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1. I N T R O D U C T I O N h a s s t i m u l a t e d d e v e l o p m e n t a n d r e f i n e m e n t of s t a t i s t i -

,> c a l m e t h o d s f o r c a l c u l a t i n g w a v e f i e l d s p r o p a g a t i n g in

V ^ O N T I N U A L L Y m o r e a t t e n t i o n h a s b e e n p a i d o v e r t h e a r a n d o m l y - i n h o m o g e n e o u s m e d i u m o r p a s s i n g t h r o u g h

l a s t 10—15 y e a r s t o s t u d y i n g p r o p a g a t i o n of w a v e s i n a l a y e r of s u c h a m e d i u m .

r a n d o m l y - i n h o m o g e n e o u s m e d i a . T h e h e i g h t e n e d i n t e r - T h i s r e v i e w i s a n a t t e m p t t o o u t l i n e t h e e x i s t i n g

e s t i n t h i s p r o b l e m h a s b e e n p r i m a r i l y d u e t o t h e l a r g e m e t h o d s of t h e t h e o r y a n d t h e i r l i m i t s of a p p l i c a b i l i t y ,

n u m b e r of p r e s s i n g a p p l i e d p r o b l e m s t h a t a r i s e in a s w e l l a s t h e r o l e of t h e new m e t h o d s for t r e a t i n g

r a d i o p h y s i c s , a c o u s t i c s , o p t i c s , p l a s m a s t u d i e s a n d m u l t i p l e s c a t t e r i n g of w a v e s t h a t h a v e r e c e n t l y d e v e l -

c e r t a i n o t h e r b r a n c h e s of p h y s i c s . New p h e n o m e n a o p e d a t a h e i g h t e n e d p a c e . T h e s e i n c l u d e t h e M a r k o v

p e r t a i n i n g t o t h e s a m e p r o b l e m h a v e g r a d u a l l y a c c r u e d a p p r o x i m a t i o n i n t h e p a r a b o l i c - e q u a t i o n m e t h o d , o r t h e

t o t h e c l a s s i c a l o b j e c t s of t h e t h e o r y , w h i c h a r e l i g h t a p p l i c a t i o n of m e t h o d s t h a t w e r e o r i g i n a l l y d e v e l o p e d

s c a t t e r i n g i n t h e a t m o s p h e r e a n d p a s s a g e of r a d i a t i o n in q u a n t u m e l e c t r o d y n a m i c s for s u m m i n g t h e s e r i e s of

t h r o u g h t h e a t m o s p h e r e s of s t a r s a n d p l a n e t s . Dif fuse t h e p e r t u r b a t i o n t h e o r y . T h e t h e o r y i s b e i n g d e v e l o p e d

r e f l e c t i o n of r a d i o w a v e s f r o m t h e i o n o s p h e r e ; s c a t t e r - s o i n t e n s i v e l y t h a t a n u m b e r of n e w r e s u l t s h a v e n o t

ing of s o u n d a n d u l t r a s o u n d in s e a w a t e r ; t h e s o - c a l l e d y e t b e e n r e f l e c t e d i n t h e e x i s t i n g m o n o g r a p h s a n d r e -

u l t r a - l o n g - r a n g e p r o p a g a t i o n of u l t r a s h o r t w a v e s ; i n - v i e w s . * F u r t h e r m o r e , t h e o r i g i n a l p a p e r s a r e v ^ r y

c o h e r e n t s c a t t e r i n g of r a d i o w a v e s in t h e i o n o s p h e r e ; n u m e r o u s a n d s c a t t e r e d t h r o u g h o u t j o u r n a l s c o n c e r n e d

t w i n k l i n g of e x t r a t e r r e s t r i a l r a d i o e m i s s i o n s o u r c e s wi th t h e m o s t v a r i e d t o p i c s . T h e r e f o r e , it would p r o b -

d u e t o t h e i o n o s p h e r e a n d t h e i n t e r p l a n e t a r y p l a s m a ; ab ly b e of s o m e u s e t o s y s t e m a t i z e t h e m e v e n p a r t i a l l y

a n d p r o p a g a t i o n of l a s e r b e a m s in a i r a n d in w a t e r : f r o m t h e s t a n d p o i n t of t h e t h e o r e t i c a l m e t h o d s u s e d ,

t h i s i s a c h a r a c t e r i s t i c (and of c o u r s e not e x h a u s t i v e ) P r o p a g a t i o n of w a v e s in r a n d o m l y - i n h o m o g e n e o u s

l i s t of t h e p r o b l e m s t h a t h a v e a r i s e n , not t o m e n t i o n m e d i a i s s u c h a v a s t f ie ld t h a t w e c o n s i d e r e d it e x -

t h e p u r e l y a p p l i e d p r o b l e m s i n v o l v i n g a c c u r a c y of p e d i e n t t o l i m i t o u r t r e a t m e n t only t o p r o b l e m s of

m e a s u r e m e n t by r a d i o m e t h o d s of t h e c o o r d i n a t e s of v o l u m e s c a t t e r i n g in c o n t i n u o u s m e d i a d u r i n g f r e e

o b j e c t s m o v i n g in t h e i o n o s p h e r e o r in o u t e r s p a c e . p r o p a g a t i o n . T h u s , w e do not t o u c h u p o n r e f l e c t i o n a t

N a t u r a l l y , t h e a b u n d a n c e a n d v a r i e t y of s u c h p r o b l e m s r a n d o m l y - u n e v e n s u r f a c e s , n o r u p o n s c a t t e r i n g by d i s -

*This review was presented in abbreviated form at a scientific session *Cf. the monographs by L. A. Chernov ['] and V. I. Tatarski!, [2]
of the Division of General Physics and Astronomy of the Academy of individual sections in the books by E. L. Feinberg [3] and S. M. Rytov,
Sciences of the USSR on Oct. 30, 1969. [«] and the reviews. [ s ' 1 5]
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crete inclusions, such as artifical scatterers, aerosols,
raindrops, and snow in the atmosphere, or by bubbles
or fish in the water, nor propagation of waves in ran-
domly-inhomogeneous feeders.*

However, even with these restrictions, the problems
of both the theory itself and of its applications remain
extremely varied. The object of applications of the
theory might be in essence the propagation of waves in
any real medium, ionized or neutral. This is because
any such medium generally has random variations of
the parameters, in addition to any possible regular
inhomogeneity (which is usually very smooth on the
scale of the wavelength λ). In a plasma, or in particu-
lar, in the interstellar and interplanetary media, as
well as in the ionospheres of the planets, it is a ques-
tion of random inhomogeneities of the electron concen-
tration, temperature, and magnetic field, provided that
the conditions for phenomenological description of a
plasma have been met. In the lower atmosphere and in
sea water it involves pulsations of density and tempera-
ture, and also fluctuations in the passive parameters,
such as moisture in the atmosphere, salinity in sea
water, etc. All of these lead ultimately to fluctuations
in the velocity of wave propagation. Among the reasons
for such random variations, we must mention above all
turbulence and thermal fluctuations. We note that in
essence we know the real statistical characteristics
only for these fluctuations of the refractive index of the
medium (see, e.g.'-2'40"43·'). Something is also known
about non-thermal fluctuations in a plasma. t44~47]

In the propagation of waves, either electromagnetic
or mechanical, fluctuations in the medium give rise to
an entire series of phenomena that are superficially
highly varied. Of course, in essence everything amounts
to fluctuations in the amplitude, phase, and perhaps
polarization of the wave. However, in observation, we
have to deal with both twinkling of radiation sources
and with variations in the angle of incidence, i.e.,
random refraction (as manifested, in particular, in
blurring and trembling of the images of sources), and
with fluctuations in the polarization (for transverse
waves), and with scattering of waves from a limited
volume of a medium, and with space-time correlation
of fluctuations in the wave field and in its spectral
composition and coherence, and with the behavior of
directional waves, e.g., spreading of laser beams or
directional diagrams of radio antennas, etc.

As we have said, the picture is no longer so varie-
gated from the theoretical standpoint, but it is still far
from being uniform.

To speak of posing the problem, in principle it in-
volves a stochastic wave equation. Of course, in a num-
ber of cases the equations can be more complex than
the Helmholtz equation. They can contain not only the
second, but also the first derivatives of the wave field.
They can be vector equations and form a system of
simultaneous equations, as with electromagnetic waves
or elastic waves in a solid. However, the main thing,
which is characteristic even in the simplest case of a

•There is an extensive literature on scattering of waves at rough sur-
faces. See, e.g., the monographs [*·"] and the reviews. [l7"20] A large
number of studies have been devoted to scattering by discrete inclu-
sions. f21"34] For waves in randomly-inhomogeneous waveguides, see
(35-39]_

scalar wave equation, is that it involves a parametric
equation, even if only a linear one: the random func-
tions of position and time that describe the fluctuations
in the properties of the medium do not enter additively,
as "external forces," but as coefficients in the equa-
tion itself. If, for example, the time variations in the
medium are so slow that we can take account of them
in a quasi-steady-state manner, then with a mono-
chromatic source (primary wave), the wave equation
will be

The random "dielectric constant" e(r, t) enters here
as a coefficient of the sought wave function u. This is
the root of all the mathematical difficulties of the
theory, since we don't know how to find an exact solu-
tion of such a wave equation.

This makes it necessary to apply certain approxi-
mate methods that make use of every "smallness"
permitted by the conditions of the real problem. Most
often this is a smallness of the fluctuations of e, or its
deviations from the mean value. It can also be the
smallness of the wavelength in comparison with the
dimensions of the inhomogeneities, etc. It is precisely
these additional restrictions that the various approxi-
mate methods depend on. Quite evidently, one of the
fundamental problems here is the region of applicabil-
ity of the results provided by any of these methods.
Often this problem proves to be far from simple, since
the direct route of comparing the approximate with the
exact solution is blocked. We should note that, even if
it were open, i.e., we knew the exact solution, this
wouldn't at all imply that the problem itself had been
liquidated. It is by no means always expedient to find
the exact solution and then simplify it according to the
distinctive features of the problem, since the approxi-
mate method can give the same thing, but more quickly
and perspicuously.

In practice, two types of problems arise: the direct
problem, in which one has to find the statistics of waves
propagating in this medium from the known statistics of
the medium, and the inverse problem, which consists
in drawing conclusions on the properties of random in-
homogeneities from the measured moments of the
field (correlation functions, spectra, etc.). However,
from the standpoint of theory these problems are
equivalent: we need the relation between the two sta-
tistics, which has been established as yet for a few
first moments (the mean field, and the mean bilinear
quantities, including the intensity and the fluctuation in
the intensity itself).

In proceeding to describe the existing approximate
methods, we shall assume for simplicity that the
medium is on the average homogeneous and stationary,
(e) = const., while the fluctuations are quasistatistical,
i.e., e = ( e ) [ l + e'ir)]. Removing the two restrictions
does not give rise to any difficulties in principle. We
can rather easily extend the theory also to media that
are on the average inhomogeneous and non-stationary.
However, of course, this can be done under the condi-
tion that both processes occur smoothly and slowly
enough. It is also not difficult to take into account a
statistically steady-state time-dependence of the fluc-
tuations .
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2. METHOD OF SMALL PERTURBATIONS. FIRST
APPROXIMATION

If e is smal l enough, then we can naturally r e s o r t
to the method of perturbat ions, and expand u in a
power s e r i e s in t, or m o r e exactly, in V("£ 2). If we
write (1) in the form

(fca = &5 <e» (2)

and use the Green ' s function for a homogeneous
medium g ( r , r ' ) , we can r e p r e s e n t (2) as an integral
equation

u(r)^uo(r)-k<> jg(r, r') ε (r') u (r') dV. (3)

H e r e u o ( r ) i s the pr imary f ie ld that would have propa-

gated in the medium in the a b s e n c e of f luctuat ions. By

s o l v i n g (3) by i t e r a t i o n s , w e ge t the perturbat ion-

theory s e r i e s

u (r) = = w0 (r) — k" j g (r, r,) ε (r,) u0 (r,) d3r, ,^ j

g (r, r,) g (r,, r2) ε (r,) ε (r2) «0 (r2) d
3r, <Fr2 + . ..

