 0. The case G = G'
= 0 does not require special consideration, for it can be shown that the
space-time metric reduces in this case (in first approximation) to the
Galilean one.

tWhen Ν < 0 (G is space-like) we can put G = z, and this leads to a
generalization of the well known Einstein-Rosen metric [ 1 7 ] . At Ν = 0
we arrive at the Robinson-Bondi wave metric, which depends only on ξ
+ ζ or only on ξ - ζ (see [ 2 ] , Sec. 103).

with

K ^ s i n 2 ! / (7.17)

(Eq. (7.17) i s needed to sat i s fy the condit ion (7.12)) .
Substituting (7.16) in (7.13), we obtain in the principal
order of magnitude

(«<"'abc)' = 0, (7.18)

where the quant i t ies a a c form a m a t r i x i n v e r s e to
a a c . The so lut ion of (7.18) i s wr i t ten in the form

aab = lake'2"z + mambe^', (7.19)

i,m2 — i2m, = sin y, (7.20)

where Za,
 m a> a n c * Ρ a r e a rb i t ra ry functions of the

coordinates χ and y and a r e connected by the condition
(7.20) which is derived from (7.17).

To find the succeeding t e r m s of the expansion, it is
convenient to r e p r e s e n t the m a t r i x of the unknown
quantities y a b m the form

(7.21)yab-c.(Le"L)ab,

where

\mie
i>z (7.22)

and the symbol ~ denotes the t r a n s p o s e . The matr ix
Η is symmetr ica l , and its t r a c e is equal to z e r o . The
representat ion (7.21) ensures symmetry of y a b and
satisfaction of the condition (7.12). If we replace
exp Η by unity, then we obtain from (7.21) y a b = 4 a a b
with a a b from (7.19). In other words, the principal
t e r m of the expansion y a b corresponds to Η = 0; the
further t e r m s a r e obtained by power expansion of the
matr ix H, the components of which a r e regarded as
smal l quantit ies.

We denote the independent components of the matr ix
Η by σ and φ , writing

(7.23)
—oj

Substituting (7.21) in (7.13) and retaining only the t e r m s
linear in H, we obtain for σ and φ the equations

— ο' = 0,
(7.24)

If we seek the solution of these equations in the form
of Four ier s e r i e s in the coordinate z, then we obtain
Besse l equations for the coefficients of the s e r i e s as
functions of ξ. The principal asymptotic t e r m s of the
solution at large values of ξ a r e *

= T7| 2 ( 7 . 2 5 )

The coefficients A and Β a r e a rb i t ra ry complex func-
tions of the coordinates χ and y, and satisfy the
necessary conditions for σ and φ to be r e a l ; The

*It is possible that a solution can be sought also in the form of
Fourier integrals; this question has not been thoroughly investigated.
We therefore do not state here that the expandability in Fourier series
is a necessary requirement imposed on the coordinate dependence of
the functions σ and φ.
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fundamental frequency ω is an arbitrary real function
of χ and y. From (7.14)—(7.15) it is now easy to ob-
tain the first term of the expansion of the function φ:

$ = PV (7.26)

(this term vanishes if ρ Ξ 0; in this case the principal
term is the expansion term linear in ξ: φ = ijq(x, y),
where q is a positive function; see1·15-1).

Thus, in the region of large ξ, the components of
the metric tensor y ab oscillate with decreasing ξ
against a background of a slow decrease due to the
factor t in (7.21). On the other hand, the component
733 = e^ decreases rapidly approximately like
exp(p z £ 2 ); this ensures the possibility of satisfying
the condition (7.3)*.

Let us consider now the region ξ < 1 . The main
approximation to the solution of (7.13) is obtained from
the assumption (confirmed by the result) that it is
possible to leave out from these equations the terms
with the derivatives with respect to the coordinates:

This equation together with the condit ion (7.12) y i e l d s

Τ<.6 = λαλ6ξ
2« + μημί,|2«», (7.28)

where \ a , μΆ, slt and s 2 are arbitrary functions of all
three coordinates x, y, and z, and are connected with
one another by the conditions

λ,μ2 — λ2μ, = 3ίη^, s, + s2 = l. (7.29)

Equations (7.14)—(7.15) now y ie ld

TM = e*~r ( i ~''~ > i ) . (7.30)

The d e r i v a t i v e s xjj , ca lcu lated from (7.28), contain

the t e r m s ξ 4 δ ΐ" 2

and
2, whereas the terms

remaining in (7.27) are proportional to | ' 2 . Therefore
in order for the transition from (7.13) to (7.27) to be
valid it is necessary to have S i > 0 , s 2 > 0 , and
1 - s 2 - s | > 0 .

Thus, in the region of small ξ, the oscillations of
the functions y ab cease, and the function γ33 begins
to increase with decreasing ij. This is the Kasner
regime, and when y3 3 becomes comparable with y ab
the conditions for the validity of the approximation in
question no longer hold.

To check whether the foregoing analysis is self-
consistent, it is necessary also to consider the equa-
tions R a = 0 and R^ = 0, to calculate from them the
components y a 3 , and to check whether the proposed
inequality (7.4) holds. Such an investigation (see [ i e ])
shows that in both asymptotic regions the components
y a 3 turn out to be ~ y3 3. Therefore satisfaction of the
inequality (7.3) automatically ensures validity also of
the inequality (7.4).

The obtained solution contains, as it should for the
general case of a field in vacuum, four arbitrary func-

*The terms quadratic in Η in (7.13) lead only to small corrections
(~ 11%) to σ and φ . On the other hand, allowance for the cubic terms
leads to a weak dependence of the amplitudes A and Β on £; this de-
pendence can be represented as the appearance of logarithmic phases
in the oscillating factors of (7.25). The corresponding calculations for
the case ρ = 0 are given in [ l s ] (see also the analogous situation for
homogeneous models; Appendix B).

t ions of t h r e e spat ia l coord inates x, y, and z . In the

region ξ <?C 1 these functions are, for example, \ u \2,
μ 1 ; and Sj. In the region ξ > 1 the four functions are
the four Fourier series with respect to the coordinate
z, which enter in (7.25), with coefficients are are func-
tions of χ and y; although the Fourier expansion (or
integral?) does single out a certain special class of
functions, this class is sufficiently broad to include a
finite fraction of the entire manifold of conceivable
initial conditions.

The solution contains also a certain number of other
arbitrary functions of the two coordinates χ and y.
Such "two-dimensional" arbitrary functions appear,
generally speaking, because the connections between
these three-dimensional functions, which appear in the
solution of the Einstein's equations, are differential
(and not algebraic); we leave aside the deeper question
of the geometrical meaning of such functions. We shall
likewise not calculate the number of independent two-
dimensional functions, all the more since in this case
it is difficult to impart an unambiguous meaning to this
question, since the three-dimensional functions are
also specified in terms of sets of two-dimensional
ones*. (The number of two-dimensional functions in
the solution considered here is discussed in greater
detail in [ 1 6 1.)

