
SOVIET PHYSICS USPEKHI

539.196.3

VOLUME 13, NUMBER 5 MARCH-APRIL 1971

MACROSCOPIC APPROACH TO EFFECTS OF RADIATIVE INTERACTION

OF ATOMS AND MOLECULES

V. A. ALEKSEEV, A. V. VINOGRADOV, and 1.1. SOBEL'MAN

P. N. Lebedev Physics Institute, U.S.S.R. Academy of Sciences

Usp. Phys. Nauk 102, 43-54 (September, 1970)

1. INTRODUCTION

1 HE radiation of an aggregate of Ν oscillators (atoms
and molecules) localized in a volume with linear dimen-
sions a « X (where X = λ/2 = c/w)and λ is the wave-
length) is characterized by a number of specific features
connected with the so-called cooperative effect, i.e.,
with the existence of collective oscillations due to the
interaction of the oscillators via their common radiation
field.

The nature of this effect is easiest to explain with
classical oscillators as an example (charge e, mass m,
natural frequency ω 0 ) . It is well known that the radia-
tion of electromagnetic waves is accompanied by a reac-
tion of the radiation field on the charges, i.e., by the
appearance (occurrence) of radiation-friction forces.
In the case when a « X the radiation-friction force
acting on each oscillator of the system is equal to (see,
for example t l j

w h e r e D i s the tota l d ipole moment of the s y s t e m .
T h e r e f o r e the equation of mot ion of e a c h of the o s c i l l a -
t o r s in the external f ield E° i s

V, — (2e/3me3)"i) + cofo = (elm) E°. (1.2)

Multiplying e a c h of t h e s e equations by e and s u m m i n g
o v e r a l l the o s c i l l a t o r s of the s y s t e m , w e obtain an
equation of mot ion for D :

D - Ν (2e*/3mc3) D ' + coJD = Ν (eVm) E». (1.3)

F r o m t h i s it i s e a s y to find the radiat ion s p e c t r u m of

the s y s t e m

/(a>)HD-l2 Ηω;-ω2-ίωΛΊ>οΓ. To = 2e2co2/3mc3. (1.4)

For one isolated oscillator, as is well known, we have

(1.5)

here γ0 is the constant of the radiative damping of the
oscillator.

It is seen from (1.3) and (1.4) that the oscillations of
the total dipole moment of the system in question, ow-
ing to the interaction of the oscillators via their com-
mon radiation field, attenuate by a factor Ν faster than
the oscillations of one isolated oscillator. Accordingly,
(1.4) contains the collective radiative width Ny0.

It is easy to show that the same result is obtained by
an elementary analysis of quantum radiators.

Let us consider a system of Ν identical atoms. The
ground state of such a system is described by the wave
function

Ψο = Φο(1)φο(2) ...φ»(Λ0, (1.6)

where φ(ϊ) is the wave function of the i-th atom. The
first excited level of the system, corresponding to exci-
tation of one of the atoms, is N-fold degenerate (we as-
sume for simplicity that the levels of one atom are not
degenerate), and the states belonging to this level can be
described either by wave functions of the type

.. φ,(£) . . . φο(Λ'), (1.7)

or by symmetrized linear combinations of these func-
tions. If all the atoms are localized in a volume V « λ3,
then the interaction of the system with the electromag-
netic field can be written in the form

where Pj is the momentum of the atomic electron and
A is the vector potential of the field. Since the opera-
tor $£' is completely symmetrical with respect to per-
mutations of the arguments i (the number of the atom)
and the wave function of the ground state (1.6) is also
fully symmetrical, the matrix element SB' differs from
zero only for transitions to a fully-symmetrical excited
state

ψ , = ( H Y N ) 2 ψ{". ( i . 8 )

All the r e m a i n i n g l inear combinat ions of the functions
(1.7) , orthogonal to the function (1.8), have a different
s y m m e t r y . T h e r e f o r e the m a t r i x e l e m e n t s M" for the
correspond ing t r a n s i t i o n s a r e equal to z e r o . In other
words, only the fully-symmetrical state (1.8) is con-
nected with φ0 by a radiative transition.

The matrix element for the transition ψ0 —• ^ is

<Ψ, | SB'\ Ψο> = (ilVN) 2 <Ψ{'> I (elmc) A 2 p, | Ψο> = VN (elmc) ApIOf

1 (1.9)

where Pj, is the matrix element of ρ for one isolated
atom. It is seen even from (1.9) that the radiative decay
of the state (1.8) is Ν times faster than in the case of
a single atom. The width of the emission spectrum,
which can be easily determined by using the well known
Weisskopf-Wigner method12 ] (see [ 3 ] concerning this
subject) is also Ν times larger than for the isolated
atom.

