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1. INTRODUCTION

i. HE instability of beams of charged particles in the
plasma has already been the subject of exhaustive re-
views by Fainberg[3~5] and Briggs [ e ]. During the time
elapsed since the writing of this review, new results
were obtained, both experimental and theoretical, con-
cerning the instabilities that were previously either
unknown or not subjected to a systematic experimental
investigation. A distinguishing feature of these "new"
instabilities is the decisive role played by the ions in
the dynamics of the developing oscillations, and, con-
sequently such clearly pronounced effects as the inter-
ruption of the beam current and the acceleration
(heating) of the plasma ions to high energies. These
instabilities are characterized also by other occurrence
conditions and by a different spatial structure. They
constitute material which is of interest for applications
and is convenient for an experimental verification of
the modern theory. We present below a review of the
theoretical and experimental data on these instabilities.
We start with a short introduction.

It is known that in a plasma there can exist slow
electrostatic waves whose phase velocities are much
smaller than the velocity of light. Therefore, if a beam
of charged particles propagates in the plasma, then it
is relatively easy to create a situation wherein the
beam-particle velocity exceeds the phase velocities of
the plasma waves. At the same time, these waves are
excited by the beam particles via the Cerenkov effect
or the anomalous Doppler effect. Under certain condi-
tions this excitation has a coherent character, meaning
instability of the beam. Intensive investigations of such
beam instabilities were initiated about 20 years ago,
following the fundamental theoretical papers of Akhiezer
and Fauiberg f l ] and of Bohm and Gross [ 2 ] . We can
mention a number of causes stimulating these investi-
gations .

1. Of greatest interest in plasma physics are the
collective properties of the plasma, due to the motion
of a large number of plasma particles. A study of
these properties, generally speaking, entails great
difficulties, since a plasma, as is well known, has a
very large number of degrees of freedom. Great inter-
est attaches in this connection to the particular case
when the plasma includes a sufficiently intense group
of particles moving with a definite velocity (beam). In
this case it is possible to "assign" to the plasma par-
ticles a relatively narrow band of degrees of freedom,
which can be relatively easily readjusted at the experi-
menter's will. This produces very favorable possibili-
ties for the investigation of a large class of collective
phenomena in a plasma.

2. It turns out that the passage of a beam of charged
particles through a plasma leads, under certain condi-

tions, to heating of the electrons and ions of the plasma
to high temperatures. This phenomenon is of great in-
terest in three respects: first, from the fundamental
point of view; second, it may have a bearing on the
acceleration of cosmic-ray particles; third, it can be
used as a method of heating the plasma in magnetic
traps in order to perform research on controlled
thermonuclear reactions and high-temperature plasma.

3. The instability of beams of charged particles in
a plasma is of great interest for a large group of ap-
plications. In particular, this phenomenon determines
the limiting intensity (density) of beams of charged
particles, the possibility of accelerating charged parti-
cles of a plasma by external magnetic fields, etc.

4. Two-stream instabilities must be taken into
consideration in the development of new (coherent)
methods of accelerating charged particles to high
energies [ 5 9 ]. Finally, it should be noted that interest
in problems of the stability of beams of charged parti-
cles in a plasma has greatly increased recently in
connection with the uncovering of prospects for using
relativistic beams of ultrahigh intensity[eo·1.

At the present time we know of a great variety of
two-stream instabilities. All of them, however, have
certain common properties. One such property is that
any two-stream instability is produced by (resonant)
interactions of (at least) two components of charged
particles. One of these components is made up of the
beam particles, and the other of the particle of the
medium through which the beam propagates*. The
instability consists of a progressive growth in time of
the initial fluctuations that occur accidentally in the
beam. It can be regarded as a result of positive feed-
back realized by the particles of the medium. Such
particles may be either the plasma electrons or the
plasma ions, or else electrons from an external circuit
that bounds the space in which the beam propagates.
In accordance with the three indicated methods of
realizing positive feedback between the beam and the
medium particles, one distinguishes between three
types of instability of a beam of charged particles.
For example, in the case of an electron, these are the
electron-electron, electron-ion and the so-called
Pierce instabilities. Electron-electron instabilities
were exhaustively considered in the reviews [3~71. The
present article is devoted mainly to a systematic
analysis of electron-ion instabilities.

The review consists of three parts (Ch. II—IV). In
Ch. Π we present the theoretical data on the instabili-

* Somewhat in a class by itself is only the so-called slipping-stream
instability of a beam of particles with a strongly inhomogeneous velocity
profile. A review of theoretical investigations of this instability is con-
tained in a recent monograph by Timofeev [61] (see also ["·"]). This
instability has not yet been investigated experimentally.
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t ies in question. In Ch. ΠΙ we present an analysis of
the experimental data and compare them with the
theory. Chapter IV contains a description and an
analysis of the r e s u l t s of the investigation of a number
of the aforementioned sharply pronounced nonlinear
effects observed in experiments with intense (unstable)
electron beams in a p lasma.

Π. THEORY OF INSTABILITY OF BEAMS OF
CHARGED PARTICLES IN A PLASMA

We consider first electron-ion beam instabi l i t ies .
They can be divided into two groups : 1) instabil it ies
of a homogeneous plasma and 2) instabilities of an in-
homogeneous p lasma. The lat ter a r e re lated by their
physical na ture , on the one hand, to the former and on
the other hand to the so-called universa l (drift) insta-
bility of an inhomogeneous p lasma (see below). We
shal l use the e lect ros ta t ic approximation, s ince the
correc t ion for the non-potential character of the osci l-
lations in question becomes important only when their
phase velocities approaches the velocity of light. The
electrostat ic approximation is sufficient in pract ice
even for the analysis of e lectron-ion oscil lations in
relat iv is t ic b e a m s .

1. Instability of a Spatially-homogeneous Electron Beam

Let us consider f irst the s implest case, when a
monoenergetic electron beam moves through a "back-
g r o u n d " of slow positive ions that cancel out its space
c h a r g e : the ion density n+ is equal to the beam elec-
t r o n density n t (quas ineutra l e lectron beam). We shall
investigate the stability of such a sys tem using the
dispers ion equation, which expresses the connection
between the frequency of the possible oscil lations of
the charged part ic les and the wave vector k of the
osci l lat ions. To derive the dispers ion equation, we
r e a s o n a s follows: Assume that an e lectr ic field
Ε = - grad φ , varying with a frequency ω was produced
accidentally in the system in question. For simplicity
we consider first a case when the charged part ic les
osci l late only along E. In this case Ε produces osci l-
lations of the ions, with frequency ω and with velocity
~ e E / - i u ) Μ (Μ is the ion m a s s ) , which corresponds

to a variable density of the ion c u r r e n t j t = e2n+E/-iu>M
(we a s s u m e that al l the var iables have a t ime variat ion
e x p [ i ( k - r - art)]. According to the continuity equation
8p+/8t = -div j+, the variable density p + of the ion
space charge will equal e 2 n + div Ε/ω 2 Μ. The influ-
ence of the field Ε on the beam electrons will be in
principle analogous, but owing to the Doppler effect the
electrons (moving with velocity u) will experience
oscil lations with frequency ω' = ω - k -u (we neglect
re lat iv is t ic effects for the t ime being); therefore the
variable density of the space charge of the beam e lec-
t r o n s will be

e 2 ^ div Ε e-n, div Ε

Ρ (ω — k u ) 2 /

Consequently, in accordance with the Poisson equa-
tion div Ε = 4π(ρ + + P-), we obtain

where ω' = ω - ku; u>i = (4jm 1e 2/m) 1 ' ' 2 and ω+
= (4im + e 2 /M) 1 / i ! a r e the Langmuir electron and ion
plasma frequencies, and n ! = n + .

A dispers ion equation of the type (1) is encountered
in many theoret ical papers (see, for example, 1 8 " 1 2 1 ) .
Let us take the relat ivist ic effects into account. Since
the oscil lation frequency in the f rame of re ference of
the beam, is

ω' = (ω — ku) γ0,

w h e r e y 0 = [1 - ( u 2 / c 2 ) ] ~ 1 / 2 , the d i s p e r s i o n equation
(1) t a k e s the form

Κ2/γ;ί(ω — ku)2]-f (ω*/ω2) = 1, ( l ' )

where ω[ is the Langmuir frequency of the beam,
expressed in t e r m s of its density (n[) and the electron
m a s s (m) in the reference f rame of the beam (i.e., m
is the r e s t m a s s ) . Since the beam density in the
laboratory system is ni = γο^Ί, Eq. ( l ' ) can be r e -
written [9>14»621 in the form

[a>l/yl (ω - ku)2] -f (ω*/ω2) = 1, (1")

where o>i i s the Langmuir frequency of the b e a m
e x p r e s s e d in t e r m s of nj (which equals n + ) and the
r e s t m a s s of the e lectron ωΐ = γΟ(ι>Ί2 = Μω+ / m ) .

We have considered a case when the oscil lations of
al l the charged par t ic les a r e directed along the e lectr ic
field of the oscil lations E. This case is real ized
either if the problem has planar geometry, or in the
absence of an external magnetic field. In the m o r e
general case when the direction of the oscil lations of
the part ic les makes a cer ta in angle θ with the d i r e c -
tion of Ε (this angle can be different for the ions than
for the e lectrons), the t e r m s in the left-hand side of
(1), as can be readily seen from the foregoing deriva-
tion, must be multiplied by c o s 2 Θ. Under the conditions
of the experiment there frequently r i s e s a situation
whereby the electron oscil lations a r e along the external
magnetic field Η = H z , directed along the velocity of
the beam electrons and making an angle θ with the
field E, while the ions osci l late along the field E.
This occurs if

where u>Hi = eH/Mc and o>He = e H / m c a r e the ion and
e l e c t r o n L a r m o r f r e q u e n c i e s ( i . e . , when the e l e c t r o n s
a r e " m a g n e t i z e d " and the ions a r e not). In th i s c a s e

cos9 =
kjk

1
for e lec t rons ,
for ions,

or
[o>J/(cu — ku)2] + (ω^/ω2) = 1, •>

(1)

w h e r e k i s t h e a b s o l u t e v a l u e o f t h e p r o j e c t i o n o f t h e

w a v e v e c t o r o f t h e o s c i l l a t i o n s k o n t h e d i r e c t i o n o f

t h e b e a m v e l o c i t y , k = | k | ; i n t h e n o n r e l a t i v i s t i c c a s e

t h e d i s p e r s i o n e q u a t i o n o f t h e o s c i l l a t i o n s t a k e s t h e

f o r m

l<o\/{<o-kzu)'](kl/k') + ( ω > * ) = 1, (2)

and in the r e l a t i v i s t i c c a s e

K/v3(co-/yi)«](fcI/*s)-f- (ω>*)=.·1. (2 ' )

The so lut ion of the d i s p e r s i o n equation (2), which is
of fourth degree in ω, is bes t obtained out by the
grapho-analytic method described i n [ 1 1 ] . Denoting the
left-hand s ides of (1) and (2) by F(w), let us draw the
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FIG. 1. Dispersion curves: 1 —3) Branches of the function F(co, k)
at k = const, 4) F(co, k) = 1, 4') instability, 4") stability, 4'") critical
regime.

branches of the function F(u>) (Fig. 1). We see that,
depending on the parameters in the dispersion equation,
the branches of the function F(<»)) may intersect the
line F(o>) = 1 either in four or in two points. In the
former case all four roots of the dispersion equation
are real and the system is stable. In the latter case
only two roots are real, and one of the remaining two
(complex conjugate) roots has a positive imaginary
part, αϊ = ωχ + ίγ, γ > 0; in this case instability
takes place, and the oscillations increase with time
with an increment γ. In the critical regime corre-
sponding to the instability threshold, the line Έ(ω)
= 1 is tangent to the central branch of the function
F(w), and in this case 8F/9o> = 0. This regime corre-
sponds, in the case described by Eq. (2), to an oscilla-
tion frequency

ω = kzu{1 + [(M/m) (k\lk-)\1/3}"1. (3)

Substituting the value of ω from (3) in (2), we obtain
an expression for the threshold (critical) beam density

starting with which instability sets in:

(4)cofcr= - [(m!M) (kVk\)\' '3

and for the threshold current of the beam

/ „ = nase/!,c,u = (ma

s/4e) k*u? {1 τ [{mlΜ) (kVk\)[1/3}-3, (5)

w h e r e a i s t h e r a d i u s of t h e b e a m .

E x p r e s s i o n s (3)—(5) w e r e o b t a i n e d for t h e n o n r e l a -

t i v i s t i c c a s e . In t h e r e l a t i v i s t i c c a s e , a s c a n b e r e a d i l y

s e e n ,

/ „ = (ma*/ie) <o2

lcr» = (ma2/4e) k2u?f0{l + [(mIM) (4V/t!) yj]1/3}-3. (5 ' )

It i s i n t e r e s t i n g t o n o t e t h a t if t h e s e c o n d t e r m in t h e

c u r l y b r a c k e t s of t h e d e n o m i n a t o r of ( 5 ' ) i s m u c h

l a r g e r t h a n t h e f i r s t , t h e n a s u — c t h e c u r r e n t I c r

c e a s e s t o d e p e n d on t h e b e a m - e l e c t r o n e n e r g y :

la—- (Ma"-lie) ktc*. (5 " )

For example, for argon ions, a = 1 cm, k z » π/L « 3
x 10"2 cm"1 (beam length L = 100 cm), we get from
(5") I c r « 3 x 105 A.

The instability increment γ can be estimated from
the dispersion equation (2), by assuming (in accord-
ance with (3)) that ω -C k z u. At a sufficiently large
excess above the critical value (beam current I 3> Icr)>
this yields

1' ^ (mlAf) ~ku^-(a+. (6)

In the case described by the dispersion equation (1)
or (1') (planar geometry or Η = 0), the expressions

for the quantities ω, Wicr» a n d Icr a r e obtained from
(3)-(5) by substituting k = k z .

From the point of view of experiment, greatest
interest attaches to the case when the beam of the
radius a propagates along the axis of a metallic
cylinder of radius Ro >• a (beam length L » R 0 ) . In
this case the instability threshold current is deter-
mined by the quantity k2 = k z + k r , where [ 1 3 ]

). (?)

and the minimal value of k z can be assumed to equal
TT/L (see below).

