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1. INTRODUCTION

1.1. Calculations Based on a Simple Model

INVESTIGATIONS of the propagation of undamped
electromagnetic waves in metals at frequencies below
the plasma value have been going on now for a decade
(the first paper on b i s m u t h 1 1 ] appeared in 1961) and
many c h a r a c t e r i s t i c features of this phenomenon a r e
established knowledge.

We can distinguish two c a s e s , depending on the
rat io of the numbers of free e lectrons and holes in a
meta l or a semiconductor.* If N e * Nh, low-frequency
" h e l i c o n " waves a r e observed and their spectrum is
ω 2 oc k 2 ( k * H ) 2 . If N e = Nh, the range of existence of
undamped waves shifts into the microwave range and
the spectrum of these waves in s trong magnetic fields
becomes ω « kH, which is formally identical with the
spectrum of magnetohydrodynamic waves in a gaseous
p l a s m a . [ 3 ] In pure m e t a l s , the condition for N e = Nh
is an even number of e lectrons per unit cell of the
l a t t i c e [ 4 ] and therefore this situation is not exceptional
and the propagation of waves in such a case is of
general in teres t .

A simple calculation demonstrates the possibility of
the existence, in a metal in a magnetic field, of waves
with a large damping length, under conditions in which
the densit ies of the c a r r i e r s a r e Ne = Nh and their
s p e c t r a a r e isotropic and quadrat ic . We shall a s s u m e
that the field Ε in a metal var ies in accordance with
the law Ε = E o e x p [ i ( k -r - cut)]. We shall neglect the
collision p r o c e s s e s ( ω τ ^> 1) and use a l inear approx-
imation in Ε to consider the motion of c a r r i e r s in a
static field Η such that Ωβ )ΐι ^ ω. For the sake of
simplicity, we shall a s s u m e that de,h <C λ = 27i/k.
Having determined, from the Lorentz equation, a cor-
rect ion to the c a r r i e r velocity, we shall use the r e l a -
tionship j = σΕ = e(NhSVh - N e 5 V e ) to find the con-
ductivity tensor

{Nhmh+Name); 0; 0; II
0; -i<ac*H-*(Nhmh+Neme); 0;

If we ignore the displacement current (i.e., if we
assume ω <SC ωρι), we find that Maxwell 's equations
give*

j = ic2[k [kE]]/4nco.

Neglecting the t e r m (ic2/4wci>)(kykz/CTzz) « (ω/Ω) 2 ,
we obtain the dispers ion equation

4n<o)] [ay ζ ζ + (ic*k2 sin" #/4πω)] = 0.

(2;

T h i s e q u a t i o n h a s two r e a l s o l u t i o n s

ks = ωΗ-1 [4π (Nhmh + Ntme))1/2,

kP = caff"1 cos"1 ϋ [4π (Nhmh + Neme)]in (3)

*For details, see the review by Kaner and Skobov. [2]
*[k[kE]] s k x [ k X E l .

w h i c h r e p r e s e n t t h e p r o p a g a t i o n of two w a v e s a t d i f fe r-

e n t v e l o c i t i e s . One of t h e m ( the S w a v e ) i s p o l a r i z e d

perpendicularly to the plane containing the vectors Η
and k, whereas the other (the Ρ wave) is polarized in
that plane.

An allowance for the relaxation p r o c e s s e s re su l t s
in the damping of a wave. The damping can be calcu-
lated by replacing ω in afa with ω + (i/τ) and r e p r e -
senting k as k ' + ik" (k ' and k" a r e r e a l numbers) .
Simple calculations show that k"/k ' = 1/2ωτ. [ 5 ]

F o r most m e t a l s , Ν « 10 2 2 cm" 3 , m « m 0 and an
est imate of k in a field ~10 4 Oe for ω « 6 χ 10 1 0 s ec" 1

(corresponding to a wavelength of 3 cm in vacuum)
yields k « 6 χ 10" cm" 1 . For ωτ » 102, the damping
length of a wave is ~3 χ 10"3 c m . It follows that such
waves can be investigated only in very thin, high-
quality single crysta ls or in much s t ronger fields
( ~ 1 0 e O e ) .

The c a r r i e r density in some metals is anomalously
low. These metals include a r s e n i c , antimony, bismuth,
and graphite : the lowest c a r r i e r densit ies (~10 1 7 cm 3)
and smal l effective m a s s e s (~0.1 m 0 ) a r e encountered
in bismuth and graphite. However, it is difficult to
p r e p a r e high-quality graphite crysta ls and the current ly
available crys ta l s of graphite a r e much inferior to
those of bismuth in respect of the duration of the r e -
laxation t i m e . Therefore, bismuth is preferred for in-
vestigations .

The resu l t s of the calculations show that the a s -
sumptions made to obtain these resu l t s can be satisfied
experimentally in the case of b ismuth. Let us a s s u m e
that Η * 10 kOe and ω ~ 6 χ ΙΟ 1 0 s e c ' 1 . Using the
propert ies of bismuth, Ν = 3 x 10 1 7 cm" 3 , m « 0.2 m 0 ,
we obtain ω/Ω < 0.1, ω / ω Ρ ι « 6 χ 1 0 l o / l 0 " < ΙΟ" 3.
The wave vector is k ~ 2 χ 102 c m ' 3 and the wave-
length is λ « 3 x 10"2 c m . In the field Η = 10 kOe, the
maximum diameter of an electron orbit in bismuth is
d ~ 6 x 10"5 cm, i.e., d/λ « 2 x 10"3. The relaxation
t ime is r « 10"9 sec (see Sec. 3.3). Hence, we find
that k"/k ' » 10"2 and the waves a r e weakly damped.
These considerations show that bismuth is a suitable
m a t e r i a l for the investigation of plasma phenomena in
compensated m e t a l s . They also show why bismuth is,
so far, practically the only metal in which plasma ef-
fects have been investigated.

1.2. High-frequency Conductivity Tensor

The r e s u l t s of exper iments, part icularly those per-
formed under the conditions described by ω **> Ω and
d « λ, can be understood and analyzed in detail p r o -
vided the calculations a r e r igorous and an allowance
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is made for the anisotropy of the energy spectrum of
the carriers and for the dispersion in time and space.
The rigorous theory cannot be given here in full, but
the reader is referred to the review by Kaner and
Skobov.[25 We shall simply give the expression for the
conductivity tensor [ e ], which we shall use later:

Pz0 _n n

" ' - " • - ' * ( 4 )

' · " - Ρ * Λ

n — [ i ( o > — * , » 2 ) / a ]

The first summation is carried out over all parts of
the Fermi surface

φ = \ (kv — kzvz)dtf', <f
J

and νη(ψ) is the n-th Fourier component of the expan-
sion oi the function vk(<p)exp[itf>(<p)/n]. In strong fields,
we can expand σ^ in terms of ω/Ω, k · ν/Ω, φ/Ω
« k - v / Ω (k-v/Ω » d/λ), and kzv z/w, which gives
the following expressions :^ '

(Py-Py)2,
' —
(Ρχ-Ρχ)2.

(5)

-(Px-Px)(Pv — Py), a = x, P = y .

I f t h e c a r r i e r s p e c t r u m i s q u a d r a t i c a n d i s o t r o p i c , t h e

e x p r e s s i o n s i n E q . ( 5 ) r e d u c e t o t h e c o m p o n e n t s o f

E q . ( 1 ) .

1 . 3 . F e r m i S u r f a c e o f B i s m u t h

W e s h a l l b e c o n s t a n t l y r e f e r r i n g t o t h e F e r m i s u r -

f a c e o f b i s m u t h ( F i g . 1 ) . W e r e c a l l [ 7 ] t h a t i t c o n s i s t s

o f o n e h o l e a n d t h r e e e l e c t r o n s u r f a c e s , w h i c h a r e

n e a r l y e l l i p s o i d a l . * T h e c o n d u c t i v i t y t e n s o r o f E q s .

( 4 ) a n d ( 5 ) c a n b e c a l c u l a t e d i f w e k n o w t h e v e l o c i t i e s ,

m o m e n t a , a n d e f f e c t i v e m a s s e s s i m p l y a t t h e F e r m i

l e v e l . T h e r e f o r e , i g n o r i n g t h e d e v i a t i o n o f t h e F e r m i

s u r f a c e f r o m t h e e l l i p s o i d a l s h a p e , w e s h a l l a s s u m e

t h a t t h e e n e r g y s p e c t r a o f t h e c a r r i e r s i n b i s m u t h c a n

b e r e p r e s e n t e d a s f o l l o w s . T h e s p e c t r u m o f h o l e s i s

9.. - Λ Α . Λ 1L
( 6 )

a n d t h a t f o r o n e o f t h e e l e c t r o n e l l i p s o i d s ( p r i n c i p a l

a x e s a r e u s e d ) , i s

F I G . 1. M o d e l o f t h e F e r m i sur-

f a c e o f b i s m u t h .

" T h e e l l i p s o i d s a r e l o c a t e d a t t h e b o u n d a r i e s o f a B r i l l o u i n z o n e ,

a n d t h e r e a r e s ix e l e c t r o n s e m i e l l i p s o i d s a n d t w o h o l e s e m i e l l i p s o i d s p e r

e a c h z o n e . T h e s y s t e m o f e l l i p s o i d s s h o w n i n F i g . 1 i n c l u d e s a l s o p a r t s

o f t h e F e r m i s u r f a c e i n t h e a d j a c e n t B r i l l o u i n z o n e s .

2Β.= *. + 3.+ Α.. (7)
rti(L ma m^

the other two ellipsoids are rotated by ±120° about the
C3 trigonal axis. In these expressions, the various
parameters a re : [ 8 ] 2en = 3.75 x 1 0 ' " erg, Mi = M2

= 0.063 m0, M3 = 0.65 m0, 2e e = 5.78 x 10"14 erg, m a

= 1.27 m0, nip = 1.15 x 10"2 m 0, m2 = 0.57 χ 10~2 m0.
The major axis (a ) of each of the electron ellipsoids
is inclined at an angle of 6°20' with respect to the
basal plane.

