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INTRODUCTION

I N this review we present results of the latest investi-
gations of the theory of oscillations and stability of
inhomogeneous flows of plasma and liquids. The theory
of oscillations and stability of flow of an ordinary
liquid has been under development for more than half
a century.

Recently, however, a number of papers have been
published, in which these problems are considered on
the basis of new physical concepts developed in the
theory of oscillations of another continuous medium,
namely a plasma. Among such concepts are the con-
cepts of resonant interaction of oscillations with the
motion of the particles of the continuous medium. It
was introduced by Landau in an analysis of the problem
of the electronic Langmuir oscillations of a plasma
that is in thermodynamic equilibrium and at rest [ 1 ] . In
such a plasma, owing to the thermal velocity scatter,
there are always particles whose velocity is equal to
the phase velocity of the wave. For these particles,
the field of the wave is constant in time, and they are
therefore at resonance with the wave. Landau has
shown that resonant particles absorb the wave energy
and this leads to damping of the wave (Landau damping).
It was also shown by means of numerous examples that
in a nonequilibrium plasma the energy can be trans-
ferred via resonant interaction also in the opposite
direction, from the plasma to the oscillations. As a
rule, in these problems the resonant particles consti-
tute a small fraction of the total number of particles
at a given point. Therefore, to reveal resonant effects
it was necessary to employ a kinetic analysis, and
such resonances can be arbitrarily called kinetic.

However, the employed concepts of resonance turn
out to be useful also in problems of another type,
namely in the analysis of oscillations of a solid moving
with a velocity that is variable in space, when at a
certain (resonant) point its velocity coincides with the
phase velocity of the wave. In this case the resonant
particles are concentrated in the vicinity of the
resonant point. Resonances of this type can be naturally
called hydrodynamic. It turns out, for example, that
the well-known Rayleigh theorem ^2], according to which
flow of an incompressible liquid with a velocity profile
that has no inflection point is stable, is due to the fact
that the oscillations are absorbed at the resonance
point. Other important results are the theory of oscil-
lations of flow of an incompressible liquid are also
connected to one degree or another with resonant phe-
nomena.

Resonant phenomena also play a decisive role in
oscillations of a moving plasma, if its velocity changes
sufficiently rapidly in a direction perpendicular to the
motion. A study of the oscillations of a moving plasma

is of considerable interest, since under real conditions
the plasma is rarely at rest. Its motion may be due,
for example, to electric fields which are easily pro-
duced in a plasma. At first glance it seems that the
motion of a plasma can cause only additional instabili-
ties, which are quite abundant in a plasma even without
this. It is useful, however to turn here to examples
from the theory of oscillation of flows of an ordinary
liquid. As already mentioned, an ordinary liquid satis-
fies the Rayleigh theorem, according to which a definite
type of flows is stable. It turns out that a similar situ-
ation takes place also for a moving plasma, thus, for
example, in the "Ogra" and "Alice" thermonuclear
installations the plasma stability was appreciably im-
proved under conditions when the plasma rotated with
a velocity that changed radially sharply and mono-
tonically (these systems are axially symmetrical). A
theoretical analysis shows that in such regimes, just
as in the flow of an ordinary liquid, the stabilization is
connected with the absorption of the oscillations at the
resonant points where the angular velocity of rotation
of the plasma coincides with the phase velocity of the
wave. The same effect should become manifest also in
oscillations of the electron cloud in a magnetron, and
also in oscillations of an electron beam moving along
a magnetic field with a velocity that is variable with
the cross section. These two examples, because of
their simplicity, have by now been analyzed in consid-
erable detail.

The purpose of the present review is to demonstrate,
by means of a very simple example, the most general
laws characterizing the oscillations of moving continu-
ous media (plasma and ordinary liquids). As already
noted, these laws are connected mainly with processes
that develop at the resonant points, at which the velocity
of the continuous medium coincides with the phase
velocity of the oscillations.

1. OSCILLATIONS OF PLANE-PARALLEL FLOWS
OF INCOMPRESSIBLE LIQUIDS

1.1. Rayleigh's Theorem

An investigation of the resonant effects in oscilla-
tions of moving continuous media is best started with
a consideration of the simplest and best-known prob-
lem of oscillations of plane-parallel flows of an in-
compressible liquid.

We introduce a rectangular coordinate system, the
Oy axis of which is directed along the flow and the Ox
axis along the direction in which its velocity changes
(Fig. 1). The figure shows also the velocity profiles of
the simplest flows. We assume that the velocity Vo(x)
varies monotonically, and its second derivative
d2V0/dx2 does not vanish anywhere (the velocity pro-
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FIG. 1. Flow velocity profiles
without inflection points. d2V<1)/
dx2<0,d2V<o

2>/dx: !>0.

file has no inflection points). We shall a s sume that the
viscosity of the liquid is smal l (the Reynolds number
is large), and we shall d i s regard it initially.

The motion of an ideal (nonviscous) incompress ible
liquid is described by the continuity equation

divV = 0 (1.1)

and the equation of motion

d\ (1.2)

h e r e ρ is the p r e s s u r e of the liquid and ρ its density.
For two-dimensional flows, Eq. (1.1) makes it pos-

sible to introduce the s t r e a m function <p( V x = 9<p/9y,
Vy = - 9 φ / 3 χ ) . Applying to (1.2) the operation of taking
the ζ component of the cur l , and expressing the veloc-
ity-in t e r m s of the s t r e a m function, we obtain

d&<p/dt = 0. (1.3)

This equation expresses the law of conservation of the
cur l of the velocity in an ideal incompressible liquid:

In the absence of viscosity, the flow velocity profile
can be a r b i t r a r y and accordingly Eq. (1.3) is satisfied
by the a rb i t ra ry function x :

We now consider smal l perturbations of the flow Vi
<C Vo and ψι -C ψο· An equation describing such per-
turbations is obtained by l inearizing (1.3):

Since the flow is stationary and is homogeneous with
respect to Oy, the perturbation <Pi(x, y, t) can be
chosen in the form ^ ( x , y, t) = ^ ! ( x ) e " i w t + i k v . We
then obtain from (1.4)

dx*
,VoW-W)

L<Pl = 0. (1.5)

On the surfaces bounding the flow (x = x 1 ) 2 ) , the
normal velocity component vanishes . Therefore Eq.
(1.5) should be supplemented with the boundary condi-
tions Vix(x l ) 2 ) = ik<pi(xi>2) = 0. Thus, the problem
reduces to finding the eigenfunctions of Eq. (1.5) and
determining the eigenfrequency s p e c t r u m . If some of
the frequencies have Im ω > 0 at a specified velocity
profile Vo(x), then the corresponding flow turns out to
be unstable, since the amplitudes of the natural (free)
oscil lations will grow in t i m e .

In considering the flow stability, we shall follow
Rayleigh [ 2 ] . We a s s u m e that the unstable oscil lations

exist, and accordingly (1.5) has at least one^solution
ψΑχ) with Im ω > 0. We multiply (1.5) by ψΧ{χ) and
integrate the r e s u l t by p a r t s :

, i(Imco/t) + [(Re(o/>:)— V0(i)]
dx*

0.

Ί.6)
If the flow velocity profile has no inflection points

(d2V0/dx2 does not vanish), then relation (1.6) cannot
be satisfied, since the imaginary part of the integrand
does not reverse sign in the integration interval
(xi, x 2 ) . Therefore in flows with a velocity profile
without inflection points, growing natural oscillations
cannot exist, and consequently such flows are stable.
This statement constitutes Rayleigh's theorem.

In this proof we used the inequality Im ω * 0; on
the other hand the sign of Im ω was i m m a t e r i a l . There-
fore, on the bas is of re lat ion (1.6) only, it would be
necessary to conclude that in flows with a velocity
profile without inflection points t h e r e a r e likewise no
damped oscil lations (Im ω < 0) . Moreover, if the
neutra l oscil lations (Im ω = 0) a r e understood as the
limiting case of oscil lations with Im ω * 0 as Im — 0,
then it can be shown that such oscil lations a r e impos-
sible in the flows under consideration1-3 1 (see also
Appendix I.I at the end of the review).

1.2. Landau's Circuiting Rule and Absorption of
Oscillations at Resonant Points

We have found that in flows having a velocity profile
without inflection points no natural oscil lations what-
ever a r e possible. This unusual situation calls for a
m o r e detailed discussion. The problem is facilitated
by the fact that the propagation of the perturbations in
inhomogeneous flows of an ordinary liquid have certa in
common features with the propagation of e lectromag-
netic perturbations in a plasma situated in an inhomo-
geneous magnetic field (concerning the la t ter question,
see , for e x a m p l e / 4 ' 6 1 and also Sec. 5.1 of the present
review). This analogy was noted and used in [ 7 1 , which
we shall mainly follow.

The physical processes that lead to elimination of
the natural oscil lations a r e part icular ly easy to analyze
using as an example oscil lations whose character i s t ic
spatial scale in the Ox direction is smal l compared
with the character i s t ic scale of variation of the initial
velocity V 0(x). When we analyze these oscil lations we
can use the quasiclass ical approximation, choosing the
perturbations in the form of waves traveling along Ox:

φ , (χ, y, t) « (kK)-i!1 exp ( - Us>t + iky + i j kx dx\ .

