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INTRODUCTION

J.HE term "incorrectly posed problems" now includes
a wide variety of problems of different sorts and differ-
ent origins, many of which lie outside the scope of the
present review. Deferring a detailed explanation of the
mathematical meaning of the term to Chapter 1, we note
that the expression "incorrectly posed problems" is
not to be taken too literally, although these problems, in
contrast with the "correctly posed" ones, are very
sensitive to the exact formulation, and therefore are
often in fact found to be incorrectly formulated. One
class of incorrectly posed problems, a correct formu-
lation of which is of much value for their clear physical
content, is the so-called incorrectly posed inverse
problems of mathematical physics. According to an es-
tablished terminology,* direct problems of mathemati-
cal physics are problems oriented along a cause-effect
sequence—i.e., problems of finding out the consequences
of given causes: the determination of fields in time and
space from given sources, the calculation of the reac-
tion of a device to a known signal, and so on.

In this sense the inverse problems are those asso-
ciated with the reversal of the chain of causally related
effects, i.e., problems of finding the unknown causes of
known consequences: the determination of the charac-
teristics of the sources of a field from the values of the
field at certain points or in certain regions of space, the
reconstruction of the input signal from the reaction at
the output of a device, and so on. Inverse problems usu-
ally arise as problems of the interpretation of some
sort of observations.

Properly speaking, any problem of measuring certain
characteristics of a physical object is an inverse prob-

*This terminology evidently is due to A. N. Tikhonov.

lem in the sense of this definition. There is, however,
a tendency to use the term "inverse problem" to denote
rather complicated problems of interpretation, concern-
ing either the simultaneous and interdependent measure-
ment of many parameters of a physical object, or else
cases in which the number of parameters is indefinitely
large (as, for example, when the state of an object is
described by some function of the coordinates). Strictly
speaking, only problems of the second sort can be called
incorrectly posed, and they have received special atten-
tion; but when the number of parameters is large prob-
lems of the first kind can also display characteristic
features of incorrectly posed problems, which, as we
shall see later, are due to an indefiniteness of informa-
tion. The methods of solution under conditions of such
uncertainty are essentially the same for problems of
both types.

Although it cannot be asserted that all "functional"
inverse problems are clearly incorrectly posed in the
mathematical sense, still in most cases they are incor-
rectly posed. They include the inverse problem of po-
tential theory 1 2 ' 3 : as it occurs in the interpretation of
gravimetric observations in geological exploration, the
inverse problem of heat conduction/43 a class of inverse
problems of radiative transfer ' 6 " 9 ' 1 2~ 1 8> 4 6" 5 2^ associ-
ated with the "probing" of media in terms of the optical
characteristics of the emerging radiation, a class of
"instrumental" inverse problems arising from the at-
tempt to eliminate the influence of the measuring de-
vices in optical and x-ray spectroscopy, instrumental
optics, and radio astronomy/ 5 ' 10> u> ω-30> 3 4>3 5^ and so
on. Even this far from complete list shows that incor-
rectly posed problems are deeply rooted in physics, and
also, what is much more important, that the further de-
velopment of the theory and technique of modern experi-
mentation is impossible without a clear understanding
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of the mathematical nature of these inverse problems.
An important source of increased interest in incor-

rectly posed problems of measurement is due to the de-
velopment of computational techniques, in particular
electronic computers, which make possible the handling
of large volumes of numerical material. There is often
a tendency to exaggerate the possibilities of such pro-
cessing, resulting in excess optimism regarding meth-
ods of measurement based on the solution of incorrectly
posed inversed problems.* On the other hand, difficul-
ties, sometimes only apparent ones.t in the solution of
inverse problems can hinder the development and use of
extremely useful methods of measurement. Therefore
the exposition, and some degree of generalization, of
presently available experience in the solution of incor-
rectly posed inverse problems seems very timely.

An important feature of problems of measurement,
which are essentially all we shall be considering in the
present review, is the stochastic nature of the quanti-
ties observed in an actual experiment. In the simplest
cases one speaks of "random disturbances" or "no i se"
in the measuring apparatus, distorting the "useful sig-
nal." In more complicated cases this signal itself is
random, as for example in measuring the intensity of a
flux of quanta.

This stochastic property is an inevitable feature of
every actual experiment, and naturally must appear ex-
plicitly in the formulation of the inverse problem. Sta-
tistical approaches and methods of solution of incor-
rectly posed inverse problems are therefore a direct
consequence of the stochastic character of the experi-
ment.

The purpose of this review is to elucidate recently
developed methods for the solution of incorrectly posed
inverse problems which depend essentially on mathe-
matical statistics and information theory. Before pro-
ceeding to this task, we shall discuss in more detail the
concept of " incorrectness," and shall give a cursory
survey of the usual (nonstatistical) methods of solution
of incorrectly posed problems, and of the difficulties
that arise in them.

I. INCORRECTLY POSED INVERSE PROBLEMS AND
DIFFICULTIES IN THEIR SOLUTION

The "Incorrect" Aspect of an Inverse Problem

A typical inverse problem, and one often encountered
in mathematical physics, is the solution of the Fredholm
integral equation of the first kind:

(1)

where K(x, y), the kernel of the equation, determines
the operator Κ of the direct problem, which converts
the unknown function φ(χ), describing the s tate of the
object of the measurement, into some other function f(y)
which is access ib le to direct reg i s t ra t ion and can t h e r e -
fore be regarded a s known. Sometimes Eq. (1) takes
the special form of the "convolut ion"

J V*17

if the kernel depends only on the difference of the argu-
ments . We shall consider both Eq. (1) and Eq. (2), the
l a t t e r because of the simplicity of the r e s u l t s relat ing
to it.

The solution of Eq. (1) may not exist at all, or may
not exist for every function f(y) on the right side. For
example,* if

K(y,z) — y+x, (3)

the r ight member f(y) must be a l inear function of y.
If a solution does exist, it need not be unique. In the
case of our example, if f(y) = f0 + fiy, any function φ(χ)
that satisfies the two conditions,

is a solution of Eq. (1) with the kernel (3).
In problems ar i s ing in physics we a r e usually s u r e

of the existence of the function φ(χ) that appears in the
integrand in the left member of Eq. (1). Its uniqueness
can also often be guaranteed.t

However, even if the solution exists and is unique,
Eq. (2) or Eq. (2) can have a specific peculiarity which
makes the problem an incorrect ly posed one. This pe-
culiarity i s the " s m o o t h i n g " action of the k e r n e l . We
shall explain this with an example.

Let the kernel K(y, x) be a continuous function of its
second argument. Let us consider as solutions two
functions φ(χ): any function φ^,χ) and the function
φζ(χ) + C sin 2jrnx/(b— a), where η i s a sufficiently
large integer. It is c lear without further calculation
that for an arb i t rar i ly la rge value of C we can choose
a value of η so large that thedif ference of the c o r r e -
sponding right m e m b e r s ΐί = Κφι and f2 = Κφζ (for a
given value of the argument y) will be l e s s in absolute
value than any previously given (arbi trar i ly small) num-
ber e, i .e. , a kernel of the type in question " s m o o t h s
o u t " even a very intense, but high-frequency component
to an extremely small level (the smal ler , the higher i ts
frequency). If we knew the r ight member f(y) exactly,
there would be no great h a r m in this, the uniqueness of
the solution being guaranteed. But the presence of d i s-
turbances accompanying the reg is t rat ion of the function
f(y) a l t e r s the situation catastrophical ly. In fact, sup-
pose that under the experimental conditions we can
check the agreement of the reg i s tered function f *(y)
with the exact t rans form f(y) = Κφ of the unknown
function φ(χ) only to within an e r r o r e:

\f*(y)-f(y)i<e.
d

(4)

It i s easy to see that if the kernel of Eq. (1) has the
smoothing action we have described, then we can always
find two functions φ^χ) and φζ(χ) = φ^χ)
+ C sin 2irnx/(b — a) whose t rans forms fi = fccp1 and
f2 = Κφζ both satisfy the inequality (4) with the same
function f *(y). Accordingly, there a r e at least two dif-

This is evidently the case with some inverse problems of satellite
meteorology (cf., e.g., [15]).

tFor example, the lack of an anlytic solution of an integral equation
of the form (1).

*This example is taken from [3 8].
tFor example, for the inverse problem of potential theory, [39] the

inverse problem of spectroscopy and instrumental optics, [40] and a
number of other problems.
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ferent functions that satisfy Eq. (1) with the right m e m -
ber f*(y) taken from experiment to within the e r r o r e,
and speaking more exactly t h e r e i s an infinite set of
such functions, among which t h e r e a r e specimens dif-
fering from each other by as much as we p lease . It can
therefore be seen that having undertaken to solve Eq. (1)
with the approximate right member f *(y) we have no
sort of chance to get the t rue solution φ(χ) that c h a r a c -
t e r i z e s the actual state of the object of the investigation,
and we shall a lmost certainly a r r i v e at some false so-
lution containing indefinitely large rapidly oscillating
components.

It is in this situation that the " i n c o r r e c t n e s s " of the
problem (1) actually l i e s . The exact definit ion 1 1 3 9 ' 4 1 ' 4 2 '
5 6 ] only enables us to dispense with the special form of
the condition (4) and allows use of more general m e a s -
u r e s of the deviation.

The est imate of the difference between functions by
the quantity (4), which is character i s t ic of the classical
analysis, i s inconvenient for applications, since the
reg i s tered function f*(y) is usually a real ization of
some random process and subject only to probabilistic
r e s t r i c t i o n s , so that we either can indicate i ts maximum
deviation from the exact value "wi th a large safety fac-
t o r " or else cannot indicate it at al l . Therefore it is
more suitable to use a s tat is t ical approach to the defi-
nition of c o r r e c t n e s s , M 3 : which means studying the sta-
tist ical proper t ies of the problem (1) in their depend-
ence on the c h a r a c t e r i s t i c s of the random p r o c e s s of
which the function f *(y) r e g i s t e r e d in the experiment
is a real izat ion.

The pecul iar i t ies of the stat is t ical approach may be
conveniently demonstrated with an example from instru-
mental spectroscopy—the reduction of the spectrum r e -
corded by a device with a finite resolution to the " idea l
i n s t r u m e n t " (with infinitely high resolut ion) . C 2 2 : l The
corresponding inverse problem can be formulated in
the form of Eq. (2),* supplemented by the assumption
that the r e g i s t e r e d function f *(y) i s the sum of the ex-
act right m e m b e r f(y) and a stationary random process
6(y) (the noise) with z e r o mean and corre lat ion function
Α{η) = (5(y)6(y + η)). The formal solution of Eq. (2) i s
easily obtained by means of the Four ier t ransformation

/ ( ρ )

Ktp)
dp, (5)

where the sign ~ denotes the Four ier t rans form of the
corresponding function. Let us find the dispers ion of
the function φ(χ) when instead of f we put f * = f + δ
in the right member of Eq. (5). As Rautian has shown, 1 2 2 3

the express ion for this is

of the noise must fall off sufficiently rapidly for | p |
— <». This imposes severe re s t r ic t ions on the c lass of
p r o c e s s e s 6(y) that a r e admissible as noise. In p r a c -
tice these conditions a r e never satisfied, since the
noise always contains a "whi te n o i s e " component and
consequently for | p | — °° the spectrum G(p) approaches
a finite l imit. Therefore the dispers ion of the solution
as found from (6) is infinite, and consequently it i s im-
possible to substitute the experimentally found function
f*(p) for f(p) in Eq. (5). The source of this difficulty is
obvious: the high-frequency components of f *(y), which
a r i s e from the presence of noise and which must not be
present in the t r u e function f(y), a r e divided in Eq. (5)
by smal l eigenvalues k(p) and produce large (and for
| p | — » infinitely large) oscillations in the solution.

It is easy to see that the condition (7) is equivalent
to the classical ly defined incorrectness of the problem
(2). It is useful to examine what the situation must be
for the problem (2) to be a correct ly posed one. For
this the condition (7) must be replaced by its opposite:
I K(p) | > e > 0 for | ρ | — °°; and the finiteness of the
dispers ion Ό(φ) is then as sured for a very much broad-
er c lass of p r o c e s s e s 6(y), it being sufficient that the
dispers ion of the p r o c e s s 6(y) itself be finite. Accord-
ing to the stat ist ical approach 1 ^ 3 ] this is indeed the dif-
ference between incorrect ly and correct ly posed prob-
l e m s ; the solution of a correct ly posed problem is s ta-
tistically stable with respect to a wider c lass of random
processes than the solution of an incorrect ly posed
problem. In part icular this i s the explanation of the
fact that methods for the solution of correct ly posed
problems can be developed without special considera-
tion of s tat i s t ical noise—the noise can always be taken
into account at the final stage of the calculation a s a
perturbation of the exact solution.* This sor t of meth-
od i s no good for incorrect ly posed problems. The point
is that actual noise, a s a rule, is not " a d m i s s i b l e " for
them, and the dispers ion of the exact solution is in a c -
tual fact infinite, i.e., a formally exact solution of the
type of (5) simply has no meaning.

The Algebraization of Incorrectly Posed Problems
and the Question of Determinacy

In the numerical solution of an integral equation of
the type (1) one always reduces it in one way or another
to a system of l inear algebraic equations

-dp. (6)

where G(p) = Δ(ρ) i s the power spectrum of the p r o c -
e s s 6(y). We now note that the Fourier t rans form K(p)
of the apparatus function (the t ransfer function) has the
property that

|#(/>)|-»0 for |p |-»oo. (7)

Therefore in order that the dispers ion of the solution of
the problem (2) r e m a i n finite the power spectrum G(p)

i = l
7 = 1,2, . . . , η, ( 8 )

* I n this case the kernel of Eq. (2) is known by the special name of

the "appara tus funct ion."

where φ^ and φ ; a r e l inear functionals of the func-
tions <p(x) and f(y), namely either their values at certain
support points or the coefficients in thei r expansions in
t e r m s of a system of orthogonal functions.