1.4. Model Calculation of the Wave Velocity

The wave velocity in all the cases of interest to us
can be calculated using Eqs. (4)—(7) and the disper-
sion equation, whose general form is

II <*« + [icV4n<e (k%h — MfcJ || = 0, (8)

By way of example, we shall calculate the asymptotic
value of the wave velocity (i.e., the velocity in the
limit of strong fields) for Η II Ci, k n C2. Using sym-
metry considerations, we can easily show that a i 2 ( l )
= σ2ι(1) = σ»(1) = σ23(1) = 0. The value of σ13(1) is not
zero but its appearance is associated with the slight
inclination of the electron ellipsoids with respect to
the basal plane. The value of this component is pro-
portional to the square of this angle, and can be ignored
because it does not exceed 1%. Thus, only the diagonal
terms remain in the conductivity tensor and the disper-
sion equation (8) gives

= 4πωσ33 (l)/ic2. 0 )

This so lut ion r e p r e s e n t s an undamped wave with

Ε II C 3 (the solution k2 = 47rwcr11(l)/ic2 corresponds to
a damped wave).

Using Eq. (6) and the Lorentz equation, we find the
quantities which determine the contribution of the
holes to σ33(1):

py = pVa cos φ , pl0 - M2 [2εΛ - (pl/M,)] = 2εΛ7Ιί2 [1 - (pJ/pJ0)J;

Substituting these values into the integral of the ex-
pression for σχχ given in Eq. (5), we obtain

°'i, (1) = - (i/3) (c2co/n2S3#2) (2EhY
aM\M\n. (10)

S i m i l a r ca lcu la t ions for e l e c t r o n s and s u m m a t i o n

o v e r a l l t h r e e e l l i p s o i d s g ive

<4 (1) = - i ( °-) (2eef (11)

Equations (9)—(11) r e p r e s e n t the so lut ion of our prob-

l e m .

Calculat ions s i m i l a r to those in the p r e s e n t s e c t i o n

can be carried out for any directions of Η and k. How-
ever, the treatment becomes quite complex in the case
of asymmetrical directions of Η and k because the
nondiagonal terms must be included and the analysis
becomes much more cumbersome.

The numerical results of calculations of the wave
velocity for symmetrical directions of Η and k are
given in Table I.
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Table I. Velocity of magnetoplasma waves in
bismuth1 8 1

Direction of
Η

c3

Direction of
k

c3

d

p

c 2

C-i
c3

c3

C3

•Values of νΗ''/cosiJ,

Direction of
Ε

C, o r C 2

f2

c\

c.
c\
Ci

c3

vH"' (expei.),
10"4 cm/sec

3.05+0.05
2.75+0.05
3.1+0.15

2 40+0.1
1.90+0.05
1.87+0.05
2.73+0.1»)
2.30+0.05

1.99+0.05
5.5+0.2·)

6.15+0.15
1.9+0.1»)

obtained for Η inclined at 7-10°

vH"1 (calc),
10"* cm/sec

2.93+0.15

2.50+0.1
2.07±0.O8
2.12+0.08
2.45+0.1»)
2.45±0.1

2.12+0.08
6,09+0.15»)
6.09+0.15

1.9+0.08»)

to the axis listed

in the first column. The calculated values refer to Η parallel to that axis.

2 . E X P E R I M E N T A L I N V E S T I G A T I O N S

2 . 1 . E x p e r i m e n t a l T e c h n i q u e

T h e w o r k i n g f r e q u e n c y f i n w a v e i n v e s t i g a t i o n s i s

g o v e r n e d b y t h e n e e d t o m a k e t h e d a m p i n g a s w e a k a s

possible, i.e., we should satisfy ωτ » 1, which limits
us to frequencies f > 1 GHz. Some of the experiments
have been carried out at frequencies ranging from
~ 108 Hz [ 9 ] to -600 GHz [ 1 0 ] but most of the measure-
ments have been made in the frequency range 10—20
GHz because of the technical advantages, which in-
clude the thorough knowledge of this frequency range,
the possibility of using moderate magnetic fields
(~10 kOe or less), and the reasonably high value of
ωτ « 10-100.

The propagation of such waves makes the metal
transparent and alters its surface impedance. There-
fore, these waves can be investigated using the standard
methods for recording changes in the Q factor and in
the natural frequency of a resonator containing a sam-
ple (for example, [ 1 1 ]); or the methods for recording a
microwave signal transmitted by a sample. [ 1 2 ] Figure
2 shows one of the simple circuits, whose sensitivity
(AR/R ~ 10"4) is sufficient for most of the investiga-
tions of the wave properties. This circuit works
satisfactorily over a wide dynamic range of the Q
factor.

A signal from a klystron, modulated at a frequency
of ~1 kHz, passes through a resonator (containing a
sample), a detector, and a narrow-band amplifier,
from which it is fed to a peak detector, which selects
a signal of frequency 12 Hz, the modulation frequency
of the magnetic field (additional electromagnet coils
are used for this purpose). This signal is passed to a
second narrow-band amplifier and then on to a phase-
sensitive detector. It is plotted as the Υ coordinate
by an automatic recorder. The X coordinate is the
voltage from a Hall probe placed in the gap of the
electromagnet. If the resonator is coupled weakly to
the transmission line, the signal intensity is propor-
tional to the square of the Q factor of the resonator
(T oc Q2), and the circuit records the value of dT/dH.
Experiments show that Q is governed primarily by the
surface impedance of bismuth and, therefore, the re-
corded quantity is dR~2/dH = R'3dR/dH.

Modulation coils
FIG. 2. Apparatus used to investigate the properties of magneto-

plasma waves. [13] AO is an audiofrequency oscillator.

R(H)
Rtt)

10 - -3,1

IS - -ίβ

10--I0

25--IB

0.I2S H37S nso H-'.kOe"1

FIG. 3. Oscillations of the high-frequency surface impedance of
bismuth, caused by the excitation of standing waves. [ls] k II C3,
Η || C2 | |E, # = -13°, f=9.60GHz,D = 0.47mm,T = 1.5°K.

A s t r i p r e s o n a t o r can be u s e d convenient ly in the
frequency range 10—20 G H z [ u ] It has the advantages
of a s m a l l s i z e , l a r g e s p a c e factor, and l inear po lar i-
zat ion of high-frequency c u r r e n t s s o that w a v e s of
different po lar izat ions can b e studied s e p a r a t e l y .

The s a m p l e s be ing inves t igated should b e s i n g l e
c r y s t a l s c h a r a c t e r i z e d by a l a r g e value of the m e a n
free path of c a r r i e r s . Good r e s u l t s a r e obtained us ing
s a m p l e s grown in demountable quartz m o u l d s . [ 1 4 ] The
value of τ for such samples can reach ~4 χ 10"9 sec
(at Τ = 0°Κ). Samples are usually in the form of disks
of 18 mm diameter and are 0.2—2 mm thick.

2.2. Experimentally Observed Oscillations

A part of a microwave incident on a metal pene-
trates below the surface and excites magnetoplasma
waves. Since the wave velocity is v < c , the vector
k in the metal is directed along the normal to the sur-
face, irrespective of the angle of incidence of the wave
(if the sample is the wall of a resonator, its surface is
a constant phase plane, which corresponds to an angle
of incidence equal to IT/2). Magnetoplasma waves
travelling within a plane-parallel plate are reflected
by the surfaces and interfere, so that if

11X12-0 (12)

and the wave damping is weak, Fabry-Perot resonances
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H"',10"4 Oe"'
FIG. 4. Oscillations of the power of microwaves which have tra-

versed a single crystal of bismuth. These oscillations are associated with
the excitation of Rayleigh resonances. [15] The additional peaks, lo-
cated between the principal maxima, are due to Fabry-Perot resonances
which appear in strong fields, k || C 3 , Η i C, || E, d = 68°, f = 8.85 GHz,
D = 1.0 mm, Τ = 1.5°Κ. Φ is the phase of the reference signal reaching
the detector simultaneously with the measured signal.

1,59'K

FIG. 5. Oscillations of the high-frequency impedance of a bismuth
single crystal, associated with the excitation of Rayleigh resonances.
The long-period oscillations are associated with waves propagated at
right-angles to the plane of the disk-shaped sample in the case k || C3 || N.
The short-period oscillations are associated with the waves propagated
parallel to the flat surfaces of the sample in the case k l N . Η || C 2 II Ε
for the flat surfaces, f = 9.5 GHz, D = 1.75 mm, 17.8 mm diameter, Τ =

are excited.'•"•' The wave velocity depends on the ap-
plied magnetic field and, therefore, when the magnetic
field is reduced gradually, the condition of Eq. (12) is
satisfied periodically, which leads to resonances of the
surface impedance (absorption maxima shown in Fig. 3)
and,resonances of the transparency (transmission
maxima shown in Fig. 4). When the magnetic field
intensity is reduced, the wavelength decreases, the
damping in the bulk of a sample increases, and the
resonances broaden into sinusoidal oscillations (Fig.
3). [ 5 ]

Rayleigh resonances may also be observed in the
transmission pattern. They are due to the interference
between the signal transmitted through a sample and
the signal which passes outside the sample. The
periodicity of these resonances is given by the condi-
tion

nX^D, (13)

i.e., these resonances are half as frequent as the
Fabry-Perot resonances (Fig. 4). One can use as a
reference signal the stray microwave power leaking
across the contacts between a sample and the reso-

FIG. 6. Dependence of the re-
sonance order n, divided by the
thickness of the sample D, on the
value of ΗΓ1. [15] H | | k | | C 3 , f =
9.35 GHz. O) D = 0.47 mm; · )
D = 1.00 mm.

