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RECENTLY, interest has increased in the statistical
theory of electromagnetic processes in different
media. This is due primarily to the development of
quantum radiophysics, and particularly to the theory
of fluctuations of laser radiation!'"*!) and statistical
processes in nonlinear optics!'?!?), The development
of a general statistical theory is stimulated also by the
development of certain spectroscopic problems,
namely the theory of spectral-line broadening in gases
and in a plasma, excitation of atoms in strongly non-
equilibrium systems!****], etc.

The purpose of the present article is to develop one
of the possible methods of describing statistical pro-
cesses in classical and quantum systems of atoms and
an electromagnetic field. Naturally, within the frame-
work of one paper it is possible to present a suffic-
iently complete description only for a concrete system.
The general theory is developed here using as an ex-
ample a gas whose atoms interact via a transverse
field. However, the results are given in such a form
that a generalization to the case of interaction via a
longitudinal field is obvious.

By way of a concrete application, we consider the
theory of natural fluctuations of the radiation of the
gas laser, which determine the radiation line width.
The fundamental problem here is that of determining
the non-equilibrium polarization noise of the working
medium of a laser. The degree of non-equilibrium is
determined by the magnitude of the generated field.

The paper consists of two chapters. In the first we
develop the classical theory and in the second the
quantum theory. Each of the chapters in turn can be
subdivided into two. This subdivision is governed by
the following.

The first problem is to obtain, on the basis of the
initial microscopic equations, a system of kinetic
equations for particles and fields, describing dissipa-
tive processes in the medium under consideration.

The starting point can be the Liouville equation for
the distribution function f(x, X, t) of the variables of
the particles and the field (here x is the aggregate of
coordinates and momenta of the atoms, and X is the
aggregate of the field oscillators),

From the Liouville equations it is possible to obtain
a system of coupled equations for the simpler distribu-
tion functions—the distribution functions of the vari-
ables of one atom, the distribution functions of the
variables of one oscillator, the second distribution
functions, third distribution functions, etc, Such a
system of equations is analogous to the system of
equations used by Bogolyubov!*®}, Born and Green"’
and others in the theory of gases and plasma.

In place of the second and higher distribution func-
tions, it is more convenient to use equations for the
corresponding correlation functions.
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Two methods are used for an approximate solution
of the chain of equations and for obtaining Kinetic
equations, namely a closed system of equations for the
first distribution functions f,(x,, t) and f,(X,, t).

The first is based on the use of different variants
of perturbation theory with respect to the interaction.
Such a method was first used by Bogolyubov in the
derivation of the Landau kinetic equation, and also by
Bogolyubov and Gurov (see, for example,!*®) in the
derivation of the corresponding quantum equation. A
considerable number of papers are devoted to the ap-
plication of perturbation theory with respect to the
interaction to systems of charged particles and atoms
interacting with an electromagnetic field. A review of
a number of such papers can be found in the
books (118191,

Besides the perturbation-theory method, a general
method, which makes it possible to take into account
the influence of the polarization of the medium in the
collision integral, has been widely used recently. It is
based on the approximation of the second correlation
functions, when the third and higher correlation func-
tions in the chain of equations are set equal to zero.
Such an approach was formulated by Bogolyubov for a
system of charged particles! !°), The existing classical
kinetic equations were first obtained in the papers of
Balescu!®) and Lenard!®), The corresponding quan-
tum equations were derived in!?%?2],

In this paper the kinetic equations are derived by a
method close to that previously used by the author in
plasma theory!?*?®], This method makes it possible to
take into account in a relatively simple manner the
contribution made to the kinetic equation by the reso-
nant and nonresonant electromagnetic radiation and
also the polarization of the medium.

After deriving the kinetic equations, we proceed to
the next stage, the calculation of the natural fluctua-
tions in He-Ne gas lasers.

An unbounded medium is characterized by four
temporal parameters: the frequency of the oscillation
or the transition, the Doppler width, the coefficient of
the radiation friction, and the attenuation time of the
field. In describing the statistical processes in a
laser, there appear additional parameters: the attenua-
tion time of the field in the resonator, and the correla-
tion times of the fluctuations of the amplitude and of
the phase of the laser emission. In a gas laser, these
characteristic times are much longer than the times
characterizing the processes of dissipation in an un-
bounded medium. This makes it possible to obtain the
statistical description of the processes in two stages:
first it is possible to obtain kinetic equations describ-
ing the dissipative processes in an unbounded medium,
and then these kinetic equations can be used to describe
the natural fluctuations of laser radiation.
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The line width of laser radiation is determined by
two factors: thermal fluctuations of the field in the
resonator, and non-equilibrium fluctuations of the
polarization of the medium. The thermal fluctuations
in the resonator are determined by the well known
Callen-Welton formula, and therefore the main problem
reduces to a calculation of the non-equilibrium fluctua-
tions of the polarization in the laser-generation re-
gime.

The fluctuations of laser radiation are calculated
in the present paper for both a classical and a quantum
system. However, the calculation presented here for
the line width of the coherent radiation of the classical
generator is only illustrative in character, since there
is no direct correspondence between the chosen model
and the real system. This material is introduced to
facilitate the understanding of the corresponding
quantum calculation for the He-Ne laser.

I. CLASSICAL THEORY

1.1. Initial Equations

We consider a system of atoms interacting with the
electromagnetic field. We regard the atom as an oscil-
lator having a dipole electric moment. The total num-
ber of atoms is denoted by N. The state of the oscilla-
tors is determined by specifying the coordinates and
the momenta of the centers of gravity Rj and Pj, and
the coordinates and momenta of the internal motion,
rij and pj. The index i takes on values 1, 2,...,N.
The time variation of the oscillator state is deter-
mined by a system of corresponding equations of
motion.

Instead of using the system of equations of motion,
the evolution of the states of the system can be de-
scribed by using an equation for the phase density
N(R, P, r, p, t) in the space of the variables R, P, r,
and p. It is defined as follows:

NRProp )= 3 SR Re(1)6(P—Pi () 8(r—r: (1) (p—pi (1),

(1.1)
It follows therefore that the function

N (R, P, r,p, t)dRdPdrdp (1.2)

determines the number of atoms that have at the in-
stant of time t variables Rj, Pj, rij, and pj in intervals
dR, dP, dr, dp near the values R, p, r, and p.

The integral of the function N(R, P, r, p, t) with
respect to all the values of the variables R, P, r, and
p is equal to the total number of atoms, i.e.,

S N@®, P, r,p )dRdPdrdp—N. (1.3)

The equation for the phase density follows from the
condition for the conservation of the total number of
atoms. In the dipole approximation it can be written in
the form

(%+v§ﬁ+v%»f mm?,r%JreE"(R, t)%)N:O, v=r (1.4)
In this equation m and M are the masses of the elec-
tron and the atom Mwo is the natural frequency of the
oscillator, and E™ is the microscopic intensity of the

electric field. In the dipole approximation, the function
EM does not depend on r.
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The equation for the function EM follows from the
system of microscopic Lorentz equations. We write
it in the form

92EM 9?PM

i — CAE" = —dn—— div E¥ =0. (1.5)
The microscopic polarization vector PM s deter-
mined by the phase density
PR, t)—¢ 5 N (R, P, r, p, t)dPdr dp. (1.8)

When account is taken of the interaction with the
transverse electromagnetic field in expression (1.6),
it is necessary to take only the solenoidal part into
account, and by the same token to use the condition
divPM = 0.

We denote by N, E, and P the phase density, mag-
netic field, and polarization averaged over the ensem-
ble. Using the identity NEM = NE + 5NOE, where 6N
and OE are the deviations from the mean values, we
obtain from (1.4) the following equation for the function
N:

LN — 6159;5E =nJ, N:nf (1 .7)
(f is the distribution function normalized to unity);
here
3 a a a3
L:W—{—VaR%—v-gr——mmgr%—}—eEa—i, (1.8)

n is the average number of atoms per unit volume,
and J is the collision integral.
From (1.5) follows an equation for the average field

e o (1.9)

—5—C?AE= —4n

FT) S GvE=0;

here P is the average value of the polarization vector.
From (1.6) we have

PR, t)—e 5 eN(R, P, r, p,t)dPdrdp. (1.10)

The system (1.7)—(1.10) for the mean values of N
and E (the first moments) is not closed, since Eq.
(1.7) contains the function 6NSE~—the second central
moment.

