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I. INTRODUCTION

INELASTIC processes are of decisive importance in
the physics of the strong interactions of high-energy
particles. Nevertheless until very recently experimen-
ters working with accelerators as well as theorists

have preferred to deal with elastic scattering processes,

or with processes involving production of at most one
or two particles.

The experimental treatment of such events is less
laborious and more reliable. The theorist finds advan-
tages in the relative simplicity of the mathematical
apparatus, in the somewhat distinguished role of the
elastic scattering amplitude, which is connected with
the total cross section by the optical theorem, and,
finally, in the present availability of more complete and
accurate experimental information on elastic collisions
as compared with inelastic processes. Recently, owing
to the development of new methods for treating data and
the wide-spread use of computers there has been much
more interest in high-multiplicity inelastic processes
at energies accessible with accelerators. As for cos-
mic rays, their main use is with this sort of inelastic
processes, since the study of elastic and quasielastic
interactions encounters great experimental difficulties.

The interconnections of elastic and inelastic proces-
ses are of theoretical interest. As already mentioned,
the inelastic processes are of predominant importance.

Firstly, most (about 80 percent) collisions of

strongly interacting high-energy particles are inelastic.

Secondly, the elastic scattering amplitude itself is
completely determined by the character of the inelastic
processes at high energies.

Thirdly, at present accelerator energies (Ejgp
~ 25—30 GeV at CERN and Brookhaven, and Ejgh
~ 70 GeV at Serpukhov) the main part of the inelastic
interactions consists of processes of multiple produc-
tion, which do not reduce to binary processes and con-
sequently cannot be treated by analogies with elastic
processes. Therefore the problem of the theoretical
description of inelastic processes is of primary im-
portance.

In the present review we consider two main ques-
tions.

The first of these is, in what way high-multiplicity
inelastic processes affect the characteristics of elastic
scattering. Chapters II and III of this article are de-
voted to this. It is shown that the inelastic processes
determine the elastic scattering both at small angles
and also at intermediate and ‘‘large’’ angles.

The second question: What are the properties of the
inelastic processes themselves at high energies, and
how are they related with the elastic interactions in
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the ‘‘asymptotic’’ energy range? The later chapters of
the review are devoted to this. Especial attention is
given to inelastic processes in which ‘‘fireballs’’ are
formed.

The review is theoretical in nature. Owing to this
we have not undertaken a detailed and complete dis-
cussion of the experimental data, We even think that
such a discussion would now be premature. The point
is that, on one hand, not one of the theoretical schemes
for the inelastic processes has been carried to the
level of accurate quantitative predictions over a wide
energy range (say from 10'° to 10* eV), and on the
other hand, the experimental information obtained with
accelerators (Ejgp ~ 20—30 GeV) and with cosmic
rays (Elap ~ 10" to 10'® eV) is different in character.
In the former case most of the data relate to events
of small multiplicity, whereas in the latter case es-
sentially only many-prong events are examined. It may
be expected that this difference will be decreased as
the result of experiments with the Serpukhov accelera-
tor. At any rate many vexed questions will be cleared
up and a unified point of view will be developed, as is
necessary for a detailed analysis of the experimental
results. We shall discuss only some important qualita-
tive experimental results which have played a large
part in the formation of theoretical ideas.

First, we note the following data, originally obtained
from cosmic rays, and then—much more accurately,
but so far in a much smaller energy range—also with
accelerators.

1. The total interaction cross sections are constant
at energies 10'° eV to 10*° eV with accuracy ~ 50 per-
cent. (Accelerator data show that the energy depend-
ence of these cross sections is weak over the range
from 10'°to 7 x 10 eV.)

2. At high energies, in the c¢.m.s. the secondary
particles are strongly collimated along the line of the
collision. The angular collimation increases with in-
creasing energy, so that the mean transverse momen-
tum p; remains constant (p; ~ 2.5 1, where u is the
pion mass; here and in what follows we shall set i = ¢
= 1) over practically the entire investigated energy
range.

3. The average multiplicity increases rather weakly
with increasing energy.

4. When high-energy nucleons interact they retain a
major fraction of the primary energy. The ratio of the
energy E, that goes into the production of new particles
to the energy E, of the primary particle in the c.m.s.
is on the average E,;/E; ~ 0.5 (though the scatter in
the values of this ratio is very large). This quantity is
called the inelasticity coefficient

K = E,/E,.
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5. From our point of view it is particularly import-
ant that we note the data on the formation of fireballs
at high energies. These data are so far a matter for
discussion, The disagreements are mainly due to the
difficulties of obtaining and interpreting results with
cosmic rays. This question has been treated in detail
in a review by Miesowicz.['! We shall not go into the
details of the discussion, but only briefly describe the
main conclusions. In the study of the interaction of
nucleons with energies ~ 10*? eV the idea has been
proposed that two centers of emission of secondary
pions are formed. These centers move with relativis-
tic speed in the c.m.s. The number of ‘charged parti-
cles emitted from each center is of the order of six or
seven, The mass of an emission center is of the order
M~ 3 GeV.

These data were mainly obtained by Miesowicz and
Gierula and their group,'* and independently by Niu.[*!
On the suggestion of Cocconi!®! these emission centers
have been named fireballs,

Subsequently in papers by Dobrotin and Slavatinskil
and their colleagues!®) data were obtained which indi-
cated that in collisions of nucleons with somewhat lower
energies (Elgph ~ 3 X 10** eV) a single emission center
is formed. The main characteristics of the center (its
mass, the number of secondary particles, and so on)
are the same as already stated. The conclusion was
that a single fireball is formed.

Then in papers by Hasegawa'®! and Rybicki!”) indi-
cations were found that at higher energies ~ 10" eV
larger numbers of fireballs are formed. These data,
however, cannot so far be regarded as well established
even to the same extent as the conclusions about pro-
cesses with formation of one or two fireballs,

A comparison of the data suggests that with increas-
ing energy there is also an increase of the number of
fireballs, but that their characteristics (primarily the
mass) remain practically constant, that is, do not
change with increase of the energy in the range from
3x 10" to ~10" V. It is certainly a matter of interest
to look for processes with the formation of one fireball
at accelerator energies. The first preliminary results
were obtained by Walker(® in #p interactions at en-
ergy 25 GeV and by Zhdanov and others'®! in pp inter-
actions at energies 21 and 24 GeV. At these energies,
however, the cross sections for such processes are
still very small, and their detailed investigation with
accelerators will evidently be possible only at the
energies of the Serpukhov accelerator.

We note that very recently extremely detailed in-
formation has been obtained on inelastic processes at
accelerator energies up to 16 GeV.['” The contribution
of fireball processes at these energies is now being
studied.

Simultaneously with the experiments (and under
their influence) the theoretical ideas about inelastic
processes have been developed. For a long time the
only serious theoretical schemes for describing such
processes were the hydrodynamical theory!!!! used at
ultrahigh energies Ejan < 10 eV, and the statistical
theory, which was applied in the energy range 10°
< Elap S 10% eV. The Weizsicker-Williams method
was also used, but it contained many unknown parame-
ters. Ideas were put forward about peripheral interac-

o
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tions of hadrons.!**"**] The use of Feynman diagrams
with exchange of one meson, in papers by Goebel!'®) and
by Chew and Low,[*"? made it possible to move further
in the study of inelastic processes. Papers by Dremin
and Chernavskiil'®! and by F. and G. Salzman!*®} formu-
lated the one-meson approximation; thereafter this was
on one hand improved by the inclusion of effects of in-
teraction in the initial and final states of such pro-
cesses,!™) and on the other hand led to the more ad-
vanced idea of peripheral interaction, and to the treat-
ment of multiperipheral diagrams, which were first
considered in a paper by Berestetskii and Pomeran-
chuk.!) This development was most fully represented
in papers by Amati, Fubini, Stanghellini, and Tonin, [?!
who proposed a multiperipheral model (the AFST
model) which, unlike previous models, made use of a
closed equation describing a complete set of diagrams.
The model has been studied very intensively and sub-
jected to comparison with experiment. This revealed
its practical shortcomings: it could not give asymp-
totically constant cross sections and did not describe
the formation of fireballs, It was soon shown,!**} how-
ever, that these shortcomings were due only to an im-
precise interpretation of the kernel of the equation
used in the model of!??], A subsequent treatment in the
framework of the Bethe-Salpeter equation, carried out
ina paper by Dremin, Roizen, White, and Chernav-
skii,'?®] gave an interpretation of this kernel as the set
of Feynman diagrams of a definite class and derived
the AFST model as a special case of the Bethe-Sal-
peter equation. Moreover, it turned out that the Bethe-
Salpeter equation together with the unitarity relation in
the s channel also makes possible a direct examina-
tion of the properties of the elastic scattering associ-
ated with inelastic processes of various types. The
restrictions imposed on the elastic scattering are then
simultaneously restrictions on the inelastic processes.
It turns out that as a result of the fulfilling of such
seemingly ‘‘abstract’’ requirements as the condition of
the existence of a solution and the presence of a vacuum
singularity near [ =1 the theory predicts in a natural
way an effect like fireball formation. Moreover, these
‘‘abstract’’ conditions make possible the determination
(in order of magnitude) of parameters which were re-
garded as arbitrary in former models of peripheral
processes.