200

Η"1, kOe"1

F I G . 7. O s c i l l a t i o n s o f t h e h i g h - f r e q u e n c y i m p e d a n c e o f b i s m u t h

s h o w i n g t h e s i m u l t a n e o u s e x c i t a t i o n o f t w o t y p e s o f w a v e : t h e long-

p e r i o d o s c i l l a t i o n s are a s s o c i a t e d w i t h t h e S w a v e s and t h e short-per iod

ones with the Ρ waves. [ l 5] k || C 3, Η 1 C , , & = 80°, Ε || C 2 , f = 9.53
GHz, D = 0.47mm,T=1.5°K.

nator (or the waveguide) to the end of the s a m p l e out-

s i d e the resonator . [ 1 2 · 1 Such s t r a y l eakage g i v e s r i s e

to Ray le igh r e s o n a n c e s in inves t igat ions of the sur face

impedance . T h e s e r e s o n a n c e s a r e mani fes ted in F i g .

3 by d i f ferences of the ampl i tude of the even and odd

o s c i l l a t i o n s .

In addit ion to the r e s o n a n c e s c o n s i d e r e d s o far,

other t y p e s of o s c i l l a t i o n may be o b s e r v e d . Thus,

d isk-shaped s a m p l e s , 17.8 m m in d i a m e t e r and

1.74-2 m m , thick may exhibit o s c i l l a t i o n s a s s o c i a t e d

with the propagation of w a v e s para l le l to the sur face

plane (F ig . 5). T h e s e o s c i l l a t i o n s a r e e x c i t e d by s t r a y

c u r r e n t s f lowing a c r o s s the ends of the s a m p l e . Their

per iod ic i ty i s g iven by the condit ion (13), where D is

now the d iameter of the s a m p l e .

3 . PROPERTIES OF WAVES IN STRONG FIELDS

3 . 1 . O s c i l l a t i o n s of the sur face impedance of b i s -

muth ( F i g . 3) and of i t s t r a n s p a r e n c y ( F i g . 4 ) have b e e n

o b s e r v e d e x p e r i m e n t a l l y . The re levant e x p e r i m e n t s

show that weakly damped e l e c t r o m a g n e t i c w a v e s can

indeed propagate in b i s m u t h . An addit ional proof of

the re la t ionsh ip be tween o s c i l l a t i o n s and wave pro-

c e s s e s in a m e t a l i s provided by e x p e r i m e n t s on s a m -

p l e s of var ious t h i c k n e s s e s . In Eq. (12), the wavelength

λ is a function only of Η and u>. Therefore, if Η and
ω are fixed, we should observe n ^ i 1 = naDi1 for sam-
ples of different thicknesses Di and D2; this relation-
ship has been confirmed experimentally (Fig. 6).
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The re lat ionship governing the oscil lation period
" 1 ! Η,ω = const can be deduced quite easi ly from

two values of η differing by unity in Eq. (12) and from
the definition of the derivat ive.

3.2. We shal l now consider how far the theory de-
s c r i b e s the behavior of the waves in question. We shall
consider the asymptotic case of s trong fields in which
t h e r e is no dispers ion.

The principal conclusion of the theory—the presence
of weakly damped waves—has been proved experi-
mental ly. The possibility of the simultaneous existence
of two waves (S and P) with different velocities given
by Eq. (3) is confirmed for the case of bismuth by the
oscil lations shown in Fig. 7 (the oscil lations of two
periods appear simultaneously) and by the observations
of waves of different velocities when the polarization
of Ε is varied (Table I).

For the S waves, we have Ε II [Η x k ] ; and for the
Ρ waves, we have Ε II [H x [ H x kj]. These a r e the
polarizations which correspond to the best conditions
for the observation of the S and Ρ osc i l la t ions . [ 6 > 1 5 ]

We shall now consider some quantitative re lat ion-
ships . According to Eq. (3), k <χ Η" 1 and therefore
η = 2ϋ/λ = kD/π °c Η"1, i .e., the oscil lations a r e
periodic in the r e c i p r o c a l of the magnetic field. This
is demonstrated in Fig. 8. The deviations of the ex-
per imenta l points from the s traight l ines at low values
of the field a r e due to the spatial dispers ion in the case
Η II k II C 3 (Sec. 5), and to the t ime and spatial d i sper-
sions in the case Η II k II C 2 (Sec. 6).

Since the oscil lations a r e periodic, we can deter-
mine the absolute value of the wave vector
k = J T H ' V D A H " 1 and the phase velocity of the waves
ν = ω/k = 2HfDAH"1. In strong fields, the quantity
vH" 1 is independent of the field and it can be used as a
wave c h a r a c t e r i s t i c . (Many authors employ the m a s s
density [ N F ( m ) ] 1 / 2 = Η / 2 π ν 2 ω . This density originates
in a calculation of the wave velocity based on the
ell ipsoidal model of the F e r m i sur face . Therefore, it

Table Π. Wave velocities for Η 11 k 11 C 2 , E
corresponding to various frequencies

Η ' , kOe'1

F I G . 8 . D e p e n d e n c e o f t h e o s c i l l a t i o n o r d e r o n t h e r e c i p r o c a l o f t h e

field H"1 for some directions of Η and k. [1S] · ) Η || C 2 , k || C 3 , Ε || Cj,
f = 9.50GHz, D = 1.74 mm; Χ) Η II C 2 , k II C,, Ε || C 3 > f = 9.53 HGz,
D = 1.74 mm; Ο) Η | | C 3 , k || C 1 ; E | | C 2 > f= 9.53 GHz, D = 1.74 mm;+)
Η 11 C 3 | |k, f= 9.35 GHz, D = 1.00 mm; Δ) Η || C2 | |k, E | | C 3 , f=9.62
GHz, D = 1.00 mm.

f, GHz

~ 2
9.27
~9

13H-18
21.1
27.07
35.86
52.6

vH"1, 10""
cm/sec

2.58
2.40+0.1

2.40
2.25 ·>

2.36+0.1
2.24+0.1
2.23+0.1

2.30
calc:

2.50+0.1

Range of
fields

4—25
4—10
4—7

4—10
6—10
6—10
5—9

*The direction of Ε given in [12

of 2.25 X

ω
1Γ

0.02
0.1
0.1

0.2
0.15
0.25
0.45

kv
~a~

0.1
0.1

0.2
0.1
0.15
0.4

Probable
correction

for dis-
persion, %

< 1
+ 1
+ 1

+ 4
+ 3
+ 5

%; + 2U

Reference

9
8
16
12
8
8
8
17

1 is evidently incorrect. The cited value
10" cm/sec refers to the case Ε || Cj and the value for Ε || C 3

should be 2.6 X 10" cm/sec. These values give better agreement with the

experimental results for Ε || Cj.

s e e m s to be l e s s su i tab le than the quantity vH * which

can b e deduced d i r e c t l y f rom the e x p e r i m e n t a l r e s u l t s ) .

Table I l i s t s the v a l u e s of vH" 1 obtained at ~ 9 GHz for
Γ 8l

severa l directions of Η and k.
According to Eq. (3), the phase velocity of the waves

should be independent of the frequency. Table Π l ists
the values of vH"1 obtained in various investigations
for Η II k II C 2 , Ε II C 3 . All the values obtained in the
frequency range 2—50 GHz a r e practically identical.
A m o r e detailed comparison (for other direct ions of
H, k, and E) is given i n [ 8 ' 1 8 ] .

It r e m a i n s to check that the velocity of the Ρ waves
is proportional to cos J [Eq. (3)]. To do this , we note
that the dependence cos J in the angular diagram is a
straight line and therefore the experimental value of
H/v for the Ρ waves should fit a s traight line perpen-
dicular to the direct ion of k. Since the crysta l lo-
graphic anisotropy, which becomes manifest when the
direction of Η is varied, is superimposed on the
anisotropy of the P-wave velocity associated with the
angle between Η and k, the experimental points for
H/v in the angular diagram of Fig. 9 fit a s traight line
only for J > 30°. Angular d iagrams, s imi la r to those in
Fig. 9, a r e given i n [ 6 > 8 ] for other directions of Η and
k.

Table I presents the resu l t s of calculations of the
wave velocity, c a r r i e d out using the ellipsoidal model
of the F e r m i surface of b ismuth. The agreement be-
tween the calculated and the measured values of vH' 1

(within the l imits of the experimental e r r o r ) is evidence
of the quantitative agreement between the theory and
experiment, and it shows that the ellipsoidal model of
the F e r m i surface can be used to calculate the wave
velocity.

3.3. Damping of Waves

The damping of waves in s trong fields is due to
relaxation p r o c e s s e s , and it can be determined experi-
mentally from the rat io of the amplitudes of the con-
secutive resonances of the surface impedance of a
sample [ o r d e r s η and ( n + 1)]. According to calcula-
t i o n s , [ 5 ] When k"D <C 1 (i.e., when the damping length
is much g r e a t e r than the thickness of the sample), the
resonance value of the surface impedance is
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Ζ = ω2τΰ/4οη2π2, Λ, ο)

i . e . , th i s impedance i s proport ional to n"2, which i s in

r e a s o n a b l e a g r e e m e n t with the e x p e r i m e n t a l v a l u e s

(Fig. 3). The value of ωτ calculated on the basis of
this formula, is «40.

In the other limiting cases of k"D 3> 1, the ratio of
the oscillation amplitudes Hi and n2 is Ai/Au
= (^/η^βχρί-ττΔη/ωτ). Bearing in mind that a modu-
lation method is used in the case of small changes in
the pulse amplitude, that the value of 8 3^8 Η or 3R/8H
is measured, and that the oscillations are of the form
Ζ <* AsindrVAH"1), w e find that the ratio of the ampli-
tudes of the consecutive oscillations of the derivative (for
wT 3> 1) is Ai/A2 = (η1/η2)6χρ(-τ7Δη/ωτ), and hence
ωτ = πΔη/ΐη(ηιΑ2/η2Α'ι). The results of an analysis of
one of the experiments are presented in Fig. 10. The
slope of the straight line in that figure gives ωτ = 45.
Values of the same order of magnitude (τ » 0.5—0.1
nsec) have been reported in [ f l '1 8>2 0 ].

Since k"/k' = ΐ/2ωτ (Sec. 1.1), each damping length
corresponds to ~100 wavelengths, and therefore such
waves can justifiably be regarded as weakly damped.

3.4. Quantum Effects

The Landau quantization, exhibited clearly by bis-
muth, gives rise to certain features in the wave propa-
gation, which can be divided into two groups: 1) changes
in the wave velocity; 2) oscillations of the wave damp-
ing.

