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INTRODUCTION

Γ 1 OR some time the fruitful concept of Regge poles in
the re lat iv is t ic theory of strong interact ions was not
undisputed. After the " tempes tuous b looming" of
1962—1963, this approach passed through a period of
relat ive quiescence, due mainly to the difficulties in
describing the available experimental data by means of
a smal l number of Regge poles.

In recent y e a r s , owing to the accumulation of a large
amount of experimental data and the elucidation of a
number of theoret ical points, the concept of Regge poles
h a s , step by step, occupied s tronger and s t ronger posi-
tions .

At present the main idea of the method—on the one
hand the interre lat ions of resonances differing from
each other in angular momentum but having their other
quantum numbers equal (resonances in the t channel,
described by a Regge trajectory a (t) for t > 0), and on
the other hand the s t ructure of the diffraction cone in
the high-energy scatter ing in the c r o s s or s channel
(large s, negative t)—is generally accepted. We are
also getting a good deal of light on the reasons for the
t e m p o r a r y fai lures of the method, owing to the exis-
tence, bes ides the poles, of Regge cuts, and also on the
complicated nature of the scatter ing amplitudes T(s , t)
for s -— °°, which in the t channel have vacuum quantum
n u m b e r s . The s t ructure of the vacuum Regge singulari-
t ies has not been cleared up a s yet .

In the f i rs t par t of this review (Chapters 1 and 2) we
shall give a summary of the experimental data on Regge
pole t ra jec tor ie s , obtained both in the part icle region
[a (t) for t > 0] and in the scat ter ing region
[at (t) for t < 0]. Here we shall place the emphasis on
those t ra jec tor ie s about which the available experimen-
tal m a t e r i a l fits into a simple general p ic ture . P r i m a r -
ily these a r e the p-meson tra jectory and the pion-
nucleon t ra jec tor ie s Δ5, Νγ, Ν α .

Thereaf ter (Chapters 3 and 4) we consider questions
of the correspondence between the experimental data
and certain theoret ical concepts—the spectra l r e p r e -
sentations and the so-called pari ty doubling of the
baryon t r a j e c t o r i e s , and also the problem of the
asymptotic behavior of t r a j e c t o r i e s . In conclusion
(Chapter 5) we discuss some general proper t ies of
Regge t r a j e c t o r i e s , which are evidently especially s im-
ple in the l inear approximation which corresponds to
negligibly smal l imaginary par ts (the approximation of
infinitely narrow resonances) . Very recent ly l inear
Regge t ra jector ies have been very effectively used in
the so-called Veneziano model.

*Extended version of a survey report read at a scientific session of
the Theoretical Physics Division of the U.S.S.R. Academy of Sciences
(Leningrad, May, 1969).

Table I. The p-meson tra jectory

Particle

p
g
Τ

Reaction

JIJV, KN, KN
πΝ-Ce
The same

«/>> PP. PP
KN

πΝ-Ce

The same
nN

IP

1-
3-
?

M, MeV

765+10
1660+20

2190

p. tot, MeV

125+20
110+30

~ 8 5

T a b l e I I

Range of

( - 0

0—1
0 - 0 . 2 8
0—1.1

0—1
0—1

FESR
»

IDR

P(0)

0 53—0.54
0 . 5 8 + 0 01
0 . 5 7 + 0 . 0 1

0.57—0 58
0.56

0 . 5 5 + 0 . 5 8
0 . 5 5 + 0 . 0 7

0.56

Reference

1

1. 2
1

P'(0)

η
1.
0.

0.

35—0,78
J 0 + 0 . 1 1
91+0,Ofi

94—1-01
1.05

—

Reference

3
4
4

β

7

8

1 . T H E E X P E R I M E N T A L D A T A O N M E S O N T R A J E C -

T O R I E S

1 . 1 . T h e p - m e s o n t r a j e c t o r y i s t h e m e s o n t r a j e c t o r y

t h a t h a s b e e n m o s t c o m p l e t e l y s t u d i e d . T h e r e a r e t w o

r e l i a b l y e s t a b l i s h e d p o i n t s o n t h e C h e w - F r a u t s c h i d i a -

g r a m , a n d a l s o a t h i r d c a n d i d a t e ( T a b l e I ) .

The Chew-Frautschi plot drawn for the ρ and g
mesons i s 2 )

PCF (t) = 0,46 ± 0,03 + (0,92 ± 0,03) t (1.1)

and gives Μ « 2220 for I = 5. Accordingly the Τ meson
is a good candidate for 3^ = 5 " .

In the scatter ing region information about the
p-meson trajectory has been obtained from a number
of react ions (Table II). In the f irst five lines of the
table we give data from analyses of the scatter ing
through smal l angles with incident beam momenta
6 GeV/c < P L < ~ 20 GeV/c (CE means charge ex-
change). The next two l ines contain the r e s u l t s of
analyses of experimental data by means of a new
method for the theoret ical analysis of scatter ing ampli-
tudes, the "f inite-energy sum r u l e s " ( F E S R ) . t l 0 ] The
last resu l t was found by means of Huber t- t rans form
inverse dispersion relat ions (IDR).

Except for the data of the e a r l i e s t paper, all of the
resu l t s in Table II can be represented in the form

PscatW = 0,57 ± 0,02 + (0,95 ± 0,1) t. (1.2)

*Here and in what follows we depart from the usual practice, and
denote a trajectory by its index symbol, writing p(t) instead of ap(t),
and so on. Furthermore the index CF means the approximation from
the data of the Chew-Frautschi plot, and the index scat means the ap-
proximation from scattering data.
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Comparing (1.1) and (1.2), we see that the slopes do not
disagree, but the "height" p(0) differs by about 0.1. We
note that this difference of the heights is clearly much
larger than the possible errors in determining p(0). We
shall return to this point later.