Let us show, finally, that the obtained general solu-
tion contains the particular solutions considered in
Sec. 4 for the homogeneous models.

Taking the reference vectors for the space of type
IX from (D.2) and substituting in (2.7), we write the
space-time metric of this model in the form

ds\x = dt2 — [(a2 sin2 ζ + ft2 cos2 z) sin2 y + c* cos4 y] dx*

— [a2 cos2 ζ + δ2 sin2 ζ] dy1 — c* dz* (7.31)

+ (i>2 — a2) sin 2z sin y dx dy — 2c3 cos y dx dz.

In the c a s e when c 2 <S a 2 , b 2 , we can n e g l e c t c 2

e v e r y w h e r e except in the t e r m c 2 d z 2 . To change over

from the synchronous r e f e r e n c e f rame, in which (7.31)

i s written, to the s y s t e m sat i s fy ing the condit ions (7.1),

we make the transformation dt = c d£/2 and the sub-
stitution ζ — z/2. Assuming also that χ = ln(a/b)
<C 1, we obtain from (7.31) in the main approximation:

^ ) (7.32)
- ab {sin2 y(i - χ cos z) dx2 + (1 + χ cos z) dy* + 2χ sin ζ sin ydxdy}.

Analogously, for a mode l of type VIII with r e f e r e n c e

v e c t o r s from ( D . l l ) , we obtain

( )

— ab {sins y (ch ζ — χ} dx2 + (ch ζ + χ) dy"- — 2sh ζ sin y dx dy).

Accord ing to S e c . 4, we have in th is c a s e in both c a s e s

ab = ξ (we assume for simplicity a2, = 4 0) and formula
(4.8) for χ; the function c(£), on the other hand, is
given by (4.10) or (4.18) for models of type IX and
Vin, respectively.

We obtain a similar metric of type VIII from (7.22),

The regular expansion of the general solution of Einstein's equations
contains (besides the four three-dimensional functions) also three inde-
pendent functions of two coordinates (see [18], Sec. 40, and also Appen-
dix Aof [']).
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(7.25), and (7.26) by choosing the two-dimensional
vectors /a a n d m a in the form

) sin y, (7.34)

and putting
p-=1/2, A*ia-

(7.35)

To obtain a metr ic of type IX it is necessary to put

p = 0, ω - 1 .

-4(i Β*ι - Λ\, _ι -- — # ι , - ι - — j

* Ίί Ζί 1, — 1 - - 2, - 1 2

(7.36)

( t h e a p p r o x i m a t i o n ( 7 . 2 6 ) i s n o t s u f f i c i e n t i n t h i s c a s e

for the calculation of c(ij), and it is necessary to cal-
culate the t e r m of φ that is l inear in ξ; this is done
i n t l 5 ] .

In the foregoing investigation, space was assumed
empty. Inclusion of matter does not change the
generality of the solution and does not change its
qualitative propert ies ( s e e [ 1 5 > 1 6 ] ) .

8. CONCLUDING REMARKS

Thus, we have described in the preceding sections
singulari t ies of a new type in the cosmological solu-
tions of Einstein ' s equations; these s ingularit ies have
a complicated oscil latory c h a r a c t e r . Although we
studied these s ingulari t ies mainly with special homo-
geneous models as examples, there a r e convincing
reasons for assuming that the s ingulari t ies in the
general solution of the gravitational equations have a
s imi la r c h a r a c t e r ; it is precisely this c i rcumstance
which makes it part icularly significant for cosmology.

Such a s tatement is based, f irst, on the reasoning
indicated at the s tar t of Sec. 3, namely, that the osci l-
latory approach to the singular point is the resu l t of
just the unique type of perturbation with respect to which
the general ized Kasner solution is unstable. A confirma-
tion of the generality of the solution is also the analytic
construction given in Sec. 7 for a long e r a with smal l
osci l lat ions. Although this case is not an obligatory
element of the evolution of the metr ic (in light of the
r e s u l t s of Sees. 5 and 6) in the asymptotic vicinity of
the singular point, it contains all the qualitative fea-
t u r e s , namely, oscillation of the metr ic in two spatial
dimensions with a monotonic decrease in the third
dimension, with obligatory violation of such a reg ime
at the end of a definite t ime interval . What s t i l l r e -
mains unclear, however, a r e the details of the single
alternation of the Kasner epochs in the general case of
a spacelike-inhomogeneous m e t r i c .

A special study is also needed to determine whether
the existence of the singular point imposes any l imita-
tions on the proper t ies of the spatial geometry. So far
it can be stated only that there is no direct connection
with the finite or infinite c h a r a c t e r of the space; this
is evidenced by the existence of both a closed and an
open homogeneous model with an oscil latory singular
point.

The oscil latory approach to the singular point c a s t s
new light on the very concept of finite t i m e . Between

any finite instant of world t ime t and the instant t = 0
there is contained an infinite number of osci l lat ions.
In this sense, the process acquires an infinite c h a r a c -
t e r . It turns out that the more natural variable for its
description is not the t ime t itself but its logarithm
In t, with respect to which the process is s tretched out
to -«ο.

We have spoken throughout of the direction of the
approach to the singular point as being the direction of
the decrease of t i m e . But in view of the symmetry of
the gravitational equations with respect to the r e v e r s a l
of the sign of t ime, we a r e equally justified of speaking
of an approach to the singularity in the direction of in-
creas ing t i m e . Actually, however, in view of the
physical nonequivalence of the future and of the past,
there is a substantial difference between the two cases
with respect to the very formulation of the problem. A
singularity in the future can have a physical meaning
only if it is admissible under a rb i t rary initial condi-
t ions, specified at some preceeding instant of t i m e . It
is c lear that there a r e no grounds whatever for having
the distribution of matter and field, attained at any
part icular instant during the evolution of the universe,
correspond to specific conditions required to rea l ize
some part icular solution of the equations of gravitation.

An investigation based on the gravitational equations
alone is hardly capable of determining the type of
singularity in the past . It is natural to assume that the
choice of the solution corresponding to the rea l world
is connected with some deep physical r e q u i r e m e n t s ,
the establishment of which on the bas i s of only the
existing gravitational theory is impossible, and which
can be clarified only as a resul t of further syntheses
of physical t h e o r i e s . In this sense, it may turn out in
principle that this choice corresponds to some part icu-
lar (say, isotropic) type of s ingularity. Nonetheless, it
is more natural to assume a pr ior i that by virtue of
the general character of the oscil latory reg ime, it is
just this regime that should descr ibe the initial stages
of the evolution of the world.

In this connection, considerable interest may attach
to a property of the model indicated by Misner [ 1 9 1 ; this
property pertains to the propagation of light s ignals.
Let us reca l l first the situation that takes place in this
r e s p e c t in the Friedmann model.