The nth t e r m of the s e r i e s descr ibes η-fold scatter ing,
and contains the η-fold product f f r j . . . e ^ r n ) inside
an η-fold integral . Thus, even in calculating ( u ) , we
have to know the moments ( e " ( r i ) . . . ? ( r n )) of e* of
al l o r d e r s .

However, under cer ta in conditions that we shal l
discuss below, we can r e s t r i c t ourselves to the f irst
(after u 0 ) t e r m of the s e r i e s . This is the single-
scat ter ing approximation, which even Rayleigh had
used in optical problems, and which is often called the
Born approximation in quantum mechanics . In this ap-
proximation, the amplitude u 0 of the pr imary field
does not decline as it penetrates deeper into the
medium (extinction is ignored), while the scat tered
field depends l inearly on z. Hence, in order to calcu-
late the corre lat ion function u s of the scat tered field,
and part icular ly , i ts intensity Ig ~ ( | u s | 2 >, it suffices
to know the corre lat ion function of e, i .e., B £ ( p )
= ( £ / ( r 1 ) ? ( r 2 ) ) , where ρ = r x - r 2 . All of this is ob-
tained very easi ly, and one can easi ly make an es t i -
mate when this approximation is permiss ib le .

Evidently, the energy sca t tered by a certain volume
L 3 of the medium must be much smal le r than the en-
ergy of the pr imary wave incident on it [ 2>4>4 8 1 For ex-
ample, if the corre la t ion function is Gaussian with a
corre la t ion radius I (this is the mean dimension of
the inhomogeneities), i .e., if Be(p) = ( t T 2 ) e " P 2 / * 2 , we
get the condition

Thus, there are upper bounds both to the intensity of
fluctuations Ζ and to the path L of the wave in the
medium: the la t ter must be s m a l l in comparison with
the so-called extinction length d = F ( k 2 ) / k ( e 2 > . The
trend of F(kZ) is shown in Fig. 1.

The r e s t r i c t i o n (5) becomes m o r e rigid a s ki
= 2πΐ/λ becomes l a r g e r , i .e., as the inhomogeneities
become larger in comparison with λ. This is under-
standable, s ince with increasing kZ the direct ional
diagram (indicatrix) of the scat ter ing by each inhomo-
geneity is extended m o r e and m o r e in the forward
direction, in the direction of the wave incident on the

mi)

3

ζ

7

/ Ζ 3

FIG. 1
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inhomogeneities. Hence, r e - e m i s s i o n by many inhomo-
geneit ies, o r multiple scat ter ing, acquires ever
g r e a t e r importance.

The Born approximation proves quite sufficient in
very many problems, not only for a s c a l a r , but a lso for
an electromagnetic field. This especially pertains to
fluctuations Ζ of t h e r m a l origin, which a r e usually
r a t h e r weak. The Rayleigh theory of light scat ter ing
was thoroughly based on the Born approximat ion/ 4 9 " 5 1 1

It also descr ibes well the so-called " i n c o h e r e n t "
scat ter ing of radio waves in the ionosphere and in a
laboratory p la sma. [ 4 2 ' 5 2 " 8 2 1 Along both the cited l ines,
the detailed theory of single scat ter ing helps in solving
the inverse problem, i .e., finding the p a r a m e t e r s of
the medium from the observed c h a r a c t e r i s t i c s of the
scat tered field. When t h e r e a r e independent methods
of measur ing the p a r a m e t e r s of the medium, we can
tes t the conclusions of the scatter ing theory itself.

Thus, for example, i n [ 8 3 1 , m e a s u r e m e n t s of the
electron concentration in the ionosphere by the inco-
herent-scat ter ing method were compared with the r e -
sults of pulse sounding of the ionosphere and with data
obtained with a dispers ion inter ferometer . Here they
got r a t h e r good quantitative agreement.

The Born approximation also descr ibes well u l t r a -
short-wave scatter ing by fine-scale turbulent inhomo-
geneities in the t roposphere and the lower ionosphere
(one of the possible causes of t ropospheric scatter ing
and the so-called ul tra-long-range propagation of
u l t rashor t waves found in 1952). [ 8 5" 1 0 5» 2 ' 5 ] In this prob-
lem we also have to take into account the regular r e -
fraction of radio waves. In the absence of reflection
from the ionosphere, this can be taken into account in
the geometrical-optics approximation. Refraction in-
c r e a s e s the intensity of the pr imary field in cer ta in
regions of space, and correspondingly, these regions
contribute m o r e to the scat tered field.tee,io6-ui] T h i s

phenomenon is most clearly marked in scat ter ing
from the region of a caustic (a region of reflection of
radio waves)/ 1 1 2 " 1 1 5 1 Incidentally, h e r e we can no
longer descr ibe the p r i m a r y field in the ray approxi-
mation. Calculations show that a layer situated near
the reflection region, and amounting to 10—15% of the
total thickness of the inhomogeneous layer, contributes
about as much to the scat tered field as the r e s t of the
ionosphere does .

The l i te ra ture has t rea ted single scatter ing of e lec-
tromagnetic waves in isotropic 1- 2 ' 3 1 and in anisotropic
(gyrotropic) m e d i a / 1 1 8 " 1 1 8 1 scat ter ing of sound
waves, ' · 1 1 9" 1 3 0 ' 2 1 scat ter ing in an inhomogeneous medium
in the presence of a phase boundary/ 1 3 1 " 1 3 5 1 , scat ter ing
of pulsed and modulated s igna l s/ 1 3 6 " 1 3 9 1 the effect of the
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FIG. 2

directional diagrams of antennas/140"1431 scattering by
anisometric inhomogeneities/144'21 time and frequency
correlation functions,[2'11β'13β>147»148] standing-wave
scattering/1491 etc. We can point out another problem
which contains no difficulties in principle in Born-
approximation calculations, but is of great practical
interest at present. We have in mind the scattering of
radio waves by inhomogeneities of electron concentra-
tion in the polar ionosphere—the so-called "auroral
radio reflections."

A quantitative theory of this phenomenon (in the
single-scattering approximation) has been developed
in[iso-i53]_ [̂1521̂  t h e y t o o k i n t o a c c o u n t p r a ctically all
complicating factors: anisotropy of the medium, regu-
lar refraction, elongation of the inhomogeneities toward
the geomagnetic pole, etc. Elongation of the inhomo-
geneities (anisometry) has the result that the backward
scattering fundamentally arises from those inhomo-
geneities that are orthogonal to the wave vector of the
incident wave (the condition of "aspect sensitivity,"
Fig. 2). This is precisely why the "auroral radio re-
flections" are preferentially observed in a northward
direction in the Northern Hemisphere.

To return to theoretical problems, we should note
that the correlation function Be proves to be unsuitable
for describing turbulent fluctuations in e. Turbulent
fluctuations are characterized by a continuous range of
scales I, and as the inhomogeneities become coarser,
their specific weight increases very rapidly. However,
over a broad range of I, from l0 (the inner scale of
the turbulence) to Lo (the outer scale), we can consider
the turbulent field to be locally homogeneous and iso-
tropic, and describe it with the so-called structure
function

fle (Ρ) = ([ε (Γ,)-ε (r2)]
2), p = | r,-r2 |,

which automat ica l ly e l i m i n a t e s the effect of the e x c e s -
s i v e l y l a r g e i n h o m o g e n e i t i e s .

If the f luctuations in e a r e due t o turbulent t e m p e r a -
ture f luctuations, then e" w i l l obey, a s the t e m p e r a t u r e
i t s e l f d o e s , the Ko lmogorov "z/3 l a w " :

This corresponds to a power-law spatial spectrum hav-
ing a density

Φε (κ) = (|L f )

Changing from B e to D e does not affect the pro-
cedure for solving the wave equation, but, of course, it
gives rise to its own peculiarities. [ 2 1 In a number of
problems in which the scales of the most substantial
inhomogeneities lie in the interval (l0, Lo), it proves
to be more convenient to describe the statistical struc-
ture of the e field by means of the structure function

than by B e , s i n c e then one doesn ' t introduce any

" s u p e r f l u o u s " p a r a m e t e r s . However , s u c h a d e s c r i p -

t ion d o e s not suff ice for other p r o b l e m s in which the

m o s t e s s e n t i a l s c a l e s l i e outs ide the interval (Zo, L o ) .

F o r e x a m p l e , one can no longer find the ext inct ion

within the conf ines of the "2/3 l a w , " s i n c e the ef fect ive

scattering cross-section diverges as κ — 0. This
means that the extinction is determined by inhomo-
geneities that are so large (I > L o ) that they no longer
show isotropic behavior.

3. SCATTERING BY LARGE-SCALE INHOMOGENEI-
TIES

As kZ increases, we must either take into account
the later terms in the perturbation-theory series (as
will be discussed in Sec. 4), or go over to other ap-
proximate methods that deal with multiple scattering
to some extent, and which use the smallness of the
parameter 1/kZ ~ λ/Ι <C 1, i.e., that approach geo-
metrical optics. V. A. Krasil'nikov [ 1 5 4-1 5 7 ] was the
first to use the geometrical-optics approximation in
problems on propagation of waves in randomly-inhomo-
geneous media. This was later applied to various
problems (some of which will be mentioned below) by
Bergman/1 5 8 1 Ellison/ 1 5 9 ] V. Ya. Kharanen, [ 1 6 0 ]

Muchmore and Wheelon/51 L. A. Chernov/1 1

Bremmer/ 1 6 1 1 V. I. Tatarskii/ 2 1 and many other
authors.

Among the methods adapted to the case of large-
scale inhomogeneities is the method of smooth pertur-
bations proposed by S. M. RytovC162! for the non-statis-
tical problem of diffraction of light by ultrasound, and
the parabolic-equation method, which was first used by

by M. A. Leontovich^1631 to solve the likewise non-
statistical problem of propagation of radiowaves above
the Earth's surface. A. M. Obukhovich[164] applied the
former method (MSP) to propagation of waves in
randomly-inhomogeneous media in 1953. As for the
parabolic-equation method (PEM), it was first applied
only in 1964 to volume statistical problems on wave
propagation by L. A. Chernov [ i e 5 ] and L. S. Dolin/1 6 6 1

If we assume in Eq. (1) that u = U i r j e " " ^ , where
the χ coordinate is defined by the direction of propa-
gation of the primary wave, we get the following equa-
tion for the complex amplitude U:

— 2ik~- + AU=— kHU.

If x » Z > λ , then |8 2 U/8x 2 | < 2k|8U/ax| (of the
order of l/x). Then we can replace the total Laplacian
Δ by the transverse Laplacian Δ χ = (92/9y2)
+ (8 2/8z 2). This leads to the parabolic equation

- 2lk -g- + A±U = - k HU. (6)

In using Eq. (6), people often speak of the differential
approximation. The source of this terminology is evi-
dent from the form of the left-hand side (although the
diffusion coefficient is imaginary, as it is in the
Schrodinger equation), and the physical meaning con-
sists in a slow transverse diffusion of the energy of the
wave field with increasing x.