1.2. The trajectory ω (χ^Ρ = ο") in the scattering
region has also been studied in a number of papers by
analyzing the scattering through small angles in the
range 6 GeV/c < p L < ~ 25 GeV/c (Table ΙΠ). We see
that there is a much larger scatter in the data for this
case than for p(t). The average values can be represen-
ted in the form

Table V. Parameters of vacuum trajectories

«scat (<) = 0.4 ± 0.1 + (0.7 ± 0.3) t. (1.3)

In the particle region a linear interpolation between
the ω meson and ω(0) = 0.4 ± 0.1 gives

ω (t) = 0.4 ± 0 . 1 + (1.0 TO. 15) t. (1.4)

T h u s t h e r e i s a p p a r e n t l y n o c o n t r a d i c t i o n b e t w e e n the

d a t a f o r t > 0 a n d f o r t < 0.

1.3. T h e t r a j e c t o r y A 2 ( I G P = 1"*) (a l so c a l l e d t h e

R t r a j e c t o r y ) i s d e t e r m i n e d f r o m s c a t t e r i n g e x p e r i -

m e n t s w i t h l a r g e e r r o r s (Table I V ) .

A v e r a g i n g t h e s e d a t a , we g e t

) = 0.4 ± 0.1 + (0.6 ± 0.2) t. (1.5)

In t h e p a r t i c l e r e g i o n the s i t u a t i o n i s n o t v e r y s i m p l e .

On one h a n d , t h e A 2 r e s o n a n c e h a s r e c e n t l y " s p l i t " i n t o

two r e s o n a n c e s

|

Λ2(1300)

On the other hand, the candidates S(1930) and U(2380)
are not reliably enough established. The Chew-
Frautschi plot constructed for A 2 L H> S> a n d u is of the
form

fl CF(0 = (0.37 ± 0.05) + (0.98 ± 0.02) t. (1.6)

We see that the slopes R' in (1.5) and (1.6) differ by
more than their uncertainties (which, by the way, are
rather large).

Table

Reaction

(πΝ), KN, Κ Ν

1VP'ρρ

111. The tra jectory ω

Range of
(-t)

0-1
0—1
0—1

ω (0)

0 . 5 0 — 0 . 5 2

0 . 2 1 — 0 . 4 7

0 . 3 2 — 0 . 3 6

0 . 5 — 0 . 6

0 . 3 2 — 1 . 6 6

0 , 8 — 1 . 0

Refer-

e n c e

3 . )

5

β

•In [3] a combined analysis was made of the reactions of

JTN, KN, and KN scattering. The symbol (πΝ) means (both

here and in Table IV) that the ω trajectory does not make any

direct contribution to πΝ scattering.

T a b l e I V .

R e a c t i o n

(πΛ), ΚΝ, TN
KN
KN
π~ρ —* η°η

Range of
(-0

0—1
0—1
0—1
0—0.85

T h e R t r a j e c t o r y

B(0)

0.31±0.01
0.34
0.48

0.3—0.40

B'(0)

0.55—0.80
0.35
0.60

0.6—0.8

Refer-
ence

3
β

β

1 1

R e a c t i o n

πΝ, ΚΝ, ΚΝ
πΝ, NN
up, pp, pp
πΝ

πΝ —
KN —

πΝ -
πΝ —
KN —

Range of
(-0

0—1
0—1,5
0—1
0-1

P'(0)

0.34
0.33—0.49

0—0.3
0.7±0.15

Behavior of "tot
Dispersion
relations
FESR
FESR
FESR

Pi<0)

0.50
0,62—0.66
0.57—0.75

0.31±0.2
0.89±0.1

0.41±0.1
0.49±0.02
0.65±0.05

0.34
1.3-1.6
1,5—2.2

Refer-
ence

s
13
5

13
1
1

1

1

1 . 4 . T h e v a c u u m t r a j e c t o r i e s a r e i n t h e " m o s t u n -

f o r t u n a t e " s i t u a t i o n . T o e x p l a i n t h e b e h a v i o r of t h e

t o t a l a n d d i f f e r e n t i a l c r o s s s e c t i o n s c o r r e s p o n d i n g t o

t h e v a c u u m q u a n t u m n u m b e r s i n t h e t c h a n n e l , a l o n g

w i t h t h e P o m e r a n c h u k v a c u u m t r a j e c t o r y a p ( t ) = P ( t )

t h a t a s s u r e s a s y m p t o t i c c o n s t a n c y of t h e t o t a l c r o s s

s e c t i o n s [ P ( 0 ) = 1] o n e i n t r o d u c e s a s e c o n d v a c u u m

t r a j e c t o r y a p / = P i ( t ) (and s o m e t i m e s a l s o a t h i r d ,

a p * = P 2 ) .

T a b l e V g i v e s a b y n o m e a n s c o m p l e t e l i s t of t h e r e -

s u l t s o n t h e s l o p e P ' ( 0 ) of t h e m a i n v a c u u m t r a j e c t o r y ,

a n d a l s o of t h e p a r a m e t e r s P i ( 0 ) a n d P i ( 0 ) of t h e s e c o n d

v a c u u m t r a j e c t o r y . E v e n a c u r s o r y g l a n c e a t T a b l e V

r e v e a l s t h e a b s e n c e of a n y c l e a r p i c t u r e . T h e s l o p e of

t h e P o m e r a n c h u k t r a j e c t o r y v a r i e s f r o m 0 t o 0 . 7 . T h e

slope Ρί(0) of the second vacuum trajectory varies from
0.3 to 2.2. Relatively, the spread in the position P^O)
of the second trajectory is smaller; it can be seen that
we can take