It might seem that the reduction of Eq. (1) to a sys-
tem of algebraic equations (8) exhausts the problem of
solving it—we need only take the order of approximation
η large enough to obtain any des ired accuracy. When,
however, we r e m e m b e r that the original problem (1) is
incorrect ly posed, we can expect that some obstacle
will a r i s e in the way of this procedure. The obstacle is

*An example of a correctly posed problem is the solution of the
Fredholm equation of the second kind, which differs from Eq. (1) by
having the unknown function present in the left member as an additional
term.
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the poor determinacy of the system of equations (8),
i.e., the extraordinarily strong dependence of the solu-
tions on variations of the inhomogeneous term, and also
on errors in the coefficients in (8) and on computing
errors .

As Fadeev t 4 4 ' 4 5 ] has shown, the determinacy of the
system (8) is closely connected with the set of eigenval-
ues μ κ of the matrix K*K [ Κ is the matrix of the sys-
tem (8), and K* is the transposed matrix].

The determinacy (stability) decreases with increase
of the ratio μπ^χ/^ππη· The solution "shifts about"
in the directions of the eigenvectors ^ κ of the matrix
K*K that correspond to the smaller eigenvalues μχ.
More exactly, the sensitivity of the projection of the
solution vector φ in the direction of φ κ to variations
of the components of the vector f and of the elements of
the matrix Κ is proportional to μ χ . Therefore, in par-
ticular, the demands on computational accuracy increase
rapidly with the ratio μπ^χ/μππη even for an exactly
known vector f.

The algebraization of an incorrectly posed problem
always (for a sufficiently large order of approximation
n) gives a system of equations with poor determinacy,
for it can be shown that if the original problem is incor-
rectly posed then μπ^χ/Μπιϊη when n — °°. Conse-
quently, by choosing the order of approximation large
enough one can make the system of equations (8) arbi-
trarily poorly determinate.

The Approximate Solution of Incorrectly Posed
Inverse Problems

Approaches to the solution of inverse problems have
changed with the realization and changing understanding
of their " incorrect" nature. In this section we list some
of these approaches, adhering as far as possible to the
chronological order.

We first note that incorrectly posed inverse problems
can in a certain sense be "solved," and indeed very
successfully, not only without the use of the mathemati-
cal methods especially developed for the purpose in
very recent times, but often without any suspicion of the
incorrectness and the problems associated with it. The
point is to extract physically reliable information about
particular characteristics of the exact solution φ (or,
in physical terms, the state of the object of the investi-
gation) without seeking the solution itself; in such cases
the form of the exact solution is either known (except
for parameters which are to be determined) or else is
unimportant. We shall give an example. Our confidence
in the validity of one of the most important physical
theories—quantum mechanics—is to a large degree
based on the interpretation of data from the experimen-
tal spectroscopy of atoms and molecules, i.e., essen-
tially on the solution of the inverse problem (2). But
does it follow from the mathematical " incorrectness"
of the problem (2) that quantum mechanics is incorrect
as a physical theory? Although it is not hard to guess
the answer, it may be useful to go through the argu-
ment.* The point is that the experimental foundation of
classical quantum mechanics was the aggregate of ex-
perimental data on the positions and intensities of the

lines in the emission spectra of atoms and simple mol-
ecules. However, as is well known [in the general case
it follows from the form of Eq. (2)J, the intensity of an
isolated spectral line can be found from the instrumen-
tal spectrum f independently of the form of the true
spectrum φ (the line shape) and even of the kernel of
Eq. (2) [about this one needs to know only the normali-
zation factor K(0), the sensitivity of the device]. The
same is true, with a further assumption that the line
shape and the kernel Κ are symmetric, of the determi-
nation of the frequency of a spectral line (the frequency
of the transition). Furthermore, an analysis shows (see,
e.g., c 2 2 ] ) that both of these characteristics are deter-
mined with a finite error under natural assumptions
about the character of the noise, so that the incorrect-
ness of the problem (2) does not affect the reliability of
the results, if one uses ordinary precautions which are
well known from practical work with spectroscopic de-
vices. Other, by no means so trivial, examples of this
sort of situation are provided by the spectroscopy of
light-scattering substances. Here considerable analytic
effort 1 5 1 ' 5 2 ] is often required to select an experimental
arrangement in which the results of the direct measure-
ments will on one hand permit the determination of the
optical parameters of the substance in question, and on
the other hand be independent of the exact form (often
unknown) of the structure of the light-scattering medium,
which, together with the measuring device, determines
the kernel of an in general incorrectly posed inverse
problem relating to the absorption spectrum of the sub-
stance.*

A direct possibility for evading the difficulties
caused by the incorrect formulation of the problem is
sometimes provided by a suitable parametrization of
the solution φ , based on the concrete physical nature
of the problem. For example, in our example of an iso-
lated spectral line we may know (if the spectrum is
taken with the substance in the gaseous phase) the line
shape—assumed in the Doppler or the Lorentz form,
depending on the experimental conditions. Then from
the functional equation (2) we can derive the algebraic
equation for the only unknown parameter, the line
width,t and this equation can be solved, for example,
by the method of least squares. In the general case
such arguments lead to a system of simultaneous equa-
tions, which can be solved in the usual way (provided it
is not underdetermined). This kind of procedure is often
used in processing experimental data.

As for more general methods of solution, essentially
the first attempt to solve the incorrectly posed problem
(2) was made by Lord Rayleigh in 1871, when he pro-
posed an iteration method for correcting slit distortions
in spectroscopy. Since then such methods have been
proposed repeatedly (see the review l 2 2 ] ) . As Rautian
has shown/223 they are all equivalent to some iteration
method for solving Eq. (2). The point is that in spec-

*This argument of course does not exhaust the question of the foun-
dation of quantum mechanics itself.

*The question of the permissible uncertainty of the kernel of Eq.
(1) is an important and still unsolved problem. [51'S2] All existing
methods for solving Eq. (1) require an exact knowledge of the kernel
(with regard to the sensitivity of the solution to errors in the kernel see
below).

tThe intensity and the position, as indicated above, can be deter-
mined independently.
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troscopy the kernel of Eq. (2) is essentially a_very n a r -
row pulse; i .e., the corresponding operator K, when a p -
plied, to a sufficiently smooth function, does not differ
much from the unit operator ί (with appropriate nor-
malization). Therefore for the solution of (2) we can
try to use the formal expansion of the inverse operator
of the problem in Neumann s e r i e s :

n=0
(8a)

i .e., to find the correct ions to the zeroth approximation
φ 0 = f by success ive applications of the operator I— K.
The initial correct ions a r e indeed relatively small , if
we s t a r t with a sufficiently smooth function f, but la ter
they increase rapidly, showing more and m o r e rapid
oscil lat ions, this growth being due to the presence of
noise in the right member of (2) .* Therefore in the a p -
plication of i terat ion algori thms the r e s e a r c h worker
must himself decide when to break off the i terat ion
p r o c e s s , being guided by some sort of ideas about the
genuine or noise origin of the details of the solution
that appear after each new i terat ion.

Another general method for solving a problem of the
type of Eqs . (1), (2) is simply to solve the corresponding
algebraic system (8). If there has been good luck with
the algebraization, one can somet imes get an acceptable
solution by working to a smal l o r d e r of approximation
n, at which the instability does not yet show up. The a l-
gebraization i s most often done by expanding φ(χ) in
t e r m s of a system of orthogonal functions (it i s des i ra-
ble that they have a physical meaning) and keeping the
first η t e r m s of the expansion. This method, along with
the i terat ion method, was widely applied in pract ice t in
the t ime when owing to technical difficulties of computa-
tion it was indeed not possible to use high o r d e r s of ap-
proximation, so that the very fact that a problem of the
type (1) was incorrect ly posed could r e m a i n unknown to
those doing the calculations. But with the development
of computing techniques, when it became possible to
deal with sys tems of la rge dimensionalit ies (or high-
o r d e r i terat ions), the incorrec tness began to show up in
the form of "shi f t ing about" of the solution with in-
c r e a s e s of the order of approximation. The original
procedure in this case was to adjust the degree of ap-
proximation according to the character of the solution
obtained, stopping at an approximation in which the
"shif t ing about" (as est imated by comparing the solu-
tion with the form expected for the unknown function)
was still not too l a r g e . It i s convenient to examine this
approach with the example of Eq. (2), for which there is
a s imple possibility of controlling the degree of approx-
imation by using the formal solution (5).

Confining ourselves to the reconstruct ion of the sig-
nal spectrum φ(ρ) in a finite frequency band | p | < p 0 ,
we rewr i te (5) in the form

f HP)
A'(P)

dp, (5a)

which gives an approximate solution of Eq. (2). The dis-

*The series (8a) converges only if the right member f coincides with
the exact image K^ of the true solution.

t i t is neither possible nor necessary to list the papers on this matter.

pers ion of the approximate solution <p* i s then deter-
mined by a " c u t off" form of the integral (6) and r e -
mains finite if p 0 i s not too large . By changing p 0 one
can change the relat ion between the " a c c u r a c y of the
approximation" of the unknown function and the size of
the e r r o r ; h e r e an increase of the " a c c u r a c y " (owing
to an increase of p0) leads automatically to an increase
of the e r r o r / 2 2 · 1

Various considerations have been used to choose the
cut-off frequency p 0 : exclusion of z e r o e s of the t r a n s -
fer function K ( p ) , C 2 1 ] the expected form of the unknown
function, 1 - 2 2 ' 3 4 ] or the form of the reg i s tered func-
tion. t 2 5 ] *

T h e r e i s one other, somewhat more general way of
adjusting the degree of approximation in the use of the
solution (5). This is to multiply the integrand in (5) by
some function g(p), which generally speaking is a r b i -
t r a r y , and which falls off rapidly enough at | p | — °° so
that the corresponding integral (6) will r e m a i n finite:

£(P)
x (ρ)

(5b)

We note that (5b) goes over into (5a) for a special
choice of the factor g. It is not hard to see that the use
of (5b) i s equivalent to looking for a " smoothed version'
of the t r u e solution,

φ* (*) = x—x')<t(x')dx',

where g(x) is obtained from g(p) by the inverse Fou-
rier transformation. The degree of this "smoothing"
can be adjusted by changing the parameters of the func-
tion g(p) and even the very form of this function. But
such an extreme freedom in acting on the solution of
Eq. (2) must already make us cautious: it is clear that
by a subjective choice of the "smoothing factor," and
in general of the method for approximate solution, it is
extremely easy to distort the result. That this is so is
shown by examples of ambiguous interpretations of ra-
dioastronomical observations, given in t 2 1 ] .

The effort to dispense with arbitrary factors and to
develop general methods for the solution of incorrectly
posed problems, along with mathematical researches on
the nature of their incorrectness, has led in the last
decade to new approaches and methods for the solution
of incorrectly posed problems.

The following considerations are of fundamental im-
portance for these approaches. An incorrectly posed
problem can be regarded as effectively not fully de-
fined. In fact, with the classical concept of incorrect-
ness, a solution of the problem (1) can be any function
ψ that satisfies the condition

(9)

where r e ( f *, f) i s a m e a s u r e of the deviation of the reg-
is tered function f * from the exact right member, which
depends on the conditions of the experiment. Since
among these functions there a r e " b a d " ones, the prob-

*The paper [25] describes a program of numerical Fourier transfor-
mation in which one excludes from the integral (5) those frequency
ranges in which the spectrum of the realization f*(p) seems to be con-
trolled by the noise alone [|f*(p)l < kG(p), where k is a safety factor].
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lem (9) so as to get a unique solution as close as possi-
ble to the true one.

Generally speaking one can complete the definition
of the problem (9) in various ways. However, any meth-
od of completing the definition must be based on some
sort of ideas about the nature of the desired solution, or
in other words, on a priori information about the solu-
tion. Different methods for solving incorrectly posed
problems, including the statistical methods to be con-
sidered here, differ explicitly or implicitly in the form
of the a priori information that is used.

The first work in this direction was a paper by Phil-
lips, c 5 3 ; i in which it was suggested that from the set of
functions that satisfy the condition (9) one should choose
the "smoothest" function, or more exactly the function
that minimizes the norm of the derivative,

j b r ) (10)

One can usually show that the desired minimum is at-
tained on the boundary of the region defined by the in-
equality (9); consequently we can replace (9) by the
equation

re(f, K<t.)=--e. ( 9 a )

We now have a problem of a conditional extremum.
Solving it by the Lagrange method, we get the equation

re(f',K<t) + a ^ (11)

where a is an undetermined multiplier, which can be
determined from (9a). For a Euclidean metric the con-
dition (11) leads after algebraization to a system of lin-
ear equations. In applying this method in practice,
Phillips noted that when the parameter a is determined
from (9a) the function obtained is excessively smoothed.
One can, however, choose a value of a (in each con-
crete case) such that the solution of (11) gives a solution
much closer to the true one. Accordingly, in the Phil-
lips method the parameter α is in actual fact undeter-
mined.

For the algebraized system (8) Twomeyc54;i consid-
ered a somewhat more general form of the condition
(10):

Ω (ψ) = Σ . Hij<fi<fj = ( 8 a )

where the matrix Η is positive definite. Otherwise
Twomey's approach is the same as that of Phillips. The
condition (11) takes the form

A'*if<p-(-α#φ = Κ*ϊ, ( l l a )

a n d t h e L a g r a n g i a n m u l t i p l i e r i s d e t e r m i n e d f r o m t h e

r e l a t i o n

\K<p-f\ = e.

A n o t h e r w a y of c o m p l e t i n g t h e d e f i n i t i o n of t h e p r o b -

l e m (9) ( s e e t h e b i b l i o g r a p h y i n [ 4 2 ] : m a t h e m a t i c a l q u e s -

t i o n s r e l a t i n g t o t h i s a r e a l s o i n v e s t i g a t e d t h e r e ) i s i n a

c e r t a i n s e n s e c o m p l e m e n t a r y t o t h a t j u s t d e s c r i b e d . We

s h a l l e x a m i n e i t for t h e e x a m p l e of E q . (8) . W e g ive t h e

n a m e of a q u a s i s o l u t i o n ( the t e r m i n o l o g y i s f r o m C 4 2 ] )

of the system (8) to a vector φ which satisfies the two
conditions:

= ^/ΓιΛ>ι<Ρ,<ί\ (12)

\K<p — f\----min, (13)

where the matrix Η is positive definite, as before. If it
is known that the minimum is reached on the boundary
of the region defined by the inequality (12), the problem
of Eqs. (12) and (13) reduces to Eq. ( l la), but the La-
grangian multiplier will be determined from the rela-
tion (12), which is to be used for this with the equals
sign.