In the isotropic model there exists a "l ight h o r i z o n "
for the propagation of s ignals . This means, that for
each given instant of t ime there exists a certa in
larges t distance, beyond which exchange of light sig-
nals is impossible, and therefore a causal connection
between signals is impossible, namely, a signal does
not have t ime to propagate over such distances in the
t ime elapsed from the singular point t = 0. Indeed,
the propagation of a signal is determined by the equa-
tion ds = 0. In the isotropic model near the singular
point t = 0 the element of the interval is of the form
d s 2 = dt 2 - 2t dl2, where d/2 stands for a special dif-
ferential form that does not contain the t ime (see^2 1,
Sees . 107-109). By the substitution t = η2/2 it reduces
to the form

ds2 = η 2 {dif - dP).

F r o m t h i s we o b t a i n for t h e " d i s t a n c e '

b y t h e s i g n a l , t h e e x p r e s s i o n

(8.1)

ΔΖ, t r a v e r s e d

~τ
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Μ = Δη. (8.2)

Since the variable η, together with the time t, runs
only through values starting from zero, signal can
traverse by the "instant" η only distances Δ7 S η,
and this established the distance to the horizon.

The existence of a light horizon in the isotropic
model raises definite difficulties in the question of the
origin of the presently observed isotropy of the relict
black radio emission. Indeed, from the point of view
of this model, the observed isotropy would denote
identity of the properties of radiation arising to the
observed also from such regions of space, the history
of which could not be in any causal connection with one
another. The situation in the model with the oscillatory
evolution near the singular point, on the other hand,
may turn out to be different. Let us illustrate this with
the homogeneous model of type IX as an example.

Namely, we consider the propagation of a signal in
that direction, in which the scales change during the
course of a long era in accordance with a law close to
~ t . The square of the element of length in this direc-
tion is given by dl2 = t2d7~2, and the corresponding ele-
ment of the four-dimensional interval is ds2 = dt2

- t 2 dr 2 . The substitution t = e^ transforms it into

ds2 = e2^(drf — d'l2), (8.3)

from which we obtain again for signal propagation an
equation of the type (8.2). The essential difference con-
sists, however, in the fact that the variable η now runs
through values from - « (if the metric (8.3) holds for
all t starting from t = 0). Therefore for each speci-
fied "instant" η there are preceeding intervals Δη
sufficient for the signal to cover any finite distance.

Thus, during a long era, the light horizon opens up
in a definite direction in space. Although the duration
of each of the long eras is still finite, during the
course of the evolution of the world they alternate an
infinite number of times in different directions in
space. This circumstance allows us to hope that in the
model considered here it is possible to obtain a causal
connection between events in the entire volume of
space*. There is still no exhaustive investigation of
this question. There is likewise no investigation of the
question for the analogous open model.

During the course of time, with increasing distance
from the singular point, the influence of the matter on
the evolution of the metric, which is immaterial at
earlier stages of the evolution, gradually increases
and ultimately becomes predominant. One can expect
that this influence will lead to a gradual "isotropiza-
tion" of space, as a result of which its properties ap-
proach the Friedmann model, which describes satis-
factorily the present state of the universe. Of course,
this question still requires further investigation. The
question of establishing a connection between the
parameters of the theory and the time scale of the
real world still remains open.

One final remark concerning the general validity of
considering the question of a "singular s tate" of a
world with such arbitrarily large densities of matter
on the basis of the existing theory of gravitation. Of

*This property caused Misner to call the model the "mixmaster uni-
verse."

c o u r s e , t h e p h y s i c a l a p p l i c a b i l i t y of E i n s t e i n ' s e q u a -

t i o n s in t h e i r p r e s e n t f o r m c a n b e v e r i f i e d in t h e i n d i -

c a t e d c o n d i t i o n s only in t h e p r o c e s s of f u t u r e s y n t h e s e s

of p h y s i c a l t h e o r i e s , a n d i n t h i s s e n s e t h i s q u e s t i o n

c a n n o t b e a n s w e r e d a t p r e s e n t . It i s i m p o r t a n t , h o w -

e v e r , t h a t t h e g r a v i t a t i o n a l t h e o r y i t s e l f d o e s not c e a s e

t o b e l o g i c a l l y c o n s i s t e n t ( i . e . , it d o e s not l e a d t o i n -

t e r n a l c o n t r a d i c t i o n s ) a t any d e n s i t y of m a t t e r . In

o t h e r w o r d s , t h i s t h e o r y i s n o t l i m i t e d , a s s u c h , b y

c e r t a i n c o n d i t i o n s t h a t fol low f r o m it a n d a r e c a p a b l e

t o m a k e i t s a p p l i c a t i o n l o g i c a l l y inva l id a n d c o n t r a d i c -

t o r y a t v e r y l a r g e d e n s i t i e s ; l i m i t a t i o n s c o u l d a r i s e in

p r i n c i p l e only a s a r e s u l t of f a c t o r s t h a t a r e " e x t r a n e -

e o u s " wi th r e s p e c t t o t h e t h e o r y of g r a v i t a t i o n i t se l f .

T h i s c i r c u m s t a n c e m a k e s it in any c a s e f o r m a l l y va l id

and n e c e s s a r y t o c o n s i d e r t h e q u e s t i o n of s i n g u l a r i t i e s

in c o s m o l o g i c a l m o d e l s a l r e a d y w i t h i n t h e f r a m e w o r k

of t h e e x i s t i n g t h e o r y .

A P P E N D I C E S

A . SOME INFORMATION FROM THE THEORY OF

CONTINUOUS FRACTIONS

L e t u s c o n s i d e r a n inf ini te s e q u e n c e of p o s i t i v e

n u m b e r s u , c o n s i s t i n g of s e r i e s , e a c h ( s - t h ) of w h i c h

b e g i n s wi th a c e r t a i n ( i r r a t i o n a l ) n u m b e r u ^ ^ = k ( S )

+ x < S ) , a n d r e a c h e s v i a v a l u e s k < S ) + x ' S ) - 1, k ( S )

+ x ' S ) - 2 , . . . t o a v a l u e x ( S > < 1; t h e t r a n s i t i o n t o t h e

n e x t s e r i e s i s in a c c o r d a n c e wi th t h e r u l e

( A . I )

T h e i n t e g e r s k ( S ) d e t e r m i n e t h e l e n g t h s of t h e s e r i e s .

If t h e e n t i r e s e q u e n c e b e g i n s wi th t h e n u m b e r k ( 0 )

+ x < 0 > , t h e n t h e l e n g t h s k ( 1 ) , k ( 2 ) , . . . a r e t h e n u m b e r s

w h i c h e n t e r in t h e e x p a n s i o n of x ( 0 ) in a n inf in i te c o n -

t i n u o u s f r a c t i o n :

(A.2)

T h e r e f o r e t o s t u d y t h e p r o p e r t i e s of t h e s e q u e n c e s of

i n t e r e s t t o u s we c a n u s e a n u m b e r of k n o w n r e s u l t s

of t h e t h e o r y of c o n t i n u o u s f r a c t i o n s ( s e e , e . g . , [ 2 0 ' ) .