To obtain the equations for the second moments, we
use the equations for the deviations 3N and SE.

From (1.4), (1.7), (1.5), and (1.9) we get

. oN ) .,
L8N + 8B = — ey (ONSE—SNSE)=ndJ,  (1.11)
e —cASE= —ln D givsE—0,  (1.12)
SP(R, ) —e S SN dPdr dp. (1.13)

Equation (1.11) contains the product of the deviations
6N and 6E. Consequently, the equation for the second
moments contains the third moment, etc. Thus, we
arrive at a chain of coupled equations, the exact solu-
tion of which, of course, is impossible,

The collision integral in (1.7) is determined by the
second correlation function of the coordinates and
momenta of the atomic and field oscillators. I we
neglect this correlation, i.e., if we put J =0, then we
obtain a system of self-consistent equations for the
first moments of N and E. The dissipative effects
are discarded thereby. To take into account the dissi-
pative processes it is necessary to take into account
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at least the contribution from the second correlation
function and by the same token, to include the second
moments in addition to the first.

To explain more clearly how the chain of equations
is to be terminated, let us consider the relations be-
tween the different temporal parameters characteriz-
ing the system in question,

1.2, Characteristic Temporal Parameters

We introduce the following notation: w,—frequency
of the axial oscillations of the atomic oscillator,
y—coeificient of radiative damping, y,—coefficient of
field damping at the frequency w in an unbounded
medium, Awp—Doppler width.

To simplify the calculation we disregard the influ-
ence of collisions on the Doppler broadening and the
collision broadening. Allowance for this phenomena
does not raise any fundamental difficulties. For the
equilibrium state, a detailed calculation of the Doppler
and collision broadenings are given in the review of
Rautian and Sobel’man!!*],

In the coherent-radiation regime, the emission spec-
trum is characterized by the parameters Awph and
Awa—the spectral widths governed by the phase and
amplitude fluctuations; Awy is the resonator band-
width.

The seven temporal parameters wo, y,, AwD, 7,
Awy, Awg, and Awph can be broken up into two groups.
One includes the ‘‘fast’’ parameters, and the other the
‘‘slow’’ ones.

We consider the case of inhomogeneous broadening,
when Awp > y. The field damping coefficient is pro-
portional to the atom concentration n and depends
essentially on the frequency w. It is maximal at the
resonant frequency wo. If y ~ 10% and Awp ~ 10",
then already at n > 10° cm™ we have y, >y. We
assume that yy, > y.

The quantities y, and y(, are described by the
relation

Yo =Yoo €XP [ — (& — 0p)*/Awb).

For nonresonant frequencies, when [w - wo| > Awp,

we have y, < yy, We shall henceforth denote by

yg the damping coefficient at nonresonant frequencies.
The introduced parameters satisfy the condition

(1.14)

The slow parameters will be further subdivided into
““fast’’ and ‘‘slow.’’

The ratio of the parameters y,, and Awp depends
on the concentration of the atoms y(, > wp when
n> 10" cm™,

@, Yaor Aop >y, v5 Aoy, Aea, Aoph .

1.3. Approximation of Second Correlation Functions

The first problem is to obtain equations describing
the processes in the system in times on the order of
1/y. The dissipative processes are determined in
these equations by the fast fluctuations. The main as-
sumption is that the triple and higher-order correlations
of the fast fluctuations make a small contribution to the
dissipative processes in times on the order of 1/y.

The second-correlation approximation was proposed
first by Bogolyubov!'®) in the analysis of a system of
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charged particles. Further investigations have
shown!?-2%] that, in contrast to perturbation theory with
respect to a small interaction, this approximation
makes it possible to take the polarization of the medium
immediately into account in the kinetic equations.

Obviously, the approximation with respect to the
moments of the functions N and E™ does not coincide
with the approximation with respect to the correlation
function. For example, in the second-moment approxi-
mation, just as in the self-consistent-field approxima-
tion, the medium is regarded as continuous.

In the second-correlation-function approximation,
account is taken of the atomic structure of the medium.
We shall show that this approximation is equivalent to
equations for the second moments with a source that
can be expressed in terms of the first moments.

In the second-moment approximation, the right
side of {1.11) should be set equal to zero. As a result
we obtain

ZGN-{-eGE%%_:O. (1.15)
We multiply this equation by 6N(x’, t)(x = (R, P, r, p))
and average:

L8N (z, ) 0N (2', ')+ eSE (R, ) 8N (', ¥') —"a’:_:o, t>t. (1.16)

We write down the corresponding equation in the
second-correlation-function approximation. We denote
by gu(x, x’, t, t’) the correlation function of the vari-
ables of two atomic oscillators at the instants t and t',
When t = t’ the function g, is determined by the ex-
pression

SN (z, ) 8N (&7, ) =n?ga (z, 2’ 1) -+ nd (@ —2') f (=, 1). (1.17)
We can write an analogous relation also for t #t’:
&N (2, 8N (&, 1) =ng:(z, @', £, ) -+ nfa (@, t, 7', ). (1.18)
The function f.(x, t, X', t') determines the statisti-

cal connection between the states of one frequency at

different instants of time. At t = t’
fa(e, t, @, V) =08(@@—a)fE 1. (1.19)

In the second-correlation-function approximation,

we obtain in lieu of (1.16)
Lnogy(z, o', 1, t')+ €SB (R, 1) 6N (z', t’)%—f:ﬂ, =, (1.20)

Using (1.18), we write this expression in the form

(source)

L8N @, 06N (7, 1) - &SE (R, 0N (@, 7) % — i8N (@, HoN (@, F)
(1.21)
We have introduced here the symbol

W DN D) Dty (a1, 27, 7). (1.22)

Thus, in the second-correlation-function approxima-
tion, Eq. (1.21) differs from (1.6) in that it contains
the ‘“‘source’’ (1.22).

The quantities x’ and t’ in the function f, are
parameters, so that the equation for this function coin-
cides with the kinetic equation for the distribution
function f(x, t). :

The equation for the function f, is solved subject
to the initial condition (1.19). .

It follows from (1.21) that the function
8N (x, t)6N(x', t) is determined completely by the
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expression (1.22) if the field fluctuations make a
negligibly small contribution, i.e., effects due to the
polarization of the medium are of no importance.

It is convenient to introduce the source directly
into the equation for the function 6N. We then obtain
in place of (1.15) the equation

L8N L edE % — Fantoure (1.23)
The corre%ation of the functions sN(source)(x t) and
sn(source) (' t') is determined by Eq. (1.22).

Since there is still no explicit expression for this
collision integral J, we cannot write the equation for
f: in explicit form, and consequently we cannot deter-
mine the source., We shall show, however, that under
the condition (1.14) the collision integral is determined
by the fast fluctuations. To determine the spectral
functions it suffices to know the function f, in the time
interval t — t’ < 1/y. The equation for this function
is determined by the kinetic equation (1.7) with J = 0.

We have introduced here the source only for atomic
oscillators. It can be introduced in similar fashion
also for the oscillators of the transverse electromag-
netic field.

Thus, just as in the statistical theory of non-
equilibrium processes in a plasma (see the book!*,
Sec. 14—16, and the article!®)), we can use either the
equation (1.20) for the correlation functions, or Eq.
(1.23) for 6N. The former method is more complicated,
since to determine the two-time correlation function
from (1.20) it is necessary to know the single-time
correlation function. It can be obtained by approxi-
mately solving the chain of equations for the distribu-
tion functions.

The use of Eq. (1.23) makes it possible to find the
spectral functions in a simpler manner, without first
determining the single-time correlation function.

It must be borne in mind, however, that the proof
of the equivalence of Egs. (1.21) and (1.23) can be ob-
tained without knowing the single-time correlation
function. Therefore the use of (1.23) with the source
(1.22) is not based on any definite assumption. The
proof of the equivalence of (1.21) and (1.23) for a
plasma is given in!?**],

1.4. The Collision Integral

Let us consider the function

5N (z, D)0 (R, ©) = (ONOE)s 1, nn, 1—1--

We expand it in a Fourier integral in terms of t — t’
and R - R’, and then put t =t’ and R = R’ and substi-
tute the resultant expression in the collision integral.
As a result we get
—5(7;)—4% [ Re (6N8E).. o, i do k. (1.24)

It follows from (1.24) that the relaxation time of the
function f is of the order of 1/y. The collision integral
is determined by the fast fluctuations. The slow fluc-
tuations will be determined by the kinetic equation
itself.