The fact that radiating systems manifest collective
properties is well known, and a number of concrete ex-
amples where this effect plays an important role can be
cited. Thus, the effective cross section for the scatter-
ing of electromagnetic waves by a cluster of Ν elec-
trons or by an atom containing Ν electrons is propor-
tional to Ν in the case when X « a and proportional to
N2 if X » a . [ 1 ]

The question of collective radiative damping has been
also discussed many times in the literature in connec-
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tion with a variety of problems (see, for example, t 3 ~ 8 ] ) .
There are, however, a number of problems connected
with this effect, which either have not been discussed at
all in the literature, or have not been considered quite
fully. These include, in particular, the question of the
radiative damping in the case of an infinite medium (in
practice, in the case of volume V » Xs).

Recently, careful investigations were made of the
spectral-line broadening of noble-gas atoms at low
pressures. t 9 " 1 3 ! The results of these investigations
were interpreted by the authors as evidence of the ap-
pearance of collective radiative damping. In fact, there
are not sufficient grounds for such an interpretation of
the experimental-data obtained in t 9 " 1 3 ] . This is easiest
to show by resorting to the known properties of the di-
electric constant of rarefied gases e(w), i.e., by solv-
ing the problem of radiative damping within the frame-
work of the macroscopic approach. As will be explained
in Sec. 2, no increase of the radiative width is connected
with the cooperative effect in infinite media.

The macroscopic approach to the problem of interest
to us, used in Sec. 2 for the case of large volumes
(a » λ ), is perfectly natural. In the case of small vol-
umes (a « X), on the other hand, the situation is not so
simple. The point is that in practically all the cited pa-
pers devoted to the cooperative effect the analysis was
based on the microscopic approach, i.e., on allowance
for the interaction via the radiative field directly in the
equations of motion of the oscillators. This naturally
raises the question as to whether the collective radia-
tive effect is present in the general scheme of the mac-
roscopic description of the processes of radiation and
scattering of electromagnetic waves or whether the mi-
croscopic analysis is essential in principle. In other
words, is it possible to take into account the coopera-
tive effect starting from the equations of macroscopic
electrodynamics and ascribing to the medium in a small
volume (a « X) the same values of the dielectric con-
stant and the magnetic permeability e(u>) and μ (ω) as
in the case of an infinite medium?

This question is of interest for the following reasons.
First of all, a negative answer to it would mean that a
number of the results obtained by exactly solving the
equations of macroscopic electrodynamics, such as the
Mie theory for the scattering of electromagnetic waves
by small particles, reflection from a layer of thickness
a « X, etc., must be revised.

On the other hand, the microscopic approach is in-
evitably connected with the consideration of concrete
models. Thus, for example, all the known published re-
sults concerning the influence of the cooperative effect
on the emission spectrum of small volumes under ther-
mal excitation pertain, in essence, to the case of a sin-
gle isolated spectral line, corresponding to the transi-
tions between nondegenerate levels. The foregoing per-
tains also to Dicke's well-known p a p e r / 4 3 which con-
tains the most complete analysis of different manifes-
tations of radiative coupling.

The main content of the present article is a compar-
ison between the microscopic and macroscopic descrip-
tions of the effect of radiative coupling in small and
large volumes. The entire analysis is limited to condi-
tions such that the substance is in the states of thermo-
dynamic equilibrium, or when the radiation is due to

thermal excitation. We therefore do not consider at all
other aspects of the theory of the cooperative effect,
such as radiation echo (see [ 4 ' U l ) . As applied to the
conditions in question, it is shown that the macroscopic
approach permits a complete description of the cooper-
ative effects. Moreover, within the framework of this
approach, the limits of applicability of the approxima-
tions that must be made in the microscopic analysis,
become clear.

2. RADIATIVE DAMPING IN UNBOUNDED MEDIA

The theory of collective radiative damping, developed
in t 4 ] for systems with linear dimensions a « X, can-
not be generalized directly to the case of unbounded me-
dia. At the same time, the question of the possible man-
ifestation of this effect arises in a large number of phys-
ical problems. Thus, for example, in a series of recent
studies by Kuhn, Vaughan, and Lewis, t 9 " 1 3 ] they inves-
tigated in detail the broadening of a number of spectral
lines of noble-gas atoms. The density dependence of the
width turned out to be in very good agreement with the
theory of shock broadening. At the same time, for very
small densities these investigations led to a somewhat
unexpected result. The radiative width of a number of
lines, obtained by extrapolating the measured widths to
zero density, turned out to differ from the theoretical
ones or from those determined by other methods. The
authors point to the cooperative effect as a possible
cause of the observed discrepancy· 1 1 5 : This conclusion
is based on reasons analogous to those discussed in
Sec. 1 above, as applied to the case of small volumes
(V « Xs), and on the results in L7 J, where the radiative
damping constant y, corresponding to the ρ — s-transi-
tion in a system of two atoms separated by an arbitrary
interatomic distance R was calculated. At the initial
instant t = 0, one atom is in the p-state and the second
in the s-state. The damping constant y depends on the
projection m of the momentum of the excited atom on
the z-axis which is directed along the vector R. In the
case when m = 0 we have

ϊσ = Yo {1 + [3/(kR)3] (sin kR — kR cos kR)}.