Λ (0) = 0.5 ±0.2. (1.7)

At the present time there are only two resonances be-
longing to the "vacuum family" that are reliably estab-
lished: f (1260, υ ° ρ = 02") and f '(1515, I j G p = 02t+).
If we draw the Pomeranchuk trajectory through the
f meson and Pi through f ι (sic), then when we use (2.7)
we get in the linear approximation

f, (1.8)

Λ (<) = (0.5 ±0.2)+ (0.65 τ 0.1) t. (1.9)

There is another point of view, according to which the
main vacuum (Pomeranchuk) t ra jectory is e i ther a
tra jectory with a very smal l slope not containing any
r e s o n a n c e s , or a stationary singularity. In this case ,
drawing P i through the f meson, we get

Λ (0 = 0,5 ± 0.2 + (0.95 =F 0.12) t. 0- · 1 0 )

1.5. E x c h a n g e - d e g e n e r a c y h y p o t h e s i s and s t r a n g e

t r a j e c t o r i e s . I t i s a s t r i k i n g f a c t t h a t t h e t r a j e c t o r i e s

p ( I p = 1") and R ( I P = 1*) a r e s o c l o s e t o g e t h e r . T h e

A2 meson lies practically on the linear ρ trajectory
(1.1). This can be interpreted as evidence of the so-
called "exchange degeneracy" (see' 1 9 ' 2 0 3 ), owing to
which trajectories differing in G parity and signature
should coincide. If we accept this hypothesis, it is
possible to construct two strange meson trajectories in
the particle region t 2 1 ] : a K trajectory passing through
Κ (495, 0+), K*(1230, 1+?),

is, (1.11)
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or through Κ (495, 0"), Κ* (1320, Γ ? ) (sic),

and a K* trajectory passing through K* (890, Γ ) ,
K**(1420, 2+),

K*CF(s)= 0,33 + 0.82s.

(1.12)

(1-13)

2. THE EXPERIMENTAL DATA ON BARYON TRAJEC-
TORIES

2.1. The trajectory Δ δ . This trajectory I P = 3/2+,
which passes through the Fermi resonance Δ3 3, is the
one " r iches t " in particles on the Chew-Frautschi plot.
The following resonances (Table VI) fall on it.

In the particle region the trajectory Δ 6 is very well
described by the linear approximation i2Zi

Δβ°
Ρ( ) = 0,15 + 0.90», (2.1)

which gives the masses to an error not exceeding
20 MeV (on the scale of u = M2 the maximum error does
not exceed 0.08 GeV2).

In the scattering region the trajectory Δδ has been
C233C233studied by Barger and ClineC233 on the basis of the re-

actions ττρ —* ρττ (sic) at energies 6—14 GeV in the
2

m o m e n t u m - t r a n s f e r r a n g e —1 G e V
sui t i s

ΔΓ"(") = 0.19 + 0.87B.

< u < 0. Their re-

(2.2)

T h e s e a u t h o r s e s t i m a t e t h e a c c u r a c y of t h e d e t e r m i n a -

t i o n of t h e c o e f f i c i e n t s in (2.2) a s ± 2 0 p e r c e n t .

Finally, from an analysis of if ρ — prf Shiht2*3 has
recently obtained

.scat, ,
.76u. (2.3)

Although (2.2) agrees with (2.1) within the limits of
error, comparing it with (2.3) makes us feel cautious
about the accuracy of the determination of Δδ(0). We
shall see later (Sec. 4.2) that this point may be of im-
portance in principle.

2.2. The trajectory Ν . On this trajectory with
isospin-parity IP = 1/2" there are two established
resonances and two good candidates (Table VII).

The Chew-Frautschi plot is approximated by the
linear expression'2 2 3'2 2 3

Table VI. The trajectory Δ δ

Resonance

Δ(1236)
Δ(1950)
Δ (2420)
Δ (2850)
Δ (3230)

/ Ρ

3/2+

7/2+

11/2+

?+

Μ, GeV

1.236
1.95
2.42
2.85
3,23

Γ, MeV

120
220
310
400
440

Μ 2

1,53
3.80
5.86
8.12

10.4

!«, ( 2 . 4 )

w h i c h g i v e s a g o o d d e s c r i p t i o n o f t h e t h r e e l e a d i n g

resonances (accuracy ΔΜ2 « 0.02 GeV2). But Ν (1518)
falls rather far from the linear approximation (ΔΜ2

= 0.33 GeV2).
In the scattering region the study of this resonance

is difficult because of its low position.
2.3. The trajectory N t t . This trajectory d p = 1/2*),

passing through the nucleon Ν (938), contains one other
resonance Ν (1688):

Jp = 5/2+, Μ = 1690, Γ = 125, Μ2 = 2.86.

T h e l i n e a r a p p r o x i m a t i o n in the p a r t i c l e r e g i o n i s

NaF ( " ) = —0.39 + 1.01B. (2.5)

T h e p a r a m e t e r s of t h i s t r a j e c t o r y in t h e s c a t t e r i n g

r e g i o n a r e known f r o m the w o r k of B a r g e r a n d C l i n e :

N™\t)*= — 0.38 + 0.88i. (2.6)

T h e a u t h o r s e s t i m a t e t h a t t h e a c c u r a c y t o w h i c h t h e y

a r e d e t e r m i n e d i s ^ 1 0 p e r c e n t . We n o t e t h a t t h e r e i s

a c o n s i d e r a b l e d i f f e r e n c e b e t w e e n t h e s l o p e s of (2.5)

a n d (2.6) .

2.4. S t r a n g e t r a j e c t o r i e s . In s o m e c a s e s one c a n

u s e the C h e w - F r a u t s c h i d i a g r a m t o g e t l i n e a r a p p r o x i -

m a t i o n s for b a r yon t r a j e c t o r i e s w i t h s t r a n g e n e s s

(Table V n i ) .