In order to find the spectral function (6NSE),k for
the fast fluctuations, let us consider the solution of
Eq. (1.23) in a time interval t — t’ such that

J (e, 1) =

Vyay,  UA0p L t—1" & Uy, (1.25)
The average field is limited by the condition
eE (t—1)imV, & 1, but eE/mVyy ~ 1. (1.26)
We then have in (1.23)
£—>£0:0—‘1+V%+vair—mmgr-a%, (1.27)
and (1.23) can be rewritten in the form
LN (3, £) = — odE % 4 0w (1.28)

In the right side of this equation there are two
terms. Accordingly, we represent the spectral func-
tion Re (6NSE)yk in the form

(source)

Re (SNV3E)qx = Re (ONSE) G (ind)

+Re (8V3E) ok (1.29)

Let us find first the first part, due to the source.
Under the conditions (1.25) and (1.26), the equation for
f; is determined by Eq. (1.7) withJ =0 and E =0,
ie.,

Lofa(z, t, 2, £) = 0. (1.30)

We solve this equation subject to the initial condi-
tion (1.19). The solution can be written in the form

(1.31)

We have taken here into account the fact that in the
interval t - t’ << 1/y we have f(x’, t") = f(x, t}). The
function x'(x, t — t’) is determined by the solution of
the system of equations of the characteristics.

From (1.31) we find an expression for the spectral
function of the source

fo@ b2, ) =8 (w, t—t')—z') f (&, ).

oc

g 8 [’ (@, T —a'] oT-iko dy dpf (z, 1), (1.32)

BNON) G —

where 7=t -t'and p =R - R'.
In order to find with the aid of this expression the
spectral function Re(ﬁNGE)(Sl?“rce), let us consider

the solution of the equations for 6P and 6E in the
interval (1.25).
From (1.28) we get an equation for 5P
[(5+ V) +oi] @P— sptowen) = = f(p)oE;  (1.33)
here f(P) = [{(R, P, r, p)drdp is the distribution
over the momenta of the centers of gravity.

In the approximation considered by us, it is natural
to assume that the distribution of the atoms is spatially
homogeneous, and f(P) is a Maxwellian distribution.

It follows from (1.33) that 6P consists of two parts:

8P = op WD _gp (source) (1.34)

The induced part of 8P is determined by the field SE.
In the interval (1.25) we obtain for the induced part of
the field 6P from (1.33)
6P (4, k, P)=[e, (0, k) — 1] f (P) SE (0, k)/4n;  (1.35)
here
& (0, k) == 1 - (dne’n/m) [0] — (0 — kv + iA Y] (1.36)

is the dielectric constant for fast fluctuations, due to
the atoms with velocity v.
When solving (1.33), we let
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- o
5 ...dr—>Se—A“..dr,
] [}

where

Yoos Awp>AD Y. (1.37)

From (1.35) and (1.36) we obtained, after integrat-
ing with respect to P,

8P (6, k)= (e (@, k) — 1] SE (o, k)/4x,
£ (o, k)= 5 €0 (0, k) f (P)dP = ¢’ +-ie’.

(1.38)
(1.39)

The real and imaginary parts of the dielectric con-
stant are given under condition (1.37) by

4nen

=14+ ToAGD (e‘zi Zf e’ dt —e—2% Zs: e dt) s
0 o (1.40)

&"=(n1/2/2) (dne*n/mo,Awp) (e~ 22 — e~ 23);

Here Z, = (w + wo)/Awp, Awp = k(2«T/M)Y2, When
| Z+}>>1 we have

anect Zy = (o = 0g)/Awp, Awp=1k(2xT/M)"?. Tipu |Z.|>1

¢ =1 - [4ne’n/m (0f — ©?)). (1.41)
When | Z,| € 1 we have
, 4ne’n ©—o . at’? 4memn
€ =1—W o 0 N g = 3 TopBop (1.42)

Under condition (1.37), formulas (1.40)—(1.42) do not
depend on A,

Let us consider the contribution of the resonant
field. Owing to the condition (1.37), the field can be
regarded as stationary when w ~ wo.

From (1.12) with allowance for (1.34) and (1.38) we
get

source)

OE (0, k) = — 4nat8P-C7" D 102 (0, k) — k2], (1.43)

here and below al =k x [a X k|/k? is the transverse
component of the vector a.
Using this expression, we obtain
4mw2 (8N 6p-L) (ouee)
w2e* —c2k2 ¢

(source)

Re (ONSE)q; = — Re (1.44)

Let us return to (1.32). We multiply this expression
by er’ and integrate with respect to r’ and p’. This
yields
6(5N6PL)§,SKOMC_£) 2:1:)21» 8(m—kv—m0)-;—8(a)—-kv+mo) (mr—L—i—E}) 1)

(1.45)

Expressions (1.44)and (1.45) determine the sought
spectral function,

The second term in (1.45), as we shall show, deter-
mines the damping, and the first determines the fre-
quency shift of the atomic vibrator.

In order not to complicate the calculations, we re-
tain only terms that determine the damping. The
expression for the frequency shift will be written only
in the final equation.

We then obtain from (1.44) and (1.45)

8 (0 — kv —mp) + 8 (0 — kv - wy)

(source) 8n2eZnwie”

eRe (ONOE)ok Py pLf (=, t).
(1.46)

This yields
s ) Re VBN Vdodk = —ypi (2, 1 (1.47)

we have introduced here the notation

L. KLIMONTOVICH

__ @3e” 8 (o—k 8
Y=g o AR ( v — ﬁ)o)+ (0-—kv - ag) P;z do k"(l . )
.48

From this we get in the zeroth approximation with
respect to Awp/we, after integrating with respect to
w and k,

7y = (26202/3me?) [&” (wo)) 2. (1.49)

We shall need later an expression for the spectral
function Re (6j6E),k. From (1.46) we get
(source)

Ro BfOB)ux = — 4o’ 0, k) i P

E—cThIE om

(1.50)

We have used here expression (1.40) for €” and a
Maxwellian distribution with respect to the velocities
of the centers of the atoms.

In (1.46) and (1.50) we took into account only the
resonant contribution, i.e., the contribution from the
field 6E at the frequencies w ~ wo. When the non-
resonant contribution is taken into account, for exam-
ple, there appears in (1.50) an additional term of the
order of y/Awp of (1.50).

Let us find now an expression for the induced part
of the spectral density Re (6NSE) k.

Under the same assumptions we have

(ind) 1 (0)8”+1 dw (e’ —1) a)((SEﬁE)mu

T n 2 0

Re (8§ 8E)ox = 7=

(1.51)
The second term takes into account the contribution
due to the dispersion in the nonresonant region. In the
resonant region the field is established within a time
much shorter than 1/y, so that the contribution from
the second term is of the order of y/Awp of the first,
In order to find the expression for Re(6NGSE) (111{1‘1)

from which formula (1.51) follows, we use the solution
of (1.28) for the function

SN (ind) — SN — GN(source)

in the time interval (1.25). This yields

e Re (8 8) Srd. _41( Yo -t ; i“i‘%ﬂ 9 ) (OE:SE; mk__. (1.52)

From (1.52), after integrating with respect to w
d k, we get

- ——[(aEesE)wo+ . (1.58)

T | e L 0] S
The second term in this expression takes into account
the contribution from the nonresonant field.

From (1.52) there follows expression (1.51). It is
necessary to take into account here the fact that
k- 6E =0.

We now can write the sought kinetic equation, From
(1.7) and (1.8) we get

(1.54)

On the basis of (1.52) and (1.47), we write the colli-
sion integral in the form

J=D 2t 2 (4pf). (1.55)

The diffusion and friction coefficients are given by

+ Imetn o )
(2¢202/3mc?) [e’ (wg)] V2.

=55 (GBS,
A= y=

1 S 90 (' —1) 3(5E6E)m do ] (1.56
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Thus, the diffusion coefficient is determined by the
spectral function of the field.

1.5. Equation for the Spectral Function of the Field

From the field equation, for a spatially homogene-
ous distribution of the atoms, there follows the energy-
balance equation

s ((OEDE),, + (5B B),,
ot 8 ]

— Re (5§ 0E)on; 1.57)

0B is the deviation of the magnetic-field intensity from
the mean value,

Using (1.50) and (1.51), we can rewrite this equation
in the form

A2 [";"—j (8E 8E) e -- (OB 63)1,),_.]