SS SO
Ι/κΙΓ',ΚΓ'αη·1 sec. Oe

FIG. 9. Dependence of 1/vH"1 on the angle t> = < ( C 3 , H) for Η 1 C[.
[8] · ) Ε || C 2 ; Χ) Ε 1 C 2 . The experimental errors are shown in the con-
ventional manner. The upper half of the figure shows part of the de-
pendence on a larger scale.

FIG. 10. Dependence of the loga-
rithm of the ratio A/n on η (A is the
oscillation amplitude and η is the order
of the oscillation). [ I 5] D = 1.74 mm,
Η || C 3 Xk || C,, Ε || C 2 , f = 9.51 GHz,
Τ = 1.65°K. The slope of the line gives
ωτ = 45.

FIG. 11. Dependence of the mass density NF(m.) on the reciprocal
of the magnetic field. [12] The experimental results are represented by
circles, squares, and triangles. The continuous and dashed lines repre-
sent calculations based on different parameters of the spectrum of bis-
muth for Η || k || C,, Ε || C 2 .

Changes in the wave v e l o c i t y ( i . e . , dev iat ions f rom

the dependence vH" 1 = const ) a r e a s s o c i a t e d with

changes in the F e r m i energy and the c a r r i e r densi ty,

which a r e c a u s e d by an i n c r e a s e in the magnet ic

f i e l d [ 2 1 ] and a r e o b s e r v e d in f i e lds of only a few k i l o -

o e r s t e d s . [ 2 2 : ι The influence of s t rong magnet ic f ie lds

on the wave v e l o c i t y has been invest igated by s e v e r a l

worker s . [ 1 2 ' 2 3 ~ 2 5 ] F igure 11 s h o w s the dependence of

mass density on the magnetic field for Η n k II Ci,
Ε Ν C 2 . [ 1 2 ] The change in the wave velocity caused by
the application of a strong magnetic field can be used
to investigate the behavior of bismuth in the ultra-
quantum limit.

The cause of the quantum oscillations of the damp-
ing is evidently the same as that of the Shubnikov-de
Haas oscillations, namely, the quantum oscillations of
the mean free path of electrons. The presence of
oscillations of the wave damping has been mentioned
in many papers, for example, int9»19»23»26]. This effect
can be used to measure the absolute amplitude of the
oscillations of the mean free path of electrons/ 1 9 1

4. TIME DISPERSION

4.1. Hybrid Resonance[27]

The conditions ω/Ω <g. 1 and k · ν/Ω < 1 are not
satisfied in weak magnetic fields and therefore allow-
ance must be made for the dispersion in time and
space. We shall consider the case when ω/Ω » 1 but
k · ν/Ω < 1, i.e., when the spatial dispersion is unim-
portant. Under these conditions, the wave spectrum
can be calculated in a sufficiently general iorm^ but
since comparisons with the experiments have been
carried out only for k i H, [ 2 7 ] we shall restrict our
treatment to this case.

Using the same model as in Sec. 1.1, but bearing in
mind the finite value of ω/Ω, we obtain the following
expression for the conductivity tensor : t 2 7 ]
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ω pi Λ

Ω Λ -
ω ' ρ ΐ β ,

o a _ Q e 2 ' (13)

where ω ρ ; β = Ne 2/m e, ωρΖ η = Ne 2/m n . Solving the
dispersion equation, taking account of the equality of
the hole and electron densities, and making simple
transformations, we obtain the following relationship
for a wave polarized perpendicularly to Η:

* 2 - 4 T a ( Q ^ - ^ m , · ( 1 4 )

We can easily show that if ω/Ω « 1. this expression
is identical with the solution given in Eq. (3).

The following conclusions can be drawn from an
analysis of Eq. (14).

1) Undamped waves may exist right up to field
strengths corresponding to the "hybrid" resonance
[ω = ( Ω ε Ω η ) 1 / 2 ] . When this field is approached, k in-
creases to infinity if the relaxation time is ignored.
The solution near the hybrid resonance point is approx-
imate since the increase in k means that the spatial
dispersion has to be allowed for. In particular, the
limit of existence of the waves ω = Ω θ - Slh is also
approximate.

2) If there is no spatial dispersion and the carrier
spectrum is quadratic, no singularities are observed
in the spectrum of the waves associated with cyclotron
resonance. The first-order cyclotron resonance (i.e.,
when Ω = ω) is not observed in the surface impedance
if there is no spatial dispersion. However, one of the
resonances is observed in a field below the hybrid
resonance when the spatial dispersion must be allowed
for because of the experimental conditions employed
(frequency f ^ 100 GHz).

In the case of bismuth, the situation is more com-
plex than that considered above because there are at
least three types of carrier with different masses. For
this reason, there are several hybrid resonances and
in the intervals between them there is a dielectric
anomaly, which is a singularity corresponding to k = 0.
In the absence of relaxation processes, this would im-
ply the existence of a uniform high-frequency field in
a sample. A typical dependence k2(H) for three groups
of carriers is presented in Fig. 12. We can see that
undamped waves (k2 > 0) can exist not only in strong
fields but also in regions bounded by a hybrid reso-
nance and a dielectric anomaly. No standing waves have
yet been observed in such regions. Table ΠΙ lists the
hybrid resonance and dielectric anomaly fields calcu-
lated in [ 2 7 ] for several directions of Η and k. The
experimental values obtained for f = 70 GHz[27:l are in
agreement with the theoretical values.

FIG. 12. Schematic represen-
tation of the dependence of k2

on the magnetic field in the pres-
ence of two hybrid resonances
ω = a>hi and ω = ωι,2· [ 2 7]

Table ΠΙ. Hybrid resonance (HR)
and dielectric anomaly (DA) fields
for Η 1 k, Ε 1 Η and f = 70 GHz,

calculated in [ 2 7 ]

Direction of
Η

c3

c 2

Ci

Direction of
k

c1

c 3

Ci

c,

H H R , k O e

1,45
1.45

0.5
5,0
0.5
3.0

0.25
0.7
0.25
2.5

H D A , kOe

-

0.9

0.95

-

1,5 2,0 H-',10-4,Oe-'

FIG. 13. Dependence of the wave number k on H"1 for the Ρ waves.
[8 ] Η 1 C 3 , k || C 2 , 0 = 73.5°, Ε || C,, f = 9.50 GHz, D = 1.00 mm. O)
Experimental results; the continuous curve represents the calculations
based on Eq. (15) and the dashed line is the asymptote.

4 . 2 . Influence of the T i m e D i s p e r s i o n on the Spectrum

of Ρ Waves

In some cases, the time dispersion may exert a
considerable influence on the wave spectrum even when
(ω/Ω)2 <C 1. In view of this, we shall consider the be-
havior of the Ρ waves in the case of low values of
cosiK1-8·' One of the experimentally obtained depend-
ences kiH"1), presented in Fig. 13, deviates consider-
ably from the straight line. In this range, (ω/Ω)2

< 3 X 10"2 and (k · ν/Ω)2 < 10"2, and we can use the
asymptotic values of the components of the conductivity
tensor. However, we find that (ω tan t>/ii)2 « 0.4,
which means that terms of the kykz type must be in-
cluded in the dispersion equation. We thus obtain

2 _ 4πω ayy I, omazz \ -1

~~ ic* cos2» ( e o P T j '

w h i c h , i n t h e c a s e c o r r e s p o n d i n g t o F i g . 1 3 , t r a n s f o r m s

i n t o

1.2 4πω σ 3 3 ( 1 )

Μ cos^O —(ω2/ί22) '

T h e c u r v e i n F i g . 1 3 , o n t h e b a s i s o f E q . ( 1 5 ) , i s i n

g o o d a g r e e m e n t w i t h t h e e x p e r i m e n t a l r e s u l t s .

( 1 5 )
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Κ 10' cm"1

2

3 ί,ϊ /,ff m/ah

FIG. 14. Dependence of k on the reciprocal of the magnetic field.
[15] Η H d l k | | C 2 , E | | C 3 , D = 0.47mm. O) f= 35.86 GHz; O) f =
9.35 GHz. The continuous line is the asymptote and the dashed curve
represents the calculations based on Eq. (16).

5. SPATIAL DISPERSION

The spatial dispersion is due to the following causes:
1) the finite motion of c a r r i e r s in a plane perpendicu-
lar to the field Η (the p a r a m e t e r which determines the
wave behavior is the quantity k · ν χ / Ω = kR » d/λ);
2) the infinite motion of c a r r i e r s along the field Η
(the dispers ion is associated with those t e r m s of the
conductivity tensor which contain k · ν ζ / ω « v e n / v ) ;
3) the infinite motion of c a r r i e r s along the field Η (the
dispers ion is associated with those t e r m s of the con-
ductivity tensor which contain k · ν ζ / Ω ) ; the last case
is closely associated with the t ime dispers ion and will
be considered in the next chapter .

5.1. Spatial Dispersion for Η l h

Κ Η l k, the spatial dispers ion a l t e r s the depend-
ence of the wave velocity on the magnetic field. Some
theoret ica l es t imates relat ing to this case a r e derived
i n [ 2 8 ] on the assumption that ω/Ω <C 1 but they a r e
not very suitable for bismuth because the conditions
k • V j / Ω « 1 and ω/ft ^ 1 can be satisfied s imul-
taneously only at relatively low frequencies ( i » l GHz).
The deviation of the dependence v(H) from linearity
was detected experimentally by Khaikin et al.1-6-1 L a t e r ,
s imi la r observations for Η II Ci l k II C 2 were reported
by Lupatkin and Nanney. [ 2 e ] For this orientation of the
vectors Η and k the calculations a r e relatively s i m -
ple right up to a field Η such that ω/Ωΐι « 1; in this
case, ω/Ω θ <C 1 (see Sec. 1.3) and d e <C dh. Thus,
the contribution of e lectrons can be described by the
asymptotic expression obtained in Sec. 1.4 and the
quantities σ 3 3 (1), σ 2 2(1) and σ 2 3(1) for holes can be
calculated from Eq. (4), in which the t e r m s ~(ψ/Ω) 2

ss ( k - v / Ω ) 2 should be included. If ω/Ωΐι = 1 and
f = 36 GHz, we find that ψ/Ω < 0.15 but if f = 9 GHz,
we obtain ψ/Ω < 0.6 and there is no need to include
higher o r d e r s of ψ/Ω. Simple but laborious calculations,
s imi lar to those c a r r i e d out in Sec. 1.4, give

*2 = V 5ΪΪ [ 4 ( 2 ε") 3 / 2 M*M*

. ( 1 6 )

It follows from Eq. (16) that if ω/Ω « 1 the spat ia l-
dispers ion correct ion of k is proportional to ω" 2 . At
~9 GHz, this correct ion amounts to ~15% and at
~36 GHz it is only ~ 1 % . Figure 14 shows the r e s u l t s
of the calculation alongside the experimental values.
The discrepancy between the theory and experiment in
the range ω/Ωη > 1 is due to the fact that the higher
t e r m s of the expansion of the conductivity tensor have
been neglected.