A notable point here is that the slopes of the trajec-
tories Σ δ and Σ are close to 0.90, i.e., to the slopes of
Δ δ and 1SL·, and the slopes of Λα and Έα are close to
1.0, i.e., to the slope of N o .

In the scattering region the first attempt to analyze
recently obtained experimental data on the backward
"scattering" for the reaction if ρ — Κ°Λ at energies
4.0 and 6.2 GeV was made by Barger, Cline, and
Matos. t 2 5 3

Assuming that this process is due to exchange of
Σ α and Σ ,̂, and treating these trajectories as degener-
ate, these authors obtained

(it)=-0.84+1.0«. (2.7)

A comparison with the data of Table VIII shows that
there is apparently no contradiction between the linear
approximations for the trajectories in the particle
region and in the scattering region.

2.5. Effects of inelasticity. The data on the change
of the elastic properties of resonances along a trajec-
tory are of interest. Figure 1 shows a plot of
In χ (x = r e l/Ttot) as function of the angular momentum
for the trajectories Δ δ and N^. It can be seen that all
of the resonances of Δ δ and N^ [and also N a (1688)] lie
practically on a single curve, which for 1 > 4 can be

Table

Resonance

iV(lMS)
Ν (2190)
Ν (2050)
Ν (3030)

V l l .

3/2-
7/2-

ΐ>-

?

T h e t r a j e c t o r y N _ ,

M . G e V

1 . 5 1 5

2 . 1 9

2 . 6 5

3 . 0 3

Γ, MeV

115
300
360
400

M2

2.30
4.80
7.02
9.18

T a b l e V I I I . S t r a n g e b a r y o n t r a j e c t o r i e s

Trajectory

Σ δ = — 0 . 2 5 + 0.91
Aa=— 0.70 + 0.97
Σα= — 0,78 + 0.90
Σ ν = — 0 . 9 0 + 0.87
S a = — 1 . 2 6 + 1 . 0 1

Calculated from the resonances

Σ(3/2+, 1385), Σ (7/2+. 2030)
Λ(1/2+, 1115), Λ (5/2+. 1815)
Σ (1/2+. 1190), Σ(5/2+. 1915)
Σ (3/2-. 1660), Σ (?. 2250)
3(1/2+. 1318), Ξ(?. 1930)
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In ι

~3l· I

Lm -2,5-0,91

0.3

0.1

0.03

0.01

2 3 i 5 6 7 l 9 ~ l

FIG. 1. Dependence of the inelasticity coefficient χ on the orbital
angular momentum / for the baryon trajectories Δ5 and N~.

approximated by the expression

lax^2.5 — 0.91, z = 12.2e-°·9
(2.8)

This relation i s in agreement with theoretical calcu-
lations by Jones and Teplitz t 2 e ] (cf. a l s o t 2 7 ] ) , who
started from the requirement that the amplitude be
bounded by a polynomial for indefinitely increasing
Regge trajectories.

We point out here that if Eq. (2.8) is sufficiently ac-
curate in the region I ~ 10, then it follows that the ex-
perimental discovery of ττΝ resonances with I > 10 is
an extremely complicated task, so that the pion-nucleon
part of the Rosenfeld table is evidently already filled
almost to its upper end.

3. SPECTRAL REPRESENTATIONS AND THE PROB-
LEM OF SUBTRACTION

3.1. Meson trajectories.

It is usually assumed that the meson trajectories
are analytic functions in the complex plane of the in-
variant variable s with a cut along part of the positive
real semiaxis, s c u^ < s < °°. The beginning s c u t of the
cut is at the two-particle threshold of the continuous
spectrum of the reaction.

The two-particle unitarity condition enables us to
determine t 2 8 j the form of the behavior of Im a at the
threshold

Ima(s) I,,., (3.1)

The problem of determining the asymptotic behavior
of Regge trajectories has not yet yielded to any sort of
simple theoretical treatment.

In the course of the last year the hypothesis that a (s)
increases without limit for s — <*> has been gaining more
and more popularity. On one hand this idea does not
contradict the experimental material which we have
already presented on the trajectories "rich in parti-
cles", Δβ and N y (and also p), and on the other hand it
leads to some beautiful theoretical consequences (for
example, to the Veneziano model'29·1).

Assuming that

c (s)
we get

0<7i<l,

"cut
(3.2)

In the case of a stronger increase a second subtraction
is necessary:

β(.) = β(0)+.α'(θ) + 4 ] ^ r ^ ~ - (3.3)
'cut

According to Eq. (3.1) the index of the increase of
Re p(s) is unity, or close to it. Using the relation

Ima(mf)=m,rt0V(mf), (3.4)

we calculate Im ρ at the points sp, s g , and s T . We get

Im ρ (ml) = 0.09 ±0.02, Im ρ (roj) = 0.15 ± 0.05,

If we believe the third point s T = m2^, then at any rate
Im ρ does not increase more rapidly than s 1 2 . In this
case one could use the representation (3.2). But it is
not hard to verify that in this case we do not get any-
thing like a linear increase of Re p(t) of the form (1.1).
In other words, we get the impression that there is a
contradiction between the behaviors of Im ρ and Re ρ.

There are two possibilities here: it may be that
beginning with t J£ 4M ·̂ there is a sharp change in the
behavior of Im p, so that asymptotically Im ρ increases
almost linearly, and consequently Re ρ is described by
a formula with two subtractions, Eq. (3.3).

There are at least two arguments in favor of this
possibility:

1) The analogy with the behavior of Im Δ5 and
Im Ν^ (see Chapter 4).