In another case, when a =R0 we have k r = 2.4/a.
The criterion for the electron-ion beam instability,in
the case of an arbitrary ratio of a, Ro, and L (as-
suming magnetization of both the electrons and of the
ions) was obtained in the theoretical paper [ 1 4 ] .

Expression (4) is equivalent to the instability con-
dition

(«"'+(<>(№)'". (8)

The oscillations considered by us are volume oscil-
lations and constitute the oscillations of the space
charges of the particles of both polarities inside the
beam; accordingly we have div Ε * 0 inside the beam.
Unlike such oscillations, there exists one surface mode
of oscillations, wherein the particle charges are pro-
duced only on the surface of the beam, and accordingly
we have div Ε = 0 inside the beam. Naturally, such a
mode is possible only when the beam radius is smaller
than the radius of the metallic cylinder (a < R o ) .
Excitation of such a mode was considered in [ 1 6 ] (see
also1·151). It has been shown that the dispersion equation
for this mode differs from Eq. (2) in that the ion term
enters with the same factor k | / k 2 as the electron
term (the quantity k2 is determined as before by
expression (7)). Therefore the critical current, unlike
(5'), contains in the curly brackets of the denominator
the term (myl/M)^3, without the factor (k 2/k z ) 1 / 3 .
We see that this critical current is larger than the
excitation current of the volume mode considered by
us, namely, the surface mode is more difficult to
excite. We shall therefore consider only the volume
modes.

It is important to note that the expression some-
times cited in the literature for the frequency of the
considered electron-ion oscillations is the one derived
by Buneman [ 1 0 ]:

ω«ωί/ 3ω^^ω ι^/71ί)'·'3. (3a)

This expression is valid only for the one-dimensional
case when k = k z . In fact, in this case we obtain from
(3) ω « ku(m/M)1 / 3, from which expression (3a) fol-
lows on the basis of (5). The instability increment is
in this case

Ymax « (31/2/24'3) (m/M)1/3<o( « 0.7co. (3b)

If k z C k , expressions (3a) and (3b), naturally, no
longer hold.

We have thus considered the electron-ion instability
of a homogeneous quasineutral monoenergetic electron
beam. In the case of the electron-electron instability,
the entire analysis remains essentially the same. For
example, for "magnetized" electrons ( w H e ^ <·>) the
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— kzuY\ (kl/k2) + (co>>2)

from which follows the instability condition

(ω?) 1/3 + Κ)

dispers ion equation, a s can be readi ly seen from the
foregoing derivation, has in the nonrelativist ic reg ime
the form

(9)

(10)

where ω ζ is the Langmuir frequency of the plasma
electrons ( ω | = 4irn 2 e 2 /m) and express ions for ω and
I c r :

v=ktii[l + (nlln2)"!'r\ (11)

/ „ = (maVAe) h*u* [1 + (η2/«,)1/3]-». (12)

I n t h e r e l a t i v i s t i c r e g i m e , o b v i o u s l y ,

/cr= (maV4e) k*u>y>0 {1 + [(„.,/„,) γ'] "3}-=. (12 ' )

F r o m c o n d i t i o n (10) fo l lows t h e i n t e r e s t i n g c o n c l u s i o n

that when ω 2 > ku the instability se t s in at any beam
density o r , in other words, there is no instability
threshold with respect to the beam density. This cor-
responds to the fact that when ω 2 > ku the middle
branch of the function Έ"(ω) in Fig. 1 does not c r o s s the
horizontal line Έ(ω)= 1 at any beam density. On the
other hand, if the Langmuir frequency of the plasma
electrons w2 is s m a l l e r than ku, then according to
(10) the instability se t s in, but only s tar t ing with a
certa in threshold beam density. Two cases a r e then
possible. In the f irst c a s e , when ω 2 is slightly s m a l l e r
than ku, the phase velocity w/k z of the developing
osci l lat ions, as seen from Fig. 1, is very close to the
velocity of the beam e l e c t r o n s . This means that at a
sufficiently smal l ra t io n ! / n 2 (rarefied beam and
dense plasma) the instability is based on the Cerenkov
effect. In the other c a s e , when the ra t io n i / n 2 is suf-
ficiently large (dense beam), the phase velocity w/k z

of the growing oscil lations is much s m a l l e r than the
velocity of the beam e lectrons; in this case the insta-
bility is based on the anomalous Doppler e f fect [ 1 7 ] .

The physical meaning of this effect can be explained
in this case as follows. The beam part ic les can, in
principle, execute collective (Langmuir) oscil lations
with different ampli tudes . Therefore the beam can be
regarded as a system of osci l la tors capable of being
at different levels of vibrational energy. In t ransi t ions
between these levels, the beam emits oscil lations that
propagate in the plasma with a cer ta in phase velocity.
If this velocity exceeds the beam-par t ic le velocity
(<w/kz < u), then the radiation of the oscil lations by
the beam is accompanied not by a d e c r e a s e of the
vibrational energy of the beam (as is the case for
co/kz > u) but by an i n c r e a s e . The character i s t ic fea-
t u r e of the anomalous Doppler effect consists indeed
of a t rans i t ion of the radiating system to a higher
energy l eve l [ 1 7 ] . This t ransi t ion, denoting buildup of
oscil lations in the sys tem, is effected, naturally, at
the expense of the energy of the longitudinal motion of
the b e a m .

The buildup of the electron-ion oscil lat ions, con-
sidered above for a quasineutral beam, is also con-
nected with the anomalous Doppler effect. A classif ica-
tion of beam instabil it ies from the point of view of the

elementary processes on which they are based is given
in the review[3-'.

We have previously distinguished between electron-
ion and electron-electron types beam instability in a
plasma into depending on which of the two plasma
components (ions or electrons) plays the principal
role in the buildup of the oscillation. The type of in-
stability actually realized is determined by the ratio
of the ion and electron (plasma) terms in the disper-
sion equation; in the case of a three-component system
consisting of magnetized electrons and nonmagnetized
ions, this equation is

Κ/(ω — kM)'-] 4- Κ/ω 2) + (ω*/ω=) (kVk-) i. ( 1 3 )

T h e f o r e g o i n g d i s t i n c t i o n b e t w e e n t h e i n s t a b i l i t y

b r a n c h e s h a s a p h y s i c a l m e a n i n g if t h e s e c o n d a n d

t h i r d t e r m s of t h e l e f t s i d e of ( 1 3 ) a n d a c c o r d i n g l y t h e

t h r e s h o l d s ( 5 ) a n d ( 1 2 ) a r e s i g n i f i c a n t l y d i f f e r e n t .

O t h e r w i s e t h e i n s t a b i l i t y i s d u e t o t h e i n t e r a c t i o n of

a l l t h r e e c o m p o n e n t s of t h e s y s t e m .

2 . I n s t a b i l i t y o f a S p a t i a l l y - i n h o m o g e n e o u s E l e c t r o n

B e a m i n a P l a s m a

In the preceding section we considered the excita-
tion of axially s y m m e t r i c a l osci l lat ions, i .e. , osci l la-
tions in which the e lectr ic field Ε and the wave vector
k have only two components: longitudinal E z and k z ,
and radia l E r and k r (accordingly, k 2 = k z + k r ).
The azimuthal components Εφ and k(p were assumed
to be equal to z e r o . Such a l imitation of the degrees
of freedom of the resul tant oscil lations was connected
with the fact that in the case considered above, that of
homogeneous distribution of the c r o s s section of the
beam, the oscil lations that have no axial symmetry,
i .e., for which Εφ * 0 and k 2 = k | + k r + k|,, r e -
quire a higher threshold c u r r e n t , proportional to k2,
for their o c c u r r e n c e .

The situation, however, changes fundamentally if
the distribution of the c u r r e n t density in the c r o s s
section of the beam is essential ly inhomogeneous
(Vni •* 0). In this case a new instability mechanism
a r i s e s , connected with the drift motion of the charged
part ic les in the crossed fields—azimuthal e lectr ic
field Εφ of the oscil lations and longitudinal magnetic
field H z . This is essentially the same mechanism
causing the drift or gradient (sometimes called uni-
versa l ) instability of an inhomogeneous plasma—the
same instability that is of greates t interes t in investi-
gations on control thermonuclear fusion (see, for ex-
a m p l e / 1 ^ concerning this instability). The difference
is connected only with the electron velocity distr ibu-
tion function, which in this case is not Maxwellian, and
includes a part ic le b e a m . Thus, the instability accom-
panying the buildup of ax ia l ly-asymmetr ica l osci l la-
tions of a strongly inhomogeneous beam in a plasma
combines the feature of the " o r d i n a r y " two-s t ream
instability of a homogeneous plasma and the drift
instability of an inhomogeneous p lasma. We shall cal l
this drift-beam instability. The theory of this instabil-
ity was developed by Mikhai lovski i [ 1 9 ] and by Rukhadze
and co-workers '- 2 0 1 .

In o r d e r to consider this theory, we turn to the
derivation of the dispers ion equation (1), (2), (13) for
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axially-symmetrical electron-ion oscillations and see
how this equation must be modified in order for it to
describe also oscillations that have no axial symmetry.
We shall consider as before the case when the plasma
ions are not magnetized, and the electrons are mag-
netized (wjji <S ω <SC o»He)· In t n i s case the only new
effect due to the presence of the azimuthal (perturbed)
field Εφ and the radial charged-particle density
gradient is the radial drift of the beam and plasma
electrons with velocity ~ οΕφ/ϊΙ. As a result of this
drift, radial particle currents are produced: j x

~ necE^/H « i n e c k ^ / H , where η is the particle
density and φ is the perturbed potential. These cur-
rents change the amplitude of the space-charge density
oscillations of the particles in accordance with the
continuity equation

where jn is the longitudinal particle current (along H).
For example, for the plasma electrons

div j | | = —e

div j ι ~ •

V

where R is the characteristic transverse dimension
("radius") of the plasma, and s is the number of the
azimuthal mode, i.e., the number of azimuthal waves
subtended by the perimeter of the plasma. Conse-
quently, the alternating density of the space charge of
the plasma electrons is

p2 SK (e'/^kl/nuu2) ψ — (e2n2s/

T h e e x p r e s s i o n f o r t h e a l t e r n a t i n g d e n s i t y p i o f t h e

s p a c e c h a r g e o f t h e b e a m e l e c t r o n s w i l l b e p e r f e c t l y

a n a l o g o u s , a p a r t f r o m t h e s u b s t i t u t i o n s n 2 — n i ,

ω — (ω - k zu), R2 — a2, where a is the " radius" of
the beam (we are considering for the time being the
nonrelativistic regime). Finally, the alternating
density of the space charge of the ions p+ will be de-
scribed by the same expression as before (the ion
oscillations are as before along the resultant electric
field Ε = -grad φ). Substituting the expressions for
ρ ι, Pi, and p + in the Poisson equation ν 2 ψ = -k2i/>
= -4ff(p+ + Pi + p 2 ) , we obtain a dispersion equation
of the type F(w, k) = 1 with five terms in the left-hand
side—one ionic and two electronic:

- 4 = i . <14)
(0) — kzu)2 g e (OJ — kzu)

T h i s d i s p e r s i o n e q u a t i o n d i f f e r s f r o m ( 1 3 ) i n t h e

p r e s e n c e o f t w o " d r i f t " t e r m s ( s e c o n d a n d f o u r t h ) ,

w h i c h a r e c o n n e c t e d w i t h t h e d r i f t m o t i o n of t h e b e a m

at plasma electrons in the crossed fields: the per-
turbed electric field Ε φ and the main magnetic field
H z . These additional terms, which differ from zero
only if the conditions k<p * 0 and grad (nj, n 2 ) * 0
are simultaneously satisfied, greatly changes the
stability criterion of the system, as will be shown
subsequently.*

Let us proceed to analyze Eq. (14). Turning to Fig.

"The coefficient 2 in the drift terms is connected with a more de-
tailed account of the radial distribution of the beam and plasma density.
We assume the parabolic distribution ["In^r) = n,(0) [l-(r2/a2)],
n2(r) = n2(O)[l-(r2/R2)].

1, we can readily see that, other conditions being
equal, the beam-drift term (which, according to (3'),
has a positive sign), contributes to a "detachment"
of the central branch of the function F(u>) from the
horizontal straight line F(u>) = 1. This should lead to
a decrease of the critical current at which the insta-
bility occurs, provided only that the indicated effect is
not cancelled by another effect mentioned above,
namely the raising of the instability threshold as a
result of the increase of k2. It is likewise easy to see
that the plasma drift term (having a negative sign)
contributes to stabilization of the instability.

The presence of drift terms of first order in ω in
the dispersion equation excludes the possibility of an
exact analytic determination of the critical current of
the instability by the method used above. We shall
therefore proceed in a different manner: we shall
assume that the inequality ω < k z u is sufficiently
strong. Neglecting in (14) the value of ω compared
with k zu and turning to the case of a quasineutral
electron beam (n 2 <S ni, n+ « n x ) , we obtain

W?Cr~ kW 11 + ( W a S . y i - 1 (15 )

(when ω! > cuicr» the quantity ω2 defined by (14) be-
comes negative, corresponding to the buildup of oscil-
lations). Accordingly, the instability threshold current
is

(maVie) k"-u3
(16)

If the second term in the denominators of (15) and (16)
is large compared with unity

su/a2U)Hekz > 1 (17)

(strongly inhomogeneous beam of small radius a in
weak magnetic fields), then the considered drift effects
greatly lower the instability threshold.

The instability increment at a beam current much
larger than critical (I » I c r ) is of the order of

V « (GWU/S)17"- (18)

In the relativistic regime, as can be easily shown
(taking into account the Lorentz transformations of ω,
ρ, and Εφ), the only change occurs in the first term
of (14), in whose denominator there appears the
familiar factor γΐ appears. Accordingly the threshold
current will be expressed by the relation1 1 5 )

/„« (maVie) kWyl [1 + (2suyl/a2u>liekl)\-1, (16')

where a>He = eH/mc.
It is seen from (16') that in the relativistic regime

the drift effects strongly influence the two-stream
instability already if the following condition is satisfied:

>-«Υ.3/α=ωΗΑ>1. (17')

If the second term in the denominator of (16') i s much
larger than unity, and if γ0 is sufficiently large
(u « c), then the critical current is independent of the
energy of the beam electrons

(mcVie) na*<agJL, (16")

where we assume k z = ir/L, s = 1 and k 2 « k£ + k2^
« 2/a2. For example, at Η = ΙΟ4 Oe, a = 1 cm, and
L = 100 cm formula (16") yields I c r » 300 A.