The condition (12) singles out a certain bounded
closed region as the set of admissible solutions, and is
equivalent to the presence of a priori information that
the required solution belongs to a given closed mani-
fold. In l552, weaker restrictions are used, which are
taken from the physical meaning of the solution of prob-
lem (1) as a particle-size distribution (see [ 4 6 ] )—name-
ly, this density is not negative. In this case the condi-
tion (12) is replaced by

Σ i > 0 for all /, (12a)

and the problem is solved by the methods of linear pro-
gramming.

A. N. Tikhonov1156"583 has introduced the concept of
regularization of the solution of an incorrectly posed
problem. This is taken to mean the construction of a
family of correctly posed problems depending on a reg-
ularization parameter a, which has the property that
for a —- 0 and when the errors of the right member
also simultaneously approach zero the solution of the
correctly posed problem approaches the true solution
of the incorrectly posed problem. Equation (11) was
postulated and studied by Tikhonov, independently of
Phillips, as a regularized equation with the regulariza-
tion parameter a. In its practical application the Ti-
khonov method is identical with the Phillips method,
perhaps with the difference that the indefiniteness of the
parameter a follows naturally from the very idea of
regularization, whereas in Phillips' approach it is a bit
of an embarrassment, to a certain extent discrediting
the method (on this see below). It must be remarked,
by the way, that in a number of papers elaborating Ti-
khonov's idea, algorithms have been proposed for the
determination of a, but they can scarcely be regarded
as having an real foundation, since the source or even
the exact form of the a priori information remains an
open question.

As has already been pointed out, these methods for
the solution of incorrectly posed problems start from
the assumption that experiment allows the setting of an
exact upper limit on the error |f *(y) — f(y) | . A consis-
tent use of this assumption leads in practice to exces-
sively smoothed solutions; this is evidently due to the
fact that the actual (random) error is usually smaller
than its maximum value. Moreover, the assumption does
not correspond to the nature of an actual experiment,
and does not permit an accurate estimate of the error of
the reconstruction. Therefore it is more natural to con-
sider the problem of solving an incorrectly posed prob-
lem by taking into account the statistical nature of the
experimental errors and by using other types of a priori
information, including statistical information.
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Π. THE INFORMATION OBTAINABLE FROM EXPER-
IMENT, AND THE SOLUTION OF THE
INVERSE PROBLEM

Resolving Power and Informational Metric

It is natural to begin an analysis of the " informing
p o s s i b i l i t i e s " of an experiment with the s implest prob-
l e m in which these possibi l i t ies appear at all, namely
with the problem of distinguishing two closely spaced
states of the object being measured. The formulation
of this sor t of problem in instrumental optics and spec-
troscopy in order to es t imate the l imiting possibil it ies
of optical devices—the problem of resolving power —
s t e m s from Rayleigh (for a survey of further papers
see t 2 2 ] ) . The basis of Rayleigh's approach is the idea
of comparing (by means of a given optical or spect ro-
scopic device) two standard "ob ject s "—for example, in
the case of a spectroscope, a spectra l doublet and a sin-
gle l ine. The corresponding stat ist ical approach is the
formulation of the problem in t e r m s of the theory of
stat ist ical d e c i s i o n s . [ 3 1 ] *

Let cpi(x) and φζ(χ) be two functions describing fixed
states of an object of measurement, and let the object
be in one of these s ta tes . As the resul t of an experiment
on the object we get an observed function f *(y) = f(y)
+ 6(y), where f(y) i s the function associated with the
t r u e state φ(χ) in Eq. (1), and 5(y) is a random func-
tion (noise). Following c 3 1 : l , we shall r e g a r d 5(y) as a
normal stationary random process with zero mean and
power spectrum G(p). The problem is, by observing
f*(y), to decide in which of the s tates , ψ χ, or φ ζ , the
object actually i s . We shall character ize the distin-
guishability of the s tates by the maximum probability
P r of c o r r e c t decisions under the condition that the
states being compared a r e a p r i o r i equally probable and
that the optimal decision procedure is used. The quan-
tity P r takes values between V2 and 1; the lower limit
corresponds to absolutely indistinguishable s tates , and
the upper to absolutely distinguishable s ta tes . It can be
shown that P r depends on the data of the problem [the
kernel K(y, x), the functions φ λ and φ ζ , and the s ta t i s -
t ical noise] only through a quantity p , which indeed di-
rect ly c h a r a c t e r i z e s the degree of distinguishability of
the s ta tes :

(14)

P^dp, (15)

where Φ(χ) is the probability integral, and the sign ~
denotes the Four ier t ransform of the expression whose
squared absolute value is indicated. The expression
(15) has been derived on the assumption that near the
edges of the range of observation (c, d) the function Κφ
goes to zero for a r b i t r a r y φ and that the corre la t ion
range of the noise is much smal ler than the interval
(c, d ) . C 3 6 ] The quantity ρ defined by Eq. (15) as a
m e a s u r e of the distinguishability of the s tates φ ί and
q>2, by means of the " i n s t r u m e n t " described by the op-
erator Κ and the noise power spectrum G(p), has ex-
tremely important proper t ie s . F i r s t , the case ρ(φχ

— ψζ) - 0 corresponds to complete indistinguishability

(equivalence) of the s tates in the given experiment. The
second l imiting case ρ = « would correspond to " i n -
finitely l a r g e " (absolute) distinguishability, which ordi-
narily does not occur in prac t ice . It i s convenient to
take ρ = 1 a s a threshold value defining the l imit of d i s-
tinguishability.* It is natural to call the quantity ρ the
informational distance in the state space of the object
under study. In fact, it can be shown that ρ has all of
the propert ies of a geometrical distance—nonnegativity,
symmetry with r e s p e c t to the s tates being compared,
and validity of the " t r i a n g l e inequal i ty" : ρ(ψι — ψ2)
^ β(ψι — ψ) + ρ{ψ — ψζ)· The distance p c h a r a c t e r i z e s
the information contained in the experimental re su l t s
about the s tates φι and φ 2 from the point of view of
their distinguishability.t

The Uncertainty of the Solution of the Inverse
Problem

The r e s u l t s of the preceding section show that for
each " t r u e ' s o l u t i o n " φ 0 of the problem (1), c h a r a c t e r -
izing the actual state of the object of measurement,
there exist infinitely many functions corresponding to
s ta tes that do not differ from the actual one in the r e -
sults of the r e a l (statistical) experiment—namely s tates
that satisfy the inequality

Ι ! Φ - « Ρ Ο | | < 1 . (16)

In other words, the functions φ fill a sphere of unit
rad ius in the function space of the solutions of the p r o b -
lem (1), which it is natural to call the " s p h e r e of un-
c e r t a i n t y . " In fact, any one of the functions φ satisfying
the inequality (6) can be accepted a s a solution of the
inverse problem (1), s ince the experiment does not give
enough information to distinguish this function from any
other one that a l so satisf ies the inequality (16).t In the
sense of the metr ic (15) the sphere (16) charac ter izes
the maximum accuracy which can be attained in solving
the problem (1). Therefore, in part icular, every attempt
to " r e f i n e " the solution further by purely mathematical
means, without bringing in additional information, is
analogous to an attempt to devise an " informational
perpetual mot ion" which produces information out of
nothing.

However, the pract ical value of a method for solving
Eq. (1) that leads to an a r b i t r a r y function in the sphere
(16) would be smal l : if the original problem is incor-
rect ly stated this sphere contains for the most par t
functions ψ to which t h e r e do not correspond any sort
of physical s tates of the object of measurement . To
single out the "phys ica l p a r t " of the sphere of u n c e r -
tainty it i s necessary to indicate some kind of features
that distinguish the " p h y s i c a l " solutions from the " n o n -
phys ica l " ones, or, as one usually says, we need a p r i -

*In the theory of optical devices an analogous approach has been
used independently in [32] and [3 3].

*Setting ρ = 1 in (14), we find that in this case the probability of a
correct identification of the state φ is 13.7 percent larger than the prob-
ability of guessing correctly (50 percent), and that it falls off rapidly if
ρ is decreased.

tFor a quantitative approach to the informational volume of a mani-
fold in signal space see [ 6 2 ] .

t Strictly speaking, to make this a completely precise statement, one
must replace 1 by Ά in the right member of (16), which changes nothing
in principle. For what follows it is more convenient to keep the value
unity.
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ori information about the possible states of the object
of measurement or, what is the same thing, about the
functions that are admissible as solutions of Eq. (1).
Leaving the more detailed discussion of questions con-
cerning the use of a priori information in the solution of
inverse problems to the next section, let us examine the
case in which we have no a priori information of any
kind.1 3 7 ^

It is clear, of course, that in this case it makes no
sense to solve Eq. (1) directly by any method. Some-
times, however, what is of interest is not so much the
actual solution of Eq. (1), but rather a knowledge of cer-
tain functionals of this solution, for example the value
of the total intensity of a spectral line without regard to
its shape. A way to analyze such problems by the use of
the metric (15) has been proposed in c 3 7 ] for application
to a class of linear functionals of the desired solution.

Following t 3 7 : l , let us confine ourselves to the case
of the difference kernel (2), for which all of the results
can be written especially simply. In this case Eq. (15)
can be rewritten in the form

: 2π ο (ρ)
'-dp, (15a)

w h e r e , a s b e f o r e , K ( p ) i s t h e F o u r i e r t r a n s f o r m of t h e

k e r n e l K ( x ) . L e t u s e s t i m a t e t h e l i m i t i n g a c c u r a c y o f

t h e d e t e r m i n a t i o n o f t h e l i n e a r f u n c t i o n a l

— Αψ= \ α(χ)φ(χ)άχ, ( 1 7 )

w h e r e a ( x ) i s a w e i g h t f u n c t i o n d e f i n i n g t h e f u n c t i o n a l .

L e t u s l o c a t e t h e s p h e r e o f u n c e r t a i n t y a t t h e o r i g i n o f

c o o r d i n a t e s b y s e t t i n g <po{x) = 0 i n t h e c o n d i t i o n ( 1 6 ) .

Substituting the functions φ(χ) contained in this sphere
in Eq. (17), we get values of the quantity A which, ac-
cording to the definition of the sphere of uncertainty,
are practically to be identified with the value A „, = 0

corresponding to the center of the sphere. In other
words, if we denote by || A || the maximum value of A on
the sphere (16), then all values of A satisfying the in-
equality A < H A || cannot be distinguished from zero by
means of the given apparatus, i.e., | |A|| is the error in
the determination of A from the experimental data.*
Since the distance (15a) depends only on the difference
of the functions to be compared, the sphere (16) is dis-
placed as a whole when its center is changed. From
this (and from the linearity of the functional A) it fol-
lows that the error is independent of the true spectrum.

It can further be shown that the quantity ||A|| can be
calculated from the formula

= _ L f (18)

where 5(p) is the Fourier transform of the weight
function of the functional. The quantity || A||2 in fact is
the dispersion of the error caused in the calculation of
the functional A by the noise in the experiment.

We must call attention to the fact that the right mem-
ber of Eq. (18) remains finite only for a rather narrow
class of functionals. If the integral (18) diverges for
some functional, this means that it is impossible to de-

termine this functional in the given experiment without
additional information about the unknown function <p(x).
The structure of the expression (10) shows that the
class of admissible functionals ( ||A|| < « ) consists of
functionals with weight functions a(x) that are essen-
tially smoother than the kernel of Eq. (2), provided that
the noise power spectrum G(p) does not fall off patho-
logically rapidly for | p | — °°. In particular, values of
the function φ at specified points are certainly not ad-
missible functionals.

ΙΠ. RIGID A PRIORI RESTRICTIONS

For greater clarity we shall consider the algebra-
ized version of the inverse problem, Eq. (8), assuming
that the order η is sufficiently large to assure the re-
quired accuracy of approximation.

To impose rigid a priori restrictions on the unknown
function φ(χ) (or, in the algebraized version, on the
vector φ in η-dimensional vector space Rn) means to
single out some region D in the space R n and look for
solutions only in this region, declaring that all solutions
outside the region D are meaningless, "unphysical." It
is easy to see that the question of the informational un-
certainty of the problem (8) reduces to the question of
the relative positions of the region D and the sphere of
uncertainty (16), or, in other words, to a question about
the geometry and dimensions of the region D in the
metric (15).

The system (8) must be regarded as informationally
undefined if the sphere (16) with center at any point φ 0

e D contains points not belonging to the region D. In
fact, in those directions in which the sphere (16) "ex-
tends beyond" the region D the experiment does not
make it possible to improve the accuracy of a state
parameter in comparison with the a priori range.
Moreover, a formal solution of the system (8), for ex-
ample by the method of least squares, will give an er-
ror of the coordinate in such a direction which is be-
yond this range by a large factor. This means, essen-
tially, that the experimental data do not contain any in-
formation about the corresponding parameter of state.
The presence of such parameters "unguaranteed" by
information among the unknowns of the system (8) is
the meaning of the definition given above. The concept
of an informationally incompletely undefined system can
be more conveniently expressed in terms of the geo-
metrical characteristics of the region D in the metric
(8). Namely, we shall call the region D degenerate in
one or more directions if the maximum diameter of
the region D in these directions does not exceed unity.
Then, obviously: 1) degeneracy of the region D is
equivalent to incompleteness of definition of the sys-
tem (8), and 2) the system (8) (corresponding to the ex-
periment) does not allow us to determine the parameters
corresponding to the directions of the degeneracy.

The geometrical formulation shows particularly
clearly that the property of incomplete definition does
not depend on the choice of the basis for the algebraiza-
tion of the original problem (1) * i.e., on the choice of
the coordinates in the space R . This property is due
to the experiment itself and the region D.

*The characteristics of the apparatus and of the noise enter through
the definition of the metric, Eq. (15a).

*Provided that the basis allows us to describe all points of the re-
gion D, i.e., is of large enough dimensionality.