2) Summation of the logarithmic diagrams in the
theory with the Lagrangian λ(π σπ σ) 2 leadsL 3 o J to Regge
poles (and also stationary singularities) in all three
isotopic t amplitudes, 1 = 0 , 1 , 2. Furthermore the pole
1 = 1 lies below the pole 1 = 2 . For the relative sup-
pression of the pole I = 2 it is necessary to take into
account the pion-nucleon interaction g(NT(jN)jrCT, i.e.,
states NN as intermediate states from the point of view
of the meson trajectories.

The subtraction of the linear term is not due to a
divergence of the integral with a single subtraction in
the right member of (3.2), and is, so to speak, a
"superfluous luxury."

In this case the representation (3.3) can be rewritten
in the form

'(00)+ -£. (3.6)

with

The question of the nature of the "ex t ra" subtrac-
tion and of the numerical value of a'(<*>) remains com-
pletely open.

3.2. The ρ Trajectory

According to all appearances, the experimental data
on scattering are a reliable enough way of determining
p(0):

Ρ (0) = 0.57 ±0.01.

Extrapolating to the threshold with Eq. (1.2), we find

ρ (V) = 0.64 ±0.02. (3.8)
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Therefore, according to (3.1),

(3.9)

The threshold behavior (3.9) leads to a singularity in
the behavior of Re p(s) near the point s = 4μ 2 described
by the formulas

ARep(s)= — ectg(0,l«i)(s —
(3.10)

It follows from these formulas that the integral of Im ρ
has a tendency to shorten the ver t ica l gap of 0.1 be-
tween E q s . (1.1) and (1.2).

A numerica l calculation shows, however, that the gap
is not reduced by m o r e than 0.03. The point i s that the
threshold approximation (3.9) breaks down r a t h e r
rapidly already at s ~ 1 GeV2.

In fact, relying on the numerica l values (3.5), we
can easi ly verify that in the region 4 μ2 < s < 3 GeV2 we
have I m p ~ 0.1 (s — 4μ 2 ) . It can be seen from this
that not only does the threshold behavior break down
very rapidly, but a lso the absolute values of Im ρ a r e
smal l . This also has the consequence that the absolute
values of the integral t e r m in the right member of
(3.6) a re a lso smal l (<0.05) in the range 0 < s
< 3 GeV2, and this in turn makes it impossible to close
the " g a p " by more than 0.03.

Therefore we a r r i v e at the conclusion that the ex-
per imenta l data on the m a s s e s and widths of the ρ and g
m e s o n s , on one hand, and the data for determining the
trajectory p(t) in the scatter ing region, on the other
hand, a re in contradiction with each other in the f rame-
work of the spectra l representat ion (3.2), (3.3).

This contradiction is perhaps an indication of the
presence of an additional close-in singularity (a station-
ary t 3 o : i or moving 1 3 1 3 cut).

4. THE SPECTRAL REPRESENTATION OF BARYON
TRAJECTORIES

4.1. The Spectral Representation and the Parity Doubling

According to the usual recipe for reggeizing the
amplitudes for meson-baryon scattering,'3 2>3 3·> which
takes into account the square-root kinematic singularity
u 1 / 2 associated with the presence of a spin, baryon
tra jector ies that differ from each other in parity a r e
closely connected. Such a pair of t ra jec tor ies a+(u) and
a-(u) must coincide at u = 0, and for u < 0 they a re com-
plex conjugates:

a+(u) = (a_(u))·, (4.1)

i .e . ,

a± (u) = a, (u) ± £a2 («) for « < 0 , (4.2)

where α ι and a2 a r e r e a l for u < 0. The asymptotic
form of the amplitude for backward meson-baryon scat-
tering is then determined simultaneously by the t ra jec-
tor ie s au and a-, in such a way that

do/dQ~s2<»<u>. (4.3)

In the region u > 0 the t ra jec tor ie s a r e in general not
equal to each other . However, they can be represented
a s functions of the total energy W = u 1 2 , and are then

connected by the so-called MacDowell symmetry condi-
tions

Accordingly, the two t ra jec tor ies can be reduced to a
single function a ( u 1 2 ) satisfying the spectra l r e p r e s e n -
tat ion 1 3 2 3

e { f f ) . i + w + ^ J ! - ^ : + ^ | ^ ^ . (4.4)

Wo 1VO

We then have

\a(-Yu) for «>0, _

u), [a( — i]f-u) for u<0.

It is convenient to transform (4.4) by explicitly separat-
ing the parts odd and even with respect to W,

dm cL

(4.6)

u 7 )

β(«) = δ + £ f s ^ i l n . o + 0 / F j - T m a _ f - l M l . (4.8)

Experimental information about a given baryon
trajectory can consequently be "gathered from three
sources":

a) The positive-parity resonances determine the
function

a+ (u) = a, (u) + Yu a (u) for u>0. (4.9)

b) The negative-parity resonances determine the
function

«-(«)= a, (u) — \'ua(u) for u > 0 . (4.10)

c) The differential c r o s s section for meson-nucleon
scatter ing in the neighborhood of θ = 180° gives
information about the quantity

Rea(W) = a,(it) for u < 0 . (4.11)

The problem of reconciling these various experimental
data i s not a tr ivial one.