It is of interest to compare the threshold (16") with
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the critical current (5") for the excitation of axially-
symmetrical oscillations. We see that the threshold
(16") is lower than the threshold (5") under the condi-
tion

eHIMc s aHi < nc/L.

This condition can be violated only in giant magnetic
fields, for example in the case of argon and L = 102

cm when Η > 107 Oe (!).
As already indicated, expressions (15) and (16) are

valid only for a quasineutralbeam, i.e., for a system
consisting of two components, fast electrons and slow
ions. Thus an additional plasma is introduced in such
a beam, then the instability threshold r ises. At suf-
ficiently large plasma density, when the drift plasma
term is much larger than the drift beam term, the
instability vanishes. Therefore the condition

•£•>*·/<··, (19)

as seen from the dispersion equation (14), is appar-
ently the sufficient condition for stability. A condition
close to (19) can be readily obtained by neglecting in
the dispersion equation (14) the homogeneous beam
term compared with the drift term, and by assuming
for simplicity ω < k zu ( k z / k 2 ) ωΐ » (m/ΜΧω2. + ωΐ),
a>!s2 3> k 2 k z R 4 wjj . Then the stability condition (the
imaginary part of the complex frequency ω is nega-
tive) takes the form

i,2)R2(unekJsu*). (19 )

If R 2 o)j j e k z /su ~ 1 (as is the case in the experiments
described below, then the conditions (19) and (19')
are practically equivalent (the derivation of (19') is
due to V. V. Arsenin [ 8 2 ]).

We now proceed to a more detailed comparison of
the considered drift-beam instability with the
"universal" instability of a spatially-inhomogeneous
plasma, in which the electrons have a Maxwellian
velocity distribution. Unlike the drift-beam instability
in which the phase velocity of the oscillations ω/kz
is much smaller than the beam-electron velocity u,
the universal instability is caused by resonant elec-
trons moving along the magnetic field (H = H z) with
velocities v z close to the phase velocity ω/kz of the
(drift) wave excited by them. If the plasma were
spatially-inhomogeneous, then buildup of the wave by
the resonant electron would be impossible at a Max-
wellian electron velocity distribution, owing to the
well known "Landau damping"' 2 1 1. However, the
plasma inhomogeneity gives rise to a new effect,
namely, the drift of the charged particles in the
crossed fields (the perturbed Εφ and the external H z)
causes the number of the resonant particles that lag
the wave and absorb its energy to decrease, whereas
the number of resonant particles leading the wave and
transferring energy to it increases. Total cancellation
of the Landau damping (meaning instability) sets in at
the condition'1 8 '1 9 1

(20)
J (̂|) ft

and the additional condition

where f0 is the distribution function of the plasma
electrons with respect to the velocities and the coordi-
nates, T e, Tj, v T e = (Te/m)172, v T i = (Ti/M)172 are
the temperatures and the thermal velocities of the
plasma electrons and ions. In the case of a Maxwellian
electron velocity distribution, condition (20) takes the
form

or

svJa2wIIekz

ω <g ω* = cTekJeHa,

(21)

(21a)

*See [82] concerning the control of the instability in question by
means of feedback.

where a i s the " r a d i u s " of the p lasma, i . e . , the char-

a c t e r i s t i c d i m e n s i o n of the t r a n s v e r s e (re lat ive to the

d i rect ion of the magnet ic f ie ld) inhomogenei ty of the

p l a s m a dens i ty , s = k ^ a i s the number of the a z i -

muthal m o d e of the instabi l i ty, v z = o>/kz i s the ve loc i ty

of the resonant electrons, and ω* is the so-called
drift frequency.

We see that when the substitution v z — u is made
the criterion (21) goes over into the criterion (17).
This is an illustration of the fact that the "universal"
and the drift-beam instabilities are based on the same
physical mechanism. At the same time, the difference
in the form of the electron velocity distribution func-
tion lies in the fact that the drift-beam instability has
a threshold (16) with respect to the electron density,
whereas the universal instability has no such threshold.
This circumstance makes it possible to simulate ef-
fectively the universal instability in experiments with
electron beams. We shall return to this question in the
next chapter.

3. The Pierce Instability [ 2 2 ]

In this section we continue the analysis of the
stability of a quasineutral electron beam consisting of
a stream of fast electrons with concentration ni and a
"background" of compensating ions with concentration
n+ = n! (the concentration of the plasma electrons is
n2 = 0). We have seen above that such a system of
charged particles reveals an instability that is con-
nected in fundamental fashion with the character of the
motion of the "background" ions and vanishes if the
ions become immobile. In fact, if the ion mass tends
to infinity, then the increment of the considered insta-
bility tends to zero. This is seen from expressions (6),
(3b), and (18), as well as directly from the dispersion
equation (1), (13), and (14), which gives purely real
values of the oscillation frequency ω as Μ — °° (n2

= 0). This is natural, since infinitely heavy (immobile)
cannot realize the positive feedback which is necessary
for the occurrence of instability.

Nonetheless, as first shown by Pierce [ 2 2 ] , a quasi-
neutral electron beam with infinitely heavy ions can be
unstable if the space in which it propagates is bounded
on all sides by metallic walls interconnected by an
external circuit with infinite conductivity. In this case
the function of the positive feedback, which leads to the
buildup of the instability, is assumed by the electrons
of the external circuit, which maintain the beam-limit-
ing walls at an equal potential.
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Following Pierce, let us consider a plane quasi-
neutral electron beam compensated by infinitely heavy
ions. The beam propagates between two ideal grids,
the distance L between which is much smaller than
the transverse dimensions of the beam. The grids are
interconnected by an ideally conducting external circuit,
the electrons of which "see to i t " that the potential
difference between the grids at any instant of time is
strictly equal to zero.

Assume that oscillations with frequency ω have
occurred accidentally in the beam. Let us see under
which conditions these oscillations can grow in time.
We assume first that the grids do not influence the
behavior of the beam. Then the oscillations are de-
scribed by a dispersion equation (1), which gives two
possible values of the wave number of the oscillations

*ι = (ω + ω,)/ϋ, ί;2 = (ω — G>,)/B. ( 2 2 )

T h e s e t w o v a l u e s o f t h e w a v e n u m b e r c o r r e s p o n d t o

t w o s p a c e - c h a r g e w a v e s : a s l o w o n e , w i t h a p h a s e

velocity ω/ki, and a fast one with a phase velocity
o)/k2. The total oscillation of the potential (satisfying,
naturally, the Poisson equation k2^ = 4πρ) will be
described by the equation

ψ = [A exp (iksz) + Β exp (ik2z)] exp (— itot).

Both w a v e s have an ampl i tude that i s constant in t i m e ,

s i n c e the i n c r e m e n t of the o s c i l l a t i o n s , a s s e e n from

the d i s p e r s i o n equation (1), i s equal to z e r o . We now

take into account the inf luence of the g r i d s . Under the

influence of the e l e c t r i c f ield of the fast and s l o w w a v e s

t h e r e wi l l b e induced in the g r i d s c h a r g e s w h o s e

" t a s k " i s to sa t i s fy the condit ion that the g r i d s b e

equipotential . (If s u c h c h a r g e s w e r e not induced, then

the indicated condit ion might b e v io lated s i n c e the

phase di f ference of the potential o s c i l l a t i o n s at the

locat ions of the g r i d s , g e n e r a l l y speaking, could b e

arb i t rary ) . In the s p a c e b e t w e e n the g r i d s , the potential

of the e l e c t r i c f ield of the induced c h a r g e s s a t i s f i e s the

Laplace equation ν2ψ = 0, i.e., ψ = Cz + D. Thus, the
general solution of the Poisson equation for the poten-
tial (with allowance for the field of the charges induced
on the grid) is

we use one more boundary condition, namely φ = 0
when ζ = L. We then obtain

ψ exp (ίωί) = A exp (ikiz) -\- Β exp (ik^z) + Cz + D. (23)

To d e t e r m i n e the c o n s t a n t s A, B, C, and D, P i e r c e

formulated the fol lowing boundary condi t ion: in the

plane of the first grid (z = 0) all the variable quanti-
ties (the potential ψ, the velocity v, and the density p)
are equal to zero. Expressing ν and ρ in terms of ψ
with the aid of the Poisson equation, the continuity
equation, and the equation of motion (in analogy with
the procedure used at the beginning of Ch. II), and
using the indicated boundary condition, we obtain three
equations, from which we determine the three quanti-
ties B/A, C/A, and D/A. Substitution of these quanti-
ties in (23) yields

ψ exp (ioi) £| (exp [ι (ω + ω,) ·£] - ( 2 3 a )

(24)
Solution to the dispersion equation gives the following
result. If ωι is sufficiently small (ωι < mi/L), then
all the roots of (24) have negative imaginary parts,
meaning damping of the oscillations, i.e., stability of
the beam. When ωι >• ττ/L, Eq. (24) yields

ω«(ίπ/4)[ω, —(nit/£)], (25)

Corresponding to aper iod ic instabi l i ty (the r e a l part

of the o s c i l l a t i o n frequency i s equal to z e r o ) . The

c r i t i c a l (threshold) r e g i m e separat ing the instabi l i ty

f rom the instabi l i ty i s one in which

and ω = y = 0 (wip is the Pierce threshold). In this
regime, as seen from (23) and (23a), the constants A,
B, C, and D, which determine the function ψ(ζ) of
(23), have values C = D =0 and Β = -A, and the dis-
tribution of the potential oscillation amplitude along
the beam is given by

ψ ~ A sin (πζ/L). (27)

When ωι ^ u/L, we have aperiodic instability with an
increment

In o r d e r to d e r i v e the d i s p e r s i o n equation from the

thus-obtained expression for the potential ψ(ω, ωι, ζ),

γ = (π/4) [ω, - (nulL)\ = (π/4) α/τ a» (π2/8) T^Aj/j P, (28 )

where τ = L/u is the electron time of flight,
a = (a>iL/u) - π is the supercriticality parameter,

IT = (m/4ne) <u\Pu =,-. (π/4) (m/e) u*/L* (29)

i s the thresho ld b e a m current instabi l i ty above which

the P i e r c e instabi l i ty s e t s in, Aj = j - j P , and j i s the

b e a m current dens i ty . (The right-hand inequality in

(28) i s val id when Aj < j p . ) We s e e f rom (28) that at

not too low a supercriticality (Aj/jp) the increment γ
is of the order of the reciprocal time of flight of the
electron.

In the unstable regime, all the constants A, B, C,
and D turn out to be different from zero and the distri-
bution of the potential-oscillation amplitude along the
beam is no longer represented by half a sinusoid, but
acquires a much more complicated character [ 3 9 ]; when
a < 1

^exp(- v i )~4{s in(5±2 Z )- f [2 ( c o s ^ - l ) + f sin ^ ] } .

(26a)

It is seen from this expression that when a > 0
(j > jp) the extremum shifts from the plane ζ = L/2
(where it is situated when a = 0) towards smaller z.

We have thus considered the Pierce instability in a
planar geometry. From the experimental point of view,
greatest interest attaches, naturally, to cylindrical
geometry, when a beam of radius a and of limited
length propagates along the axis of a metallic cylinder
of radius R2 ^ a in a strong external magnetic field.
As applied to this case, the problem of the Pierce in-
stability has been solved so far only numerically with
the aid of a computer t 2 3\ It has been shown that in the
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cylindrical geometry the Pierce instability exists and
the instability threshold is given by

can be expressed by the relation

ρ = (ie/ma2u) If = k'-u\ ( 2 9 a )

w h e r e Ip = i r a 2 j p i s t h e P i e r c e t h r e s h o l d c u r r e n t ,

k 2 = ( i r / L ) 2 + kr> a n d k r i s d e t e r m i n e d b y t h e t r a n s -

v e r s e d i m e n s i o n s o f t h e b e a m ; w h e n L > R 0 > a t h e

v a l u e o f k r i s d e t e r m i n e d b y ( 7 ) . I n a c c o r d a n c e w i t h

( 2 9 a ) a n d ( 7 ) , i n t h e c a s e o f a s u f f i c i e n t l y l o n g a n d t h i n

b e a m ( L » R 0 » a ) w e h a v e

/Ρ « 66-ΐ0-«Κ0

3/2/ΐη(Λ0/α) [Ampere], (29b)

where V = Wi/e is the energy of the beam electrons

(in volts). For example, at Wi = 1 keV and R 0 / a

= 5—6 we have I p » 1 A, at Ro = a we have

k « 2.4/a, and

/P = 190 ·1Ο"β7ο/2 [Ampere]. (29c)

Thus, the Pierce instability can be defined as an
electrostatic instability induced in a quasilinear elec-
tron beam by positive feedback via an external circuit.
In this property it recalls one more electrostatic in-
stability with which the maximum current in a beam of
charged particles of the same sign, bounded by the
space charge is connected. The problem of the limiting
current in a beam of particles of the same sign (for
example, in an electron beam in the absence of com-
pensating ions) was first solved by Bursian (see'·24·'
as applied to a plane beam geometry (the same
geometry as in the Pierce problem). The main result
of this paper can be illustrated with the aid of a plot
of the static potential V in the midpoint of the inter-
electrode space (z = L/2) against the beam current
density (Fig. 2). In the case of a small beam current,
the potential V of the plane ζ = L/2 is close to the
grid potential: V * Vo = Wi/e (Wi is the beam elec-
tron energy). With increasing current, the space charge
of the beam increases (there are no compensating
ions), and the beam potential decreases. So long as
the beam current density j is such that V > Vmin
= Vo/4, the decrease of V with increasing j is con-
tinuous. However, when V = V m i n , the increase of j
leads to a jumplike decrease of V to zero. Then a
virtual cathode is produced in the beam and reflects
an appreciable part of the electrons in the direction of
the source, and the current of the electrons reaching
the second grid decreases jumpwise. Thus, at V = Vmin
an electrostatic instability sets in and limits the
maximum possible beam current. The limiting beam
current density, above which the instability sets in,

-*min '

FIG. 2. Potential of midpoint of interelectrode space vs. beam cur-
rent density.

s (m/4ne) ωΐπ : (nm/ie) u3

o r

= (π/L) U,

( 3 0 )

( 3 0 a )

w h e r e u i s t h e v e l o c i t y o f t h e b e a m e l e c t r o n s n e a r t h e

p o t e n t i a l m i n i m u m .