8 ot

Saw3e”

'_Z‘%S”[(‘SE(SE)‘““ [0 — 2k |2 m] (1.58)

In the equilibrium case -pi—"’/m = 2¢T, and from
(1.58) we get an expression known from the theory of
equilibrium electromagnetic fluctuations!?7»2%

(1.59)

From (1.58) we obtain an equation for the spectral
function (6E8E),:

L0 T8 Sp SE, + (6B 6B), |

B It e

(8E SE) ok = 16710%"wT /() 02 — ¢k |2).

T

==t (0. 2VF) [GEoE),— 4 LVE e xﬂ] (1.60)
In the equilibrium case we have p?/m = 34T, and

from (1.60) we obtain the well known expression with

allowance for the polarization of the medium!?":

(8E 8E), = 4n2p,, = 402 V&' T/ct. (1.61)

For the spectral function of the field at the resonant
frequency wo, by virtue of the condition y,, > y, we
use the steady-state solution of (1.60)

(BEOE),, — 402 p/3cm, & ()= 1. (1.62)

The kinetic equation (1.54), (1.55), even without
allowance for the nonresonant field, differs from the
usual Fokker-Planck equation for the system of atomic
oscillators in the field in that in place of the expres-
sion for the diffusion coefficient

D — ymn? (1.63)
it follows from (1.56) and (1.62) that
D:mgii—Q z—;—my S f”;ifdrdp, (1.64)

i.e., the diffusion coefficient itself depends on the form
of the distribution function. The kinetic equation is
therefore nonlinear.

Let us write down the equation for the average
energy of the atomic vibrators. From (1.54) and (1.55)
we obtain

e[ () ] =22 g 2 (1.65)

From (1.60) we get an equation for the density of
the electro-magnetic energy. It can be written in the
form

1
8 Gt

(1.66)
From (1.65) and (1.66) follows the law of conserva-

S[(SEBE - (8B 8B),] d = — (SZLD w ,,2)

tion of the total energy of the atomic oscillators and of
the field.

In the presence of a thermostat, the role of which
can be played by the radiation field of another system
of atoms, corresponding additional terms appear in
the kinetic equation.

1.6. Slow Fluctuations at a Zero Average Field

In order to obtain an expression for the spectral
functions of the slow fluctuations—fluctuations with a
characteristic time on the order of 1/y it is necessary
to repeat the foregoing procedure, the only difference
being that the initial equations are not (1.4) and (1.5)
but the kinetic equations.

We obtain in this manner, for example expressions
for the spectral function of the source of slow polari-
zation fluctuations.

From the kinetic equation (1.54) we obtainat E =0
the following equation for the polarization vector
P(R, P, t):

] 2
(7+V%) Py opo. (1.67)
Regarding this equation as a kinetic equation, we
obtain the equation for the source polarization fluctua-
tion correlation

[(G V%) 47 2t ot PR =0, 1> (1.68)
This equation is solved subject to the initial condi-
tion that follows from (1.19):

(source)

(6P SP)perc®) . s (R—R") 8 (P— P’ enSrf(R P, r,p, t)drdp. (1.69)

From (1.68) with the initial condition (1.69) and
with allowance for the fact that divéP =0, we get

(source)

(6P 8P)gipy = (1.70)

moey (@, k) (Fr1)p, 4/2m;

here

v = (4ne?n/m) oy {[02 — (0 — kv)?]? + o2y} L. (1.71)
When Awp > y, after integrating over the velocities
we get from (1.70) the expression

(source)

(OPOP)gi: = moe” (@, k) (r1%)/2m. (1.72)

The function €” is given by (1.40).
In the equilibrium state mw?ri® = 24T, and expres-
sion (1.72) takes the form

OP RS L e (0, k) nT /. (1.73)

Expression (1.72) can be used to find the spectral
function of the field.

1.7. Emission Line Width of a Classical Coherent-
radiation Generator

A system of classical oscillators can be used as the
working medium in coherent-radiation generators. In
the review of Gaponov, Petelin, and Yulpatov!®? (see
also Gal’tsov’s d1ssertat1on[3°]) there are detailed de-
scriptions of the possible mechanisms of coherent in-
duced radiation in classical systems.

In this section we consider the model of such a
generator. The pumping and the nonlinearity will be
introduced phenomenologically via the effective field.
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This makes it possible to trace the occurrence of the
radiation with a line width smaller than y.

We denote the effective electric field acting on the
oscillator by Eeff. We specify its connection with the
coherent field E in the form

Een=E+ag s (1.74)
where o is a nonlinear function of the field. In a weak
field

(1.75)

We shall consider only the phase fluctuations, which
determine in the main the line width of the coherent
radiation. We denote this width by Awph. The designa-
tion ‘‘coherent field’’ will be justified if it turns out
that Awph = K y.

When t - t, > 1/Awph, a stationary regime is
established, in which the mean value of the coherent
field vanishes.

We consider a single-mode generation regime and
represent the field E in the form

ER, t)=ekE(R,t), E(R,1)=Ecos(Qt—kR+ ), kol z (1.76)

here §, = ¢k, is the natural frequency of the resonator,
E, is the constant amplitude (the amplitude fluctuations
are disregarded), ¢ = ¢{(ut) is a slowly varying phase,
and e, is a unit vector.

Since our example is for illustration purposes, we
assume for simplicity that the atoms are at rest and
that the concentration of the atoms is constant. In this
approximation, the equation for the polarization vector
is

a:ao_ﬂEz'

en

(7 +7 3 +68) P=2 B =<2 (E4a ) . (1.77)

We represent the polarization vector in the form
(1.78)

The equation for the induced part of the polarization
coincides with (1.77), and for Pp(source) we have

92 9 (source)
(7 +v5r+a3) RO 20,

P—P (ind) +P (sou:'ce)

(1.79)

Taking (1.78) into account, the field equation can be

written in the form
(Ft+ 25 —en) E= —dn 2o (@® D4 ) L 2p™; (1.80)

we have introduced here two new terms. The second
term on the left side takes into account the loss of
energy of coherent radiation in the resonator, Q is the
corresponding quality factor, E* is the source of
thermal noise in the resonator, and Awr = £,/Q K y.

Let us find first the expression for P(ind), To this
end, we separate the first harmonic of Egff. Taking
(1.76) into account, we obtain

Eut=E R, )~ (a—2 £3) Eysin (@t —kR +). (1.81)

We substitute this expression in (1.77). As a result we
obtain for the active part of the vector p(ind) the
expression
P = Esin (Qyf — kR + ¢)/4m,
4etn (@o—0y) (00— (B/4) BI—/280 _
m 2 [{(0o—Q0)2 + (v2/4)]
is the imaginary part of the dielectric constant of the

where (1.82)

gy = —

L. KLIMONTOVICH

active medium. The active part makes a contribution
on the order of y,, /wo-
The amplitude E, is determined from the condition

—e; =1/Q, (1.83)
which specifies the balance of the incoming and out-
going energy.
The equation for the phase ¢ is
do/dt =QE/E,,

where 1
E= —7 % (4nP

(1.84)

(source)
+E™) cos (Rt — kR + ¢) dV
is the noise source.
Averaging over the volume results from the fact
that the phase depends only on the time.
The spectral noise density is given by

(B0 = [(4m)? (edP ) 42+ (e 0E™)ouli2V.  (1.85)
Equation (1.84) coincides with the corresponding
equation used to calculate the line width in a self-
oscillator(3%],
The spectral function of the thermal noise is deter-
mined by the Nyquist formula (or by the more general
Callen-Welton formula). In our case it takes the form

(1.86)

It remains for us to find the spectral density of the
polarization noise. To this end we use Eq. (1.79) for
plsource),

Since Eq. (1.79) coincides with (1.67) at V =0, we
can use expression (1.72) for the spectral source func-
tion.

As a result we get

[(47)2/2V] (e8P0 )2 | — (AmmQee”/V) (72/3).

(172V) (edE ™ )bk, = 4rnT/VR,0Q.

(1.87)

From (1.85)—(1.87) we find an expression for the
spectral noise function &:

(&%) = (4/V Q) (Q%T - ¢"Epy), (1.88)

EQ is the average energy of the atomic oscillator.
Thé total width of the emission line, due to the phase
fluctuations, is determined by!*%!

Eq, = mQrt/3;

(1.89)

Here D is the coefficient of phase diffusion (some-
times an expression is given for the line hali-width
AQ)ph = D).