The method of smooth perturbations (MSP) is dis-
tinguished by the fact that one introduces the complex
phase ψ = S + ϊχ in place of U. Here S is the phase
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proper , while χ is the logari thm of the amplitude, or
the so-cal led level. Substituting U = e " ^ into (6)
gives the fundamental MSP equation:

In contras t to (6), it is no longer p a r a m e t r i c , but in-
stead, is non-l inear.

The G r e e n ' s function of the left-hand s ides of the
parabolic equation (6) and the l inearized Eq. (7) (i.e.,
Eq. (6) with <? = 0 and Eq. (7) with (Vj.i/>)2 - k 2 ^ = 0)
correspond to the so-cal led parabolic or F r e s n e l ap-

V
proximation: ( l/4irR)e Ky " rep laces the

exact function ( l / 4 i r R ) e " l k ^ " x \ This "abbreviated
Green ' s function is suitable for path lengths x of the
wave in the medium such that the ra t io of the a r e a of
the F r e s n e l zone (χλ) to the a r e a of the inhomogenei-
t i e s (Z 2 ) is s m a l l in comparison with Ζ2/λ2:

Thus, for large-sca le inhomogeneities (Ζ/λ 3> 1), the
two equations make it possible to cover the regions of
both Fraunhofer diffraction (1 < (λχ/l2) < Ζ2/λ2) and
F r e s n e l diffraction (λχ/Ζ2 ~ 1), and of geometr ical
optics (λχ/Ζ ζ <S 1).* H e r e , even in the geometr ical
approximation, it is quite permiss ib le that x/Z 3> 1,
since λ/Ζ <̂C 1. That is , a very great number of indi-
vidual inhomogeneities can occur in the path of the
b e a m . However, one must solve the complete equations
(6) and (7). Then, in spite of the fact that they a r e
f i r s t -order in x, one st i l l can' t achieve an exact solu-
tion, since (6) is p a r a m e t r i c and (7) is non-l inear.
Consequently, one must also r e s o r t h e r e to the p r o -
cedure of perturbations and rely on the smal lness of
the fluctuations.

Before proceeding to descr ibe this procedure, we
note that, in spite of the equivalence in principle of the
PEM equation (6) and the MSP equation (7), the resu l t s
of solving them by the perturbat ion method do not by
any means always agree, and they have different r e -
gions of applicability. In par t icu lar , the " s p h e r e of
a c t i o n " of the f irst approximation of the MSP is r e -
s t r ic ted by the condition of smal lness of the fluctua-
tions in the level ( ( χ 2 ) 5 1)· On the other hand, the
PEM is suitable also in the region of s trong amplitude
fluctuations (for m o r e details on th i s , see par ts (a)—
(c) of this section). Hence, the problem of which of
these two methods one prefers involves to a considera-
ble extent how the problem is posed. For example, if
one is interested in the behavior of the phase S, r a t h e r
than the field s trength, then the MSP is convenient:
however, if one must calculate the moments of the
field itself, then it is b e t t e r to use the P E M .

We shall f irst take up the MSP. [ 1>2>4>1 6 4 1

*In a turbulent medium, i.e., when there are inhomogeneities of
many different scales, we must, of course, adopt the extreme values of
/ in these inequalities. For example, the Fraunhofer zone lies at dis-
tances χ such that Lo <4 λχ < /ο/λ2· This is possible only when \ L 0 ^
l\. The geometrical-optics region corresponds to λ χ < /„. [ " 7 · l l 2 ] How-
ever, as Taylor [168> 1 6 9] has shown, the region of applicability of the
geometrical-optics approximation is broader for the phase shift, namely
being X x j / ^

a. Method of Smooth Per turbat ions

Expansion of the complex phase in the s e r i e s
Φ - Φι + 4>2 + · · · > where ψ η is of the o r d e r of
(e2)n/2, gives r i s e to a system of l inear equations of
success ive approximations

(8)

The right-hand s ides of these equations rapidly become
m o r e complicated with increasing n. Jus t as in the
Born approximation, one naturally considers first the
problem of the conditions under which one can limit the
t reatment to the f irst approximation ψ χ. This problem
is not s imple, and a ra ther large number of people
have dealt with it, both in our country in the early
sixties, [ 2 ' 3 » 1 7 0 ~ 1 7 3 ] and abroad, where a r a t h e r lively
discussion set in between 1964 and 1969.t"4-i85,i3,526i

The point is that we can expect to find an exhaustive
solution of this problem only from a developed theory
of multiple scat ter ing. T h e r e is only one thing r e m a i n -
ing within the confines of the perturbation theory itself:
to compare the second approximation with the f irst ,
without any great re l iance in the requi rements set
forth.

Such a comparison gives very rigid re s t r ic t ions on
( χ 2 ) and ( S 2 ) . Indeed, the level χ must satisfy the
conditions | < χ 2 > | « 1 and <χ!> - < χ 2 ) 2 < < χ 2 . ) . How-
ever, we can show that ( χ 2 ) = - ( χ 2 ) , and ( χ 2 )
~ a ( x i ) 2 for a plane or spher ica l pr imary wave (a is

a coefficient of the o r d e r of unity). Hence, for a
medium having fluctuations on a single sca le , the given
inequalities for χ 2 (and analogous inequalities for the
phase S 2 ) lead to the conditions ( χ 2 ) <̂C 1 and ( S2}
<C 1. As we can easily see , these a r e equivalent to the
conditions for applicability of the Born approximation.
As we have said, the necessity of these extremely
rigid conditions is far from evident. Therefore, we
cannot r e g a r d as well-grounded the conclusion that the
first MSP approximation is equivalent to the Born ap-
proximation, i.e., the theory of single scat ter ing (see,

[ 1 8 6 1

g ,
In f a c t , a s e a s l y a s 1962, V. I . T a t a r s k r i [ 1 7 3 1 t o o k u p

t h e point t h a t t h e c o n d i t i o n s for s m a l l n e s s of t h e c o r -
r e c t i o n s of t h e s e c o n d a p p r o x i m a t i o n m u s t b e i m p o s e d
i n a d i f f e r e n t way for t h e p h a s e f l u c t u a t i o n s t h a n f o r
t h e f l u c t u a t i o n s i n l e v e l , p r o v i d e d t h a t , a s u s u a l , w e
a r e not i n t e r e s t e d in t h e o v e r a l l shi f t of t h e p h a s e S,
b u t only i n t h e p h a s e d i f f e r e n c e , e i t h e r VS ( r a n d o m
refraction) or S(TI) - S ( r 2 ) when ρ = | r x - r 2 1 is not
too great ( interference, imaging of a source in the focal
plane of a lens). In these cases , it suffices to requi re
that the b a s i s should obey the inequality Ds (p) <C
<C D g ^ p ) . For a locally homogeneous and i lotropic
turbulence, it t u r n s out that {χΐ) - a ( x 2 ) 2 , and
D S 2 ( P ) = b L D s ^ p ) ] 2 . Here a and b a r e numbers of the
o r d e r of unity that depend on the exponent in the spatial
s p e c t r u m . Consequently, the imposed conditions take
on the form

In a t u r b u l e n t m e d i u m o b e y i n g a "2/3 l a w , " t h e f i r s t of
t h e s e c o n d i t i o n s g i v e s
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The condition that the structure function of the phase
is small (DSj 4C 1) gives rise (in the " inert ia l" inter-
val Zo ^ Ρ ^ Lo) to a quite different inequality, namely

That is, when the basis is small enough (kp <S Vkx),
the restriction on the fluctuations in phase differences
S ( r i ) - S ( r 2 ) proves to be considerably weaker than
the restriction on the dispersion.*

A number of attempts have been undertaken to esti-
mate ( χ 2 ) more accurately, based on the non-linear
equation (7). This requires summation of a perturba-
tion theory series expanded in the quantity (Υιψ)2.
Here the fundamental difficulty lies in the fact that
turbulent fluctuations prove to follow the relation
<Xp = c n < x ? ) n . Here the numerical constants c n are
multiple integrals. Hence, in the series for ( χ 2 ) , one
can't isolate the principal subsequence that gives the
fundamental term in the expansion in the new small
parameter. The only thing that this approach provides
is the conclusion that under a "2/3 law" (or any other
self-modeling law)

The attempts to establish the explicit form of the func-
tion f are too crude/ 1 8 7 " 1 8 0 ' 2 1 and we shall spend no
time on them.

Since the theory cannot yet reliably indicate the
limits of applicability of the first MSP approximation,
it is natural to see what conclusions we can draw from
the experimental data.

An experimental test of the course of < χ 2 ) as a
function of the parameter ( χ ? ) , i.e., the intensity of
fluctuations of the level, as calculated in the first ap-
proximation, has been made in the Institute of Atmos-
pheric Physics of the Academy of Sciences of the
USSR. This was done initially by Μ. Ε. Gracheva and
A. S. Gurvich, [1811 M. E. Gracheva, [ 1 8 2 ] and A. S.
Gurvich and M. A. Kallistratova [ 1 9 3 ] using an incoherent
light source. It has since been done with a laser by the
associates at the Institute of Atmospheric
Physics [ 1 9 4 ' 1 9 5 1 and by some American investiga-
tor s. [ 1 9 6 '1 9 7 1 Measurements of the twinkling of the
light source made on an aboveground course gave the
resul t [ 1 9 5 ] shown in Fig. 3. The first approximation
holds up to ( χ 2 ) ~ 1, i.e., farther than indicated by
the condition outlined above. Then ( χ 2 ) leaves the
besectrix, passes through a maximum, and begins
gradually to decline.

Another consequence of the first MSP approxima-
tion is also confirmed experimentally: the logarithmic
normal distribution law of the field amplitude, at least
when ( χ ? ) < i.[»i-»5,i98-2on ( s e e also Part d of this
section).

Thus, experiment says that the first MSP approxi-

*The restriction on the phase dispersion <S\) depends now on the
size of the basis p. When ρ έ Lo (where Lo is the outer scale of the tur-
bulence), the relation Dgj = 2 <Sf > holds. Hence, the inequality Ds, < 1
implies that <S\> < 1. However, if ρ < 1, and simultaneously v ^ x ·< Lo.
then the condition Ds, < 1 allows values of (S\) <; 1 when the inequal-
ity <x?> < 1 is obeyed. That is, we get a restriction on <S?> that is less
rigid than in the Born approximation.

./:/:•."·
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mation for the level χ fails only when (χ?) ~ 1. For
this region (the so-called region of strong amplitude
fluctuations), the theory of fluctuations of the level
based on the MSP cannot yet be considered to be com-
pleted.

The situation differs completely with respect to
phase fluctuations. As experiment shows, [ 1 9 3 ] calcula-
tion of the phase fluctuations (random refraction) by
the first MSP approximation proves to be applicable
even in the region of very strong fluctuations in the
level. This conclusion confirms the theoretical esti-
mates of V. I. Klyatskin. [202]

However, the results of calculating the phase fluc-
tuations and angles of approach of the wave by the
MSP are practically the same as those given by the
method of geometrical optics (differing by no more
than a factor of two[1»21). Hence, what we have said
implies that we can expect the corresponding geo-
metrical-optics phase calculations to be also applica-
ble in the region of strong fluctuations in the level. As
was shown in [ 2 O 3 ], in the language of geometrical op-
tics, the region of strong amplitude fluctuations is the
region of strongly developed caustics (see Fig. 4,
which shows schematically a picture of the caustics in
a medium containing inhomogeneities as a plane wave
is propagated through it). Naturally, in this region
neither the MSP nor, a fortiori, geometrical optics can
give correct results for the amplitude (in the first ap-
proximation of the perturbation theory). However, the
caustics have practically no effect on the size of the
fluctuations of the phase (the phase jumps of 77/2 at
each contact with a caustic are evidently insubstantial
when < S2.) » 1). We can suppose that also the diffrac-
tion effects have a weaker influence on the behavior of
the phase than of the amplitude. This is just why, in
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spite of the restriction ( χ?) S 1, that the first MSP
approximation in many cases proves adequate, and a
great many studies have been based on it.