F o r m = ± 1,

V« = To {1 + [3/2 (kR)3] ( - sin kR + kR cos kR + (kRy sin kR)}.

With decreasing R we get γσ π — 2y0. When R in-
creases, γπ differs from y0 by a quantity on the order
of γη — y0 ~ (sin kR/kR)y0, i.e., this difference de-
creases very slowly. This circumstance is the primary
cause of the difficulty of generalizing the results of [ 7 ]

to the case of a gas in a large volume, since one cannot
limit oneself to allowing for nearest-neighbor interac-
tions only.

The most general approach to our problem is to con-
sider the connection of such characteristics of the me-
dium as the absorption and emission spectra with the
properties of the dielectric constant of the medium e(w).

As is well known, both the dissipation of electromag-
netic energy in a medium and the thermal radiation of a
medium can be expressed directly in terms of ε(ω).
Knowing e(co), we can also determine the Einstein spec-
tral coefficients for spontaneous emission ajj^w) per
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a t o m o f t h e m e d i u m ( w i t h a l l o w a n c e f o r t h e i n t e r a c t i o n

b e t w e e n t h e a t o m s ) :

Im{[ε ( ω ) - 1]/[ε(ω) + 2]} = (π2/3) (c/ω)3 ̂ a i h (ω) [(gl/gh)nk-nt\, (2.1)

w h e r e gi, gk, and ni, nk a r e the s t a t i c w e i g h t s and the

populat ions of the l e v e l s i and k (Ei > Ek),

[ aik (ω) άω = Atk — 2"^f •&- fkl, (2.2)

is the Einstein integral coefficient, and f^i is the
oscillator strength of the transition k — i.

The summation on the right-hand side of (2.1) ex-
tends over all possible transitions capable of making a
contribution to the considered spectral region. For an
isolated spectral line (in the case of sufficiently low
densities) we can retain on the right-hand side of (2.1)
only one term. In this case the frequency dependence of
the coefficient aik(co) can be obtained if the function
ε(ω) is known.

Thus, the problem of calculating the emission spec-
trum, and by the same token of clarifying the role of
the cooperative effect, reduces to the calculation of the
dielectric constant. This problem was discussed many
times in the literature (see, for example, the book c l 6 ] ) ,
and this enables us to employ known results. However,
before we proceed to discuss these results, let us show
that by calculating €(ω) in the microscopic theory of
dispersion, the radiative interaction of the atoms, which
is responsible for the cooperative effect in the case of
small volumes, is completely taken into account.

Let us consider again the model of classical oscilla-
tors. This model makes it possible to establish all the
main features of the manifestation of the radiative cou-
pling in small and large volumes. All the results can
be generalized without difficulty to the case of quantum
systems. The equations of motion of the i-th oscillator
(i.e., one of the oscillators of the medium), with allow-
ance for the recreation of its own radiation field and
the fields of all the remaining oscillators, written for
the Fourier component of the dipole moment d'^'
= er^ ' , is of the form

d«!> [ - ω* - to (Vo + Π + ω?] = Δ. 2 rot rot ^ ^ d<« + £ E<,0>,
ίφί ' ' (2.3)

where Ri and Rj are the coordinates of the centers of
inertia of the oscillators, the constant Γ characterizes
the possible electromagnetic-energy dissipation proc-
esses due to any other factor not represented in the
right-hand side of the system (2.3).

If the oscillators are localized in a volume V « X3,
and therefore the conditions (o/c) |Ri — Rj | « 1, are
satisfied for all values of i and j , then the right-hand
side of (2.3) can be expanded in a series of powers of
(ω/c) |Ri — Rj j . Retaining in this expansion only the
first nonvanishing imaginary term, which, as it turns
out, corresponds to allowance for the radiative-friction
forces in the approximation (1.1),

we obtain

(2-4)

( 2 . 5 )

where D u is the Fourier component of the total dipole
moment of the system. Summing (2.5) over all Ν oscil-
lators of the system, we get

Όβ>1-ω1-ίω(Νγ0 + Γ) + ω'ο]=Ν(βνηι)Εί0). (2.6)

T h i s equation, l ike (1.3), contains the c o l l e c t i v e r a -

diat ive width.

Let us r e c a l l now the method u s e d to ca lcu la te the

d i e l e c t r i c constant e(ui) with the aid of the s y s t e m

(2.3) , ( s e e c W : on t h i s subject) . Let u s c o n s i d e r Eq.