We denote by W the energy of the field in the reso-
nator:

Awpn= 2D = (£2)./E;;

W —VE/8x, (1.90)
and write down the expression for Awpp in the form
Doph=(Q/2W) (QWT 1 &"Ey,). (1.91)

If Eg, = «T, then expression (1.90) can be rewritten
in the form

Awph=(Q,/2) (Q~1 +&") xT/W. (1.92)

We note that the quantity (¢” + Q') Q, determines
the total bandwidth of a resonator filled with the medium.
Thus, the spectrum is narrowed down by a factor
x T/2W during the course of generation,

The formula for the line width is so simple only in
the case of a weak field, when the influence of the field
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on the spectrum of the polarization fluctuations can be
neglected, and at the same time the threshold is ex-
ceeded enough to be able to use the correlation approx-
imation.

If the Q remains constant when the generation
energy is varied, then the bandwidth is inversely pro-
portional to the energy, On the other hand, if the en-
ergy is varied by changing the Q, then to determine
the dependence of Awpy on W it is necessary to
eliminate 1/Q from (g 91) with the aid of (1.85). A
similar situation takes place also in quantum theory of
the line width of a gas laser![®],

2. QUANTUM THEORY

We shall describe the motion of the centers of the
atoms classically, and the internal state of the atoms
by quantum theory. We consider the function

Nom (R, P, 8), (2.1)

which has the following properties:

S Non (R, P, £) =N (R, P, 1) (2.2)

is the phase density in space of the coordinates and
momenta R and P:

{ Mom (R, P, 1) s = fum (2.3)

is the operator density matrix in terms of the variables
n and m, the quantum numbers determining the in-
ternal state of the atom.
Thus, the function (2.1) is the quantum analog of the
classical phase density (1.1) in the space r, p, R, P.
The normalization of the function (2.1) is
R
3 ann(R P, t)(dznzl;, N; (2.4)
N is the total number of atoms,
In the dipole approximation, the equation for the
function (2.1) is
LN =2 3 (CangNoym (R, P, 1) — Nuny (R, P, 1) 1,0m) EX(R, £). (2.5)

Here and below we use the symbol

7 a .

L= ‘aT + ﬁ + i®nm,

and EM(R, t) is the microscopic field. The field equa-
tion is

(%—CZA)E" —4n azf:‘, div E* =), (2.6)

* (R, t)aez § rmnvon R P 052 (2)
The last expression determines the microscopic polari-
zation of the medium.

As above, we shall denote by a bar averaging over
the ensemble. We introduce the symbols for the mean
values

Nom (R, P, 1) = Nfam (R, P, 1),
E-E' PP~

The equation for the function fpy, is written in the
form

(2.8)

Linm— 5 3 (rmafam — FnmFrym) B = Jom (R, B, ).

ny

(2.9)
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Equation (2.9) is similar to the kinetic equation (1.7),
and therefore Jpm will also be called a collision inte-
gral.

It follows from (2.5) and (2.9) that the collision
integral is determined by the expression

Jnm = };—V
The equation for the deviation 6Nym, by analogy
with Eq. (1.11), is written in the form

N
LONpm = L Z (rnmfnlm — fﬂmrnlm) SE + N8J m;

ny

(TaniON 2 mOE — SN 8B ). (2.10)

(2.11)

we have left out immediately the term with the average
field E, since we shall need a solution of (2.11) in the
interval t — t’ << 1/y, when condition (1.26) is satis-
fied.

From (2.6) we obtain the equations for the functions
E and 6E, for example,

(g—cA)E= —4n 208

a2’

SP=e>) Sr,,,,,,(‘SN,.m(2 R (2.12)

It is convenient in what follows to represent the
function fnm by

fam = Bnmfn =+ fom; (2.13)
we have separated here the diagonal part of the function

fnm.
We subject the matrix elements to the condition

(2.14)

This means that we are considering atoms in which the
polarization occurs only in transitions between differ-
ent states.

Under the condition (2.14), the polarization vector
is completely determined by the function f'* and
consequently f'V = f;llr)n(p.t, t), i.e., it depéuﬁs on the
fast time (~1/wpm) and on the slow time (1/ypm).
On the other hand f, = fy(ut), i.e., it depends only on
the slow time.

We represent the deviation 6Ny, likewise in the
form of a rapidly and slowly varying functions

Fun =0,

aNnmzanmann+6N§12~ (2.15)

We write down the equations for the functions fn and
f(l)

It follows from (2.9) and (2.10) that

0 6 te
(‘5[ } 3R ) E (rnnlf;i; - 'Eniz)lrnln) E= Jm (2-1 6)
J,= (r,.,,,azv‘ SNSOE — 5N mOEr ), (2.17)
Lia (ze/h) Tam (fm— fo) E= T2, (2.18)
Jgf,{ = (ie/hN) tnm (8N mmdE — BNpnOE). (2.19)

The equations for the deviations 6Npp and 6N{) in
the approximation of the second correlation functions
are similar to (1.23);

(dit":‘ v )(61\/"n—6N(s°urce)

3 -

aN(i)(source)) WN N o U — fn) OE.

2 mn) 8E == 0,(2.20)

LN (2.21)

The correlation of the fluctuations GN(source) can
be represented in the form

(N SV om ) portt = N fint e (RRPR227). (2.22)
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The equation for the function fymn'm’ is deter-
mined by the Kkinetic equation (2.9) and is solved sub-
ject to the initial condition

(source)

(8N SN oo )RR PR 2
<2"’L>“ N6 (R—R")8 (P —P') Srnrfrm (R, P, )+ franBmrm)- (2.23)

A [cgslx-ivation of this formula is given in the appendix
oft>%,

Expressions (2.22) and (2.23) correspond to the
classical formulas (1.22) and (1.19).

Let'us consider the particular case of the general
formula (2.23).

When fpn’ = 6nn’fn (for the slow part of the func-
tion fup’), we obtain from (2.23)

(BN md N Yomopor = (27)5 8 (R — R') 8 (P — P*) NS (Fn - fa)/2-
(2.24)

This expression for the spectral function of the
source will be used in the derivation of the equation
for the collision integral.

2.2, The Collision Integral Jp

Just as in the first part (see (1.24)), we express the
collision integral (2.17) in terms of the spectral func-
tion

e (m, E 5 Im (SNS) 8E)ok T do dk.  (2.25)
The spectral function (6NpnmO8E)yk will be represented
here, too, in the form of a sum of two parts—the in-
duced part and the contribution from the source (see
(1.29)).

For the induced part, under the same assumptions
as in the first part, we obtain the expression

T (SN 0B o 7m) ™
2e2| rpm |2 1
= —'sz- (Ffm—fn) Im {m'—_—m (8E 6E)uk

! OEE)w} . (2.26)

8mm Opm—kv+iA 0!

+i—

From this we get the corresponding expression for
the function Re (6j8E)yk. This coincides in form with
expression (1.51). The dielectric constant is now de-
termined by

e k=143 In=fm____ gp.

0 —0pm—kv4iA

dne?N | ram |2
3k (2nk)3

(2.27)

If the velocity distribution is Maxwellian, we obtain
after integration

4ne?
e=1+ e Elrnmlz(Pmﬂpn)Inmy

3V nhAop -
9 N Znm
Iim = ine Znm _ 2 }/2p=Znm 5 ef? dt,
[

5 £2dP, Awp=k (2xT/M)"2,

(2.28)

W~ WOnpm
Znm= y Pn=

Awp (2nh)3

For frequencies close to resonance (}w - wnm |
& Awp), it follows from (2.28) that

B 8nen
e Z | Yo [* (0 — fn) 5"
s (2.29)
8'=J‘l§1/2-j:TiD- 2‘ Irnm ‘2 (pm— pr)-
n>m
For the nonresonant region we get from (2.27)
’ 8n52n Tnm |2 Onm
o =14 25 B lambom,, (2.30)

WOnm — @2
nm

—,%% Im ((5N§z1n)1 SE)akTrm)

L. KLIMONTOVICH

For an oscillator, formulas (2.27)—(2.30) coincide
with the corresponding classical formulas (1.40)—(1.42).