First of all, we note that the first of the equations
(8) allows an exact solution for φ ι if we reinsert into
it the total Laplacian:

* « < r > = H ) ε < Γ ) u X ) | Γ - Γ Ί

 d V -

H e r e U 0 ( r ) i s t h e c o m p l e x a m p l i t u d e o f t h e p r i m a r y

f i e l d i n t h e m e d i u m w i t h o u t t h e f l u c t u a t i o n s i n e . T h u s ,

one can find φι for the most varied forms of the pri-
mary wave—not only for a plane wave,' 1 6 4 ' 1 ' 2 ' 4 ' 2 0 4 ' but
also for a spherical wave/2 '2 0 5"2 1 3 1 and also for spa-
tially-limited beams. [ 2 1 4- 2 2 9 ' 5 2 9" 5 3 2 1 If we know φ^τ,ω),
we can calculate the various correlation functions of
the phase and the level, both in space and in time and
frequency/ 1 ' 2 ' 4 ' 6 ' 1 3 ' 2 3 0" 2 4 3 1 and use them to solve various
problems that arise, e.g., in interpreting observations
of star twinkling/2 '2 4 4"2 5 1 1 in studying propagation of
radio signals in interplanetary space/ 2 5 2 1 propagation
of pulsed or modulated signals/2 5 3"2 5 7 1 etc.

The mentioned correlation functions are also used
for finding the effective parameters of radiotechnical
and radioastronomical antenna systems (the mean
directivity pattern, the coefficient of directivity, the
limiting resolving power in a turbulent medium,
etc.)/ 2 5 8 " 2 6 6 ' 5 3 3 1 the parameters of optical receiving
systems (limiting resolution, image transmission
quality through a medium containing inhomogeneities,
signal/noise ratio in systems with heterodyne action,
etc . )*/ 1 7 4 ' 2 0 8 ' 2 6 7 " 2 8 4 , 5 1 1 5 3 4" 5 3 7 ] in studying fluctuations in
the focus of a lens/1»2 '2 8 5"2 9 2 1 in accounting for the ef-
fect of the finite dimensions of the receiver and source
on fluctuations of the received s i g nai/ 2> 2 1 2> 2 4 7. 2 e 4- 2 e e} in
studying scattering by conductors placed in a medium
containing random inhomogeneities/2"1 etc.

There are no difficulties in principle in extending
the MSP to the case of anisotropic fluctuations in a
medium that is isotropic on the average/ 2 0 8 ' 2 5 7 ' 3 0 0" 3 0 3 1

and also to anisotropic randomly-inhomogeneous
media/ 1 6 1 ' 3 0 4 1 to absorptive media/ 3 0 5" 3 0 9 1 to media
showing gradual spatial variation in the mean value
( e ), the variance ( e2), or the structure constant

c | [2,6,204,208,209,212,278,284,310-313]
been used to treat problems of depolarization of a light
wave/3 1 4"3 1 6 1 and of scattering of a light wave during
reflection from the ionosphere/3 1 7 1 We note that an
attempt had already been undertaken11891 to perform a
partial summation of the perturbation-theory series
for the complex phase φ = S + ίχ by integrating over
random trajectories. In other words, the MSP, just
like the Born approximation, permits one to take into
account an entire series of all the possible complicat-
ing factors.

*The studies cited here on antennas and optical systems include stud-
ies in which the wave parameters were calculated not only by the MSP,
but also by geometrical optics and the PEM, and also studies that used
existing statistical results from other publications. Our collecting the
references to all these articles together in one place is intended to em-
phasize here the antenna and optical specifics of the problems, rather
than the features of the "method of calculating the statistical parameters.
Besides, within the framework of the assumptions made in the cited
studies, the PEM and geometrical optics give practically the same re-
sults as the MSP.

Of course, one can also take into account the same
complicating factors in the geometrical-optics approxi-
mation. Studies have been made in this approximation
of fluctuations in the amplitude and phase of plane and
spherical waves/1 '2 '3 1 8"3 2 8 1 waves in a gyrotropic
medium,1 3 2 9"3 3 1 1 waves emerging from the iono-
sphere,' 3 3 2 1 or passing through interplanetary
space/ 3 3 3 1 fluctuations in laser beams/ 3 3 4 " 3 3 7 1 and
changes in polarization of a wave/ 3 3 5 ' 3 3 8 ] A number of
studies have been concerned with ray trajectories
under various conditions: in isotropic
media/ 1 ' 2 ' 1 5 8 ' 1 8 0 ' 1 6 1 ' 2 0 3 ' 3 2 5 ' 3 3 9 " 3 4 3 ' 5 3 8 1 in gyrotropic
media/ 3 4 4 ' 3 3 1 1 in the presence of refraction/ 3 2 5 ' 3 4 5 ' 3 4 6 1

etc. With an appropriate generalization, the method of
geometrical optics makes it possible to describe fluc-
tuations in the parameters of waves even in the vicinity
of caustics/ 3 3 1 ' 3 4 6" 3 4 9 1

We may note the double role of the method of geo-
metrical optics in the theory of propagation of waves
in media containing large-scale inhomogeneities. On
the one hand, it serves as a heuristic basis for asymp-
totic methods that take into account diffraction effects
(the MSP, PEM, and their modifications), as these
methods often directly use ray representa-
t ions/ 2 ' 1 8 7 " 1 8 9 ' 2 0 2 ' 3 4 2 ' 3 5 0 ' 3 6 1 1 On the other hand, the geo-
metrical-optics approximation gives a satisfactory
quantitative description of certain statistical charac-
teristics of a wave, and first of all, its phase and angle
of incidence, as has been discussed above. This is
especially essential for media that are inhomogeneous
on the average, for which calculations by the MSP are
difficult.

b . The Parabolic-equation Method

We recall that in a homogeneous medium (e" = 0),
Eq. (6) admits an exact solution for a given value of
the field at the boundary χ = 0:

it
(9)

where U0(y, z) = U(x, y, z ) | x = 0 . This parabolic-equa-
tion solution is also often used in statistical problems
in which the field at the boundary is random, while the
scales of the inhomogeneities of this field are large in
comparison with the wavelength. Such an application of
Eq. (9) is illustrated by the results from diffraction of
a random (partially coherent) wave field by apertures
whose dimensions are much larger than χ/3 5 2"3 6 0 !
studies of the characteristics of large antennas with
random variations of the currents in the aperture/ 3 6 1 " 3 6 8 1

as well as the studies mentioned in the preceding sec-
tion on the diffraction pattern at the focus of a
lens/ 2 ' 2 8 5 " 2 9 2 1 (in the latter case, one introduces under
the integral in (9) the focusing factor exp(ik(?72

+ £2)/2F), where F is the focal length).

The same type of problem with random boundary
conditions includes also the frequently-applied model
of a thin phase (or amplitude-phase) shield that is
taken to replace a layer of a medium containing
volume inhomogeneities. The widespread use of this
replacement is mainly due to the substantial simplifi-
cation of calculating the statistical characteristics of
the field beyond the shield. This is just why this model
is indispensable, although problems with random
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boundary conditions lie outside the framework of this
review, which is concerned with problems of the theory
of volume scattering.

The theory of a pure phase shield has been devel-
oped in greatest detail. [ 3 β 9~3 9 7 ] This model has been
used to treat varied problems on propagation of waves
through the ionosphere, [ β β > 3 β β '4 0 5 1 through the inter-
planetary plasma, [ 4 0 6~4 1 β ] and very recently (since the
discovery of pulsars) through the interstellar plasma
as well.[417~418] The phase-shield model makes it pos-
sible to study propagation of pulsed signals, [ 4 2 0 ] the
averaging action of a receiving aperture/ 4 2 1 ' 4 2 2 ' 5 3 8 1 the
effect of horizontal gradients/ 4 2 3 ' and the possible
appearance of caustics.1·424-1

However, the vulnerable side of this model is the
problem of the equivalence of the shield.

If we understand the shield to be the exit surface of
waves from a layer of the medium containing volume
inhomogeneities and the phase fluctuations on this sur-
face are calculated by solving the problem of bulk
scattering in the layer (e.g., by the MSP or geometri-
cal optics), then Eq. (9) will give the field beyond the
shield quite correctly. However, the main advantage
of the model will be lost: the simplification of calcula-
tion that it gives. However, if the properties of the
shield are assigned, then evidently the results cannot
nearly always pretend to give a good quantitative de-
scription of the fluctuations in a wave that has actually
passed through a volume randomly-inhomogeneous
medium. In particular, this pertains to the interpre-
tation of observations of twinkling of radio sources
(quasars) in the interplanetary plasma. When the
source is at a large angular separation from the sun,
not only the statistical characteristics of the equiva-
lent shield are called into question, but even the dis-
tance at which one should put it. Thus, the necessity
of applying the PEM to volume scattering with all the
difficulties that arise here is in no way avoided by the
simplifications provided by the thin-shield model.

In applying the PEM to thick layers of a randomly-
inhomogeneous medium, the idea naturally intrudes of
using a set of thin phase shields. By dividing the layer
into a series of thin "p la tes" (the thickness of which,
however, is much greater than the correlation radius
of the inhomogeneities), one can try to apply to each
such "p la te" the thin-shield formula, while calculating
the phase shift by the geometrical-optics method and
using the " F r e s n e l " Green's function. This is pre-
cisely the path taken in several studies/ 1 8 0 ' 3 7 2 ' " '- 4 3 1 !
(a machine calculation for a multilayer model was
undertaken in [ 4 3 2 ] ).

It is more systematic to apply Eq. (6) directly, but
with division of the medium into physically infinite thin
"plates" . L. A. Chernov has used this method, with
the assumption that one can restrict the treatment
within each "p la te" to the first approximation of the
method of small perturbations, and further, with ac-
count taken of the correlation of U(r) with only those
inhomogeneities that the wave has already passed.
Thus he derived from Eq. (6) some approximate closed
equations for the mean value ( U(r)) and for the mo-
ments <U(ri)U(r,)> and <U(Pi)U*(r,)>. [ 1 6 5 ' 4 3 3 ]

L. S. Dolin [ i e e ' 4 3 4 > 4 3 5 ] has derived the same equations,
but in a different way (in essence, by summing the

perturbation-theory series to an accuracy of terms of
the order of (e" 2 )).* Thus, an approach has been de-
veloped in these studies to establish equations for the
averaged bilinear quantities on the basis of the
stochastic equation. Equations were subsequently
derived as well for the moments of U(r) of higher
order . t 1 4 3 7 " 4 3 9 3 An analogous formulation of the prob-
lem that uses a division of the medium into "p la tes"
is contained also in[4 4 1>4 4 !0 ; w i th the assumption that
the fluctuating component of the field is distributed
according to a Gaussian law.

