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JVECENTLY, interest has increased in the statistical
theory of electromagnetic processes in different
media. This is due primarily to the development of
quantum radiophysics, and particularly to the theory
of fluctuations of laser radiation [ 1"1 1 ] and statistical
processes in nonlinear optics [ l 2 ) 1 3 ] . The development
of a general statistical theory is stimulated also by the
development of certain spectroscopic problems,
namely the theory of spectral-line broadening in gases
and in a plasma, excitation of atoms in strongly non-
equilibrium systems [ " ' 1 5 ] , etc.

The purpose of the present article is to develop one
of the possible methods of describing statistical pro-
cesses in classical and quantum systems of atoms and
an electromagnetic field. Naturally, within the frame-
work of one paper it is possible to present a suffic-
iently complete description only for a concrete system.
The general theory is developed here using as an ex-
ample a gas whose atoms interact via a transverse
field. However, the results are given in such a form
that a generalization to the case of interaction via a
longitudinal field is obvious.

By way of a concrete application, we consider the
theory of natural fluctuations of the radiation of the
gas laser, which determine the radiation line width.
The fundamental problem here is that of determining
the non-equilibrium polarization noise of the working
medium of a laser. The degree of non-equilibrium is
determined by the magnitude of the generated field.

The paper consists of two chapters. In the first we
develop the classical theory and in the second the
quantum theory. Each of the chapters in turn can be
subdivided into two. This subdivision is governed by
the following.

The first problem is to obtain, on the basis of the
initial microscopic equations, a system of kinetic
equations for particles and fields, describing dissipa-
tive processes in the medium under consideration.

The starting point can be the Liouville equation for
the distribution function f(x, X, t) of the variables of
the particles and the field (here χ is the aggregate of
coordinates and momenta of the atoms, and X is the
aggregate of the field oscillators).

From the Liouville equations it is possible to obtain
a system of coupled equations for the simpler distribu-
tion functions—the distribution functions of the vari-
ables of one atom, the distribution functions of the
variables of one oscillator, the second distribution
functions, third distribution functions, etc. Such a
system of equations is analogous to the system of
equations used by Bogolyubov[161, Born and Green [ 1 7 ],
and others in the theory of gases and plasma.

In place of the second and higher distribution func-
tions, it is more convenient to use equations for the
corresponding correlation functions.

Two methods are used for an approximate solution
of the chain of equations and for obtaining kinetic
equations, namely a closed system of equations for the
first distribution functions fi(xi, t) and fi(Xi, t).

The first is based on the use of different variants
of perturbation theory with respect to the interaction.
Such a method was first used by Bogolyubov in the
derivation of the Landau kinetic equation, and also by
Bogolyubov and Gurov (see, for example, [18]) in the
derivation of the corresponding quantum equation. A
considerable number of papers are devoted to the ap-
plication of perturbation theory with respect to the
interaction to systems of charged particles and atoms
interacting with an electromagnetic field. A review of
a number of such papers can be found in the
books [ 1 ' 1 8 ' 1 9 1 .

Besides the perturbation-theory method, a general
method, which makes it possible to take into account
the influence of the polarization of the medium in the
collision integral, has been widely used recently. It is
based on the approximation of the second correlation
functions, when the third and higher correlation func-
tions in the chain of equations are set equal to zero.
Such an approach was formulated by Bogolyubov for a
system of charged particles'-16^. The existing classical
kinetic equations were first obtained in the papers of
Balescu [ 2 1 ] and Lenard [ 2 0 1. The corresponding quan-
tum equations were derived in t 2 1>2 2 1.

In this paper the kinetic equations are derived by a
method close to that previously used by the author in
plasma theory [23~26]. This method makes it possible to
take into account in a relatively simple manner the
contribution made to the kinetic equation by the reso-
nant and nonresonant electromagnetic radiation and
also the polarization of the medium.

After deriving the kinetic equations, we proceed to
the next stage, the calculation of the natural fluctua-
tions in He-Ne gas lasers.

An unbounded medium is characterized by four
temporal parameters: the frequency of the oscillation
or the transition, the Doppler width, the coefficient of
the radiation friction, and the attenuation time of the
field. In describing the statistical processes in a
laser, there appear additional parameters: the attenua-
tion time of the field in the resonator, and the correla-
tion times of the fluctuations of the amplitude and of
the phase of the laser emission. In a gas laser, these
characteristic times are much longer than the times
characterizing the processes of dissipation in an un-
bounded medium. This makes it possible to obtain the
statistical description of the processes in two stages:
first it is possible to obtain kinetic equations describ-
ing the dissipative processes in an unbounded medium,
and then these kinetic equations can be used to describe
the natural fluctuations of laser radiation.
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The line width of laser radiation is determined by
two factors: thermal fluctuations of the field in the
resonator, and non-equilibrium fluctuations of the
polarization of the medium. The thermal fluctuations
in the resonator are determined by the well known
Callen-Welton formula, and therefore the main problem
reduces to a calculation of the non-equilibrium fluctua-
tions of the polarization in the laser-generation re-
gime.

The fluctuations of laser radiation are calculated
in the present paper for both a classical and a quantum
system. However, the calculation presented here for
the line width of the coherent radiation of the classical
generator is only illustrative in character, since there
is no direct correspondence between the chosen model
and the real system. This material is introduced to
facilitate the understanding of the corresponding
quantum calculation for the He-Ne laser.

I. CLASSICAL THEORY

1.1. Initial Equations

We consider a system of atoms interacting with the
electromagnetic field. We regard the atom as an oscil-
lator having a dipole electric moment. The total num-
ber of atoms is denoted by N. The state of the oscilla-
tors is determined by specifying the coordinates and
the momenta of the centers of gravity Ri and Pi, and
the coordinates and momenta of the internal motion,
r j and Pi. The index i takes on values 1, 2 , . . . , Ν .
The t ime variation of the osci l lator s tate is de ter-
mined by a system of corresponding equations of
motion.

Instead of using the system of equations of motion,
the evolution of the s ta tes of the system can be de-
scribed by using an equation for the phase density
N(R, P, r , p, t) in the space of the variables R, P, r ,
and p . It is defined as follows:

N(R, P, r, p, i) = i

It follows therefore that the function

iV(R, P, r, p, t)dRdPdTdp

(1.1)

(1.2)

determines the number of atoms that have at the in-
stant of t ime t variables Ri, Pi, r i , and Pi in intervals
dR, d P , d r , dp near the values R, p, r , and p.

The integral of the function N(R, P, r , p, t) with
respect to all the values of the variables R, P, r , and
ρ is equal to the total number of a toms, i .e.,

N(R, P, r, p, t)dRdPdidp = (1.3)

The equation for the phase density follows from the
condition for the conservation of the total number of
a t o m s . In the dipole approximation it can be written in
the form

-L (1.4)

In this equation m and Μ a r e the m a s s e s of the elec-
tron and the atom, o>o is the natural frequency of the
osci l lator, and E " 1 is the microscopic intensity of the
electr ic field. In the dipole approximation, the function
E ^ does not depend on r .

The equation for the function E M follows from the
system of microscopic Lorentz equations. We write
it in the form

^ L - e . A E - = - 4 « - ^ , divEM = 0. (1.5)

The microscopic polarization vector P ^ is deter-
mined by the phase density

PM(R, t) = e j WV(R, P, r, p, t)dPdrdp. (1.6)

When account is taken of the interaction with the
transverse electromagnetic field in expression (1.6),
it is necessary to take only the solenoidal part into
account, and by the same token to use the condition
d i v P M = 0 . _

We denote by N, E, and Ρ the phase density, mag-
netic field, and polarization averaged over the ensem-
ble. Using the identity N E M = NE + δΝδΕ, where δΝ
and δΕ are the deviations from the mean values, we
obtain from (1.4) the following equation for the function
N:

= »/ (1.7)LN= —, 36JV6E
dp =nJ,

(f is the distribution function normalized to unity);
here

(1.8)

η is the average number of atoms per unit volume,
and J is the collision integral .

F r o m (1.5) follows an equation for the average field

div Ε = 0; (1.9)

here Ρ is the average value of the polarization vector .
F r o m (1.6) we have

P(R, t) = e f TN(R, Ρ, Γ, p, t)dPdrdp. (1.10)

The system (1.7)—(1.10) for the mean values of Ν
and Ε (the f irst moments) is not closed, since Eq.
(1.7) contains the function δΝδΕ—the second centra l
moment.

To obtain the equations for the second moments, we
use the equations for the deviations δΝ and δΕ.

From (1.4), (1.7), (1.5), and (1.9) we get

L№ + e6E ψ--^-ε^~ (δΝδΕ - δΜΕ) = nSJ,

—$p c 2 A6E=—4π , div6E = 0,

6P(R, t)=e f TbNdPdTdp.

(1.11)

(1.12)

(1.13)

Equation (1.11) contains the product of the deviations
δΝ and δΕ. Consequently, the equation for the second
moments contains the third moment, etc. Thus, we
arrive at a chain of coupled equations, the exact solu-
tion of which, of course, is impossible.