M A T H E M A T I C A L - S T A T I S T I C S METHODS 689

Let us now turn to the problem of determining the
"physical" solution of the system (8). It is clear that
to do this we must first eliminate the degenerate direc-
tions, since they are the source of the "unphysical"
nature of solutions. Let R r be the maximal subspace
of the space of solutions R n that does not contain any
directions of degeneracy of the region D—the allowed
subspace. Then it is reasonable to take as the solution
of the poorly determined system (r < n) the projection
of the unknown vector φ on the subspace R r .

For the case in which the region D is given by its
second-order central moments, the inertia tensor C,

a method i s proposed in t 6 3 : l for successive " e x h a u s t -
i n g " of the principal direct ions, which leads to the a c -
tual construction of the allowed subspace of the prob-
lem,, F r o m a computational point of view the method r e -
duces to the problem of the eigenvalues of th£ operator

G C ·
^Β,^ν-λα', (19)

where the gy^ a r e the elements of the Fisher informa-
tional m a t r i x . 1 6 * 3 Let λι > λ 2 > . . . λ η be the eigen-
values of the problem (19), and let u l t u 2, . . . u n be the
corresponding eigenvectors. It can be shown that each
eigenvalue λ^ is numerically equal to the ra t io of the
mean square (the dispersion) of the a pr ior i allowed
variat ion of the component of the vector φ in the d i r e c -
tion of Uk to the dispers ion of the e r r o r in determining
this component from the system (8). It i s c lear that for
λ^ < 1 the corresponding direction u^ must be regarded
as degenerate. Accordingly, the allowed subspace R r

must contain only directions % for which λ^ > 1, and
all their l inear combinations. In other words, the first
eigenvectors Ui, ife, , , . , u i [ form the bas i s of the a l -
lowed subspace R r , and the dimensionality of this sub-
space is equal to the number of eigenvalues λ^ that a r e
l a r g e r than unity. The des ired solution of the problem
(1) can then be expressed in the form

φ* (χ) = φο (χ) + Σ T 'V {χ). (20)

where the bas is {η'^} is constructed from the bas is
{ηΐ\ used in obtaining the system (8) by means of the
eigenvectors:

and φ(χ) =

η

r\k (x) =-- Σ u'hi\t (x),

is the solution corresponding

to the center of the region D. The explicit solution of
the problem is given by formulas expressing the coeffi-
cients of the expansion (20) in terms of measured val-
ues

i=l J=l ' i, ( = 1 )ΪΞΐ
(21)

The solution obtained from Eqs . (2) and (21) satisfies,
as far a s i s possible, the requi rements which it is natu-
r a l to ask that a solution of an incorrect ly posed prob-
lem with rigid a pr ior i r e s t r i c t i o n s satisfy. The opera-
tion which makes f — φ " a l m o s t " p r e s e r v e s the infor-
mation about the difference between any vectors of R n ,
since if the vectors to be compared lie in R r the d i s-

tance ρ between them is not diminished; if, on the other
hand, they have components in the complementary sub-
space R exp (n — r ) , then the decrease is of the order
of (λρ + i ) 1 / 2 < 1—i.e., s tates a r e identified with each
other which a r e practical ly indistinguishable in the giv-
en experiment. Moreover, the solution φ * , a random
quantity, almost certainly belongs to the " p h y s i c a l " r e -
gion D, since i t s mathematical expectation, taken over
the noise distribution, coincides with the actual solu-
tion, which belongs to D by definition, and the noise
acting in nondegenerate direct ions cannot c a r r y the so-
lution significantly beyond the l imits set by the a pr ior i
range .

IV. PROBABILISTIC RESTRICTIONS AND THE
METHOD OF STATISTICAL REGULARIZATION

The method of s tat is t ical regularizat ion was devel-
oped in c 6 5 " 6 8 J. i t s main feature is that the a pr ior i in-
formation about the unknown function is introduced by
giving a probability distribution. This leads to the r e -
placement of the exact solution of the equation by an a p -
proximate, " r e g u l a r i z e d " solution. There a r e various
ways of prescr ib ing an a pr ior i probability distribution,
and therefore there a r e also var ious vers ions of the
method of s tat is t ical regularization; these will be brief-
ly described. F i r s t , however, we shall s tate the theoret-
ical propositions on which this method is based. Al-
though a s compared with the introduction of rigid r e -
str ict ions on the unknown function the introduction of
probabilistic re s t r ic t ions in many cases r e q u i r e s more
a pr ior i information, it nevertheless has the following
advantages.

F i r s t , the problem of solving an incorrect ly posed
equation occurs in applications as the problem of p r o -
cess ing experimental data, for which the introduction
of probabilistic concepts is inescapable, because the
e r r o r in the r ight member i s of a random nature and
can be character ized only in a probabil ist ic way. T h e r e -
fore the probabilistic way of giving a pr ior i information
leads to the use of a single kind of apparatus and is
more natural . This will be seen especially clearly when
the question of the e r r o r of the constructed solution is
dealt with.

Second, the probabil ist ic method allows more com-
plete use of previous experience, by including it in the
a pr ior i distribution.

Third, when there is no such experience, the prob-
abilistic method allows the formulation of extremely
weak assumptions about the unknown function, which in
principle a r e not expressible in set-theory language
(ascription to a " l a m i n a r ensemble," discussed below).

As in the preceding section, we as sume that our
equation has a l ready been algebraized, i .e., reduced to
a system of equations

χ, i = fJt / = 1, 2, . .., m. (22)

In contrast with the equations (8), we h e r e allow the
number of equations m to be unequal to the number of
unknowns n. The presence or absence of an exact solu-
tion of Eq. (22) will play no part h e r e . The quantities
<Pi can be any l inear functionals of <p(x), but for the
method of s tat is t ical regular izat ion it i s most natural
to take as the ψ\ the values of < (̂x) at cer ta in re fer-
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e n c e points, and t h i s wi l l be a s s u m e d in what fo l lows

for c o n v e n i e n c e in the expos i t ion. We shal l often re fer

to the vectors φ and f in the spaces R n and R m sim-
ply as the functions φ and f.

To explain the essence of the method of statistical
regularization, it is necessary to formulate our prob-
lem as a problem of mathematical statistics and to in-
troduce the appropriate concepts.

Strategies and Estimates

Suppose one measures m quantities fj which, if
there were no errors of measurements, would be con-
nected with the η unknown quantities φ·χ by the rela-
tions (22). Owing to the errors of measurement the
quantities fj found from the measurements are differ-
ent from their ideal values given by Eq. (22). In order
not to introduce new notations, we shall from now on
use fj to mean not the ideal, but the real values of the
quantities fj. Then Eq. (22) will be satisfied only ap-
proximately, and the exact equations will be of the form

Σ kHti / = 1, 2, . . . , τη,

where the 6j are the errors in the measurements of
the quantities fj, which form a random vector 6 in the
space R m . We denote by Ρβ(δ) the probability density
of this vector. Obviously the quantities fj are also ran-
dom variables and depend both on the true values φχ

and on the errors 6j. The conditional probability den-
sity of the vector f for a given vector φ is

- / Ό Ο \

P(f | φ) = / J

e (f — K(f). \&t)
(We note that the function P(f | φ) of the m + η varia-
bles fj and ψϊ completely characterizes the experimen-
tal arrangement, i.e., both the connection between φ
and f and the statistical properties of the errors of
measurement.) We can now formulate the problem in
the following way. The unknown quantities <pj charac-
terize a state of nature. Some random process gives us
the quantities fj, and the conditional probability P(f \φ)
is known. From the quantities fj, what can we say about
the quantities ψ·χ ? The answer to this sort of question
is the fundamental problem of mathematical statistics.

The question "what can we say about the <pi?" is in-
sufficiently exact. When we try to make it more precise,
the first formulation that presents itself is: How prob-
able are various values of the quantities φι? In other
words, what is the probability density Ρ(φ\ί) of the vec-
tor φ under the condition that the measurements have
given the result f ?

In order to answer this question, it is necessary to
introduce some a priori probability density Ρ{φ)~that
is, to assume that the experiment of measuring f is
one of a series of such experiments which are made
with different states of nature φ , chosen randomly in
accordance with a probability density Ρ(φ)< Then the
a posteriori probability can be determined from the
Bayes formula:

(24)

If no a priori probability is introduced the concept of
the a posteriori probability P(^»| f) loses all meaning.

If we do not demand such detailed information about the
function as an a posteriori probability distribution for it,
then we are not obliged to introduce an a priori probabil-
ity distribution. However ("if not through thedoor, then
through the window"), a priori distributions appear even
in the most general formulation of the question, in which
mathematical statistics is regarded as the theory of
reaching decisions under conditions of incomplete knowl-
edge of the state of nature. For what do we need any sort
of information at all? Obviously, in order to make deci-
sions about the performance of some action or other. If
we knew the true state of nature φ , we would make a cer-
tain decision. But we do not know φ; we know only f.
Mathematical statistics must give us recommendations
as to how to act in such cases; it must indicate a strat-
egy for making decisions with unknown φ but known f.
In order to avoid discussing the specific peculiarities
of each concrete problem, statistics must give this
sort of recommendation: "Here is a vector φ " for you;
act as if φ = φ°." Such a value φ° is called an esti-
mate of φ , and the algorithm for calculating φ° from f
and its further use instead of the true φ is called esti-
mative strategy.

By adopting a particular strategy, we may, depending
on the case, get a better or a worse result; i.e., the es-
timate φ° may approximate more or less closely to the
true φ . It is natural to raise the question of finding the
strategy that will give the best result on the average.
But in order to define the concept "on the average" it
is necessary to introduce an a priori probability distri-
bution for the unknown Ρ{φ). To calculate the Bayesian
estimate of any quantity, in particular the estimate φ"
of the vector φ , we must use the Bayes' formula (24) to
calculate the a posteriori distribution Ρ(φ\ί) and aver-
age the quantity in question over this distribution. In
particular,

i = l , 2 ra. (25)

Besides the Bayesian strategies, one also considers
in mathematical statistics so-called minimax strate-
gies, which minimize the "damage" from the replace-
ment of the true quantities by their estimates in the
least favorable case. For physical applications these
strategies are less natural. Moreover, the Bayesian
strategies as a whole have a sort of "completeness."
We call a strategy reasonable if there is no strategy
that is always better, i.e., better independently of the
outcome of any random events. It can be shown that
every reasonable strategy is the Bayesian strategy cor-
responding to some a priori probability distribution.
Consequently, by studying the Bayesian strategies we
study all reasonable strategies.

From the Bayes formula (24) we see that the a pos-
teriori probability is the product of the a priori proba-
bility Ρ(φ) and the conditional probability P(f \<p) (the
denominator does not depend on φ and is introduced for
normalization). Therefore the a posteriori information
about φ is the sum of the a priori information and that
obtained from experience. If one of the factors is
much more informative than the other, the a posteriori
probability is close to the former factor and almost in-
dependent of the other. This case is very often encoun-
tered, the informative factor being, of course, the con-
ditional probability P(f | ^—otherwise there would be no
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reason to do the experiment. Suppose, for example, that
P(f | φ) as a function of φ has a sharp maximum in some
region Vo of the space and goes rapidly to zero outside
this region, while Ρ(φ) v a r i e s slowly in the region.
Then the a poster ior i probability P ( ^ | f ) i s practically
independent of the specific form of Ί>(φ), and therefore
we can set P(<p) = const in any region V t containing Vo.

So, every reasonable strategy for adopting solutions
under indefinite conditions is a Bayesian strategy cor-
responding to some a p r i o r i probability distribution.
When we do not have any a pr ior i information, we adopt
the solutions which seem natural to us in this situation,
and possibly seem to be the best . In real i ty they a r e the
best for a world in which all thinkable possibi l i t ies (de-
scribed in a definite way) a r e equally probable. We
shall see below that the usual direct solution of the
equations (22) without the application of regular izat ion
methods, together with the usual est imate of the e r r o r s
by the methods of the c lass ical theory of e r r o r s , is the
Bayesian strategy for the a pr ior i probability density
~Ρ(φ) = const. Accordingly, the use of a pr ior i informa-
tion is not an exclusive privilege of the regular izat ion
methods: in principle, it always occurs ; the regular iza-
tion methods a r e distinguished by the fact that they use
nontrivial a pr ior i information.

Before proceeding to the examination of var ious ways
of introducing a pr ior i information, we shall adopt a
specific form of the probability density function of the
e r r o r s . We make the usual, and a s a rule fully justified,
assumption that the e r r o r s 6j for different j a r e inde-
pendent and distr ibuted according to the normal law with
mathematical expectation z e r o . We denote the root-
mean-square e r r o r in the measurement of the quantity
6j by s j . Then the conditional probability (23) takes the
form

(26)

This expression can be considerably simplified if we
introduce quantities gj, proportional to the fj and
measured with equal absolute accuracies,

and the corresponding matrix L with the matrix ele-
ments

We define the quantity s (the error of measurement of
gj) so that the transformation f — g is unitary:

Accordingly, s is the geometric mean of all the errors
of measurement of the fj. The equations (22) become

£q> = g, (27)

but as before we shall regard the quantities fj as the
fundamental physical variables, and treat the vector g
as an auxiliary construction.

We can now write the conditional probability (26) in
the form

The Solution without Regularization

Let us set P(<p) = 1/V in an extremely large volume
V (which we shall let go to infinity later on, if this t u r n s
out to be possible) and Ρ(φ) = 0 outside this volume.
Then in the volume V the a poster ior i probability
Ρ(φ\ί) will be equal up to a constant factor to the P(f \φ)
given by Eq. (28).

With every probability distribution one can associate
an infinite set, called a stat ist ical ensemble, whose e le-
ments a r e obtained by independent random choices sub-
ject to the given distribution. The use of the concept of
a stat is t ical ensemble often a s s i s t s the brevity and in-
tuit iveness of our language by appealing to se t- theoret i-
cal ideas . The a poster ior i distribution P(<p|f) for the
case in which Ρ(φ) = const defines an ensemble of vec-
t o r s (functions) φ which we shall call the complete en-
semble of unregularized solutions and shall denote by
Vc(<P) ( w e identify ensembles by indicating the c o r r e -
sponding probability densit ies of φ). Thus,

Pc (<f>) = c, exp j —-L|g —£<p|2J . (29)

The components φ \ of the unregularized solution
a r e the averages of the φ-γ over this ensemble, and
their e r r o r s a r e the square roots of the dispers ions of
the φ[.