V. I. Tatarskix [ 4 4 3 ] has recently developed a
methodologically more refined approach as applied to
the same parabolic equation (in particular, without
division of the medium into auxiliary thin "plates") .
We shall treat this study and the publications that have
followed itt 4 4 4" 4 4 8 1 in somewhat more detail.

c. The Markov Approximation

In essence, the same physical assumptions are
made in [ 4 4 3 ] as L. A. Chernov [ i e S ) 4 3 3 ' 4 3 8 ] makes. How-
ever, their mathematical formulation is more lucid,
and hence, it permits a clearer formulation of the
problem. The assumptions in question are based on
the idea that the fluctuations of any parameter of the
wave are usually related to inhomogeneities on a cer-
tain scale. For example, intensity fluctuations are
mainly due to inhomogeneities whose transverse di-
mensions are of the order of the radius -/λχ of the
Fresnel zone. Phase-difference fluctuations over the
basis ρ are due to inhomogeneities of transverse
scale ~ p , etc. However, if the medium is statistically
isotropic, this means that also the longitudinal corre-
lation radius of the most substantial inhomogeneities
is of the same order of magnitude.

If the path length χ is much greater than the
dimensions of the substantial inhomogeneities, then
the problem involves small parameters like px or
Vxx/x, and we can seek a solution as an expansion in
these small parameters. We can get the first term of
such expansions by formally replacing the longitudinal
correlation radius e"by zero, i.e., by replacing the
true correlation function Be(x - χ', ρ - ρ') by the
effective function:

ρ'), (10)

Here A is determined by the condition

j B.dx= j B<"dx = A [p-p').

As V. I. Tatarski i [ 4 4 3 ] has shown if given a corre-
lation function like (10), one can treat wave propagation
in the parabolic-equation approximation as a Markov
random process, and derive closed equations for the
moments of U. Following the work of V. I. Klyatskin, [444]

we shall demonstrate this for the example of the
equation for ( U ) .

*Among the foreign publications, the closest to the PEM is that of
Hufnagel and Stanley, [I74] although the parabolic equation (6) doesn't
figure in it explicitly. This equation was derived in [436], but it was
solved essentially in the Born approximation.

t Results equivalent to solving the derived equations by the pertur-
bation method are to be found in [S4°].
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One can e a s i l y t r a n s f o r m (6) into the integro-di f fer-

ent ia l equation
X X

- j T(|, P) dl . * - \ \ HI. P) dl
U(x, p) = C/(O, p)e

ik
2

ρ) di\.

( 1 1 )

N o w , i n a v e r a g i n g t h i s e q u a t i o n , w e m u s t t a k e i n t o

account the fact that the values of ? ( ξ , p) a r e taken

for ξ > η in the exponent within the integral over 77.

Since the boundary condition for U in Eq. (6) is im-

posed at χ = 0, U(TJ, ρ ) depends functionally only on

the values of e"(£, p) for ξ < η , and does not contain

the subsequent e"(£, p) for ξ > η . Hence, since

£ ( £ , p) has a delta corre lat ion function the values of

Δ χ υ ( η , p ) and the exponential within the integral over

η in (11) a r e stat ist ical ly independent, and the averag-

ing of (11) gives the equation

(U(x, p)> = t/(O, p)(e

— \ ε(Ε, Ρ) dj

, p))dr\.

If t h e d i s t r i b u t i o n o f e i s G a u s s i a n , t h e n t h i s e q u a t i o n

i s r e d u c e d t o t h e d i f f e r e n t i a l e q u a t i o n :

w h i c h h a s a s o l u t i o n o f t h e f o r m

(U (x, p)) = U(s(x, p)e •T/2<iBj

( 1 2 )

( 1 3 )

H e r e U o ( x , P ) i s t h e s o l u t i o n o f t h e s a m e e q u a t i o n w i t h

t h e s a m e b o u n d a r y c o n d i t i o n i n a m e d i u m h a v i n g n o

f l u c t u a t i o n s ( s e e E q . ( 9 ) ) , a n d d g i s t h e e x t i n c t i o n

d i s t a n c e c a l c u l a t e d i n t h e B o r n a p p r o x i m a t i o n . O n e

o b t a i n s t h e r e s u l t ( 1 3 ) a l s o i n t h e s e c o n d M S P a p p r o x i -

m a t i o n [ 2 > 3 8 5 1 ( o r b y n o r m a l i z i n g t h e e n e r g y o f t h e f i e l d

t o t h e e n e r g y o f t h e p r i m a r y w a v e , a s w a s d o n e , e . g . ,

i n 1 · 1 1 ) , a n d a l s o f r o m t h e B o u r r e t a p p r o x i m a t i o n , w h i c h

w i l l b e d i s c u s s e d b e l o w . O f c o u r s e , t h i s d o e s n ' t i m p l y

t h a t t h e c i t e d a p p r o a c h e s a r e f u l l y e q u i v a l e n t . F o r

e x a m p l e , t h e r e s u l t s o f t h e M a r k o v a p p r o x i m a t i o n f o r

( U ) a n d B y ( s e e E q . ( 1 4 ) ) c o i n c i d e w i t h t h o s e g i v e n

b y t h e s e c o n d M S P a p p r o x i m a t i o n , b u t t h e y a l r e a d y

d i s a g r e e f o r t h e f o u r t h m o m e n t ( E q . ( 1 6 ) ) .

O n e c a n a l s o d e r i v e i n a n a n a l o g o u s w a y e q u a t i o n s

f o r a n y o f t h e m o m e n t s o f ( U ( x , p i ) . . . U * ( x , p k ) ) ,

a n d a l s o e q u a t i o n s o f t h e E i n s t e i n - F o k k e r t y p e f o r t h e

p r o b a b i l i t y d i s t r i b u t i o n o f t h e f i e l d U . I n p a r t i c u l a r ,

o n e g e t s t h e f o l l o w i n g e q u a t i o n f o r t h e s e c o n d m o m e n t

( t h e s e c o n d - o r d e r c o h e r e n c e f u n c t i o n ) B u ( x , p i , p 2 )

= < U ( x , P x ) U * ( x , p 2 ) > :

_ 2 i f r - ^ - f - ( A 1 - A 2 ) f l L - - - i ^ [ 4 ( 0 ) - 4 ( P l - p 2 ) I f l f , = 0, ( 1 4 )

I t h a d p r e v i o u s l y b e e n d e r i v e d i n a d i f f e r e n t w a y b y

L . S . D o l i n a n d L . A . C h e r n o v / 1 6 5 ' 1 6 6 ' 4 3 3 " 4 3 5 1 a n d i t i s

e q u i v a l e n t t o t h e t r a n s p o r t e q u a t i o n i n t h e s m a l l - a n g l e

a p p r o x i m a t i o n ( s e e b e l o w ) .

T h e ( n + m ) - t h o r d e r m o m e n t

MK. m (•)•; P l , . . . , p, . . . , p n ; P ; , . . ., p'm)

= (U(z, pt) .

s a t i s f i e s t h e e q u a t i o n 1 - 4 4 5 1

-5-β...

U(x, pa)U*(z,

(Pi,

U*(x, pm)-.

• •, P'-m)Mn,

( 1 5 )

where

<?-,»- .Σ .Σ Α (Ρ' - Pi) - j t Σ A (pi - p;)

In part icu lar , a s r e g a r d s the fourth-order moment

Γ 4 = M2,2 that determines the intensity fluctuation:

\\(x; R, r,, r,. ρ) = (υ [x, R + I l+lL + i ) U (x, R _ i l + S _ + £-)

X U* [x, R + U 3 U . _ £ - ) U* (x, R _ i = i _ ^ ) > - ,

one can derive from (15) the equat ion 1 4 4 3 1

- ^ = T(VHVp + V r i V r 2 ) r 4 _ 4 i f („, r2, ρ)Γ4, (16)

w h e r e

and

(r2 - A ) -H (r ) _ / / ( r , - r2)

] - 2

A s p e c i a l c a s e of Eq. (16) w a s der ived by V. I.

S h i s h o v t 4 3 ? 1 by s e l e c t i v e s u m m a t i o n of the perturba-

t ion-theory s e r i e s , and i n [ 4 3 9 ] by dividing the medium

into l a y e r s . * L. S. D o l i n t 4 4 9 1 ( s e e a l s o [ 4 5 0 ] a n d [ 4 3 5 ] ) has

der ived a g e n e r a l so lu t ion of Eq. (14) by a F o u r i e r

t rans format ion o v e r the var iab le R = /^(pi + P2)· It

h a s the fo l lowing f o r m :

Βυ(χ, R, rts

2R' ( j ώ2κ i x ( R - R ' )

( 1 7 )

H e r e U o ( p ) = U ( 0 , p ) i s t h e a s s i g n e d i n i t i a l d i s t r i b u -

t i o n o f t h e c o m p l e x a m p l i t u d e o f t h e f i e l d . t I f , f o r

e x a m p l e ,

( t h e i n i t i a l b e a m h a s a G a u s s i a n a m p l i t u d e d i s t r i b u t i o n

a n d a q u a d r a t i c p h a s e d i s t r i b u t i o n ) a n d t h e f l u c t u a t i o n s

o f t h e r e f r a c t i v e i n d e x a r e d e s c r i b e d b y a "2/3 l a w " ,

*DeWolf [19°] has also tried to sum the perturbation-theory series
for Γ 4 . However, in this study he unjustifiably omitted some strongly
connected diagrams. According to [ 1 8 9 ] , this leads to a normal proba-
bility distribution for the field, and a Rayleigh distribution of the am-
plitude. A numerical solution of the equations that were derived in [437]
is given in [ S 4 0 ] .

t l f the initial field distribution is random, then in the integral in
(17) one must replace the product Uo U J by the initial value of the sec-
ond moment

B U o = B T J ( 0 ; R ' · P" X K / k )>

Then formula (17) will describe the propagation of a partially coherent
wave in a medium containing inhomogeneities. We note that the state
of the theory of partially coherent fields in a vacuum, i.e., in the ab-
sence of random inhomogeneities, has been covered in [ 4 S 1 " 4 5 3 ] . The
elements of this theory were initially introduced to describe waves in
randomly-inhomogeneous media in [ 4 5 4 ' 4 5 5 ] , where the Born approxi-
mation was used, and in [ m ] , where an approach resembling the PEM
was applied.
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then we can derive from (17) the following expression
for the mean intensity in the beam {I(x, R))
= < |U(x,R) | 2 > = Bu(x, R, 0 ) : t M e ]

(I(x, R)> = /„(*)/>, μ),

where

/«(*) = -

2kaR

F(v, μ) =

Figure 5 shows graphs of the function F(v, μ)/ΐ?{0, μ),
which is the profile of the mean intensity in the beam
normalized to the intensity < I(x, 0)) at the center of
the beam. It is plotted against the dimensionless
argument ν = R/Ro, where Ro = xg(x)/2ka, for
several values of the parameter μ, which character-
izes the intensity of fluctuations e. Figure 6 shows the
intensity at the axis of the beam normalized to the
value of I0(x), which is the intensity at the axis of the
beam in the absence of fluctuations: F( 0, μ)

As for the equation (16) for I\, one cannot solve it
in the general case. We note that Eq. (16) does not fit
an expression of Γ 4 in the form of a sum of products
of Bu, i.e., in the form that Γ 4 would have with a
Gaussian field distribution. This directly indicates that
the distribution of U is generally not Gaussian. How-
ever, one can easily obtain one of the integrals of this
equation. For an infinite incident wave, we have the
relation

J J[r t(s; R, r, 0, p)-\Bv(x, R, 0)|2d2r=0. (18a)

Restricted beams obey the following formula

j ( <22R f j d"r [Γ4 (χ; R, τ, 0, ρ) -1 Βυ {χ, R, 0) |2] = 0. (18b)

Relations (18a) and (18b) have a simple physical
meaning: they stem from the law of conservation of
energy. Hence, the fluctuations of intensity involve
only a redistribution of energy within the beam.