In fact, the spatial sca les of the initial and perturbed
velocities turn out to be the s a m e in order of magni-
tude. Therefore, s tr ict ly speaking, the use of the
quasic lass ical approximation would be incorrec t . Our
purpose, however, is a physical interpretat ion of the
r e s u l t s obtained in the preceding section. This is done
most simply in the "quas ic lass ica l language" of waves
and wave packets made up of such waves. We shall
therefore consider in place of (1.5) a simplified model
equation, which, while retaining the character i s t ic
features of (1.5), admits at the s a m e t ime of the possi-
bility of using the quasic lass ical approximation. To
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U'xj

FIG. 2. Effective potential
U(x)forEqs. (1.5) and (1.7). xs

— — χ and x 0 are the singular and ordi-
, nary turning points.

this end we replace the last term in the left side of
(1.5) b y Αψ1/(χ-χΒ):

* 2 Φ ι - τ ζ ^ Φ ι = 0. ( I · 7 )

If we define x s by the equation ω/k = Vo(xg) and put
A = Vo(xs)/VO(xs), then in the vicinity of the point x s

Eqs. (1.5) and (1.7) will coincide. We shall show later
that it is precisely this region which is of greatest
interest, since the physical phenomena leading to the
elimination of the natural oscillations develop in it. We
shall assume A to be a sufficiently large quantity,
A 3> maxja"1, k 2 a}, where a is the dimension of the
flow along Ox. This makes it possible to use the quasi-
classical approximation in the vicinity of the point x s .
In the region where | A/(x - x s ) | 3> k2, the quasiclas-
sical wave vector is equal to k x « ±[-A/(x - x s ) ] 1 / 2

and accordingly the solutions (see (1.10) below take the
form

For concreteness we have put A > 0.
Equations (1.5) and (1.7) can be regarded as

Schrbdinger equations describing the motion of a par-
ticle with energy Ε = -k 2 in a potential U(x) equal to
[V0(x) - (u)/k)]~1d2V0/dx2 or A/(x - x s ) respectively.
At the resonance point x s , where the phase velocity of
the oscillations along the Oy axis coincides with the
flow velocity ω/k = Vo(xs). U(x) becomes infinite, and
this point is a singular turning point (Fig. 2)*. If
Im ω * 0, then the resonant point shifts into the com-
plex plane. It then becomes necessary to continue
analytically the solutions of (1.5) and (1.7) to the plane
of complex variables x. We shall consider the case
Im ω = 0, for at real values of the variable the physi-
cal meaning of the solution is much simpler.

Let us find the formulas for "joining together" the
quasiclassical solutions on different sides of the singu-
lar turning point x s . From (1.8) it follows that the
point x s is simultaneously a branch point. Let us con-
sider a solution that decreases when χ > x s , i.e., in
the nontransparency region:

*A similar singularity is possessed at the origin by a Coulomb poten-
tial. However, in the problem of the motion of an electron in the field
of the nucleus one of the boundary conditions for the φ function of the
electron is set at the singular point, and therefore this condition is satis-
fied by that of the two linearly independent conditions of the wave
equation which is regular. Therefore the singular solution is discarded.
In the present case the singularity falls inside the interval in question.
Therefore, in order to satisfy the boundary conditions on both ends of
the interval, it is necessary to retain both the regular and the singular
solution.

<Pi * (xg - x) l / 4 exp[-2A1 / 2(x - x s )
1 / 2 ] . If in the ana-

lytic continuation of this solution into the region of
free propagation of the oscillations (x < x s ) (see Fig.
2) the singular point x s is circuited in the complex
plane from the top, then arg(x - x s ) receives an incre-
ment + Tt and the solution under consideration goes
over into a wave that travels to the left:
? i * ( x s - x) 1 / 4 exp[-2iA 1 / 2 (x s - x) 1 / 2 ] . If x s is
circuited from below, arg(x - x s ) receives an incre-
ment —π and the same solution goes over into a wave
traveling to the right: φ ^ (x s - x)1 / 4exp[2iA1 / 2(x s

- χ ) ί / 2 ] -
The question of the choice of the contour around

singular points is encountered in many problems in-
volving the oscil lations of a continuous medium, where
the oscil lations can resonate with the motion of the
medium. Thus, in the problem of Langmuir oscil lations
of a plasma at rest, allowance for the resonant parti-
cles, i.e., particles with thermal velocity ν coincides
with the phase velocity of the oscillations ω/k, leads
to the appearance of a singularity in the distribution
functions of the particles with respect to the velocities
f( v ) ~ [(ω/k) - v]" 1 . For this case, Landau has
indicated that neutral oscillations with Im ω = 0
should be regarded as the limits of growing oscilla-
tions (Im ω > 0) as I m a - 0 and therefore the
resonant point should be circuited from below if k > 0
and from above if k < 0*. This rule of circuiting is
obtained automatically if the problem of the natural
oscillations is considered as a part of the more gen-
eral problem of the temporal evolution of the initial
perturbations, and if this problem is solved by the
Laplace-transform method. On the basis of this con-
sideration, one could attempt to use the Landau
circuiting rule also in the analysis of oscillations of
the flows of an incompressible liquid. In all physical
problems, however, the use of singular expressions,
generally speaking, should be justified by the results
of a more complete investigation with allowance for
the additional factors that eliminate the singularity. In
the present case, to eliminate the singularity it is
necessary to take into account in the vicinity of the
resonant point x s the finite value of the viscosity of
the medium, i.e., to consider in lieu of (1.5) the equa-
tion (see, for exam pie, [ 3 ] ):

here ν is the kinematic viscosity coefficient.
In fact, the general solution of (1.5) and (1.7) con-

tains a singularity of the type (x - Xg) In (x - x s ) , and
therefore on approaching x s the higher derivatives of
ψ ι increase rapidly, dn</)1/dxn ~ (x - Xg)1"11 and con-
sequently at sufficiently small distances from the
resonant point x s the small-scale effects such as
viscosity become significant. A mathematically cor-
rect analysis of this question was presented by Wasow[8]

(see Appendix II.1). From this result it follows, in
particular, that if we are not interested in the details

The quasiclassic approach gives an asymptotic representation of
the exact solution. This representation remains unchanged (there is no
Stokes phenomenon) if we do not cross the Stokes line (the imaginary-
phase line) on going around the point xs. It is easy to see that in this
case this condition is satisfied.
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of the behavior of the solution in the vicinity of the
resonant point, then in the investigation of oscil lations
of a r e a l liquid it is possible to use the singular equa-
tion describing the osci l lat ions of an ideal liquid. Then
the resonant point must be circuited in accordance with
Landau's ins t ruct ions . Such an approach is apparently
valid in al l problems involving oscil lations of moving
continuous media, if the energy of the oscil lations be-
comes dissipated in the vicinity of the resonant point.
However, if t h e r e is no energy dissipation, as in the
case of flute oscil lations of a dense plasma (see Ch. V),
then the use of the singular equation for finding the
eigenfunctions is incorrec t .

Using in this case the Landau circuiting ru le , i .e.,
regarding the neutra l oscil lations as the limiting case
of growing oscil lations as Im ω —- 0 (V 0 (xs) = ω/k,
Im x s = Im ω/k VO(x s)), we find that the point x s

should be circuited from below when kVO(xs) > 0 a n d
from above when kVO(xs) < ° · A s a r e su l t , a solution
that d e c r e a s e s to the r ight from x s (the region of
nontransparency) goes over when kVO(x s) > 0 in the
region to the left of xs into a wave travel ing to the left,
and when kvo(xs) ^ 0 ^ n * · 0 a wave travel ing to the
r ight :

a-xYlk exp{-sgn{kV0(xs)]-2iAu2 (xs-x

-2Αι>2(χ-χ.γΐ*ι

We reca l l that the t ime dependence of the perturbations
is taken in the form e~*w .

Let us now consider the physical r e s u l t s of the use
of (1.10). To this end, we obtain an express ion for the
propagation velocity of a wave packet made up of
short-wave quas ic lass ical perturbat ions . This quantity,
as is well known, determines the energy-transfer r a t e .
In the quas ic lass ical approximation we obtain from
(1.5) the following express ion for the oscil lation fre-
quency as a function of the coordinate χ and of the
wave vector k x :

whence we get for the group velocity

In t h e v i c i n i t y of t h e r e s o n a n t point x s , w h e r e k x 2> k ,

we ge t

kx ss ± [kVy(a> — kV^\lli « ± (Λ/j z — z s | ) ' / 2 .

T h i s e x p r e s s i o n w a s u s e d t o o b t a i n (1.8), s i n c e t h e

p h a s e of t h e e x p o n e n t i a l in (1.8) i s

X

φ (χ) = j kx (x) dx.

R e l a t i o n (1.10) m a k e s it p o s s i b l e t o d e t e r m i n e t h e s i g n

of d o ) / d k x f o r p e r t u r b a t i o n s l o c a l i z e d in a l iquid ( d e -

c r e a s i n g in t h e n o n t r a n s p a r e n c y r e g i o n ) . F o r s u c h

p e r t u r b a t i o n s w e ge t

daldkx = 2 sgn (kV0 (a:.)) Wa (x)\x- x, \3'2 A' (1.11)

It must be recal led now that (1.10) was derived for the
case A = Vi ' (x s )/v£(x s ) > 0. Therefore the group
velocity is positive at both signs of kVO(xo), and con-
sequently the energy can be t rans fe r red only in the
direction towards the resonant point. It follows from
(1.11) that when the wave packet approaches the r e s o -

nant point, its velocity d e c r e a s e s . Since t h e r e is no
reflection from the resonant point, the energy of the
perturbation accumulates in the vicinity of the resonant
point, and no m a t t e r how low the viscosity of the liquid,
this energy will be dissipated after a sufficiently large
t ime interval .*

With the aid of (1.10) it is easy to show that (1.5)
and (1.7) cannot have quasic lass ical eigenfunctions.
Indeed, such solutions should be localized in a potential
well between the turning points x s and x 0 (see Fig. 2).
It is known that a solution decreas ing beyond the usual
turning point, at which k x ( x 0 ) = 0, goes over in the
t ransparency region into a standing wave. This rule
for joining together the solutions follows from the
conservation of the energy upon reflection from an
ordinary turning point. Indeed, the standing wave can
be represented as a sum of an incident and a reflected
wave with equal ampli tudes . At the s a m e t ime, accord-
ing to (10), a solution that d e c r e a s e s beyong the singu-
lar turning point goes over into a traveling wave.
Therefore the joining of solutions that decrease beyond
the points x 0 and x s i s obviously impossible, and
consequently E q s . (1.5) and (1.7) have no quas ic lass ical
eigenfunctions at Im ω = 0. Oscillations with Im ω > 0
must be regarded on the bas is of the genera l ru les for
the construction of asymptotic solutions (see, for ex-
a m p l e , [ 9 " u ] ) . The proof of the absence of eigenfunctions
with Im ω > 0 does not differ in pract ice in this case
from the proof given above. At the same t i m e , it turns
out that damped oscil lations cannot be considered
within the framework of the approximation of an ideal
liquid. Therefore the conclusion that t h e r e a r e no
damped oscil lations in flows with a velocity profile
having no inflection points, which could be based on
relat ion (1.6), is generally speaking incorrec t . Inci-
dentally, damped oscil lations a r e usually of little
in teres t .