A s w a s n o t e d in S e c . 3, we c a n b e i n t e r e s t e d only in

t h o s e p r o p e r t i e s of t h e s e q u e n c e , w h i c h a r e i n h e r e n t

i n t h e g e n e r a l c a s e of a n a r b i t r a r y i r r a t i o n a l n u m b e r

x ( 0 ) < 1. It i s p r e c i s e l y for t h i s r e a s o n t h a t t h e r e i s no

n e e d t o c o n s i d e r t h e c a s e of r a t i o n a l n u m b e r s x ( 0 > (for

w h i c h t h e e x p a n s i o n i n a c o n t i n u o u s f r a c t i o n i s f i n i t e ) .

N o r i s t h e r e any i n t e r e s t in s p e c i f i c p r o p e r t i e s i n -

h e r e n t in p e r i o d c o n t i n u o u s f r a c t i o n s ( s u c h f r a c t i o n s

r e s u l t f r o m t h e e x p a n s i o n of q u a d r a t i c i r r a t i o n a l n u m -

b e r s , i . e . , n u m b e r s t h a t a r e r o o t s of q u a d r a t i c e q u a -

t i o n s wi th i n t e g e r c o e f f i c i e n t s ) * . We n o t e t h a t in b o t h

t h e s e c a s e s a l l t h e e l e m e n t s of t h e e x p a n s i o n (the n u m -

b e r s k ( 1 ) , k ( 2 > , . . . ) a r e f in i te in m a g n i t u d e in a n o b v i -

o u s m a n n e r . T h i s p r o p e r t y i s a l s o e x c l u s i v e : t h e s e t

of a l l n u m b e r s x ( 0 > < 1 w h o s e e x p a n s i o n h a s t h e s e

The simplest example of an expansion in a periodic continuous
fraction is

1/5 — 1 1
2 "ι+,-Λ-"
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propert ies has a m e a s u r e z e r o compared with the set
of al l numbers in the segment (0, 1).

To change over to a probabilistic description, we
shall consider in place of the definite value x< 0 ) the
values x ( 0 ) = χ distributed in an interval from 0 to 1
in accordance with a certa in specified probability
w o (x) . Then the values x < S ) that t e rminate each s e r i e s
will also have a certa in probability. Let the w s ( x ) d x
be the probability that the s-th s e r i e s is terminated
with the value x < s > = χ lying in a specified interval dx.

In o r d e r for the s-th s e r i e s to have a length k, the
preceding s e r i e s should te rminate with a number in
the interval between l / ( k + 1) and l/k. Therefore the
probability that the s e r i e s will have a length k is

ws-i W dx. (A.3)

( S + 1 ) = x, which t e r m i n a t e s theThe value x ,
( s + l )- s t s e r i e s , can resu l t from the initial (for this
s e r i e s ) values U — ^ = χ + k, where k = 1, 2 , . . . ;
they correspond t o t h e values x ( S ) = l / ( k + x) for the
preceding s e r i e s . Noting th i s , we can write the follow-
ing r e c u r r e n c e re lat ion for the probability distribution
w s + i (x) in t e r m s of the distribution w s ( x ) :

) dx =

or

( * - r •
(A.4)

I f t h e d i s t r i b u t i o n s w s ( x ) t e n d t o a s t a t i o n a r y ( i n d e -

p e n d e n t o f s ) l i m i t i n g d i s t r i b u t i o n w ( x ) w i t h i n c r e a s i n g

s , t h e n t h e l a t t e r s h o u l d s a t i s f y t h e e q u a t i o n

w ( I > = 2 ( s r r a " ! ( x h - ) · ( A . 5 )

This equation actually has a solution*

!"(i) = [(1-1-1) In 21-1 (A.6)

(normalized to unity). This can be readily verified by
noting that with this function the sum in the right side
of (A.5) becomes equal to

Zj (a:J-M(T_ui_(.l) Zl χ-1-k ΖΛ x+k—I ' x+l '
fe« 1 li«=l h= 1

T h e c o r r e s p o n d i n g s t a t i o n a r y p r o b a b i l i t y d i s t r i b u -

t i o n of t h e l e n g t h s of t h e s e r i e s i s o b t a i n e d b y s u b s t i -

t u t i n g ( A . 6 ) i n ( A . 3 ) ; i t i s w r i t t e n o u t i n t h e t e x t

( f o r m u l a ( 6 . 2 ) ) .

A n i d e a of t h e r a t e a t w h i c h t h e s t a t i o n a r y d i s t r i b u -

t i o n ( A . 6 ) i s e s t a b l i s h e d c a n b e g a i n e d f r o m t h e f o l l o w -

i n g e x a m p l e . L e t t h e i n i t i a l v a l u e s x < 0 ) b e d i s t r i b u t e d

in a narrow interval of width δχ < 0 ) about a certain
definite number. From the r e c u r r e n c e relat ion (A.4)
(or directly from the expansion (A.2)) we can readily
conclude that the widths of the distributions Ws(x)
(about other definite numbers) will then be equal to

(A.7)

(this express ion is valid only to the extent to which
6 x ( S ) < 1).

B . R E F I N E M E N T O F T H E C A L C U L A T I O N S I N

S E C T I O N 4

I n S e c . 4 , i n o b t a i n i n g a s o l u t i o n d e s c r i b i n g s m a l l

oscil lations in the region of large values of the var i-
able ξ, we have confined ourselves to the first t e r m
of the expansion of sinh 2χ in (4.11). Such an approx-
imation is equivalent to retaining in the solution of only
the t e r m of lowest order in the smal l quantity l/VT.
We present h e r e more accurate calculations with
allowance of the next t e r m s of the expansion in powers
of l/VT.

After making the substitution

χ-φ/VI (B.I)

Eq. (4.6) takes the form

We have retained here the first three t e r m s of the
expansion of sinh 2χ; the omitted t e r m s ~ψ2/ξ3 (a dot
over a let ter denotes in this section differentiation with
r e s p e c t to 4)·

The first approximation to the solution, which is
sought in the form of an expansion in powers of 1/ξ,
is the solution of the equation without the right-hand
side, in the form

φ0 == 2Λ sin ( ξ - ! (B.3)

The next t e r m of the expansion in φ should be ~ 1/4
and should be determined from (B.2) with allowance
for the t e r m -2φ3/3ξ in the right-hand s ide. Writing
φ = φ 0 + φ 1 and assuming that φ t ~ l /ξ , we obtain
for φ ι the equation

4̂ 43 (£—ξ0). (Β .4)

H o w e v e r , t h e s e c o n d t e r m i n t h e r i g h t - h a n d s i d e of t h i s

e q u a t i o n h a s a r e s o n a n t f r e q u e n c y ( w h i c h c o i n c i d e s

w i t h t h e f r e q u e n c y of t h e s o l u t i o n of t h e h o m o g e n e o u s

equation φ ι + φ χ = 0), leading to the appearance in φ L

of logarithmically-diverging t e r m s and thereby
violating the initial assumption of the order of smal l-
ness of ψ ι. The appearance of resonance denotes in
real i ty a weak change of the phase of the sine function
in the f irst-approximation function φ 0 . Accordingly,
we write it in the form