Just like the equation for Bu, the equation for the
fourth moment can be written in the form of a radia-
tion-transport equation in the small-angle approxima-
tion. [ 4 4 6 ] If we seek Γ 4 in the form

Tt(x; R, r,, r2, P) = j j e"R<i'p j j β«^2κφ (χ; ρ, r,, κ, ρ - Ε ) ,

then we can derive from (16) an equation for the func-
tion ψ(χ; ρ, Γι, κ, ρ):

= nk* \ f

ff 2 4 S Β W 72 74 IB !8 20

FIG. 6
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The quantity φ is a formal analog of the energy flux in
the radiation-transport equation. As we see from (16a),
the "scattering indicatrix" and the "extinction coeffic-
ient" here are functions of the coordinates.

We can solve Eq. (16a) approximately by replacing
the value of φ within the integral by the known initial
value ψ0 = ψ(0; ρ, r, κ,- κ', ρ) (the "single-scattering
approximation" in the sense in which this term is
used in the theory of radiation transport).

If the fluctuations in the dielectric constant of the
medium obey a "% law," then in this approximation,
the mean square of the relative fluctuations of intensity
of a plane wave /32(x) = [<(l - (I))2)]/< I ) 2 is a function
of the quantity βΙ= 0.3 C |k 7 / 6 x l V e , as found in the first
MSP approximation. Figure 7 t 4 4 5 ] shows the relation
β = f(/30)· In the region of strong fluctuations (j30 3> 1),
the correlation function of the intensity fluctuations
calculated in the single-scattering approximation is
characterized by two scales: h = /λχ βΙ/5, and l2

= (C |k 3 ) " 3 / 1 1 = τίλχ/βΙ/η, with h > h. The scale h is
related to the dimensions of the inhomogeneities of
intensity, while the scale h can be interpreted as the
mean distance (in the plane χ = const.) between posi-
tive and negative fluctuations in I.

Let us briefly consider the problem of the limits of
applicability of the Markov approximation in the PEM.
When one estimates the limits of applicability of an
approximate theory by estimating the next term in an
expansion, then one usually has no assurance that the
subsequent terms (neglected in the expansion) will not
change the result.

This is not the case with the Markov approximation,
since an exact solution of the problem corresponding
to I = 0 can be derived in an independent way, and it
coincides with the principal term of the expansion in
I.

Corrections to Markov-type solutions arising from
the finite longitudinal correlation radius of the dielec-
tric constant have been discussed in [ 4 4 4»4 4 5 ], while the
conditions have been studied in [ 4 4 5 ' 4 4 7 ] under which one
can use the parabolic equation itself in a medium con-
taining random inhomogeneities. It turned out that the
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restrictions involving both the use of the parabolic
equation and the Markov approximation are practically
identical. They have the form:

a) (ε2) kl < 1; b ) c)

Here σ α ~ ( e"2 ) x/Z is the mean square of the fluctua-
tions in the direction of propagation. Condition a) can
also be written in the form λ α < 1 , where
a ~ {£2)V?l is the extinction coefficient, and λα is
the attenuation per unit wavelength. Condition c) can
be written in the form αχ <C Ζ/λ. Its meaning consists
in the smallness of the back-reflected waves, and it
can be satisfied even at large values of αχ, since
I ^> λ. In addition to these conditions, naturally, the
purely "geometric" conditions for applicability of the
parabolic equation, as indicated at the beginning of
Sec. 3, must be satisfied (λ < Ζ, ( λ χ / Ζ 2 ) < (Ζ2/λ2)).
Furthermore, the Markov approximation becomes
valid only when χ » Ζ, i.e., the "process of establish-
ment" of a Markov system occurs in the region
χ ~ I. No further limitations are imposed on the fluc-
tuations in the field amplitude within the framework of
these conditions. We shall point out also that V. I.
KlyatskinCi48] has discussed longitudinal field correla-
tions in the Markov approximation.

d. Distribution Laws of the Fluctuations in the
Scattered Field

Now we shall take up the rather complicated prob-
lem of the distribution laws of the fluctuation proba-
bilities. It isn't hard to write equations for the charac-
teristic functional of the field u or the logarithm of
the field In u. However, these equations contain varia-
tional derivatives, and can't be solved. However,
substitution into these equations of Gaussian-type
characteristic functionals shows that a normal distri-
bution for u or In u is not a solution for them.

Whenever the first approximations of the perturba-
tion theory or the MSP are suitable, i.e., when the
fluctuations in u or In u are small enough, the solu-
tion is a linear functional of ?. In view of the central
limit theorem, we can then state that the distribution law
of u (in the region of applicability of the Born approx-
imation) or of In u (in the region of applicability of the
first MSP approximation) must be normal. This is the
point where the substantial difference between the two
cited approximations is manifested. Formally, they
are limited by the condition of smallness of the fluc-
tuations of u or In u, and at first glance, this seems
to be equivalent. However, we can conclude from
comparing the probability-distribution laws that a
normal distribution for u can be considered to be a
special case of the logarithmic normal law, in which
not only the fluctuations in In u, but in u itself be-
come small. That is, the Born approximation can be
treated as a special case of the first MSP approxima-
tion involving scattering at small angles (of course,
conditions can occur in which the Born approximation
is applicable, but the first MSP approximation is not,
e.g., when kZ 4 i 1).

One could draw more definite conclusions on the
distribution laws of the fluctuations by comparing the
approximate with the exact solutions. For lack of the

latter, we have to appeal to the experimental data.
Comparison with such data has been carried out

ί η [ 1 9 1 - 1 9 5 , 1 9 β - 2 0 1 , 5 4 1 ] ( ^ w h i ( ; h U g h < . f l u c t u a t i o n s w e r e

s t u d i e d . I t t u r n e d o u t t h a t t h e d i s t r i b u t i o n l a w f o r I n u

i n t h e r e g i o n o f r e l a t i v e l y w e a k a m p l i t u d e f l u c t u a t i o n s

(σχ = V(x2) < 1) is very close to normal. Here we
should note that the observed values of the fluctuations,
which again confirmed well the log-normal distribution
of the amplitude, cannot be explained within the frame-
work of the Born approximation, in which the amplitude
is distributed according to the law of Rice (a mixed
Rayleigh distribution), and the mean square of its fluc-
tuations has an upper limit.*

I. G. Kolchinskii [ 2 5 l ] has experimentally studied the
distribution law for the phase difference by observa-
tions of the "trembling" of the images of stars, and
again, it proved to be close to normal.

One can compare the probability distribution laws
with results based on exact solution of the problem in
the above-described Markov approximation. Here it
turns out that the second moments of the field ( UiU*),
as obtained by solving Eq. (14), exactly coincide with
the result based on the MSP (taking account of the
second approximation for ( χ ) ) and on the assumption
that the field is log-normal. However, there is no
longer such an agreement for the fourth moments of
the field < UiU2UtU*>, which describe the fluctuations
of intensity. Hence we can draw the qualitative conclu-
sion that the log-normal distribution law of u is obeyed
well in the region of small field values, and fails in the
region where its values are large (because the contri-
bution to (uu*> arises from a region on the distribu-
tion-density curve closer to | u | =0 than the contribu-
tion to ((uu*)2) does). In other words, we can expect
that a normal law for the fluctuations in the level χ
will be well obeyed when χ < 0, but violated in the
region of large positive χ.

We can draw another qualitative conclusion by com-
paring the behavior of the second and fourth moments
of the field with increasing distance x. For those
models of the fluctuations of e that have no finite
outer scale (e.g., the "2/3 law"), the fourth moments
of the field as χ — » approach a limit that depends on
the type of spectrum that e has. This means that the
distribution law of the field is not universal in this
case. However, if the fluctuations of e have a fixed
correlation radius Z, then as χ —•« ( V H > I), the
limiting distribution of the field will apparently be
normal, as in the problem of the equivalent shield.

4. THEORY OF MULTIPLE SCATTERING

The general theory of multiple scattering has been
developed in the last seven years. During this time,
the Green's-function method, which had previously been
developed in quantum electrodynamics, was applied to

*DeWolf [3S1] has recently discussed the problem of the distribution
law of the amplitude. He considered an interesting result of Mitchell,
[4S6] which consists in the fact that the sum of a moderate number of
quantities that are distributed according to log-normal laws is distributed
according to a log-normal, rather than a Gaussian law. This perhaps ex-
plains why the amplitude distribution law in the region of strong fluctu-
ations, where a multiray situation occurs, is closer to log-normal than to
the Rice law (or at greater optical depth, to the Rayleigh law).
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the discussed macroscopic problems. To speak more
concretely, people have used the Dyson equation14591

for the mean field ( u ( r ) ) , and the Bethe-Salpeter
equation [ 4 6 0 ] for the covariance Bu = (uiuj) (or the
correlation function * u = B u - (ui)<u*>). These
equations were derived by using the graph technique of
Feynman. [ 4 5 7 ' 4 5 8 ] Thus it is again a question of deriving
equations for averaged quantities. However, one can-
not derive closed equations of this type by averaging
the original differential equations for the field u be-
cause of their parametric nature: the moments of dif-
ferent orders are coupled together. Hence, one must
resort to solving (4), although it is written in the form
of a perturbation-theory series. The graph technique
makes it possible formally to sum this series, as well
as the product of two such series, and this leads to the
Dyson (D.) equation and the Bethe-Salpeter (B.-S.)
equation.

Of course, problems of multiple scattering of vari-
ous wave fields by random assemblies of scatterers
arose in physics considerably earlier than the analo-
gous problems of quantum electrodynamics, in which
the topic is, e.g., propagation of electron waves with
account taken of their interaction with the vacuum
fluctuations of the electromagnetic field (emission and
absorption of virtual photons), or, conversely, propa-
gation of electromagnetic waves that interact with the
electron-positron vacuum (creation and annihilation of
virtual electron-positron pairs). People had also en-
countered multiple scattering long ago in the problem
of passage of radiation through the atmospheres of
stars and planets, [461~466] and in problems of scattering
of thermal neutrons, [ 4 6 7 ) 4 β 8 ] charged particles/ 4 6 8 1 etc.
Here they usually used the linearized integro-differen-
tial equation of Boltzmann. In view of the classical
description of motion of particles or radiation along
trajectories (rays) (i.e., description in the geometrical-
optics approximation), this equation is a so-called
transport equation (of particles of energy). Typically,
of course, wave-interference effects are not taken into
account here.

The first person to pose the problem of multiple
scattering of waves and to solve it for a model of point,
isotropic scatterers distributed in an uncorrelated way
was Foldy. [ 4 7 0 ] This study preceded that of Dyson by
four years, and that of Salpeter and Bethe by six years.
However, owing to some simplifications (neglect of the
distinction between conditional and unconditional
averages), equations were derived in it of the D. type
for the mean field ( u ) , and of the B.-S. type for the
mean intensity ( | u | 2 ) . Without treating the further
development of the results of this study (anisotropic
scatterers whose positions are correlated, cf.[471"473-'),
we note that Yu. N. Gnedin and A. Z. Dolginov t474] were
the first to use the graph technique in the theory of
scattering by discrete scatterers in a problem of scat-
tering of a flux of particles by a target consisting of
an assembly of uncorrelated scatterers having an arbi-
trary scattering amplitude. Then Frisch^4 7 5 1 applied it,
but now with arbitrary correlation in the positions of
the scatterers. The results of these studies as well
were equations of the D. and B.-S. types.