The collision integral in (1.7) is determined by the
second correlation function of the coordinates and
momenta of the atomic and field oscillators. If we
neglect this correlation, i.e., if we put J = 0, then we
obtain a system of_self-consistent equations for the
first moments of Ν and E. The dissipative effects
are discarded thereby. To take into account the dissi-
pative processes it is necessary to take into account



482 Yu. L. K L I M O N T O V I C H

at least the contribution from the second correlation
function and by the same token, to include the second
moments in addition to the first.

To explain more clearly how the chain of equations
is to be terminated, let us consider the relations be-
tween the different temporal parameters characteriz-
ing the system in question.

1.2. Characteristic Temporal Parameters

We introduce the following notation: u>0—frequency
of the axial oscillations of the atomic oscillator,
y—coefficient of radiative damping, γω—coefficient of
field damping at the frequency ω in an unbounded
medium, Δωρ—Doppler width.

To simplify the calculation we disregard the influ-
ence of collisions on the Doppler broadening and the
collision broadening. Allowance for this phenomena
does not raise any fundamental difficulties. For the
equilibrium state, a detailed calculation of the Doppler
and collision broadenings are given in the review of
Rautian and Sobel'man [ 1 4 ].

In the coherent-radiation regime, the emission spec-
trum is characterized by the parameters Δωρίι and
Alia-the spectral widths governed by the phase and
amplitude fluctuations; Δω Γ is the resonator band-
width.

The seven temporal parameters ω0, γω, Δωβ, y,
Δω Γ , Au a , and Δα>ρΐ! can be broken up into two groups.
One includes the " fas t" parameters, and the other the
"slow" ones.

We consider the case of inhomogeneous broadening,
when Δωβ 3> y. The field damping coefficient is pro-
portional to the atom concentration η and depends
essentially on the frequency ω. It is maximal at the
resonant frequency ω0. If y ~ 108 and Δω£> ~ 1010,
then already at η > 109 cm"3 we have yW() > y. We
assume that γωο ~S> y.

The quantities γω and y W o are described by the
relation

V» = ϊω0 exp [ — (ω — ωο)2/Δωϊ)].

For nonresonant frequencies, when | ω - o>o | > Δωβ,
we have γω <C yW o. We shall henceforth denote by
yJJ, the damping coefficient at nonresonant frequencies.

The introduced parameters satisfy the condition

Δϋ)η Ŝ> Vi Vn. A(Or, Δϋ>α, Atunhω0, ( 1 . 1 4 )

c h a r g e d p a r t i c l e s . F u r t h e r i n v e s t i g a t i o n s h a v e

s h o w n f 2 0 " 2 6 ! t h a t , i n c o n t r a s t t o p e r t u r b a t i o n t h e o r y w i t h

r e s p e c t t o a s m a l l i n t e r a c t i o n , t h i s a p p r o x i m a t i o n

m a k e s i t p o s s i b l e t o t a k e t h e p o l a r i z a t i o n o f t h e m e d i u m

i m m e d i a t e l y i n t o a c c o u n t i n t h e k i n e t i c e q u a t i o n s .

O b v i o u s l y , t h e a p p r o x i m a t i o n w i t h r e s p e c t t o t h e

moments of the functions Ν and E M does not coincide
with the approximation with respect to the correlation
function. For example, in the second-moment approxi-
mation, just as in the self-consistent-field approxima-
tion, the medium is regarded as continuous.

In the second-correlation-function approximation,
account is taken of the atomic structure of the medium.
We shall show that this approximation is equivalent to
equations for the second moments with a source that
can be expressed in terms of the first moments.

In the second-moment approximation, the right
side of (1.11) should be set equal to zero. As a result
we obtain

L6N + e8E—=O (1.15)
dp

We multiply this equation by 6N(x', t )(x = (R, P, r, p))
and average:

L6N(x, t)6N(x', O + e6E(R, t)6N(z', t')-~ = 0, t>t'. (1.16)

We write down the corresponding equation in the
second-correlation-function approximation. We denote
by g2(x, x', t, t ') the correlation function of the vari-
ables of two atomic oscillators at the instants t and t ' .
When t = t ' the function g2 is determined by the ex-
pression

6N(x,t)№(x', t) = n*gi(x,x', t) + n6(x — x')f(x, t). (1.17)

We c a n w r i t e a n a n a l o g o u s r e l a t i o n a l s o for t * t ' :

6N(x, t)6N(x\ t') = n2gz(x, x', t, t') + nfz(x, t,x', t'). ( 1 . 1 8 )

T h e f u n c t i o n f 2 ( x , t , x ' , t ' ) d e t e r m i n e s t h e s t a t i s t i -

c a l c o n n e c t i o n b e t w e e n t h e s t a t e s o f o n e f r e q u e n c y a t

d i f f e r e n t i n s t a n t s o f t i m e . A t t = t '

(1.19)

In t h e s e c o n d - c o r r e l a t i o n - f u n c t i o n a p p r o x i m a t i o n ,

w e o b t a i n in l i e u of (1.16)

x, x', t, i') ,t)6N(x',t')^ = Q, t>f. (1.20)

The s l o w p a r a m e t e r s w i l l b e f u r t h e r s u b d i v i d e d in to

" f a s t " a n d " s l o w . "

The ratio of the parameters γωο and AUIQ depends
on the concentration of the atoms γωο > O>D when
η > 10" cm"3.

1.3. Approximation of Second Correlation Functions

The first problem is to obtain equations describing
the processes in the system in times on the order of
l/y. The dissipative processes are determined in
these equations by the fast fluctuations. The main as-
sumption is that the triple and higher-order correlations
of the fast fluctuations make a small contribution to the
dissipative processes in times on the order of l/y.

The second-correlation approximation was proposed
first by Bogolyubov[le] in the analysis of a system of

Using (1.18), we write this expression in the form

ίδΝ(χ, t)W(x', t')-'re6E(R, t)6N(x', f) - ^ - =,LW(x, t)W(x', t')(somce)

(1.21)
We h a v e i n t r o d u c e d h e r e t h e s y m b o l

(1.22)(source)6N (x, t)W(x\ f) = nh (x, t, x\ t').

Thus, in the second-correlation-function approxima-
tion, Eq. (1.21) differs from (1.6) in that it contains
the " source" (1.22).

The quantities x' and t ' in the function f2 are
parameters, so that the equation for this function coin-
cides with the kinetic equation for the distribution
function f(x, t) .

The equation for the function f2 is solved subject
to the initial condition (1.19).

It follows from (1.21) that the function
5N(x, t)5N(x', t ') is determined completely by the
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e x p r e s s i o n ( 1 . 2 2 ) if t h e f i e l d f l u c t u a t i o n s m a k e a

n e g l i g i b l y s m a l l c o n t r i b u t i o n , i . e . , e f f e c t s d u e t o t h e

p o l a r i z a t i o n of t h e m e d i u m a r e o f n o i m p o r t a n c e .

It i s c o n v e n i e n t t o i n t r o d u c e t h e s o u r c e d i r e c t l y

into the equation for the function δΝ. We then obtain
in place of (1.15) the equation

™> (1.23)

The correlation of the functions 6 N ( s o u r c e ) ( x , t) and
5 N ( s o u r c e ) ( x ' ; t ' ) ^ determined by Eq. (1.22).

Since there is still no explicit expression for this
collision integral J, we cannot write the equation for
f2 in explicit form, and consequently we cannot deter-
mine the source. We shall show, however, that under
the condition (1.14) the collision integral is determined
by the fast fluctuations. To determine the spectral
functions it suffices to know the function f2 in the time
interval t - t ' <S l/y. The equation for this function
is determined by the kinetic equation (1.7) with J = 0.

We have introduced here the source only for atomic
oscillators. It can be introduced in similar fashion
also for the oscillators of the transverse electromag-
netic field.

Thus, just as in the statistical theory of non-
equilibrium processes in a plasma (see the book [ 2 3 ],
Sec. 14-16, and the article [ 2 5 ] ), we can use either the
equation (1.20) for the correlation functions, or Eq.
(1.23) for δΝ. The former method is more complicated,
since to determine the two-time correlation function
from (1.20) it is necessary to know the single-time
correlation function. It can be obtained by approxi-
mately solving the chain of equations for the distribu-
tion functions.

The use of Eq. (1.23) makes it possible to find the
spectral functions in a simpler manner, without first
determining the single-time correlation function.

It must be borne in mind, however, that the proof
of the equivalence of Eqs. (1.21) and (1.23) can be ob-
tained without knowing the single-time correlation
function. Therefore the use of (1.23) with the source
(1.22) is not based on any definite assumption. The
proof of the equivalence of (1.21) and (1.23) for a
plasma is given in1·2 3 '2 5 1.

1.4. The Collision Integral

Let us consider the function

№(z, i)6E(R', i') =

We expand it in a F o u r i e r integra l in t e r m s of t - t '

and R - R', and then put t = t ' and R = R' and s u b s t i -

tute the resu l tant e x p r e s s i o n in the c o l l i s i o n integra l .