Expanding the square of the absolute value of the vec-
tor in (29) and including a factor not involving φ in the
constant, we get

Pc (φ) = c2 exp { - - ^ [(φ, L"lAf)-2 (L*g, φ)] J (30)

We can think of the ensemble Pc(^) as a set of
points in the space Rn with density proportional to
Pc(^»). To elucidate the character of this set, we intro-
duce new coordinate axes in the space Rn, namely the
orthonormal system of eigenvectors ip^- of the matrix
L*L. Since L*L is a symmetric positive semidefinite
matrix, all of the vectors ψ^ a r e rea l , and the c o r r e -
sponding eigenvalues, which we denote by λ^, a r e non-
negative.

Let us denote by φ ^ the projection of φ on ip . The
quantities φ \ can be taken a s the new coordinates of
the vector φ . In the new var iables the density of the
distribution of the complete ensemble of solutions i s of
the form

(φ) = Ci exp { - ^ ~ ( ( 3 0 a )

/' (f | φ) = ( 2 J I S · ) - " " 2 exp { — ^ | g - Λ φ j2} (28)

where h^ is the projection of the vector L*g on ψ^.
Accordingly those quantities φ ^ for which λ^Φ 0 a r e

statist ically independent and a r e distributed according
to the normal law with mathematical expectations % |
and dispers ions s 2/x|. Consequently, the region in
which the points of the ensemble P c ( ^ ) a r e mainly con-
centrated is of extent of order s/λ^ in the direction of
$ k . Those quantities <^k for which Xk = 0 do not actu-
ally occur in the expression (30a) (it is easy to show
that if λ2^ = 0, then also h"k = 0). In a displacement along
the vector ψ^ the function Pc(<p) does not change in
value. F r o m this it can already be seen that if even one
of the eigenvalues λ^ goes to z e r o , we cannot let V — °°,
because in this case the integral §Vc((p)aq> does not
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exist. There is no information at all about the φ^ in
this direction, and we are obliged to impose some sort
of a priori restrictions on this φ ^ .

If all of the λ^ are different from zero [the neces-
sary and sufficient condition for this is that det(L*L)
be different from zero], then we may assume that
V < °°. The Bayesian strategy for this case reduces to
the method of least squares. The Bayesian estimate <p°
is found from the equation

which for the case m = η is the same as the original
equation (27), and the error of the determination aj at
the point i can be found from the equation

)-1)«, «=1,2 n. (31)

For a quantity characterizing the error of the solu-
tion q>° as a whole we can calculate the mean square of
the error σ taken over all i:

(we have made use of the invariance of the trace of a
matrix under coordinate transformations).

Accordingly, a strong increase of the error of the
unregularized solution occurs whenever any of the ei-
genvalues Xk of the matrix L*L is extremely small,
and it happens because of the uncertainty of the compo-
nent along the corresponding fa.

If the matrix Κ has even one pair of rows that are
nearly equal up to a constant factor, or if more general-
ly its rows are almost linearly dependent, or, qualita-
tively speaking, if they "resemble each other," then the
matrix L will have this same property, and there will
be small numbers among the eigenvalues of the matrix
L*L. Then the unregularized solution is useless, since
the error in it is many times larger than the recon-
structed function itself. Precisely such matrices, with
nearly linearly dependent rows, are obtained in the alge-
braization of an incorrectly posed problem. This can
also happen, by the way, with a correctly posed original
equation.

The Solution in an Ensemble Prescribed by Finite
Selection

Let us suppose that the a priori ensemble of possible
solutions is characterized by giving its Ν vectors <pv,
which consequently can be regarded as obtained by a
random selection subject to the a priori probability dis-
tribution ~Ρ(φ). This case can occur, for example, when
one makes systematic direct measurements of the quan-
tities φι under certain stable conditions in order to ob-
tain statistical material which can be used for reliable
indirect determination of the φι from measurements
made under the same conditions of the quantities fj,
when no direct measurements are available.

If the selection is sufficiently representative, the
regularized solution and its error can be obtained as
the Bayesian solution and its error, the calculations
being made by replacing (approximately) the averaging
over the a priori distribution by averaging over the
finite-selection ensemble.

Suppose some function F(<p) of the quantities φι is

given. The average of this function over the a posteriori
distribution (24) can be put in the form

(F (φ) Ρ (f | <p))apr= \jF(<f)P(<f\i)d<f = -
<̂ (f|<P»apr

where (G(<p)) a p r denotes the average of the function
G(^) over the a priori distribution Ρ(φ).

Let us replace the average over the ensemble by that
over the finite selection:

T h e n f o r

w h e r e

w e g e t

( 3 2 )

( 3 3 )

are the f-dependent weight factors for the various vec-
tors <pv and are proportional to the conditional proba-
bilities ν{1\φν).

When we set ¥(φ) = φ± and Έ(φ) = {φ\ - {φ^} )2 we
get the regularized solution and its error from Eqs. (32)
and (33).

The Solution in an Ensemble Prescribed by the
Correlation Matrix

Let us assume that the mathematical expectation of
the vector φ is zero in the a priori ensemble Ρ(φ).
This assumption will be understood to be made also in
all the following discussions. (It is clear that it does not
limit the generality of the treatment, since one can al-
ways make a parallel displacement.) We also assume
that in some way or other we are provided with knowl-
edge of the correlation matrix of the a priori ensemble:

Cij = {<fi<fi\fI = j <fi<f)P (φ) ώρ. (34)

In o r d e r t o i n t r o d u c e i n t o o u r d e t e r m i n a t i o n of t h e

a p r i o r i p r o b a b i l i t y V(<p) t h e l e a s t p o s s i b l e i n f o r m a t i o n

b e y o n d t h a t c o n t a i n e d i n t h e r e l a t i o n s (34), w e c h o o s e

f r o m a m o n g a l l f u n c t i o n s s a t i s f y i n g (34) t h e o n e t h a t

contains the minimum of information about φ , i.e., the
one that minimizes the functional

which gives (to within a constant factor) a quantitative
measure of this information.

It can be shown that this distribution density is of the
form

c3exp {- | ·(φ, C-'φ)} . (3 6)

The correlation matrix C is a symmetric positive-
definite matrix. Consequently, there exists an ortho-
normal system of eigenvectors χ 1 , I = 1, . . . , n, of the
matrix C with positive eigenvalues, which we denote by
y\. (The case in which some yi = 0 can be regarded as
a limiting case.) Let us denote by ψχ the projection of
the vector φ on the axis χ \ In the coordinates φ λ the
density distribution Ρ(φ) takes the form

Consequently, the components φ ί of the expansion of
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φ in t e r m s of the eigenvectors of the corre lat ion matr ix
a r e statist ically independent and a r e normally d i s t r ib-
uted with root-mean-square values yx.

Using (36) and (28), we get from the Bayes formula
(24) the a pos ter ior i distribution

) - 2 (£*g, φ)]} , (37)

which i s again a normal distribution. According to (25)
the regular ized solution φ ^ =(φ) i s the solution of the
equation

The mean square e r r o r of this construction is

a'i = ?((L*L + PCiy1h. (39)

The method of solving the inverse problem by the
formulas (38) and (39) has also been pronounced in
c 8 3 : I and t 8 4 ] on the bas i s of s imilar a rguments .

A stat is t ical ensemble with a probability density
which i s the product of the probability densit ies of two
other ensembles can be called the intersect ion of these
ensembles . This intersect ion has much in common with
the set-theory intersect ion. If the ensembles combined
by multiplication a r e such that they a r e described by
probability distributions of the " a l l or nothing" type,
i.e., distr ibutions which take a constant value in some
region of space and a r e z e r o outside this region, then
their intersect ion is also an ensemble of this type, and
the region it occupies i s the intersect ion of the regions
occupied by the original ensembles. In our case the en-
sembles a r e described by normal distributions, which
theoretical ly extend to infinity, but outside a certa in r e -
gion they decrease so rapidly that the situation is almost
the s a m e a s for the ensembles just now described.

The a poster ior i ensemble (37) is the intersection of
the complete ensemble of solutions (29) and the a p r i o r i
ensemble (36); consequently, in the set-theoret ic inter-
pretation it consists of those vectors which a r e m e m -
b e r s of both ensembles . Let us choose a definite value
level, for example 0.99, and r e p r e s e n t an ensemble by
the region (or body) in the space R n , bounded by a sur-
face P ( ^ ) = const, such that the integral of P(^>) over
this region is equal to 0.99. Owing to the fact that the
distributions a r e normal, all of these regions will be
bounded by ellipsoids (sometimes degenerate). The
principal axes of the ellipsoid represent ing the com-
plete ensemble of solutions a r e directed along the vec-
t o r s $ k ; a n c j those of the ellipsoid corresponding to the
a p r i o r i ensemble along the vectors χ^. In general these
axes do not coincide.

Let us investigate the picture of the intersect ion of
the ensembles for an e r r o r of measurement s which
approaches z e r o .

If all of the eigenvalues Xk a r e different from zero,
then for s — 0 the complete ensemble of solutions con-
t r a c t s to a point corresponding to the exact solution of
Eq. (8). Consequently, the a poster ior i ensemble of
regular ized solutions also contracts to this same point
[independently of the form of Ρ(φ), provided that P(<pa),
where qp- i s the exact solution, does not become zero] .
Accordingly, in this case the regular ized solution ap-
proaches the exact solution, and i t s e r r o r goes to zero .

If one or m o r e of the eigenvalues λ^ i s (are) equal

to zero, then for s — 0 the complete ensemble of solu-
tions approaches a hyperplane paral lel to the c o r r e -
sponding vectors ψ^. The intersect ion of this hyper-
plane with the ellipsoid of the a p r i o r i ensemble d e t e r -
mines some degenerate elliptical region in the space
R n , which c h a r a c t e r i z e s the a poster ior i ensemble. The
center of this region is the regular ized solution, and its
dimensions determine the e r r o r of the reconstruction,
which accordingly approaches a finite and nonzero l imit
for s — 0.

The study of the intersect ions of ensembles in the
space R n shows that the information content of an ex-
periment depends on the relat ive orientation of the pr in-
cipal axes of the ellipsoids of the complete ensemble of
solutions and the a pr ior i ensemble. If the axes of the
former ellipsoid that correspond to the larges t values
of Xjj a r e " r e m o t e " directions for the second ellipsoid,
i.e., direct ions such that the distance from the center
to the boundary in these directions is close to its largest
value, then the experiment is very informative. If these
axes a r e directed along " n e a r " directions of the a p r i -
or i ellipsoid, the experiment gives l itt le information. In
part icular , we can imagine a case in which with a given
a pr ior i distribution the experiment gives no information
at al l . Suppose the γι a r e equal to zero for some group
of indices I; the corresponding vectors χ ' define a sub-
space of the space R . Also let the matr ix L*L be such
that all of i ts eigenvectors # k for which λ^Φ 0 l ie in
this subspace. It is easy to see that in this case the
a poster ior i distribution is the same as the a pr ior i d i s-
tribution. F r o m the experiment one can determine only
those components of the vector φ which a r e a pr ior i
equal to z e r o .

The analysis of the regular ized solution is very much
simplified if we as sume that the m a t r i c e s L*L and C
can be simultaneously brought to diagonal form (this is
the case, for example, if the problem as a whole has
translat ional symmetry) . For definiteness we denote
the common eigenvectors by φ^. a n c j number them so
that the λ^ a r e nonincreasing. Then from (38) and (39)
we find in the ψ representat ion

(40)

(41)

We can connect the regular ized solution (40) with the
exact solution φ in the following was (if the exact solu-
tion exists) :

(40a)

(40b)

φ * =Zfttffi>

w h e r e

is a "cutoff f a c t o r " whose value depends on the rat io
between A^yfc* the mean square of the k-th component
in the right member, and s 2, the mean square e r r o r of
the measurement of this component. If X k y k » s 2, i .e.,
i f t h e u s e f u l s i g n a l i s m u c h l a r g e r t h a n t h e n o i s e , t h e n

zĵ Ri 1 and the k-th component in the regular ized solu-
tion i s practical ly the same as in the unregularized (ex-
act) solution. If λ^νίς « s 2 (the signal i s much smal ler
than the noise), then zk ^C 1 and the k-th component in
the solution, reflecting exclusively e r r o r s of m e a s u r e -
ment, i s suppressed. Comparing (41) with (31) we see
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that the σ^ for the regularized solution is also in the
ratio zk to the σ^ for the unregularized solution. For
*-k7k » s 2 the error is practically the same as without
regularization; for λ\γ^ « s 2 we find from (41) that
<% ̂ yi.' t n e uncertainty of the k-th component is equal
to its uncertainty in the a priori ensemble. Thus the ef-
fect of the regularization is to replace the false infor-
mation which the unregularized solution gives about k-th
components with small λ^ with the information about
these components which is contained in the a priori dis-
tribution.

The inequality λ | ^ « s 2 is a condition whose satis-
faction gives us grounds for thinking that Xjj is practi-
cally equal to zero and that the conditional probability
Ρ(ί\φ) is practically independent of <p^. There may be a
large break in the spectrum of the matrix L*L, so that
for some index k,, the eigenvalue xj^ is a hundred or a

thousand times as large as the next eigenvalue λ]1 χ .

Then for some s a situation will occur such that for
k < k,, the cutoff factor z^ can be regarded as equal to
unity, and for k > ko, as equal to zero, and this situa-
tion will continue while s decreases by a large factor
[as long as the (k,, + l)-st component does not become
informative]. In the solution of the regularized equation
this leads to the phenomenon, strange at first glance,
that neither the regularized solution nor its error
changes while the error s is being decreased by a
large factor.

The Solution in an Ensemble of Bounded or Smooth
Functions

Suppose that we know that the unknown function φ(χ)
is "more or less smooth." We can make this informa-
tion more precise by introducing some sort of functional
characterizing the degree of smoothness of a function,
for example the norm of its q-th derivative (we shall not
specify the particular value of q):

tribution Ρ(φ) with the minimum information (35). This
function ~Ρ{φ) will be

H r i M ^ - (42)

and by fixing an expected approximate value of this func-
tional:

Ω[φ(£)]«ω.