A t t e n t i o n i s c a l l e d t o t h e f a c t t h a t e x p r e s s i o n s ( 3 0 )

a n d ( 2 9 ) f o r j m a x a n c · t h e P i e r c e t h r e s h o l d j p h a v e a

p e r f e c t l y i d e n t i c a l s t r u c t u r e , a n d j m a x d i f f e r s f r o m

j p o n l y b e c a u s e t h e b e a m p o t e n t i a l V d i f f e r s f r o m

V o = W j / e ( o w i n g t o t h e a b s e n c e o f c o m p e n s a t i n g i o n s ) .

F o l l o w i n g B u r s i a n [ 2 4 1 , t h e p r o b l e m o f t h e l i m i t i n g

c u r r e n t i n t h e b e a m o f p a r t i c l e s o f t h e s a m e s i g n w a s

s o l v e d b y o t h e r a u t h o r s , p a r t i c u l a r l y b y S m i t h a n d

H a r t m a n t 2 5 1 , w h o c o n s i d e r e d t h e c a s e o f a c y l i n d r i c a l

b e a m g e o m e t r y . I n t h e c a s e o f a t h i s l o n g b e a m i n a

s p a c i o u s s h e l l ( a « R o C L ) , t h e e n t i r e d i s t o r t i o n o f

t h e p o t e n t i a l b y t h e s p a c e c h a r g e i s c o n c e n t r a t e d o u t -

s i d e t h e b e a m , V m m = V o / 3 ; a l l t h e b e a m e l e c t r o n s

( a t p o i n t s d i s t a n t f r o m t h e e n d s ) h a v e a p p r o x i m a t e l y

t h e s a m e v e l o c i t i e s u « ( 2 e V m i n / m ) 1 / 2 = ( 2 W ! / 3 m ) 1 / 2 .

I n t h i s c a s e t h e m a x i m u m b e a m c u r r e n t d i f f e r s f r o m

t h e P i e r c e c u r r e n t b y a f a c t o r 3 * ' 2 ! 2 3 1 ;

/max = 3 - 3 ' P ' r n , ( 3 1 )

w h e r e I p i s d e t e r m i n e d b y ( 2 9 b ) . A n o t h e r c o m m o n

p r o p e r t y o f t h e P i e r c e a n d B u r s i a n i n s t a b i l i t i e s i s t h e

f a c t t h a t b o t h a r e c h a r a c t e r i z e d b y a h a r d e x c i t a t i o n

r e g i m e : t h e e n e r g y o f t h e p e r t u r b e d e l e c t r i c f i e l d i n -

c r e a s e s w i t h i n a t i m e o n t h e o r d e r o f t h e e l e c t r o n t i m e

o f f l i g h t t o a v a l u e e q u a l t o t h e e n e r g y o f t h e b e a m

e l e c t r o n s . T h e r e f o r e t h e P i e r c e i n s t a b i l i t y a n d t h e

B u r s i a n i n s t a b i l i t y s h o u l d l e a d t o t h e f o r m a t i o n o f a

v i r t u a l c a t h o d e i n t h e b e a m . ( S e e t h e t h e o r e t i c a l

p a p e r s 1 2 6 1 c o n c e r n i n g t h i s q u e s t i o n . )

I n t h e c a s e o f t h e r e l a t i v i s t i c r e g i m e , t h e p r o b l e m

o f t h e P i e r c e i n s t a b i l i t y h a s a v e r y l i m i t e d m e a n i n g .

I n f a c t , a s s e e n f r o m t h e d i s p e r s i o n e q u a t i o n ( 2 ' ) , t h e

b e a m e l e c t r o n s " b e c o m e h e a v i e r " ( i n t h e o s c i l l a t i o n s )

b y a f a c t o r yl a n d w h e n y0 « ( M / m ) 1 / 3 n e g l e c t o f t h e

p a r t p l a y e d b y t h e i o n s i n t h e o s c i l l a t i o n s i s n o l o n g e r

correct. At smaller y0, the current Ip can be deter-
mined from (5) by putting in it Μ = «:

: (ma2/4e) k'u' (29')

The critical current of the Bursian instability in the
relativistic regime (u « c, regardless of the distor-
tion of the potential) follows from (30):

/max x (maV4e) kVy0. (30')

The difference between (29') and (30') is determined
by the relativistic Doppler effect.

In the cylindrical case, in the presence of a strong
external longitudinal magnetic field,

/max = mc'yje [1 •+ 2 In (RJa)]. (30" )

It should b e noted that if an intense r e l a t i v i s t i c

e l e c t r o n b e a m propagates through the " b a c k g r o u n d "

of the pos i t i ve ions that c o m p e n s a t e for i t s s p a c e

charge in the a b s e n c e of an externa l magnet ic f ield,

then, accord ing to the Alfven t h e o r y [ 6 3 ] , it should be

subject to an instabi l i ty connected with the " c o m p r e s -
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sion" of the beam by its own magnetic field. This in-
stability occurs if the energy of the beam's own mag-
netic field is comparable with its kinetic energy and is
characterized by a threshold (Alfven current)

/Α = (ηκ:3/β)νοβ = ΐ,7ΐθ4γ0β [ampere] , (30"')

where β = u / c .
As seen from a comparison of (30 ' " ) and (30"), the

Alfven c u r r e n t I A exceeds the Bursian current Imax
very l i t t le, only by a factor 1 + 2 In ( R 0 / a ) .

4. Instability of Ion Beams in a Plasma

In considering the instability of an ion beam in a
plasma, we must take into account one m o r e factor,
which so far has been disregarded, namely the t h e r m a l
motion of the plasma e lec t rons . The dispers ion equa-
tion analogous to (13) then takes the form

1, (32)

where ωί = 4πηιΘ*/Μι, ω 2 = 4ττη+β2/Μ+, ωί = 4ττη2β
2/ηι—

a r e the Langmuir frequencies of the beam ions, the
plasma ions, and the plasma e lectrons, n 2 = n ! + n + ,
v 2 = ( T e / m ) 1 7 2 , and T e a r e the t h e r m a l velocity and
the t e m p e r a t u r e of the plasma e lec t rons . (Equation
(32), like (13), pertains to the case when the e lectrons
a r e strongly magnetized and the ions a r e not mag-
netized.)

We shal l consider slow electrostat ic waves, in
which the inert ia of the plasma e lectrons can be
neglected:

(32a)

Eq. (32) then takes the form

W i t h t h e a i d o f s i m p l e s t e p s p e r f e c t l y a n a l o g o u s t o

t h o s e u s e d i n C h . II, w e o b t a i n t h e b e a m t h r e s h o l d

d e n s i t y n i c r , s t a r t i n g w i t h w h i c h t h e i n s t a b i l i t y s e t s

i n

«>lCr= 4mlae*/Mi = k\u* [1 + (ωΙ/fcVi)] x + ) χ ( « > , ) ] i / 3 } - 3 ,

(33)
and the frequency of the oscillations that build up in
the case when nt > n i c r :

ω « kzu {1 + [(M+IMC) (n,/n+)F»}-1 (34)

(The oscillation increment is of the order of the fre-
quency ω). Neglecting unity in the brackets of the
numerator of (33) and using simple transformations,
we can represent the condition for the instability of
the ion beam in the form

WJT. < (kV2kl) (V«2) {1 + [(MJMJ («+/«,)]i/3}3, (35)

where Wi is the beam ion energy*.
It is interesting to note that relation (35) contains a

factor k z /k | . Under the experimental conditions, this
factor can be quite large. For example, if standing
waves are produced (the beam length L spans an inte-
ger number of half-waves), when

(m= 1, 2, 3, . ..); (36)

the ra t io k 2 /k 2

z can be of the order of the square of
the rat io of the beam length to its d iameter (independ-
ently of the value of H—see the last footnote). In this
case the relat ion (34) descr ibes oscil lations at a f re-
quency approximately equal to an integer multiple of
the rec iproca l t ime of flight of the beam ions.

We have considered the case a>/kz <C v 2. In the op-
posite case , the dispersion equation (32) takes the form

_ '—-j--| ±--( £ = 1. \O6OJ

In the part icular case of a quasineutral ion beam (the
space charge of the beam is compensated by e lectrons,
n1 = n 2 , and there a r e no slow ions, n+ = 0), the
threshold of the instability is given by

">lcr= (33a)

and the oscil lations (when ωί > o>icr) have a frequency

ω « kzu{i + [(mIM) (W,)] 1 "} ' 1 . (34a)

In conclusion it should be noted that a quasineutral
ion beam can experience not only an oscil latory but
also an aperiodic instability'-2 7 1 analogous to the P i e r c e
instability of a quasineutral e lectron beam. The differ-
ence between these instabilit ies l ies in the fact that in
the case of an ion beam the part ic les of the "back-
ground"—the electrons—can be much m o r e mobile
than the beam par t ic le s . Connected with this difference
is the fact that the threshold c u r r e n t for an ion-elec-
t ron Pierce instability (in addition to the factor
(e/M) 1 / 2 ) contains a factor W i / T e . In the case of a
plane ion beam of length L, the threshold current
density i s [ 2 7 ]

/ c r ~ (WJTe) (4/n) (2elM)1'2 (Wye)
3/2/ZA (37)

When Wi 2> T e , the threshold beam current may lie
beyond the capabilities of pract ical real izat ion.

Thus, we have represented in this section the theory
of stability of monoenergetic b e a m s of charged p a r t i -
cles . This theory is valid also for beams with a smal l
t h e r m a l velocity s c a t t e r , provided the value of the
sca t te r Au satisfies the condition

All < ylkz, (38)

*It is easy to note that the form of relations (32a) and (35) does
not depend on the presence or on the absence of a longitudinal mag-
netic field (we always assume that the ions are not magnetized).

where γ is the instability increment. In particular,
for the electron-ion instability with dispersion proper-
ties (3), the condition (38) means

Aulu < [(kVkl) (m/M))1'2· (38a)

for example, under the conditions of the experiments
described below

A«/u<0,2. ( 3 8 b )

ΠΙ. EXPERIMENTAL DATA

1. Electron-ion Oscillations in Electron Beams

Before describing the experimental data, let us make
a few general remarks concerning the possible ap-
proaches to an experimental verification of the theory
of beam instabilities.

1. From the relations given above we see that a
verification of the theory can follow two lines, either
by investigating the dispersion properties (the fre-
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quency c h a r a c t e r i s t i c s and the spatial s t ructure) of the
observed osci l lat ions, or by measur ing the thresholds
(cri t ical c u r r e n t s ) of the instabi l i t ies. In the study of
the dispers ion propert ies of the osci l lat ions, the follow-
ing difficulty a r i s e s : In order to be able to compare
experiment with the l inear theory described above, it
is necessary to work with oscil lations of sufficiently
smal l amplitude, but such oscil lations a r e difficult to
separate from the background of the plasma noise. On
the other hand, if the oscillation amplitude is large
enough, then their dispers ion proper t ie s , in principle,
may be distorted by the resul tant nonlinear effects.
These shortcomings do not appear in a method where
the theory is verified by using the (experimentally
measured) instability thresholds . This second method
also involves measurement of the dispers ion proper-
t ies of the osci l lat ions, but this measurement plays a
subsidiary role and is c a r r i e d out to make s u r e of the
fact that a study of "what is r e q u i r e d " is made.

2. The verification of the theory presented above
can yield the most definite re su l t s if the experimentally
investigated system of charged part ic les consists of
only two components, fast beam electrons and (an
equal amount of) slow ions, i.e., it is quasineutral
electron b e a m . On the other hand, if in addition to
these two components t h e r e is a lso an " e x c e s s "
plasma (of sufficiently high density) then, as shown
above, the dispers ion propert ies and the thresholds of
the instabilit ies turn out to be essentially different and
a r e much m o r e difficult to in terpre t . Therefore we
shall f irst repor t on the experimental data on electron-
ion instabil it ies of a quasineutral e lectron b e a m .

3. One of the methods of obtaining the considered
two-component system (and apparently the most con-
venient one) is to pass a sufficiently intense electron
beam through a radified gas. In this case the slow
electrons produced when the gas is ionized by the beam
a r e pushed out by the negative space charge of the
beam and rapidly go out of the sys tem, while the ions
a r e retained in the beam for a longer t ime and cancel
out the space charge of the b e a m . Let us consider this
phenomenon in somewhat g r e a t e r detai l .

Let u be the velocity of the beam e lectrons, ηχ
their concentration, n 0 the concentration of the neutral-
gas molecules, σ the c r o s s section for their ionization
by the beam electrons, n+ the ion concentration, and
v+ their average velocity. The beam is in the form of
a cylindrical rod (length L, radius a) and propagates
along a s trong magnetic field, on the axis of an equi-
potential volume with metall ic walls . The equilibrium
potential φ of the beam (relative to the walls) is deter-
mined both in magnitude and in sign by the relat ion be-
tween the r a t e of ion production in the beam,
n1n(yJU7ra2L, and the free flux of the ions along the
magnetic field, 2(n+v+/4)jra 2 . If the former of these
quantities is smal le r than the la t ter , then the beam
potential is negative and the ions can accumulate in
the beam until quasineutrality n+ « ηλ is established.
Consequently, the condition that the potential of the
quasineutral beam be negative is given by

or

noauL < v+/2.

l!noau

(39)

(39a)

meaning that

τ ι > τ + , (39b)

where τ[ = 1/η<£Λΐ is the average t ime of ionization of
the gas by the beam electrons, and x+ = 2L/v+ is the
average t ime of flight of the ion along the b e a m . If,
for example, the ions and the atoms of the neutral gas
belong to hydrogen, L = 102 cm, v+ = 2.5 χ 10 6 cm/sec
(the average ion energy is ~ 3 eV), u = 10 9 c m / s e c ,
and σ « 10"1 6 cm" 2 , then condition (39) is satisfied for
n 0 < 1.25 x 10 1 1 cm" 3 , i.e., at gas p r e s s u r e s

Po<2,5io- e mm Hg.