There has also been intensive development of
another approach in the theory of inelastic processes—
the many-reggeon model, which has been treated in
most detail in papers by Ter-Martirosyan and his
collaborators.[*®! The diagrams discussed in this
model are topologically equivalent to those of the
multiperipheral model. The only difference is that it
is a reggeon, not an elementary particle, that is ex-
changed. A phenomenological version of this model,
supplemented with some specific assumptions about
the behavior in the low-energy region, has been com-
pared with the experimental data at 8 and 16 GeV in(%),
Chapter IX is devoted to a comparison of various
models of inelastic processes, in particular the many-
reggeon and multiperipheral models.

It must be noted that many models of inelastic
processes have been proposed, for example the model
of uncorrelated jets,!??"! the bremsstrahlung model,
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and the quark model. They have not been much devel-
oped, however, although they have helped in the ex-
planation of such important questions as the role of the
phases of matrix elements of inelastic processes (cf.
Chapter III), the isotopic relations between various
channels, and so on. Recently there has been renewed
interest in the statistical theory!*?) in connection with
accelerator experiments on particle spectra,[”] on
production of particle-antiparticle pairs and the re-
lated problem of quarks,[‘"] and so on. It is clear,
however, that the statistical model cannot pretend to
describe the whole set of inelastic processes. Its inter-
connections with other models are also discussed in
Chapter IX.

We would like to emphasize that in always using the
word ‘““model’’ we are indicating that the fundamental
assumptions of the theory are insufficient for a com-
plete quantitative description of inelastic processes.
Owing to this one must at some stage make definite
assumptions about certain quantities, and a number of
parameters remain arbitrary prior to comparison with
experiment. Nevertheless the fact that one can theo-
retically describe the qualitative, and in some cases
also the quantitative, characteristics of inelastic
processes, and connect them with the properties of the
amplitude of the background elastic scattering repre-
sents an undoubted achievement of the work of recent
years.

. INTERRELATIONS OF ELASTIC AND INELASTIC
PROCESSES AT HIGH ENERGIES

Our Chapters II and III are devoted to the question
of the relations of elastic and inelastic processes.
Therefore the reader who is acquainted with this prob-
lem or is interested only in questions of the description
of inelastic processes may go directly to Chapter IV.

In the present chapter we shall show that the ampli-
tude for elastic scattering through an arbitrary angle
at high energies is practically completely determined
by the character of the inelastic processes. At first
glance this may seem a trivial assertion. On more
detailed examination the following questions arise.

1. It is known from experiment that immediately
beyond the diffraction cone!®! in the angular distribu-
tion of elastic scattering there is a region of weaker
dependence on the angles.[!

As will be shown in Chapters II, IV, and VI, the
scattering in the diffraction cone is practically com-
pletely determined by precisely the peripheral inelastic
processes with sufficiently high multiplicity. The
fixing of the absolute values of the matrix elements of
these processes* allows us to find the slope of the main
vacuum singularity of the partial wave in the cross
channel [see Chapter VI, Eq. (47)]. But this slope is
too small to reproduce the experimentally observed
width of the diffraction peak, which is mainly deter-
mined by the residue at the leading pole. At the same
time, as shown in Chapter III, there are additive posi-
tive contributions from the phases and absolute values

*The experimental distributions of the particles in inelastic proc-
esses give information only about the absolute values of the matrix
elements for these processes.
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of the amplitudes for inelastic processes to the recip-
rocal width of the diffraction cone. Furthermore it
follows from independent estimates that the contribu-
tion of the phases must be of just the same order of
magnitude as must be ascribed to the residues in the
phenomenological treatment of the data according to
the Regge formulas. Therefore the question arises as
to a possible connection of the Regge trajectories with
the absolute values of these matrix elements. Accord-
ingly, the study of the elastic scattering can give some
information (though indirect and very incomplete) about
the phases of the amplitudes for inelastic processes.

2. In the scattering outside the diffraction cone
there is a region in which the cross section decreases
exponentially with increase of the angle. Here the
direct contribution of the inelastic processes may be
small. But even in this case the characteristics of the
elastic scattering, in particular the index of the expo-
nential, are uniquely determined by the parameters of
the diffraction peak. Accordingly, the elastic scattering
is, in the final analysis, once again fixed by the charac-
ter of the peripheral inelastic processes, even though
the direct contribution may be small,

At still larger angles the angular dependence is
weak. Here the properties of the elastic scattering are
again determined by the direct contribution of inelastic
processes of the peripheral type. Accordingly, the
angular dependence of the elastic scattering can give
indications as to the existence of inelastic processes of
various types. The present experimental data can be
sufficiently well described as the consequence of
processes of only two types: peripheral and nonperi-
pheral (possibly statistical).

In discussing these questions it is best to use the
unitarity condition, which directly connects the elastic
scattering amplitude with the matrix elements for the
inelastic processes. It can be written in the form

ImA(p, 0)=

:32% S 8, S 0,

sin 0, sin 05 4 (p, 04) 4* (p, Oy) .
{[cos B —cos (81 - 085)] [cos (81 — B5) — cos op12 +F (P, fz)i)
Here A(p, 6) is the elastic scattering amplitude, which
depends on the momentum p = |p| and the scattering
angle 6 (inthe c.m.s.); F(p, 6) is the contribution to
the imaginary part of the amplitude Im A(p, 6) from
all the inelastic processes (the so-called overlap func-
tion), which can be symbollically written in the follow-
ing way:

Fp,8)= 3 § MoonMtenn (0 > 9:) (2)
n i=1

The quantities M are the matrix elements for the
inelastic processes a —n anda’—n (a and a’ are
the initial and final states of the elastic scattering
process in question, and n is an intermediate n-parti-
cle state); the integration is taken over the entire phase
volume &5 admitted by the conservation-law 6 func-
tions for the process with total initial four-momentum
Q and four-momenta q; of the n final particles. The
first term in (1) corresponds to the contribution of
elastic processes, and in it the integration is taken

over the angular ranges
16— 65| <B, 0840, <2rn—0. (3)

At angle ¢ =0° the condition (1) leads to the usual
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optical theorem, the first term becoming the total
cross section 0] for elastic scattering, and the second
becoming the total cross section oj, for inelastic pro-
cesses:

Im A (p7 O) = 4P2 (Gel+ Uin) = 4chtotv (4)

and experiment shows that at high energies the largest
contribution to (1) for ¢ =0° is the second term (about
80 percent of the total).

The overlap function also gives the main contribu~
tion to the elastic scattering amplitude in the region of
the diffraction cone. In fact, if we note that (as is
shown by experiment) the elastic scattering amplitude
at small angles is almost purely imaginary, and the
differential cross sections show a Gaussian type of
decrease with increasing angle, we can write with good
accuracy for this range of angles

@< 8. (5)

The parameter a is called the reciprocal width of
the diffraction cone,* whose boundary we have denoted
by 64. It can be easily verified by direct substitution
of (5) in (1) that the elastic contribution in this region
will be of the form exp(-ap®6?%/4), i.e., it cannot fit
the original form (5) and leads only to a small broad-
ening of the angular distribution given by the function
¥(p, 6). It is not hard to show from (1) that for an
F(p, 0) approximately described by the formula

<8y, (6)

the effective result of this broadening is that the
parameter a in (5) is connected with ¢ in the following
way (for 0e1/0jn K 1):

A (p, 0) = 4ipPo,pe—ori0?2

F (p, 8) =~ 4p®04, exp (— 0p?0%/2)

@~ a [l — (0u/20100)]- (7

Accordingly, the inelastic processes determine the
form of the diffraction cone in the elastic scattering,
since here the overlap function is much larger than the
contribution of two-particle intermediate states [the
first term in the right member of Eq. (1)].

Let us now examine the part played by F(p, 6) at
large scattering angles (6 > 6d). In this case the
main contribution to the integral is from regions where
one of the angles 6j is small (smaller than 94) and
the other is large (of the order of 6). Substituting in
(1) the amplitude in the form (5) for small angles, we
get the following integral equation for 8 > 64:

S. dvexp{—ap?(0—v)¥2] Im A (p, v) - F (p, 8),

@

Tm A (p, 0) = —D%tet _

4 (2nayti®

whose solution is of the form
. iGioth R v exp[—rp(0—v)]
Im A (p, 6) = F (p, ) — Lot S dvF (p, v) S dr ot o O

8

—oo i}

4 2 Cr(p)exp[—ba(p) PO, ©)
k=—o0
where in general Ck and bk are complex [but still the
whole sum is real, see (10)]. If in some subregion of
angles overlap is unimportant, then Im A(p, 6) must
be described by the solution of the homogeneous equa-

*It is different for different processes and can depend on the
energy.

tion [i.e., the last term in (9)]:
Im A4 (p, 8) = Cy (p) exp [ —bo (p) PO
+ 2 216017 P cos (| Im ] 50— ). (10)
where the bi(p) are given by the formulas
bo = [2a 1n (47a/010)1"%,

by = (2na )k )M? (1 4 1sign k)

(1)

the coefficients Ci(p) are undetermined functions of
the energy, and the phases ¢k can be taken equal to
7/4 (cf.1®*1).* For elastic scattering all processes
studied at present b, < Re bk (k = 1). Therefore for
large values of pé only the first term in (10) is im-
portant., As we go toward smaller values of pé other
terms in (10) can become important; that is, there will
be oscillations superposed on the exponential decrease,
and their amplitude increases with decreasing p#g.
Furthermore the parameters b, and bk are determined
by the total cross section and the reciprocal width of
the diffraction peak, whose values are primarily due to
the inelastic processes, as we have indicated above.