In t h e s a m e way w e c a n u s e in format ion about the

boundedness of the function φ(χ). For this it suffices to
set q = 0 in Eq. (42). We can also form Ω as a linear
combination of the norms of several derivatives. In all
these cases after the algebraization is performed the
a priori information will be available in the form

(φ, Ωφ) = 2 ψΑ/Ρ;
Ι ί ι

ω.

where Ω is a symmetric positive semidefinite matrix
which is the finite-difference equivalent of the corre-
sponding functional.

Obviously we must also introduce an a priori distri-
bution Ρ(ψ) such that

\ (<p, Ω<ρ) Ρ (Φ) dw = ω. f 43^

In o r d e r t o i n t r o d u c e a s l i t t l e a r b i t r a r i n e s s a s p o s -

s i b l e , w e c h o o s e , a s i n t h e p r e v i o u s c a s e , f r o m a m o n g

all Ρ(φ) satisfying the condition (43) the particular dis-

w h e r e

Pa (f) = ca exp { —~ (φ, Ωφ)} , (44)

(45)

Accordingly we have arrived at the case considered
in the previous section, with the correlation matrix
C = (αΩ)'1. All of the results obtained previously re-
main valid. In particular, the regularized solution <pa

obeys the equation (38):

(L*L + ί2αΩ) φ α = L*g. (46)

T h i s e q u a t i o n , a s a l r e a d y i n d i c a t e d , w a s f i r s t d e -

r i v e d by P h i l l i p s . i 5 3 } I n d e p e n d e n t l y of P h i l l i p s it w a s

p o s t u l a t e d by T i k h o n o v C 5 6 i a s t h e c o r r e c t l y p o s e d e q u a -

t i o n a p p r o x i m a t e l y r e p r e s e n t i n g t h e i n c o r r e c t l y p o s e d

e q u a t i o n (27) .

In s o l v i n g t h e r e g u l a r i z e d e q u a t i o n (46) o n e m u s t

keep in mind that the matrix Ω may have eigenvalues
equal to zero. If, for example, Ω describes the norm of
the first derivative, then for a vector φ that represents
a constant function, i.e., one that has all of its compo-
nents ψϊ equal, (φ, Ο,φ) = 0. For the matrix Ω that
gives the norm of the second derivative there are two
linearly independent vectors with this property, and so
on. This means that the corresponding a priori distri-
bution extends to infinity along these vectors with a non-
zero value ("infinitely remote" directions). In this case
the distribution (44) is to be understood as defined in
some large volume V. If the infinitely remote direc-
tions of the a priori ensemble are also infinitely re-
mote, or simply extremely remote, directions of the
complete ensemble of solutions, then the regularized
solution will, respectively, be nonexistent or have a
very large error. In this case it is necessary to change
Ω (for example, to include in the functional the norm of
the function itself), in order to limit the probability den-
sity Ρ(φ) along the infinitely remote directions. As a
rule, however, this is not necessary, because the func-
tional Ω representing the norm of the derivative is used
when information about the smoothness of the function
is sufficient for the regularization, and consequently the
solution is adequately stable against combination with a
constant, a linear function, and so on. In the language
of ensembles this means that the infinitely remote di-
rections of the a priori ensemble are near directions
of the complete ensemble of solutions. Therefore we
may assume that the a priori distribution (44) is differ-
ent from zero only inside some volume V, and after
multiplying it by the complete ensemble of solutions we
can let V go to infinity.

The Solution In the Narrowest Admissible Ensemble

Let us think again about probability density functions
of the "al l or none" type. If both the a priori ensemble
and the complete ensemble of solutions are described
by probability densities of this type, then it can happen
that the corresponding regions in the space R n have no
common points, and consequently there does not exist
any ensemble which is the intersection of these two en-
sembles. This situation indicates a contradiction be-
tween the information obtained from experiment and the
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a pr ior i information, and we must state that no solution
of the problem [i.e., no solution of Eq. (8) with an indi-
cated accuracy] in the given a pr ior i ensemble exis ts .

If the ensembles a r e described by normal dis tr ibu-
tions, then their intersect ion always exists, but it i s in-
tuitively clear that if the central regions of the ensem-
bles , where, say, 99 percent or 99.9 percent of al l the
points a r e concentrated, do not intersect , then the i n t e r -
section is a sort of spurious effect and has no physical
meaning. Therefore a cr i ter ion is n e c e s s a r y that will
enable us to separate those cases in which the a poste-
r i o r i ensemble i s actually a solution of the problem
from those in which it i s a " g a m e with the t a i l s " of the
normal distr ibutions. It is natural to base this c r i t e -
rion (see £ 6 5 i ) on an es t imate of the e r r o r with which
the solution appearing in the a pos ter ior i ensemble sat-
isfies Eq. (8) or Eq. (27) (the la t ter is preferable, since
in the complete ensemble of solutions the e r r o r gj does
not depend on i). The expression

gives the average (over the component number i) of the
square of the e r r o r with which Eq. (27) i s satisfied. By
averaging it over some ensemble, we obtain the mean
square e r r o r for all the functions (vectors) of the en-
semble. It is obvious that if for the averaging we take
the complete ensemble of solutions (29) we get the quan-
tity s 2 by definition:

If, on the other hand, we average over the a poster ior i
ensemble, then, generally speaking, we get a different
quantity, which we denote by s ' 2 :

(47)

We can now formulate the cr i ter ion about which we
were speaking ear l ie r as the inequality s ' 2 < s 2. It has
the following meaning. We get the a pos ter ior i ensem-
ble by selecting from the complete ensemble of solu-
tions those functions φ that belong to the a p r i o r i en-
semble. If a s the resu l t of this selection the mean
square deviation of ~L<p from g is not increased, i .e.,
s ' 2 < s 2, this means that belonging to the a pr ior i en-
semble does not hinder a function φ from being a solu-
tion of Eq. (27). In this case the a poster ior i ensemble
satisf ies the r e q u i r e m e n t s imposed on it and i s the
most complete solution of the problem. If, on the other
hand, s ' 2 > s2, this means that for the function φ to b e -
long to the a pr ior i ensemble is (statistically) incom-
patible with the validity of Eq. (27) to the accuracy s.
In this case the a p r i o r i ensemble consists of functions
φ which (on the average) do not satisfy the original
equation to the necessary accuracy; consequently, no
solution of the problem exists in the given a pr ior i en-
semble.

If on the bas i s of previous experience the c o r r e l a -
tion matr ix is well known to us, there will hardly be any
need to subject the solution obtained from (38) to the
test with the cr i ter ion s ' 2 < s 2. In fact, in this case we
have no doubt that the t rue function φ belongs to the
a p r i o r i ensemble we have chosen, and if this is so, then

/£ . s 2 (see t 6 5 ; l ) . (We note that the inequality s'
i s to be understood in the spiri t of s ta t i s t ics a s s ' 2 < s 2

FIG. 1. The dependence of s'2

on a.

or s ' 2 « s2.) The same is also t r u e of the solution in an
ensemble of smooth (or bounded) functions, when we
have sufficiently rel iable knowledge of the quantity ω,
and consequently also of the quantity a. If often happens,
however, that there a r e no re l iable data on the quantity
ω . Then we may pose the problem of finding the la rges t
a for which a solution still exists (see t 6 6 J ) . Let us
consider the family of a pr ior i ensembles (44) with a r -
bi t rary a and call an ensemble such that s ' 2 s s 2 an ad-
miss ible ensemble. For a = 0 the ensemble (44) cov-
e r s all functions φ , giving them equal probabil i t ies.
With increasing a the ensemble n a r r o w s (there is no
possibility h e r e of giving this concept a r igorous defi-
nition, but it i s intuitively obvious), keeping in i ts m e m -
bership only smoother and smoother functions, and for
a = » it degenerates into the ensemble which contains
only the function which is identically zero .

In [ 6 6 3 the dependence of s ' 2 on a i s investigated for
the translationally invariant case, and it is shown that it
is of the form shown in Fig. 1. The point a = a0 c h a r a c -
t e r i z e s the narrowest admissible ensemble of smooth
functions. It can be found by numerical calculation of
the curve s ' 2 ( a ) .

Thus if the p a r a m e t e r a, which charac ter izes the
degree of smoothness of the unknown function, is not
known, we can determine the value of α corresponding
to the " s m o o t h e s t " admissible ensemble, and find the
solution in this ensemble. Accordingly, the solution
found must in some sense be the smoothest, and t h e r e -
fore it i s interest ing to compare this approach with that
of P h i l l i p s / 5 3 : which also consists of finding the smooth-
est solution that approximately satisfies the original
equation. According to the approach of Phil l ips the pa-
r a m e t e r a would have to be determined from the equa-
tion

-̂ -(g-Lq><*)2 = s3, (48)

where φ α i s the regular ized solution. However, as has
already been stated, the function obtained with this sort
of algorithm turns out to be excessively smoothed, and
better r e s u l t s a r e obtained if one chooses an a c o r r e -
sponding to a right member of (48) smal ler than s 2 . With
the s tat is t ical approach the p a r a m e t e r a i s determined
from the condition

s'* = i;(g-L<iaf + ̂ (.(Lt,<f-<ta-)Y) = s'1- (49)

Equation (49) differs from (48) by the addition to the left
member of a quantity depending on the dispersion in the
a pos ter ior i ensemble, and this i s equivalent to using
Eq. (28) with a smal ler right m e m b e r . Therefore, by
using the condition (49) we get a l e s s smoothed solution.
It i s shown in ^ J that th is a lgori thm for determining
the parameter a leads to extremely satisfactory r e -
sul ts .
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The Solution in a Laminar Ensemble

A different method of regularization is proposed in
167 2; it gives not the very smoothest (in any sense) solu-
tion, but the solution with the most probable degree of
smoothness.

Suppose we know that the unknown function is smooth
to some degree and could be obtained by a selection
from some ensemble of smooth functions Ρα(φ), but the
parameter a characterizing this ensemble, and conse-
quently the degree of smoothness of the unknown func-
tion, is not known to us. Does this mean that regulariza-
tion is impossible and that the best we can do is to use
the unregularized solution?

We have seen that the unregularized solution corre-
sponds to the assumption Ρ(φ) = const. But the uncer-
tainty of the value of a by no means implies the as-
sumption Ρ(φ) = const, for this means complete ab-
sence of correlations between the values of the φι. At
the same time, if φ represents a continuous physical
function there must exist a correlation between values
of <̂ i with nearly equal values of i, although the de-
gree of correlation (which depends on a) is not known
to us and may be arbitrary. This sort of assumption
about φ can be described by the a priori probability

a)F(,f)d(f, (52)

= P(a)Pa(V)d<f, (50)

where P(a) is an a priori probability for a, which we
can regard as taking a constant value in any arbitrarily
large range of positive a.

An ensemble with the probability density (50) can be
called " laminar," the layers being ensembles of smooth
functions with different values of a. The laminar en-
semble (50) can be used to express the a priori informa-
tion about φ in cases in which the physical nature of φ
is known but the parameter which characterizes the
main physical factor is not known. Suppose, for exam-
ple, that φ represents the time dependence of the co-
ordinate in the motion of a point mass m in a one-di-
mensional force field F. Then the function <p(x) (x is
the time) is a solution of Newton's equation, and the
second derivative φ"(χ) is of the order of magnitude
of F/m. We may know nothing about the quantities m
and F in our physical system and nevertheless state
that φ is subject to the a priori distribution (50), where
Ί?α(<Ρ) is given by Eq. (44) and the matrix Ω represents
the norm of the second derivative of the function φ{χ)
[q = 2 in Eq. (42)]. This information is sufficient for the
determination of the regularized solution and its error.

Using (50) as the a priori distribution, we get by
Bayes' formula (24) the a posteriori distribution

Ι φ | I P(a)Pal<f)P(t\<f)da&t
(51)

The Bayesian estimate of any function F(<p) is the aver-
age of F(<p) over this distribution:

= \P(<f\t)F(<t)d<(.

We now have the problem of expressing (F(^)) in terms
of the integral over a of the Bayesian estimate of this
function in the case of a definite a:

where Ρ(φ\ί, a) is the a posteriori distribution for the
a priori distribution Ρα(φ) [it is obtained from (37) by
replacing C"1 by α Ω ] .

Introducing the distributions

P(*\f)=t

 P ( a ) / > ( i ! g ) , (54)

we find

J ™ (55)

Accordingly, (F{<p)) is obtained by a further aver-
aging of ( F ( ^ ) ) a over α with the weight function
P(a |f), i.e., the a posteriori probability of the smooth-
ness parameter a for the known result f of the meas-
urements.

Using the previous results for (F(<p))a, one can cal-
culate ( F(^)) by numerical integration over a in
Eq. (55). If, however, the measurement of f gives a
sufficiently large amount of information about the pa-
rameter a, the function P(a |f) will have a sharp maxi-
mum at some value a0. Then instead of the average
over a we can use the formulas for a definite a, set-
ting (a posteriori) a = a0. The value a0 can be found
by numerical analysis of the curve of P(a |f).

The quantity a0 is essentially a statistical estimate
of the parameter a by the method of maximum likeli-
hood. The boundaries between the various " l a y e r s " of
smooth functions occurring in the ensemble (50) are not
strictly fixed owing to the probabilistic statement of the
entire problem. If, however, the function φ is given,
then we can estimate the value of a characterizing the
layer from which this function most probably comes by
the methods of mathematical statistics. When we meas-
ure the function f in order to determine the function φ ,
the latter is of course not known to us. But we do know
the probabilistic character of the process which pro-
duces f for a given φ . Accordingly we get the following
two-step scheme for the determination of a:

Ρ α « " P(f |<p) ,

α » φ > f

f r o m w h i c h w e c a n find t h e c o n d i t i o n a l p r o b a b i l i t y of f

for g iven a, a s e x p r e s s e d by E q . (53) . If t h i s funct ion

i s k n o w n , t h e e s t i m a t i o n of a for a g iven f i s a c l a s s i -

c a l p r o b l e m of m a t h e m a t i c a l s t a t i s t i c s .