(2.3) without an externa l f ie ld. We a v e r a g e the r ight-

hand s i d e of (2.3) over the c o o r d i n a t e s of the o s c i l l a -

t o r s Rj, a s s u m i n g that e a c h of the o s c i l l a t o r s h a s an

equal probabi l i ty of be ing at any point in s p a c e , r e g a r d -

l e s s of the l o c a t i o n s of the other o s c i l l a t o r s , including

the o s c i l l a t o r i. Then

(2.7)

where Ν = nV, and η is the oscillator concentration;
the symbol δ at the integral sign denotes that the inte-
gration should be carried out over the region | Rj — Rj |
> δ —' 0. Using, further, the relation (see t 1 6 3 )

'"IR-R'I iflR-RM
j dR' rotRrotR

 8

| Β _ Β Ί d,(R')=rotR rotR jdR' e

| R _ B - | cL(R')--ψdM (R),

w e obtain an integra l equation for

lj|R-R'|
d»(R) = «<*«, rot rot j (2.8)

H e r e a0 i s the po lar izab i l i ty of one i s o l a t e d o s c i l l a t o r

a,, = (eVm) [ω; - ω2 - ίω (γ0 + Γ)]"1. (2.9)

If we s e e k the so lut ion of (2.8) in the form of plane

w a v e s d w ( R ) ~ exp I K R , then it i s e a s y to obtain a c

persion equation connecting κ with ω:

(2.10)

Putting κ2 = e(w) o>2/c2 = e(u>)k2 in (2.10), we obtain the
well-known Lorentz-Lorenz formula for e(u)):

(ε-1)/(β + 2) = (4π/3)ηαο = η ( Λ η ι ) Κ - ω 2 - ί ω ( ? ο + Γ)]-1. (2.11)

F o r m u l a (2.11) w a s obtained for the c a s e of an ideal g a s .

A s w a s shown by Kl imontovich and F u r s o v c l 7 : l in the

c a s e of an arb i t rary medium the rad iat ive damping i s

d e t e r m i n e d by the constant

where Δ № and Ν are respectively the mean square
fluctuation and the average number of particles in a
definite element of the body volume. For an ideal gas,
as is well known, Δ Ν 2 / Ν = 1 and y r a c j = y0. If we elim-
inate completely the possibility of fluctuations, by put-
ting Δ Ν 2 = 0, then, as can be seen from the foregoing
formula, there is no radiative damping at all:

e-1
ε + 2

1
ω§ — <i)2 — ίωΓ

( 2 . 1 2 )

T h u s , i n a h o m o g e n e o u s m e d i u m o f i s o t r o p i c o s c i l -

l a t o r s ( w i t h o u t f l u c t u a t i o n s ) t h e i n t e r a c t i o n o f o s c i l l a -
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tors via the radiation field leads not to an increase of
the radiative width, as is in the case of a small volume,
but to complete cancellation of the radiative damping.
This result, first obtained by Mandel'shtam, [ 1 8 ] is
closely connected with the well known fact that a homo-
geneous medium does not scatter electromagnetic
waves.

The presence of fluctuations leads to scattering, and
in an ideal gas the intensity of the scattering by the
density fluctuations is equal to the sum of the intensi-
ties of scattering by each of the isolated oscillators.
Simultaneously, e(w) is determined by formula (2.11),
i.e., it has the same form as if there were no interac-
tion of the oscillators via the radiation field at all.

In (2.3) above we did not take into account the motion
of the oscillators. Generalization of these equations to
the case of moving oscillators does not change the re-
sults of interest to us in any way.

From the foregoing statements concerning the con-
nection between the Einstein spectral coefficients a(a>)
and the function e(u>), it follows that in an unbounded
medium there is no increase of the radiative width as a
result of the interaction of the oscillators via the com-
mon field of radiation. The radiative width remains ex-
actly the same as in the case of an isolated oscillator.
Thus, the effect whereby the radiative damping in-
creases as a result of the coupling of the oscillators is
peculiar only to small volumes V « X3, and, as will be
shown below, is connected with peculiarities of the scat-
tering of light by small volumes.

As to the anomalous behavior of the line width in the
spectra of noble gases at low densities, observed in
[9-13]̂  y. j g a p p a r e n t i y d u e t 0 s o m e other causes which
have no bearing on the cooperative effect (see £ l 9 ] ) .

3. SCATTERING OF ELECTROMAGNETIC WAVES
BY SMALL PARTICLES. THERMAL RADIATION

Let us consider a spherical volume V whose radius
a satisfies the condition a « X, filled with classical
isotropic oscillators *. In accordance with the state-
ments made in Sec. 2 above, the dipole oscillations of
such a volume should be characterized by a radiative-
damping constant proportional to the total number of
oscillators Ν = nV in the volume; this in principle can
be manifest in various radiative processes. It is con-
venient to start the analysis of such effects with the
problem of the scattering of electromagnetic waves.