The contribution made by the source to the spectral
function is given by
(source)

22008 | o (287
= _lgrﬁ—mgz%%lzi&(m—mnm_kv) (fa =+ fm)-

Hence, recognizing that

6] =i m 2, S mmnrmnGNnm dP,
nm

(2.31)

we obtain
Re (8] SE)ie™ =
A_ @ 32n8e2Nwie” | 7pm [? 4P
=~ o 2 ) 80— 0nn—k) (ot ) s
" (2.32)

Formulas (2.26) and (2.31) determine the collision
integral Jy(R, P, t) (2.25).

The equation for the spectral function of the elec-
tromagnetic field differs from (1.58) only in that it is
necessary to take for €(w, k) the quantum expression
(2.27), and for the second term of the right side, which
determines the contribution from the source, it is
necessary to use (2.32).

From formulas (1.51) and (2.32) there follows in
the equilibrium case, for the spectral field function,
the well known expression (the Callen-Welton formula)

(2.33)

(8E OE),y

__i6nkote” 1 1
T o2 —c2%z|2 (?"‘ ehm/uT_1)

At h =0 it coincides with (1.59).

We integrate with respect to k in the expression
for Jp, and additionally with respect to w in the
resonant terms. As a result, in the zeroth approxima-
tion in Awp/wnm, we obtain the following expression
(a more general result is given in{?l);

=355 D | ram[* { [ GESE)a,

+o | o L (BB | — ) — 29 YT ()}
(2.34)

This expression corresponds to the classical equations
(1.55) and (1.56).

From (1.51) and (2.32) follows a corresponding
expression for the function Re(8j06E),.

In the equilibrium state, the spectral function of the
field is determined by the expression

el
(SBOE), = Ve (1 ot -

(2.35)

_ ( 2he3 /e’
) = 4n2p{M L TV" .

It follows, for example, from the equation for
Re(6j8E), =0.

In the right side, p(T) is the temperature part of
the Planck formula. We introduce the corresponding

function also for the non-equilibrium state
Po = [(OE SE)o/4n?] — (haw® |V &7/2m%3). (2.36)

Using this function, we can write the collision inte-
gral (2.34) in the form

n— 2 [Bm pmnm ’_ 5mﬁ;apmdm) (fm_fn)'—A;:lfn:l (2'37)

m<n

+3 [19$(pﬁ,,,m+§,T § 5 5o Bedo) (tn—fu)+ 471n ] 5

m>n
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here
4262

4e2 (1o |2
“3nT |rnm| A:‘n*’ ie?] T | mnml/e

T
Bn=—gmm T hed

(2.38)
are the Einstein coefficients.

In (2.37) we take into account both the decrease of
the population of the level n as a result of spontaneous
transitions to lower levels, and the increase of the
population as a result of spontaneous transitions from
the upper levels to the given level.

2.3. The Collision Integral J‘ ”
Polarization Vector

. The Equation for the

In the collision integral Jﬁxlr)n it is also possible to
separate two contributions: the induced contribution
and the one from the source.

It follows from (2.19) and (2.12) that to determine
the contribution from the source it is necessary to
know the spectral function

(8N — 6Ny SN ) S0
at frequencies close to the transition frequencies.
From (2.23) we obtain the corresponding initial
condition
(1* (source)
N mm SN nn; 6]\71117711)
— (2nh)* 8 (R—R) & (P—P") Smmy + 8mny — Spm, —

This expression vanishes if the resonance condition
wpm ~— wnm, is satisfied only at n; =nand m,; =m,
i.e., there is no resonant interaction between the dif-
ferent transitions. As a result, the contribution from
the source to the collision integral J'V also vanishes.

We confine ourselves here to this case. Then it
remains for us to determine only the induced part of
the collision integral. Under the same assumptions as

above, we obtain for it the following expression:
Vrm = €2 | Tnm |2 (OE 8E)qp /372 (239)

As a result, the kinetic equation for f‘” takes the
form

i 1
Jimz = 'Ynmffm)t

a i e
(W"TV 7R -+ Yrm + l(Dnm) (er:lTI'nm(

—f)E.  (2.40)

Thus, the collision frequency ynm is determined by
the spectral function of the field at the transition fre-
quency. In the expression for y,y, it is possible to
take into account also the nonresonant contribution, as
is done in the kinetic equation for the functions fj.

For the spectral function at the resonant frequency,
we can use the steady-state solution, which follows

from the equation Re(5j GE),‘,Jnm = 0. It takes the form

(OE8E)u,m = (210%m VE/c?) (Pm+ 0u)(om—pa).  (2.41)

In the equilibrium state, this expression coincides with
(2.35).

The collision integral Jp defined by (2.34) contains
also the spectral function (3ESE), at the nonresonant
frequencies. The equation for this function is analogous
to the corresponding classical equation (1.60), and is
given by

717 a Bwp
8x ot

_ g@f‘((ﬂ,;_l/t jc) [((SE 6E)m——

» (SESE), 1 (6B 6B)m] =

8n2e2n
3V nAep e

w3 ]/f?
(2.417)

6""1) f7nm1/2-

-7k .
T Bsr E I Tnm |2 € Znm (Pm T Pn)]- tio

oo
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The functions €’ and €”
mined by (2.28).

In the equilibrium state, the right side of the equa-
tion vanishes and we obtain for (8ESE), the expres-
sion (2.35).

From the kinetic equation (2.40) follows an equation
for the polarization vector of the transition n = m

in this equation are deter-

P (R P, t)= eN (rmnfn + rnmf(i) .
It takes the form

a a OP
(W+Vﬁ) am -t 2¥nm nm

2eN

A 03 Pam = — 3 @mn [Prm [* (fm—

fn) E.
(2.42)

Let us compare this equation with the corresponding
classical equation (1.67).

When E =0, these equations coincide in form. The
main difference is that in the classical equation the
damping is due completely to the contribution from the
source, and in the quantum equation the contribution to
vnm from the source is equal to zero. Consequently
the damping coefficient ypm, as follows from (2.39)
and (2.41), depends on the functions fj, and fj.

We introduce in place of the spectral function of the
field the function py, (2.36) and express ypm in terms
of the Einstein coefficients:

. n n
Z’Ynm == ZBmpmm,L -+ Am, Ponm == T12c8

honm ]/B' (_1_Pm Pn _*) (2 43)

In the case of equilibrium distribution of the field,
we obtain from (2.43) the well known expression for
¥Ynm-

It is seen from (2.39) that the line width of the
transition n == m is determined by the spectral func-
tion of the field at the frequency wnm. The field fluc-
tuations determine also the frequency shift of the
transition. The value of the shift is given by

2 e g 1 SE SE
Gmnmzri—]rml ZR/S’( )‘;)"dm;

Onm—

here ) denotes an integral in the sense of the princi-
pal value, so that the frequency shift is determined by
the spectral function at the nonresonant frequencies.

We note in conclusion that the kinetic equations for
the functions fn and f;]“m remain valid also when ac-
count is taken of interattion via a potential field, We
then have

(8E 8E), —> (8E SE){"” 4 (8E 8E){®,
e., it is replaced by a sum of the spectral functions

of the potential and solenoidal fields. Expressions for
these functions can be found, for example, in(?],

2.4. Spectral Function of the Polarization Fluctuations

From (2.42) at E =0 there follows an equation for
the correlation of the polarization fluctuations
2y 5+ b | B (K, P, D) P (R, B0, 7)) 20,

(Vo)
(2.44)

The corresponding initial condition follows from (2.24)
P 8P% ) 2 (2113 8 (R—R') 6 (P — P*) Sy By | 7 [ (i - ).

(2.45)
Using the solution of (2.44) subject to initial condi-
n (2.45), we obtain an expression for the spectral
polarization function

(source)
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(8P 8P)oc "D 3 Foeim ©,K) L prit-p

TOnm 2 pm—pn

; (2.46)
n>m

€pm is the imaginary part of the dielectric constant
for the transitions n == m, and £(P) is the Maxwellian
distribution.
Equation (2.46) contains a product of two functions
1 pm+pn 1

» 1
Erm M me“Pn_?_’_e""’"’"/"T——l.

The former has a characteristic width Awp, and the
latter «T/h. If

»T/h > Aop (2.47)
we can rewrite (2.46) in the form
(6P 6P)£)s‘:)urc;) hs":(tmk) (_;_+ ehm/xiT__l ) H (248)

"

Here €” = 3 €p,, is the imaginary part of the die-
n>m

lectric constant. The expression for it at AwD > ynm

coincides with (2.28). When H =0, (2.48) coincides

with the classical expression (1.73).