Thus, in the part icular example of shortwave quasi-
class ical osci l lat ions, which is somewhat of a model,
we have shown that in flows having a velocity profile
without an inflection point t h e r e a r e no undamped
natural oscil lations (the Rayleigh theorem), because
the oscil lations a r e absorbed at the resonant points. It
turns out (see, for example , [ 3 ] and also Appendix I)
that the stability of such flows as the Poiseuille flow,
flow of the boundary-layer type, and flow with a velocity
profile having an inflection point, is also determined by
phenomena that occur in the vicinity of the resonant
points.

1.3. Evolution of Initial Perturbations

In the preceding section it was shown that during the
first stage of the evolution perturbations with fre-
quency ω and having a wave vector equal to k along
Oy accumulate in the vicinity of the resonant point
χ 8 ( ω = kV 0 (x s )) · A more complete picture of the evo-
lution can be obtained with the aid of Eq. (1.4). I n [ 1 2 " 1 4 ]

"The propagation of electromagnetic oscillations in a plasma situ-
ated in an inhomogeneous magnetic field is described by an equation
similar to (1.7) (see [4"6]) and also Sec. 5.2). In this problem, the use
of the Landau circuiting rule, usually justified by the presence of small
collisions (see, however, [4S]), also leads to the conclusion that the oscil-
lations incident on the resonant point are completely absorbed.
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FIG. 3. Elementary flow perturbation cor-
responding to a single Van Kampen-Case wave.

they used for this purpose the Laplace-transform
method:

12)

here

<tP, h e-"'(fh (x, t),

and Δφ^(χ, 0) is the initial perturbation of the
velocity curl.

The solution of (1.12) was determined with the aid
of the Green's function G p ^ x , x<j):

A<Pfe (xp, 0)P, h (X) - J αχο^Ρι h [X, x0) p + i k V o { X i ) ) ,

o " i , l W & » W ( a : > I o ) ,

(1.13)

here g i jj(x) are the solutions of the homogeneous

equation corresponding to (1.12) and satisfy the bound-
ary conditions on the right (left) end of the interval
( X L x 2); W P j k = W ( g p ) k ; g p > k ) is the functional
determinant*.

In order to determine the dependence of the pertur-
bations on the time, we take the inverse Laplace
transform

σ+ioo

1

A s i s w e l l k n o w n , t h e a s y m p t o t i c f o r m o f e x p r e s s i o n s

o f t h e t y p e ( 1 . 1 5 ) s h o u l d b e d e t e r m i n e d b y t h e s i n g u l a r i -

t i e s o f t h e i n t e g r a n d . If t h e h o m o g e n e o u s e q u a t i o n s

h a d e i g e n f u n c t i o n s , i . e . , f u n c t i o n s s a t i s f y i n g t h e b o u n d -

a r y c o n d i t i o n s o n b o t h e n d s o f t h e i n t e r v a l ( x i , x 2 ) ,

t h e n f o r t h e c o r r e s p o n d i n g e i g e n v a l u e s o f t h e f r e q u e n c y

(ω = ip) the function gi k would coincide, apart from
a factor. The determinant Wp;k would then vanish,
and the Green's function would have a pole. In the
preceding section it was shown that the homogeneous
equation (1.5) has no eigenfunctions corresponding to
undamped oscillations (Re ρ > 0). In this case the
main contribution to the asymptotic form is made by
the zeroes of the resonant denominator ρ + ikV0(x).
Substituting (1.3) in (1.15) and taking the residue at
the point ρ = -ikVo(xo), we obtain

φ* (χ, i ) « j ώ,Αφ» (x0, 0) e-ihv»™>GK -w^o) (*. *o)- (1 - 1 6 )

This expression has a simple physical meaning, namely,

* W h e n d e t e r m i n i n g t h e G r e e n ' s f u n c t i o n s , t h e s i n g u l a r i t y i n t h e lef t-

h a n d s i d e o f ( 1 . 1 2 ) t u r n s o u t t o b e n e g l i g i b l e ( s e e b e l o w ) ; t h e r e f o r e , t o

s i m p l i f y t h e d e r i v a t i o n , w e d i s r e g a r d i t .

it means that a perturbation modulated in the direction
of the flow with a wave vector equal to k breaks up
into individual jets that are carried along the flow with
its local velocity V0(x0) (Fig. 3). In the laboratory
frame, the frequency of the perturbation connected with
such a jet turns out to be kVo(xo). To each individual
jet of liquid there corresponds a local perturbation of
the velocity curl A<pk(x0, 0) = δ(χ - x0), and its influ-
ence on the flow is described by the Green's function
Gk,-kVo(xo)U>Xo)*.

Thus, the Laplace-transform method gives the same
result as the analysis of wave packets, namely, per-
turbations with frequency ω and wave vector along Oy
equal to k are localized in the vicinity of the point
Xs(u> =kV0(xs))· The asymptotic expression (1.6) be-
comes valid when t > |kV0(xi) - kVoi**)!"1· It is in-
teresting to note that the same condition can be ob-
tained from the quasiclassical formulas by using them
at the limit of applicability and estimating the time of
passage of the wave packet through the characteristic
spatial scale.

In order to determine the further evolution of the
perturbations, we integrate (1.6) twice by parts:

(fh (x, t) (x, t); (1 ·

here

Ch (x, t) = — f

T h e a s y m p t o t i c f o r m o f C k ( x , t ) a s t — » i s d e t e r -

m i n e d b y t h e s i n g u l a r i t i e s o f t h e i n t e g r a n d . S i n c e

Gfc - i k y ( x ) ( x > x ° ) * s a G r e e n ' s f u n c t i o n o f a s e c o n d -

o r d e r e q u a t i o n , i t s s e c o n d d e r i v a t i v e s h o u l d h a v e a

singularity of the type G"(x, x 0 ) « δ(χ - x0) as
χ — x0. Therefore we have approximately Ck(x, t)
» -(kVi(x))"2Αφ0(x), and consequently <pk(x, t)
should attenuate with time like t~2.

The damping <pk(x> t) is brought about by the cir-
cumstance that the dimensions of the region that con-
tributes to <pk(x, t) contract with increasing time. In-
deed, if the elementary perturbations (jets) lie at a
characteristic distance Δχ from the point x, then at
t S> (kVo^x)"1 their phases shift by an amount much
larger than π, and therefore the joint contribution of
the perturbations as a result of the interference will
tend to zero.

A more accurate calculation of the asymptotic
formC l 4 ] shows that allowance for the singularity in
the left-hand side of (1.12) can lead to a change of
Ck(x, t) in (1.17), so that the latter acquires, in addi-
tion to the constant term, also a term that depends on
the time logarithmically: Ck(x, t) « Cik(x) + C2k(x) In t.
The latter term takes into account the resonant re-
sponse of the flow at the point χ to the sudden occur-
rence of an elementary perturbation at the point x0 * x.
We recall that when the Laplace-transform method is
used it is assumed that the perturbations occur instan-

These perturbations were first considered by Case [12] and are anal-
ogous to the waves introduced by Van Kampen in the investigation of
oscillations of a hot plasma at rest [ls] (see also the end of the present
section); they are therefore sometimes called Van Kampen-Case waves.
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taneously at t = 0. However, if a periodic perturbation
is suddenly turned on at the point x 0, there is excited
bes ides the frequency ω = kVo(xo), a lso the ent ire
spectrum of frequencies from zero to <*>, including the
frequency ω =kV 0 (x) , although the perturbation with
ω = kVo(xo) e n t e r s in the spectrum with the larges t
weight.

We now take into account the influence of the
viscosity on the asymptotic form of (pk(x, t ) . The
equation of motion of a viscous incompressible liquid
can be reduced to the form (compare with (1.3))

{if- vA*.,)(rotV)z = 0; (1.18)

h e r e ν is the kinematic viscosity coefficient.
It follows from (1.18) that under the influence of the

viscosity the initial perturbation of the velocity cur l
spreads within a t ime At over a distance Δχ ~ ( )
In view of the fact that the perturbations located at
different points along χ move with different velocities
along Oy, their phases a r e shifted relat ive to one
another . Thus, for example, after a t ime Δι, the phase
shift of the perturbations located at a distance Δχ
turns out to be Αφ ~ kVo Άχ · Δ ί . Substituting here
Δχ « (vAt)1/2, we find that within a t ime Δt
> (kVO)" 2 / 3 l " 1 / 3 the action of the viscosity leads to a
smear ing of the most e lementary perturbations, s ince
perturbat ions with a phase that changes by m o r e than
π appear at the same point.

It is interest ing to compare the problem considered
h e r e with the problem of the evolution of a per turba-
tion in a hot p lasma at r e s t , considered by Van
K a m p e n [ 1 5 ] . He indicated that in order to t r a c e the
fate of an a r b i t r a r y initial perturbation, it was neces-
s a r y , bes ides the ordinary plasma oscil lat ions, to in-
troduce a new class of e lementary excitations. These
perturbat ions a r e freely moving b e a m s of charged
part ic les with a density modulated in the direction of
motion. If the beam velocity is equal to ν and the
modulation wavelength is λ = 2 π Α , then such a beam
in the laboratory f rame will give r i s e to a wave with
frequency ω = kv. The influence of the Coulomb
collisions on the Van Kampen waves was considered
i n [ 1 6 ' , where the following damping t ime was obtained:

t «v-1 '3 (kVa-VK

This express ion is s imi la r to that obtained by us for
the damping of perturbations in a viscous liquid. If we
a s s u m e , as is done i n [ 1 6 ] , that Coulomb collisions lead
to diffusion in velocity space, then we can visualize for
the damping a qualitative picture that is perfectly
analogous to that given by us above.