A s a r e s u l t we get

^ • ' • ^ " - I l S j i l i 1 1 6 ^ 1 3 ) . . ' , » , ^ · " * . (1-24)

It follows from (1.24) that the relaxation time of the
function f is of the order of 1/y. The collision integral
is determined by the fast fluctuations. The slow fluc-
tuations will be determined by the kinetic equation
itself.

In order to find the spectral function ( δ Ν δ Ε ) ^ for
the fast fluctuations, let us consider the solution of
Eq. (1.23) in a time interval t - t ' such that

Vym, 1 / Δ ω ο « ί - ί ' < 1 / γ . (1.25)

The a v e r a g e field i s l im i ted by the condit ion

e £ ( i - i ' ) / m y T < l , but eE/mVTy~l. (1.26)

We then have in (1.23)

^ o = l - v J L + v A _ m m ; r - L , (1.27)

and (1.23) c a n be rewr i t ten in the form

L0SN (x, t) =, - e6E ^L + Z0fi,V
<source)

dp > υ
( 1 . 2 8 )

I n t h e r i g h t s i d e o f t h i s e q u a t i o n t h e r e a r e t w o

t e r m s . A c c o r d i n g l y , w e r e p r e s e n t t h e s p e c t r a l f u n c -

t i o n R e f S N O E ) ^ i n t h e f o r m

Re (6N&E)vt = Re (δΛ'δΕ^Τ"06' + Re (iN&E)^'. (1.29)

Let u s find f i r s t the f i r s t part, due to the s o u r c e .

Under the condit ions (1.25) and (1.26), the equation for

f2 is determined by Eq. (1.7) with J = 0 and Ε = 0,
i.e.,

L^(x,t,x',t')=o. (1.30)

We solve this equation subject to the initial condi-
tion (1.19). The solution can be written in the form

h (X, t, x', f) = 6 (x' (x, t — t')- x') f (χ, t). (1.31)

We have taken here into account the fact that in the
interval t - t ' « l/y we have f(x', t ') = f(x, t). The
function x'(x, t - t ') is determined by the solution of
the system of equations of the characteristics.

From (1.31) we find an expression for the spectral
function of the source

6[x'(x, x)-x'] , t), (1.32)

where τ = t - t ' and ρ = R - R'.
In order to find with the aid of this expression the

spectral function ReiSNeE)^?' 1 * 0 6 ), let us consider

the solution of the equations for δ Ρ and δ Ε in the
interval (1.25).

From (1.28) we get an equation for 6P

[ N r + (1.33)

here f(P) = Jf(R, P, r, p)drdp is the distribution
over the momenta of the centers of gravity.

In the approximation considered by us, it is natural
to assume that the distribution of the atoms is spatially
homogeneous, and f(P) is a Maxwellian distribution.

It follows from (1.33) that δ Ρ consists of two parts:

6 p = 6 p (tod)+ fip (source) (^34)

The induced part of δ Ρ is determined by the field δΕ.
In the interval (1.25) we obtain for the induced part of
the field 6P from (1.33)

(ω, k, Ρ) = [ε,,(ω, k) —1]/(Ρ)δΕ(ω, k)/4n; (1.35)6P(md)

here

εο(ω, k) = (ω — (1.36)

i s t h e d i e l e c t r i c c o n s t a n t f o r f a s t f l u c t u a t i o n s , d u e t o

t h e a t o m s w i t h v e l o c i t y v .

W h e n s o l v i n g ( 1 . 3 3 ) , w e l e t
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...dx,
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Γ tû g"
v = -

w h e r e

γωο. Δ ω Β > Δ > γ . (1.37)

F r o m (1.35) and (1.36) we obtained, after integrat-

ing with r e s p e c t to P,

6 P ( i n d ) (ω, k) = [ε (ω, k) - 1] 6E (ω, k)/4n, (1.38)

ε (ω, k)= j εο(ω, k)/(P)<*P==e' + ie". (1.39)

The real and imaginary parts of the dielectric con-
stant are given under condition (1.37) by

Here Z ± = (ω ± ωο)/Δωη,
| Z± | » 1 we have

3flecL· Z± = (ω ± ω0)/Δωο, Δ(

e - r i ) ; ( 1 ' 4 0 )

= k ( 2 « T / M ) 1 / 2 . When

1/2 Π ρ ζ

When Ι Ζ +

ε' = 1 + {Ane2n!m(a>l — ω2)].

<C 1 we have

(1.41)

(1.42)

Under condit ion (1.37), formulas (1.40)—(1.42) do not

depend on Δ.
Let us consider the contribution of the resonant

field. Owing to the condition (1.37), the field can be
regarded as stationary when ω ~ coo·

From (1.12) with allowance for (1.34) and (1.38) we
get

6Ε(ω, k ) = -4nco26P±(source)/[co%(o>, k)-c2fc2]; (1.43)

h e r e and be low a 1 = k x [a x k]/k 2 i s the t r a n s v e r s e
component of the v e c t o r a.

U s i n g th i s e x p r e s s i o n , we obtain

Re(aME) a k = - R e ^ . _ c , ^ · t 1 · 4 4 '

Let u s return to (1.32) . We mult iply th is e x p r e s s i o n

by e r ' and integrate with r e s p e c t to r ' and p'. Th i s

y i e l d s

ω 2 V w j ' ' ' '

( 1 . 4 5 )

E x p r e s s i o n s ( 1 . 4 4 ) a n d ( 1 . 4 5 ) d e t e r m i n e t h e s o u g h t

s p e c t r a l f u n c t i o n .

T h e s e c o n d t e r m i n ( 1 . 4 5 ) , a s w e s h a l l s h o w , d e t e r -

m i n e s t h e d a m p i n g , a n d t h e f i r s t d e t e r m i n e s t h e f r e -

q u e n c y s h i f t o f t h e a t o m i c v i b r a t o r .

In o r d e r n o t t o c o m p l i c a t e t h e c a l c u l a t i o n s , w e r e -

t a i n o n l y t e r m s t h a t d e t e r m i n e t h e d a m p i n g . T h e

e x p r e s s i o n f o r t h e f r e q u e n c y s h i f t w i l l b e w r i t t e n o n l y

i n t h e f i n a l e q u a t i o n .

W e t h e n o b t a i n f r o m ( 1 . 4 4 ) a n d ( 1 . 4 5 )

V / ( * . t).

( 1 . 4 6 )

T h i s y i e l d s

m :l?r

(1.48)
From this we get in the zeroth approximation with
respect to Λωϋ/ω 0, after integrating with respect to
ω and k,

ε'(ω0)1 ' · (1.49)

We shal l need la ter an express ion for the spect ra l

function Re(6 j6E) w k. . F r o m (1.46) we get

8πω3ε" ρ^__ (1.50)

We have u s e d h e r e e x p r e s s i o n (1.40) for e " and a

Maxwel l ian distr ibution with r e s p e c t to the v e l o c i t i e s

of the c e n t e r s of the a t o m s .

In (1.46) and (1.50) we took into account only the

resonant contribution, i . e . , the contribution from the

field δΕ at the frequencies ω ~ ωο· When the non-
resonant contribution is taken into account, for exam-
ple, there appears in (1.50) an additional term of the
order of y/Aojjj of (1.50).

Let us find now an expression for the induced part
of the spectral density Re (δΝδΕ)ωΐ[·

Under the same assumptions we have
d) 1 ( η ι 1 5ω(ε' — 1) d \ , Χ Γ № /1 C i \

= Ϊ Τ ωε +-=•—Sg- τ; (δΕβΕ)^,. ( 1 . 5 1 )

The second term takes into account the contribution
due to the dispersion in the nonresonant region. In the
resonant region the field is established within a time
much shorter than 1/y, so that the contribution from
the second term is of the order of ν/Δωβ of the first.

In order to find the expression for Re(6N6E)( i n d ),

from which formula (1.51) follows, we use the solution
of (1.28) for the function

in the time interval (1.25). This yields

~
. (1-52)

From (1.52), after integrating with respect to ω
and k, we get

( i a ) ] ^ . (1.53)

The second term in this expression takes into account
the contribution from the nonresonant field.

From (1.52) there follows expression (1.51). It is
necessary to take into account here the fact that
k · δΕ = 0 .

We now can write the sought kinetic equation. From
(1.7) and (1.8) we get

^, e a&N&E_j (1.54)
* η dp

O n t h e b a s i s o f ( 1 . 5 2 ) a n d ( 1 . 4 7 ) , w e w r i t e t h e c o l l i -

s i o n i n t e g r a l i n t h e f o r m

( 1 . 5 5 )

The diffusion and friction coefficients are given by

ε' —Ι)
- du)] , ( 1 - 5 6

we have introduced here the notation
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T h u s , t h e d i f f u s i o n c o e f f i c i e n t i s d e t e r m i n e d b y t h e

s p e c t r a l f u n c t i o n of t h e f i e l d .