φ ο ^ 2 / ΐ 8 ί η ( ς - | ο + ψ) ( Β . 5)

in place of (B.3), where ψ(ξ) is assumed to be a slowly
varying function in the sense that ψ <C ψ < 1. The
expression ψ0 + φ 0 now does not vanish r igorously,
but will be a smal l quantity ψ:

9ο+Φο=—4·Ίψ8ίη (ξ—ξο + 10 ( Β . 6 )

(we have omitted t e r m s ~tp and ~ ψ 2 ) . Accordingly we
now obtain for the correct ion ψu in place of (B.4),
the equation

Ψ). ( Β · 7 )

*This result was already known to Gauss.

and ψ is obtained precisely from the condition that the
resonant t e r m s drop out from the right-hand s ide.
Hence (with the definite choice of the integration con-
stant)

ψ = /1Μη(ξ/ξ0). ( Β . 8 )
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We can now represent the correct ion <py in the
form

<Pl =-!-(£?! sin Δ + C2 cos Δ) ^- sin 3Δ, / g g)

H e r e C i a n d C 2 a r e c o n s t a n t s t h a t a r e a r b i t r a r y f o r

t h e t i m e b e i n g . It i s e a s y t o v e r i f y t h a t t h e e x p r e s s i o n

(B.9) satisf ies the equation (B.7) in the order l / ξ . As
to the t e r m s ~ ξ"2 e tc. , which appear from φ χ a s the
resu l t of the differentiation of the factor l/ξ and the
logarithmic phase, they affect only the determination
of the correct ions ~ l / ξ 2 e tc .

The constants Ci and C 2 a r e found from the condi-
tion that there be no resonant t e r m s in the right-hand
side of the equation that determines the correct ion
<P2~ l / ξ 2 · Writing φ = φ 0 + φ γ + φ 2 with ψ0 and φ χ

from (Β.5) and (B.9) and substituting in (B.2), we ob-
tain, in o r d e r l /ξ 2 , the equation for φ 2

φ 2 + φ 2 = ξ-2 [2 (C, + /43) cos Δ — (2C2 + 4(7,^2 + A5 + l/2A) sin Δ +

+ (2A*Ct — ,45)sin3A + (2.42C — A») cos 3Δ — 3 /s^ 5 sin 5Δ].

( B . l l )

The t e r m s proportional to cos Δ and sin Δ in the
square brackets would make a contribution of the
order l/ξ to φ 2 , thereby contradicting the initial
assumption φ 2 ~ l /ξ 2 , the consequence of which is
( B . l l ) itself. The requirement that these t e r m s be
equal to zero yields

Proceeding analogously, we can obtain a solution for
ψ accurate to any order in l / ξ .

Thus, accurate to ξ" 3 / 2 inclusive, we have ult i-
mately

2A Γ · . A2

^ ~ [sin Δ - ~ (6?in

The corresponding functions a ( ξ ) and b(ξ) a r e given

by

"/ 2. (B. 13)

These formulas pertain to the homogeneous models of
both types, IX and VIII. Substituting (B.12) in (4.7) or
(4.17), we get

+ ln ca + ^A%'i cos 2Δ+Ο (ξ-2),

( B . 1 4 )

w h e r e t h e u p p e r a n d l o w e r s i g n s i n t h e f i r s t t e r m p e r -

t a i n r e s p e c t i v e l y t o t h e m e t r i c o f t y p e I X a n d V I I I .

F r o m this we have for the function ο(ξ)

«(£) = '

•,-ΛΙ(ξθ-ί) ( t y p e Κ ) ;

i e - r ^ - 5 $ » - ^ < 5 · - » ( t y p e y j j j
(B.15)

(only the t e r m with the highest power of ξ has been
retained in the three-exponential factors) . Finally, for
the connection between the world t ime t and the var i-
able ξ we obtain

(type Κ ) ,
l (type VIII)

(B.16)

C. HOMOGENEOUS SPACES

For the r e a d e r ' s convenience, we present here a
brief exposition of the theory of homogeneous spaces .

Homogeneity denotes identity of the metr ic proper-
t ies in al l points of space. An exact definition of this
concept is connected with a consideration of the ag-
gregate of coordinate transformations that make the
space congruent with itself, i .e., leave its metr ic un-
changed: if pr ior to the transformation the length
element is

t h e n a f t e r t h e t r a n s f o r m a t i o n t h e s a m e e l e m e n t h a s t h e

f o r m

i i 2 = V«3 Oc'1, x"2, of") dx'adx'&

with the same functional dependence of γαβ on the new
coordinates. The space is homogeneous if it admits of
the aggregate of transformations (or, as is said, the
group of motions) that make it possible to align any
specified point of the space with any other point. By
virtue of the three-dimensional character of the space
it is obvious that to this end different transformations
of the group should be determined by the values of
t h r e e p a r a m e t e r s .

Thus, in Euclidean space homogeneity is expressed
by invariance of the metr ic with respect to paral le l
t ranslat ion of the Cartes ian system of coordinates.
Each trans lat ion is determined by t h r e e p a r a m e t e r s —
the components of the vector of the displacement of
the origin. All these transformations leave invariant
the t h r e e independent differentials (dz, dy, dz) of
which the length element is constructed. In the general
case of a non-Euclidean homogeneous space, the
transformations of its group of motion also leave in-
variant three differential forms which, however, do not
reduce to complete differentials of any coordinate func-
t ions. We write these forms in the form

Ί^· (C.I)

where the Latin index a numbers t h r e e independent
vectors (coordinate functions); we shall call these the
reference vectors .

With the aid of the forms (C.I), a spatial metr ic that
is invariant against a given group of motions is con-
structed a s follows:

i.e., the metr ic tensor is

7αβ = ν«ί.'£«β. ( C . 2 )

w h e r e t h e c o e f f i c i e n t s o f y a b > w h i c h a r e s y m m e t r i c a l

i n t h e i n d i c e s a a n d b , a r e f u n c t i o n s o f t h e t i m e * . T h e

c o n t r a v a r i a n t c o m p o n e n t s o f t h e m e t r i c t e n s o r s a r e

w r i t t e n i n t h e f o r m

(C3)
a bwhere the coefficients y a b form a matr ix that is the

inverse of the matr ix y a b ( y a c / C = δ^)> an<3 the

with the same accuracy with which formulas (B.15)
a r e valid.