If an external monochromatic field with amplitude
Ε°ω is incident on the system, then Eq. (2.6) for the
Fourier component of the total dipole moment Όω

takes the form

» [ - ω2 - ico (Ny0 + Γ) + af,] (eVm) ΝΕ°ω. (3.1)

F r o m t h i s w e c a n r e a d i l y f ind t h e p o l a r i z a b i l i t y « y of

t h e v o l u m e :

nV
μΙ — α)2— ίω (Γ — nVy0)

( 3 . 2 )

K n o w i n g t h e p o l a r i z a b i l i t y a y , w e c a n f i n d t h e t o t a l e f -

f e c t i v e c r o s s s e c t i o n cry ( u s u a l l y c a l l e d t h e a t t e n u a t i o n

*Here and throughout we confine ourselves for simplicity to nonmag-
netic substances with μ = 1.

c r o s s s e c t i o n ) a n d t h e e f fect ive s c a t t e r i n g c r o s s s e c -

t i o n a-yi

( 3 > 3 )

(3.4)

L e t u s e x p r e s s now t h e p o l a r i z a b i l i t y a y i n t e r m s

of t h e d i e l e c t r i c c o n s t a n t e f r o m (2 .12) , u s i n g , a s i s

c u s t o m a r i l y d o n e i n t h e t h e o r y of l i g h t s c a t t e r i n g by

s m a l l p a r t i c l e s , t h e s a m e f o r m u l a a s in t h e c a s e of a

s t a t i c f i e l d : 1 * 0 3 *

nVJ_z±
in e + 2 cog — ω2 — ίωΓ ( 3 . 5 )

T h e d i f f e r e n c e b e t w e e n f o r m u l a s (3.5) a n d (3.2) l i e s

p r e c i s e l y i n t h e fac t t h a t (3.2) c o n t a i n s t h e c o l l e c t i v e

r a d i a t i v e w i d t h n V y 0 . F r o m t h e f u n d a m e n t a l p o i n t of

v i e w , t h i s d i f f e r e n c e i s q u i t e s i g n i f i c a n t . T h e p o i n t i s

t h a t t h e p o l a r i z a b i l i t y a y s h o u l d s a t i s f y t h e i n e q u a l i t y

) m a v > 2 / c 3 | a y | 2 / 3 , (3.6)

w h i c h i s t h e c o n s e q u e n c e of t h e s o - c a l l e d o p t i c a l t h e o -

r e m for d i p o l e s c a t t e r i n g , w h i c h r e l a t e s t h e t o t a l c r o s s

s e c t i o n w i t h t h e f o r w a r d s c a t t e r i n g a m p l i t u d e . T h e

p h y s i c a l m e a n i n g of (3.6) l i e s i n t h e fact t h a t t h e t o t a l

c r o s s s e c t i o n c a n n o t b e s m a l l e r t h a n t h e s c a t t e r i n g

c r o s s s e c t i o n a y ( s e e (3.3) a n d (3 .4)) . I t i s e a s y t o v e r -

ify t h a t t h e p o l a r i z a b i l i t y (3.2) d o e s s a t i s f y t h e c o n d i -

t i o n (3 .6) , w h e r e a s (3.5) c a n l e a d t o a c o n t r a d i c t i o n .

F u r t h e r , i n a s m u c h a s I m a y < | a y | , i t fo l lows a l s o

from (3.6) that | α ν | < 2k'3/3. Therefore
_ - ^ P — i 2 ^- (· * f / Ο Γ 7 \

OyiCoitt'S σ ν < 6 π 7 , 2 . \ο.Ί)

T h e q u a n t i t y o n t h e r i g h t - h a n d s i d e of ( 3 . 7 ) i s t h e w e l l

k n o w n t h e o r e t i c a l l i m i t f o r t h e d i p o l e - s c a t t e r i n g c r o s s

s e c t i o n . It i s e a s y t o v e r i f y t h a t t h e s c a t t e r i n g c r o s s

s e c t i o n ay c a l c u l a t e d w i t h t h e a i d o f ( 3 . 5 ) l i k e w i s e d o e s

n o t s a t i s f y t h i s c o n d i t i o n i n t h e g e n e r a l c a s e . O n t h e

o t h e r h a n d n o d i f f i c u l t i e s a r i s e i n t h e c a s e ( 3 . 2 ) .

L e t u s c o n s i d e r t h e r e f o r e t h e p r o b l e m o f c a l c u l a t i n g

a y w i t h i n t h e f r a m e w o r k o f m a c r o s c o p i c e l e c t r o d y n a m -

i c s i n s o m e w h a t g r e a t e r d e t a i l .