2. FLUTE OSCILLATIONS OF A RAREFIED UNCOM-
PENSATED PLASMA IN A MAGNETIC FIELD

2.1. Oscillations of a Gas of Par t ic le s with Charges
of the Same Sign

It was shown in the preceding chapter that oscil la-
tions of flows of an incompressible liquid a r e de ter-
mined to a considerable degree by the physical p r o -
cesses that act in the vicinity of the resonant points,
at which the phase velocity of the oscil lations coincides

with the flow velocity. The ro le of resonant p r o c e s s e s
may also be no less important in the case of oscil la-
tions of a moving plasma To this end it is necessary
that the plasma velocity change sufficiently steeply in
a direction t r a n s v e r s e to the motion. In this case os-
cil lat ions with phase velocity changes in a wide range
will resonate with the motion of the p lasma.

An examination of oscil lations in a moving plasma
is best s tar ted with flute oscil lations of a raref ied un-
compensated plasma in a magnetic field. In such a
plasma, the fact that the space charge is not compen-
sated gives r i s e to e lectr ic fields that cause the plasma
to drift with a velocity V = c[HV<p]/H2 (here Η is the
magnetic field and φ the e lect r ic potential). Our prob-
lem is to investigate the influence exerted by such a
motion on the plasma osci l lat ions.

It is useful f irst to simplify the problem and to con-
sider the lack of compensation to be maximal, a s s u m -
ing the density of one of the plasma components (elec-
t rons or ions) to be equal to z e r o . We a s s u m e also that
the magnetic field is homogeneous and the density of
the charged part ic les along the magnetic field is con-
stant. In such a sys tem, greatest interes t attaches to
oscil lations in which the charged part ic les shift a c r o s s
the magnetic field and accordingly only t r a n s v e r s e
electr ic fields a r e excited. These oscil lations a r e
called flute oscil lations, since during the course of
thei r development the equal-density surfaces forms
grooves elongated along the magnetic field. An investi-
gation of flute oscil lations of a gas of charged par t i -
cles in a magnetic field is of interes t principally in
connection with the problem of the stability of the cloud
of e lectrons (ions) in a magnetron and s imi la r s y s t e m s .

Let us a s s u m e that the density of the charged p a r t i -
cles nj (j = e, i) is smal l enough so that the plasma

f r e q u e n c y W p j = ( 4 Τ Γ Θ | n j / m j ) 1 ' 2 i s m u c h s m a l l e r t h a n

t h e c y c l o t r o n f r e q u e n c y u > j = | e j | H / r r i j C . I n t h i s c a s e

t h e f r e q u e n c y o f t h e f l u t e o s c i l l a t i o n s t u r n s o u t t o b e

s m a l l c o m p a r e d w i t h t h e c y c l o t r o n f r e q u e n c y , a n d

t h e r e f o r e w e c a n d i s r e g a r d t h e i n e r t i a o f t h e p a r t i c l e s

i n t h e a n a l y s i s o f t h e l a t t e r . T h e l o w - f r e q u e n c y f l u t e

o s c i l l a t i o n s a r e d e s c r i b e d b y E q . ( 1 . 3 ) ( s e e a b o v e ) i n

w h i c h t h e s t r e a m f u n c t i o n i s r e p l a c e d b y c < p / H [ 7 > 1 7 > 1 8 ] .

T h i s c a n b e r e a d i l y v e r i f i e d b y e x p r e s s i n g i n t h e c o n -

t i n u i t y e q u a t i o n

- ^ + d i v i » , V , = 0 ( 2 . 1 )

t h e d e n s i t y o f t h e c h a r g e d p a r t i c l e s i n t e r m s o f t h e

e l e c t r i c p o t e n t i a l f r o m t h e P o i s s o n e q u a t i o n

Δ φ = — inejfij

a n d b y t a k i n g i n t o a c c o u n t t h e e q u a t i o n d i v V j

= div(cH" 2 H x νψ) -0. It is interest ing to note that
the cur l of the velocity determines the space-charge
density: (curl V J ) H = ^Αψ/Έί = - 4jrcejnj/H (here
(curl V J ) H is the projection of the velocity cur l on the
direction of the magnetic field). We reca l l that in flute
oscil lations the charged part ic les move in a plane per-
pendicular to the magnetic field, so that the condition
cur l Vj II Η is satisfied.

Let us assume that in the initial s ta te the density
of the charged part ic les changes in one direct ion. We
introduce a rectangular coordinate sys tem, directing
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FIG. 4. Density profile (and velocity
profile) of a gas of charged particles for
which the Rayleigh theorem is satisfied.

the Ox a x i s a long the dens i ty gradient and the Oz a x i s

a long the magnet ic f ie ld . The init ial e l e c t r i c f ield i s

p a r a l l e l to the dens i ty gradient of the charged p a r t i c l e s ,

and consequent ly the p a r t i c l e s drifting in the c r o s s e d

f ie lds w i l l m o v e a long Oy. L i n e a r i z i n g (1.3) with r e -

s p e c t t o s m a l l perturbat ions of the e l e c t r i c potential,

we a r r i v e at the equat ions (1.4) and (1.5) .

The s y s t e m w h o s e o s c i l l a t i o n s a r e d e s c r i b e d by

(1.5) is stable: oscillations with Im ω > 0 are impos-
sible in it if the velocity profile Voy(x) has no inflec-
tion points (Rayleigh theorem). From the unperturbed
Poisson equation, written in the form

(clH) d = - Απ ̂  ejnj,

it follows that the inflection points in the velocity pro-
file are simultaneously extremal points for the density
of the charged particles. Therefore for flute oscilla-
tions the Rayleigh theorem can be reformulated as
follows: the gas of charged particles in a magnetic
field is stable against flute oscillations if the density
of the charged particles changes monotonically[7>18]

(see, for example, Fig. 4).
The analogy between flute oscillations and oscilla-

tions in the flow of an incompressible liquid makes it
possible to conclude that the perturbations of the elec-
tric potential will evolve in accordance with (1.17):
(pkix, t) * f 2 e ~ i k v ° < x ) t C ( x ) * ) . In an incompressible
liquid, the action of the viscosity after a sufficiently
large time interval would lead to a more rapid damp-
ing. A similar influence is exerted on the flute oscil-
lations by effects connected with the finite size of the
Larmor radius of the charged particles [ 1 9 ] . These ef-
fects must also be taken into account when establishing
the rules of circuiting around the resonant points in
(1.5) (see [ 1 8 ]). It turns out that the mechanism of
collisionless Landau absorption acts in a rarefied
plasma in the vicinity of the resonant points. In this
region, the charged particles move with a velocity
close to the phase velocity of the wave. The field of
the wave for such particles is constant in time, and
therefore the wave can perform work on the field and
give up its energy. Just as in the case of an incom-
pressible liquid, this absorption can be taken into ac-
count within the framework of Eq_. (1.5), if the resonant
point is circuited during the construction of the solu-
tion in the complex plane after Landau [ 1 8 1.

*In this case the role of the elementary perturbations (Van Kampen—
Case waves) is played by plane layers of charged particles parallel to yOz,
with a density modulated along Oy.

FIG. 5. Density (and velocity)
profile of rotation of a gas of
charged particles, in which "dioko-
tron" instability builds up.

In concluding this section, let us make a few re-
marks. Real systems such as a magnetron have, as a
rule, axial symmetry. The magnetic field in them is
parallel to the symmetry axis and the electric field is
radial, while the charged particles drift in azimuth. It
is shown in t l 8 ] that the formulation of the Rayleigh
theorem, as given above, remains in force also for
axially-symmetrical systems, namely, such systems
are stable against flute oscillations if the density of
the charged particles varies monotonically along the
radius.

Usually axially-symmetrical systems are enclosed
by metallic shells with specified potentials, on which
the perturbation of the potential vanishes. It turns out
(see [ z o ] ) that even in the case when the density has a
monotonic profile there are no undamped natural oscil-
lations (Im ω = 0) with an azimuthal wave number
m = 1, for which the resonance condition ω = Ο>Ε(Γ)
is satisfied on the surface of the shell (here wj;
= (c/Hr)d(po/dr is the angular velocity of the drift
in crossed fields). These oscillations are similar to
the oscillations of the Poiseuille flow (see Appendix
1.3) which also resonate with motion at the boundary
itself and build up under the influence of viscosity. It
is possible that in the case of flute oscillations a simi-
lar result is produced by the influence of effects of
the finite Larmor radius.

If the plasma is separated from the shell by a
vacuum region, then neutral oscillations (Im ω =0)
with m > 1 become possible. It is interesting to note
that the resonance condition, which in the case of
axially-symmetrical systems takes the form ω/m

= Ο > Ε ( Γ ) , m u s t b e s a t i s f i e d f o r s u c h o s c i l l a t i o n s i n a

r e g i o n f r e e o f p l a s m a [ 1 8 ] .

I f t h e d e n s i t y o f t h e c h a r g e d p a r t i c l e s d o e s n o t h a v e

a m o n o t o n i c v a r i a t i o n , t h e n s u c h a s y s t e m i s u n s t a b l e ,

a n d t h i s i n s t a b i l i t y i s p e r f e c t l y a n a l o g o u s t o t h e i n s t a -

b i l i t y o f f l o w s h a v i n g a n i n f l e c t i o n p o i n t i n t h e v e l o c i t y

p r o f i l e ^ 3 - 1 . A n e x a m p l e o f s u c h a n i n s t a b i l i t y f o r s y s -

t e m s w i t h p l a n a r s y m m e t r y w a s c o n s i d e r e d i n t 2 1 ] . I n

t h e c a s e o f a x i a l l y - s y m m e t r i c a l s y s t e m s , m o s t i n v e s -

t i g a t i o n s w e r e d e v o t e d t o t h e i n s t a b i l i t y o f t h e d i s t r i b u -

t i o n s o f t h e d e n s i t y o f t h e c h a r g e d p a r t i c l e s i n t h e f o r m

o f a s t e p : n ( r ) = n 0 ( r x < r < r 2 ) , n ( r ) = 0 ( 0 < r

< Γι, r > r 2 ) (Fig. 5). This was called "diokotron"
instability (see, for example,1·17'22-'). Flute oscillations
at relatively large charged-particle density (ojpj
« u>j) were considered inp 3»2 4 ]. The stability of the
state in which all the particles move with the same
value of the generalized momentum was investigated
(in axially-symmetrical systems such a state is called
the Brillouin state). In both investigations, it was con-
cluded that the system is unstable. We note that in [ 2 3 1

they investigated, apparently for the first time, the
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FIG. 6

stability of p lasma flow with a velocity that var ie s in
the t r a n s v e r s e direction, i.e., flow in which the plasma
layers s l ip relat ive to one another. The instability ob-
served i n [ 2 3 ] is therefore called slipping instability.