The condition (2.47) was used already in fact when
separating the resonant contribution in the derivation
of the expressions for the collision integrals.

If the condition hwnm > «T is satisfied, then the
second term of expression (2.43) for ypy is much
larger than the first, and ynm does not depend on the
distribution functions fn and fm. Under this condition,
expression (2.46) is valid also for the non-equilibrium
state.

2.5. Laser Radiation Line Width

Assume now that the system of atoms considered by
us is the active medium of a gas laser. This may be,
for example, neon in an He-Ne laser. Let us consider
the fluctuations of the phase of the laser emission.
These fluctuations determine the emission line width.
We designate by the indices a and b the levels with
inverted population; a is the upper level and b the
lower,

In the two-level approximation, the kinetic equations
(2.16), (2.34), and (2.40) can be written in the form of a
system of four equations for the functions fa, fp, fap
and fp5. If the condition hwap > «T is satisfied, then
we can neglect in the collision integrals the terms
containing the function p. The collision integrals
(2.37) and (2.39) then become linear functions of f; and
fam. On this basis, the system of kinetic equations for
the distribution functions fa, fp, fab, and fpa can be
written in the form?®-5"]

(55 + Vo) fa = (Fatfon— farto) E— Yo (fa— 1), (2.49)
(%+V;ﬁ) fo= ‘Lff‘(l'abfba—fabl'ba)E—Yb (fs— 1", (2.50)

(3 +V g+ 00+ w0 ) for =t (o—f) E, (2.51)
foa = fab,
where f(® and £{? are the populations of the levels a
and b and are determined by the pumping.

Just as in the classical case, we consider a single-
mode generation regime. We specify the field in the
form of a travelling wave, as is the case, for example,
in a ring laser when one of the waves is suppressed.
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The spectral function of the noise that determines
the line width will be again determined by formula
(1.85). However, the expressions for the spectral func-
tions of the thermal and polarization noise will now,
naturally, be different.

The spectral function of the thermal noise is deter-
mined by

(172V) (e®ED)ow = (4nh/VQ) [n 4 (1/2)], 7= (ero/xT — 1)1, (2.52)

When 1i = 0, this expression coincides with (1.86).

Let us find the expression for the spectral function
of the polarization noise.

The use of the term ‘‘polarization noise’’ is justi-
fied because the width of the polarization fluctuation
spectrum (of the order of Awp) is much larger than
the width of the laser emission spectrum Awph. The
amplitude fluctuations will not be considered in this
case,

To find the spectral function of the polarization
noise, let us consider, as in Sec. 1.7, the solution of
Eqs. (2.49)—(2.51) in an interval t — t’ such that

Uey e Ve Lt—1t & VAoph, 1/Aop. (2.53)
In this interval, the phase fluctuations can be
neglected, and consequently the field in (2.49)—(2.51)
can be regarded as determined. It is determined by
Eq. (1.76).
Equations (2.49)—(2.51) at a given field are linear
with respect to the functions £y, fp, and f3p, with

sources f{” and t;)m as the pump.

Since the working medium is discrete, consisting of
excited neon atom, and since there is thermal noise in
the resonator, (2.49)~(2.51) must be regarded as equa-
tions for random functions.

Averaging these equations, we obtain the corre-
sponding kinetic equations for the functions fa, fy, and
fap. In accordance with condition (2.53), the field is
regarded as determined during the course of the
averaging, and therefore the equations for the mean
values coincide with the equations for the random func-
tions.

Let us consider the steady-state solution of the
kinetic equations. It is determined by the specified
functions f3” and tl‘)‘”, i.e., by the pump and by the field.

Since the steady-state solution for specified functions
(9 and {9 is determined only by the field, it can be
called inguced.

We denote by 6f; and &8fy) the deviation of the
functions fa and fy), from this solution:

fo=Fa+6far  fap=Fap -+ 6fu.
The equations for the deviations differ from Eqs.
(2.49)—(2.51) only in the absence of terms with func-
tions f;‘” and £{”.

In place of the equations for fa and fp, it is more
convenient in what follows to use the equations for the
functions

R=fot+for D=fa—Tsb. (2.54)

The system of equations for the deviations is
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(5 + Vg = Yoo -+ 000 afab:—irabaDE 8fua=0ft,  (2.55)

(%+Va§ ] YGJ_W)) 6D+ Yo Yb GR (rbaéfab-‘éfbarab)E
(2.56)

(at +V£‘ ) va+w:)63+@5p:0, (2'57)

We consider again the approximation with second
correlation functions. In accordance with (1.23), (2.20),
and (2.21), we make the following substitutions
a8 615 6D 8D — 5D O 5 5R _ RV

(2.58)
in Egs. (2.55)—(2.57), which correspond to the second-
moment approximation,

Since the field does not fluctuate in the time interval
(2.53), Egs. (2.55)—(2.57), unlike (2.20) and (2.21), have
no terms proportional to SE, i.e., the induced parts of
the random deviations 6f3ph, 6D, and 6R are equal to
zero. Therefore

(Sfab*af‘

( source)

8D — 6D,(sour::e) 5K — 6R(sour‘ce) (2 .59)

Thus, the correlations of the deviations 6fyp, 6D,
and 6R are equal to the corresponding correlations of
the deviations sf{Source), sp(source) ‘ang sRr(source)

In accordance with the definition of the correlation
of the source (1.22) and (2.22), it is necessary to find
the solution of the kinetic equations subject to the
initial conditions (1.19) and (2.23), respectively.

The kinetic equations (2.49)—(2.51) are inhomo-
geneous. Their solution for a given field E can be re-
presented in the form of a sum of two parts: the solu-
tions of the homogeneous and the inhomogeneous equa-
tions. The first solution is determined by the initial
conditions.

The homogeneous kinetic equations coincide in form
with Egs. (2.55)—(2.57); therefore, taking (2.49) into
account, we use these equations to determine the cor-
relation and spectral functions of the random devia-
tions 6Fgp, 6R, and 8D of interest to us.

We write down the equation for the two-time corre-
lation of the deviations Gf(%ource . From (2.55) we get
800+ Yan ) (Far f ) po 1t = - FeoE (R, 2) (8D 82 pon

(2.60)

This equation contains a new functlon—the correla-
tion of the deviation 6D and 6Fab The equation for it
follows from (2.56) and contains two new functions,

(6R 6f3),) and (6fpa6f%,). The equation for the former
follows from (2.57), and for the latter from the equa-
tion for the function 6fpy. These equations do not con-
tain new functions. As a result we obtain a system of
four equations. Let us write down the corresponding
initial conditions.

From (2.23) and (2.24) we obtain for the case of two
levels

(3 +Vim

(source)

(0farbf2)RR PPt = (2nh)3

SR—R)S(P—P) (fo-+ o),
(2.61)

(8D0dfin) =0, (BROfZ)rr-pert = (212)° N3 (R— R') 8 (P — P*) fro- (2.62)
Let us return to formula (1.58) for the spectral
function of the noise that determines the phase fluctua-
tions.
The second term, which takes into account the con-
tribution of the thermal noise of the resonator, is de-

(8Fsab720) M0,

R
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termined in the quantum case by formula (2.52). The
first term, which determines the contribution of the

polarization fluctuations, is expressed completely in
terms of the spectral function (eOGP)fz Ko only in the

case of a weak field, when the saturation effect can be
neglected.* In the case of a strong field it is more con-
venient to express the contribution made to (£%), by
the polarization noise directly in terms of the spectral
functions of the deviations 6fyp and 6fpj.

We introduce in lieu of the functlons éfab and 5fy,
the slowly-varying functions bfab and bfba

O — 8y Sk ) (2.63)
6fba - (2-64)

Then the first term in Eq, (1.84) for ¢ can be repre-
sented in the form

6fb el(Qni koR+rp)

4reN

5 (ut) — — 42 dR dP

(eol‘baéfab -+ 9orab6.7ba) W .

(2.65)

This leads to an expression for the spectral function

(E%)o = (4n)ze21v2 5 { Irabl (5fab5f Wo, 0L (eol‘ab)z(ﬁfhaéﬂb)w,oﬁ-l& e 4P 4P’

R
(2.66)
Thus, the spectral function (&%), is determined by

the spectral functions

(8fadFi)o, 00 (8FoabTabde, o- (2.67)

These functions are connected with the spectral func-
tions of the deviations 6fy, and 6fpy by the equations

(8£u60F )0+ 90, k+ko = (8FarOF i), Ky }
(B7baF 2 -0, k—ko = (Of0adF5e) €2 (I TRIR=®),

Expression (2.66) contains the spectral functions at
k =0. Since w < Q, we can put w =0 when determin-
ing the spectral functions (2.68).