Accordingly, even in the range of angles where the
overlap function may be negligibly small, the inelastic
processes determine the functional dependence of the
elastic scattering amplitude on the angle, owing to the
fact that they play the decisive role in the region of the
diffraction cone.t This is a factual proof of our as-
sertion that the inelastic processes determine the
elastic scattering at any angle,

The question as to whether or not there actually
exists a range of angles where F(p, 6) < Im A(p, 6)
can be settled only by comparison with experiment. It
has been found'®) that our formula (10) gives a good
description of the very exact data on proton-proton
scattering at 1.s. momenta from 81 to 21.1 GeV/c'®! in
the range 1 S p6 S 2.4 GeV/e (e, 1S [t S 6
(GeV/c)®. Furthermore the index of the main exponen-
tial is exactly given, and also the damping of the ampli-
tude of the oscillations with increase of pg, their
period, and the sign and the position of the zeroes.
This justifies the assumption that at these energies and
in this range of values of p@ the contribution of F(p, 6)
to Im A(p, 6) can be neglected.

Nevertheless it is possible that with increase of the
energy there is some sort of change in this range. For
example, in the reggeon-exchange model, [3%%" or in-
deed in the Chou-Yang model,'®® both of which claim
to give an asymptotic description of the elastic scatter-
ing, it is easily verified that the overlap function is
always of the same order of magnitude as the imaginary
part of the amplitude.

At larger angles the experimentally found behavior
of the cross sections differs from that predicted by
Eq. (10).

In the region pg 2 2.4 GeV/c [i.e., [t] 2 6
(GeV/c)?] the differential cross sections for pp scat-

(1k}=1);

*Inclusion of the real part of the elastic scattering amplitude would
require that in the formulas (11) the quantity oy4¢ be replaced by the
expression 0o (1 +848,), where 8 = ReA/ImA, 8, means the average
value of § at large angles, and 8 is the average value of & in the region
of the diffraction cone,

+Consequently, neglect of the function F(p, 8) by no means means
a complete denial of the importance of inelastic processes.
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tering in the energy range indicated above drop off
more weakly than exponentially with increase of the
angle [see Eq. (10)]. This can be understood if we
suppose that F(p, 6) again becomes important. The
weak angular dependence of the differential cross sec-
tions allows us to assume that here there is also little
change in Im A(p, 6). Then it is easily shown from (8)
and (9) that Im A(p, 6) and F(p, 6) are connected by
the relation

Im A (p, 8) = F (p, 0)/(1 — 0;0r/4mia). (12)

Consequently, at large angles the inelastic processes
again determine the elastic scattering directly
[through F(p, 6)].

We can conclude that in the description of elastic
scattering the primary problem is to explain the be-
havior of the overlap function F(p, 6) at small angles,
since this will make clear the structure of the diffrac-
tion peak, i.e., the main part of the elastic scattering
processes. At the same time at large angles the be-
havior of this function can be connected with such
theoretical questions of principle as the treatment of
microparticles as statistical objects.

Here we only note briefly that attempts to describe
the diffraction peak as the consequence of a definite
class of inelastic processes are contained in the un-
correlated-jet model,'*®>¥) and in models of the multi-
peripheral type,[®**] while the region of scattering at
very large angles is usually associated with the pres-
ence of inelastic processes of the statistical type.[3!]

III. THE ROLE OF THE PHASES OF THE MATRIX
ELEMENTS FOR INELASTIC PROCESSES

Let us examine in more detail what sort of proper-
ties of the matrix elements for inelastic processes can
determine the form of the overlap function F(p, 6) at
small scattering angles. We have found that the unitar-
ity condition along with the experimental data on
elastic scattering allow us to draw some conclusions
about the behavior of the function F(p, 6). Thus in the
region of small angles F( p, 6) is well approximated by
a function with a Gaussian decrease with increasing
angle [see Eq. (6)]. The question naturally arises as

to what determines the rate of decrease of this function.

The point is that the matrix elements of the inelastic
processes, which determine F(p, 6) according to (2),
are complex functions, having both absolute values and
phases. Fukuda and Iso'*®! were the first to point out
the importance of the phases. It will be shown here that
the parameter a in (6) can be represented as the sum
of two terms, one of which is determined by the abso-
lute value of the matrix element, and the other by the
phase.[**] At the same time all the possible distribu-
tions of particles in inelastic processes are determined
only by the absolute value of the matrix element (since
only squares of absolute values of matrix elements ap-
pear in the expressions for the differential cross sec-
tions*). Therefore an examination of the diffraction

*In fact, as can be seen from (2), for § # 0 we have a # a’ and the
phases of the quantities M are important, while the total cross section
for the inelastic processes is determined by the quantity F(p, 0) and
the phases play no part, and the various distributions in inelastic proc-
esses are obtained if we omit the integrations over the variables in ques-
tion in the expression for F(p, 0).

peak of the elastic scattering can give some additional
information about the inelastic processes.

Let us write the overlap function F(p, ) in (2) as
the sum of the contributions from all inelastic channels:

Fip, 0)=" Fy (p, 0), (13)

where
(14)

n
Fo(p, 8)=p; n|exp(—iJ,0)8 (0 a;) | pi n>
i

and we have introduced the notation My _.p
= <Q1,---,QH|P; n>'

Equation (14) is a formal expression for Fp, whose
physical meaning is that one takes the product of the
matrix element for the transition of two particles with
momenta p and —p into an n-particle state times the
conjugate of the matrix element for the transition of
these n particles into two with the momenta p’ and
- p’, the angle between the vectors p and p’ being 4.
This last fact is expressed by writing (p’, n|
={p, n| exp (-iJy 6), where Jy is the component of the
total angular momentum operator in the direction per-
pendicular to the plane of the scattering. Since we are
considering spinless particles, Jy can be replaced by
Ly, the component of the orbital angular momentum in
that direction. I, guided by the general form (6) of the
overlap function, we now assume that each n-particle
contribution to it is also well approximated by a Gaus-
sian function, i.e., that

Fo (0, 0) ~ 4020, 03p (— 2,p?22), (15)
or for very small angles
Fa (2, 0) ~ 4p%0, [1— (@np202/2)], (16)
then
Coo ] L9t (@ 3 a) Iy [
= = am)
ol 00— 3 )] .5
Then also ]
o = Y| Onlin/Tsn. (18)
We rewrite (17) in the form
[ f12 Rt pes (0= 3 o)) [] a0 @t md
= o (19)

. n n
PR (Rt On 28t (0— 3 0j) [[ 20,04 g3+
=1 =1
where we have introduced the concrete expression for
the operator Ly in the form
n X ) n P P
2y=3 20 =1 3 (05 0077 (20)

=1 j=1

Where 6. is the positive-frequency delta function,
Ma . n = Rpe!?D, with real Rp, and mj is the mass of
the j-th particle. It is not hard to see that

n n
§ o Sl 2y n a2 4) 2,00 120 BO88 (0— D q)) |] %6, (a3 +m)
i=1 j==1

QAp =

p? S e S B354 (Q—jgﬂ 41;') jg‘ d*q;0, (g3 +mH (21)

since %, is an antihermitian operator (sic).
Consequently, the quantity ap consists of two posi-
tive additive terms, one of which is determined by the
absolute value of the matrix element, and the other by
its phase. By (18) this is also true for the quantity «,
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i.e.,
(22)

= 0, and we have also for the quan-

o= Qagr ’}“aw

where arp =0, a
tity a [see (7)]:

a=ap-+dy (23)

(ar = 0, ap = 0). There is no doubt that these results
hold only approximately in the region of small angles.
Owing to the assumptions we have made. If we use the
formal apparatus of work with wave packets, it can be
shown that the phase ¢p is due to the shift of the
center of the wave packet in the interaction process,
while the absolute value Rp is determined by the de-
formation of the wave packet.