2.2. Oscillations of a Rarefied P l a s m a

The investigation of flute oscil lations is also of
in teres t in connection with the problem of the stability
of a hot (thermonuclear) plasma in magnetic t r a p s .
Magnetic t r a p s a r e axially symmetr ica l sys tems with
a magnetic field para l le l to the ax i s . The intensity of
the magnetic field increases towards the end of the
sys tem, so that the so-called magnetic m i r r o r s a r e
produced at the ends and prevent the charged part ic les
from leaving the t r a p . Simultaneously, the inhomo-
geneity of the magnetic field leads to a drift of the
part ic les in azimuth, the e lectrons and ions drifting in
opposite directions with angular velocity

1 iff

where ej is the charge of the part icle of type j (j = e,
i) and Tj is the t e m p e r a t u r e .

The self-consistent flute oscil lations considered in
the preceding section were connected with displace-
ments of the space charge in the field of the wave. This
displacement excited, in turn, alternating e lectr ic
fields. If the magnetic field i s inhomogeneous, then the
flute oscil lations can be maintained even in a neutra l
p lasma. Indeed, let us as sume that a flute elongated
along the magnetic field was produced on a plasma
cylinder (Fig. 6 shows the projection on a plane per-
pendicular to the magnetic field). The e lectr ic charges ,
drifting in the inhomogeneous magnetic field in oppo-
site d i rect ions, s e p a r a t e . This re su l t s in e lectr ic
fields that lead to further motion of the plasma with
velocity V = cH χ V<p/H2.

The flute oscil lations of a neutra l plasma become
unstable at a density larger than cr i t ica l , which is
determined from the condition r 2 ^ ~ a n a H , where
= (Ti/mi) 1 / 2 a>p\ is the average Debye radius of ththe

p
ions, ap and a g a r e the character i s t ic sca les of var i-
ation of the density of the plasma and of the magnetic
field, r e s p e c t i v e l y [ 2 5 ] . In the experiment, this insta-
bility leads to appreciable losses of part ic les from the
magnetic t r a p s . At the s a m e t ime it was noted that if
the density of the space charge is sufficiently large
([n 0 i - noe)/n o ] 2 ^ r | : / a n a H ) , then the stability of the
plasma i m p r o v e s [ 2 6 ] (see a l s o [ 2 7 ] ) . A theoret ical
analysis shows that when this condition is satisfied,
the effect of displacement of the initial charge in the
field of the oscil lations prevai ls over the effect of

charge separat ion.* On the other hand, in the limiting
case when [ (n o i - noe)/n o ] 2 » r d i / a n a H , the flute
oscil lations of a raref ied plasma apparently do not
differ in any way from the oscil lations of a gas of
charged par t ic les , considered in the preceding section.
Therefore the Rayleigh theorem should hold also for
the flute oscillations of a raref ied plasma, according
to which the plasma is stable if the space-charge
density v a r i e s montonically [ 7 » 1 8 ] . The influence of
decompensation on the flute oscil lations of a raref ied
plasma was considered also in [ 2 7 ~ 3 3 1 . In most investiga-
tions, the authors reach the conclusion that the space
charge exerts a stabilizing action. They used, however,
methods developed for the investigation of oscil lations
of a quiescent plasma, which do not make it possible to
consider the character i s t ic (resonant) phenomena r e -
sulting from the plasma drift. Therefore, although the
stabilization conditions obtained in some of them [ 2 7 > 2 8 ]

a r e of the c o r r e c t o r d e r of magnitude, the region of
applicability of these resu l t s is limited to smal l values
of the space-charge density, when the plasma drift
velocity is much smal le r than the phase velocity of the
osci l lat ions.

In conclusion, we emphasize that in this section we
have confined ourselves to the case of a raref ied
plasma with u>^ <C WJ. A c o r r e c t examination of the
influence of e lectr ic fields on flute oscillations of a
denser plasma encounters considerable mathematical
difficulties and has therefore not yet been performed.

3. OSCILLATIONS OF AN ELECTRON BEAM IN A
LONGITUDINAL MAGNETIC FIELD

The example of the flute oscil lations shows that the
motion of a plasma can be a stabilizing factor, and that
the stabilization, just as in the case of an ordinary
liquid, is due to the absorption of the oscil lations at
the resonant points. Consequently, the statement that
plasma and liquid flows with very s imple velocity
profiles (such as profiles without inflection points) can
be called the generalized Rayleigh theorem.t The
proof of this s tatement for flute oscil lations (see the
preceding section) was made easy by the s imi lar i ty
between the behavior of an ideal liquid and the behavior
of a raref ied gas of charged part ic les in the magnetic
field. We shall show in the present chapter that the
generalized Rayleigh theorem is also valid for oscil la-
tions of an electron beam in a strong longitudinal mag-
netic field. The oscil lations of such a system constitute
the s implest but a lso most character i s t ic example of
oscil lations in a moving plasma.

We introduce a rectangular coordinate system
whose Oz axis is paral le l to the direction of motion
of the e lectrons, and whose Ox axis is paral le l to the
direction in which the electron velocity changes (Fig.
7). We assume that a strong magnetic field is directed
along Oz and prevents the t r a n s v e r s e displacements

*On the other hand, this condition means that the drift velocity in
crossed fields exceeds the phase velocity of the flute oscillations.

tFor stabilization, as a rule, it is necessary to have sufficiently large
velocity gradients, in order that the change of the velocity within the
limits of the system greatly exceed the velocity of the unstable oscilla-
tions in the plasma at rest.
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of the electrons without at the same time influencing
the longitudinal displacements. The presence of the
magnetic field greatly simplifies the problem. The
electron density will be assumed constant. We assume
that the electron velocity varies linearly, Voz(x)
= V ox/a(-a < χ < a), and that at χ = ±a the system is
bounded by metallic surfaces on which the perturba-
tion of the electron potential vanishes.

The oscillations of such a system should be de-
scribed with the aid of the Poisson equation, the con-
tinuity equation (see (2.1)), and the z-component of the
equation of motion:

(3.1)

From these equations, linearized with respect to small
perturbations, we find that the self-consistent pertur-
bations of the potential φ ι should satisfy the equation

^ φ < ι r ω ' /.2 k , ί . ϋ ΐ π , - η ( 3 . 2 )

By virtue of the stationary character of the system and
its homogeneity with respect to y and z, the potential
perturbations were chosen in the form ψι(τ, t)

= ipi(x)e 1 ω + 1 y y + l z . The main difference between
the equations investigated in the preceding sections and
(3.2) is that the latter has a second-order pole at the
resonant point.

If the electrons are at rest (Vo = 0), then the solu-
tions of (3.2) are of the form ^i(x) = C sin(k x x),
where k x = k|[(u>p/u>2) - 1] - k y . In order to satisfy
the boundary conditions ψ! (±a) = 0, we put kx = ηττ/a.
This condition determines the spectrum of the frequen-
cies of the natural oscillations ω = a>pekz/k, o r

otherwise ω = o) p e cos Θ, where cos θ = k z /k, k2 = k |
+ k y + (ηττ/a)2. We recall that in a homogeneous and
isotropic plasma the frequency of the Langmuir oscil-
lations is iope· Thus, the influence of the magnetic
field reduces to a decrease of the frequency of the
oscillations propagating at an angle to the magnetic
field.

If Vo * 0( Vo(x) = Vox/a), then the solutions of (3.1)
are <pi(x) = CiXi Jj/(xi) + C2Xi/2J_ l /(xi), where x t

= ik jx - («a/k zV0)] f k2 = k z + k y, v2 = (1/i)
- (o>pea

2/Vo), and Ci,2 are arbitrary constants.
The frequencies of the natural oscillations are also

determined by the boundary conditions φι(±α) = 0. A
study of these conditions shows that at any value of the
velocity gradient dV0/dx = V0/a the oscillations are
stable, whereas if V0/a > 2wpe there are no un-

damped oscillations (with Im ω > 0)C 3 4 ]*. That is to
say, the situation realized in this case is the same as
in the flow of an incompressible liquid with a velocity
profile without inflection points (see Ch. 1).

The oscillations of the flow in question were con-
sidered also in f 3 5 ] , where it was concluded that this
flow was unstable if the condition V0/a > 2ω ρ β is
satisfied. In [ 3 4 ] , however, it is shown that this result
is due to mathematical errors made in [ 3 5 ] .

Equation (3.2) has a singularity at the point x s ,
where the phase velocity of the wave with respect to
Oz coincides with the stream velocity V0(xs) = ω/k.
In the present case, just as in the case of flute oscil-
lations, the Landau mechanism of collisionless absorp-
tion is effective at the resonant points, and leads to the
absorption of the oscillation energy. A correct exam-
ination of this process calls for allowance for the
thermal scatter of the electron velocities. However,
if, as before, we are not interested in details of the
behavior of the solution in the vicinity of the resonant
point, we can use the simplified Eq. (3.2), supplemented
by the Landau rule for circuiting around the resonant
point (see [ 3 4 ] ) .

When the condition Vo/a > 2u>pe is satisfied, the
natural oscillations do not form a complete system,
since it is impossible to expand the potential perturba-
tion, which depends arbitrarily on x, in terms of these
oscillations. For this case, the evolution of the initial
perturbations in time was considered directly in [ 3 4 ] by
the Laplace-transform method. It turned out that the
perturbations attenuate like tu, with the exponent a
depending on whether it is the plasma density or its
velocity that is perturbed at t = 0. In the former case
a = u - (3/2), and in the latter a = 2v - 1 (here
ν = [(%) - (ajpa'/Vo)]172). The contribution made to the
temporal asymptotic expression is due in part to beams
of electrons with a density that is modulated in the
direction of motion, and in part to the resonant re-
sponse of the flow to the occurrence of the perturba-
tions (see Sec. 1.3). After a sufficiently large time
(t <; (kzVT)"1), when the effects of thermal velocity
scatter become appreciable, the perturbations attenu-
ate more rapidly (compare with attenuation of pertur-
bations in flow of an incompressible liquid under the
influence of viscosity).