1 . 5 . E q u a t i o n f o r t h e S p e c t r a l F u n c t i o n of t h e F i e l d

F r o m t h e f i e l d e q u a t i o n , f o r a s p a t i a l l y h o m o g e n e -

o u s d i s t r i b u t i o n of t h e a t o m s , t h e r e f o l l o w s t h e e n e r g y -

b a l a n c e e q u a t i o n

g ρ(δΕόΕ)ω | (4-(δΒδΒ)ω 1 ;η . (1 g1^)

dt l_ 8:x J

δΒ is the deviation of the magnetic-field intensity from
the mean value.

Using (1.50) and (1.51), we can rewri te this equation
in the form

In the equilibrium case p i 2 / m = 2κΤ, and from
(1.58) we get an expression known from the theory of
equilibrium electromagnetic fluctuations'^2 7 '2 8 1

(δΕδΕ)ω1ί=16πω3ε"κ77(|ω2ε — c2k°-\n-). (1.59)

F r o m (1.58) we o b t a i n a n e q u a t i o n for t h e s p e c t r a l

function ( δ Ε δ Ε ) ω :

In the equilibrium case we have p 2/m = 3κΤ, and
from (1.60) we obtain the well known expression with
allowance for the polarization of the m e d i u m [ 2 7 ] :

(δΕδΕ)ω = 4π2ρω = 4ω .61)

F o r t h e s p e c t r a l f u n c t i o n o f t h e f i e l d a t t h e r e s o n a n t

frequency ω 0 , by virtue of the condition γωο 3> γ, we
use the s teady-state solution of (1.60)

(δΕδΕ) ω ο -A ε ' ( ω ο ) = = 1 . (1.62)

The kinetic equation (1.54), (1.55), even without
allowance for the nonresonant field, differs from the
usual Fokker-Planck equation for the system of atomic
osci l la tors in the field in that in place of the expres-
sion for the diffusion coefficient

D = ymxT

it follows from (1.56) and (1.62) that

(1.63)

i.e., the diffusion coefficient itself depends on the form
of the distribution function. The kinetic equation is
therefore nonlinear.

Let us write down the equation for the average
energy of the atomic v ibra tors . From (1.54) and (1.55)
we obtain

^ r « ( i l - r ^ ) l = 3 ^ _ T r e Z . (1.65)

From (1.60) we get an equation for the density of
the electro-magnetic energy. It can be written in the
form

ώ ω = - ( ^ - ϊ « Ζ - ) . (1.66)

F r o m (1.65) and (1.66) follows the law of conserva-

tion of the total energy of the atomic osci l la tors and of
the field.

In the presence of a thermostat , the role of which
can be played by the radiation field of another system
of a toms, corresponding additional t e r m s appear in
the kinetic equation.

1.6. Slow Fluctuations at a Zero Average Field

In order to obtain an express ion for the spect ra l
functions of the slow fluctuations—fluctuations with a
character i s t ic t ime on the order of l/γ it is necessary
to repeat the foregoing procedure, the only difference
being that the initial equations a r e not (1.4) and (1.5)
but the kinetic equations.

We obtain in this manner, for example expressions
for the spect ra l function of the source of slow polari-
zation fluctuations.

From the kinetic equation (1.54) we obtain at Ε = 0
the following equation for the polarization vector
P ( H , P , t ) :

( Α + ν Α ) 2 ρ + γ ^ ^ ω ρ > = ο. (1.67)

Regarding this equation as a kinetic equation, we
obtain the equation for the source polarization fluctua-
tion corre lat ion

This equation is solved subject to the initial condi-
tion that follows from (1.19):

(6P6P)£R

ou

P

rpeUe(R-R')6(P-P')
r'-f (R, P, r, p, t)drdp. (1.69)

F r o m (1.68) with the initial condition (1.69) and
with allowance for the fact that d i v 6 P = 0, we get

, (source)
(OP 0 Ρ ) ω 1 ί Ρ ί =

ev (ω, k) (r-L2)P. ,/2π;

h e r e

= (4jte2n/m) ωγ {[α>1 — (ω — k v ) 3 ] 2

( 1 . 7 0 )

( 1 . 7 1 )

When Δαΐ£) 3> y, after integrating over the velocities
we get from (1.70) the express ion

(6P 6P)iT = ™οε" (ω, k) (^),Ι2π. (1.72)

The function e " is given by (1.40).
In the equilibrium state ma>2r-l·2 = 2/cT, and expres-

sion (1.72) takes the form

(βΡβΡ)ΐΓΚ= ε" (ω, k)κΓ/πω. (1.73)

Express ion (1.72) can be used to find the spect ra l
function of the field.

1.7. Emiss ion Line Width of a Class ica l Coherent-
radiation Generator

A system of c lass ica l osci l la tors can be used as the
working medium in coherent-radiat ion g e n e r a t o r s . In
the review of Gaponov, Petelin, and Yulpatov [ 2 9 ] (see
also Gal ' tsov 's dissertat ion 1 3 " 1 ) there a r e detailed de-
scr ipt ions of the possible mechanisms of coherent in-
duced radiation in c lass ical s y s t e m s .

In this section we consider the model of such a
generator . The pumping and the nonlinearity will be
introduced phenomenologically via the effective field.
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This m a k e s it p o s s i b l e to t r a c e the o c c u r r e n c e of the
radiation with a line width smaller than γ.

We denote the effective electric field acting on the
oscillator by Eeff · We specify its connection with the
coherent field Ε in the form

Eeff = E + a § , (1.74)

where a is a nonlinear function of the field. In a weak
field

« = αο-β£2. (1.75)

We s h a l l c o n s i d e r only the phase f luctuat ions, which
d e t e r m i n e in the main the l ine width of the c o h e r e n t
radiat ion. We denote this width by Auph. The d e s i g n a -
t ion " c o h e r e n t f i e l d " w i l l b e just i f ied if it turns out
that Au)ph = *̂ C y.

When t - t 0 S> 1/Δα>ρη, a stationary regime is
established, in which the mean value of the coherent
field vanishes.

We consider a single-mode generation regime and
represent the field Ε in the form

E(R, <) = , ko||a;; (1.76)

here Ω ο = ck0 is the natural frequency of the resonator,
Eo is the constant amplitude (the amplitude fluctuations
are disregarded), φ = φ(βί) is a slowly varying phase,
and e 0 is a unit vector.

Since our example is for illustration purposes, we
assume for simplicity that the atoms are at rest and
that the concentration of the atoms is constant. In this
approximation, the equation for the polarization vector
is

[j^ + y~ + <ul^¥ = ̂ -Eet[ = -^-iE + a~) . (1.77)

We represent the polarization vector in the form
ρ _ ρ (ind) _|_ ρ (source) ,^ ^g>

T h e e q u a t i o n f o r t h e i n d u c e d p a r t o f t h e p o l a r i z a t i o n

c o i n c i d e s w i t h ( 1 . 7 7 ) , a n d f o r p ( s o u r c e ) w e h a v e

(~ϋί2~+Τ~ϋΓ + ωο) Ρ =ο. (1.79)

Taking (1.78) into account, the field equation can be
written in the form

we have introduced h e r e two new t e r m s . The second
t e r m on the left s ide takes into account the loss of
energy of coherent radiat ion in the resonator , Q is the
corresponding quality factor, E T is the source of
thermal noise in the resonator, and Δωρ = Ωο/Q <C γ.

Let us find first the expression for p ( i n d ) . To this
end, we separate the first harmonic of Eeff. Taking
(1.76) into account, we obtain

Ee,, = E(R, t) — Ω 0 ( α — •£-£;) £ 0 sin (Ω,* — k0R-j-cp). (1.81)

We subst i tute th i s e x p r e s s i o n in (1.77) . A s a r e s u l t we
obtain for the a c t i v e part of the v e c t o r p ( i n d ) the
e x p r e s s i o n

i> = Sa£, , s in№-k 0 R + <p)/4rt,
4 = = _ 1 = ^ (ωο-Ω0) ΐ Μο-(β/4)^-τ/2Ρ0 ^ 0 (1-82)

i s the imaginary part of the d i e l e c t r i c constant of the

a c t i v e m e d i u m . The a c t i v e part m a k e s a contribution
on the o r d e r of y^o/<j)o·

The amplitude E o i s de termined from the condit ion

- e ; = !/<?, (1.83)

which s p e c i f i e s the ba lance of the incoming and out-
going e n e r g y .

The equation for the phase φ is

w h e r e
ί r (source)

I = — — J e0 (4πΡ -)- E(T>) cos (Ωοί — k0R + φ) dV

(1.84)

is the noise source.
Averaging over the volume results from the fact

that the phase depends only on the time.
The spectral noise density is given by

(eo6P
( s o u r c e ) )h

a + (e06E(T>)1!oko]/2F. .85)

Equation (1.84) coincides with the corresponding
equation used to calculate the line width in a self-
o s c i l l a t o r [ 3 1 ' 3 2 ] .

The spect ra l function of the t h e r m a l noise is d e t e r -
mined by the Nyquist formula (or by the m o r e general
Callen-Welton formula). In our case it takes the form

(1/2F) (eo6E(T))^ko = inxT/VQ0Q. (1.86)

It remains for us to find the spect ra l density of the
polarization noise. To this end we use Eq. (1.79) for
p(source) .