We remark that the phases ¢y can contribute to a
only if they depend on the momenta gj of the secondary
particles. I the phases are constant or if they depend
only on the total energy of the colliding particles, then
aﬁ = 0 (cf.!*»?%) Accordingly, the assumption that the
phases are constant or that they depend only on the
total energy of the collision leads directly to the largest
width of the diffraction cone, a™* = aﬁ . The introduc-
tion of a phase that depends on the momenta of the
secondary particles can only narrow the cone,

This general treatment cannot answer the question
as to which of the terms in (23) makes the main contri-
bution to a, i.e., determines the width of the diffrac-
tion cone. For this it is necessary to make some sort
of concrete assumptions about the form of the matrix
elements of inelastic processes. At present the role of
the phases has been studied in the uncorrelated-jet
mode),%%%27%] jp the many -Teggeon model, [#%%%:%4] apg
in the hydrodynamic model.[*®’ The quantitative results
obtained depend on the assumptions about the behavior
of the phases, and are somewhat different in different
papers. But from the whole set of papers we can draw
the general qualitative conclusion that: 1) in the ab-
sence of correlations between the secondary particles
the effects of the phases predominate (a(p is about an
order of magnitude larger than aR); 2) when such cor-
relations are introduced the importance of the phases
decreases, but in the many-reggeon model, for exam-
ple, they are still very important (ay, > agR) at ener-
gies now attainable with accelerators (In s ~ 3 to 4,
with s in GeV?), although it may become small asymp-
totically; 3) for very strong correlations (in the hydro-
dynamic model) we have ag ~ a,.

Accordingly, the phases of the matrix elements of
inelastic processes are very important in the forma-
tion of the diffraction peak of the elastic scattering.
Unfortunately, at the present time one sees no further
ways of studying these phases and their dependence on
the momenta of the secondary particles experimentally.

Inelastic processes in which the number of second-
ary particles is very large (n > 1) were the ones dis-
cussed in the papers cited.!*®%%%™%%] The question
naturally arises as to whether reactions with produc-
tion of a small number of particles, and in which one or
both of the colliding particles are converted into reso-
nances (so-called inelastic-binary or quasi-two-parti-
cle reactions) can determine the form of the diffraction
cone. The experimental data on such reactions!%?%48]
at energies from 10 to 30 GeV indicate that such

events are a small fraction of all the inelastic processes
($10 percent). According to the optical theorem this
means that at ¢ =0 the fraction of the overlap function
caused by them is equally small (S 10 percent). At
nonzero angles, according to (2), the contribution of the
binary processes to the differential cross section for
elastic scattering must have an upper limit!*? given by
the inequality

(24)

dolae < 3 (16ach2 [(dx:rg)/dti)‘i=o 122
if we take into account the experimental fact{1%46-8l
that the cross section for binary reactions® falls off
exponentially with increasing |t |: dof"/dtj
= [(doflYdti}; -, e, Substituting in (24) the values of
ci and (dotd/dt; )ti=o taken from experiment,!!%%6-48]
we can easﬁy show that in the entire diffraction cone
the contribution of the shadow scattering caused by the
binary reactions is unimportant, Therefore we can
conclude that the small-angle elastic scattering is the
result of diffraction caused by the presence of large-
multiplicity inelastic processes.

IV. THE BETHE-SALPETER EQUATION

We now pass directly to the description of large-
multiplicity inelastic processes. As has been shown
above, they not only predominate in the total cross
section, but also essentially determine the form of the
diffraction cone in the elastic scattering. Therefore
without a detailed understanding of the character of
such processes any description of elastic scattering
must be regarded as only a formal phenomenological
approximation,

At the same time, as we have pointed out, to calcu-
late the differential cross sections for inelastic pro-
cesses one needs to know only the absolute values of
the matrix elements for these processes, while the
shadow elastic scattering caused by them depends
largely on their phases, about which we still have very
little information. Therefore at present it is more
realistic to solve the problem of the interconnection of
elastic and inelastic processes by dealing only with the
question of which singularities of the partial amplitude
for elastic scattering in the angular-momentum plane
of the cross channel correspond to given inelastic
processes in the direct channel. This restricted state-
ment of the problem will be the basis of all the follow-
ing exposition.

The theoretical treatment of essentially inelastic
collisions is undoubtedly an extremely complicated
problem. In this field of physics at present there are a
few general relations and a multitude of different
models.

The theory we shall expound here, which was pro-
posed in[*?), is an attempt to describe and classify pre-
cisely such processes and to elucidate their intercon-
nections with the elastic scattering (in the restricted
sense which we have specified). In this theory we make
a natural separation of the inelastic processes into

*The index b means *“‘binary”’ and the index i indicates the type of
binary reaction; c; does not depend on t;.
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peripheral and nonperipheral* in the very first equa-
tion. The results show that a characteristic feature of
the peripheral collisions in the high energy region is
the formation of pion bunches—fireballs.

The basic mathematical apparatus of the theory is
the Bethe-Salpeter equation. It is the use of this equa-
tion that enables us to show a direct connection between
the elastic and inelastic processes, and at the same
time to separate the inelastic processes into peripheral
and nonperipheral processes. It must be emphasized at
once that our treatment will not be the ladder approxi-
mation often referred to as the Bethe-Salpeter method;
we shall use the exact Bethe-Salpeter equation in the
treatment of the general questions. Of course, it is an
equation in the usual sense of the word only when its
kernel and inhomogeneous term are specified. But
some general properties of the scattering amplitude
which do not follow from the Bethe-Salpeter equation
(primarily, analyticity and unitarity) impose serious
supplementary restrictions on the quantities that ap-
pear in it. The result is that despite the extremely
general nature of the equation we can extract from it
definite information about the properties of the inter-
action at high energies.**

In examining all the general consequences that fol-
low from the combined use of the Bethe-Salpeter equa-
tion, analyticity, and unitarity, we shall for simplicity
assume at first that the only particles involved in the
interaction are identical neutral pseudoscalar particles
of mass u (for example, 7° mesonst). We consider
the process of elastic scattering of such particles with
four-momenta p,, pz, Ps, Ps. The Bethe-Salpeter equa-
tion involves the scattering amplitude not only on the
mass shell (with pj = —p?), but also off of it with re-
spect to two external momenta. We denote it by
A(s, t, pi, p3), where s = —=(p; + p2)%, t = —(p1 + pa)°.
The Bethe-Salpeter equation can be written in the
following form:

Al t B )= A6, 1, Pl P — gy | @i (s, Pl B K2 KD

XA, t, B, ) D)D) (25)

here s, = —(p; - k1)2, Sz = =(pz2 + kl)z, ke =p; + ps

- k,. A denotes the irreducible (in the t channel) part
of the amplitude,i and D(k}) denotes the propagation
function. The diagram form of Eq. (25) is shown in
Fig. 1.

s
Pt L Pz P P2 Pr Pz
k,
fo— == +
by
Ps Pi Ps Ps Ps Pe

FIG. 1. Diagram representation of the Bethe-Salpeter equation.

*We shall give an explanation of these terms later.

**Sneaking more exactly, it enables us to relate some properties of
the interaction at high energies with the characteristics ot processes at
comparatively low energies. The situation is somewhat like that result-
ing from the sum rules (see Chapter VII, Sec. 2).

+1In Chapter VIII we shall extend the treatment to actual processes
of NN and 7N collisions. )

1 That is, the part that contains no two-particle intermediate states
in this channel.

Let us expand both the amplitude A itself and its
irreducible part A in terms of partial waves in the t
channel*:

o0

2 2041

=0

A(sy, 8, K, w3) ) Fi @t R K) Pu(22), (26)

Afsy t, P2 pL K R = Z @I-+1)F1 (¢, PL pL K2 BD Pi(z), (27)
where z, and z, are the cosines of the scattering
angles in the t channel with squared masses (u?, wE
-k}, —k2) and (-pi, ~p3, -k}, —k3), respectively; that
is,

2tsy 48 (P} p3-+REH KD+ (0} —pD) R} — KD 412
(22 (k2 -+ k3 4 (3 — k2 42212 (2t (p3+ p3) + (P — P22 +-

2y = @z (28)
and z, is obtained from z, if we replace s, with s,
and set p? = p3 = —u?%. Substituting (26) and (27) in (25)
and using the orthogonality of the Legendre polynom-
ials, we get the Bethe-Salpeter equation for the partial
waves

Frts PY P = Fu (£, L B

— jq dg j day (¢, B Py ks K 12 (¢ Iy 1) D (B D (),
(29)
where

a=1ki|, Go={(p1,+ Pao)/2— k1= (K2 —k3)/2t"", (30)

Equations (25) and (26) are valid both for t > 4u® and
for t < 4p® It is an important point, however, that for
t < 4u? all of the singularities of the integrands in (25)
and (29) are in the second and fourth quadrants of the
Qo plane. Therefore, we perform the Wick rotation!®°
and use the invariant variables

r=—k—k—2 r= — pi— pi— 21, (31)
v="F;—kj, vo= pi— pi,
and write Eq. (30) for t < 4u? in the form
fi(t, o, Vo) == - fi(t, 1o, vo)
[—te—4pd)+2r—v2 125 (2, ro, vo, 1, 0) frlt, 1\ 0)
+ (4n)3|t| S drdv it

(32)
where the region of integration is determined by the
condition

(33)

For t =0 the region of integration over v, and v it-
self, go to zero. In order to take the limit t — 0 in
Eq. (32), we must first separate out the kinematic fac-
tors of the functions f, and f;, which go to zero and
infinity in this limit. Since for q — 0 these partial
amplitudes are proportional to ql, it is convenient to
introduce functions ¢, and @, defined by the relations

t(t—4u?) — —4py)—ta g, (34a)
E 217" Fr- (34b)

These functions no longer contain the kinematic singu-
larities, and therefore for t — 0 they [like the propa-
gation functlon D(k?)] can be taken outside the sign of
integration over v. Integrating the expression remain-
ing under the integral sign with respect to v, we get
the Bethe-Salpeter equation for the partial amplitude
at the point t = 0,

2r—t(t—4p2)—v* > 0.

gu =[] 12t — R

o=t [2tr—t (t—4p?) — [2trg— ¢ (6~ 4p2) —

*Both functions are expansible inside the Martin-Lehmann ellipse.
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222 P (14372
—émg—r((lf—k)/—) g (P2, k%) @i (k%) D* (k%) (R®)'+H1 dk?,

(35)

@ (p?) =@ (P9 +
where p® = p?=p; and k® =k} =k;.