"Throughout this section, we stipulate summation over repeated in-
dices, both Greek and Latin (a, b, c, . . .)\vhich number the reference
vectors.
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quantities e a form three vectors " inverse" to the

vectors

(C.4)

(each of these equations follows automatically from the
other). We note that the connection between e£* and

can be written in explicity form as follows:

e2 = (l/t·) [e 3 = (l/i>) [e
(C.5)

where ν = e 1 - e 2 x e 3, and ea and e a must be under-
stood as Cartesian vectors with respective components

and e^* The determinant of the metric tensor (C.2)

IS

V=! Vat! (C.6)

where | y a b I is the determinant of the matrix
The invariance of the differential forms (C.I) de-

notes that

(C.7)

e awith
functions of the old and new c o o r d i n a t e s , r e s p e c t i v e l y .
Multiplying this equation by e |*(x ' ) , making the substi-
tution άχ'β = (aQ !x'/ 3)dx 0 i, and comparing coefficients
of identical differentials d x a , we obtain

a,^=eaVK<*)· (C.8)

These equations are a system of differential equations
determining the functions χ ' β ( χ ) from the specified
reference vectorst. For them to be integrable,
Eqs. (C.8) must identically satisfy the conditions

Calculating the derivatives, we obtain

Multiplying both sides of the equation by
e ^ ( x ) e ^ ( x ) e o ( x ' ) and transferring the differentiation
from some factors to the others with allowance for
(C.4), we obtain in the left side

and in the right side the same expression as a function
of x. Since χ and x' are arbitrary, these expressions
should reduce to constants:

^ ( V a - ^ - C t , · (C.9)

The constants cSv, are called the structure constants

*One must not confuse e^ with the contravariant components of
the vector e^! The latter are equal to e a a = 7a^e^ = 7 a be^.

tThe representation of the spatial metric in the form yaa = &2laln +
b2mamn + c 2n ann, used in Sec. 4, corresponds to a diagonal matrix y^
with components 7 U = a2, y22 = b 2 , γ 3 3 = c 2; the vectors 1, m, and η
correspond to the vectors e 1 , e2, and e3.

t For transformations of the form x'0 = x0 + £0, where {P are small
quantities, we obtain from (C.8) the equations

Three linearly independent solutions of these equations, £r (b = 1, 2,
3), determine infinitesimally small transformations of the group of mo-
tions of space. The vectors £0 are called Killing vectors.

o f t h e g r o u p . M u l t i p l y i n g b y e ^ , w e c a n r e w r i t e ( C . 9 )

i n t h e f o r m

^ ^ l - e W l = Cahel ( C I O )

A s s e e n f r o m t h e d e f i n i t i o n , t h e s t r u c t u r e c o n s t a n t s

a r e a n t i s y m m e t r i c a l i n t h e l o w e r i n d i c e s

O n e m o r e c o n d i t i o n f o r t h e m c a n b e o b t a i n e d b y n o t i n g

t h a t E q . ( C I O ) c a n b e w r i t t e n i n t h e f o r m o f a c o m m u -

t a t i o n r u l e

for the l inear dif ferential o p e r a t o r s *

x«=&*- (C

Then the aforement ioned condit ion r e s u l t s from the
identity

[{XaXb) Xc] -τ [ [ Χ Λ ]

( c a l l e d t h e J a c o b i i d e n t i t y ) a n d t a k e s t h e f o r m

( C . 1 4 )

We note that Eqs. (C.9) can be written in vector
form:

{eaeb] rot e«= —Caft,

where again the vector operations are carried out as
if the coordinates x a were Cartesian. With the aid of
(C.5) we obtain from this

— (eiroteiJ-^CJ,, — (e* rot ei)==C{3, i-(e3 rot ei) = C|, (C.15)
i-' V V

and six more equations obtained by cyclic permutation
of the indices 1,2, and 3.

The Einstein equations for a world with homogene-
ous space can be represented in the form of a system
of ordinary differential equations containing only the
functions of the time. To this end, all the three-dimen-
sional vectors and tensors must be expanded in terms
of the triad of reference vectors of the given space.
Denoting the components of such expansions by the
indices a, b , . . . ,we have, by definition

all these quantities are already functions of t only
(the scalar quantities, the density e and the pressure
of matter p, are also functions of the time). Further
raising and lowering of the indices is carried out with

a b
 |

 b b

he i
y a b : = y c b R ac» u a = 7 a b u bt h e a i d o f t h e q u a n t i t i e s y

e t c .

E i n s t e i n ' s e q u a t i o n s i n t h e s y n c h r o n o u s r e f e r e n c e

f r a m e a r e e x p r e s s e d i n t e r m s o f t h e t h r e e - d i m e n s i o n a l

tensors καβ and P a ( 3 (see (2.11)-(2.13)). For the
former we have simply

( t h e d o t d e n o t e s d i f f e r e n t i a t i o n w i t h r e s p e c t t o t ) . T h e

c o m p o n e n t s o f P a b c a n b e e x p r e s s e d i n t e r m s o f t h e

q u a n t i t i e s y a b a n d t h e s t r u c t u r e c o n s t a n t s o f t h e g r o u p :

*To avoid misunderstandings in comparison with other papers, we
note that the systematic theory of continuous groups is usually con-
structed on the basis of the operators (generators of the group) defined
in terms of the Killing vectors: X a = ξ " 3 α .
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(C.I 7.)

The same quantities can be used to express the co-
variant derivatives κ$. , and we obtain for R a

W e e m p h a s i z e t h a t t o s e t u p t h e E i n s t e i n e q u a t i o n s

t h e r e i s n o n e e d t o u s e t h e e x p l i c i t e x p r e s s i o n s f o r t h e

r e f e r e n c e v e c t o r s a s f u n c t i o n s o f t h e c o o r d i n a t e s * .

T h e c h o i c e o f t h r e e r e f e r e n c e v e c t o r s i n d i f f e r e n t i a l

f r o m ( C . I ) (and w i t h t h e m a l s o o f t h e o p e r a t o r s ( C . 1 3 ) )

i s o f c o u r s e n o t u n i q u e . T h e y c a n b e s u b j e c t e d t o a n y

l i n e a r t r a n s f o r m a t i o n w i t h c o n s t a n t ( r e a l ) c o e f f i c i e n t s :

« i " - 4 « ? · ( C . 1 9 )

W i t h r e s p e c t t o s u c h t r a n s f o r m a t i o n s , t h e q u a n t i t i e s

y a b b e h a v e l i k e c o v a r i a n t t e n s o r s , a n d t h e c o n s t a n t s

C £ b u k e a t e n s o r t h a t i s c o v a r i a n t i n t h e i n d i c e s a a n d

b a n d c o n t r a v a r i a n t i n t h e i n d e x c .

T h e c o n d i t i o n s ( C . l l ) a n d ( C . 1 4 ) a r e t h e o n l y o n e s

t h a t t h e s t r u c t u r e c o n s t a n t s m u s t s a t i s f y . H o w e v e r ,

a m o n g t h e s e t s of c o n s t a n t s a l l o w e d b y t h e s e c o n d i t i o n s

t h e r e a r e e q u i v a l e n t o n e s , i n t h e s e n s e t h a t t h e i r d i f-

f e r e n c e i s c o n n e c t e d o n l y w i t h t h e t r a n s f o r m a t i o n s

( C . 1 9 ) . T h e q u e s t i o n o f t h e c l a s s i f i c a t i o n o f h o m o g e n e -

o u s s p a c e s r e d u c e s t o a d e t e r m i n a t i o n o f a l l t h e n o n -

e q u i v a l e n t s e t s of s t r u c t u r e c o n s t a n t s .