5.2. Landau Damping

The spatial dispers ion associated with the drift of
c a r r i e r s along the magnetic field gives r i s e not only to
a dependence of v H ' 1 on the field but also_to a strong
damping of the waves which occurs if k · νζ/ω > 1.
This phenomenon is known as the Landau damping'-30-'
and it imposes res t r ic t ions on the possible existence
of weakly damped waves. It is shown in1·2 ' that un-
damped waves cannot exist at al l if k-Vz/ω 3> 1. The
only exceptions a r e those cases when Η l k and the
direction of the field coincides with the symmetry axis
of that part of the F e r m i surface for which k · ν ζ / ω
> 1 (but not with the symmetry axis of the whole F e r m i
surface regarded a s an assembly of its separate
par t s ! ) . [ 3 1 ' 3 2 ]

The case k · ν ζ / ω « 1 is of interest from the experi-
mental point of view but it cannot be analyzed theoret-
ically in its general form. Therefore, as in Sec. 5.1,
we shal l consider a specific case , namely, the behavior
of waves for Η ιι k II C 3 . [ 3 1 ] In this case, the symmetry
of the problem is high and al l the nondiagonal compon-
ents of the conductivity tensor vanish in the (ω/Ω) 2

<SC 1 approximation. The dispers ion equation can now
be separated into two identical equations

id_L = C2&2/4JICU,

where σχ = a u ( 3 ) = σ 2 2 (3). In considering the given
problem, we must b e a r in mind that, according to the
es t imates obtained experimentally for k - v p / ω « 1
(Fig. 15), we have (ω/Ω) 2 ^ 0 . 1 (in this case , vp and

p-sJL·

H-'.kOe"1

FIG. 15. Wave spectrum in the case of strong spatial dispersion. [3 l]
Η || k || C 3, f = 9.35 GHz, D = 1.00 mm. 1) The calculations for
(ω/Ω) 2 < 1; 2) the calculations including a correction for time disper-
sion; 3) asymptote; 4) damping calculated for ωτ = 50. The vertical seg-
ment at the end of curve 1 shows the experimental error. Curve Γ is the
experimentally obtained oscillation pattern.
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Ω refer to e lect rons) . Using this relat ionship and Eq.
(4), we find that σ χ differs from the asymptotic value
given by Eq. (5) by an additional t e r m of the t y p e : [ e l

dpzm (17)

Since the field in σ χ occurs as the factor Η 2, it fol-
lows that H" 1 is an explicit function of the p a r a m e t e r
s = k # v p / o ) . The r e s u l t s of calculations c a r r i e d out
for values of s in the range s = 0-1.05 a r e given in
Fig. 15. The dashed curve in Fig. 15 r e p r e s e n t s the
r e s u l t s of a theoret ica l calculation c a r r i e d out using
higher t e r m s of the expansion in (ω/Ω) 2 . The a g r e e -
ment between the calculated and the experimental de-
pendences is surpris ingly good. We would a p r i o r i
expect considerable d iscrepancies because the e lec-
t ron F e r m i surface is not ellipsoidal1·3 3^ and this is
part icular ly noticeable near the high-symmetry points.

In this case, we must calculate not only the r e a l
par t k ' but a lso the imaginary part k" . Introducing the
complex quantities k = k ' + ik" and ω + (i/τ) (in-
stead of ω) into the conductivity tensor and assuming
that k"/k ' < 1, ( ω τ ) " 1 <C1 (which is justified in the
range of fields considered), we can deduce the explicit
dependence k " ( s ) from the dispers ion equation; this
dependence is shown in Fig. 15 (here, s = k ' · ν ρ / ω ) .
When s is increased, the relat ive damping increases
smoothly from k"/k ' = 1/2ωτ for s = 0 to «0 .8/ωτ
for s = 1. When s is increased st i l l further, an addi-
tional Landau damping t e r m must be included. This
t e r m is proportional to x 2 ( s - I ) 2 , where χ is the
angle of inclination of the e lectron ellipsoids with r e -
spect to the basa l plane. Assuming that ω τ = 50 (see
Sec. 3.3), we can easily demonstra te by calculations
that for an increase in s from 1 to 1.05 (at this value
of s, we have k"/k ' » l / ω τ ) the oscil lation amplitude
for a sample 1 mm thick should decrease by a factor
of 3, which is in qualitative agreement with the exper-
imental r e s u l t s (Fig. 15). Under these conditions, the
relat ive amplitude of the impedance oscil lations is
AR/R ~ 10"2.

The solution in the form of an exponentially damped
wave, which is assumed in the calculation of the con-
ductivity tensor i n [ 2 > 6 ] , exists only as long as k"/k '
<̂C l / ω τ . When the two quantities in this express ion
become comparable, such a solution is no longer valid.
This is to be expected because, in the case of s trong
Landau damping, the field in the inter ior of a solid-
state p lasma var ies in accordance with a law which is
m o r e complex than the exponential dependence1-30·1 and
the influence of the boundary of a sample becomes
very important. This influence has been ignored in
the calculations car r ied out for an infinite meta l .
Allowance for the presence of the boundary introduces
smal l cor rec t ions , even in the solution which we have
obtained for k"/k ' < l / ω τ .

The behavior of damping in the case s > l can be
explained quite sat is factori ly. To do th is , we shall
consider why there is no damping if the c a r r i e r orbits
have an axis of symmetry . In this case , the e lectrons
which contribute to the Landau damping and which move
together with the wave (in a system of coordinates
which is associated with the wave) a r e subject to a
constant e lectr ic field which is perpendicular to the

magnetic field (because the components σζα vanish).
The action of this e lectr ic field, averaged over a cyclo-
t ron period, on an electron-moving along a s y m m e t r i c a l
orbit does not resul t in energy dissipation.

Similar considerations explain also our re su l t s for
Η II k II C 3 . In this case, the e lectron orbits a r e in-
clined to the magnetic field. Obviously, the effect of a
spatially nonuniform e lectr ic field on e lectrons moving
along such orbits gives r i s e to a finite Landau damping.
Such damping is associated with the inclination of the
orbit to the magnetic field because this field is inclined
with r e s p e c t to the axis of the constant-energy ell ip-
soid. Since the diameter of the orbits of the electrons
moving in phase with the wave increases with i n c r e a s -
ing s (beginning from z e r o for s = 1), it follows that
the damping is zero for e lectrons which corresponds
to a high-symmetry point of the F e r m i surface, and
which move in phase with the wave ( s = 1 ) . The damp-
ing gradually increases with increasing s, as found in
our calculat ions.

If the magnetic field is directed at an angle with r e -
spect to the wave vector and with respect to the sym-
metry axes, we find that, when the field is reduced, the
Landau damping may appear suddenly at the threshold
condition k-Vz/ω = 1. -1 This is due to the presence
of a relatively smal l component Ez in the wave.
Naturally, this gives r i s e to finite absorption as soon
as s exceeds unity. The range of fields in which the
damping r i s e s rapidly can be est imated by postulating
that, during the t ime between two collisions, the phase
of the field " s e e n " by an electron at a high-symmetry
point changes by le s s than v, which gives the relat ive
width ~ 1 / ω τ .

5.3. Measurement of the Electron Velocity in Bismuth

The threshold of the Landau damping is associated
with the F e r m i s ta t i s t ics of the c a r r i e r s in a meta l .
According to these s ta t i s t ic s , the velocities of e lec-
t rons and holes lie within a limited range from +vjr to
-νγ, where vp is the maximum drift velocity of the
c a r r i e r s for a given direction of the magnetic field,
i.e., it is the velocity at a high-symmetry point of the
F e r m i sur face. In the case of bismuth, it is found that
the velocity of the e lectrons at a high-symmetry point
VFe exceeds the corresponding velocity of holes v^h
for those direct ions of the field along which the Landau
damping has been observed. Thus, the Landau damping
threshold is determined by the e lectron s p e c t r u m .

The velocity of a wave corresponding to the Landau
damping threshold can be measured experimentally by
counting the number of oscil lations (starting from H" 1

= 0). In this way, it is possible to m e a s u r e the e lec-
tron velocity using the condition ν = v F e , which cor-
responds to the Landau damping threshold. Such
measurements have been reported in1·1 3 '3 4·1.

As in measurements of any other physical quantity,
it is necessary to consider the problem of the experi-
mental e r r o r s in the determination of the F e r m i
velocity. If we consider the experimental re su l t s p r e -
sented in Fig. 15, it becomes clear that without addi-
tional calculations it is difficult to deduce the electron
velocity from such r e s u l t s m o r e accurately than to
within ~ 10%. This is due to the variation of the r e l a -
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0 Q25 №0 0J5
H-',kOe·

FIG. 16. Oscillations obtained in the determination of the Landau
damping threshold H L . [ l 3] The smooth decrease in the oscillation am-
plitude with diminishing values of H"1 is due to the increasing imped-
ance R. H 1 C 3 , k || C 2 , tf= 57°45'. Ε || C,, f = 9.27 GHz, D = 0.47
mm, T = 1.5°K.