An important peculiarity of Eq. (35) is that in the
region of integration the four-vector k is spacelike,
k% > 0. It must be emphasized that the Bethe-Salpeter
equation has this property only in the region t < 0. It
can be seen from (33) that for any value t > 0 the
region of integration also contains time-like four-
momenta k";,g, indeed arbitrarily large such vectors.
For spacelike values of the momenta the Watson-
Sommerfeld formula (like the dispersion relations with
respect to s) is certainly applicable if it can be used
on the mass shell k® = —u?, since in this region the
imaginary part of the amplitude has no singularities.
Therefore we can represent the imaginary parts of the
amplitude and of its irreducible block at t = 0, A,(s;)
= (7ai) [A(s; + i€) — A(s: — i€)] and A (s,)
= (%21) [A(s, + i€) - A(s, - i€)] in the following form:

[512]

b-t-ico

Az = —- \ dLRI4-DfiPi(z2), (36a)
s )
A @)= —g | A@+DIPG), (36b)
b—tioo
where b = const. The inverse relations are of the
form
f=r | 402 Qe daa, (37a)
]le—i— 5 Zx(Z:)Ql (2y) dzy. (37b)

The functions ¢, and @, can be expressed similarly*:

oo

- (dplkyt — S

zmin

4kpyi—! ¢

@ (P?, k%) = Ay (25) Qi (25) dzo

— 10 (55, % K Qs (z,) dzp,  (382)

‘min

(e k) = Gply 2 | A () Qe dzy

?min

=0T (@ )25 s,y B, K2 Q1 (a0 day, (38D)

Zmin

where

Tmin = (402 - P2+ ED/ 20k, p=V 1% k=VE=(k—k)"%

Substituting the relations (382) and (38b) (and also
their inverses, which express A, and A,; in the form
of integrals of ¢ and @) in Eq. (35), we get the follow-
ing expression for the imaginary part of the amplitude
at t = 0:

Bt I(S+p2—:2)2+4p2u2]”2 J o k)
x Ay (55, k2) D? (k2) dk? ds, ds,. (39)

A5, p) =46, PO+

The region of integration in (39) is determined by
the conditions

— K [ s (02 )] ot PP R 0 PR (s R — )P

*The inverse relations are analogous to (36a) and (36b).
+Analogous calculations are given in detail in [57°].

LR
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4 (se+ PP+ K (a2 —p?) (s pP—uB) <0,

1 1/2
5,27 4u?, 42 st L sh/2

(40)

Accordingly we see that if the amplitude can be put
in the form of a Watson-Sommerfeld integral, at t =0
it is possible to get from the Bethe-Salpeter equation
for the complete amplitude an analogous equation (39)
for the imaginary part of the amplitude.

Using the optical theorem, which states that

) (s + p? — w22+ dp2p?) V2, (41a)

where o is the total interaction cross section, and de-
fining the quantity & by the relation

Ay(s, pP)=0 (s, p?)

Ag(s, P2 k) =0 (s, P% B2 [(s PP +A2° — 40772, (41D)
we get from (39) an equation for the cross section
2
o(s, p°)
(s, p)—c(s %+ Sdk ds, ds,D? (k%) 0 (54, p*, k%) 0 (52, k%)
< H (s, 8, p*, k%), (42)
where
Jr Lo 2 k2 a2 [(sp o B2 —p2)2 o 4k V2 43)

(s p2—p2)24-4uip?

For specific channels with production of n particles
Eq. (42) can be written in the form of a system of
equations™*

0, (s, p%) =02 (s, p),

(5. P) + g 2, Sdkﬁds,azszb2 )

N
On (s, p¥) = :> (44)
)

X Om (53, P20 K2) One (8, K2 H.

Accordingly, we have established a connection be-
tween the inelastic processes described by Egs. (42)
and (44) (the meaning of these equations will be ex-
plained below) and the elastic scattering which they
cause, which has partial amplitudes in the cross
channel described by Eqgs. (29) and (35).

We note also that that in the appropriate regions of
the kinematic variables s and t it is easy to obtain
from these equations the Mandelstam spectral function
(s > 4u? 4p? <t < 16u?), the nonrelativistic Bethe-
Salpeter equation (s — 4u?) in which A can be inter-
preted as a potential, and the equation of the quasipo-
tential approx1mat1on[521 (ct.[231y,

V. PHYSICAL MEANING OF THE EQUATIONS AND

FUNDAMENTAL ASSUMPTIONS

Let us now analyze the physical meaning of the
various terms that appear in Eq. (42), and also the way
it corresponds to the equation of the multiperipheral
model.

The integral term in (42) represents the total cross
section oP of the peripheral interaction. This term
refers to all processes caused by the exchange of one
meson. In fact, the transition from the equation (25)
for the elastic amplitude to the equation (39) for its
imaginary part at t = 0, and then to the equation (42)
for the total cross sections, corresponds in diagram
language to the transition from the diagrams of Fig. 1
to those of Fig. 2. 1t can be seen from this that
strictly speaking the expression for the cross section

*g, and ¢, denote form-factors.
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il

FIG. 2. Diagram representation of the equation for the total cross
sections.

of the peripheral interaction, as used in the first papers
on the one-meson approximation,!*®*) is incorrect. It
was actually of the form of (42), but with the T in the
integrand taken to be equal to the total cross section o.

What is the meaning of the quantity 6? Equation
(42) is similar to the equation which Amaldi et al.[??]
took as the basis of the multiperipheral model. In this
model T was assumed simply equal to the cross sec-
tion of the interaction in the low-energy region (below
the threshold of inelastic processes), and this led to an
asymptotic decrease of the total cross section with in-
creasing energy. The use of the Bethe-Salpeter equa-
tion allows us to interpret the quantity ¥ more accu-
rately. According to the definition of the function A
which we have given, we can assert that ¢ is the sum
of the cross sections of all processes with more than
one meson and the contribution from the various inter-
ference terms. In the theory we have developed, as in
a number of related schemes (for example, the multi-
peripheral and many-reggeon models) it is extremely
important that the irreducible part is positive. It is
this fact that allows us to associate the irreducible
block with the cross section of the nonperipheral
(more-than-one-meson) inelastic interactions and to
interpret it as the formation of a fireball.

That the irreducible block is positive is due to the
magnitudes and signs of the interference terms. The
point is that besides the diagrams obtained by squaring
those shown in Figs. 3, a and 4, a, which of course are
positive, the irreducible block also includes contribu-
tions from diagrams of the type of Figs. 3, b and 4 b,
which describe the interference of the amplitudes for
inelastic processes. The sum of the contributions can
become negative only if the interference terms are
negative and exceed the main contribution.

If the interference terms are even of the order of
magnitude of the contribution of the main process (for
example, half or a third of it), but the kernal remains
positive, then all of our assertions (both mathematical
and interpretative) remain valid.

2

’ 2) b)
FIG. 3. a) The one-meson process; b) its interference diagram in
the elastic scattering.
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a) b)
FIG. 4. a) The many-meson process; b) its interference with the one-
meson process.

The question of the magnitude and sign of the inter-
ference terms cannot be solved in the framework of
the original scheme (nor of models related to it).
Therefore in discussing it we can only rely on intuitive
physical arguments, which are to be regarded as less
rigorous. Even on this level, however, it is not suf-
ficiently discussed in the literature. Most of the papers
tacitly take it for granted as a matter of course that
the interference terms are unimportant. It seems to us
that this is true, but nevertheless the question deserves
discussion.

We must distinguish two types of interference terms.
The first is the interference between amplitudes of two
one-meson processes, and is often called in exchange
interference. It appears in cases in which some of the
particles produced in the first process at a certain
point of the diagram come out in the c.m.s. at the same
angles and with the same momenta as particles pro-
duced at a different point of the second process (see
Fig. 3, b). The contribution of such processes can be
estimated on the basis of kinematic considerations.

If the relative velocity of the blocks is very large
and the Lorentz factor 7y > 1, then this sort of inter-
ference is small. This is so because in the c.m.s. of
the blocks the particles produced in the different blocks
are strongly collimated and fly out in different direc-
tions with no overlap of their angular distributions.