L e t t h e o s c i l l a t o r d e n s i t y , a n d c o n s e q u e n t l y e , d e -

p e n d o n t h e c o o r d i n a t e R, a n d i n s u c h a w a y t h a t e ( R )

= c o n s t # 1 i n t h e v o l u m e V , a n d o u t s i d e t h i s v o l u m e

e ( R ) t e n d s s m o o t h l y b u t q u i t e r a p i d l y t o u n i t y . W e s o l v e

t h e s c a t t e r i n g p r o b l e m u s i n g t h e M a x w e l l e q u a t i o n

rot rot Έω + (M2/C2) ε (R) Εω = 0. ( 3 . 8 )

It i s c o n v e n i e n t t o c h a n g e o v e r f r o m t h e d i f f e r e n t i a l

e q u a t i o n ( 3 . 8 ) t o t h e e q u i v a l e n t i n t e g r a l e q u a t i o n

- E» (R) = U R ' - rotR
—p-p Ew (R') + E° (R),

( 3 . 9 )

where Ε W(R) is the incident wave. We denote the quan-
tity on the left-hand side of (3.9) by GW(R):

(3.10)

*It should be recalled that the motion of particles localized in the
volume V < X3 does not lead to a Doppler broadening of the spectral
lines, and therefore ε(ω) should not take the Doppler effect into account.
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The v e c t o r Gw (R) s a t i s f i e s an equation that fo l lows
d i r e c t l y f r o m (3.9 ) :

6 ω (Β) = rot, rotR
-) + E» (R).(3.11)

In solving this equation, we use precisely the same ap-
proximation as in the solution of the system (2.3), car-
rying out an expansion, similar to (2.4), of the inte-
grand

rot rot

In addition, we assume that inside the volume in ques-
tion the field GW(R') does not change significantly.
Then

C CR1 - (3.13)

Using the relation άω= (e - 1)Εω/4ιτ, and also (3.10)
and (3.13), we can express άω and Όω = ν ά ω in terms
of Ε°ω. Further, putting Όω = αγΕω» we obtain the po-
larizability of a y :

(3/4n)[(e-l)/(B+2)|V
" ν ~ •1-ί(3/4π) | (ε-1) . .(ε + 2)|(2/3)(ω/<;)»ν· 1 - ί (2/3) (ω/e)» α$* " ν " " " '

I f w e s u b s t i t u t e i n t h i s f o r m u l a e f r o m ( 2 . 1 2 ) , t h e n t h e

r e s u l t i n g e x p r e s s i o n c o i n c i d e s e x a c t l y w i t h ( 3 . 2 ) , i . e . ,

with the polarizability of the volume αγ, calculated
from the microscopic equation (2.3) with allowance for
the effects of collective radiative damping.

Thus, this effect falls entirely within the usual mac-
roscopic approach. The fact that the second term in the
denominator of (3.14) determines the correction pre-
cisely for the effect of the collective radiation damping
is seen also from the following simple reasoning. After
determining in the first approximation the dipole mo-
ment of the system with the aid of the quasistatic ap-
proximation D w = atyE™', we can refine this expres-
sion by adding to Ε the radiation field of the dipole
E j , a d calculated with the aid of (1.1):

(3.15)

From this we get

1 — i (2/3) (ω/c)» αξ-K, ( 3 . 1 6 )

i . e . , w e a g a i n a r r i v e a t f o r m u l a ( 3 . 1 4 ) . *

F o r m u l a s ( 3 . 1 4 ) a r e , e v i d e n t l y , m u c h m o r e g e n e r a l

t h a n ( 3 . 2 ) , i n a s m u c h a s t h e d e r i v a t i o n o f t h e s e f o r m u l a s

d o e s n o t i n v o l v e a n y m o d e l o f t h e o s c i l l a t o r s ( a t o m s o r

m o l e c u l e s ) o f t h e m e d i u m . T h u s , i n t h e c a s e o f a n

a t o m i c g a s i t i s p o s s i b l e t o u s e i n l i e u o f ( 2 . 1 2 ) t h e w e l l

k n o w n e x p r e s s i o n f o r

3 ε —1

i, fl

gk „ \ f
h - i r n t ) J

Fik (ω') da'

T h e f u n c t i o n F y ^ w ' ) d e s c r i b e s t h e l i n e b r o a d e n i n g n o t

c o n n e c t e d w i t h e n e r g y d i s s i p a t i o n , i . e . , w i t h i n e l a s t i c

c o l l i s i o n s . F o r e x a m p l e , t h e f u n c t i o n Fik(u>' ) c a n s p e c -

i f y t h e i n t e n s i t y d i s t r i b u t i o n i n a l i n e b r o a d e n e d a s a

*G. A. Askar'yan called our attention to the possibility of deriving

formula (3.16) in this manner.

result of the Holtsmark or Weisskopf broadening mecha-
nisms.

Let us proceed to clarify the limits of applicability
of the obtained formulas. The main question that arises
here is whether it is at all possible to obtain a situation
whereby the effect of the collective radiative broadening
plays an essential role and at the same time remain
valid the approximation used in the derivation of (3.14).
The point is that in deriving these formulas we virtually
had to assume (the field GW(R') was taken outside the
integral sign) that the dimensions of the volume in ques-
tion are small not only compared with the wavelength in
vacuum X = c/u>, but also compared with the wavelength
in the medium or with the depth of penetration δ
~ (c/a))l/V|e | . This therefore raises the question as
to whether the condition (2/3)k3 a^ £ 1 does not lead
automatically to the inequality δ < a, when the dipole
approximation itself becomes meaningless.