This condition is readily satisfied in experiments; in
addition, it is important to recognize that under r e a l
conditions the a r e a through which the ions escape
from the system is severa l t imes la rger than the
c r o s s section a r e a of the electron beam jra2 (the cause
of this phenomenon will be discussed l a t e r ) . Therefore
at p 0 ^ (1 — 2) χ 10"6 mm Hg the beam potential will
be negative even for heavy gases (nitrogen, argon) with
larger ionization c r o s s sect ions .

If condition (39) is not satisfied, the equilibrium ion
density turns out to be larger than the beam-elect ron
density; then the potential r e v e r s e s sign, the slow
electrons r e m a i n in the beam, and our system of
charged part ic les no longer consists of two compon-
ents, but of t h r e e . At sufficiently large gas p r e s s u r e s ,
the density of the " e x c e s s i v e " plasma will be much
l a r g e r than the density of the beam e lect rons .

We now proceed to descr ibe the experimental data
on beam electron-ion instabil i t ies. As to the P ierce
and Bursian instabil i t ies, the question of their experi-
mental observation is considered in Sec. 1 of Ch. IV,
in connection with a discussion of the mechanism of
beam limitation in quasineutral e lectron b e a m s . An
investigation of the thresholds of the electron-ion
instabilit ies and of their dispersion propert ies was
c a r r i e d out by the author and his c o - w o r k e r s t 2 8 ' 2 9 1 .
These experiments were c a r r i e d out with a two-com-
ponent system comprising a quasineutral beam propa-
gating along a magnetic field in a gas at p 0 R> 10"6 mm
Hg along the axis of an equipotential metall ic cyl inder.
The beam electron energy Wi amounted to hundreds
of electron volts, the current amounted to tens and
hundreds of mi l l iamperes , the beam length was
~ 100 cm, the beam diameter ~ 1 cm, the cylinder
diameter 30 cm, and the magnetic field intensity
amounted to severa l hundred or severa l thousand
oers ted .

Two types of oscillations a r e observed in the ex-
p e r i m e n t s . A common property of these oscil lations
is their electron-ion c h a r a c t e r : The part played by
the ions in the oscil lations is expressed, in part icular ,
by their accelerat ion to high energies (on the order of
the beam-elect ron energies) and by a strong increase
of the radius of the ionic "background." Both types of
oscil lation a r e long-wave, the beam length subtending
usually half the oscillation wavelength ( λ ζ « 2L, k z

= 2ττ/λζ * π/L). In the c r o s s section, however, the
spatial s t r u c t u r e of the oscil lations is essentially dif-
ferent, the oscil lations of one of the indicated types
having axial symmetry k 2 = kp + k | , k^, = 0), and the
oscil lations of the other type being axia l ly-asymmetr i-
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200

FIG. 3. Dependence of the critical
current Ic of the excitation of axially-
symmetrical electron-ion oscillations on
the beam-electron velocity cubed. Η =

7800 Oe, L = 90 cm, ρ = 1.4 Χ 10"6 mm

Hg.
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F I G . 4 . T h r e s h o l d s o f e l e c t r o n - i o n i n s t a b i l i t i e s a s f u n c t i o n s o f t h e

m a g n e t i c f ie ld i n t e n s i t y . 1 ) 1 = I c — c r i t i c a l c u r r e n t f o r t h e e x c i t a t i o n o f

o s c i l l a t i o n s h a v i n g a x i a l s y m m e t r y , 2 ) I = I C r — c r i t i c a l c u r r e n t f o r t h e

e x c i t a t i o n o f o s c i l l a t i o n s h a v i n g n o a x i a l s y m m e t r y , 3 ) I = I p — P i e r c e

i n s t a b i l i t y e x c i t a t i o n c u r r e n t . W , = 2 0 0 e V , 2 R 0 = 3 0 c m , 2 a = 1 c m .

c a l . T h e l a t t e r p r o p a g a t e a z i m u t h a l l y ( a r o u n d t h e b e a m )

i n a d i r e c t i o n c o r r e s p o n d i n g t o t h e d i r e c t i o n o f t h e

L a r m o r r o t a t i o n o f t h e e l e c t r o n . T h e p e r i m e t e r o f t h e

b e a m ( 2 i r a ) i s u s u a l l y e q u a l t o o n e a z i m u t h a l w a v e -

l e n g t h o f t h e o s c i l l a t i o n s , m e a n i n g t h a t k ^ » l / a . T h e

f r e q u e n c i e s o f t h e o s c i l l a t i o n s l i e i n t h e e l e c t r o n - i o n

band described by the theory developed in Ch. Π.
A characteristic property of the oscillations of both

types is the presence of a distinct threshold (critical
current) of excitation, which is quite sensitive to the
beam parameters. Experimental data on the thresholds
of the considered instabilities, as functions of the
magnetic field intensity and of the electron beam en-
ergy, are given in Figs. 3—5.*

These data can be summarized as follows:

1) T h e e x c i t a t i o n t h r e s h o l d o f

t h e e l e c t r o n - i o n o s c i l l a t i o n s t h a t

h a v e n o a x i a l s y m m e t r y ( I c r ) ·

2 ) E x c i t a t i o n t h r e s h o l d o f

e l e c t r o n - i o n o s c i l l a t i o n s t h a t h a v e

n o a x i a l s y m m e t r y ( I c r ) ·

l a ) i n d e p e n d e n t o f H , p r o p o r -

t i o n a l t o u 3 .

2 a ) small and large H: p r o p o r -

t i o n a l t o u 3 a n d i n d e p e n d e n t o f

H ; large u and small H: a p p r o x i -

m a t e l y p r o p o r t i o n a l t o t h e p r o d -

u c t u 2 H .

3 ) T h e r a t i o o f t h e t h r e s h o l d s d e p e n d s o n t h e m a g -

n e t i c - f i e l d i n t e n s i t y :

> ι at small S, (42)
h/Ict: < 1 a t l a r g e ff_

4) The excitation threshold of the axially-symmetri-
cal oscillations is smaller by a factor 2—3 than the

FIG. 5. Critical excitation current of

axially-asymmetrical electron-ion oscil-

lations vs beam electron energy. 2R 0 =

10 cm, 2a = 1 cm. 1) Η = 4000 Oe, 2)

Η = 600 Oe, 3) I = I p-Pierce current.

< SO
Ε

*The curve 2 of Fig. 4 and curves 1 and 2 of Fig. 5 actually show
the values of the limiting currents exceeding I c r by not more than 1 Ο-

Ι 5% (see [ 2 9 ]) .

FIG. 6. Critical excitation currents of electron-electron oscillations

vs beam-electron velocity cubed. 1—n2 < n,, 2—n2 > ni, 3—theoretical

value of the threshold (12) at n 2 = ni.

t h e o r e t i c a l P i e r c e c u r r e n t c a l c u l a t e d f r o m f o r m u l a

( 2 9 b ) a n d r e p r e s e n t e d b y t h e s t r a i g h t l i n e 3 i n F i g . 3 .

T h e e x c i t a t i o n t h r e s h o l d o f t h e o s c i l l a t i o n s h a v i n g n o

a x i a l s y m m e t r y i s m u c h s m a l l e r t h a n t h e P i e r c e c u r -

r e n t a t s m a l l H , a n d i s q u i t e c l o s e t o i t , o r e v e n c o i n -

c i d e s w i t h i t , a t l a r g e H . T h e P i e r c e c u r r e n t , b e i n g

d e p e n d e n t o n a r a t h e r s m a l l n u m b e r o f p a r a m e t e r s a n d

a m e n a b l e t o a q u i t e a c c u r a t e c a l c u l a t i o n , i s s h o w n i n

F i g s . 4 a n d 5 a s a " s t a n d a r d " f o r e s t i m a t i n g t h e a b s o -

l u t e v a l u e o f t h e i n v e s t i g a t e d t h r e s h o l d s .

F i n a l l y , i n o r d e r t o c o m p a r e t h e e x p e r i m e n t s w i t h

t h e o r y , w e n o t e t h a t u n d e r t h e c o n d i t i o n s c o r r e s p o n d -

i n g t o F i g . 4 t h e d e n o m i n a t o r o f f o r m u l a ( 5 ) a m o u n t s

t o a p p r o x i m a t e l y 2 — 3 , w h i l e t h e q u a n t i t y 2 s u / a 2 o > H e ' i z >

w h i c h e n t e r s i n ( 1 6 ) a m o u n t s t o a p p r o x i m a t e l y 4 a t

Η = 1500 Oe and W = 200 eV.
The presented experimental data show that there is

good agreement between the observed threshold 1Q and
the theoretical relation (5), on the one hand, and be-
tween the observed threshold I c r and the theoretical
relation (16) on the other.

These data, together with the results obtained by
studying the spatial structure and the frequency spec-
tra of the oscillations128»291, allow us to conclude that
the electron-ion oscillations described here are direct
consequences of the theoretically-predicted electron-
ion beam and drift-beam instabilities.

The theory considered above admits of one more
experimental verification: if we change from a quasi-
neutral (two-component) beam to a three-component
system, to which the density n2 of the plasma elec-
trons, for example, is larger than or equal to the
density of the beam electrons n1} then an electron-
electron instability should be observed, with a threshold
(12) and an oscillation frequency (11). An experiment1301

whose results are shown in Fig. 6 has confirmed this
theoretical prediction, namely, the observed oscilla-
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tions a r e electronic (there is no ion accelerat ion),
their excitation threshold is proportional to u 3 , does
not depend on H, d e c r e a s e s with increasing ra t io
112/ni, and, finally, is s m a l l e r than the P i e r c e c u r r e n t
by approximately the " r e q u i r e d " number of t i m e s .
Moreover, the dispers ion proper t ies of the oscil lations
a r e well described by the l inear theory (which takes
into account the formation of standing waves along the
b e a m ) . The la t ter is not surpr i s ing, s ince in the case
of e lectron-electron oscil lations the nonlinear effects
a r e much les s pronounced than in the case of ion-ion
osci l lat ions: for example, the change of the beam
radius under the influence of the oscil lations (even if
it were to occur), does not influence directly the osci l-
lation frequency, in accordance with relat ion (11), un-
like the case (3), where the oscil lation frequency is
sensit ive to the change of k ~ l / a . It is appropriate
to note in this connection that the frequency c h a r a c -
t e r i s t i c s of e lectron-electron oscil lations agree with
the theory only as a rough approximation (more a c -
curately speaking, they do not contradict it, if reason-
able assumptions a r e made regarding the nonlinear
effects Γ 2 9 ] .

It is important to mention one m o r e effect observed
on going over from a two-component system to a
three-component sys tem, namely, the increase of the
threshold Ic an appearance of a beam-elect ron velocity
s c a t t e r , which makes it difficult to satisfy the condi-
tions (38); these stop the excitation of the axial ly-sym-
m e t r i c a l e lectron-ion osc i l l a t ions [ 2 9 ] .

The excitation of electron-ion oscil lations that have
no axial symmetry continues so long as a condition in-
verse to (19) is sa t i s f ied [ 2 9 ] .

It is now of interes t to examine the developed theory
and the presented experimental data from an entirely
different point of view. To this end, we d i s regard for
the t ime being the two-s t ream instabilit ies and r e c a l l
that the theory predicts a so-called universal (drift)
instability of a plasma in magnetic fields, due to the
spatial inhomogeneity of the la t ter (see above). This
instability is of fundamental interes t in connection with
the development of the problem of controlled t h e r m o -
nuclear react ions and a high-temperature (inevitably
inhomogeneous) p lasma. Its experimental identifica-
tion, however, encounters great difficulties. These a r e
connected with the fact that in the case of a Maxwellian
velocity distribution of the plasma electrons this insta-
bility has no threshold with respect to the part ic le
density, and from the point of view of its dispers ion
propert ies it is very difficult to distinguish it from
instabil i t ies of an entirely different nature (see, for
e x a m p l e / 3 1 5 ) . We have seen at the s a m e t ime that if
we change the electron distribution function, i .e., if
we change over from a Maxwellian distribution to a
δ-function (monoenergetic quasineutral e lectron beam),
then a threshold, expressed by relat ion (16), appears for
the instability in question (which we shall call not drift
instability but drift-beam instability). This threshold
is expressed by relat ion (16). Owing to the presence
of this threshold, the experimental identification of
the instability, as shown above, is quite easy. Thus,
the experiments described by us a r e of interest also
from a different point of view, since they successfully

st imulate the universal instability of a p lasma (for
m o r e details see1 3 2-1).

2. Ion Oscillations in Electron Beams

It has been long known (see, for e x a m p l e / 3 3 ' 3 4 1 ) that
when an e lectron beam passes through a "background"
of positive ions (in a raref ied gas), e lectrostat ic
oscil lations a r e observed with a frequency close to the
Langmuir ion frequency: ω » ω, = (4πη+ε2/Μ . We
shall discuss h e r e the mechanism whereby these osci l-
lations a r e excited. It is easy to see that this mecha-
nism differs from the mechanism considered above for
the buildup of electron-ion osci l lat ions. We a r r i v e at
this conclusion on the bas i s of the fact that the phe-
nomenon in question is observed already at relatively
smal l beam current , much s m a l l e r than the e lectron-
instability thresholds described above. These instabil-
ities a r e excited, so to say, hydrodynamically: al l the
beam electrons have velocities greatly exceeding the
phase velocity of the electron-ion osci l lat ions, and the
excitation of the instability corresponds to the ano-
malous Doppler effect; this mechanism differs in that
has a distinct excitation threshold [see (5) and (16)].
In addition to this mechanism, another mechanism of
oscillation buildup is possible in accordance with the
theory, and is connected with the Cerenkov effect. It
is real ized when the electron beam has a large
velocity spread and the oscil lations a r e excited not by
all the electrons but only a s m a l l fraction of them, the
so-called resonant e lectrons whose velocit ies of which
a r e equal to (or slightly la rger than) the phase velocity
of the excited waves. According to the theory, there is
no excitation threshold c u r r e n t in such a (kinetic)
mechanism of oscil lation buildup. The beam c u r r e n t
governs in this case not the excitation of the osci l la-
t ions, but their increment (amplitude).