FIG. 17. Determination of the
Fermi velocity of electrons in the basal
plane. The continuous curve represents
the calculations based on the assumed
Fermi surface model (the error may be
±5%). The experimental error is given
for some of the measurements, k || C 2,
H I C 3 . O ) , · ) , » ) D = 1.00mm;Δ),
A), A) D = 0.47 mm; Ο), Δ) <?< 10°;
Φ), A) 60° > d > 50°; · ) , A) & >60°;
X) velocity determined from the cy-
clotron resonance shifted by the Dop-
pler effect.

tive damping in the range s < 1 and the very smooth
rise of the damping in the range s > 1 (curve 4 in
Fig. 15). However, we have pointed out in Sec. 5.2 that
the Landau damping can appear suddenly and that this
should give rise to an nonmonotonic dependence of the
oscillation amplitude on the field (Fig. 16). Khaikin and
Edel'man'13·1 gave an experimental criterion which can
be used to determine whether the observed threshold
of the existence of oscillations does indeed represent
the Landau damping threshold. The essence of this
criterion is a comparison of the experimental results
obtained for samples of various thicknesses and for
the same sample along crystallographically equivalent
field directions but different orientations of the field
relative to the wave vector. The latter technique is
particularly convenient if Η lies in the basal plane
since this makes it possible to compare several experi-
ments carried out on the same sample. If the same
value of the velocity is obtained in all these cases (if
Η is inclined with respect to k, the measured quantity
is the projection of v z along the direction of k), it fol-
lows that this value represents the velocity of the
electrons at a high-symmetry point. The relative error
in these measurements is equal to the reciprocal of
the number of oscillations. The results of such an
analysis, carried out for k 11 C2, Η ι C3, are presented
in Fig. 17. It follows from this figuie that the velocity
found experimentally from the Landau damping thresh-

old represents the velocity at a high-symmetry point
if 8°> * ( H , C 2 ) > 3 ° . However, if <(H, C 2 ) > 8 ° ,
the oscillation threshold is governed either by the
damping of the Doppler-shifted cyclotron resonance
(Sec. 6.2) or by the relaxation damping. The velocity
in the range <£ (H, C 2) < 3° can be measured using
thicker ( > 1 mm) samples. The weakening of the
Landau damping with decreasing angle <ί (Η, C 2 ) is
associated with the absence of damping in the Η II C2

II k case, as discussed in Sec. 5.2.

5.4. Propagation of Electromagnetic Excitations In the
Case k ·νρ/ω > 1 under Conditions of Strong
Landau Damping

We shall consider this problem qualitatively. As
demonstrated in Sec. 5.2, the solution in the form of
an exponentially damped wave ceases to satisfy the
Maxwell and transport equations if k"/k' > l/ωτ. This
can be explained as follows. Consider a wave traveling
from the surface of a sample at a phase velocity
ν = ω/k < vp. The electric field of this wave disturbs
the equilibrium distribution of carr iers . Those electrons
which move at a velocity vjr > ν can " c a r r y " informa-
tion on the electromagnetic field to a depth equal to the
mean free path Ζ in a time interval τ » l/vp < l/v. If
the damping length of the wave is less than I (this is
ensured by the condition k"/k' > l/ωτ), it follows
that the field at a distance of the order of I from the
surface is determined by the "fast" electrons. In
other words, the phase velocity increases with depth
in the metal and it approaches the value vp.

The field distribution in a metal is then similar to
that which is observed in the anomalous skin effect.
This similarity is to be expected because the high-
frequency field distribution in a metal under anomalous
skin effect conditions (in the absence of a magnetic
field) represents the limiting case (Η — 0) of the ef-
fects considered here.

These qualitative considerations are supported by
the experimental results (Fig. 18). When the Landau
damping becomes active, the oscillation amplitude
decreases by two orders of magnitude but the oscilla-
tions are still observed right up to the Doppler-shifted
cyclotron resonance of the electrons (Sec. 6.2). The
value of the wave vector averaged over the thickness
of the sample can be found by counting a number of
oscillations: for the results presented in Fig. 18, we
find that k = (1.38 ± 0.06) χ 103 cm"1. If we know the
effective mass [ 3 3 ] and the velocity VF (determined
from the Landau damping threshold in the same trace),
we can use the resonance condition Ω = ω + k · vp to
calculate the value of the wave vector at the surface
k s = (1.76 ± 0.1) x 103 cm"1. The difference between
the values of k and k s exceeds the experimental er-
ror and is in agreement with our qualitative considera-
tions: k decreases away from the surface, i.e., the
phase velocity of the wave increases with depth.

6. CYCLOTRON RESONANCE AND SPATIAL
DISPERSION

6.1. High-order Cyclotron Resonances

The analysis in Sec. 4 shows that, in the range of
magnetic fields in which wave propagation is possible,



M A G N E T O P L A S M A W A V E S IN B I S M U T H 593

ρ-3 is

1:30

ο OJi 1,0
HM,k0e"'

FIG. 18. Oscillations of the surface impedance. [31] Η 1 C 3 || E,
k || C 2 , ϋ = 3° 10', f = 9.62 GHz, D = 1.00 mm, Τ = 1.5°Κ. H e is the
Landau damping threshold; H e is the Doppler shifted cyclotron reso-
nance of holes, associated with a wave whose polarization in strong
fields is close to the direction of the C\ axis. The short-period oscilla-
tions, which can be seen between H L and H n , are also associated with
this wave. The line denoted by 1:30 shows where the amplification of
the system was increased by a factor of 30.

, iff
m

t»H

1.0 1,5 H"1, kOe"1

FIG. 19. Oscillations of the surface impedance of bismuth, demon-
strating the excitation of higher-order resonances (ηΩ = ω, where η =2,
3,4, 5). [1S] Η | | C , l k | | C 2 , E | | C 3 , f = 3 5 . 9 G H z , D = 0.47 mm, T =
1.4°K. H[jR is the hybrid resonance field. The arrows denoted by ηΩ =
ω show the values of the field at which the resonance condition is satis-
fied for holes.

no cyclotron resonance (ω/Ω = 1) is observed. In some
c a s e s , the hybrid resonance field H H R is so low that
the fields satisfying the condition ηΩ = ω for heavier
c a r r i e r s (n = 2, 3 , . . . ) a r e higher than H H R . This
situation o c c u r s , for example, if Η ιι Ci, k ιι C 2 . In
This case , H H R ~ 500 Oe for ~36 GHz, and in fields
exceeding Hj jp, hole resonances with η = 2, 3, 4, and
5 may occur . It is known that resonances at multiples
of the cyclotron frequency appear only in the presence
of spatial d i s p e r s i o n [ 3 5 ] and therefore they have not
been considered in Sec. 4 (spatial dispers ion has been
ignored in that sect ion).

FIG. 20. Oscillations of the surface
impedance of bismuth showing the
thresholds of the Doppler damping. [13]
The arrows show the fields which were
regarded as the thresholds in the analy-
sis of the experimental results. Hn is the
field obtained by calculation for the
first-order cyclotron resonance of holes
at a high-symmetry point in the case
* = ir/2. H1C 3 | |E ,k | |C 2 , f=9.62
GHz, D = 1.00 mm, Τ = 1.5°K.

1,15 1,5 1,75
Η"1, kOe"'

According to Eq. (4), the conductivity σ ^ may ex-
hibit resonances of any o r d e r n. In the case of an el-
lipsoidal F e r m i surface, the corresponding resonance
t e r m s should be multiplied by (ψ/Ω)2 1 1. This factor
r e p r e s e n t s the spatial dispers ion and, because of it,
t h e r e a r e no surface impedance resonances if ψ/Ω
•C 1 and τ is finite. However, the condition ψ/Ω ^C 1
can be satisfied only at very high frequencies. For
f = 36 GHz and η = 2, we have ψ/Ω » 0.6 (this should
be compared with ψ/Ω « 0.15 for η = 1, as shown in
Sec. 5.1). This inhomogeneity of the high-frequency
field makes it possible to observe cyclotron resonance
in bismuth at high f r e q u e n c i e s / 3 6 1 Investigations of
the wave spect ra show that the excitation of higher-
o r d e r resonances a l t e r s the wave velocity, causes
strong damping of the waves, and suppresses oscil la-
tions of the surface impedance of a plane-paral le l
plate. Moreover, cyclotron resonance (Fig. 19) is ob-
served in the surface impedance of semi-infinite
bismuth samples (the r e s u l t s presented in Fig. 19
should be interpreted in the knowledge that under
strong damping conditions a sample may be regarded
as infinitely thick).

6.2. Cyclotron Resonance at Frequencies Shifted by
the Doppler Effect

We shall now consider the influence of cyclotron
resonance on the wave spectrum in the case defined by
& = •$ (H, k) *• ν/2. The drift of c a r r i e r s along the
vector k makes the c a r r i e r s " s e e " an external field
of frequency ω - k · v z because of the Doppler effect.
The cyclotron resonan£e condition is now ηΩ = ω
- k · v z . The value of v z for the group of c a r r i e r s
considered ranges from - v p to +vj? because they
obey the F e r m i s ta t i s t ic s . Therefore, at any point in
the range of fields given by the condit ion [ 1 3 ]

nQln = a> + k(Hun)vFcos&, nQ№ = (a — k(H2,n)vrcosu, (18)

there a r e c a r r i e r s which satisfy the resonance condi-
tion.
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ΰα№&, 10' cm/sec

0,5 Η"1, koE"1

F I G . 2 1 . O s c i l l a t i o n p a t t e r n u s e d in t h e d e t e r m i n a t i o n o f t h e D o p -

pler d a m p i n g t h r e s h o l d s H n , H 1 2 , a n d H 2 1 . [ 1 5 ] k | | C 2 , H l C 3 || E, & =

6 6 ° , f = 3 5 . 9 G H z , D = 1 . 0 0 m m .