On the other hand, if the relative velocity of the
blocks is small, v € 1 and the Lorentz factor is small,
y — 1 K 1, then the interference terms can be of the
same order of magnitude as the main contribution.

Our case is intermediate between these two situa-
tions. In fact, calculating y in order of magnitude from
simple kinematical considerations!>®] we have

Yo =1+ (so/4k%)] "%,
while
v=29—1

(here vy, is the Lorentz factor of the blocks in their
c.m.s., S¢ is the square of the ‘“‘mass’’ of a block, and
k? is the square of the four-momentum transfer be-
tween the blocks).

It follows from this that 3 is large only to the extent
that s, > k®. In actual cases, according to Chapter VII,
Sec. 2, so~ 5k® and y ~ 3.5. The relative velocities of
the blocks are of the order of the speed of light, but not
extremely relativistic. Then the angular and momentum
distributions of the secondary particles produced in
different blocks overlap only partially. It is clear that
there cannot be any complete extinction of the main
contribution in such a case. Accordingly, the first type
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of interference cannot lead in our case to a negative
irreducible part.

The interference terms of the second type are due
to diagrams of the form of Fig. 4, b. The interference
is between inelastic processes of peripheral (right-
hand part) and many-meson (left-hand part) interac-
tions.

It is clear that the interference terms of this type
can be large only if the quantum numbers, multiplici-
ties, and also the angular and momentum distributions
of secondary particles in the peripheral and the many-
meson processes coincide,

However, it was shown in[**] that even when these
characteristic quantities coincide interference is pos-
sible only if an odd number of pions is exchanged in the
many-meson process. Although we cannot give a rigor-
ous proof that such an interference is small, we know
of no demonstration that the contrary situation can
actually occur.*

In summary, we conclude: that the irreducible part
is positive seems to be an altogether natural condition
(although it has not been rigorously proved).

We have gone into the question of the absence of in-
terference between one-meson and many-meson pro-
cesses only because it is basic to the whole further
development of the proposed scheme. That there is no
completely destructive interference is a main assump-
tion of the following theory. The arguments we have
given provide evidence that this assumption is not un-
justified.

If we accept this assumption, then the one-meson
(or peripheral) processes and the processes (nonperi-
pheral) with more than one meson are practically inde-
pendent of each other. The quantity ¥ in (42) is the total
cross section of all the processes with more than one
meson and therefore is positive; i.e., & = 0. We shall
also call & the cross section of the nonperipheral in-
teraction. Accordingly, we are assuming that the total
cross section is the sum of two positive terms, the
cross sections of the peripheral and the nonperipheral
interactions. We emphasize once again that since we
have no rigorous proof of this assertion it is one of the
additional postulates or hypotheses which we adopt as
fundamental to our theory.

VI. SOME GENERAL PROPERTIES OF THE
PROCESSES

Let us examine a number of general consequences
of our equations in the framework of the assumption
we have made.

1. The Pomeranchuk Pole

To begin with, it follows from (38b) that @,(p?, k?)
= 0 for I > [, is the position of the furthest-right
singularity of the function ¢,. Since the analogous as-
sertion always holds for the function ¢, [because by
(38a) its sign, in the part of the plane to the right of
all its singularities, is the same as the sign of the

*It might be supposed that there could be a strong interference be-
tween the amplitude of a one-meson inelastic process and that of dif-
fraction production. Here, however, interference is forbidden, as was
shown in [%3], owing to the conservation of G parity.

total cross section ¢], Eq. (12) cannot have solution if,
independently of p® and k?, the positions of the furthest-
right singularities of the functions ¢, and ¢, coincide
and both functions go to infinity at the singularity,
Therefore at the singular point ! = a of the function ¢,
the function ¢ is always finite if ¢, — <, so that for

! = o the inhomogeneous equation (35) becomes a homo-
geneous equation:

2205 1/2I‘(a-{r 3/2)5 (kz)"”'
(

TP 1D ) e (45)

R (p*) = (P*, #%) R, (k?) di?,
where Ra(p ) is the coefficient of the singular factor
in the function ¢,(p®) at I = @ (see the Appendix).
Furthermore, if we use the unitarity relation in the
s channel, then, as we shall show below, it follows at
once from what we have said that the vacuum Pomer-
anchuk pole ap(t) with ap(0) =1 is incompatible with
Eq. (35).1°%) 1t is not hard to verify that this contradic-
tion is removed only if the partial amplitude in the t
channel, f,(t) [or @,(t)], has for t = 0 a singularity at
the point I =1 which is weaker!®® than ¢,
~1/(1 - 1)In¥?(1 - 1), or else if the singularity is
located to the left of the point [ =1, i.e., if ap(0)
< 1.[5%:%5] This means, of course, that at asymptotically
large energies the total cross sectmn must decrease:

& << const/[1n In (s/p2)} /2 (46)

To prove this we first assume the opposite, i.e.,
that there exists a vacuum pole with ap(0) =1. Then,
since the entire two-particle contribution to the unitar-
ity relation in the s channel is contained in A, for
s —x the quantity ¢ must decrease at least logarith-
mically: 7( s, pl, pi) = 0] = const/In s, where 0g) is
the elastic scattering cross section.* It is easy to see
that in this case @, — <, and consequently Eq. (35) has
no solution. This can also be verified directly by sub-
stituting T = const/In s and o = o(p?) = const. in the
integral term of Eq. (42); then when we integrate we
find that its increase with the energy is now slower
than In In s, contrary to our initial assumption.t

Accordingly, the existence of a Pomeranchuk pole
with ap(0) =1 is in contradiction with our equations
(42) and (35). In order for them to have a solution it is
necessary that the total cross section decrease, al-
though this decrease can indeed be extremely weak.

Thus on the mass shell there can be a pole at the
point [ =1 for t =0 only if its trajectory depends on
the external masses, or else if it ceases to be a pole
when we go off of the mass shell, i.e., there is a change
in the nature of the singularity. Strictly speaking there
can be no pole of the Regge type, depending only on t,
at this point.

Though this conclusion has been reached as a general
consequence of the equations considered here, never-
theless it is clear that actually the difference in nature
between the maximum admissible singularity and a

*In fact, unless there is complete destructuve interference the total
contribution of all the other intermediate states to @ cannot be nega-
tive.

1The physical meaning of this contradiction is actually the same as
in [2!], where it was shown that if the quantities @ and o are indepen-
dent of the energy the integral term in (42) increases logarithmically
with the energy.
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pole can show up only at ultrahigh energies, when

In In (s/u?) >> 1. Therefore if the actual behavior of
the total cross section is close to the limit of what is
allowed, then in either the phenomenological treatment
of experimental data or in the theoretical discussion of
inelastic processes there is no point in considering
this difference, at all reasonable energy values (up to
energies at which the difference causes a large drop
in the cross section). In what follows we shall use the
Pomeranchuk pole with ap(0) = 1, with the under-
standing that this is not justified at ultrahigh energies.

2. The Character of the Leading Singularity

We shall now show that the leading singularity of
the partial amplitude ¢, must be a moving singularity.
To do so we determine the slope v of the trajectory
ap(t) for this singularity.!®! By a method given in
detail in the Appendix, we readily find

da (t)

T= (7)t=o (’m)”h(—u?)

oL,)g

§ @ (% B Ry () By Y
0

X [p*R2D (p?) D (k)12 dpt die,  (47)

where
R (p?) = i (p%) (1 — 0 (0)), @ = (dpy/di)i—o

R.(p?) is defined as the correctly normalized (see
below) solution of the homogeneous equation [see (A.4)]:

00

27 | B B 1D () Ry () k.

e ) (45a)

R (ph) =

In the integrand in (47) all of the functions are positive
definite: R, > 0, since according to (38a) the sign of
R, is the same as that of the total cross section;

@:1(0, p? k%) > 0, since according to (38b) the sign of
71(0) is the same as that of 84,/8t; and the last factor
is positive.* Consequently, the slope of the leading
trajectory is positive, i.e., the inelastic processes de-
scribed by the integral term in (42) lead to moving
singularities in the elastic partial amplitude, and the
diffraction peak in the shadow elastic scattering caused
by these processes becomes narrower with increasing
energy. The physical meaning of this result was ex-
plained in'®®!, where it was shown that the increase of
the interaction range (narrowing of the peak) is closely
connected with the increase of the number of blocks in
the iterative solution of Eq. (42), and the coefficient y
is of the order of magnitude of the reciprocal of the
perpendicular component of the momentum transferred
from one block to another. We shall calculate its
numerical value in what follows.