In r e a l exper iments, kinetic excitation of the osci l-
lations can be effected by secondary-emiss ion e lec-
t rons knocked out by the fast (primary) e lectrons from
the beam col lector . Indeed, the role of the secondary
electrons in the buildup of ion Langmuir oscil lations
turns out to be quite a p p r e c i a b l e 1 2 9 ' 3 0 1 .

It is important to note that the considered " i o n i c "
oscil lations a r e observed not only in a quasineutral
(two-component) beam, but a lso in a three-component
system, in which the density of the " e x t r a " plasma is
of the order of (or even larger than) the density of the
beam e lect rons . The general case of excitation of
these oscil lations was investigated experimentally
i n [ 2 9 ] , where it was shown that the oscillation frequen-
cies agree well with the theoret ica l formula 1 · 3 7 1

G)= = G)*/(l + /£-2d-2), (43)

where k is the total wave number, d = (T e /4irn2e 2 ) 1 / 2

is the electron Debye radius , T e is the t e m p e r a t u r e
of the plasma e lect rons, and n 2 is their density. At
sufficiently low plasma density (when k 2 d 2 3> 1) we
have ω ~ ω+. This case was investigated in numerous
papers , for example i n [ 3 3 ) 3 4 ] . At sufficiently high
plasma density, when k 2 d 2 ^C 1, the ion-Langmuir
oscil lations a r e t ransformed into ion-sound oscil lations;

ω « kv,. (43a)
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FIG. 7. Dependence of the energy of excitation of ion-ion oscilla-
tions by an ion beam in a gas of the same material on the plasma elec-
tron temperature Te.

where vg = (Te/M)1^2 is the velocity of the ion sound;
in this case (which was investigated in^29], the oscilla-
tion frequency ceases to depend on the density of the
charged particles.

3. Instability of Ion Beams in a Plasma

The instability of ion beams in a plasma was ob-
served in the experiments of Gabovich and co-workers
(see [ 3 5 ], and also the recent paper[73]). The main re-
sults of these experiments are as follows: 1) there is
a certain threshold beam-ion energy Wcr> above which
the beam is stable, 2) the threshold energy of the ions
is proportional to the plasma electron temperature Te.
These results are shown in Fig. 7, taken from^35-1. It is
easy to see that they are in good qualitative agreement
with the theoretical relations (33) and (35).

It is of interest to compare the measured and theo-
retical values of the coefficient β of the proportionality
of the threshold value WCr to the quantity T e. Accord-
ing to formula (35), the sought coefficient under the
experimental conditions in t35] (at n+ » nx, k z » ττ/L » 2
cm"1, k » l/a « 4 cm"1, M2 = Μχ) turns out to be equal
to 16, whereas experiment yields β = 6. Since the ex-
perimental conditions in138', mainly the ratio nt/n1(

are not very accurately known, we can state only that
theory is in qualitative agreement with experiment and
there are no large quantitative discrepancies.

Chernov and co-workers'-721 investigated experi-
mentally the convective instability of the ion beam
(protons with energy of several dozen keV), compen-
sated by electrons. It was shown that the threshold of
this instability and its dispersion properties agree
with the theory presented above (see Eqs. (32)). The
authors of[72] used this instability to develop a device
which can be called, in a certain sense, a traveling-
wave tube using an ion beam.

So far, there has been no experimental verification
of the "ionic" Pierce instability[27]. The instability of
ionic beams in a transverse magnetic field was inves-
tigated in[3e].

IV. EFFECTS DUE TO TWO-STREAM INSTABILITIES

1. Limiting Currents in Quasineutral Electron Beams

If the beam consists of particles of the same sign
and propagates in an ideal vacuum, then the beam cur-

FIG. 8. Oscillogram of beam current in the case of monotonic in-
crease of the current emerging from the source [28]. The current growth
duration is much larger than the time of neutralization of the space
charge of the beam TJ. The left arrow indicates the instant of interrup-
tion of the current, and the right arrow the instant of termination of
the beam pulse. Sweep 10 msec: W, = 600 eV, Η = 4000 Oe, L = 100
cm, ρ = 1 X 10~6 mm Hg, 2R0 = 30 cm, 2a = 1 cm. Limiting current 180
mA.

rent cannot be increased above a certain limit, whose
magnitude is determined by the threshold of the e lec-
trostatic instability of Bursian (see Sec. 3 of Ch. II).
This is the well known phenomenon wherein the beam
current is limited by space charge, and has been in-
vestigated theoretically1124'25»231 and experimentally [ 3 8>4 0 ];
there is good quantative agreement between theory and
experiment. If the space charge of the beam were to
be cancelled by particles of opposite sign, then it might
seem that the limiting currents in the beams could be
appreciably increased. It turns out, however, that this
is not so, and the limiting currents in quasineutral
electron beams remain in principle at approximately
the same level as before, and after this level is reached
the current is interrupted. This phenomenon was noted
already by Pierce [ 2 2 > 2 5 ] . It is demonstrated in Fig. 8.*

An experimental investigation of the mechanism of
limitation (interruption) of the current in a quasineu-
tral electron beam was carried out by Volosov [ 3 9 ],
Atkinson[ 4 0 ], and the author with his co-workers [ 2 8 > 2 9 ].
It was shown in [ 2 8 > 2 f l ] that, in a wide range of experi-
mental conditions, the reason for the current interrup-
tion is the drift-beam electron-ion instability; the
limiting current of the beam exceeds very slightly
(by ~ 10—15%) the threshold (16) for the occurrence of
this instability. In particular, if the beam length and
the electron velocity are sufficiently large, and the
intensity of the (longitudinal) magnetic field, to the
contrary, is not too large (for example, L » 102 cm,
u « (1-2) χ 109 cm/sec, Η ^ (1-2) χ 103 Oe), then
the limiting current of the beam is appreciably small
(by several times) than the Pierce current (29b).
Under other conditions (small u, large H) the threshold
of the drift-beam instability and the limiting current
of the beam are close to the Pierce threshold. Finally,
it is possible to choose experimental conditions such
that the drift-beam instability becomes stabilized.
Then the beam current, according to the theory de-
veloped above, should be determined by the Pierce in-
stability. The indicated conditions are easiest to
realize in two cases: 1) if the magnetic field intensity

*When speaking of interruption of the current, we have in mind a
phenomenon wherein a "virtual cathode" (region with negative poten-
tial equal to the beam electron energy) is produced in the electron beam
and reflects an appreciable fraction of electrons. The formation of the
virtual cathode in the case of interruption of the current in a quasineutral
electron beam was demonstrated in the experiments of [28].
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FIG. 9. Dependence of the limit-
ing current I; on the beam electron
energy [28]. 2a = 1 cm, 2R0 = 6 cm,
L= 10 cm, l-H=5200Oe, 2-H =
1200 Oe, 3-Pierce current.
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i s su f f ic ient ly l a r g e a n d t h e b e a m l e n g t h L ~ l / k z i s

su f f ic ient ly s m a l l , for e x a m p l e L = 10 c m , a s in

V o l o s o v ' s e x p e r i m e n t 1 3 8 1 ; 2) if t h e b e a m d i a m e t e r c o -

i n c i d e s wi th t h e d i a m e t e r of t h e s h e l l ( R o = a ) , a n d

t h e e l e c t r o n e n e r g y i s s u f f i c i e n t l y s m a l l , a s in A t k i n -

s o n ' s e x p e r i m e n t [ 4 0 ] , w h e r e Wi ^ 60 e V . In b o t h

c a s e s , t h e d r i f t - b e a m i n s t a b i l i t y of t h e l o w e s t s p a t i a l

m o d e c a n n o t d e v e l o p : in t h e f o r m e r c a s e a s b e c a u s e

the criterion (17) is not satisfied, and in the latter be-
cause of the vanishing of the field Ε ψ on the beam
boundary. As to the higher modes of the drift-beam
instability, they can likewise not be excited, since their
threshold (as a result of the large value of k2) exceed
under the indicated conditions the Pierce threshold
(29). Indeed, in both cases [ 3 9 ' 4 0 ] the experimentally
measured limiting currents in a quasineutral electron
beam turn out to be quite close to the Pierce cur-
rent1-22'231, in good agreement with the theory developed
here.

It should be indicated that, for the reasons mentioned
above, even at a small beam length (L = 10 cm) the
increase of the electron velocity and the decrease of
the magnetic-field intensity lead to an appreciable
deviation of the limiting beam current from the Pierce
current (Fig. 9) 1 2 8 1. It was indicated in error in [ 3 9 1

that the limiting current does not depend on the mag-
netic field at Η > 20 Oe. Thus, the limitation (break)
of the current in a quasineutral electron beam is due
to two causes, either drift-beam instability or Pierce
instability, depending on which threshold (16) or (29a)
is the lower.

It must be emphasized, however, that the indicated
correspondence between the limiting beam current I;
and the threshold of the drift-beam instability Icr is
observed only when ICr > Imax, where Imax i s the
limiting beam current, limited by the space charge in
vacuum (the Bursian threshold)1·281. This is natural,
since the blocking of the beam (the break in the current)
occurs only at I > Imax· On going to a three-compon-
ent system, the limiting stable current of the electron
beam increases greatly1·291, and at a sufficiently large
density of the " e x t r a " plasma (n 2 3> n j it can exceed
the Pierce current by several orders of magnitude.
Thus, at certain conditions [ 4 1 '4 4 1 the limiting current
density of the stable beam amounts to

;, «a n&z/i. (44)

where v2 is the thermal velocity of the plasma elec-
tron; in the experiments of1·411, the current j ; deter-
mined by relation (44) exceeded the Pierce current by
approximately two orders of magnitude. This was il-

FIG. 10. Current of a beam passing through a plasma (Iav) and oscil-
lation amplitude A against the plasma concentration [41]. Abscissas-
values of I+ of the indicator of the plasma density n2. With increasing
I+, n2 increases monotonically; a c r = 30-40. The beam electron energy
is W[ « 100 eV, the beam current at the entrance to the plasma is I, =
2A« 102 Ip.

FIG. 11. Propagation of relativistic electron beam in a gas (air, pres-
sure, 2 Χ 10"1 mm Hg). The beam moves from right to left, the length
of the shown beam section is 40 cm. a) Beam electron energy W, =2.5
MeV, current I = 20 kA, beam passes freely; b) W! = 1.5 MeV, I = 40 A,
beam is blocked.

l u s t r a t e d b y F i g . 10, t a k e n f r o m [ 4 1 1 , w h i c h s h o w s t h e

d e p e n d e n c e of t h e t i m e - a v e r a g e d b e a m c u r r e n t I a v

p a s s i n g t h r o u g h a p l a s m a o n t h e p l a s m a d e n s i t y a t a

c o n s t a n t v a l u e of t h e c u r r e n t e n t e r i n g t h e p l a s m a ( I i ) .

We s e e t h a t wi th i n c r e a s i n g p l a s m a d e n s i t y t h e c u r r e n t

of t h e b e a m p a s s i n g t h r o u g h it f i r s t i n c r e a s e s s h a r p l y ,

a n d t h e n p r a c t i c a l l y r e a c h e s s a t u r a t i o n . T h e l a t t e r

m e a n s t h a t t h e e n t i r e c u r r e n t of t h e e l e c t r o n b e a m

( i ! ) p a s s e s t h r o u g h t h e p l a s m a . T h e p l a s m a d e n s i t y

c o r r e s p o n d i n g t o s a t u r a t i o n w a s d e t e r m i n e d by r e l a -

t i o n (44) . U n d e r t h e c o n d i t i o n s of F i g . 10, t h e l i m i t i n g

s t a b l e b e a m c u r r e n t ( s a t u r a t i o n c u r r e n t ) e x c e e d s t h e

P i e r c e c u r r e n t by a p p r o x i m a t e l y two o r d e r s of m a g -

n i t u d e . F i g . 10 s h o w s a l s o t h e i n f l u e n c e of t h e c o n c e n -

t r a t i o n of t h e p l a s m a on t h e a m p l i t u d e A w of t h o s e

o s c i l l a t i o n s i n t h e b e a m - p l a s m a s y s t e m , w h i c h a r e

r e s p o n s i b l e for t h e l i m i t a t i o n of t h e c u r r e n t of t h e

( t r a n s m i t t e d ) b e a m . U n d e r c u r r e n t s a t u r a t i o n c o n d i -

t i o n s , w h e n t h e r a t i o a of t h e e l e c t r o n p l a s m a d e n s i t y

n 2 t o t h e b e a m d e n s i t y n ! r e a c h e s t h e c r i t i c a l v a l u e

a c r » 3 0 — 4 0 , t h e o s c i l l a t i o n s in q u e s t i o n v a n i s h a n d

t h e b e a m c u r r e n t b e c o m e s s t a b l e (in t h e i n d i c a t e d

s e n s e ) . We n o t e t h a t in s u c h a " s t a b l e " b e a m t h e r e i s

a n i n t e n s e b u i l d u p of L a n g m u i r e l e c t r o n o s c i l l a t i o n s ,

c a u s i n g a s t r o n g s c a t t e r of t h e b e a m e l e c t r o n v e l o c i -

t i e s , b u t e x e r t i n g no i n f l u e n c e on t h e c u r r e n t p a s s i n g

t h r o u g h t h e p l a s m a [ 4 1 ] . A s t o t h e i n s t a b i l i t i e s of t h e

i n t e n s e r e l a t i v i s t i c b e a m s , t h e i r t h r e s h o l d s h a v e not

y e t b e e n i n v e s t i g a t e d e x p e r i m e n t a l l y , a l t h o u g h e x p e r i -

m e n t s wi th s u c h b e a m s a r e b e i n g d i l i g e n t l y c a r r i e d out

a t p r e s e n t [ 6 4 ' 6 8 ' 7 6 1 . One of t h e r e s u l t s of t h e s e e x p e r i -

m e n t s i s t h e e s t a b l i s h m e n t of t h e v e r y fac t t h a t t h e

c u r r e n t in t h e b e a m s i s l i m i t e d t o v a l u e s c l o s e t o

I m a x a n d L\, d e t e r m i n e d b y f o r m u l a s ( 3 0 " ) and ( 3 0 " ' ) .