Such an analysis is valid for a sufficiently strong
magnetic field, when kyVo/kzau>e <SC 1, where u>e is
the electron cyclotron frequency. If this condition is
not satisfied, as frequently occurs in the experiment,
it is necessary to take into account the transverse dis-
placements of the electrons in the oscillations. This
case was investigated i n

[ 3 e ' 3 8 ' 3 9 ] and also by V. M.
Kostin (thesis). The general result of these investiga-
tions is as follows: the flow is stable if the condition
wpeaky/Vowekz ^ 1. is satisfied. It follows from this
criterion that at a sufficiently large velocity gradient
the flow still remains stable.

*More accurately speaking, even when the condition V0/a > 2cope

is satisfied, there remain for each value of kz two natural oscillations
that resonate with the stream at the metallic walls (cj/kz = ±V0, Imcj =
0). These oscillations are analogous to the first mode of the flute oscilla-
tions in axially-symmetrical systems (see Sec. 2.1), and also to oscilla-
tions of Poiseuille flow (see Appendix 1.3).
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O s c i l l a t i o n s of t h e e l e c t r o n b e a m i n t h e a b s e n c e of
a m a g n e t i c f ie ld w e r e c o n s i d e r e d i n 1 3 7 ' 3 8 · 1 . It w a s s h o w n
t h a t a t su f f ic ient ly s m a l l v e l o c i t y g r a d i e n t ( k z V 0 ( x )
•C u)pe), when the effects of resonant interaction of the
oscillations with the flow are negligible, the oscilla-
tions are unstable. The case of a large velocity grad-
ient has not yet been considered to date.

4. FLUTE OSCILLATIONS OF A QUASINEUTRAL
PLASMA

In the problems considered in the preceding chap-
ters , the resonance of the oscillations with the motion
of the continuous medium (plasma or liquid) led to the
absorption of oscillation energy. In an inhomogeneous
plasma in a magnetic field, a special type of motion
appears, the so-called Larmor or gradient drift, reso-
nance with which should lead to a different result. The
Larmor drift is possible even in a homogeneous mag-
netic field, when each charged particle rotates on a
Larmor circle whose center is at rest. However, if
the density of the Larmor centers or the average en-
ergy of the Larmor rotation vary across the magnetic
field, a macroscopic motion sets in with a velocity
Vj = (c/njejH2)H x Vpj ], where pj is the pressure of
the particles of type j(e, i) (see, for exam pie, t 4 0 > 4 1 ]).
This expression for the velocity can be obtained from
the hydrodynamic equation of motion

— Vpj + (erijlc) [V,-H] = 0. (4.1)*

If the wave resonates with such a motion, then its
phase for each individual particle varies with time,
and therefore the mechanism of collisionless Landau
absorption is no longer effective. Special interest
therefore attaches to the influence of the resonances
with the Larmor drift on the oscillations of not too
dense a plasma, when there is likewise no collision
dissipation.

It turns out that if the condition ωρΐ ^> wi is satis-
fied, then the effects connected with the Larmor drift
of the ions must be taken into account in the analysis
of the flute oscillations. In this case the equation for
the flute oscillations has the following form (see, for
example, [ 4 2 ]):

± n0 [ω - -- fc2«» [ω - *)] φ , = 0. (4.2)

We use the s a m e sys tem of coordinates a s in Ch. 2
(the Oz axis is paral le l to the magnetic field, and the
Ox axis is directed along the density gradient); the
perturbations of the e lectr ic potential a r e chosen in
the form (pi(x)exp[-ib)t + i k y ] . We reca l l that in Ch.
2 we considered a low-density p lasma (ωρί <C a>j) with
an uncompensated space charge (noe ** n o i ) . Now we
a s s u m e , on the other hand, that in the initial s tate the
plasma is neutra l and that its density is sufficiently
high (copj 3> wj). In this case the perturbations of the
charged-part ic le density a lso cancel each other in the
zeroth approximation in ( ω ί / ω ρ ΐ ) 2 . Such a plasma is
called quasineutral . We shal l a s sume also that the
magnetic field is homogeneous. The lat ter assumption
is valid if the condition

tl/K

FIG. 8

is satisfied. The influence of the Coulomb collisions
can be disregarded if kVLi > e 4 n 0 / m j / 2 T 3 / 2 . A plasma-
density distribution typical of experimental conditions
is shown in Fig. 8. The t e m p e r a t u r e (average energy)
is assumed for simplicity to be independent of the co-
ordinates .

In the region where n 0 = const, Eq. (4.2) takes the
form άζψ1/άχζ) - k2<pi = 0. Its solutions are the func-
tions <pi(x) = exp(±kx). Therefore the eigenfunctions
of (4.2), if they do exist, should be localized in the
region where dpi/dx * 0, and should decrease ex-
ponentially outside this region, φ λ ~ exp( -k | χ | ) . Let
us assume that such a solution <pi(x) exists. We mul-
tiply (4.2) by ?^*(x) and integrate by parts:

(4.3)

It follows from (4.3) that the imaginary part of the
frequency of the natural oscil lations should vanish and
that at some point x s there should be satisfied the
resonant condition ω/k = Vi_,i(x).

Eq. (4.2) was obtained by expansion with respect to
a dimensionless p a r a m e t e r ( r ^ V ) , and takes into
account the f irst two t e r m s of the expansion (the wave-
length of the oscil lations is assumed large compared
with the L a r m o r radius) . However, in the vicinity of
the resonant point the higher derivatives of φ^χ) in-
c r e a s e very rapidly: φ 1 ~ In (x - x s ) , άηφ1/άχη

~ (x - X s ) " n . In this region it is necessary to take
into account the next t e r m s of the expansion. If we
take into account only the f irst correct ion, then, for
an ion velocity distribution (perpendicular to the mag-
netic field) close to a δ function ίο(νχ, χ)
« ηο(χ)1/27Γ^χ δ (t/j_ - v\_0)), then the equation for the
flute oscil lations takes the f o r m [ 4 2 ]

(ω - kVai (x)) £ „„ ( ω - kYai (*)) igL

-k*no(v>-kVai(x)) φ , = 0, (4.4)

w h e r e

i = 2jtro, \ < ' X)-

E q u a t i o n (4.4) r e c a l l s t h e e q u a t i o n f o r t h e o s c i l l a -
t i o n s of a n i n c o m p r e s s i b l e l i q u i d a t l a r g e R e y n o l d s
n u m b e r s , w h e r e t h e s m a l l - s c a l e e f fec t s d u e t o t h e
v i s c o s i t y a l s o t u r n e d out t o b e s i g n i f i c a n t in t h e v i c i n i t y
of t h e r e s o n a n t p o i n t . T h e v i s c o s i t y h a s l e d t o t h e a b -
s o r p t i o n of t h e o s c i l l a t i o n e n e r g y , a f a c t o r a c c o u n t e d
for w i t h i n t h e f r a m e w o r k of t h e a p p r o x i m a t i o n of t h e
i d e a l h y d r o d y n a m i c s by u s i n g t h e L a n d a u r u l e for
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circuit ing around the resonant points. In the case of
resonance with the L a r m o r drift, as already noted
above, the energy of the oscil lations cannot be ab-
sorbed. Therefore the Landau rule cannot be used and
allowance for the smal l - sca le effects of a finite L a r -
m o r radius leads to a change in the character of the
solution at the resonant point x s , namely, a solution
that var ies slowly in space on one side of xg, which
is well described within the framework of Eq. (4.2),
becomes smal l - sca le on the other side of the point x s ,
and must be analyzed with the aid of Eq. (4.4).

It was shown in1·42·1 that in the s implest c a s e s Eq.
(4.4) has no eigenfunctions. Therefore, just as in the
analogous situation in Ch. 1, the problem of the evolu-
tion of the initial perturbations was considered
direct ly i n [ 4 2 1 with the aid of the Laplace-transform
method. The ion velocity distribution was assumed
Maxwellian. The effects of the finite L a r m o r radius
were taken into account completely. It was found that
when k(dVLi/dx)at » 1 (here a is the character i s t ic
sca le of the variat ion of the L a r m o r drift velocity), the
asymptotic form of the perturbation periodic in

e i k y ) takes the form

φ*(χ, t) as [1 -/„(ξ ) ί (4.5)

where I o i s the B e s s e l function of imaginary argument,
ζ = k (dVLi/dx)i"Lit· Κ t n e t ime is not too large,
ζ < 1 (I o e"£ « 1 - ζ), then φ ^ « t~ 2 exp[-ikVLit ] . We
r e c a l l that in an incompress ible liquid the per turba-
tions attenuated in accordance with the same law (see
Sec. 1.2). This s imi lar i ty is not accidental but is con-
nected with the fact that when ί < 1 , when the effects
of the finite L a r m o r radius a r e negligible, it is possi-
ble to descr ibe the flute oscil lations by means of the
simplified Eq. (4.2), which has the s a m e s t r u c t u r e as
Eq. (1.5), which descr ibes the oscil lations of an in-
compress ib le liquid (both a r e second-order equations
and thei r solutions have a logarithmic singularity).

When ζ » 1 ( I o e " S » (2ηζ)1/2 < 1), the amplitude
<Pk(x, t) ceases to depend on the t i m e . In this case the
perturbation b r e a k s up into an aggregate of modulated
beams that do not interact with one another and a r e
t ransported along the Oy axis with the local velocity of
the L a r m o r drift. This means that the elementary
excitation, which depends on the t ime like
exp[- ikVLi(x i ) t ] , should include a singular part of the
type <pfc(x) ~ δ(χ - Χι). This is confirmed by an analy-
s i s of the spatial dependence of the perturbat ions .

The problem of flute oscil lations was considered,
from a different point of view, in a number of other
papers (see, for example, [ 4 3 ' 4 4 · 1 ), where principal at-
tention was paid to establ ishment of the conditions of
stabilization of the oscil lations on going from a r a r e -
fied plasma (see Sec. 2.2) to a quasineutral one. It was
assumed that the space charge is compensated. The
influence of the resonance effects on the flute osci l la-
tions was investigated in 1 · 4 5 3 . The principal means of
eliminating the singularity in the corresponding differ-
ential equation was proposed to be a t rans i t ion to com-
plex values of the frequency with Im ω > 0, which is
essential ly equivalent to the use of the Landau c i rcui t-
ing r u l e . We see that in our case this would be incor-
r e c t .