T h e q u e s t i o n a r i s e s : In w h a t c a s e s c a n w e r e p l a c e

t h e a v e r a g i n g o v e r a by t h e s o l u t i o n with t h e m o s t

p r o b a b l e a ? T o a n s w e r t h i s q u e s t i o n we m u s t c a l c u l a t e

t h e w i d t h in t h e a - s c a l e of t h e p e a k of t h e funct ion

P(a |f), or in other words the error Δ» of our determi-
nation of the parameter a . The expression for the er-
ror Δα has a very clear physical meaning in the case
when the matrices Ω and L can be simultaneously di-
agonalized. For this case we get (see l682)

where

Δα/ex,, = V2/ne,,,

«cf/= Σ 4 ,

and zjj is the cutoff factor (40b). The quantity neff is
the effective number of independent components of the
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unknown function determined in the experiment. Those
components for which zjj « 1 contain no information
about α and do not contribute to reducing the value of
Δ α .

The algorithm for the determination of the most
probable α and the algorithm expounded in the preced-
ing section for determining the a for the narrowest ad-
miss ible ensemble lead in general to different values of
a0. It is shown in C 6 5 ] , however, that the a 0 that c o r r e -
sponds to the narrowest admiss ible ensemble can also
be regarded a s a well-grounded est imate of a . T h e r e -
fore in those cases in which Δα is not too large the two
methods lead to nearly equal r e s u l t s , which coincide for
Δα — 0.

Some Results and Problems

Recent p a p e r s C 6 6 " 6 8 J have given descript ions of com-
puter p r o g r a m s which rea l ize the method of s tat is t ical
regularizat ion, and the r e s u l t s of some mathematical
experiments which were c a r r i e d out to tes t th is method.
The experiments were done in the following way. A ker-
nel (matrix) Κ and a " t r u e " function (vector) φ were
chosen. The " t r u e " right member of the equation was
then determined by multiplying Κ by φ . To the vector
Κφ was added a r a n d o m - e r r o r vector with independent
normally distributed components. The vector ί so ob-
tained to imitate the experimental re su l t s was used to
reconst ruct the vector φ by means of the p r o g r a m s in
question. The resu l t of the reconstruct ion was com-
pared with the t r u e vector φ , with the theoretical ly
found e r r o r of the reconstruct ion (vector σ ) taken into
account.

The var ious p r o g r a m s used the methods of the n a r -
rowest admiss ible ensemble, of the most probable a ,
and of averaging over a . The function P(a | f ) was also
studied. In al l of the experiments it was found that the
reconstructed function coincides with the t r u e function
to an accuracy corresponding to the e r r o r indicated by
the theory. As an i l lustrat ion we give an example from
C 6 7 : l (Fig. 2). The kernel of the equation was of the dif-

15 r

10 20 30 40 i
FIG. 2. Reconstruction of a function φ(ί) from the result of its con-

volution with a resolution curve K(i). σ is the error of the reconstruc-
tion.

f e r e n c e f o r m , c o r r e s p o n d i n g t o t h e r e s o l u t i o n funct ion
s h o w n i n t h e f i g u r e . T h e " e x p e r i m e n t a l " r i g h t m e m b e r
f i s s h o w n t o g e t h e r w i t h t h e e r r o r of m e a s u r e m e n t . T h e
c r o s s e s give t h e r e s u l t of t h e r e c o n s t r u c t i o n wi th t h e
choice of the most probable α (regime 2), and the h i s -
togram gives the resul t for averaging over α (regime 3).

The application to some geophysical problems of
methods of solving incorrect ly posed problems in the
ensemble given by the correlat ion matr ix is described
in Chapter V of the present a r t ic le .

The use of an a p r i o r i probability distribution in
cases when all we know i s that the unknown function is
smooth, and i ts actual stat ist ical character i s t ic s a r e
unknown, presents a ser ious and general problem. A
test of whether the finally obtained regular ized solution
is genuine can be obtained with reasonably large prob-
ability by selection from an a pr ior i ensemble. For this
one can employ the usual stat ist ical c r i t e r i a of l ikeli-
hood of hypotheses.

It would be desirable to make such a test both with
an α given in advance and with a pos ter ior i determina-
tion of a . In those cases in which the intersect ion of the
a pr ior i ensemble and the complete ensemble of solu-
tions occurs in the " t a i l s " of the Gaussian distributions
the likelihood cr i ter ion obviously gives a negative an-
swer. In the examples that were solved in t 6 6 " 6 8 ^ it
could scarcely be doubted that the likelihood cr i ter ion
must give a positive answer, s ince neff was smal l and
the adjustment of the single parameter α could give a
high enough level of likelihood. In more complicated
cases , however, in which the experiment contains a
large amount of information about φ , this may not be
so. How does one proceed in such c a s e s ?

An answer presents itself: Introduce two or more
p a r a m e t e r s in the a pr ior i ensemble and determine them
a poster ior i , as we did with the single parameter a.
Then the a p r i o r i probability density will be of the form
of a "many-dimensional l a m i n a r " ensemble:

Ρ ( φ ) = j p ( a , , . .., α ν )/ 'α, αν(<Ρ)**ι •·· da,.

I n s t e a d of a t o n c e d e t e r m i n i n g t h e m o s t p r o b a b l e s e t
of p a r a m e t e r s a x , . . . , av, we c a n p r o p o s e t h e fo l low-
i n g p r o c e d u r e . W e f i r s t g ive t o a l l t h e p a r a m e t e r s a j
e x c e p t o n e c e r t a i n d e f i n i t e i n i t i a l v a l u e s ( c h o s e n , s a y ,
on t h e b a s i s of p a s t e x p e r i e n c e ) . W e find t h e m o s t p r o b -
a b l e v a l u e of t h i s p a r a m e t e r a n d d e t e r m i n e i t s d e g r e e
of l i k e l i h o o d . If i t i s s a t i s f a c t o r y , t h e n w e l o o k for t h e
s o l u t i o n i n t h e c o r r e s p o n d i n g e n s e m b l e . If it i s u n s a t i s -
f a c t o r y , w e i n c r e a s e t h e n u m b e r of u n k n o w n p a r a m e t e r s
by o n e , a n d s o o n . T h e n u m b e r of p a r a m e t e r s t h a t f i n a l -
ly t u r n out t o b e e s t i m a t e d a p o s t e r i o r i d e p e n d s o n t h e
informativeness of the experiment with respect to φ .

This formulation of the question gives r i s e to the fol-
lowing problem: what sort of set of p a r a m e t e r s a l t

... , oiy should we use, and in what order should they
be subjected to est imation? As the second parameter it
is natural to suggest the order q of the derivative in
Eq. (42). But what sor t of initial value of q should we
use?

To approach the solution of problems of this sort
one must make a fundamental study of the stat ist ical
s t ructure of the functions encountered in the various
c lasses of physical problems. Such studies will be an
addition to and a refinement of the a pr ior i information
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necessary for the satisfactory solution of the incorrec t-
ly posed, and essentially undetermined, problems of
physics .

V. INVERSE PROBLEMS OF THE OPTICAL PROBING
OF THE ATMOSPHERE

The method of s tat is t ical regularization considered
in Chapter IV has been tested on problems of determin-
ing the vert ical distributions (profiles) of a tmospher ic
t e m p e r a t u r e and humidity from measurements of spec-
t r a of the E a r t h ' s own radiation. These problems a r e
urgent at p r e s e n t in connection with the use of artif icial
satel l i tes to probe the atmosphere by optical methods,
i.e., to determine the t e m p e r a t u r e and humidity and
other p a r a m e t e r s of the lower layer s of the a tmosphere
(0-50 km) at any point on the Ear th . Since in problems
of atmospheric physics the spatial and temporal v a r i a -
tions of the t e m p e r a t u r e and humidity must be known to
high accuracy (1 to 2 degrees of t e m p e r a t u r e over a
range 200-320° K, and 0.1 to 0.2 g/kg of specific humid-
ity over a range 0.5-20 g/kg), the securing of rel iable
solutions to the appropriate inverse problems is a p r a c -
t ical necess i ty .

Since, f irst, these variat ions a r e of a random nature,
i .e., the t e m p e r a t u r e profile T(f ) and the humidity p r o -
file q(f) a r e random functions of the height,* and s e c -
ond, for the E a r t h ' s a tmosphere there is a wealth of data
on the s tat is t ical c h a r a c t e r i s t i c s of the ver t ica l s t r u c -
t u r e of the fields T(£) and q(£), the application of the
method of s tat is t ical regular izat ion to the solution of
these problems i s quite natura l .

The Determination of the Vertical Temperature
Profile of the Atmosphere

The idea of determining the vert ical t e m p e r a t u r e
profile of the a tmosphere from m e a s u r e m e n t s of the
E a r t h ' s own radiat ion in sufficiently narrow spectra l
intervals of the CO2 absorption band near 15 μ with an
artificial satel l i te was proposed in a paper by K a p l a n . i 6 j

The basis of this idea is the physical fact that the r a d i a -
tion in var ious sect ions of th is band i s generated in dif-
ferent l ayer s of the a tmosphere, and consequently is de-
termined by the t e m p e r a t u r e of these l a y e r s . This cor-
respondence i s sufficiently unambiguous, s ince the r e l a -
tive concentration of CO2 is constant and well known up
to very large heights, and the absorption of water vapor
and other a tmospher ic substances can be neglected. !

The relation between the spectra l intensity I,, of the
radiat ion of frequency v, a s measured with a satel l i te,
and the tempera ture T(f) of the a tmosphere is de-
scribed by the equation of t ransfer of thermal radiation.
F o r the s implest case of an absolutely black t e r r e s t r i a l
surface and m e a s u r e m e n t s of l v in the direction of the
local vert ical this re lat ion will be of the form

ΙΑΤ(ζ), (56)

*As the variable characterizing the height we here follow the com-
mon practice of using the quantity f, the pressure of the atmosphere
at the given height.

t Actually the absorption of water vapor and aerosol can make an
appreciable contribution to the radiation in the wings of the CO2 band.
Besides this, the variation of the concentration of CO2 existing in the
atmosphere can be of some importance.

H e r e B ^ [ T ( f ) ] i s t h e P l a n c k f u n c t i o n , a n d P j , [ w ( f ) ] i s

t h e t r a n s m i s s i o n f u n c t i o n o f t h e a t m o s p h e r e , w h i c h

c h a r a c t e r i z e s t h e w e a k e n i n g o f t h e r a d i a t i o n f r o m a

source by a column of atmosphere (0, ζ) of unit c r o s s
section, containing an effective m a s s of absorbing gas
w(£) = r t q(t) dt (n i s a constant which allows for the

change of the halfwidth of the absorption l ines of the gas
in the a tmosphere nonuniform in height). The function
Py in (56) is taken to include the spectral sensitivity of
the apparatus, and the frequency ν corresponds, for ex-
ample, to the middle of the interval of spectra l re so lu-
tion (sometimes we shall take the index ν to mean s i m -
ply the number of a section of the spectrum for which a
measurement of \ v has been made).

The relation (56), regarded a s an integral equation
for T(£), allows us to determine the ver t ica l t e m p e r a -
ture profile if we know the emission intensity l v a s a
function of ν and the t ransmiss ion function Pv, which
is the kernel of the equation. The apparent simplicity of
Eq. (56) was the reason that in the first attempts to
solve it, in papers by Wark and by Y a m a m o t o , [ 6 9 ' 7 0 J

use was made of the formal reduction of (56) to sys tems
of algebraic equations obtained either by approximation
of the integral by a finite sum, C 7 0 : l or by expanding the
unknown function in a s e r i e s of polynomials. C 6 9 : l As was
to be expected, from the solution of such systems with-
out' special precautions one could get values a rb i t rar i ly
far from the t rue solution, and even physically quite
meaningless (cf., e.g., l712), and a refinement of the ap-
proximations, meaning an increase of the o r d e r of the
algebraic sys tems, leads to increasing stability of the
solution. This displays the i n c o r r e c t n e s s of the formu-
lation of the inverse problem of optical probing, which
is a direct consequence of the physical mechanism which
determines the t rans fer of the intr insic radiation in the
stratified a tmosphere . Owing to this mechanism there
is a smoothing out of the variat ions of the radiation in
the individual l a y e r s of the a tmosphere, the degree of
smoothing being character ized by the kernel of Eq. (56).
For this reason some of the details of the unknown func-
tions, such a s the previously mentioned sharp changes
of the t e m p e r a t u r e gradient, a r e either completely
smoothed away and do not show up at all in the m e a s -
ured intensity l v , or else contribute an amount at the
level of the random e r r o r s of the m e a s u r e m e n t s of l v

or of the e r r o r s of the calculations. In the inversion of
equations of the type of Eq. (56) such e r r o r s a r e ampli-
fied, which leads to instability of the solution.

Equation (56) i s nonlinear in the function T(£), but it
can be l inearized to an accuracy sufficient for pract ical
purposes . By using the relation αν{Ί) = B,,(T)/B0(T),
where B0(T) is the Planck function for one of the Ν s e c -
tions of the CO2 band that a r e being used, and neglecting
the dependence of ev on Τ (which i s permiss ib le only
for a very narrow spectra l interval in the band), Yama-
m o t o 1 6 9 3 derived the equation

1
• £ - B0 [T ( l ) ] Λ , [w ( i ) j - \ B O I T (ζ))

(57)

which is l inear in B 0(T).
The solution of Eq. (57) has been performed by the



M A T H E M A T I C A L - S T A T I S T I C S M E T H O D S 699

u s e of e x p a n s i o n s of the unknown function in t e r m s of
L e g e n d r e and Chebyshev p o l y n o m i a l s [ 6 9 ] or of t r i g o -
n o m e t r i c f u n c t i o n s . C 7 2 J In t 1 6 " 1 8 ^ and r e c e n t l y a l s o in
: 7 4 ' 7 5 3 , u s e h a s b e e n made for t h i s purpose of the natu-
ra l orthogonal functions ( v e c t o r s ) which a r e the e i g e n -
functions ( v e c t o r s ) of the c o r r e l a t i o n function (matr ix)
and a r e obtained by s t a t i s t i c a l p r o c e s s i n g of the data
from a e r o l o g i c a l probing of the a t m o s p h e r e . In t h i s con-
nect ion it must be noted that the natural orthogonal func-
t ions a l s o a s s u r e the opt imal approximat ion to any ran-
dom prof i le f rom the e n s e m b l e cons idered, i . e . , they
al low one to p a r a m e t r i z e the solut ion of Eq. (56) with
the s m a l l e s t number of expansion coef f ic ients (as c o m -
pared with any other orthogonal b a s i s ) . Th is , however ,
d o e s not automat ica l ly guarantee that the correspond ing
i n v e r s e prob lem wi l l be s o l v e d with the a c c u r a c y indi-
cated by the e r r o r s of m e a s u r e m e n t of \ v . The point i s
that in the formal appl icat ion of such expans ions one
d o e s not a l w a y s have good matching of the number of
t e r m s u s e d with the kerne l of Eq. (56) (such a matching
h a s been c a r r i e d out, for e x a m p l e , in the p r e v i o u s l y
ment ioned p a p e r s £ 6 2 > 6 3 J) .