4.2. The Pion-nucleon Tra jectory with I = 3/2

Unlike the posit ive-parity tra jectory Δβ, the nega-
tive-parity t ra jectory with I = 3/2, Δ.,, is practical ly
unobserved in the part icle region. Recently two reson-
ances I p = 3/2 have been found: Δ (1630, J*3 = 1/2") and
Δ (1690, J p = 3/2"). When we take the signature into a c -
count only Δ (1690) can be ascr ibed to the tra jectory
Δ^. The l inear Barger-Cline formula given in Chapter 4

gives an error in J of the order of ± 0.05. Through the
points of the Chew-Frautschi diagram one can draw a
series of parabolas a + bw + cw2 which will give errors
of the same order of magnitude. One can also choose
the coefficients a, b, c so that for W = — 1.69 the para-
bola will pass through Δ (1690):

A(\V)= —0.25+ 0.35 W + 0.83IF2. (4.12)

For all the Δ5 resonances and Δ (1690) Eq. (4.12) gives
an e r r o r \AJ\ ^ 0.05 in the angular momentum. It p r e -
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diets a resonance J p = 7/2* at a mass «2340. In the
scattering region, however, it gives

(u)= -0.25 + 0.83«,
which disagrees seriously with the experimental data
(2.2) and (2.3).

We of course should not overestimate the accuracy
of these latter data, nor the reliability of the approxi-
mation (4.12). For comparison, we mention that the
formula of James u 4 j

A(W)= — 0.19 +O.37W +0.81 W«,
which has its "intercept" Δ(0) higher by 0.06, has an
accuracy only slightly inferior to our Eq. (4.12).

4.3. The Pion-nucleon Trajectory Ν α ο

It would seem that here parity doubling is on a rela-
tively stronger footing. The point is that the resonances
N a (1688, 5/2+) and Νβ (1680, 5/2") are practically
parity-degenerate. An obvious difficulty is that there
is no partner No (~ 1000, 1/2") with negative parity for
the nucleon. Adherents of the degeneracy usually as-
sume (see references in 1 3 4 3 that for some reason or
other the Regge residue /3(W) is equal to zero for
N0 (1000, 1/2").

A second possible view135·1 is that the trajectory
Ν α β is strongly asymmetric, the coincidence of the
masses N a (1688) and N^ (1680) is accidental, and the
parity partner for N a (940, 1/2') (sic) is Ν (1550, 1/2').

The first possibility (degeneracy) can of course not
be excluded by simple arguments. However, the solu-
tion of the problem of the absence of Ν (1000, 1/2") is
here rather artificial. Besides this, a situation in
which N a has a degeneracy and N y and Δ-, do not also
fails to inspire much confidence from a theoretical point
of view.

The second point of view does not seem to us to be
acceptable. The point is that the masses of the parti-
cles Ν (1550) and ^(1680) are "impermissibly close
together"; the mean slope of the trajectory is here
N£ ~ 5. In view of the definite absence of a resonance
Νβ (9/2") with mass < 2 GeV the mean slope Njg of the
trajectory above Ν (1680) is at any rate not larger than
1.5. Therefore the trajectory must have a sharp local
maximum in its derivative at W « 1600. It does not
seem possible to reconcile such a maximum with the
spectral representation. Accordingly we conclude that
the problem of reconciling the experimental data on the
pion-nucleon trajectories with the dispersion relations
(4.5) may be decidedly difficult. The difficulties, as we
have seen, show up clearly in the trajectory Δ^. There-
fore the obtaining of more reliable experimental in-
formation about the behavior of the trajectory A(U) for
u < 0 from πΝ scattering experiments is now a pressing
matter.

If the results ofC233 andC24;l are confirmed, the ac-
cepted scheme for reggeization of the baryon ampli-
tudes will come into contradiction with experiment.

On the other hand, if the formulas of12" and t 2 4 J have
to be amended (A s c at(0) < -0.10) and an approxima-
tion of the type of (4.12) is confirmed, we shall have a
general picture of the pion-nucleon trajectories which
is regrettably variegated. In this case it will turn out
that

1) the trajectory N a is almost ideally symmetric;

2) the trajectories Δ δ and Ν are decidedly asymme-
tric:

Δ 8 = - 0 . 2 5 + 0.35^ + 0 . 8 3 ^ , (4.12)

^ v = - 0 . 5 7 + 0.25^ + 0.73W2 (4.13)

(a formula obtained by m e a n s of the r e s o n a n c e s

N y(l525, 3/2"), Ny(2200, 7/2") and Ν δ (1860, 3/2+).

4.4. The Asymptotic Behavior

Let us turn to the question of the asymptotic behavior
of the nucleon trajectories and the problem of sub-
tractions. Here we shall ignore the odd part of the dis-
persion integral with two subtractions. We consider

(4.14)

The imaginary parts of the trajectories Δ δ and N y at the
points of the known resonances are plotted in Fig. 2.

One is struck by the fact that the imaginary parts of
Δ δ and Ny lie practically on a single curve, very close
to the linear function

Im a —0.14 (s—1.17). (4.15)

Accordingly it is quite possible that the integral (4.14)
does not exist for Δ δ and N-, and that the dispersion re-
lations require a further subtraction.

If we take this point of view, the constant of the
linear (in u = W2) subtraction is an independent (of the
behavior of Im a) new parameter. The fact that the
slopes of the baryon and (with less accuracy) the meson
trajectories are approximately equal can be ascribed
in this case to a sort of universality of the linear-sub-
traction constant.

On the other hand, it is possible to assume that the
imaginary parts of the trajectories increase slightly
more slowly than linearly, so that the integral (4.14),
though it does converge, still behaves "almost linearly"
over a wide range of the variable. In this case the
universality of the slope of Re a can be connected with
the universality of Im a at large energies. This version
can be illustrated with the following model approximate
expressions for 6a(u):

a) δα («) = <;(»-„„) Γΐ - α Ji=SL 1 (JiJziM"2 ^ _ ^ V1

«0

+ cu0 Π ι a "" f du ~T'·

b) Sa(u) = —c(it0 — u)l~' + cuJ-«.