Since Eq. (1.79) coincides with (1.67) at V = 0, we
can use expression (1.72) for the spect ra l source func-
tion.

As a resu l t we get

[(4π)V2V] ( e 0 6 P ' ( s o u r c e ) ) 2

a o t o = (4jtmQ0e",'F) (;TV3). ( 1 . 8 7 )

F r o m ( 1 . 8 5 ) — ( 1 . 8 7 ) w e f ind a n e x p r e s s i o n f o r t h e

spectral noise function ξ:

£Βο), £„„ = mQ;r*/3; (1.88)

Έ$2 is the average energy of the atomic osci l la tor .
The total width of the emission l ine, due to the phase

fluctuations, is determined b y [ 3 1 ' 3 3 ]

AG>ph=20 = Q*(£V£o; (1.89)

Here D is the coefficient of phase diffusion (some-
t imes an expression is given for the line half-width

p = D).
We denote by W the energy of the field in the r e s o -

n a t o r :

W = VE*0/8n, (1.90)

and write down the express ion for Δα>ρΠ in the form

Αω^ = (QJ2W) (Q-HT +ε"£Ωο). (1 -91)

If Έ~Ω ο = Κ Τ , then express ion (1.90) can be rewr i t ten
in the form

Δωρκ= (Ω0/2) ((?-ι + ε") xT/W. (1.92)

We note that the quantity (e " + Q" 1) Ω ο determines
the total bandwidth of a resonator filled with the medium.
Thus, the spectrum is narrowed down by a factor
K T / 2 W during the course of generation.

The formula for the line width is so s imple only in
the case of a weak field, when the influence of the field
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on the spectrum of the polarization fluctuations can be
neglected, and at the same time the threshold is ex-
ceeded enough to be able to use the correlation approx-
imation.

If the Q remains constant when the generation
energy is varied, then the bandwidth is inversely pro-
portional to the energy, On the other hand, if the en-
ergy is varied by changing the Q, then to determine
the dependence of Au>ph on W it is necessary to
eliminate 1/Q from (1.91) with the aid of (1.85). A
similar situation takes place also in quantum theory of
the line width of a gas laser [ 3 3 ] .

2. QUANTUM THEORY

We shall describe the motion of the centers of the
atoms classically, and the internal state of the atoms
by quantum theory. We consider the function

iVnm(R, P, i), (2.1)

which has the following properties:

S A ^ R , P, t) = N(R, p, t) (2.2)

is the phase density in space of the coordinates and
momenta R and P:

P m n (2.3)

is the operator density matr ix in t e r m s of the variables
η and m, the quantum numbers determining the in-
t e r n a l s tate of the atom.

Thus, the function (2.1) is the quantum analog of the
class ica l phase density (1.1) in the space r , p, R, P .

The normalization of the function (2.1) is

-V; (2.4)

Ν is the total number of a t o m s .
In the dipole approximation, the equation for the

function (2.1) is

LNnm=-^-'21(rrlniNnim('R, P, i)-iVnni(R, P, t)r,,im) EM(R, t). (2.5)

Here and below we use the symbol

and E M (R, t) is the microscopic field. The field equa-
tion is

divE" = (2.6)

(2.7)

The last expression determines the microscopic polari-
zation of the medium.

As above, we shall denote by a bar averaging over
the ensemble. We introduce the symbols for the mean
values

, P, i) = J i / n m ( H , Ρ, ί),
(2.8)

The equation for the function i m a is written in the
form

Lfnm - -χ 2 (rWn,m - UnJ^m) Ε = Jnm (R, P, t). ( 2 .9 )

Equation (2.9) is s imi lar to the kinetic equation (1.7),
and therefore Jnm will also be called a collision inte-
gra l .

It follows from (2.5) and (2.9) that the collision
integral is determined by the expression

/'"» = S^ 2 (Tnn£NnimSE-δΝηηιδΕτηίπι). (2.10)
ni

The equation for the deviat ion 6 N n m , by analogy
with Eq. (1.11), i s wr i t ten in the form

L6Nnm = '~Σ (r n n i / n i m - /n n irn i m) 6E + N6Jnm; (2.11)

we have left out immed ia te ly the t e r m with the a v e r a g e
field E, s i n c e we s h a l l need a so lut ion of (2.11) in the
interva l t - t ' <S 1/y, when condit ion (1.26) i s s a t i s -
f ied.

F r o m (2.6) we obtain the equations for the functions
Ε and δΕ, for example,

(^- —c-AJ 6E= —4π-^-, δ Ρ = « 2 J Γ™"δΛΓ""ι(2ΐϊ)3 · ^ .12)

It is convenient in what follows to r e p r e s e n t the
function fnm by

/™. = W » + /5B.; (2.13)

we have separated here the diagonal part of the function

We subject the matr ix elements to the condition

rnn = 0. (2.14)

This means that we a r e considering atoms in which the
polarization occurs only in t ransi t ions between differ-
ent s t a t e s .

Under the condition (2.14), the polarization vector
is completely determined by the function f ™ , and
consequently f ^ = ί™(Μ*, t) , i .e., it depends on the

fast t ime (~ l/a>nm) a n < ^ on the slow t ime ( l / y n m ) ·
On the other hand fn = ί η ( μ ί ) , i .e., it depends only on
the slow t i m e .

We r e p r e s e n t the deviation 6Nnm likewise in the
form of a rapidly and slowly varying functions

6Nnm = 6nm6Nnn-
J

r6Nnm. (2.15)

We write down the equations for the functions fn and

*"% follows from (2.9) and (2.10) that

j 1. V—-) fn — —~ ^ (t 1^ — z'1*r \p / (0 1 fi\
7(1

J" = ΗΝ Σ ('-δΛ^δΕ-δΛ^δΕ,·™), (2.17)

Lfnm — (ie/%) rnm (/m — fn\ Ε = Jl^l (2 1 8)

JXl = (ielhN)rnm (6Nmm6E-6N^M). (2.19)

The equations for the deviations 6 N n n and δ Ν ^ in

the approximation of the second corre lat ion functions
a r e s imi la r to (1.23):

f(i)r

(fm

The corre lat ion of the fluctuations
be represented in the form

= Nfnmn.m, (RR'PP'if).

(2.21)

can

(2.22)



488 Yu. L. K L I M O N T O V I C H

T h e e q u a t i o n f o r t h e f u n c t i o n f n m n ' m ' i s d e t e r -
m i n e d by t h e k i n e t i c e q u a t i o n (2.9) a n d i s s o l v e d s u b -
j e c t t o t h e i n i t i a l c o n d i t i o n

-6m.n). (2.23)= ( ^ JV6(B-R') δ ( Ρ - Ρ ' ) («„„./»->»(R. P.

A d e r i v a t i o n of t h i s f o r m u l a i s g i v e n in t h e a p p e n d i x

of [ 3 4 ] .

E x p r e s s i o n s (2.22) a n d (2.23) c o r r e s p o n d t o t h e

c l a s s i c a l f o r m u l a s (1.22) a n d (1 .19) .

Let · u s c o n s i d e r t h e p a r t i c u l a r c a s e of t h e g e n e r a l

f o r m u l a (2 .23) .

When fnn' = δηη'ίη (f° r the slow part of the func-
tion fnn'), we obtain from (2.23)

(6Nnm&N*n.m.)(™™)t. = (2πδ)» β (R - R') δ (P - P') N&nn,8mm. (fm + /n)/2.

(2.24)
T h i s e x p r e s s i o n for t h e s p e c t r a l funct ion of t h e

s o u r c e wi l l b e u s e d in t h e d e r i v a t i o n of t h e e q u a t i o n

f o r t h e c o l l i s i o n i n t e g r a l .

2.2. The C o l l i s i o n Integral J n

J u s t a s i n t h e f i r s t p a r t ( s e e (1 .24)), w e e x p r e s s t h e

c o l l i s i o n i n t e g r a l (2.17) in t e r m s of t h e s p e c t r a l f u n c -

t i o n

(2.25)

The spectral function (δΝηηιδΕ)^ will be represented
here, too, in the form of a sum of two parts—the in-
duced part and the contribution from the source (see
(1.29)).

For the induced part, under the same assumptions
as in the first part, we obtain the expression

Γω-ωη Ι Β-ΐ£ν + ίΔ It ^ ""** S ' (2.26)

F r o m t h i s w e g e t t h e c o r r e s p o n d i n g e x p r e s s i o n f o r

t h e funct ion R e (6 j 6 E ) w k · T h i s c o i n c i d e s in f o r m wi th

e x p r e s s i o n (1 .51) . T h e d i e l e c t r i c c o n s t a n t i s now d e -

t e r m i n e d b y

(2.27)•>, k) = _£ + ί Α

If t h e v e l o c i t y d i s t r i b u t i o n i s M a x w e l l i a n , we o b t a i n

a f t e r i n t e g r a t i o n

3 ~ \ / Λ

№ d t , ( 2 . 2 8 )

For frequencies close to resonance (| ω - «nm I
). it follows from (2.28) that

, •

3

8ixe2n

( 2 . 2 9 )

F o r a n o s c i l l a t o r , f o r m u l a s ( 2 . 2 7 ) — ( 2 . 3 0 ) c o i n c i d e

w i t h t h e c o r r e s p o n d i n g c l a s s i c a l f o r m u l a s ( 1 . 4 0 ) — ( 1 . 4 2 ) .