The prob lem of determin ing v e r t i c a l t e m p e r a t u r e
prof i l es has been s o l v e d in t 7 6 ' 7 7 3 by the Tikhonov
method. [ 5 6 " 5 8 ] .

A l i n e a r i z a t i o n of Eq. (56) which i s convenient for
the appl icat ion of s t a t i s t i c a l methods of regu lar izat ion
can be obtained by represent ing Τ (ζ) a s a sum

ϊ(ζ)=Ύ(ζ) + Τ' (ζ), (58)

where Ί(ζ) is the mean vert ical t e m p e r a t u r e distribu-
tion for the given ensemble and T'(f) is the deviation
from Τ (Τ' « Τ ). Substituting (58) in (56) and using
only the_linear t e r m s in the expansion B^(T) = Β,,(Τ)
+ (ΘΒ^(Τ)/3Τ)Τ' + . . . , we get a l inear equation for

7v = if ^
, f dBv [Τ (Q] t dPv (ζ) ...

(59)

where t v = i v - l v , l v = I V [ T ( £ ) ] , P^ (£) = Vu

Determinat ions of ver t ica l t e m p e r a t u r e profiles by
applying the stat ist ical method of regularizat ion to
Eq. (59) were made in c 7 8 ] from balloon measurements
of the proper radiation \ v , made with a many-channel
spectrometer in five sections of the CO2 band at 15 μ
(677.5, 691, 703, and 709 c m " 1 ) and in the " t r a n s p a r -
ency window" at 899 c m " 1 C 7 5 ] (resolution ~ 5 c m " 1 ) ,
and also emiss ion spectra measured by means of a Fou-
r i e r spectrometer with a resolution of the order of
2 c m " 1 . [ 7 9 ] The measurements of [ 7 5 ] and [ 7 9 ] were
made in the s a m e d i s t r ic t s (Palest ine, Texas and Sioux
Fal l s , South Dakota) in s u m m e r . According to the auth-
o r s of c 7 5 : l and : 7 9 ] the e r r o r s of the m e a s u r e m e n t s
did not exceed 1 percent .

The vert ical t e m p e r a t u r e and humidity profiles were
measured simultaneously with l v , which made it poss i-
ble, on one hand, to check the methods of reconstruct ing
T(£), and on the other hand, to take the actual t r a n s m i s -
sivity of the a tmosphere into account in the kernel of
Eq. (59). For the kernel of Eq, (59) use was made of the
t r a n s m i s s i o n functions calculated in : 7 5 : l for the d i s -
t r i c t s where 1^ was measured.

The determination of the variat ions of the vert ical
profiles T(£) was car r ied out in [ 7 8 : l with closed and
unclosed schemes . In the closed scheme (which we shall
call A x ) Eq. (56) was used to calculate l v and Ίν from
a known real ization of the profile T(£) and the mean p r o -
file T(f). Then a random e r r o r with mean-square devi-
ation 1 percent was added to l v , after which T(f) was
reconstructed by application of Eqs . (38) and (39) to
Eq. (59). Comparisons of profiles T(£) reconstructed
with scheme Ax with the original profiles a r e shown in
Fig. 3.

In evaluating these r e s u l t s we must keep in mind that
we must judge the effectiveness of the stat ist ical regu-
larization method itself only in t e r m s of the " c l o s e d
s c h e m e . " When the "unclosed s c h e m e " is used physi-
cal factors not taken into account (or incorrect ly taken
into account) in the original equation may be of import-
ance . In fact, the mean-square e r r o r σ χ of the recon-

FIG. 3. Examples of the reconstruction of vertical tem-
perature profiles by the statistical-regularization method Ο
and X are the respective reconstructions by the closed and
unclosed schemes from balloon measurements of \v in the
CO2 band near 15μ [ 7 5 ] : (a) over Palestine, Texas, and (b)
over Sioux Falls, South Dakota; points Ο show the true
profiles.
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struction of T(f) with the scheme Ax does not exceed 3°
at the level most unfavorable for the method, that of the
tropopause (ξ =0.25-0.3 atm, ζ = 10-12 km). On the
other hand the actual errors in the reconstruction of
T(£) by use of Eqs. (38) and (39) with direct measure-
ments of l v (the unclosed scheme A2) were somewhat
larger, as can be seen from Fig. 3. The point is that
with a given kernel and method of calculation the actual
error of the original information f v is in most cases
several times the error of the measurements of 1^.

The question of the influence of errors in the kernel
of Eq. (59) on the errors in determining the profile of
temperature or some other atmospheric parameter is
extremely important for the practical application of any
method to problems of the optical probing of the atmos-
phere. Under actual conditions the transmission func-
tion Py in the CO2 band 15 μ depends on a number of
factors, for whose determination it is necessary to solve
inverse problems on the basis of certain supplementary
information. The most important of these factors is the
absorption of thermal radiation by the aqueous aerosol,
including water droplets in clouds and water vapor,
which gives bands whose wings overlap the CO2 band
15 μ.

No well-founded method for taking the aerosol ab-
sorption into account can as yet be proposed, since there
has not been much study of the optical properties of
aerosol and clouds in the infrared region of the spec-
trum. As for correcting for the water vapor, here it is
necessary to solve an inverse problem to determine the
vertical profile of its concentration, using data on the
Earth's emission in the bands of HgO vapor.

Determination of the Vertical Humidity Profile of
the Atmosphere

The vertical profile of the relative water-vapor con-
centration q(£), or the profile w(£) of the effective mass
of the vapor, can be determined from Eq. (56) if one has
measured the radiation of the Earth in some water-
vapor band, for example, in the band at 6.3 μ. In this
case the kernel of Eq. (56) is the function Bp [ T(f) ] ,
i.e., to determine q(£) or w(£) one must have the tem-
perature profile of the atmosphere. Consequently it is
appropriate to formulate the complex problem of the
determination of T(£) and q(f) from simultaneous
measurements of l v in bands of CO2 and of H 2O. Then
the profile T(£) determined from the radiation of the
Earth in the CO2 band near 15 μ without taking the
water-vapor absorption into account, regarded as a
first approximation, can be used to determine q(£)
from measurements in the H2O band near 6.3 μ, after
which, if necessary, one can improve both solutions by
taking into account the overlap of the CO2 and water-
vapor bands.

The physical principle on which the possibility of de-
termining the humidity profile is based is analogous to
that for determining the temperature profile. The at-
mospheric radiation in the central part of the band car-
ries information about small concentrations of water
vapor in the upper troposphere or the stratosphere. In
the regions of smaller absorption and in the wings of
the band Iv gives information about the humidity in the
lower layers of the atmosphere. The weights with which

this information affects Iv are determined by the ver-
tical temperature profiles and the nature of the depend-
ence of the transmission function on the humidity.

The problem of determining q(f) is an incorrectly
posed problem, somewhat more complicated than that of
determining T(£). The complication is primarily due to
the essentially nonlinear dependence of the transmission
function on q(£). Besides this, Vv depends directly on
w(f), and consequently with respect to q(£) there is a
double smoothing effect in height. This increases the
sensitivity of q(f) to the random errors of measurement
and of the calculations, as has been illustrated in [ 1 8 ] ,
where the profile of q(f) was determined by expansion
of the deviation q'(£) = q(£) - q(ξ) in terms of the eigen-
vectors of the correlation matrix of an ensemble of hu-
midity profiles [q(f) is the mean profile for this ensem-
ble]. But this approach, like that proposed in [ 8 0 ] and
c 8 1 ] , of representing the profiles q(J) in parabolic form
Qo £*> "with unknown parameters q0 and κ, does not as-
sure a reliable solution of an incorrectly posed prob-
lem. Particularly large errors are obtained in a region
of strong variation of the unknown function (for exam-
ple, in the surface layer of the atmosphere).

The application of the method of statistical regulari-
zation to the equation

u= ) - i
(60)

obtained by linearization of (56) with respect to w'(£)
= w(f) - w(f), where

w (ξ) « w0 j i"? (i) dt, w' (ζ) = w0^ fq' (t) dt,
0 0

:). ?(ζ)ΐ,

makes it possible to determine the vertical profile of
w(£) directly. i a 2 1 As the a priori information one uses
the correlation matrix constructed from the variations
of the profiles w'(f). The profiles q(£) are calculated
from the w(£) so reconstructed, by differentiating with
respect to ζ. As before, the reconstruction of w(f) and
q(J) is done with closed (AJ and unclosed (A2) schemes.
The scheme Ai, which allows us to check the effective-
ness of the method of inversion, begins with the calcula-
tion of the quantities lv and \ from known profiles
T(£), q(£), and q(£). Then, on the assumption that T(£)
and q(J) are known, the profiles w(f) and q(£) are re-
constructed from the calculated l v after a random er-
ror with given dispersion has been added to them. In the
scheme A2 the profiles q(f) and w(f) are reconstructed
directly from measured values of lv, whose errors of
measurement are characterized by a given dispersion.

The results of the determination of w(£) and q(£) by
the method of statistical regularization, as obtained in
[ 8 2 ] from the measurements of lv given in [ 7 9 ] , are
shown in Fig. 4. It is not hard to see (cf. Fig. 4, a) that
the profile w(f) reconstructed by the closed scheme
practically coincides with the original profile. With the
unclosed scheme the agreement of w(£) and w(£) is
also quite satisfactory, although the error in the re-
construction of w(£) in the layer next the ground may
be as much as 10 percent. However, even these errors
become substantial as soon as we proceed to the deter-
mination of the profiles q(£) by differentiation of w(£).
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FIG. 4. Examples [82] of the reconstruction of vertical profiles of
(a) the effective mass w(f) and (b) the concentration q(f) of water vapor
from balloon measurements of I in the 6.3 band [7 9].

It is seen from Fig. 4, b that in the layer next the
ground we cannot get an approximation to the original
distribution q(£), which h e r e has a large gradient, no
matter which scheme i s used, the closed or the un-
closed.

We can, however, apply the method of stat ist ical
regular izat ion for a profile q(£) represented a s an ex-
pansion in t e r m s of eigenvectors. The directly de ter-
mined quantities a r e then the coefficients q^ in the ex-
pansion. The a p r i o r i information necessary for the d e -
terminat ion of the q^ will be present in the diagonal
m a t r i x of the eigenvalues of the corre lat ion matr ix of
the profiles q(£). It must be stated concerning this that
for a satisfactory reconstruct ion of the profile q(g) in
the surface layer of the a i r and in other regions of
strong variat ion of the gradient of q(f) one needs more
detailed a p r i o r i information in the ξ scale, which in
turn r e q u i r e s the carrying out of balloon soundings of
the a tmosphere at a large number of levels.

CONCLUSION

The concept of incorrect ly posed problems a r o s e in
mathematical physics, and therefore attempts to solve
such problems were originally confined to the f rame-
work of the analytic approach. In applications, however,
incorrect ly posed problems usually a r i s e a s problems
of the process ing of experimental data, so that they be-
gan to be approached more and more often from the

standpoint of mathematical s ta t i s t ic s . With this a p -
proach it became clear that the difference between in-
correct ly and correct ly posed problems is that sa t i s-
factory solution of the former depends on nontrivial ad-
ditional information about the unknown function, inde-
pendent of (a p r i o r i with r e s p e c t to) the experiment on
the bas is of which the equation to be solved was set up.
The a pr ior i information can be more or le s s detailed
and have as its source either general considerations
ar i s ing from the physical nature of the problem (for
example, smoothness of the unknown function) or con-
cre te experimental data.

The explicit introduction of the a pr ior i information
makes it possible to determine the e r r o r of the solution
rigorously. Unlike the purely analytic approach, which
gives only an upper limit (usually put much too high) on
the e r r o r , the stat ist ical approach gives the mean-
square e r r o r the physicist needs to interpret the r e -
sults . It also makes it possible to est imate the informa-
tion content of the experiment, i.e., the quantity and
structure of the actual information independently of the
procedure of solution. These est imates a r e the actual
bas is for the optimal planning of the experiment, in-
cluding the choice of the scheme for the measurements
and the optimization of the measuring apparatus .

In conclusion we note that stat ist ical methods for the
solution of incorrect ly posed problems have demon-
strated their effectiveness in a number of practically
important applications and a r e now being more and
more widely applied. Fur ther p r o g r e s s of the s tat is t i-
cal methods for solution of incorrect ly posed problems
will mainly consist of an increase in skill in introducing
insufficient a pr ior i information into the formulation of
the problem and in development of the mathematical
technique of solution, when the problem has been formu-
lated and the kernels of the equations which describe
the transformation of the unknown quantities into those
that a r e measured a r e known with sufficient accuracy.
In cases in which the kernel s of the equations a r e sub-
ject to intr insic e r r o r s (many problems of the p r o c e s -
sing of experimental data a r e cases of this sort) , we
have the important problem of insuring that the p a r a m -
e t e r s used in the t rea tment a r e sufficiently r e p r e s e n -
tat ive. This problem, however, i s inherent in all meth-
ods for the solution of incorrectly posed problems.

The w r i t e r s regard it as their pleasant duty to ex-
p r e s s their gratitude to G. V. Rozenberg for his interes t
in this work and for helpful discuss ions.
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