T h i s fac t i s d e m o n s t r a t e d in F i g . 11 ( f r o m [ 6 4 1 ) , w h i c h

s h o w s t h e g low of a g a s t h r o u g h w h i c h a r e l a t i v i s t i c
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FIG. 12. Energy spectrum of the ions in a magnetic trap [32]. Ŵ—
energy of ion motion perpendicular to the magnetic field. The average
ion energy Wav *1.2 keV, the beam current is I = 10 A, W, = 1 keV,
Η = 3000 Oe.

beam with electron energy 1.5—2.5 MeV (γ0 = 4—6)
propagates. The concentration of the compensating
ions is apparently close to the concentration of the
beam electron; in case a) the beam current is 20 kA,
and in case b) it is 40 kA; we see that in the latter case
the beam is blocked.

It should be noted that if the parameters of the
beam-plasma system are not uniform along the beam,
then the dynamics of the instability may be greatly
altered; this effect was considered theoretically in [ 7 0 > 7 1 ]

with electron-electron instability as an example.

2. Acceleration (Heating) of Plasma Ions by Electron
Beams

It was observed in the experiments of the author and
co-workers t 4 2 > 7 7 ] that during the course of the develop-
ment of electron-ion beam instabilities the plasma ions
are accelerated (heated) to rather high energies, of the
order of the energies of the beam electrons and higher.
This nonlinear phenomenon is natural, although it can-
not be quantitatively reconciled with the existing theory,
in view of its linearity. Comparison with theory is
possible only for those conditions in which ion accelera-
tion is observed in the experiment.

This phenomenon becomes more strongly pro-
nounced in the case of a three-component system,
when the electron beam passes through a column of a
much denser (initially cold) plasma; the ratio of the
plasma density n2 to the beam density nx amounts,
for example, to several times ten [ 4 2 ] *; in absolute
magnitude n2 is of the order of several times 1012 cm"3

and the beam current is I » 20 A [ 4 2 ]. Under definite
conditions, practically all the plasma-column ions be-
come heated to a temperature of about 1 keV; the ions
are accelerated mainly perpendicularly to the direc-
tion of the beam velocity (i.e., perpendicular to H).
The latter circumstance favors the use of this phenome-
non for the accumulation of a plasma with hot ions in a
trap with magnetic mirrors . Figure 12 shows the en-
ergy spectrum of the protons, measured following the
passage of an unstable plasma beam along the axis of
such a trap (the spectrum is taken from [ 3 2 ]). We see
that the spectrum contains an appreciable number of
ions with energies of several keV, i.e., exceeding by
several times the energy Wi of the primary beam

electrons, which equals 1 keV*. The total density of
the fast ions amounts to ~ 1 0 n cm"3 in a plasma volume
(5—10) x 103 cm 3 (the average plasma diameter in the
trap is ~15 cm and the average length ~50 cm), and
the average energy (temperature) of the ions is 1 — 1.5
keV. Under these conditions, the flux of fast ions from
a plasma beam 100 cm long in the trap is 1 — 2 A (for
details see [ 4 2 ] ).

The described phenomenon can be called turbulent
heating of plasma ions by an electron beam. This
phenomenon is used, in particular, in the well known
experiments of Ioffe and his co-workers for the in-
vestigation of the behavior of a plasma with hot ions
in traps with combined magnetic field'-43·'. In these
experiments the plasma filling the trap is generated
in an unstable plasma beam.

The main instability, which is most responsible for
the effective acceleration of the ions to the plasma
beam, was identified by the author and co-workers [ 2 9 ' 4 4 ].
This instability turned out to be the above-described
drift-beam instability. The possibility of occurrence
of this instability at an initial ratio n 2/ni « 20—40
seemed at first glance improbable, since, as was
shown above, the instability in question, in accordance
with relation (19), vanishes already at n 2 /n! « 5—6.

Experiments
V·*· w/>

[41,42]
have shown, however, that if the

beam current exceeds the limiting current (44), i.e.,
if

(45)

then the drift-beam instability is preceded by two other
("extraneous") instabilities. During the course of
development of these instabilities, the ratio JR2/a2 in-
creases significantly (R—plasma radius, a—beam
radius), and the ratio n2/n1 decreases accordingly.

At the start of the drift-beam instability, a ratio
inverse to (19) is approximately satisfied. The indi-
cated "extranous" instabilities and their nature are
described in'-44·'.

The gist of the matter, in short, reduces to the
following, As shown by experiment1451, the plasma
beam, generally speaking, can be characterized in
several discrete states by essentially different degrees
of turbulence. The relatively "quiet" state (in which,
however, Langmuir electron oscillations develop to a
full extent and the beam-electron distribution function
assumes the form of a plateau) is a state with a suf-
ficiently large ratio n 2/ni of the plasma electron
density to the beam electron density. For example,
n 2/ni i£ 30. No significant heating of the plasma ions
takes place in this state, but an instability is observed
at frequencies from several kHz to several dozen kHz.
It is manifest in the formation of a plasma "f lare,"
which is homogeneous along the magnetic field and
rotates around the beam axis, in the same direction as
the Larmor rotation of the ion, and with a velocity
~ c E r / H , where E r » T e /eR is the radial electric
field due to the equilibrium potential of the plasma
φ « T e / e . The charges are separated azimuthally in

*We shall henceforth call such a system a plasma beam.

*We note that the energy spectrum includes also ions with energies
Wĵ  = 20—30 keV, but their concentration is relatively small, on the
order of 10"4-10~3 of the total plasma density (see also [78]).
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FIG. 13. Oscillogram of the current of an electron beam passing
through a plasma column in the relaxation regime of instability [41]. An
upward deflection corresponds to an increase of the electron current.
Long period—500 μββο, the swing of the oscillations is almost equal to
the beam current in the smooth sections of the oscillogram.

FIG. 14. Oscillograms of the current of an electron beam passing
through a plasma column (top) and of the flux of accelerated ions
emitted from the column in the relaxation regime of instability [ 4 1 · 4 2 ] .
In the lower oscillogram, upward deflection from the horizontal line
corresponds to an increase of the ion current from zero. The conditions
are approximately the same as in Fig. 13.

t h e f l a r e : t h e r e i s a n e x c e s s of ions on t h e l e a d i n g

f r o n t of t h e f l a r e , a n d on a n e x c e s s of e l e c t r o n s t h e

t r a i l i n g e d g e . T h e a z i m u t h a l e l e c t r i c f ie ld d u e t o t h i s

c h a r g e s e p a r a t i o n l e a d s t o a r a d i a l g r o w t h of t h e f l a r e .

Such a s p a t i a l s t r u c t u r e i s c h a r a c t e r i s t i c of c e n t r i -

fugal f lute i n s t a b i l i t y of a p l a s m a r o t a t i n g in c r o s s e d

r a d i a l e l e c t r i c ( E r ) a n d l o n g i t u d i n a l m a g n e t i c f i e l d s ' 1 1 1 .

T h e c o n d i t i o n s for t h e e x c i t a t i o n of t h e o b s e r v e d

i n s t a b i l i t y a l s o c o r r e s p o n d t o t h e t h e o r e t i c a l c r i t e r i o n

for t h e b u i l d u p of a c e n t r i f u g a l i n s t a b i l i t y . T h e c o n -

s i d e r e d i n s t a b i l i t y l e a d s t o a n i n c r e a s e of t h e p l a s m a

r a d i u s R a n d t o a d e c r e a s e of d e n s i t y n 2 , a n d t h e s e

c h a n g e s a r e t h e s t r o n g e r t h e s m a l l e r t h e i n i t i a l v a l u e

of n 2 . If t h e p l a s m a d e n s i t y i s d e c r e a s e d (by r e g u l a t i n g

t h e flow of g a s in to t h e p l a s m a s o u r c e ) , t h e n a n i n s t a n t

i s r e a c h e d in w h i c h t h e r a t i o R 2 / a 2 i n c r e a s e s a p p r e c i -

ab ly j u m p w i s e a n d t h e p l a s m a b e a m g o e s o v e r into

a n o t h e r s t a t e . In t h i s new s t a t e t h e r e i s a l r e a d y o b -

s e r v e d a n a p p r e c i a b l e h e a t i n g of t h e p l a s m a i o n s , a s

w e l l a s p h e n o m e n a e v i d e n c i n g t h e b u i l d u p of a n o t h e r

i n s t a b i l i t y , a t f r e q u e n c i e s c l o s e t o t h e i o n - a c o u s t i c

f r e q u e n c y ( s e e r e l a t i o n ( 4 3 a ) ) . T h i s i n s t a b i l i t y l e a d s

in t u r n t o a n a d d i t i o n a l a p p r e c i a b l e i n c r e a s e of t h e

r a t i o R 2 / a 2 a n d t o a d e c r e a s e of n 2 / n 1 . By t h e s a m e

t o k e n , i t d i r e c t l y p r e p a r e s t h e c o n d i t i o n s f o r t h e o c -

c u r r e n c e of a d r i f t - b e a m i n s t a b i l i t y , w i th w h i c h t h e

t r a n s i t i o n of t h e p l a s m a b e a m t o a t h i r d s t a t e , wi th t h e

h i g h e s t t u r b u l e n c e l e v e l a n d w i t h t h e m o s t i n t e n s e

h e a t i n g of t h e p l a s m a i o n s , i s c o n n e c t e d . I n t e r r u p t i o n

of t h e b e a m c u r r e n t ( f o r m a t i o n of a v i r t u a l c a t h o d e in

t h e s t r e a m of p r i m a r y e l e c t r o n s ) i s o b s e r v e d i n t h i s

s tate 1 · 4 1 - 1 . T h u s , t h e d r i f t - b e a m i n s t a b i l i t y t u r n s out t o

b e r e s p o n s i b l e not only for t h e a c c e l e r a t i o n of t h e i o n s

t o h i g h e n e r g i e s , b u t a l s o f o r t h e i n t e r r u p t i o n of t h e

c u r r e n t i n t h e p l a s m a b e a m .

T h e i n t e r r e l a t i o n b e t w e e n t h e b r e a k of t h e c u r r e n t

of t h e e l e c t r o n b e a m a n d t h e h e a t i n g of t h e i o n s of t h e

p l a s m a t h r o u g h w h i c h t h i s b e a m p a s s e s i s d e m o n -

s t r a t e d b y t h e o s c i l l o g r a m s in F i g s . 13 a n d 1 4 , o b -

t a i n e d u n d e r c o n d i t i o n s w h e n t h e d e n s i t y of t h e p l a s m a

c o l u m n n 2 d r o p s p e r i o d i c a l l y b e l o w t h e i n s t a b i l i t y

t h r e s h o l d (44) . We s e e t h a t in t h i s c a s e t h e i n s t a b i l i t y

h a s t h e c h a r a c t e r of " b u r s t s " c h a r a c t e r i z e d , f i r s t , b y

a s h a r p d e c r e a s e of t h e b e a m c u r r e n t p a s s i n g t h r o u g h

t h e p l a s m a : (by a f a c t o r of s e v e r a l t i m e s o r e v e n b y

o n e o r d e r of m a g n i t u d e ) a n d , s e c o n d , b y e m i s s i o n of

l a r g e f luxes of a c c e l e r a t e d i o n s f r o m t h e c u r r e n t s . In

t h o s e t i m e i n t e r v a l s w h e n t h e r e i s no i n s t a b i l i t y

( s m o o t h s e c t i o n s on t h e o s c i l l o g r a m s of t h e b e a m c u r -

r e n t i n F i g s . 13 a n d 14), t h e b e a m p a s s e s f r e e l y

t h r o u g h t h e p l a s m a c o l u m n and t h e r e i s no a c c e l e r a -

t i o n ( h e a t i n g ) of t h e i o n s .

A s t o t h e v e r y p r o c e s s of a c c e l e r a t i o n of t h e ions

t o h i g h e n e r g i e s , i t i s a p p a r e n t l y s t o c h a s t i c : t h e t u r b u -

l e n t s t a t e of t h e p l a s m a b e a m i s c h a r a c t e r i z e d b y a

c o n t i n u o u s s p e c t r u m of o s c i l l a t i o n s in t h e f r e q u e n c y

r a n g e f r o m s e v e r a l k H z t o s e v e r a l M H z , i n c l u d i n g t h e

L a r m o r f r e q u e n c y of t h e i o n s ; t h e a s s u m p t i o n of t h e

s t o c h a s t i c c h a r a c t e r of t h e a c c e l e r a t i o n of t h e i o n s

c o r r e s p o n d s t o t h e fact t h a t t h e a c c e l e r a t e d ions h a v e

a c o n t i n u o u s e n e r g y s p e c t r u m ( s e e F i g . 12) .

A c c e l e r a t i o n of t h e i o n s t o h igh e n e r g i e s b y p a s s a g e

of a n e l e c t r o n b e a m t h r o u g h a p l a s m a , and t h e t r a n s i -

t i o n s of t h e p l a s m a b e a m b e t w e e n d i f f e r e n t d i s c r e t e

s t a t e s , w e r e o b s e r v e d a l s o in t h e e x p e r i m e n t s of

N e i d i g h , Alexeff, F u m e l l i , a n d t h e i r c o - w o r k e r s [ 4 6 ' 7 8 ] .

T h e n a t u r e a n d m e c h a n i s m of t h e s e p h e n o m e n a a r e a p -

p a r e n t l y a n a l o g o u s t o t h o s e d e s c r i b e d a b o v e .