T h e c o n t r i b u t i o n m a d e b y t h e s o u r c e t o t h e s p e c t r a l

f u n c t i o n i s g i v e n b y

, ( s o u r c e )

6 E ) M k r n m )

X7kl',''
 ό<ω-ω"-"-kv) (/• + /-)· (2.31)

H e n c e , r e c o g n i z i n g t h a t

we obtain
Re (6j 6E)<fk

0T)

(2.32)
Formulas (2.26) and (2.31) determine the collision

integral J n (R, P, t) (2.25).
The equation for the spectral function of the elec-

tromagnetic field differs from (1.58) only in that it is
necessary to take for e(a>, k) the quantum expression
(2.27), and for the second term of the right side, which
determines the contribution from the source, it is
necessary to use (2.32).

From formulas (1.51) and (2.32) there follows in
the equilibrium case, for the spectral field function,
the well known expression (the Callen-Welton formula)

=i^^a+7^T) • ( 2 · 3 3 )

At R = 0 it coincides with (1.59).
We integrate with respect to k in the expression

for J n , and additionally with respect to ω in the
resonant terms. As a result, in the zeroth approxima-
tion in Au>£)/ci>nm, we obtain the following expression
(a more general result is given in1-261):

(2.34)

T h i s e x p r e s s i o n c o r r e s p o n d s t o t h e c l a s s i c a l e q u a t i o n s

(1.55) a n d (1 .56) .

F r o m (1.51) and (2.32) fo l lows a c o r r e s p o n d i n g

expression for the function Re(6j δΕ) ω .
In the equilibrium state, the spectral function of the

field is determined by the expression

(2.35)

It follows, for example, from the equation for
Re(5j6E)w = 0 .

In t h e r i g h t s i d e , * ' ii s t h e t e m p e r a t u r e p a r t of

F o r t h e n o n r e s o n a n t r e g i o n w e g e t f r o m ( 2 . 2 7 )

the Planck formula. We introduce the corresponding
function also for the non-equilibrium state

ρω = [(δΕ 6Ε)ω/4π2] - (ίω 3 J/T/2jise"). (2.36)

U s i n g t h i s f u n c t i o n , w e c a n w r i t e t h e c o l l i s i o n i n t e -

g r a l (2.34) in t h e f o r m

' . = 2 [ f l > - ( p - 4 i s r b » c - - « - ^ . ] ( 2 · 3 7 )

( 2 . 3 0 )
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h e r e

(2.38)

a r e the Einstein coefficients.
In (2.37) we take into account both the decrease of

the population of the level η as a resu l t of spontaneous
trans i t ions to lower levels, and the increase of the
population as a resul t of spontaneous t rans i t ions from
the upper levels to the given level.

2.3. The Collision Integral
Polarization Vector

. The Equation for the

In the collision integral J j ^ it is also possible to
separate two contributions: the induced contribution
and the one from the s o u r c e .

It follows from (2.19) and (2.12) that to determine
the contribution from the source it is necessary to
know the spect ra l function

at frequencies close to the t ransi t ion frequencies.
From (2.23) we obtain the corresponding initial

condition
.'Vmm-6A-,m, δ

(source)
)

This expression vanishes if the resonance condition
u)nm ~ unjacii is satisfied only at ni = η and i n i = m ,
i.e., there is no resonant interaction between the dif-
ferent t rans i t ions . As a resul t , the contribution from
the source to the collision integral J ^ also vanishes.

We confine ourselves here to this c a s e . Then it
r e m a i n s for us to determine only the induced part of
the collision integral . Under the s a m e assumptions as
above, we obtain for it the following express ion:

η/3Λ2. (2.39)

As a resul t , the kinetic equation for f'1' takes the
form

(-S- + V ^ - + V»m-r i«w) /{,!> = 4-r n m (/ m -/ n )E. (2.40)

Thus, the collision frequency y n m is determined by
the spect ra l function of the field at the transi t ion fre-
quency. In the expression for y ^ n it is possible to
take into account also the nonresonant contribution, as
is done in the kinetic equation for the functions fn.

For the spect ra l function at the resonant frequency,
we can use the s teady-state solution, which follows
from the equation Re(6j δ Ε ) ω = 0. It takes the form

,i,,l = (2SG)?,ml/V/<:3)(pm

In the equilibrium state, this expression coincides with
(2.35).

The collision integral Jn defined by (2.34) contains
also the spect ra l function ( δ Ε δ Ε ) ω at the nonresonant
frequencies. The equation for this function is analogous
to the corresponding c lass ica l equation (1.60), and is
given by

— ω ε ' (ω. ω Ve'/c) I
3 1/πΔ

The functions e' and e" in this equation are deter-
mined by (2.28).

In the equilibrium state, the right side of the equa-
tion vanishes and we obtain for ( 6 Ε δ Ε ) ω the expres-
sion (2.35).

F r o m the kinetic equation (2.40) follows an equation
for the polarization vector of the t ransi t ion η = m

Pnm(R, P, t) = eN(rmnf
(

n)l + rnmf^).

It takes the form

I a J V d ΫΡ ' 2v

Ι + ν ^ ^

№nm

( 2 . 4 2 )

L e t u s c o m p a r e t h i s e q u a t i o n w i t h t h e c o r r e s p o n d i n g

c l a s s i c a l e q u a t i o n ( 1 . 6 7 ) .

When Ε = 0, these equations coincide in form. The
main difference is that in the c lass ical equation the
damping is due completely to the contribution from the
source, and in the quantum equation the contribution to
ynm from the source is equal to z e r o . Consequently
the damping coefficient ynm> a s follows from (2.39)
and (2.41), depends on the functions fm and fn.

We introduce in place of the spect ra l function of the
field the function ρ ω (2.36) and express γηχα in t e r m s
of the Einstein coefficients:

2vnm —2S"p -!-A" (I ftaJimVe' / 1 pm-rpn 1_\ (2 43)

In the case of equilibrium distribution of the field,
we obtain from (2.43) the well known expression for

It is seen from (2.39) that the line width of the
transi t ion n s m is determined by the spect ra l func-
tion of the field at the frequency ω η ΐη· The field fluc-
tuations determine also the frequency shift of the
transi t ion. The value of the shift is given by

here f denotes an integral in the sense of the pr inci-
pal value, so that the frequency shift is determined by
the spect ra l function at the nonresonant frequencies.

We note in conclusion that the kinetic equations for
the functions fn and f̂ 1^ r e m a i n valid also when a c -
count is taken of interaction via a potential field. We
then have

(6E fiEV -»(6E δΕ)<,Π) + (6E 6E)LB),

i .e., it is replaced by a sum of the spect ra l functions
of the potential and solenoidal fields. Express ions for
these functions can be found, for example, i n [ 2 6 ] .

(2.41) 2.4. Spectral Function of the Polarization Fluctuations

From (2.42) at Ε = 0 there follows an equation for
the correlat ion of the polarization fluctuations

ι' ^Γ» , r , ζ ι = ο.

( 2 . 4 4 )

T h e c o r r e s p o n d i n g i n i t i a l c o n d i t i o n f o l l o w s f r o m ( 2 . 2 4 )

-(source)

(2.41')

(2.45)
Using the solution of (2.44) subject to initial condi-

tion (2.45), we obtain an expression for the spect ra l
polarization function
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€nm is the imaginary part of the dielectric constant
for the transitions η s= m, and f(P) is the Maxwellian
distribution.

Equation (2.46) contains a product of two functions

± £ ±
2 pm-pn

The former has a characteristic width Δω£), and the
latter κΤ/Κ. If

we can rewrite (2.46) in the form

(2.47)

(2.48)

Here e" = Σ e nm * s * n e imaginary part of the die-
n > m

lectric constant. The expression for it at Δωϋ y
coincides with (2.28). When R = 0, (2.48) coincides
with the classical expression (1.73).

The condition (2.47) was used already in fact when
separating the resonant contribution in the derivation
of the expressions for the collision integrals.

If the condition Bwnm ^> « T i s satisfied, then the
second term of expression (2.43) for γηαι is much
larger than the first, and ynm does not depend on the
distribution functions fn and fm· Under this condition,
expression (2.46) is valid also for the non-equilibrium
state.

2.5. Laser Radiation Line Width

Assume now that the system of atoms considered by
us is the active medium of a gas laser. This may be,
for example, neon in an He-Ne laser. Let us consider
the fluctuations of the phase of the laser emission.
These fluctuations determine the emission line width.
We designate by the indices a and b the levels with
inverted population; a is the upper level and b the
lower.