3. The Physical Meaning of the Leading Moving
Singularity

The question is often asked: what sort of inelastic
processes is it that lead to the manifestation of the ex-
change of the leading moving singularity (the vacuum
reggeon)T in the elastic scattering? In the framework
of our present approach the answer to this question is

*We can easily verify that 9A, /dt is positive by repeating for it the
well known proof [572] that the quantity [8A(s, 8/3t] ¢ =  is positive.
+Here we shall take no account of the slight difference between
this singularity and a pole, nor of the possible shift of the singularity,

as discussed earlier.
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clear. As we have shown earlier, the inclusion of the
one-meson diagrams in the inelastic processes on the
basis of the Bethe~Salpeter equation leads to the ap-
pearancy of a moving pole in the ! plane of the partial
wave in the cross channel for the corresponding elastic
diffraction process. Furthermore, according to our
assumption that there is no completely destructive in-
terference and that therefore the function @:(0, p?, k?)
is positive definite, there is no such pole in the irre-
ducible part @,(t, p?, k*). We note that it is precisely
these one-meson diagrams that lead, in the study of the
elastic amplitude in the cross channel, below the
threshold for production of new particles, to the uni-
tarity of the scattering amplitude and to the appearance
of a branch point of the amplitude at t = 4u2 At the
same time we know that the irreducible part

@i(t, p%, k?) is regular with respect to t at t = 4u?
while for the Pomeranchuk pole this point must be a
branch point.

Therefore it seems to us natural to picture the
‘‘physical structure’’ of the vacuum reggeon as en-
tirely due to the one-meson inelastic processes.***
Meanwhile the diffraction from nonperipheral inelastic
processes can lead to an important contribution to the
elastic scattering which is not described by the ex-
change of a vacuum reggeon.

We particularly emphasize that the interconnection
of the elastic and inelastic processes comes about by
means of the unitarity in the direct (s) channel, and
not in the cross (t) channel [transition from Eq. (39) to
Eq. (42)].

4. The Asymptotic Value of the Total Cross Section

The homogeneous equation (45) determines the
function R,(p®) only up to a normalizing factor. It was
derived, however, as the limit of an inhomogeneous
equation whose solution is unique and determines the
value of the cross section of the peripheral interactions
in the asymptotic region according to (38a) and (41a).
The correct normalization can be found if we consider
Eq. (35) at the point I =1 + € (¢ — 0) (for details
seel®® 2] and the Appendix). The result is that the
asymptotic value of the total cross section of the
peripheral interactions can be expressed in terms of
the function R,{p®) in the form

of = 2R (— 1) [ jSpD“ (1) K (P, K Ry (p?) Ry (k) dp? k2, (48)

where
(2K § AT (04 302) k2 (p2 kD)
Klf(_fﬁ*)z:ﬂ Ko (p? k) = ()1)31(142) [VEESTE R (49)
The total cross section is naturally given by
1ot =0 407 (50)

*We note that in principle one can imagine models in which there
exist simultaneously two vacuum poles of the function g, , which are
complex conjugates for t > 4u? | exactly cancel each other for t = 4u2?,
and for t < 4u? lead to some sort of compensation of the pole caused
by the integral term in the Bethe-Salpeter equation. However, in the
first place, for this we should have to assume that the interference is
very important at high energies, which, as we have explained, seems to
us unlikely; and in the second place, on the present phenomenological
level of the theory it scarcely makes any sense to complicate the model
before the simplest versions have encountered any contradictions.
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5. The Differential Distributions

It is also not hard to derive the mass distributions
of the irreducible blocks and their distribution in the
squares of the momentum transfers in peripheral
processes (see Fig. 2). To do so we examine the inte-
gral term in Eq. (42). Again including only the contri-
but1on from the pole at I = 1, we replace o(sz, k*) by
oP(k?) = Ry(k?)0P/R,(~1%) and recall that the effec-
tive values of s, are much larger than the quantity k°.
Integrating over s;, we get the following distributions:

do?’

dol o [ axe (2 D2 (%) @y (3, —pt, WY By G2) (59 )
doy AR T s R [(sg R )2 a2
dob ol (202 Ry °§° X Ay (o1, —-p, k)
diE AT R ) ) T ke (G ke — e e g2
AT
(52)

It is seen that the concrete form of these distributions
depends on the behavior of the function A,(s,;, —p%, k?)
and the function R,(k?®) which is associated with it by
(46). Nevertheless we can state that these distributions
have a maximum, since they are integrable (i.e., they
go to zero when s; and k* simultaneously go to in-
f1mty for s — °°), and they go to zero at the points s;
=4p*® and k® = ki, — 0.

VII. THE FUNDAMENTAL PARAMETERS AND THE
PROPERTIES OF PERIPHERAL INTERACTIONS

1. The Irreducible-block Model and Its Parameters

We now attempt a qualitative estimate of the effec-
tive values of s, and k® that play the main part in
these distributions. First we note that the kernels of
the equations (35) and (42) are positive. Therefore in
the iterative solution of these equations each iteration
will also be positive.* Since the sum of these iterations
(the total cross section) exists and is finite for s — «,
the iteration series must converge. This means that
the kernel &(s,, p?, k?) must be a decreasing function
of its arguments as they go to infinity:

lim o (sy. p &%) =0. (53)

s1, P2, h2-0c

To look for the approximate numerical values of
the quantities s, and k3 = p? at which there must be an
effective cutoff of the cross section 7(s, p?, k?), we
first make a very crude qualitative estimate. Later
(see VII.2) we shall do this more correctly, but we
believe that this sort of estimate is very useful as a
guide to understanding the relations of the various
parameters.

Let @ have the very simple form

k%) 8 (k) — p%),

1, z>>0,
e(’):{ 0, 2<0.

Substituting (54) in (38b), we get the following expres-
sion for @i;

0 (5, P2 k%) = 0o (59— ) 0 (k2 — (54)

where

*Moreover, as we shall show, each term of the iteration series is an
observable quantity and has a clear physical meaning. For finite energy
the iteration series contains a finite number of terms, which increases
without bound as the energy goes to infinity.

449

@ (P% ) & I (20 2mmin) O (K — ) B (K2 — p?), (55)

where

Zo= (So+ PP K)/2kp,  Smin— (4u* + K+ p?)/2kp.

By substituting (55) in (45) we can find a connection
between the parameters 0o, So, and k3. To get it in
explicit form, we use a well known approximate rela-
tion, according to which the trace of the kernel must
be approximately equal to unity, i.e.,

k2

o sq 1 2k2 B2,
o 5 In (2250 () dhe ~ 1. (56)
0
Using the fact that it is values k* > pu? that are im-
portant (see below), we get
k3 2kE 2
Toar [1 (21&) ___]~1 for 2k < s (572)
s [ (Z) r1e gk ] vt for s<2i  (57)
300k/32n% & 3op5/640% =~ 1 for U, (57c)

Since the meaning of ¢, is the mean value of the cross
section of nonperipheral interactions for s < sq, and
thus actually also in the resonance region (see below),

it is natural to assume that " S0, < 3% Then from
one of our formulas, say (57¢), we find that
4.3GeV? < 22 ~ 5o 13 GeV? (58)

If the quantities k3 and s, are very different, then ac-
cording to (56) the larger s, the smaller kZ, and
conversely. Accordingly, a new large parameter of the
dimensions of energy squared appears in the theory.

It is important that this result has been obtained only
from our justified requirement that the cross section
for peripheral processes be finite* [that Eq. (45) be
solvable].

2. A More Accurate Determination of the Parameters

We can estimate the parameter s, more accu-
ra.tely[6 ! if we make use of the hypothesis of duality.
We shall make the usual assumption that the imaginary
part of the elastic scattering amplitude consists of two
contributions of different types—a contribution corre-
sponding to the leading vacuum singularity, which does
not fit into the framework of the usual dual scheme, and
the remainder after subtraction of this contribution, to
which we can apply the duality hypothesis. As already
noted, the first contribution is completely contained in
the peripheral part of the amplitude. As for the second
part, in the spirit of the duality hypothesis it can be
represented as a sum of resonances in the s channel.
Therefore, in order to calculate its integral contribu-
tion, which is all that is of interest for Eq. (39) at large
energies [or, what is the same thing, for Eq. (45)], it is
sufficient to substitute instead of the actual amplitude
A, the sum of the contributions of the corresponding
Regge trajectories. This procedure, however, can be

*If the cross section at the large energies is only approximately
constant, i.e., if the vacuum singularity is located not right at the point
I =1, but near it, [*°] or even if the singularity is not a pole, [%*] this
does not affect our conclusion, but can only have a slight effect on the
numerical value of this parameter, with no change in its order of mag-
nitude.