5. RESONANT PHENOMENA IN A PLASMA AT REST

5.1. Cyclotron Resonance in an Inhomogeneous
Magnetic Field

A plasma, and al l the m o r e a p lasma in a magnetic
field, may exhibit qualitatively new propert ies com-
pared with an ordinary liquid. In par t icular , in a
plasma the oscil lations may resonate with the motion
of the charged par t ic les even in the case when the
plasma is at r e s t . By way of the s implest example,
let us consider the propagation of electromagnetic
oscil lations with c i rcu la r polarization, and with f re-
quency close to the e lectron cyclotron frequency, along
an inhomogeneous magnetic field. If the motion of the
electrons in the field of the wave is described with the
aid of the hydrodynamic equations, then it is easy to
obtain for the amplitude E ( z ) of the e lectr ic field the
following equation (see, for example 1 · 4 " 6 1 ):

<fe2 —E-- -,E = 0; (5.1)

where the Oz axis is directed along the magnetic field.
We consider oscil lations whose e lect r ic vector r o t a t e s
in the s a m e direction as e lectrons in the magnetic
field: Ε = ( 1 / / 2 ) { Ε ( ζ ) ; iE(z) ; 0 } e " i w t .

At the point z s , where the e lectron cyclotron fre-
quency coincides with the oscil lation frequency, Eq.
(5.1) has a s ingulari ty. For its elimination it is neces-
sary to consider the resonant interaction of oscil la-
tions with motion of e lectrons rotating on L a r m o r
c i r c l e s [ 4 6 ~ 4 9 ] . It turns out that this interaction leads to
the absorption of the energy of the oscil lations and that
its influence on the oscil lations can be taken into a c -
count within the framework of the simplified Eq. (5.1),
if the resonant point is circuited in the complex plane
in accordance with the Landau rule1-46·1. Then (5.1) be-
comes close to Eq. (1.5) (see Ch. 1). If, by analogy
with the analysis given in Ch. 1, we t r e a t (5.1) as a
Schrodinger equation, then it differs from (1.5) only in
the sign of the " to ta l e n e r g y " (Fig. 9). This difference
makes possible the existence of oscil lations that
propagate freely as ζ — ± » .

Let us consider a wave radiated at ζ = - » and
incident on the resonant point from the left. At a w
» c | dcoe/dz | , when it is legit imate to use the
quasic lass ical approximation, an analysis analogous
to that given in Sec. 1.2 leads to the conclusion that
the oscil lations a r e completely absorbed [ 4 ~ 6 > 4 6 ' 4 8 ] . If
the plasma density is smal l , ω η θ ^ c I dcoe/dz | , so
that the plasma exerts a smal l action on the propaga-
tion of the osci l lat ions, then the absorption coefficient

FIG. 9. Effective potential
U(z) for Eq. (5.1). z s and z0 are _
the singular and ordinary turning
points.
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η is also s m a l l : η « ττω ρ θ /ο | d w e / d z | (see
The general expression for the absorption coefficient,
covering both limiting c a s e s , is η = 1
- exp[-tfu>p e/c | da>e/dz | ] . It is interesting to note
that for a wave propagating with ζ =-<*>, the absorp-
tion coefficient has a s m a l l e r value, η'
= exp[-7Kope/c | dcoe/dz | ]η [ 4 ] . Indeed, such a wave
first runs up to the usual turning point, from which it
is partly reflected. Therefore only a cer ta in fraction
of the wave energy, on the o r d e r of
exp[-7KDp e/c | dwe/dz | ] , r eaches the resonant point,
where the oscil lations a r e absorbed.

5.2. Cyclotron Instability in an Inhomogeneous
Magnetic Field

In the preceding section we considered oscillations
with a frequency close to the cyclotron frequency and
radiated by an external s o u r c e . At the same t ime it is
known that the cyclotron oscil lations can occur spontane-
ously in a p lasma with a part icle velocity distribution
that is not in thermodynamic equil ibrium. If the mag-
netic field is inhomogeneous, then the region of the
resonant cyclotron absorption becomes s m a l l e r . In
this case , in analogy with the problems considered in
Chs. 1—3 of the review, it is natural to expect the
appearance of a stabilizing effect. Such a resul t was
indeed obtained i n [ 5 0 ] , where ion cyclotron oscil lations
in a thermodynamically nonequilibrium plasma were
considered. In ion cyclotron oscil lat ions, the e lectrons
take part in addition to the ions, and the propert ies of
the oscil lations depend significantly on the electron
t e m p e r a t u r e . It was shown i n [ 5 0 ] that if the e lectrons
a r e not ( £ | | θ ω 2 / £ ι ί ω ρ ί i?> 1), then at sufficiently large
inhomogeneity of the magnetic field ( a / L 2> a)pi/<x>\)
the cyclotron instability can be stabilized (here a is
the dimension of the sys tem, L the character i s t ic
sca le of variat ion of the magnetic field, and £||j(e_Lj)
is the average energy of the t h e r m a l motion of the
charged part ic les along (across) the magnetic field).
If the e lectrons a r e cold (e.\\e^l/eii^pi <S 1), then,
as shown i n [ 5 0 ] , the inhomogeneity of the magnetic field
only d e c r e a s e s the instability increment.

5.3. Conversion of Oscillations in a Plasma

The plasma contains a large number of various
types of osci l lat ions. Frequently, oscil lations with
different wavelengths ( large-scale and smal l-sca le)
have the same frequency. If the medium is homogene-
ous, then such oscil lations a r e not coupled in any way
with one another. However, in an inhomogeneous
medium, oscil lations with different space sca les cease
to be independent. A coupling between them is part icu-
lar ly effective at points at which the refractive index
(the wave number) of the large-sca le oscil lations be-
comes infinite. Indeed, on approaching such points, the
character i s t ic wavelength of the large-sca le oscil la-
tions d e c r e a s e s , so that ultimately the distinction be-
tween large-sca le and smal l- sca le oscil lations becomes
meaningless .

There is a considerable number of investigations of
the conversion of different types of oscil lations (see,
for example , [ 5 ) 6 > 5 1 " 5 4 ] ) . As the s implest example, let
us consider the conversion of longwave e lectron Lang-

muir oscil lations into shortwave ones1 5 3-1. If the plasma
is in the magnetic field, then such oscil lations a r e de-
scribed by the equation

dzl (5.2)

here VTe is the t h e r m a l velocity of the e lec t rons . It
is assumed that the magnetic field is directed along Oz
and that the plasma density var ies in the same d i r e c -
tion, o)p e (z) = 4 i re 2 n 0 (z)/m e . The perturbations of the
potential a r e chosen in the form ψΑτ, t) = φ^ζ)
exp[- iwt + i k j . r i ] ( k i is the component of the wave
vector perpendicular to the magnetic field). Equation
(5.2) is approximate, since the influence of the finite
electron t e m p e r a t u r e has been taken into account in it
only partially (the t e r m of the smal les t degree in ν χ θ

was retained). This, however, is perfectly sufficient
for our purposes . If the character i s t ic scale of the
oscil lations along Oz greatly exceeds the Debye radius
r d e = v T e / w p e > then we can omit the f irst t e r m from
(5.2):

d / Λ
 W p e ( z ) \ d w , , 3 - / c Q \

If at the s a m e t ime the space scale is smal l compared
with the distance over which the plasma density var ies ,
then we can descr ibe the oscil lations by using the
quasic lass ical approximation, putting

Φι (ζ) · e x p ( * } % * ) .

W e t h e n o b t a i n f r o m ( 5 . 3 ) kf, = k V ( u » | , e / c o 2 ) - 1 ] , o r

in a different form, ω2 = ω ρ Θ ^ π Α 2 . Thus, neglecting
t h e r m a l effects, we have obtained magnetized electron
Langmuir osci l lat ions, which were considered from a
different point of view in Ch. 3.

Let us as sume that the density f irst decreases from
left to r ight . Then, in the region where the density is
sufficiently low (a ip e < ω), short-wave oscil lations,
for which in the quasiclass ical approximation we have
ky = 2αΑ 2 /3ωρ Θ νΓρ θ , can propagate. This relation has
been obtained from (5.2) neglecting the last t e r m .

Let the oscil lations be radiated at ζ = - » and
propagate in the plasma from left to r ight. In the
region where the quasic lass ical approximation is valid,
Eq. (5.3) can be regarded as a Schrodinger equation
describing the motion of a part ic le with zero total
energy in a potential U(z) = kj_/[l - ( ω ρ θ ( ζ ) / ω 2 ) ]
(Fig. 10). At the point z s , where ω = w p e ( z s ) , the
effective potential becomes infinite. Similar equations
were considered in Ch. 1 and in Sec. 5.1, where it was

FIG. 10. The effective potential
U(z) for Eq. (5.3). zs—singular turn-
ing point.

E-ff
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shown that at the point at which the potential becomes
infinite the oscillations are completely absorbed. An
analysis of the complete equation (5.2) shows that in
the present case the energy of the longwave oscillations
is converted completely into energy of the shortwave
oscillations in the present case at the point z s . (We
recall that the shortwave oscillations can indeed propa-
gate in the region ζ > z s . For them, the point z s is
an ordinary turning point.) The similarity between the
present problem and that considered earlier increases
because, as noted in [ 5 4 ] , it is possible to use a certain
modification of the Landau circuiting rule when de-
termining the longwave solutions of (5.2). Namely, if
we are not interested in a shortwave solution, then the
point z s can be circuited in the complex plane. The
rule for circuiting is obtained by adding to the fre-
quency a small positive imaginary part v; then the
point z s shifts from the real axis by an amount 6z s

^ / ) 1

6. CONCLUSION

Thus, the stability and the vibrational properties of
plasma flow in an ordinary liquid are determined to a
considerable degree by the physical processes that
act in a small vicinity of the resonant points. In par-
ticular, the stability of the flow having the simplest
velocity profile is ensured by resonant absorption of
the oscillations. However, it is natural to assume that
these results are valid only for oscillations with suf-
ficiently small amplitude. Indeed, if the amplitude of
the particle displacement in the oscillations greatly
exceeds the width of the absorption layer, then the
physical processes acting on this layer cannot exert
any appreciable influence on the evolution of the oscil-
lations. In this case it becomes necessary to take into
account the nonlinear effect in the vicinity of the reso-
nant points. Thus, the next task is to develop a non-
linear theory of resonant phenomena in inhomogeneous
flows of a plasma and of an ordinary liquid. It is pos-
sible, in particular, that this method will reveal the
mechanism that leads to instability of Couette flow.