Application of the graph technique to scattering of
waves in a continuous fluctuating medium began with

the studies of Bourret.* Γ 4 7 6" 4"] He assumed that the
parameters of the medium fluctuate according to the
normal law, and are (locally) statistically independent
of the sought field. This led to the D. and B.-S. inte-
gral equations with approximate expressions for the
kernels that were proportional to the correlation func-
tion (Be) of the medium. The cited expressions are
called the Bourret approximation for the kernel of the
D. equation, and the ladder approximation for the
kernel of the B.-S. equation (the latter term is taken
from quantum electrodynamics). Furthermore,
Bourret introduced the Green's function of free space
(e = 0) into the B.-S. equation instead of the average
Green's functions.

A more general derivation of the two equations as-
suming a normal law for a fluctuating medium is due
to V. I. Tatarskii and Μ. Ε. Gertsenshtem [ 4 8 2 ] and
V. I. Tatarskii [ 4 8 3 ' 2 ] (see also [ 4 8 4 ' 5 4 2 ] ), and to
Frisch'·475'11-', who admitted deviations from the normal
law.

What do the D. and B.-S. equations look like?
Let G(r, r o ) b e the sought Green's function, i.e., a

solution of the following equation that satisfies the
condition of radiation to infinity:

AG + *»(l + i)G = fi(r-iy,), (19)

and, as before, let g(r, r 0 ) be the Green's function in
a homogeneous medium («Γ = 0). The D. equation for
<G> is

(G(r, ro)> = £(r, ro)+

or in symbolic (operator) form,

, r2)<G(r2, ro)>d3

rid
3r2, (20)

(21)

Here the "kernel" M, which is called the mass
operator,t is an infinite series, being the sum of the
so-called strongly connected graphs having no external
propagation lines.

The B.-S. equation has an analogous form. For the
mixed moment BQ = ( G ( r , r o ) G * ( r ' , ro)), it can be
written as follows:

BG (r, r0; r', r0) = (G (r, ro)> (G* (r', ro)>

+ \ j j <G(r, r,)><G*(r', r3)>ff(r,, r2, r3, r4)

X B G ( r 2 , r 0 ; Γ 4 , r 0

or, in operator form:
(22)

(23)

It contains as a "kernel" the intensity operator Κ
(a name introduced by Frisch l 4 7 5 ] ), which depends on
four arguments, and is also a sum of strongly con-
nected, but two-row graphs having no external propa-
gation lines.

Superficially, the two equations look like linear inte-
gral equations, but actually this isn't so. The
"kernels" Μ and Κ are infinite series whose summa-
tion cannot actually be carried out. Also, we know

•Independently of Bourret, Furutsu [478~481] has pointed out the
applicability of the graph technique for normal fluctuations in e.

fin the theory of multiple scattering of waves, this operator is more
suitably called the polarization operator, especially if one is treating
electromagnetic waves. [ls]
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nothing about their convergence in the presence of
strong fluctuations in e. Furthermore, even if we
could sum these series, then we would get Μ and Κ
in the form of functionals of the sought functions ( G)
in B G · That is, the equations would prove to be non-
linear .

Then what is the worth of these equations?
First, they help in studying a number of the general

problems of the theory of multiple scattering: in linking
the problems of continuous randomly-inhomogeneous
media and of sets of discrete scatterers (which we are
not treating here), in revealing the various approximate
approaches and elucidating the relation between them,
and in particular, in providing a basis for the transport
equation (see below).

Second, they become an actual means of solving
concrete problems whenever one can replace the
"kernels" Μ and Κ with approximate (abbreviated)
expressions, i.e., known functions of the coordinates.
Then, the D. and B.-S equations become linear integral
equations that can be solved under certain supplemen-
tary assumptions. It is essential to emphasize that the
approximate solutions thus obtained now sum a certain
subsequence of the perturbation-theory series. Thus,
they now describe multiple scattering to some extent.
Let us first take up precisely this second aspect of the
problem.

When the fluctuations of £ are normal, if we re-
strict ourselves to the first terms of the series for
the kernels Μ and Κ (let us denote these terms,
which are proportional to the correlation functions Be,
as Μχ and K j , we get the Bourret approximation for
the D. equation, and the ladder approximation for the
B.-S. equation. If in addition the random field e is
statistically homogeneous and isotropic (all quantities
depending only on the moduli of the differences of the
vectors r) , then the D. equation can be completely
solved. That is, one gets an expression for the mean
Green's function ( G) in the randomly-inhomogeneous
medium.* In the region R » I in the case of fine-
scale inhomogeneities (kZ € 1 ) , this expression is :

(24)
4,-ift

where the effective wave number ΐ keff is

k eff = k (1 + 2 № (?) — iWls (e5)) (25)

Thus, keff describes the decrease in phase velocity
and extinction. Analysis of the following terms of the
expansion of the mass operator strws that the given
result holds under the condition of relative smallness
of both of the corrections to k, i.e., when k 2 Z 2 (f 2 }
>C 1 (this implies, in particular, that the extinction

*A rather great number of studies have been devoted to deriving the
dispersion relations for the mean field (both the exact relations and in
the Bourret approximation, as well as by using the effective dielectric-
constant tensor for the electromagnetic waves and the effective elastic-
ity tensor for elastic waves in solids) (to supplement those cited, see, e.g.
[486-497,484] y W g ^gjj s p e n (J n Q t i f f l e Q n t h e m ; feut r£. fer ^ r e a ( j e r t Q

the review article of Yu. A. Ryzhov and V. V. Tamoikin, [ls] which
also discusses the important problem of emission from antennas and
moving charges in randomly-inhomogeneous media.

tOne can find <G> in the geometrical-optics approximation for a
statistically and regularly inhomogeneous medium having a smooth var-
iation of the parameters, t485]

per wavelength is small). Since kZ <IC 1, this condition
permits even large values of {t2}. Furthermore, in
contrast to the condition (5) for validity of the Born
approximation, here we don't have such a rigid limita-
tion on the wave path L in the medium (a residual
limitation on L is required in order that the product
of L by the correction to k that is of second order in
(e" 2 ) should be small in comparison with unity).

The representation (24) proves to be also applicable
to the case of large scale inhomogeneities (kZ ^ 1),
but then the extinction must be small, not per wave-
length λ, but over the length I of a single inhomo-

[48349^50°l
If t h e f ie ld e* i s not G a u s s i a n , t h e n i t i s n a t u r a l t o

use for the kernels Μ and Κ the so-called one-group
approximation introduced by V. M. Finkel'berg,1·29'5011

in which Μ and Κ are linear functionals of Be. When
e has a Gaussian distribution, the one-group approxi-
mation coincides with the Bourret approximation for
Μ and the ladder approximation for K. Matters are
more complicated with the B.-S. approximation. Even
with a normal, homogeneous, and isotropic field £, one
can derive a closed expression for B d (again the sub-
script 1 indicates the first approximation, in this case,
the ladder approximation) only at the expense of a
number of supplementary assumptions.

One of the fundamental difficulties in operating with
the D. and B.-S. equations for scattering media of in-
finite extent involves the fact that each term of the
perturbation-theory series proves to diverge.t People
usually eliminate this divergence by a well-known
method, by introducing a small real absorption. [ 2 1

V. N. Alekseev and V. M. Komissarov [503~505] were
able to derive an altered form in place of the usual
integral form (3) of the initial equation (2) for the
field

(3a)

Apparently, this corresponds better to the physical
pattern of propagation in a randomly-inhomogeneous
medium, and it automatically relieves the stated dif-
ficulty. The topic is the subsequent modification of
(3a).

Of course, the D. equation holds not only for the
Green's function (point source), but also for the field
u(r) arising from any primary field u o (r) . Then we
can write it in operator form as

(u)=uo-f gM (u). (26)

By using this equation, the initial wave equations for u
and G, and the reciprocity theorem, the cited authors
derived the following equation for u:

u = <u) + k1 (G) eu,

where the operator e is expressed in terms of the
mass operator and the unit operator:

(27)

-V)

In distinction from (3a), in (27) the primary field u0

and the Green's function g corresponding to free

fEvidently, such difficulties do not arise for scattering in a limited
volume. For example, Austin [s02] has carried out an accounting for
extinction for the mean field without introducing real absorption.
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space (e" = 0) are respectively replaced by the mean
field < u ) and the mean Green's function < G) in the
medium containing inhomogeneities. Hereby extinction
is taken into account from the very outset. Thus the
solution of Eq. (27) by the perturbation method (using
the Bourret approximation for M) is free from the
difficulties involving the divergence of the terms in
the usual perturbation-theory series.*

Now we shall take up some general results concern-
ing the D. and B.-S. equations. There are several
relations involving their kernels that arise from the
most general physical principles, and which can be
used, both for constructing approximate expressions
for the kernels, and for solving the equations them-
selves. They include the reciprocity relation, t [ 3 2 ]

the dispersion relation, which arises from the causality
principle/ 4 7 8 ' 1 5 1 the constancy of sign of the imaginary
part of the Fourier image of the operator Μ and the
optical theorem/ 5 0 8 3 The latter stems from the con-
servation of energy, and in particular, it shows that if
the intensity operator k is taken in the ladder approx-
imation, then one should take the Bourret approxima-
tion for the mass operator M.

As we have said, the kernels Μ and Κ are infinite
series. The terms of these series are divided into two
classes.

The first class includes the rapidly-declining terms,
i.e., those that decline as rapidly upon displacing the
arguments as the correlation functions of the field e
do. Their nonlocality radius I determines the scale of
the effective inhomogeneities of the medium, and it is
of the order of the correlation radius of the fluctua-
tions in Ζ. Κ the field Ζ is Gaussian, then the Bourret
approximation and the ladder approximation are
rapidly-declining. The one-group approximation of
V. M. FinkelTberg^9'5011 is rapidly-declining for a
non-Gaussian field e. In this approximation, the
kernels Μ and Κ have the meaning of the scattering
operators of the volume in question (which is small in
comparison with the scale of the extinction length). In
other words, they determine the mean and the covari-
ance of the field that is scattered by a small volume,
and are interrelated by the ordinary optical
theorem[509-1 that says that the imaginary part of the
forward scattering amplitude is proportional to the
total effective scattering cross-section.

The second class includes the slowly-declining
terms of the series, i.e., those that decline as the
arguments are displaced as some positive integral
power of the Green's function g of free space. They
include the two-group, three-group approximations,
etc.

When one solves the D. and B.-S. equations, and
also when one derives the transport equations from
them, one usually restricts the expressions for the
kernels Μ and Κ to the declining terms alone, al-
though the slowly-declining terms may also prove to
be substantial in some cases. This is indicated by the

*Brown [506] has applied essentially the same method, but for the
B.-S. equation in spectral form, and avoiding the introduction of a small
real absorption.

fThe reciprocity relation for partially-coherent fields has been de-
rived in a different way in [507].

exact solutions of certain problems on wave propaga-
tion in a one-dimensional model of a scattering
medium.C510,5"! These solutions call into question the
applicability of the transport equation (or, at least, the
possibility of restricting the treatment to the Bourret
and ladder approximations) in one-dimensional prob-
lems, in which the Green's function generally does not
decline with distance. In this regard, the problem of
the conditions under which one may omit the slowly-
declining terms in the kernels Μ and Κ is especially
substantial.

If the scale I is small enough, then we can adopt it
as the small parameter, and correspondingly, construct
a solution of the D. and B.-S. equations. This is the
so-called weak-nonlocality approximation of the kernels
Μ and K.* Here, various methods of solution are pos-
sible, using ether: 1) slowly varying ray amplitudes
U(r), which play a role in going over to the parabolic
equation (6), or 2) the spatial spectral field density
u(r) . In addition, the Fraunhofer approximation also
is a variety of weak-nonlocality approximation. We
shall briefly explain what these methods consist in.