It is seen from (3.14) that the second term in the de-
nominator becomes of the order of or larger than unity,
and simultaneously δ > a at such values of e which
satisfy the conditions

| (ε— 1)/(ε + 2)|»3(λ/α)3/2, V\s\<%/a. (3.18)

It i s easy to see that these conditions are compatible.
Let us consider by way of an example e from (2.12).
The first of these conditions is realized when the in-
equalities | ω - ω ο | & nVr0 and Γ < nV% are satisfied.
It is easy to verify that in this case δ ss X » a. It
should be noted, however, that when nVy0 > Γ the depth
of penetration δ in the frequency region [ω — ω0

+ arnxVnl ~ Γ becomes smaller than a. Then, as is well
known,' • 2 4 ] the principal role is assumed not by elec-
tric dipole scattering but by magnetic dipole scattering.

The question of applicability of the approximation
used in the derivation of (3.14) will be discussed again
after we consider the problem of reflection of electro-
magnetic waves from a thin layer. In this case the mi-
croscopic equation (2.3) also leads to the appearance of
a collective radiative width, and the corresponding mac-
roscopic Maxwell's equations admit of an exact solution
in a simple analytic form. Consequently, the estimates
of the limits of applicability become clearer.

It follows from the foregoing that the necessary con-
dition for the appearance of the cooperative effect is
smallness of the dissipative width compared with nVy0.
This condition is not sufficient. Nowhere in the forego-
ing did we take into account the possibility of broaden-
ing of the spectral lines as a result of elastic collisions
and of collisions accompanied by exchange of excitation
quanta (the so-called resonant broadening, or broaden-
ing due to its own pressure). It is evident that the coop-
erative effect can appear only in the case when the cor-
responding widths Γ ' (in the general case the width of
the distribution F(w') in (3.17) are smaller than nVy0.

Let us estimate first the broadening due to the prop-
er pressure. For resonant lines this broadening is con-
nected with the dipole-dipole interaction of the atoms of
the same species. In essence we were forced to take
into account the corresponding terms in the interaction
of the oscillators in the system (2.3), without confining
ourselves only to the first imaginary term in the ex-
pansion (2.4). It was also necessary to take into ac-
count the motion of the oscillators. The role of the di-
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pole-dipole interaction, however, has been thoroughly
investigated.* In gases of not too high density, for an
atomic transi t ion with an osci l lator s t rength f, this in-
teract ion leads to a broadening

Γ ' « (e'/moio) /« = (3/2) ηγ,,Α3. ( 3.19)

For the c a s e in q u e s t i o n f ss 1 and V « X 3 . F r o m th is
we get Γ " y> nVf0. It can a l so be shown that for all
atomic and molecular t rans i t ions, whether e lectr ic di-
pole, quadrupole, or magnetic dipole, the broadening
due to the proper p r e s s u r e i s l a r g e r than the possible
value of the collective radiat ive width. Therefore in
gases in this density region where the es t imate (3.19)
i s applicable, the cooperative effect cannot play any
role whatever. With increas ing density, the situation
may be different. In any case , formula (3.19) i s c e r -
tainly not applicable to condensed media. Therefore the
inequality Γ ' < nVy0 may be satisfied in principle.

In concluding this section, let us stop to discuss
briefly the p r o c e s s of thermal radiat ion by small vol-
u m e s . Inasmuch a s it was shown above that the m a c r o -
scopic approach to the problem of scat ter ing of e lec t ro-
magnetic waves by small volumes includes the d e s c r i p -
tion of the cooperative effect, t h e r e is no need for tak-
ing special account of this effect when calculating the
intensity and the spectrum of the t h e r m a l radiation. It
suffices to use the known r e s u l t s based on the Mie the-
ory, and the general theory of equilibrium electr ic fluc-
t u a t i o n s . [ 2 4 ' 2 5 ]

4. REFLECTION FROM A THIN LAYER

Let us consider normal incidence (along the ζ-axis)
of a wave on a homogeneous layer of thickness a « λ.
Replacing the summation over j in the system (2.3) by
integration, we can t rans form this sys tem without any
simplifications into (see also t 2 6 ; l )

Solving this equation in the approximation exp ikz a* 1,
exp i k | z - z ' | « 1 and assuming that ά ω ( ζ ' ) does not
change significantly in the interval (0, a) , we obtain for
0 < z < a

(1ω[ω5-ω2-(4π/3) η-^--iaT-ia>2nnak(ea/m)] = (eVm) K- (4.2)

Knowing the induced dipole moments of each of the os-
ci l la tors of the medium (4.2), we can find the field p r o -
duced by them at large distances from the layer (in the
wave zone)

Je» z>a, (4.3)

F r o m this we can readily obtain the following expres-
sions for the amplitude reflection and t r a n s m i s s i o n co-
efficients R and D, respect ively:

„ 2ninake2i'm
Λ ~ 5 77 ο η i a~ I A A\

O)§ — (ι)2 — (4zr/'o) n {e^/τη) — ioj [ Γ -!•• ( 3 / 4 J I ) ovnflX*] ^^χ .τ ΐ^
. . . 2 ί.»ί>. //•-* / " 3 \ w, I -.9 i m \ J « . . f

ω§ — ω2 — (4ji/3)n(e2/m) — ίω[Γ + (3/4π)ηγο<ί>.2] ' ( 4 .