APPENDICES

I. OSCILLATIONS OF CERTAIN TYPES OF FLOWS
OF AN INCOMPRESSIBLE LIQUID

1. Following1·31, we shall show that in a flow having
a velocity profile without an inflection point there are
neither growing natural oscillations (Im ω> Ο) nor
neutral ones (Im ω = 0). .We make in (1.5) the substi-
tution φ 1 =(w/k - νο(χ))Ψι:

We assume that this equation has a solution Ί Ί ( Χ ) ,
satisfying the boundary conditions <pi(x) = (ω/k - V0(x))
and ^i(x) =0 on both ends of the interval (x!, x 2 ) . We
multiply (I.I) by ψ* and integrate by parts:

dx .]*=ο. (1.2)

FIG. 11. Profiles of flow velocity
1 -with an inflection point, 2—
Poiseuille, 3—boundary-layer type.

with such a frequency. It is easily seen that (1.2) re-
mains valid also in the case when the resonant point
x s , at which the condition ω/k = V0(xs) is satisfied,
coincides with one of the ends of the interval (xlt x2).
If the point x s falls inside this interval, then relation
(1.2) becomes meaningless, since the integral diverges.
Returning in this case to (1.6) and recalling the defi-
nition lira [a/(x 2 + a2)] = δ(χ)(α = Im u>/[kVj(xs)]),

we obtain for the imaginary part of the integral in (1.6)

π sgn (Im ω) | ^ , (*,) |« V~ (xa) | Vo (x.) j-i φ 0. ( 1 . 3 )

If Im ω = 0, ω/k * V0(x)(xi < x < X2), then (1.2) can-
not be satisfied, and therefore there are no oscillations

Thus, relation (1.6), which should be satisfied for
all the eigenfunctions of (1.5), is not satisfied if
Im ω — 0 . If ^ ( x s ) = 0, then it is necessary to con-
sider one of the intervals (xi, x s ) or (xg, x 2 ) . In this
case we are unable to satisfy a condition analogous to
(1.2).

2. If the profile of the flow velocity has an inflec-
tion point xo( VO'(xo) = 0), then particular interest at-
taches to oscillations that resonate with the flow at
the same point, for which V0(x0) = ω/k (see, for ex-
ample/ 3 1). For such oscillations (Fig. 11), Eq. (1.5)
is regular. We rewrite it in the form

φί—λφι-j-if {χι φι = 0; (1 .4)

Here λ =k 2 , k(x) = -Vo(x)/( V0(x) - V0(x0)). If
(Vo" Vo )χο < 0 then K(x) > 0 at least in the vicinity

of the point x0, where K(x) « - VO"(xo)/VO(xo). In this
case, according to the Sturm-Liouville theorem, Eq.
(1.4) should have eigenfunctions φ,η with correspond-
ing eigenvalues λ η = k n . For such oscillations, ω η

= knVo(xo), Im ωη = Ο· Κ can be shown (see, for exam-
ple/ 3 1), that oscillations with smaller values of k2 are
unstable. In general, apparently, with decreasing k
the stability of the flow becomes worse. The most un-
stable oscillations, with k = 0, were considered in [ 5 5 1,
where it is shown that the condition for the vanishing
of Vo is necessary and sufficient for the instability of
flows of an ideal liquid.

3. The analysis in Appendix I.I is not quite com-
plete. Indeed, let us assume that the velocity of the
flow along Οχ varies nonmonotonically and vanishes
on the boundaries (x 1 } x2). It is easy to see that in this
case Eqs. (I.I) and (1.2) are satisfied at k = 0, ω/k = 0
and ψχ = CVo(x). Such "oscillations" resonate with the
flow at its boundaries; it is therefore impossible to use
the Landau rule in their analysis, and the viscosity of
the liquid must be taken into account, no matter how
small it may be. Heisenberg has shown that under the
influence of viscosity the oscillations become unstable.
With decreasing viscosity, the increment of the oscilla-
tions and their frequency tend to zero, so that in the
limiting case we actually obtain the solution described
above. An analysis of the "viscous" equation (1.9) is
cumbersome and calls for the use of numerical
methods (see, for example/3 1), and is therefore not
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FIG. 12. Plane of complex variable
for Eq. (1.9) in the vicinity of the
point xs. The region in which viscosity
must be taken into acount is shown
shaded.

given h e r e . A s imi la r instability was observed for a
flow of the boundary-layer type, where V 0(x) -z^ const.

In this case the boundary condition at infinity is
V i ( « ) = 0 .

Π. EQUATIONS WITH A SMALL PARAMETER IN
FRONT OF THE HIGHEST-ORDER DERIVATIVE

1. An equation of this type is (1.9), if the viscosity
of the liquid is sufficiently low. In view of the presence
of a smal l p a r a m e t e r in front of the fourth derivative,
its solutions can be classified as slowly-varying and
rapidly-varying. In considering the slowly-vary ing
solutions, we can d i s r e g a r d the viscosity, confining
ourse lves to the approximation of ideal hydrodynamics.
For the rapidly-varying solutions, the viscosity is
important. However, such a separat ion is incorrect in
the vicinity of the resonant point, where solutions with
different space sca les become "t ied u p " with one
another. To investigate the propert ies of the solutions
in this region, Wasow [ 8 1 introduced seven functions:
Ak> uk> Vfc(k = 1, 2 , 3) and connected them by the three
relat ions

(H.l)

h e r e e ^ i s an abso lute ly a n t i s y m m e t r i c a l t e n s o r and
6i2 i s the Kronecker s y m b o l .

It turned out that the s e p a r a t i o n of the so lu t ions into
rapid ly-vary ing (Afc) and s l o w l y - v a r y i n g (Uk, V)
s o l u t i o n s o c c u r s a l ready in a s m a l l v ic in i ty of the
point x s : | z | > m a x ( | A r \ | A f 3 ) ( h e r e

ζ = (XB - x)VO'(x s )/Vi(x s ) ,A =ikVOi(xs)/WZ3(xs)
w i k a - R e , where Re =Voa/t' is the Reynolds number
of the unperturbed flow and a is the c h a r a c t e r i s t i c
scale of variation of Vo). Following [ 8 ] , let us consider
the analytic continuation of these solutions on the plane
of complex variables ζ in the vicinity of | ζ | <C 1,
which we break up into s e c t o r s S^ (Fig. 12). For con-
c r e t e n e s s we assumed that kVO(xs) > °, VO'(xs) > 0.

For Ajj everywhere with the exception of the line
Ck arg Cfc = 11/6π - 2Trk/3), the following asymptotic
representat ion is valid:

V/24-(in/4)]}; (II.2)

h e r e - oti = - a2 = «3 = - βι = βζ = - βζ = 1.
The Uk in the s e c t o r s S - S^ a r e e x p r e s s e d in

t e r m s of Hankel functions

) ΐ ΐ η ΐ + . . . (Π.3)

Finally, the function V in the ent ire ζ plane is ex-
pressed in t e r m s of the Besse l function

FIG. 13

valid, it is necessary to use relat ion (II.1) to determine
Ajj and Ujj.

Express ions (II.3) and (II.4) could be obtained by
assuming the viscosity equal to z e r o , i .e., in the
approximation of ideal hydrodynamics (see (1.5)). How-
ever, it follows from (II.1) that in the s e c t o r s Sfc the
spatial scale U]j changes—these solutions become
" v i s c o u s . " Thus, the use of the approximation of ideal
hydrodynamics in the ent ire plane of the complex
variable ζ becomes impossible. Nonetheless, if we
choose V and U 2 a s the l inearly independent solutions
of (1.5) and circuit the resonant point Xs(z = 0) in the
complex ζ plane from above, then everywhere on the
r e a l axis, with the exception of a smal l vicinity of the

point x s ( | ζ | < min ( |Λ Γ 1 , |Λ |~3)) the ideal-hydro-
dynamics approximation will be valid (see Fig. 12). It
is easy to see that this circuit ing rule coincides with
the Landau circuiting r u l e .

2. The equation of flute oscil lations of a quasineu-
t r a l plasma (4.4) is close in its propert ies to Eq. (1.9).
In part icular , its solutions also separa te into rapidly-
varying Ak and slowly varying solutions Uk, V. It is
important, however, that in this case the s e c t o r s Sjj,
in which the spatial scale of the solutions Uk v a r i e s ,
a r e rotated through an angle π/6 (Fig. 13). This figure
shows the vicinity of the point x s i (see Fig. 7). In
o r d e r to obtain the corresponding picture for the
vicinity of x S 2 (see Fig. 13), it is necessary to perform
a reflection at the resonance point. It follows from the
figure that no matter what function we choose from Uk,
the solution will be slowly-varying on the r e a l axis
only on one side of x s . A solution that var ie s slowly on
the left of x s becomes rapidly-varying on the right of
x s , whereas a solution that is slowly varying on the
right of Xs becomes rapidly varying and growing on
the left of x s . We r e c a l l that on the lines Cfc the
phase Afc is r e a l (see (Π.2)).

3. In the case of e lectron Langmuir oscillations
described by Eq. (5.2), the location of the s e c t o r s S^
is given by Fig. 13. In the region χ < 0 a wave t rave l-
ling to the right is given by the solution U3 - V

~ β- 2 * ' 7 * (I x I » 1, χ = ( z s - z ) k l 2 , / o p i ) . According
to (II.1), at χ > 0 it goes over into a rapidly oscillating
solution describing a wave travel ing to the right, and
into a slowly-vary ing solution that d e c r e a s e s to the
right from χ = 0. The lat ter could be obtained with the
aid of the simplified Eq. (5.3) by using the circuiting
rule given at the end of Sec. 5.3.

In those regions where (II.2) and (II.3) a r e not
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