T h e s i m p l e s t m e t h o d o f d o i n g i t ( f o l l o w i n g B e e r ) i s

t o u s e t h e " t e n s o r " p r o p e r t i e s o f t h e c o n s t a n t s C £ b

a n d e x p r e s s t h e s e n i n e q u a n t i t i e s i n t e r m s o f s i x c o m -

p o n e n t s of t h e s y m m e t r i c i 5 t e n s o r " n a ' D a n d t h e t h r e e

c o m p o n e n t s o f t h e " v e c t o r " a c i n a c c o r d a n c e w i t h

c S ^ w ^ + e k a - e ^ i , , ( C . 2 0 )

w h e r e e a b d i s a u n i t a n t i s y m m e t r i c a l " t e n s o r . " T h e

a n t i s y m m e t r y c o n d i t i o n ( C . l l ) i s a l r e a d y t a k e n i n t o

a c c o u n t h e r e , a n d t h e J a c o b i i d e n t i t y ( C . 1 4 ) l e a d s t o

t h e c o n d i t i o n

By means of the transformations (C.19) the symmetric
" tensor" n a " can be reduced to diagonal form; let
n ( 1 ) , n ( 2 ) , and n<3) be its principal values. The equality
(C.21) shows that the "vector" a^ (if it exists) lies on
one of the principal directions of the " tensor" η ,
namely the direction corresponding to a zero principal
value. Without loss of generality, we can therefore put
ab = (a, 0, 0). Then (C.21) reduces to an ( 1 ) = 0, i.e.,
either a or n (1> must vanish. The commutation rules
(C.12) become

[XlX2\ = aX2 + niZ)X^ [X2X3i = nCl>X1, [X3tf,] = n«»X2-aXs. (C.22)

We are still free to reverse the signs of the operators
X a and to transform their scale arbitrarily (to multi-
ply them by constants). This enables us to change
simultaneously the sign of all the n ' a ' , and also to
make a positive (if it differs from zero). It is also
possible to transform all the structure constants into
± 1 , if at least one of the quantities a, n ( 2 ) , or n ( 3 ) is
equal to zero. If all three quantities differ from zero,

then the scale transformations leave the ratio
a 2/n< 2 'n ( 3 ) invariant.

Thus, we arrive at the following list of all the pos-
sible types of homogeneous spaces; the Roman number
in the first column of the table is the customary
Bianchi classification:

Type of

space

II
VII
VI
IX

VIII

η
η
η
0
η
0

η
1
1
1
1
1

(2)

0
η
1

—1
1
1

η " )

0

0

0

0

1

— 1

T y p e o f

s p a c e

V

I V

V I I

III (α=1)

1
1
α

} ·

„<!>

0
η
η

0

(2)

0
0
1

1

(3)

0
1
1

—1

T h e p a r a m e t e r a r u n s t h r o u g h a l l p o s i t i v e v a l u e s . T h e

c o r r e s p o n d i n g t y p e s c o n s t i t u t e o n e - p a r a m e t e r f a m i l i e s

o f d i f f e r e n t g r o u p s .

T y p e I i s E u c l i d e a n s p a c e ( a l l t h e c o m p o n e n t s o f t h e

s p a t i a l c u r v a t u r e t e n s o r v a n i s h ) . B e s i d e s t h e t r i v i a l

c a s e o f G a l i l e a n m e t r i c , t h i s i n c l u d e s t h e m e t r i c ( 2 . 1 ) .

I f w e p u t i n t h e m e t r i c t e n s o r ( C . 2 ) f o r t h e s p a c e o f

t y p e D C y a b = ( y 2 ) a 2 5 a b i t h e n w e o b t a i n w i t h t h e a i d

o f ( C . 1 7 ) f o r t h e R i c c i t e n s o r

η Λ Ρ - - Ρ ι.(·α
 Ρ^ = V α

* αο — " τ ρ υ α ο ι •* ctp ~~ Λ &ο α β η2 · α Ρ '

c o r r e s p o n d i n g t o a s p a c e o f c o n s t a n t p o s i t i v e c u r v a t u r e

( w i t h c u r v a t u r e r a d i u s a ; s e e [ 2 ] , S e c . 1 0 7 ) ; t h i s s p a c e

i s c o n t a i n e d t h u s i n t y p e I X a s a p a r t i c u l a r c a s e .

A n a l o g o u s l y , a s p a c e o f c o n s t a n t n e g a t i v e c u r v a t u r e

i s c o n t a i n e d a s a p a r t i c u l a r c a s e i n t y p e V . T h i s c a n

b e e a s i l y v e r i f i e d b y t r a n s f o r m i n g f i r s t t h e s t r u c t u r e

c o n s t a n t s o f t h i s g r o u p b y m e a n s o f t h e s u b s t i t u t i o n s

X2 + X3 = Xa, X2 - X3 = X3, and X! = ΧΊ. We then
have [ x ; x 2 ] = X2, [X2X3] =0, and [X3Xi] = -X 3 .
Putting then y ab = a26ab» we obtain the Ricci tensor
Ρ α α = - 2δαβ/Ά2, corresponding to a space of constant
negative curvature.

D. HOMOGENEOUS SPACES OF TYPE VIII AND IX

For the space of type IX, the commutation rules of
the operators X a a re :

i.e., the non-zero structure constants are*

(D.I)

According to (C.15), these constants coincide with λ,
μ, and ν, [Eq. (2.10)], respectively.

The reference vectors corresponding to the con-
stants (D.I) are

Ι Ξ e
1
 = (sin ζ sin y, cos 2, 0), Λ

m = e
2
 = ( — cos 2 sin y, sin s, 0), .-

n = e3=(cosy, 0, 1), J

(D.2)

w h e r e t h e c o o r d i n a t e s a r e d e n o t e d x 1 = x , x 2 = y , a n d

x 3 = z . A c c o r d i n g t o ( C . 6 ) , t h e v o l u m e e l e m e n t i s

dV = -]/ydx dy dt = V\ yab I sin y dx dy dz. ( D . 3 )

*A derivation of formulas (C.17) and (C.18) can be found in Schuck-

ing's article in the book [ 2 1 ] .