T h u s , i n t h i s c a s e t h e c o l l e c t i v e r a d i a t i v e w i d t h t u r n s

o u t t o b e e q u a l t o 3 n y o a * 2 / 4 i r , i . e . , i t i s d e t e r m i n e d b y

t h e n u m b e r o f p a r t i c l e s i n t h e e f f e c t i v e v o l u m e 3aX2/4jr.

L e t u s c o n s i d e r n o w t h e s a m e p r o b l e m , s t a r t i n g

f r o m t h e m a c r o s c o p i c M a x w e l l e q u a t i o n s . I n s t e a d o f

t h e i n t e g r a l e q u a t i o n ( 3 . 9 ) w e o b t a i n f o r t h e o n e - d i m e n -

s i o n a l p r o b l e m b e i n g c o n s i d e r e d b y u s

E*(z) = Keik! + -£r]e"\*-'-\E<u(z')ll-e(z')]dz'. ( 4 . 6 )
ο

S o l v i n g t h i s e q u a t i o n i n t h e s a m e a p p r o x i m a t i o n a s ( 4 . 1 ) ,

we obtain the field Ε ω ( ζ ) inside the layer

E,0 = ES)/[l + i(aA/2)(l —e)]. (4.7)

For the reflected and t ransmit ted waves we have

E" a --«-"-·-£• ^ Έ ω ( ζ ' ) [ 1 - ε ( 2 ' ) ] ώ ' ,

H e n c e

R= -i(a

( 4 . 8 )

( 4 . 9 )

( 4 . 1 0 )

F o r e f r o m ( 2 . 1 2 ) , f o r m u l a s ( 4 . 1 0 ) a n d ( 4 . 1 1 ) c o i n c i d e

w i t h ( 4 . 4 ) a n d ( 4 . 5 ) , i . e . , t h e m a c r o s c o p i c a p p r o a c h

a g a i n m a k e s i t p o s s i b l e t o t a k e f u l l a c c o u n t o f t h e e f f e c t

o f c o l l e c t i v e r a d i a t i v e d a m p i n g .

I t i s e a s y t o s e e t h a t e x p r e s s i o n s ( 4 . 1 0 ) a n d ( 4 . 1 1 )

s a t i s f y t h e e x a c t n o r m a l i z a t i o n c o n d i t i o n : t h e s u m o f

t h e r e f l e c t e d f l u x , t h e t r a n s m i t t e d f l u x , a n d t h e e n e r g y

a b s o r b e d i n t h e l a y e r i s e q u a l t o t h e i n c i d e n t f l u x

( 4 . 1 2 )

L e t u s a s c e r t a i n n o w t h e r e l a t i o n o f f o r m u l a s ( 4 . 1 0 )

a n d ( 4 . 1 1 ) t o t h e e x a c t f o r m u l a s f o r t h e r e f l e c t i o n a n d

t r a n s m i s s i o n c o e f f i c i e n t s . F o r a h o m o g e n e o u s l a y e r

( p l a n e - p a r a l l e l p l a t e ) , a s i s w e l l k n o w n 1 2 0 " 2 2 3

Κ = r (1 — e2""· V")/(\

D = (1 — r-)/(e-tha Ϋί

where

r = (i-

Y-% ( 4 . 1 3 )

\ ( 4 . 1 4 )

( 4 . 1 5 )

W h e n k a « 1 a n d k a V | e | « 1 e x p r e s s i o n s ( 4 . 1 3 ) a n d

( 4 . 1 4 ) g o o v e r i n t o ( 4 . 1 0 ) a n d ( 4 . 1 1 ) . T h e s e c o n d o f t h e s e

conditions means that the depth of penetration δ
= λ/2π^ | e | i s l a r g e compared with the layer thickness
a. On the other hand, the t e r m ak( l — e)/2 in the de-
nominators of (4.10) and (4.11) ceases to be negligibly
small compared with unity if |(ak/2)(l — e ) | i l .

Thus, the cooperative radiative effect plays an im-
portant ro le and i s correct ly described by formulas
(4.10) and (4.11) in the region

(λ/2πα)<| Ε |<(λ/2πα) 2 . (4.16)

The authors a r e grateful to V. L. Ginzburg for a
d i s c u s s i o n of the work and for a number of r e m a r k s .

*The most complete analysis is contained in [ 2 3 ] .
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