Setting c « 0.95, u0 » 1.2, a = ire « 0.15, we get a

1 2 3 < 5 6 7
FIG. 2. The imaginary parts of the baryon trajectories Δ5 and Ν γ .
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FIG. 3. The real parts of the baryon trajectories Δ5 and Ν γ . .

good numerica l descript ion of both I m A j and Im Ν ,
and also of the quasi l inear t e r m s in Re Δ δ , Re N^ (see
Figs . 2 and 3).

5. THE GENERAL PICTURE

5.1. The Universality of the Linear Approximation

As was pointed out in Chapters 1 and 2, for the well
studied t ra jec tor ies ρ, Δβ, and Ν the l inear approxi-
mation is surpris ingly "weakly b r o k e n . " F r o m the d i s -
cussion in Chapters 3 and 4 it follows that after the
second subtraction is performed the l inear approxima-
tion corresponds to complete neglect of Im a , i .e., to
the "infinitely narrow r e s o n a n c e " (INR) approximation.
Since the slopes of these t ra jec tor ies a r e nearly equal,

p ' , 0.92, Ai = 0.90, A'i = 0.92, (5.1)

and since as a rule the slopes of the other meson and
baryon resonances [see (1.4), (1.5), (1.6), (2.5), (2.6)
and Table IV]differ from (5.1) by not more than ±0.1
(so that they a r e equal to the accuracy with which they
a r e determined), we get the impress ion that in the INR
approximation all of the t ra jec tor ie s have the same
universal slope

a' ss 0.90. (5.2)

It was remarked in Sec. 4.4 that the equality of the
slopes of the baryon resonances may be connected with
the universal i ty of the imaginary p a r t s of the baryon
tra jec tor ie s in the asymptotic region. F r o m this point
of view the fact that the slopes of the meson t ra jector ies
a r e equal is extremely remarkable , since the behavior
of the imaginary p a r t Im ρ of the ρ tra jectory does not
correspond at all to the quasi l inear increase of the
nucleon t ra jec tor ies Im Δ^, Im N a , Eq. (4.15).

If we suppose that the fact that the slopes a r e equal
is not accidental, the following interpretat ions a r e
possible:

a) The imaginary p a r t s of all t ra jector ies (both
baryon and meson) in the asymptotic region have a
universal value and increase approximately l inearly.

If this is so, then in the observed region 0 < s
< 4 (GeV/c)2 the quantity Im ρ has not yet reached i ts
asymptotic behavior. It must be expected that, beginning
with some value s ~ 4M?,, Im ρ will come to a behavior
of the form (4.15). In this case , in the region s > 4MJ,
we must expect broad meson resonances with
r\ot

0.15

p a r t s is much weaker than l inear (for example, Im a
~ s 1 ), but for some unknown reason there is an
" e x t r a " l inear t e r m in the spectra l representat ions,
with universal p r o p e r t i e s .

It is therefore extremely important to solve the
problem of determining the asymptotic form of the
t ra jec tor ies theoretical ly. There have recently been
more and more papers on the asymptotic proper t ie s of
t ra jec tor ie s . Among them we note a very curious paper
by Tiktopoulos. t 3 < n

Starting from the Logunov-Tavkhelidze quasipoten-
tial equation 1 3 Ί 1 for the part ia l waves of the scatter ing,
Tiktopoulos studied the conditions for the occurrence
of quasistable s tates with large orbital quantum num-
b e r s . In the case of a quasipotential V(s, r) which has
no s ingularit ies for smal l r and increases with the en-
ergy as

V(s,r)~v(s)u(r), ν (s)- f o r ( 5 . 3 )

he found that the leading Regge tra jectory i n c r e a s e s as

ZM~[»M]" 2 . (5.4)

If we now assume that for s — °° the quasipotential
(5.3) is determined by the Pomeranchuk reggeon 1 3 8 · 1 and
take v(s) = s, we get from (5.4) as the asymptotic"form
of the tra jectory

I (S) ~ S</2.

The importance of this resul t l ies in i ts universal i ty.
Since for any elast ic scatter ing we have the P o m e r a n -
chuk reggeon as the V(s, r ) , the asymptotic forms of all
leading t ra jec tor ies (both Μ and B) a r e the same, differ-
ing only by a numerical coefficient.

Unfortunately, one cannot get l inear asymptotic
forms in this way. However, this sort of argument
throws definite light on the generality of the asymptotic
forms of different meson and baryon t ra jec tor ie s .

5.2. The Veneziano Model and the Properties of Linear
Trajectories

The l inear approximation for t ra jector ies with a
universal slope has become very popular during the
past year owing to the successes of the so-called
Veneziano model L 2 a } for the scatter ing amplitude.

This model is essentially based on the l inear ap-
proximation for the t ra jector ies and amounts to a con-
struction of the invariant components of the scat ter ing
amplitude from l inear combinations of " g e n e r a l i z e d "
Euler beta functions, with the l inear t ra jector ies as
thei r a rguments :

!£W> (5.5)

where Ν i s a positive integer.
The expression (5.5) has the following proper t ie s :
1) in the region t < 0, s > 0 it has poles at the points

a^(s) = n, i .e., it descr ibes resonances in the s channel;
2) in the asymptotic scatter ing region t < 0, s » - u

— — °° it has the Regge form, for example:

b) The t rue asymptotic behavior of the imaginary

Γ ( ! _ „ , ( _ „ ) ) Γ ( Ι - α , ( Ι ) )

3) i t p o s s e s s e s c r o s s i n g s y m m e t r y s — t .

( 5 . 6 )
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A crossing-symmetric linear combination of expres-
sions (5.4) has the Regge asymptotic form with the
correct signature factor, and also satisfies'39·1 the sum
rules at finite energy (FESR). It does, however, have
one important shortcoming: the successive resonances
in the direct channel, corresponding to a trajectory
aj(s), differ by one unit of angular momentum. To
eliminate the superfluous poles in the amplitude one
can impose a condition of the form

introduced i n l 4 2 J :

a> (s) + aj(t) + aj (u) = const.