JVC,

0 HISS 0£50 0J7S 0,500 0,62f
H-',kOe-·

F I G . 2 2 . O s c i l l a t i o n p a t t e r n u s e d in d e t e r m i n a t i o n o f t h e D o p p l e r

d a m p i n g t h r e s h o l d s for h o l e s Hjj ( c u r v e 1) a n d e l e c t r o n s H e ( c u r v e 2 ) .

[ i 3 ] T h e a r r o w H e aga inst c u r v e 1 s h o w s t h e c a l c u l a t e d d a m p i n g f ie ld

for the electrons represented by this curve. Η || k || C 2 , f = 9.27 GHz,
D = 0 .47mm,T= 1.5°K. The lines denoted by l :5and l :10markthe
points at which the amplification was increased.

Using Eq. (4) we can show that, when the field l ies
in the interval defined by Eq. (18), the components σ ^
should have imaginary and r e a l p a r t s (even when ω τ
— °°), which should give r i s e to the damping of waves.

The appearance of damping can be observed most
easily by recording the oscil lations for various values
of the angle i>, beginning from «> = π/2. In this way,
we can observe a region of s t rong damping which
broadens when the angle & is reduced because of the
increase in the projection of V F on k (Fig. 20). Simi-
lar behavior can also be observed near h igher-order
resonances (Fig. 21).

When the angle $ is reduced, the threshold H 2i
shifts in the direction of weaker fields in which osci l-
lations of the surface impedance usually disappear
(this is due to s t rong relaxat ion damping, Landau damp-
ing, h igher-order resonances , hybrid resonance, e tc . ) .
The damping threshold H n and the associated r e s o -
nance at a frequency shifted by the Doppler effect can
be observed also when tf = 0 . [ 1 3 > 1 6 ] This phenomenon
has been considered theoretical ly i n [ 3 7 ]

iff

FIG. 23. Determination of the Fermi velocity vpjj and the effective
mass mj, of holes located at a high-symmetry point. Basal plane, Η 1 C 3 ,
k || C 2 . [1S] The straight line is plotted using the value vph = 2.46 Χ 107

cm/sec obtained for i> = 0. O), D) vph cos d calculated from Eq. (19);
+) calculated using Eq. (20) and η = 2; the other symbols represent the
calculations based on Eq. (20); X) calculated assuming mj, = 0.218m0;
X) calculated assuming 1% = 0.212m0; · ) , O) f = 9.62 GHz, D = 1.00
mm; Δ) f = 9.27 GHz, D = 0.47 mm. The other symbols represent the
values for f = 35.86 GHz, D = 0.47 mm. The vertical segments near
some points represent the experimental errors.

The t h r e s h o l d of the r e s o n a n c e damping of w a v e s i s
o b s e r v e d c l e a r l y if the f ield H u i s g r e a t e r than the
field correspond ing to the Landau damping thresho ld
or if t h e r e i s no Landau damping, which o c c u r s — f o r
example—when Η II k n C2 i r respect ive of the wave
polarization (Sec. 5.2). Oscillations recorded in this
case for Ε II Ci and Ε II C 3 a r e shown in Fig. 22. The
wave spectrum for Ε II C 3 is governed mainly by e lec-
t rons and therefore oscil lations stop when the e lectron
resonance conditions a r e reached. A weak-field peak
in Fig. 22 r e p r e s e n t s a hole resonance for a wave
polarized in strong fields along Ci; this resonance
appears for any polarization of Ε because the wave
polarization near resonance is el l iptical. If Ε 11 Ci,
the wave spectrum is determined by holes and its
threshold is found at the hole resonance field. In this
case , the electron resonance, which occurs in a higher
field, has no influence on the wave spect rum.

As demonstrated in Sec. 5.4, even the waves subject
to the Landau damping may exhibit cyclotron resonance
at a frequency shifted by the Doppler effect.

6.3. Measurement of the Hole and Electron Velocities

Cyclotron resonance shifted by the Doppler effect
can be used to m e a s u r e the velocity of c a r r i e r s at a
high-symmetry point of the F e r m i surface because the
effective m a s s e s can be calculated from the cyclotron
resonance d a t a . [ 3 3 ] According to our cyclotron r e s o -
nance m e a s u r e m e n t s , the hole F e r m i surface has an
axial symmetry to within ~ 0 . 1 % . Therefore, if we
collect the resu l t s of al l the m e a s u r e m e n t s of the hole
resonance for H i Cj and use the formula

ι, cos ϋ = - (19)

(it is assumed that both thresholds a r e observed and
the splitting is weak, so that k i 2 can be found by ex-
t r a p o l a t i o n 1 " ' 3 4 1 ) or the formula

(Qh-a)/A:1i, (20)

and then plot the r e s u l t s obtained using the coordinates
vph cos £ and cosi>, we find that all the points fit a



M A G N E T O P L A S M A W A V E S I N B I S M U T H 595

Table IV. F e r m i velocities of c a r r i e r s
in bismuth

a-'r *'/*'

BlCj

Η || C2

Η II β axis of
electron ellipsoid

vF(exper.),
10"' cm/sec-ι

Holes
2 . 4 6 ± 0 . 1

2.53

Electrons
1 1 . 0 ± 0 , 5

7 . 4 ± 0 . 4

v F (calc), 10 ' '
cm/sec •·!

2 . 5 5 ± 0 . 1 5

2 . 5 5 ± 0 . 1 5

10 6 ± 0 . 5

7 . 4 ± 0 . 3

Reference

is

38

15

15

single s traight line (Fig. 23), provided the value of m n

is suitably selected.* The values found in this way a r e :
vph = (2.46 ± 0.1) χ 107 cm/sec and mh = 0.215 m 0 .

Since a re l iable value is available for the e lectron
m a s s at a high-symmetry point , [ 3 3 ] we can determine
vpe from Eq. (20) and from the experimentally r e -
corded t r a c e s of the type shown in Fig. 22. The c a r r i e r
velocities reported i n [ 1 5 ' 3 8 ] a r e l isted in Table IV.

As in the determination of the c a r r i e r velocity from
the Landau damping threshold (Sec. 5.3), we have to
consider the accuracy of the m e a s u r e m e n t s which is
re lated to the need to calculate the s p e c t r u m . This
problem demands laborious calculations and it has
been solved only for the Η II k II Ci c a s e . [ 3 8 ] The r e -
sults of the calculations of the damping a r e given in
Fig. 24, together with the values obtained experimentally
and reported i n [ 3 8 ] .

The accuracy of the determination of the c a r r i e r
velocity in other cases can be found by est imating the
damping near the threshold. Thus, when # « 77/2,
Η 1 C 3 , k II C 2 near the damping t h r e s h o l d [ 1 5 ]

k"/k'^(3lin)®=^ χ [ ι _ Ω - " 1.
v ' ω L kvph cos φ J

At the point Ω = ω + k v p h c o s ^ , the ra t io given by
the above express ion vanishes and this r e s u l t s in the
" p u l l i n g " of the oscil lations into the resonance region.
We shal l a s sume that oscil lations can be observed if
~10" 4 of the incident wave power r e t u r n s to the investi-
gated surface after reflection from the opposite surface
of a slab (this is equivalent to a sensitivity AR/R
» 10~4). Then, the damping length for a sample D = 1
mm thick should be ~ 0 . 5 m m , i.e., k" « 20 cm" 1 .
Since k ' « 103 cm" 1 , it follows that k"/k ' « 2%. Such
damping is reached at & = 80°, f = 9.6 GHz when we
move away from the damping threshold by ~5% of the
width of the damping region. Under these conditions,
the e r r o r in the determination of the difference H n
- H12 may be of the same o r d e r of magnitude (~5%).

The problem of the exact calculation of the wave
spectrum presents not only computational but also
fundamental difficulties. As in the case of the Landau
damping, we may encounter a situation in which a wave
at the surface of a sample is damped out in a distance

*The value of mh must be selected because cyclotron resonance in-
vestigations do not yield the value of the hole mass at a high-symmetry
point. [33]

XT3

FIG. 24. Dependence of the resonance damping k"/k' on (Ω^-ω)/
kvFh· t 3 8 ] Η || k || Cj, Ε || C 2 , f = 51.0GHz. The continuous curve re-
presents the calculated values and the separate points plot the experi-
mental results obtained for samples of different thicknesses in the range
~0.8-3 mm.

s h o r t e r than the m e a n f r e e path of c a r r i e r s and then
the d istr ibut ion of the f ield in the s a m p l e i s s i m i l a r to
that c o n s i d e r e d in S e c . 5.4.

7. CYCLOTRON WAVES

D i s p e r s i o n in t i m e and s p a c e i s r e s p o n s i b l e not
only for the w a v e s in a c o m p e n s a t e d meta l , which we
have just c o n s i d e r e d , but a l s o for w a v e s of a different
type, which a r e known a s c y c l o t r o n w a v e s . T h i s name
i s u s e d to indicate that the appearance of such w a v e s
i s a s s o c i a t e d with c y c l o t r o n r e s o n a n c e . Cyc lotron
w a v e s may e x i s t in any m e t a l . They have b e e n ob-
s e r v e d e x p e r i m e n t a l l y in b i s m u t h [ 3 9 ' 4 0 ' 4 1 ] and in a lkal i
m e t a l s . [ 4 2 ' 4 3 ]

We sha l l be i n t e r e s t e d in " o r d i n a r y " c y c l o t r o n
waves in which the field Ε is para l le l to an external
magnetic field H. If the field directions a r e s y m m e t r i -
cal (for example, Η ιι Ci or Η ιι C 2), the spectrum of
the cyclotron waves for k 1 Η is given by the equation
σ ζ ζ + (ic2k2/4tfu>) = 0, where the component σ ζ ζ of the
conductivity tensor is defined by Eq. (4).