In the two-level approximation, the kinetic equations
(2.16), (2.34), and (2.40) can be written in the form of a
system of four equations for the functions fa, fb» fab
and fba· Η the condition Ro>ab ^ KT is satisfied, then
we can neglect in the collision integrals the terms
containing the function ρ ω . The collision integrals
(2.37) and (2.39) then become linear functions of fn and
fnm· O n this basis, the system of kinetic equations for
the distribution functions fa, fb, fab, and fba can be
written in the ^ 5 3 7 1

( 4 r + v - m ) f ° = Τ Γ
a - C), (2.49)

Λ,-/ί0)), (2.50)

/<>)E- (2.51)

where f(0) and f <0) are the populations of the levels a
and b and are determined by the pumping.

Just as in the classical case, we consider a single-
mode generation regime. We specify the field in the
form of a travelling wave, as is the case, for example,
in a ring laser when one of the waves is suppressed.

The spectral function of the noise that determines
the line width will be again determined by formula
(1.85). However, the expressions for the spectral func-
tions of the thermal and polarization noise will now,
naturally, be different.

The spectral function of the thermal noise is deter-
mined by

(l/2TO(eo6E(T))L = (4jii/F<?)[« + (l/2)], » = ( ί " ' » Γ - 1 ) " 1 . (2.52)

When Κ = 0, this expression coincides with (1.86).
Let us find the expression for the spectral function

of the polarization noise.
The use of the term "polarization noise" is justi-

fied because the width of the polarization fluctuation
spectrum (of the order of Δωϋ) is much larger than
the width of the laser emission spectrum Δ ω ρ η . The
amplitude fluctuations will not be considered in this
case.

To find the spectral function of the polarization
noise, let us consider, as in Sec. 1.7, the solution of
Eqs. (2.49)—(2.51) in an interval t - t ' such that

1/Vo. ί —ί'<1/Δωρι,. (2.53)

In t h i s interval , the phase f luctuations can be
neg lected, and consequent ly the f ie ld in (2 .49)—(2.51)
can b e regarded a s d e t e r m i n e d . It i s de termined by
Eq. (1.76).

Equations (2.49)—(2.51) at a g i ven f ield a r e l inear
with r e s p e c t to the functions fa, fD, and f a b , with
s o u r c e s fa

0) and £ 0 ) a s the pump.

Since the working medium i s d i s c r e t e , c o n s i s t i n g of
e x c i t e d neon atom, and s i n c e t h e r e i s t h e r m a l n o i s e in
the r e s o n a t o r , (2 .49)—(2.51) m u s t b e regarded a s equa-
t ions for random funct ions.

Averaging t h e s e equat ions, we obtain the c o r r e -
sponding k inet ic equat ions for the funct ions fa, fj,» a n d
f ab- In a c c o r d a n c e with condit ion (2.53), the f ield i s
regarded a s determined during t h e c o u r s e of the
averag ing, and there fore the equations for the m e a n
v a l u e s co inc ide with the equat ions for the random func-
t i o n s .

Let u s c o n s i d e r the s t e a d y - s t a t e so lut ion of the
kinet ic equat ions. It i s de termined by the s p e c i f i e d
functions fa

0) and f/0), i . e . , by the pump and by the f ie ld.

Since the s t e a d y - s t a t e so lut ion for s p e c i f i e d functions
f<0 ) and f'01 i s d e t e r m i n e d only by the f ield, it can b e
c a l l e d induced.

We denote by 6f a and 6fab the deviat ion of the
functions fa and fab f rom th is so lu t ion :

The equat ions for the dev iat ions differ f rom E q s .
(2.49)—(2.51) only in the a b s e n c e of t e r m s with func-
t ions fa

0) and fb

0).

In p lace of the equations for fa and fb, it i s m o r e
convenient in what fo l lows to u s e the equations for the
functions

(2.54)

The s y s t e m of equations for the dev iat ions i s
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(2.55)

(2.56)

(2.57)

We consider again the approximation with second
correlation functions. In accordance with (1.23), (2.20),
and (2.21), we make the following substitutions
dU^Vao-VT'^ 6D-*6O-6O(sour,ce) 6/?^6fl-6/?(source)

(2.58)
in Eqs. (2.55)—(2.57), which correspond to the second-
moment approximation.

Since the field does not fluctuate in the time interval
(2.53), Eqs. (2.55)-(2.57), unlike (2.20) and (2.21), have
no terms proportional to 6E, i.e., the induced parts of
the random deviations 6fab, *>D, a n d 6R are equal to
zero. Therefore

β/̂ , = β/ίΓΤ ) «O = 6O'(source) 6fl = 6ii ( s o u r c e ) (2.59)

Thus, the corre lat ions of the deviations 5f ab, 6D,
and 6R a r e equal to the corresponding corre lat ions of
the deviations ef(source)> 6 D ( s o u r c e ) j a n d 6 R ( s o u r c e ) .

In accordance with the definition of the correlat ion
of the source (1.22) and (2.22), it is necessary to find
the solution of the kinetic equations subject to the
initial conditions (1.19) and (2.23), respectively.

The kinetic equations (2.49)—(2.51) are inhomo-
geneous. Their solution for a given field Ε can be re-
presented in the form of a sum of two parts: the solu-
tions of the homogeneous and the inhomogeneous equa-
tions. The first solution is determined by the initial
conditions.

The homogeneous kinetic equations coincide in form
with Eqs. (2.55)—(2.57); therefore, taking (2.49) into
account, we use these equations to determine the cor-
relation and spectral functions of the random devia-
tions 6F a b, 5R, and 5D of interest to us.

We write down the equation for the two-time corre-
lation of the deviations 6 f a | o u r c e ) . From (2.55) we get

0
(2.60)

This equation contains a new function—the correla-
tion of the deviation 6D and 5F ab· The equation for it
follows from (2.56) and contains two new functions,
(5R6fab) a n d (6fba5fab)· T h e equation for the former
follows from (2.57), and for the latter from the equa-
tion for the function 5fba· These equations do not con-
tain new functions. As a result we obtain a system of
four equations. Let us write down the corresponding
initial conditions.

From (2.23) and (2.24) we obtain for the case of two
levels

-(source)
)

(2πίι)3 θ (R - R') 6 (P-P') (/„ + /„)
(2.61)

(6D6/J,) = 0, (6i?6/;b)HR.pp., = (2nhf Λ^δ (R - R') δ (Ρ - Ρ') /„„. (2.62 )

L e t u s r e t u r n t o f o r m u l a (1.58) for t h e s p e c t r a l

funct ion of t h e n o i s e t h a t d e t e r m i n e s t h e p h a s e f l u c t u a -

t i o n s .

T h e s e c o n d t e r m , w h i c h t a k e s into a c c o u n t t h e c o n -

t r i b u t i o n of t h e t h e r m a l n o i s e of t h e r e s o n a t o r , i s d e -

termined in the quantum case by formula (2.52). The
first term, which determines the contribution of the
polarization fluctuations, is expressed completely in
terms of the spectral function (β 0δΡ)ο ν only in the

case of a weak field, when the saturation effect can be
neglected.* In the case of a strong field it is more con-
venient to express the contribution made to ( ξ 2 ) ω by
the polarization noise directly in terms of the spectral
functions of the deviations 5fab and 6fba·

We introduce in lieu of the functions 5fab and 6fba
the slowly-varying functions 6fab and 5fba:

<5/«6 = 67^-i(a"-k"R+*>, (2.63)

e/b^a/^w-*""^). (2.64)

Then the first term in Eq. (1.84) for ξ can be repre-
sented in the form

- - ^ - \ b + W'tflM-p-gp (2.65)

T h i s l e a d s t o a n e x p r e s s i o n for t h e s p e c t r a l funct ion

6·)- = ί ί ^ J {-^(β7α»βΑ)...+ (№»)·(βΛαθ/^,,-μκ. c.}

(2.66)

T h u s , t h e s p e c t r a l funct ion ( | 2 )u> i s d e t e r m i n e d by

t h e s p e c t r a l f u n c t i o n s

(δ/ο1)β7;,,)ωΐ0, WtaVat,)».». (2.67)

T h e s e f u n c t i o n s a r e c o n n e c t e d wi th t h e s p e c t r a l f u n c -

t i o n s of t h e d e v i a t i o n s 6 f a b a n d 6 f b a b y t h e e q u a t i o n s

(δ/,abfl/!b)cD + Oo, k + ko = (β7α!>δ/*!>)ω, k, \ . „ -

F /if \ l\7 f.7* \ 42(Qo!-ki,R-<j) f (Z.OO)

E x p r e s s i o n ( 2 . 6 6 ) c o n t a i n s t h e s p e c t r a l f u n c t i o n s a t

k = 0. Since ω "C Ω ο we can put ω = 0 when determin-
ing the spectral functions (2.68).

As a result of calculations we obtain for the spectral
functions (2.67) the following expressions:

w e h a v e i n t r o d u c e d h e r e t h e n o t a t i o n

r E = («(I i,-£J0 + k0V)» + v l b ( l + a £ ; ) ,
w h e r e a=_ e>\rablHya+yb)

ê VY&Vi

(2.69)

(2.70)

T0^TE=O, (2.71)

( 2 ? 2 )

i s t h e s a t u r a t i o n p a r a m e t e r .
We s u b s t i t u t e (2.69) a n d (2.70) in (2 .66) . A s a r e s u l t

w e o b t a i n

Γ rfP
J ( 2 π 4

x -^ [(i + aED (fa^ ^l {a>ab _ Q, ^ koV)2-|.
(2.73)

Let us express the functions fa + fb and fa - ί\, in
t e r m s of the functions fa

0) and fb

0), which a r e deter-
mined by the pumping.