As a result of calculations we obtain for the spectral
functions (2.67) the following expressions:

(2.68)

(6 () 7 (P, o = St veo [ 2 aBY) (Fu-+- o) — o2 02D | 50— P),
(2.69)
(€0Fat)? (870e (P) 8t (P"))o, 0=
_ 2R3 gl - b — Qg ko V)2 — o2
= G lre 'yabaEZ[(f L — va e D%‘I@(pwp%
(2.70)
we have introduced here the notation
T (@a~ Qo+ KV 3 (1+aEY), To= ey (2.71)
where g—1ran [ (Vat vo) (2.72)

682y, V6Yab
is the saturation parameter.
We substitute (2.69) and (2.70) in (2.66). As a result
we obtain

(£2)0 = BN ren 2

1

dP
'PabS Cnkys X

o [+ 0BY) Ga @)+ () — 22 D) ab2

H’b

(Oar— QOTkOV)Z].
(2.73)
Let us express the functions f; +f, and f; - fi, in
terms of the functions f{” and fl()O)’ which are deter-
mined by the pumping.
To this end it is necessary to use the equations for
the induced parts of the functions f,, £y, and fap. We

*This circumstance was not taken into account in [33] (see [34]).
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recall that the equations of these functions coincide
with Egs. (2.49)—(2.51).

As a result of the solution we obtain the following
expressions:

fo @)+ o (B) =187 + A7+ Je 12 D () vi;uEﬂ (214
D (P)=D"" (P)Iy/Ts. (2.75)

We substitute these expressions in (2.73). We
recognize that

o (P);
here pg is the level population due to the pumping and

f is the Maxwellian distribution.
As a result we obtain

V @ak) 0 (@) =

dn)2etn | rq (1428 (05" -+ o)
&) &egl;bl_y . 5’ dPf (P) {___P_E_
1 a
T B (i — Qo+ koV) — ¥ (1 aED)] | -

(2.76)
Let us consider two limiting cases:
a) Immobile atoms (f(P) = 6(P)):
(1-+aED (L +p»)
b [(mab—szoﬂﬂab (1+Ep)

_ Ya—7Vb 2 )(0) (g —Qo)2— 2%, (1-+aEP)
Yo+ ¥o aE;D [(©a6—Q0)% + 72, (1 + aE} )]2] (2.77)

P (4n)2en|ryp |2
(£),— Lnpzein

b) Inhomogeneous broadening (ygp <K Awp). In the
zeroth approximation in ygp/Awp we obtain from
(2.76), after integrating with respect to P,

(€= V7 (4% | rap |2 (BVAwp) ™ (1 +-aBD'? (o8 +pi). (2.78)

It is convenient to represent (2.77) and (2.78) in
explicit form, using the expressions for the imaginary
part of the dielectric constant

¢ (Q) = — 4ne? | rap [ nyas D3R [(0as — Qo) + i (1 --aEZ)] (2.79)

for immobile atoms and
&7 (Q) = — nV2. hyen | rop |? D9 3kAwp (1 -+ aB2)Y? (2.80)

when yap K Awp, wap — Qo K AwD.
As a result, expressions (2.77) and (2.78) take the
form

2 4:1& h oo IRET Yo— s (0ap—Q0)2 -2, (1+aE})
(&)= [(1 aEy L oo + 2 _Ly,, o (“’ab—go)z-i-vab(H-aE?,)}
; : (2.81)
for immobile atoms and
4ne"h PO Lol )
Eo="5~ (1+a Ez)ﬁ if yo<Aop (2:82)

The approximation of immobile atoms is justified
for lasers with homogeneous line broadening.

Let us consider the limiting cases of weak and
strong fields:

a) Weak field (aEZ < 1). In the zeroth approxima-
tion in aEZ2, formulas (2.81) and (2.82) have the same
form:

(820 = (4ruegh/2V) [pf” + o801/ 108" — o1, (2.83)

The only different expressions are those for the
functions €4. They follow from formulas (2.79) and
(2.80) at aE3 = 0.

Using formulas (1.89), (2.52), and (2.83), we obtain
for this case the following expression for the emission
line width:
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Ao ph=

2p — 12 (%(wr ) +e ;;%). (2.84)
Here the first term is determined by the thermal
noise of the resonator, and the second by the polariza-
tion noise. The second term contains the product of

two negative quantities €” < 0 and p{® - p'@ <0,
Expression (2.84) is usually written in explicit
form,
We introduce a symbol for the power

P = AopW = Ao EiV/8n,  Awp=Q/Q

and use the self-excitation condition

Q' +e;=0. (2.85)
Then, eliminating €5, we can write expression (2.84)
in the form

(0) 4 (0)
10 +pp ) (2.86)

Awoph= %(Awp)z (n+ iy W
This expression coincides, for example, with that
obtained by Haken!?], The calculated widths of the gas
laser were given in a number of other papers, for ex-
ample those of Lamb!®!, Lax[®], willis!®), and others.
In the first approximation in aE% we get from
formulas (2.81) and (2.82)
(0) . ,(0)

(&) = 4“90 Py TPy S ek (0gb—Q0)2 — 7%,
oSO o0 T yetve T ° (@ap—R0)EHVY,
()0 - 4mﬂh ( | P 4o
e 2 ) ) _ (0 °
) Pg

b) Strong field (aE3 > 1). For immobile atoms it
follows from (2.81) and (2.77) that

(0) | (D)
+Pa +Yb’“ Ya
o+ Ya

o= op [ Po
_ (dm)2eln|rop|2 ) 0&0)4—9{, Yo —¥b
T 6V a KOO + (2.87)

P,(,O) _pf:l))
YaF Vb

Thus, the polarization-noise spectral function at
aE3 > 1 does not depend on the field.

If the change of power is due to the change of the Q
at constant pumping, then, with allowance for the con-
dition (2.85) expression (2.52) can be written in the
form

&)=

4uk ||Vt (n+1/2). (2.88)

Inasmuch as in a strong field
&"= —4ne? | roy |* nD'V/Bhyae B2 ~ 1/aE?2,

it follows that the spectral function of the thermal
noise decreases with increasing field. Consequently,
the line width at aEJ > 1 is determined by the polari-
zation noise.

As a result we obtain the expression

T p¥+p —Ya
B | e T |

Let us compare formulas (2.84) and (2.89). It follows
from them that both in a weak and in a strong field the
line width is inversely proportional to the field energy,
i.e., Awph ~ 1/W. However, the proportionality coef-
ficient is different.

In the case of a gas laser at aE2 > 1, but at
yapaEs < Aw}, it follows from (2.82) that

(€% = (4rihe’12V) a2 (pi" -+ )/ 105" — p1.

& "q (2.89)

Awph =

(2.89a)
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Since now we have (see (2.80))

&= —V/ mhnen | rap [*/3RA0p (aB2)"* ~ 1B, (2.90)
the polarization noise increases like (aE2Z)VZ,
The line width is given by
Aoph— (hQ/2W) e'al; (0" + pa”) /08" — o1 ~ /W2 (2.91)

and consequently the decrease of the line width with
increasing power slows down when aEZ > 1.

The results (2.89a) and (2.91) are in qualitative
agreement with those given in[%J,

By now there is already a considerable number of
experimental papers devoted to the determination of
the emission line width and to the investigation of the
spectrum of the amplitude fluctuations of gas lasers.
In order of magnitude, the results of the calculation of
the line width agree with the experimental data in those
regions above threshold where the correlation theory
is valid.

For a detailed comparison with the experimental
data it is necessary to generalize the results presented
above. The point is that the greatest interest attaches
to an investigation of fluctuations in a linear laser,
where the field form is close to a standing wave, and in
a ring laser operating in the regime of two opposing
waves. In these cases, in calculating the phase fluctua-
tions, it is necessary to take into account the influence
of the amplitude fluctuations and of the coupling of the
opposing waves. A review of these results cannot be
presented within the framework of the present article,
so that we confine ourselves only to citing the litera-
ture[34’38'47].

In conclusion we note that although the exposition
was carried out here using as an example a gas whose
atoms interact only via the transverse field, a similar
method can be used to determine the nonequilibrium
fluctuations also in other systems.
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