If the magnetic field is s trong so that ω/Ω » 1, the
inequality Im σ ζ ζ > 0 is satisfied and the propagation
of undampled waves is impossible. If the magnetic
field is such that ω/Ω « 1 for any of the c a r r i e r
groups, we find that the t e r m s with η = 1 play an
important ro le and1-40·1

Ρ (ψ)
(21)

where the polynomial Ρ(ψ 2) is positive (its form de-
pends on the shape of the F e r m i surface and on the
direction of H) and σ ζ ζ is a slowly varying function
of k and H, which contains al l the other t e r m s (its
value differs little from crZ 2 for Η — « ) . It follows
from Eq. (21) that if 1 » [1 - (ω/Ω) 2 ] > 0, we have
Im σ ζ ζ < 0, which means that undamped waves may be
propagated. In general , when the field is directed at
an angle with r e s p e c t to the symmetry axis of the
resonating F e r m i surface (cyclotron waves of type I),
the polynomial Ρ(ψ 2 ) begins with a constant and the
z e r o value of k is not reached at resonance but at a
higher value of the field corresponding to a dielectr ic
anomaly [ 2 7 ] and the value of k increases with d e c r e a s -
ing field. Waves with smal l values of k do not exist
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FIG. 25. Cyclotron wave spec-
trum for k || C 3 , Η || Ε || C,. [40]
The upper part of the figure shows
the trace obtained experimentally
under the following conditions: f =
9.80 GHz, D = 0.21 mm, Τ = 1.5°K.
The lower part of the figure is the
dependence of k on Ω/ω at low
values of k (corresponding to long-
period oscillations in the trace).
· ) f = 9.60 GHz, D = 1.00 mm;
O) f = 9.51 GHz, D = 0.47 mm;
Δ) f= 9.80 GHz, D = 0.21 mm.

ZflO 2,50
ΰ/ω

n e a r r e s o n a n c e . H o w e v e r , i f t h e f i e l d i s p a r a l l e l t o

t h e s y m m e t r y a x i s o f t h e r e s o n a t i n g F e r m i s u r f a c e

(cyclotron waves of type Π), the polynomial Ρ(ψ2)
begins with a quadratic term, which corresponds to the
wave spectrum k2 oc [l - (ω/Ω)2] for ψ2 <C 1,
1/[1 - (ω/Ω)2] > 0. The calculations reported in [ 4 2 ]

show that, for a given value of Η and ω, type Π cyclo-
tron waves may have several different values of k.
Obviously, this is possible also in the case of type I
waves because the difference between the two cases
considered exists only at low values of k.

Waves of type I, associated with the excitation of
the cyclotron resonance of electrons of 0.0162 m 0

mass (electrons of two ellipsoids resonate simultane-
ously), were reported in'-39"411. These cyclotron waves
were observed in samples 0.2—1 mm thick, at
1.5—4.2°K and ~9.6 GHz. Two series of oscillations
were observed simultaneously (Fig. 25) in one of the
samples (0.21 mm thick). A comparison with the
measurements of the transparency of bismuth in the
cyclotron wave region [ 4 1 ] established that each of the
oscillations series in Fig. 25 represented a change (by
unity) in the number of half-waves (and not complete
waves, Sec. 2.2) which could be fitted into the thick-
ness of the sample.

Standing cyclotron waves of type Π were observed
only in a sample 0.2 mm thick, at 0.6°K (this tempera-
ture was reached by pumping He3 vapor) and 19.1
GHz. [ 4 0 ] The field Η II C2 and the waves were associ-
ated with the resonance of that electron ellipsoid whose
major axis was perpendicular to the C2 axis. The
spectrum obtained in this case is shown in Fig. 26.

The initial part of the cyclotron wave spectrum (for
small values of φ) was calculated for case I, using the
ellipsoidal model of the Fermi surface. The calcula-
tion was carried out up to terms ~ψβ and the results
are presented in Fig. 25. The approximation used was
insufficient to calculate the upper part of the spectrum
(corresponding to more frequent oscillations in Fig.
25) and this calculation was not attempted.

The spectrum of waves-for the Η II C2 case was
calculated using, as a first approximation, the same
ellipsoidal model. However, the value of Ω/ω was not
calculated from the values of the field given by the
model but from an experimentally obtained trace. The

FIG. 26. Cyclotron wave spec-
trum for k II C 3 , Η || Ε || C 2 , f =
19.1 GHz. I 4 0] The upper part of
the figure shows the experimentally
obtained trace for D = 0.20 mm,
Τ = O.85°K. The lower part shows
the dependence of k on Ω/ω: · )
cyclotron resonance field assumed
to correspond to zero value of
dX/3H; O) cyclotron resonance as-
sumed to correspond to maximum
of 3X/3H; the continuous curve is
the calculated dependence.
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dif ference w a s v e r y c o n s i d e r a b l e b e c a u s e the m a s s of

e l e c t r o n s at a h i g h - s y m m e t r y point m n s = 0.137 m 0

[ 3 3 ]

w a s l a r g e r than the m a s s correspond ing to the centra l

s e c t i o n m e = 0.12 m 0 u s e d in the determinat ion of the

p a r a m e t e r s of the m o d e l . F igure 26 shows the r e s u l t s

of a c o m p a r i s o n of the e x p e r i m e n t a l and ca lcu lated

s p e c t r a . The different s y m b o l s u s e d in th i s f igure

r e p r e s e n t different s e l e c t i o n s of the point c o r r e s p o n d -

ing to e x a c t r e s o n a n c e in the exper imenta l l y obtained

trace. The absolute value of k was found by extrapo-
lation of the initial region near resonance in accord-
ance with the law k2 cc [1 - ( ω / Ω ) 2 ] .

In contrast to Fig. 25, the measured and calculated
values of k shown in Fig. 26 differ considerably in the
quantitative sense and a similar difference is observed
for the range of fields in which wave propagation is
possible. This difference is primarily due to the non-
quadratic nature of the electron spectrum [ 3 3 ] but it
deserves further study.

No cyclotron waves associated with the resonance of
the hole surface have yet been observed. According to
estimates, the relative width of the range of existence
of these waves, ΔΗ/Η, should not exceed ~0.5% for
k II C 3 and, obviously, such waves could not be observed
for values of ωτ = 200-300 for holes (these values were
typical of the better samples at 0.6°K at 19 GHz).

It is demonstrated in [ 4 4 ] that an allowance for cyclo-
tron waves is essential in studies of the line profile of
cyclotron resonance in bismuth.

8. POSSIBLE FUTURE INVESTIGATIONS OF WAVES

Our review shows that the numerous investigations
of the properties of electromagnetic waves in bismuth
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have established the characteristic features of this
phenomenon and shown their relationship to many other
effects (cyclotron resonance, quantum oscillations,
surface quantum levels [ w ] ) by describing their proper-
ties on the basis of a model of the Fermi surface.
Thus, bismuth is a metal whose dynamic carrier
properties are not investigated simply for their own
sake but can be used to analyze a wide range of phe-
nomena associated with the propagation of waves.
These phenomena include the Landau damping, cyclo-
tron resonance at frequencies shifted by the Doppler
effect, and cyclotron waves. In its turn, the study of
these phenomena has made it possible to refine several
of the parameters of the energy spectrum of bismuth.
In this way, the behavior of a compensated metal in
magnetic and electromagnetic fields have been investi-
gated sufficiently thoroughly to provide a basis for
further studies of the wave propagation as a means of
determining the carrier energy spectra of other semi-
metals, especially antimony and graphite. There have
been reports of magnetoplasma waves in these two
semimetals. [ 4 5 ' 4 6 ] However, methodological difficulties
associated with the preparation of high-quality single
crystals and with the need to work in strong fields (be-
cause of the lower velocity of waves in antimony and
graphite) have impeded detailed studies of plasma phe-
nomena in these semimetals. On the other hand, the
electron energy spectra of antimony and graphite are
known quite well and therefore investigations of wave
propagation can give only some additional detailed data
which are not needed very urgently.

In view of this, it would seem much more interest-
ing to use magnetoplasma waves in investigations of
alloys because conventional methods (for example, the
de Haas-van Alphen effect[47]) yield very limited in-
formation on the carrier dynamics in these materials.

It may also be of some interest to study relaxation
processes by measuring the damping of waves (such
investigations have been started recently 1 " ' 2 0 1 ). This
applies, in particular, to studies of the electron-phonon
interaction. The same method may be used to deter-
mine independently the relaxation times of electrons
and holes in bismuth because there are directions of
Η and Ε for which the wave spectrum is governed
either only by holes or only by electrons of one ellip-
soid of the Fermi surface.

Investigations of the nonlinear effects associated
with the propagation of waves in bismuth, such as de-
tection'48-1 and mixing1-49-1 of oscillations, also seem
very promising. Hardly any work has been done on
this subject and one may expect that new effects will
be discovered.

LIST OF SYMBOLS

Ci, C2 ) C3—bisector, binary, and trigonal axes of
crystalline bismuth (only 1,2, and 3
are used in subscripts)

D—thickness of a sample
d = 2pc/eH—orbit diameter

E—electric field vector of waves
e—subscript referring to electrons
f—wave frequency

H—static magnetic field

h
j

k = k ' + ik"
I

Mi, M 2 , M 3

m
m 0

m 2 , m a , αΐβ

N
N
P

P
r
S

s
v
v

x, y, z

ΔΗ" 1

e—

λ = 2?r/k

τ—
ψ = eHt/mc

O
χ

ψ
Ω = eH/mc

ω = 2ττί

subscript referring to holes
current density
wave vector
mean free path of carriers
components of the hole-mass tensor
effective mass of carriers
free-electron mass
components of the electron-mass tensor
along principal axes
normal to the surface of a sample
carrier density
subscript referring to waves polarized
in strong fields in the (z, y) plane
electron (hole) momentum
radius vector
subscript referring to waves polarized
in strong fields perpendicularly to the
(z,jr) plane

=k-v z /w
—electron (hole) velocity
—phase velocity of waves or—with a sub-

script-carrier velocity
—coordinate axes; ζ axis always directed

along H; k located in the (z, y) plane
—oscillation period in terms of recipro-

cal field
~Kronecker's delta

Fermi energy
=<Ϊ(Η, k)
—wavelength
—conductivity tensor (l is the direction

of the magnetic field)
time between two successive collisions
angle in momentum space
averaging over φ
angle of inclination of the major (a)
axis of ellipsoid with respect to basal
plane
Ψ

] (k-v - kzvz)d(p
cyclotron frequency
angular frequency
plasma frequency
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