To this end it is necessary to use the equations for
the induced parts of the functions fa, fjj, and f a b. We

This circumstance was not taken into account in [33] (see [34]).
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r e c a l l t h a t t h e e q u a t i o n s o f t h e s e f u n c t i o n s c o i n c i d e

w i t h E q s . ( 2 . 4 9 ) - ( 2 . 5 1 ) .

A s a r e s u l t o f t h e s o l u t i o n w e o b t a i n t h e f o l l o w i n g

e x p r e s s i o n s :

/„ (P) + /„ (P) = /<"' + /L°> + 3*=3l· DW (P) ^ p - , ( 2 . 7 4 )

ΰ(Ρ) = β< 0 )(Ρ)Γ 0/ΓΕ . (2.75)

We s u b s t i t u t e t h e s e e x p r e s s i o n s in (2 .73) . We

r e c o g n i z e t h a t

y ( 2 n f t ) 3 / i ( P ) = p i / ( P ) ;

h e r e p a i s t h e l e v e l p o p u l a t i o n d u e t o t h e p u m p i n g a n d

f i s t h e M a x w e l l i a n d i s t r i b u t i o n .

A s a r e s u l t w e o b t a i n

iO 1 i "
(6 λ » - Va6 J

2 " ylb ( 1 + aEl)]} •
(2.76)

Let us consider two limiting c a s e s :
a) Immobile atoms (f ( Ρ ) = δ ( Ρ ) ) :

b ) I n h o m o g e n e o u s b r o a d e n i n g

z e r o t h a p p r o x i m a t i o n in y a b / A < * > D w e o b t a i n f r o m

( 2 . 7 6 ) , a f t e r i n t e g r a t i n g w i t h r e s p e c t t o P ,

)"1 (1 +afij)1/2 (ρί,0) + ρΓ). (2.78)

It i s c o n v e n i e n t t o r e p r e s e n t ( 2 . 7 7 ) a n d ( 2 . 7 8 ) i n

e x p l i c i t f o r m , u s i n g t h e e x p r e s s i o n s f o r t h e i m a g i n a r y

p a r t of t h e d i e l e c t r i c c o n s t a n t

( 2 . 7 9 )
ε · ( Ω 0 ) = - 4 n e 2 | r a b | 2 n V a b O

f o r i m m o b i l e a t o m s a n d

ε"(Ω0)= - π ' / 2 . 4 π (2.80)

when yak <IC Δα>£>, o)ab - Ω ο *C Δα>£>.
As a resul t , express ions (2.77) and (2.78) take the

form

f o r i m m o b i l e a t o m s a n d
( 2 . 8 1 )

T h e a p p r o x i m a t i o n o f i m m o b i l e a t o m s i s j u s t i f i e d

f o r l a s e r s w i t h h o m o g e n e o u s l i n e b r o a d e n i n g .

L e t u s c o n s i d e r t h e l i m i t i n g c a s e s o f w e a k a n d

s t r o n g f i e l d s :

a ) W e a k f i e l d ( a E o < 1 ) . In t h e z e r o t h a p p r o x i m a -

t i o n i n a E g , f o r m u l a s ( 2 . 8 1 ) a n d ( 2 . 8 2 ) h a v e t h e s a m e

f o r m :

(la)« = (4ne0-S/2l')[pJ0>+p<,0»J/[p<0)_p^)]. ( 2 . 8 3 )

T h e o n l y d i f f e r e n t e x p r e s s i o n s a r e t h o s e f o r t h e

f u n c t i o n s en'. T h e y f o l l o w f r o m f o r m u l a s ( 2 . 7 9 ) a n d

( 2 . 8 0 ) a t a E o = 0 .

U s i n g f o r m u l a s ( 1 . 8 9 ) , ( 2 . 5 2 ) , a n d ( 2 . 8 3 ) , w e o b t a i n

f o r t h i s c a s e t h e f o l l o w i n g e x p r e s s i o n f o r t h e e m i s s i o n

l i n e w i d t h :

^ - 2 0 = » |L 'L
1W p<°>_p№Pb — Pa

H e r e t h e f i r s t t e r m i s d e t e r m i n e d b y t h e t h e r m a l

n o i s e of t h e r e s o n a t o r , a n d t h e s e c o n d b y t h e p o l a r i z a -

t i o n n o i s e . T h e s e c o n d t e r m c o n t a i n s t h e p r o d u c t of

two n e g a t i v e q u a n t i t i e s e " < 0 a n d p b

0 ) - p < 0 ) < 0 .

E x p r e s s i o n (2.84) i s u s u a l l y w r i t t e n in e x p l i c i t

f o r m .

We i n t r o d u c e a s y m b o l for t h e p o w e r

Ρ = AuipW = A(up£pW8ji, Δωρ — Ω0/ζ?

a n d u s e t h e s e l f - e x c i t a t i o n c o n d i t i o n

T h e n , e l i m i n a t i n g

i n t h e f o r m

<?-χ + ε;==0. (2.85)

e0 ', we can write expression (2.84)

(2.86)
"a "

T h i s e x p r e s s i o n c o i n c i d e s , f o r e x a m p l e , w i t h t h a t

o b t a i n e d b y H a k e n ' 4 · 1 . T h e c a l c u l a t e d w i d t h s o f t h e g a s

l a s e r w e r e g i v e n i n a n u m b e r of o t h e r p a p e r s , f o r e x -

a m p l e t h o s e o f L a m b [ 3 5 ] , L a x [ 3 ] , W i l l i s [ 5 ] , a n d o t h e r s .

In t h e f i r s t a p p r o x i m a t i o n i n a E o , w e g e t f r o m

f o r m u l a s ( 2 . 8 1 ) a n d ( 2 . 8 2 )

2V

2V

- + •
Τα-VI»

aE\0 ( ω ο 6 - Ω 0 ) 2 -

b ) S t r o n g f i e l d ( a E J T » 1 ) . F o r i m m o b i l e a t o m s , i t

f o l l o w s f r o m ( 2 . 8 1 ) a n d ( 2 . 7 7 ) t h a t

( Ι 2 ) « » = - -aEl2V

Thus, the polarization-noise spectral function at
SLEI ~> 1 does not depend on the field.

If the change of power is due to the change of the Q
at constant pumping, then, with allowance for the con-
dition (2.85) expression (2.52) can be written in the
form

(2.88)(i2)» = 4JTR 1 ε" | F"1 (R. + 1/2).

I n a s m u c h a s i n a s t r o n g f i e l d

' VaEl,
it follows that the spectral function of the thermal
noise decreases with increasing field. Consequently,
the line width at aEo ^ 1 is determined by the polari-
zation noise.

As a result we obtain the expression

(2.89)

Let us compare formulas (2.84) and (2.89). It follows
from them that both in a weak and in a strong field the
line width is inversely proportional to the field energy,
i.e., Δωρη ~ 1/W. However, the proportionality coef-
ficient is different.

In the case of a gas l a s e r at aE§ » 1, but at
Eo <C Δα»!), it follows from (2.82) that

(ξ2)ω = (4πδε727)3£= (ρίο> + ρ^Ο))/[ρίο)-ρ1Ο)]. (2.89a)
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Since now we have (see (2.80))

the polarization noise increases like
The line width is given by

(2.90)

α£; (ρΓ + ρ ί Λ ί ρ Γ - ρ Γ ] ~ l/W1'2 (2.91)

and consequently the decrease of the line width with
increasing power slows down when a E 2 3> 1.

The resu l t s (2.89a) and (2.91) a r e in qualitative
agreement with those given in^ 3 3 ] .

By now there is a lready a considerable number of
experimental papers devoted to the determination of
the emiss ion line width and to the investigation of the
spectrum of the amplitude fluctuations of gas l a s e r s .
In order of magnitude, the resu l t s of the calculation of
the line width agree with the experimental data in those
regions above threshold where the correlat ion theory
is valid.

For a detailed comparison with the experimental
data it is necessary to general ize the r e s u l t s presented
above. The point is that the greates t interes t at taches
to an investigation of fluctuations in a l inear l a ser ,
where the field form is close to a standing wave, and in
a ring la ser operating in the reg ime of two opposing
waves. In these c a s e s , in calculating the phase fluctua-
t ions, it is necessary to take into account the influence
of the amplitude fluctuations and of the coupling of the
opposing waves. A review of these resu l t s cannot be
presented within the framework of the present a r t ic le ,
so that we confine ourselves only to citing the l i te ra-
t u r e I 3 4 ' 3 8 " 4 7 ! .

In conclusion we note that although the exposition
was c a r r i e d out here using as an example a gas whose
atoms interact only via the t r a n s v e r s e field, a s imi lar
method can be used to determine the nonequilibrium
fluctuations also in other s y s t e m s .
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