For example, the condition

(5,7)

eliminates from the sum

fi, (<x, (s), a; (0 )- f Β, (α, (s),aj(u))

a l l p o l e s w i t h o d d a fa) = 2 n + 1.

In the model for the process π + π — ir + ω, con-
sidered in Veneziano's original paper/3 9·1 the condition

eliminates the poles with even p(s) = 2n.
We see that to secure the Regge asymptotic form

(5.6) it is necessary to have a linear behavior of the
trajectory a fa) for Is I —• °°. The condition for can-
cellation of the superfluous poles of (5.5) obviously re-
quires not only linearity in the region of small values
of s, t, u, but also equality of the slopes of two different
trajectories, a/ = a.'. In the treatment of meson-baryon

scattering the baryon trajectories of the s and u chan-
nels are connected by a relation of the form (5.7) with
the meson trajectory of the t channel. Therefore the
Veneziano model requires that the slopes of all meson
and baryon trajectories be equal [i.e., that the condition
(5.2) hold]. Accordingly, all of the trajectories are
parallel.

By further arguments, using additional symmetry
conditions, one can get connections between the various
parallel trajectories.

5.3. Quantization of the Trajectories

Such connections in the framework of the Veneziano
model have been obtained by Ademollo, Veneziano, and
Weinberg, l40J starting from the Adler self-consistency
condition for the amplitude for scattering with a soft
pion. Introducing the concept of the "normality" of a
trajectory, equal to P(- 1) J for bosons and to P(- 1) J ~ l / a

for fermions (where Ρ is the parity), they found that
"if a particle lying on a trajectory α ϊ can decay into a
pion and a particle of the opposite normality lying on a
trajectory az, then these trajectories must be parallel,
and their intercepts aj(0) differ by a half-integral num-
ber (equal to %)." Such pairs of trajectories are as-
signed to ρ and n, to K* and K L , and to Δ 6 and N a . The
respective differences of the intercepts, calculated
from data in the particle region, are 0.48, 0.53, and
0.54.

In a recent p a p e r u l J it was pointed out that the
"quantization" of trajectories is of a more general
nature than that found i n u o ] .

For the analysis of the linear approximation of
trajectories it is convenient to use the mass scale

=s — m\ — ml; (5.8)

here s is the square of the mass of the resonance, and
mj and m^ are the masses of the products of the main
wvo-particle decay.

Let us write the Regge trajectory in the linear ap-
proximation in terms of the variable x:

aih (s) = alk ~ aift (s — m\ — m\ (5.9)

The "absolute intercepts" a ^ of the trajectories as
introduced in (5.9) have curious properties. To good
accuracy they are the same for trajectories belonging
to the same multiplet of the group SU(3), and thus are a
simple characteristic of the properties of the trajector-
ies passing through a multiplet J p and its recurrences.
It is found t h a t " " :

(5.10)
for baryons for mesons

as = a[10(3/2+)]«l, 0(1") «1/2,
α α = α | 8 ( 1 / 2 + ) ] « 1 / 2 , α ( 0 " ) « 0 .

αΊ = α[8 (3/2-)] « 0,

T h e d e v i a t i o n s f r o m t h e m e a n v a l u e s a r e a s a r u l e

n o t l a r g e r t h a n ± 0 . 0 5 . A c c o r d i n g l y , t h e " q u a n t i z a t i o n

r u l e " ( 5 . 1 0 ) i s s a t i s f i e d t o t h e a c c u r a c y t o w h i c h t h e

c o e f f i c i e n t s o f t h e R e g g e t r a j e c t o r i e s a r e d e t e r m i n e d i n

t h e l i n e a r a p p r o x i m a t i o n .

T h e c o n d i t i o n s ( 5 . 1 0 ) a r e m o r e g e n e r a l t h a n t h e

c o r r e s p o n d i n g f o r m u l a s o f t 4 c : l . F i r s t , t h e " c o n d i t i o n of

opposite normality" is not essential for them. For ex-
ample, the octet trajectories 8Ο2*) and 8(%~) have the
same "normality," but the difference of their intercepts
is equal to %. On the other hand, the trajectories
10(%*) and 8(%~) have opposite "normalities," owing to
a transition with emission of a pion, but nevertheless
the difference of their intercepts is 1.

Second, the quantization conditions (5.10) include
trajectories with spinless decays (φ trajectory), and
also with three-particle decays. We get the impression
that the conditions for quantization of trajectories are
not connected with the Veneziano model and the soft-
pion approximation, but are of a deeper nature. In par-
ticular, they explicitly reflect the SU(3) symmetry.

6. CONCLUSION

In summary, it must be said that the phenomenologi-
cal description of hadron interactions by means of
Regge poles is a very fruitful idea, whose basic prem-
ises are now not subject to doubt.

We shall now list some problems whose solution is
important for the further progress of the Regge-pole
scheme:

1) The problem of vacuum poles, or more exactly,
of the leading Pomeranchuk singularity.

2) The problem of the asymptotic forms of trajec-
tories.

3) The problem of the universality of the nucleons
in the linear approximation, associated with Problem 2).

4) The problem of the parity doubling of baryon
trajectories.

5) The problem of the connection of the various
symmetry breakings [of SU(3) symmetry, of chiral
symmetry] with the properties of linear approximations,
and of the nature of the quantization.
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It is quite possible that these problems are more
strongly interconnected than they may seem to be at
first glance. Even a partial solution of these problems
will aid in the conversion of the phenomenological
scheme which the Regge-pole theory now provides into
a full-fledged theory.
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