Let the field u o(r) = Uofrje"*^ be normally inci-
dent on the plane χ = 0, which is the boundary of an
inhomogeneous medium (x > 0). If we express the
sought field in the same form, i.e., we assume that
u(r) = U ( r ) e ' i k x , and assume that ( U ) and Bu
= (UiU*) vary little over the course of the nonlocality
radius I, we can approximately reduce the D. and
B.-S. equations to purely differential equations/5 1 2 1

When Uo = const, (plane primary wave) and there are
large-scale inhomogeneities (kZ ^> 1), the conditions
for applicability of these differential equations have
the form

^ . « 1 , -i-.^-«l, (28)

where d is the extinction length. Further, one can
solve the simplified B.-S. equation also by the perturba-
tion method for the exponent φ in the expression for
Bu = e<P, i.e., essentially, by using the M S P . t [ 5 1 2 ]

The first MSP approximation is applicable here when

JLtri/W^t (29)

Here we must consider the parameter kZ2/d to be
small (kZ2 is of the order of magnitude of the longitud-
inal correlation radius of the field), since backward
scattering is ignored. If

"H"<"^-< 1 ( i n other words, (iTji<<^2><-^) ,

then the condition (29) permits values for the distance
χ that the wave travels in the medium that exceed the
extinction length d.

It is essential to emphasize that even the first ap-
proximation for the covariance of the field Bu
= <U(ri)U*(r 2 )) thus obtained satisfies the require-
ment of conservation of energy, i.e., < | U | 2 ) = 1 . Also,
it transforms into the result that one gets from the
ordinary first MSP approximation for the stochastic
equation (7), but with extinction neglected.

*We should note that this approximation imposes no restrictions on
the size of the parameter ki.

tBrown [S06] has also obtained results similar to [512J.
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FIG. 8

In t h e c a s e of a d i s c r e t e m e d i u m , if we t a k e t h e

kernels Μ and Κ in the first approximation over the
density of scatterers, then the first approximation for
the covariance Bu coincides with the result of averag-
ing the bilinear combination u ( r ! ) u * ( r 2 ) . Here the
field u(r) is obtained by applying to the stochastic
wave equation (1) a special variant of the MSP that has
been developed by N. P. Kalashnikov and M. I. Ryaza-
nov/ 5 1 3 ' 5 1 4 1 The transverse spectrum of the field u
satisfies the transport equation in the small-angle
approximation. 1 1 6 6 ' 4 3 4 ' 4 3 5 ' 4 4 9 ' 4 5 0 1

Neglecting spatial dispersion in the D. equation
leads to the weak-nonlocaity approximation,1-291 which
is equivalent to transforming the iteration series for
the D. equation in the Fraunhofer approximation.[321

The transformation consists in the following. If the
observation point r (Fig. 8) lies within the Fraunhofer
zone with respect to the effective inhomogeneity con-
taining the points r i and r 2, then the Green's function
for free space g(r - r 2 ) can be approximately written
in the form

g (r- r2) 3* g (r— rt)-ihs<"-'i),

which can be integrated with respect to r 2 (the unit
vector s is directed from r x to r) .

An analogous transformation can also be made in
the terms of the iteration series for the B.-S. equation,
but with the difference that not two, but four points are
associated here with each effective inhomogeneity, and
the problem doesn't involve the vacuum Green's func-
tions g, but the mean values ( G ) . Consequently, the
B.-S. equation is reduced to the transport equation. [ 3 0 '3 2 1

The second of the methods cited above uses the
spectral density of the field, i.e., the Fourier trans-
form Bu(R, Ό of the covariance Bu(R, p) over
ρ = Τι - r 2 (the dependence on R = /^(ri + r 2 ) arises
from the possible presence of a smooth, regular, and
random inhomogeneity in the medium, and the limited
nature of the wave beam). The B.-S. equation written
for Bu(R, Ό is called the generalized transport
equation. [ 5 1 5 ] Lax [ 4 7 1 ] has pointed out the possibility of
formulating this equation and usefulness thereof.

The generalized transport equation has the following
form:

) , κ)

F (R, κ; R", κ") Q (R", κ"; R\ κ') Bu (R\ κ') dHWR'dVdV,

Here BU(R, κ) and F(R, κ; R', κ') denote the spatial
spectral densities of the mean field and the mean
Green's function. That is, they are the Fourier trans-
forms, respectively, of ( u ( r ! ) u * ( r 2 ) ) with respect
to ρ = Γι - r2, and of ( G(ri, r ! ) G * ( r 2 , r 2 ) > with re-
spect to ρ = Γχ - r 2 and p ' = x[ - r 2 . The kernel Q of
Eq. (27) is the Fourier transform of the intensity op-

erator K(r!, Γ Ί , r 2, r 2 ) with respect to ρ = rx - r 2 and
p ' = r i - r 2 .

The ordinary transport equation is written as an
equation for the ray intensity I(R, s), where R is the
radius vector of the point in space, and s is a unit
vector in the ray direction. In integro-differential
form, this equation looks like

where the integral over s ' is taken over the entire
solid angle 4ττ. The quantities a and f(s, s ' ) are
called the extinction and scattering coefficients, re-
spectively. For a non-absorbing medium, they are
related by

«=§>/(», s')dv, (32)

which is an expression of the law of conservation of
energy.

If radiation is being propagated along the χ axis in
a medium containing large-scale inhomogeneities
(kZ » 1), so that the scattering coefficient f(s, s') is
large in the forward direction, then we can simplify
Eq. (31) by integrating to infinity along the component
B'I of the unit vector s' transverse to the χ axis.
Then the equation takes on the form

and is called the transport equation in the small-angle
approximation/4 4 9 '4 5 0 1 Eq. (33) is considerably simpler
than (31), and when subjected to Fourier transforma-
tion, it allows integration by quadrature, as has been
discussed above.

The transport equation (31) was originally formu-
lated by O. D. Khvol'son, and then by Schwartzschild.
In modern form (see the monographs [ 4 6 3 ~ 4 6 5 1 ) , it has
been independently derived by Chandrasekhar/5 1 6 1

G. V. Rozenberg/5 1 7 1 and somewhat earlier by V. V.
Sobolev/5181 who treated the special case of Rayleigh
scattering. The derivation of the transport equation by
the cited authors is based on considerations of energy
balance, with no explicit microscopic interpretation
given to the extinction and scattering coefficients en-
tering into the equation.

There is an extensive literature on methods of
solving the transport equation, and the circle of phe-
nomena that it is used to describe is continually ex-
panding. Thus, along with the classical problem of
incidence of a plane monochromatic (or quasi-mono-
chromatic) wave on a half-space filled with a statis-
tically and regularly homogeneous medium, problems
have been treated in the literature on the behavior of
a narrow beam of light/5 1 9 1 on the directional diagram
of a receiver in a scattering medium/5 2 0 1 on the
propagation of brief pulses/ 5 2 1 1 on the features of
radiation transport in a magnetoactive plasma/ 5 2 2 1 etc.

A number of studies have appeared in the last 10—15
years concerned with deriving the transport equation
within the framework of the theory of multiple scatter-
ing and with elucidating the limits of its applicabil-

i t y [28,30,32,474,5X5,523-527] ^ t r e a t i n g these problems, it
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is convenient to distinguish the case of large-scale
inhomogeneities, which involves the transport equation
in the small-angle approximation (33). The derivation
of (33) is much easier than that of (31), which holds for
inhomogeneities of any arbitrary scale. In particular,
as we have mentioned, the transport equation in the
small angle approximation can be directly derived by
solving the simplified B.-S. equation by using the MSP.
Here the ray intensity I(R, βχ) coincides with field
spectrum BU(R, KJ.) perpendicular to the direction of
propagation of radiation.

Of course, a thorough derivation of the transport
equation (31) should include an elucidation of the con-
ditions under which (31) can be derived from the
generalized (and correspondingly more complex)
transport equation (30). In particular, the spectral
density BU(R, κ) depends both on the direction and on
the modulus of the wave vector κ, while the ray in-
tensity l(R, s) is actually a function only of the ray
direction s = κ/κ, whereas the modulus of κ is fixed,
being equal to the k-wave number in a homogeneous
medium. The generalized transport equation (30) de-
scribes a wider set of phenomena, including spatial
dispersion of waves, spatial variation in spectral
density over the course / of an effective inhomogeneity,
and phenomena involving the mutual arrangement of
inhomogeneities within a Fresnel diffraction zone, and
also, if there is a phase boundary, it takes into account
the fluctuations of this boundary and the existence of
reflection and refraction of the mean field ( u ) at it.

The ordinary equation can be derived from the
generalized equation only if one neglects the listed
phenomena. Here one gets the two following important
results.

First, the spectral density Bu(R, κ) proves to be
related to the ray intensity I(R, s) by

Bu (R, κ) a* Ατ2δ (κ — k) / (R, s), (34 )

where s = κ/κ. Thus, by inverse Fourier transforma-
tion we get the formula

(u (r,) u* (r2) > = § e'Mn-r,)/ (R, s) d\ (3 5 )

which relates the ray intensity with the covariance of
the field.

Second, the extinction and scattering coefficients a
and f(s, s') of the transport equation are expressed
in terms of the Fourier transforms Μ and Κ of the
kernels Μ and K:

fit {κ, κ') = (2π)36(κ —κ')7ί?0(κ),
Κ (xf, *.[; κ2, κ̂ ) — (2»)3δ(κ,— χ[ — κ2 + «ί)·̂ ο(κι> ΧΊ'< ><2> Κ)'

while, namely,
„ τ_ Mo (k)
a = — Im ,—'- ,

length λ = 27r/k in a homogeneous medium, and with
the scale I of the effective inhomogeneities:

a') = j-K
(36)

s, 4s'; ks, ks').

These relations reveal the microscopic meaning of the
extinction and scattering coefficients. The conditions of
applicability of the transport equation are restricted by
the parameters of both the medium and the wave field.

The restrictions on the parameters of the medium
arise even when we neglect spatial dispersion. They
consist in the requirement that the extinction distance
d should be large in comparison, both with the wave-

The restrictions on the wave field appear because
we have neglected the spatial nonlocality of the kernel
Q in the generalized transport equation, as well as the
finite width of the spatial spectrum of the field. If L R
is the scale of the inhomogeneity of the spectral
density Bu(R, κ) with respect to R, then LR must be
large in comparison with: first, the dimension I of the
effective scattering inhomogeneity; and second, the
wavelength λ = 2πΑ in a homogeneous medium; and
third, (if we are interested in the correlation function
of the field), with the distance r = | r 4 — r 2 | between
observation points. Thus,

That is, the wave field must be weakly inhomogeneous
on the scale of all three of the cited quantities.

In estimating the current status of the theory of
volume scattering as a whole, we can state that, in
spite of the substantial growth of the general theory of
multiple scattering, the most productive methods from
the standpoint of concrete results are still the original
methods: the method of small perturbations, the MSP,
and the PEM. Among the assets of the general theory
of multiple scattering we can list that it provides a
basis for the transport equation. However, no one has
yet achieved an analogous basis of the MSP and the
PEM, which are akin to the geometrical-optics ap-
proximation, and which take into account to some ex-
tent both multiple scattering and diffraction effects.
Perhaps further development of the general theory of
multiple scattering will make it possible to solve this
problem, which owes its importance primarily to the
fact that the cited asymptotic methods most probably
will remain even in the future the working apparatus
for solving concrete problems.
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library of the Radiochemical Institute of the Academy
of Sciences of the USSR and to M. I. Lizyakina for much
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