It i s i m p o r t a n t t o n o t e t h a t a f r a c t i o n of t h e i o n s

( ~ 10%) in t h e u n s t a b l e p l a s m a b e a m c o n s i d e r e d h e r e

i s a c c e l e r a t e d t o k i l o v o l t e n e r g i e s a l o n g t h e d i r e c t i o n

of p r o p a g a t i o n of t h e b e a m ( i . e . , a l o n g H ) [ 4 2 1 . L o n g i -

t u d i n a l a c c e l e r a t i o n of i o n s t o t h e i n d i c a t e d e n e r g i e s

i s o b s e r v e d a l s o in a s t a b l e b e a m , b u t in t h i s c a s e it

o c c u r s only d u r i n g t h o s e few d o z e n m i c r o s e c o n d s ( f rom

t h e i n s t a n t of t u r n i n g on t h e b e a m s o u r c e ) d u r i n g w h i c h

t h e p l a s m a b e a m p r o p a g a t e s (with i o n i c v e l o c i t y ) f r o m

t h e s o u r c e t o t h e b e a m c o l l e c t o r [ 4 2 ] . T h e a c c e l e r a t i o n

of t h e i o n s o c c u r s i n t h e l a t t e r c a s e o c c u r s i n t h e d e e p

p o t e n t i a l w e l l ( v i r t u a l c a t h o d e ) w h i c h i s a l w a y s p r e s e n t

on t h e l e a d i n g f r o n t of t h e p r o p a g a t i n g b e a m . It m u s t

b e e m p h a s i z e d t h a t t h e e n e r g i e s of t h e a c c e l e r a t e d i o n s

e x c e e d s t h e e n e r g i e s of t h e b e a m e l e c t r o n s . It i s p o s -

s i b l e t h a t t h i s m e c h a n i s m h a s a b e a r i n g on t h e p h e -

n o m e n o n of v e r y e f fect ive l o n g i t u d i n a l a c c e l e r a t i o n of

t h e i o n s in p o w e r f u l e l e c t r o n b e a m s , o b s e r v e d in t h e

e x p e r i m e n t s of P l y u t t o a n d h i s c o - w o r k e r s [ 6 5 ] , and

a l s o t h e l o n g i t u d i n a l a c c e l e r a t i o n of i o n s i n t h e e x p e r i -

m e n t s ' 6 7 1 a n d in t h e p l a s m a g u n s of P o s t ' s l a b o r a -

t o r y ' 6 6 1 . T h e i n d i c a t e d m e c h a n i s m w a s r e c e n t l y p o s t u -

l a t e d a l s o b y R o s t o k e r in o r d e r t o e x p l a i n t h e a c c e l e r a -

t i o n of i o n s t o e n e r g i e s of s e v e r a l M e V , o b s e r v e d

in i n t e n s e r e l a t i v i s t i c e l e c t r o n b e a m s ' 6 8 ' 7 6 1 ; i n t h e

l a t t e r c a s e t h e c u r r e n t of t h e a c c e l e r a t e d i o n s a m o u n t e d

t o h u n d r e d s of a m p e r e s , a n d t h e m a x i m u m ion e n e r g y

( just a s in 1 · 6 5 1 ) i s 10 t i m e s l a r g e r t h a n t h e e n e r g y of t h e

b e a m e l e c t r o n s . T h i s p h e n o m e n o n i s of g r e a t i n t e r e s t

a s o n e of t h e p o s s i b l e m e t h o d s of c o l l e c t i v e a c c e l e r a -

t i o n of c h a r g e d p a r t i c l e s t o h i g h e n e r g i e s . C l o s e t o

t h i s p h e n o m e n o n i s t h e a c c e l e r a t i o n of i o n s in t h e c a s e
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of the escape of a (Maxwellian) plasma into vacuum,
which was investigated theoretically in^795.

In concluding this section, we make one remark
concerning the anomalous diffusion of the plasma
across a strong magnetic field, caused by the electron-
ion two-stream instabilities. Anomalous diffusion of
plasma particles across a magnetic field was observed
by Bohm [ 4 7 ] who obtained, for certain conditions, the
well known diffusion coefficient

DB = cTell&eH.

Diffusion with such a coefficient is considered to be
very large; for example, such a diffusion might com-
plicate the possibility of producing a quasistationary
thermonuclear reactor with positive yield [ 4 8 ].

It thus turns out that in the development of a drift-
beam instability of a plasma beam there occurs so fast
a diffusion of the charged particles across the mag-
netic field, that the diffusion coefficient exceeds DJJ,
even if one substitutes for T e the energy of the
primary beam electrons (for details see [ 4 5 ] ).

To compare the experiments with the theory, it is
necessary to consider the theory in the nonlinear
region.

3. Interruption of the Plasma Electron Acceleration
in an Electric Field

There exists one more interesting phenomenon,
which has a direct bearing on the discussed electron-
ion instabilities of beams in a plasma. Namely, an
external solenoidal electric field applied to the plasma
cannot accelerate the plasma electrons to any appreci-
able energy; the acceleration process stops at an
electron energy ~ 50—70 keV. Unfortunately, there
are not enough experimental studies of this phenome-
non to permit a full interpretation. We therefore con-
fine ourselves here only to a comparison of the condi-
tions under which this phenomenon is observed with
the theory presented above.

The neatest experiments on plasma electron accel-
eration in toroidal setups were performed by Stefanov-
s k n [ 4 9 ' . In these experiments, the strong inhomogeneity
of the accelerating electric field along the orbit of the
electrons was first eliminated, and as a result it was
possible to increase appreciably the number and energy
of the accelerated electrons. Stefanovskii believes [ 4 9 ]

that all the plasma electrons were accelerated in his
experiments. In the language of the present article, this
means that the system of charged particles constituted
a (two-component) quasineutral electron beam. But
such a beam, in principle, is subject to the electron-
ion instabilities considered above. In order to esti-
mate their possible role in this case we compare the
theoretical values of the thresholds and increments of
these instabilities with the circumstances under which
the acceleration of the electrons was interrupted in the
experiments of[49:l.

The conditions of the experiments of[49] were as
follows: accelerated-electron current I m a x » 1200 A,
accelerated-electron energy Wi = 50—70 keV, lifetime
of beam Τ *» 10"7 sec, intensity of longitudinal magnetic
field Η = 1.2 χ 103 Oe, length of electron orbit
L » 100 cm, radius of plasma column a » 2.7 cm.

Argon ions were used. Putting ( k z ) m m = ττ/L, k<p,
k r « I/a, and taking into account the (small) relativ-
istic correction, we obtain for these conditions the
following values of the electron-ion instability thresh-
olds (5) and (16):

for two-stream instability: /«» 600 a,
for drift-beam instability: /«« 250 a.

We see that these thresholds are smaller than the
maximum current of the accelerated electrons in the
experiments of[49], i.e., electron-ion instabilities are
possible.

We now must see whether these instabilities "have
t i m e " to interrupt the beam current within a time
Τ * 10'7 sec. Let us estimate their increments. From
relation (6) we find for the increment of the two-stream
electron-ion instability a value y « 2 x 107, i.e., 2yT
« 4 . As to the increment of the drift-instability (18),
which is proportional to ( k z ) ^ 2 , we choose for its
estimate the maximum possible k z (larger than TT/L)
at which the condition (17) is satisfied, i.e., k z

« 2u/a2a>He· Then, according to (18), we obtain for
argon

V fa (ω Η ( /ω Η β ) < / 2 ( 2 i i W ) 1 / 2 « 3· 107, ( 1 8 a )

i . e . , 2 y T » 6 . N o w l e t u s f i n d t h e t i m e o f d e v e l o p m e n t

of t h e i n s t a b i l i t y . W e d e f i n e t h i s a s t h e t i m e i n t e r v a l

d u r i n g w h i c h t h e e n e r g y d e n s i t y o f t h e o s c i l l a t i o n s h a s

a c h a n g e t o g r o w f r o m a l e v e l o f t h e r m a l n o i s e t o a

v a l u e n W i ( s i n c e , a c c o r d i n g t o [ 4 9 ] , a l l t h e e l e c t r o n s

a r e a c c e l e r a t e d , w e h a v e n i = n ) . T h e e n e r g y d e n s i t y

o f t h e t h e r m a l n o i s e i s

w h e r e r i s t h e D e b y e r a d i u s

( 4 6 )

C o n s e q u e n t l y

nWiIWT = WlT.li2ft{/!aini»)l'i. ( 4 7 )

For the conditions of[49], i.e., at η = 1010 cm"3, T e

« 5 eV, and Wi = 60 keV, the ratio in (47) is approxi-
mately 3 x 109. On the other hand, the oscillation
energy (the square of the amplitude) increases like
exp(2yt). Therefore the sought time is

T = ln(nWyWT)/2v, (48)

i.e.,
tw lO/γ.

In t h e c a s e of d r i f t - b e a m i n s t a b i l i t y t h e o b t a i n e d

value of τ, expressed in units of γ'1, exceeds the
duration of the current pulse of the accelerated elec-
trons by only approximately three times. (In the case
of the "ordinary" two-stream electron-instability,
this difference is larger, about five.) In addition, the
following must be borne in mind: 1) The initial level
of the noise in the plasma can greatly exceed the
thermal level (46) (by virtue of various factors con-
nected, in particular, with the method of producing the
plasma). 2) Owing to the well known skin effect of the
accelerating electric field^49-1, the characteristic
dimension of the transverse current-density gradient
(which in the theory is assumed approximately equal
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to the column radius a) can be much smaller than a.
Consequently, the increment of the drift-beam insta-
bility can exceed the value (18) assumed above. 3) The
nonlinear increment γ need not necessarily have the
value (18) that follows from the linear theory. In other
words, it can be stated that some difference between
the experimentally observed time of instability develop-
ment and the theoretical time of development of the
beam-drift instability can hardly be regarded as ex-
ceeding the accuracy of the calculations.

Thus, out of the two considered electron-ion insta-
bilities, the drift-beam instability (which has a smaller
threshold and a larger increment) is the more proba-
ble cause of the interruption of the acceleration of the
electrons by an external electric field in the experi-
ments of[49]*. This instability can be stabilized in
principle by increasing the magnetic field intensity.
To this end, however, under the conditions of the ex-
periments of[4B1, the field would have to be of the
order of tens of thousands of Oersteds in the nonrela-
tivistic case (see the condition (17) and much stronger
in the relativistic case (see (17')).

It should be noted that, in the opinion of authors of
theoretical papers [ 5 2 > 5 3 ], the reason for the interrup-
tion of the acceleration of the electrons in the experi-
ments οί [ 4 9 1 could be the drift slipping-stream insta-
bility, mentioned in the introduction, and caused by the
strong electron-velocity gradient in the beam. This
instability, like the drift-beam instability, develops
under conditions that are close to (17) (if the charac-
teristic dimension of the transverse beam-electron
velocity gradient is close to the beam radius), i.e., is
also stabilized in principle by sufficiently strong mag-
netic fields. A different point of view in the theoretical
paper/ 5 4 1 according to which the reason of the con-
sidered phenomenon may be the so-called "negative
m a s s " instability, which is characteristic of cyclic
accelerators with soft focusing.

Thus, for a unique identification of the cause of the
interruption of acceleration of electrons by an external
electric field it is necessary to have more complete
experimental data on the dispersion properties, spatial
structure, thresholds, and possibility of stabilization
of the instabilities under conditions of the type of1-481;
see also [ 7 5 ] in this connection.

We note finally that the appearance of two-stream
electron-ion instability is indicated also in experi-
mental papers [ 5 5 > 7 4 ] in connection with the investigation
of the mechanism of the anomalously low electric con-
ductivity of a plasma in strong electric fields [ 5 5 ] and
the mechanism of plasma heating in a strong-current
gas discharge [ 7 4 ]. These questions are considered also

[ 5 0 ]
Stabilization of the instabilities upon acceleration of

plasma electrons by an external electric field was
successfully realized with a linear plasma betatron'8 0 1,
where an appreciable increase of the accelerated-
electron current was attained. This result was obtained
by foregoing attempts to accelerate all the plasma
electrons, i.e., by changing over to a three-component

*Stefanovsku also believes that the discussed cause is not connected
with the "ordinary" two-stream electron-ion instability (see [49], com-
ments to Fig. 14).

system, in which the density of the accelerated-elec-
tron beam is small compared with the total plasma
density. It is interesting to note that this result is in
full accord with the fact described in Sec. 1, namely
that the limiting current of the beam in a plasma is
strongly increased when the plasma density is increased.

V. CONCLUSION

Thus, the experimental data on the thresholds of
electron-ion two-stream instabilities confirm well the
existing linear theory. Two remarks should be made
concerning this theory. First, everywhere in this re-
view, just as i n t l 9 ) 2 0 ] , in the derivation and in the
analysis of the dispersion equations we have used, for
the sake of simplicity and clarity, the so-called quasi-
classical approximation. In this approximation, which
is sufficiently rigorously valid when k r a 3> 1, the
perturbation of the electric potential is of the form
Φ = 4>(r)exp(is(p + ik za - i«t), where Φ ( Γ )
» exp(ik r r) . We, however, used this notation in
in 1 2 8" 3 0 ' 3 2 1 also for large-scale perturbations (k r a
« 1 ) , which play the most important role in the experi-
ment: it is just these perturbations which determine
the instability thresholds and the limiting beam cur-
rents. The indicated lack of rigor is perfectly justified,
since the result of a comparison of all the experimental
data with the more refined theory[13"1β-1 is in essence
the same. In other words, by foregoing the quasiclas-
sical approximation and using a somewhat more rigor-
ous (but much more cumbersome) theory we obtain
only slight quantitative corrections, which in this re-
view would be patently insufficient compensation for
the loss of such important advantages of the theory as
simplicity and clarity.

Much more important is another circumstance. The
existing theory of drift-beam instability (both the ap-
proximate and the more refined one [ 1 5 ]) is linear, and
therefore, while well explaining the conditions for the
occurrence of such nonlinear phenomena as heating of
the plasma ion and the interruption of the current in
the beams, it is incapable of explaining the dynamics
of these phenomena. This circumstance emphasizes
once more the importance of further development of
the nonlinear theory of electron-ion two-stream insta-
bilities. From the point of view of applications, this
need is connected with the task of increasing the ef-
ficiency of turbulent heating of the plasma ions by
beams of charged particles, and with the development
of the electrons and physics of accelerators and rela-
tivistic beams of ultrahigh intensity.

The present status of the nonlinear theory of the
phenomena in question can be found in the mono-
graphs t l 8 ' 5 e ] and in the articles [ 1 0 '5 7>5 8>8 1 ].

In conclusion we recall that throughout this review,
when speaking of beams, we had in mind a situation
wherein the directed velocity of the particles of the
beam is larger than the thermal velocity (or at least
is comparable with it). We therefore did not discuss
at all the instability of the current in a plasma when
the directed (current) velocity of the electrons is much
smaller than the thermal velocity. This question and
the associated phenomenon of turbulent heating of a
plasma by a current flowing through it is the subject of
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work by Zavoiskii, Rudakov and thei r co-workers (see,
for example, the r e v i e w [ 6 9 ] and the l i t e r a t u r e cited
t h e r e ) , and also of Suprunenko and co-workers (see,
for example , [ 7 4 ] and the work cited t h e r e ) .
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