*The common sign of the structure constants is reversed here com-

pared with the table given above.
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The coordinates run through values in the intervals

0 < ΐ < 4 π , 0 < » « : π , Ο < ζ < 2π ( D . 4 )

( s e e b e l o w ) . T h e s p a c e i s c l o s e d a n d i t s v o l u m e i s

Υ = Ι 6 Λ * y \ ^ T \ . ( D . 5 )

A s a l r e a d y i n d i c a t e d , t h e p a r t i c u l a r c a s e y a b

= ( y 4 ) a 2 6 a b c o r r e s p o n d s t o a s p a c e o f c o n s t a n t p o s i -

t i v e c u r v a t u r e . W i t h t h e s e v a l u e s o f y a b a n d w i t h t h e

r e f e r e n c e v e c t o r ( D . 2 ) , t h e l e n g t h e l e m e n t i s

d P = 1 l l a " - (dz? + d y " - - f - d z 2 - J - 2 C O s y d x d z ) . ( D . 6 )

L e t u s s h o w h o w i t c a n b e t r a n s f o r m e d t o t h e f o r m

c u s t o m a r i l y u s e d f o r a s p a c e o f c o n s t a n t p o s i t i v e

c u r v a t u r e :

( X d X + Y

o r

+ d Z - + -

i = a2 (ίχ2 + sin2 χ sin2 θ dcp" + sin2 χ

( D . 7 )

( D . 8 )

where χ, θ, and φ a r e angles of a four-dimensional
spher ica l coordinate system connected with X, Y, and
Ζ in (D.7) by

X = a sin χ sin θ cos φ , Υ = α sin χ sin θ sin φ , Z = nsinxcos6

( s e e [ 2 ] , S e c . 1 0 7 ) . B y m e a n s of t h e s u b s t i t u t i o n

X = pcos(P/2), y=psin(P/2), Z = "l/a* —p 2 sin (a/2)

and ρ = a sin(y/2) we transform the element (D.7)
into
dl2 = ι /s (a2 - p2) da2 + 1/4P2 ίβ 2 + (1 — p 2 /" 2 )" 1 dp2

= V ^ 8 (cos2 (y/2)da2-\- Bin* (y/2

T h e s a m e f o r m i s a s s u m e d b y ( D . 6 ) if t h e s u b s t i t u t i o n

ζ + x = a and ζ - x = β is made. Combining now all
the success ive substitutions, we find that the t rans for-
mation form (D.6) to (D.8) is effected by the formulas

sin (y/2) cos [(z —1)/2] = sin χ sin θ cos φ , ~

sin(W2) sin |(z — x)/2] = sin χ sin θ sin φ , (D.9)

Variation of the coordinates χ, θ, and φ in the inter-
vals 0 < χ, θ < 7Γ, and 0 < φ < 2π corresponds to
variat ion of the coordinates x, y, and ζ in the inter-
vals (D.4).

For homogeneous space of type VIII, the commuta-
tion ru les a r e

[ Ϊ Λ 1 = ~ Ϊ ) , [X 2 X 3 ] = A·,, [ x 3 X j i = - x 2 ( D . 1 0 )

i . e . , t h e s t r u c t u r e c o n s t a n t s a r e C32 = - 1 a n d C13 = C21

= 1 .

T h e c o r r e s p o n d i n g r e f e r e n c e v e c t o r s a r e

1 = ( — shzsin 1/, chz, 0), m = ( — chz sin y, shz, 0), n = (cos y, 0, 1). ( D . l l )

The coordinate ζ now runs through values from 0
to «, and the volume of space is infinite.

: E . M . L i f s h i t z a n d I. M . K h a l a t n i k o v , U s p . F i z .

N a u k 8 0 , 3 9 1 ( 1 9 6 3 ) [ S o v . P h y s . - U s p . 6 , 4 9 5 ( 1 9 6 4 ) ] ;

A d v . P h y s . 1 2 , 1 9 5 ( 1 9 6 3 ) .
2 L . D. Landau and Ε. Μ. Lifshitz, Teoriya polya,

5th edition, M., Nauka, 1967 (Classical Theory of
Fie lds , Addison-Wesley, 1969).

3 E . M. Lifshitz, V. V. Sudakov and I. M. Khalatni-
kov, Zh. Eksp. T e o r . F iz . 40, 1847 (1961) [Sov. Phys-
J E T P 13, 1298 (1961)].

4 R . P e n r o s e , Phys. Rev. Let t . 14, 57 (1965).
5 S . W. Hawking, Phys . Rev. Lett . 15, 689 (1965).
6 S . W. Hawking and G. F . R. Ell is , Astrophys. J .

152, 25 (1968).
7 R . P. Geroch, Phys. Rev. Lett . 17, 445 (1966).
8 E . Kasner, Amer. J . Mathem, 43, (1921).
9 L . D. Landau and Ε. Μ. Lifshitz, Mekhanika

sploshnikh s red (Mechanics of Continuous Media),
2nd ed., M., Gostekhizdat, 1954.

1 0 V. A. Belinskit and I. M. Khalatnikov, Zh. Eksp.
T e o r . F iz . 49, 1000 (1965) [Sov. P h y s . - J E T P 22, 694
(1966)].

1 1 1 . M. Khalatnikov and Ε. Μ. Lifshitz, Phys. Rev.
Lett . 24, 76 (1970).

1 2 V. A. Belinskii and I. M. Khalatnikov, Zh. Eksp.
T e o r . F i z . 56, 1700 (1969) [Sov. P h y s . - J E T P 29, 911
(1969)].

1 3 E . M. Lifshitz and I. M. Khalatnikov, ZhETF P i s .
Red. 11, 200 (1970) [ J E T P Lett . 11, 123 (1970)].

1 4 E . M. Lifshitz, I. M. Lifshitz, and I. M. Khalatni-
kov, Zh. Eksp. Teor . F iz . 59, 322 (1970) [Sov. Phys.-
J E T P 32, 173 (1971)].

1 5 V. A. Belinskii and I. M. Khalatnikov, Zh. Eksp.
T e o r . Fiz . 57, 2163 (1969) [Sov. P h y s . - J E T P 30, 1174
(1970)].

1 6 V. A. Belinskii and I. M. Khalatnikov, Zh. Eksp.
T e o r . F i z . 59, 314 (1970) [Sov. P h y s . - J E T P 32, 169
(1971)].

1 7 A. Einstein and N. Rosen, J . Franklin Inst. 223, 43
(1937); A. Einstein, Sobranie trudov (Collected Works,
Russ . t rans l . ) Vol. 2, p. 438.

1 8 A. Z. Petrov, P r o s t r a n s t v a Einsteuia (Einstein
Spaces) M., Fizmatgiz, 1961.

1 9 C h . W. Misner, Phys. Rev. Lett . 22, 1071 (1969).
2 0 A. Ya. Khinchin, Tsepnye drobi (Continuous

Fract ions) M., Fizmatgiz, 1961.
2 1 Ε . Schucking, Gravitation, an introduction to

modern r e s e a r c h , Ed. L. Witten, Wiley and Sons, Ν. Υ.,
1962, p. 454.

2 2 A. G. Doroshkevich and I. D. Novikov, Astron.
Zh. 47, No. 5 (1970) [Sov. Astron.-AJ 14, No. 5 (1971)].

Translated by J . G. Adashko