450

justified only for integration up to some finite energy.
The point is that at a high enough energy, when the two-
pion exchange is really ‘‘reggeized,’’ the contribution
of all trajectories that have a nonvanishing two-pion
vertex* is already contained in the peripheral term,
so that to use them in the duality condition for the non-
peripheral term would now be to count the diagrams
over again. It is reasonable to suppose that in the
sense indicated the boundary s, between ‘““low’’ and
‘‘high’’ energies is located where the clearly marked
resonance structure of the cross section of the non-
peripheral interactions disappears and it becomes of
the order of the geometric cross section, i.e., where
T(8,)~ 1% For s > s, we shall assume that this
cross section can be described as the tail, perhaps of
a large number, but still of a finite number of reso-
nances that exist in the region s < s,, i.e., that it be-
haves asymptotically like s”*.T Joining these two
forms at the boundary, i.e., at s = s,, we arrive at the
following expression for A; on the mass shell (in the
sense of the sum rules!):

Ay (59 =0 (50 Iso (so— 420 { (=) "0 (0 —5) + 2 0 6, —s0) |,

(59)

where a is the effective value of the position of the
pole at t = 0. The possibility of such a ‘‘one-pole’’
form is justified by the fact that in nonperipheral #7
scattering the P’ or f trajectory must predominate,
and it is natural to regard all of the other contributions
as small corrections. Accordingly we may assume that
a = 0,5—0.6. Incidentally, it will be seen further on
that the result (i.e., the value of s,) is not very sensi-
tive to the choice of the exact value of @. When we use
(38b) and (59) to calculate the function A&, in explicit
form and substitute it in (45), we arrive at the follow-
ing equation [we shall discuss the effect of the fact that
(45) actually involves the function A, off the mass
shell at the end of this section]:

____O(sg) s}
R (P =155 A+

T o JF@ Aty 3har — skt p2 - du2))
farioo { CGESTER T -
[}

+{(1+a) [(k-z}i;Tz n 1+ kz:;pz )- kz_:_pz so+ki=+p2:|} - (60)

where F(2,1 +a, 2 + a; x) is the hypergeometric
function. It is clear that we can determine the quantity
s¢ from the condition for solvability of this equation.
For an approximate and incomplete calculation we
equate the trace of the kernel of Eq. (60) to unity and
recall that according to arguments given earlier

o(so) ~ u ™2 The result is {

(61)

When we substitute in (61) a ~ 0.5—0.6, i.e., a value
close to that corresponding to the P’ trajectory, we

so/p? & 32nPa/[1 + a — (mo/sin nar) (4n?/sq)"].

*At any rate this is a property of all nonexotic trajectories with
positive G parity, and in particular of the P’ and f trajectories, in which
we shall be primarily interested.

+1t must be pointed out that because of the presence of branch
points the kernel also contains another contribution, which decreases
much more slowly with increasing s, (see [**] and Sec. 1 of Chapter
VI). This contribution, important in principle, is apparently numeri-
cally small and unimportant for the questions treated here.

tActually this approximation is very good within the limits of ac-
curacy to which the analysis in question can pretend. {60}
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see that s, ~ 7—8 (GeV)?. At the same time it is clear
that the average value ¥, of the quantity o(s) in the
range s < s, is much larger than u "2, Using the ex-
pression (59) and the fact that 7(s,) ~ ™%, we readily
verify that 0o~ 3u~%, Knowing the values of s, and o,,
we can use (57a) to find the value of ki—the effective
parameter of the cutoff with respect to k% We get k2

~ 1.2—1.5 (GeV)%. One can arrive at the same result!*®!
by directly analyzing Eq. (60).

Here it is appropriate to point out that this estimate
of s, agrees well with the estimates that are obtained
as the result of analyses of the experimental data on
elastic scattering on the basis of finite-energy sum
rules'®! (FESR) and the interference model.®? It is
well to discuss the latter method in a bit more detail.
If in first approximation we represent the elastic
scattering amplitude as the sum of the contributions of
resonances in the s channel and the contribution from
the exchange of a vacuum pole in the t channel, then a
direct analysis of the experimental data on 7p scatter-
ing at energies of the order of 2 GeV and higher
shows[®] that the irregularities of the amplitude caused
by the resonances in the direct channel show up strongly
only at energies Ejgp < 3—4 GeV. This means, first,
that the entire nonperipheral interaction can be
described fundamentally by resonances in the direct
channel, and second, that the maximum masses of the
resonances are of the order of 2.5—3 GeV. We have
arrived at this conclusion by relying on the results of
comparison of the theory with the experimental data on
mp scattering. Unfortunately, it is so far impossible to
analyze the 77 interaction in a similar way. However,
we see no grounds for expecting a large qualitative dif-
ference between the main properties of these interac-
tions. Accordingly, it is gatural to expect that a valid
upper bound on s, is s, < 10 (GeV)2.

Let us now consider what the effect on these results
must be when one takes into account the dependence of
the function A, on p® and k®. Since for p? k*> 0, i.e.,
in the spacelike region, the amplitude A, must be a
decreasing function of the variables p?, k®, it is clear
that including this dependence can lead only to an in-
crease of the value of s,. At the same time we see no
reasons to expect a very strong decrease of the func-
tion A, in the range p? k* < ko, since none of the
ways now known to approach the description of the
strong interactions, including that expounded here,
involves a corresponding parameter.* Accordingly, the
value of the quantity s, which we have obtained is a
lower bound, and the value of kZ is therefore an upper
bound, but the true values should not differ much from
these estimates. Arguments based on the interference
model also indicate that this is so.

It also follows from the treatment we have given that
in a certain sense the vacuum singularity can be in-
cluded in the framework of the dual scheme, if we let
it correspond to the multiple production of all possible
sets of resonances in the s channel, unlike the non-
vacuum trajectories, which are usually taken to corre-
spond to the set of single resonances. In this connec-
tion it is not surprising that its properties are essen-

*Evidently all the experimental data show reliably that the quan-
tity 42 cannot be such a parameter.
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tially different from the universal properties of all the
other trajectories.

3. Fireballs

We shall now explain the physical meaning of our
results. For this purpose let us examine the iterative
solution of Eq. (25). In terms of diagrams it is of the
form shown in Fig. 5, where the terms correspond to
the first, second, third, and so on, iterations of (25).
The transition from (25) to the equation for the imagi-
nary parts, (39), and that for the total cross sections
(42), corresponds to letting the particles in the inter-
mediate states be on the mass shell, so that we go
from Fig. 5 to the diagrams of Fig. 6, which are
topologically the same as those considered in the AFST
model.!”' To the blocks in these diagrams there cor-
respond irreducible parts described by the quantities
5(si, p°, k?). It can be seen from the diagrams that the
production of the particles can be regarded as occur-
ring in the ‘“blocks’’, i.e., in centers of emission which
are connected with each other by only one meson line.
The physical meaning of the parameters s, and kZ is
that they describe the effective squared masses of the
blocks and the squares of four-momentum transfers
from block to block. It follows from what we said
earlier that the ‘‘masses’’ of the blocks must remain
bounded for s — o« (though indeed rather large, of the
order of s¥?), as must also the squares of the four-
momenta transfered between blocks.

Physically the blocks are separated because of the
comparatively large value of their relative y factor
(this question was discussed in Chapter V).

These properties of the emission centers—their
bounded masses of a characteristic size (several GeV),
and the order of magnitude of the k® connecting neigh-
boring centers—coincide with the properties of the
fireballs, the clumps of pion matter with bounded mass
of which we spoke in the Introduction (Chapter I).
Therefore hereafter we shall use the term ‘“fireball’’
to denote such centers of the emission of particles.
Here it must be kept in mind that in the scheme under-

Pz Pr P2 Pr
t»)ei JaOnane )331:(
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FIG. 5. Iterative solution of the Bethe-Salpeter equation.
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FIG. 6. Iterative solution of the equation for the inelastic proc-
esses.

consideration the emission centers do not arise as in-
dependent objects, with properties not depending on the
interaction. On the contrary, the properties of the fire-
balls are completely determined by the peripheral
character of the process, namely by the fact that the
interaction between them is due to the exchange of one
meson. Therefore it would be correct to choose a term
defining the process as a whole, and not its separate
features. In other words, we cannot define what a fire-
ball is independently of the way it is ‘‘prepared.’”’ It
would be more logical to speak of processes of the
fireball type. Nevertheless, following an established
tradition, we shall hereafter use the term ‘‘fireball”’,
though keeping in mind its inadequacy.

The quantity 0 which describes an irreducible block
comprises, in particular, the total cross section for
elastic scattering; that is, we must also consider, for
example, the diagram shown in Fig, 7, a. If an elastic
scattering is due to the exchange of a reggeon, then this
diagram is equivalent to that shown in Fig. 7, b, Join-
ing the pions with the nearer of the colliding particles,
we see that this process can also be simultaneously
interpreted as diffractive production of particles (an
inelastic process without exchange of quantum numbers
between the blocks). Since, however, the elastic cross
section is much smaller than the inelastic, we shall
still use the term ‘“fireball.”

FIG. 7. Contribution of elastic proc-
esses to an irreducible block.

~

Thus one of the main propositions of our theory,
following from rather general assumptions, is that in
peripheral interactions there must arise massive cen-
ters of particle emission—fireballs.

We also note here that from the fact that the mass
of a fireball and the square of the four-momentum
imparted to it are bounded it follows that the number
of fireballs will increase logarithmically with increas-
ing energy at high energies. Here all of the calculations
are analogous to those done in'?! (for more details
seel®),

4. The Spin of Fireballs

This is also a proper place to discuss the question
as to what sort of angular momenta contribute to the
fireball-blocks. For this we note that a wide range of
energies must contribute to the integral in (42), and in
this entire region the cross section ¢, of the nonperi-
pheral reactions must be large:

Ggso ~ 5073 > 1, (62)

This estimate was obtained above on the assumption
that oo ~ 3/u2 = const; in the case of an energy-de-
pendent ¢, the integral

uo(s)dsz%z50n3>>1. (63)

ipe
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must satisfy the analogous condition.
It follows that the number of partial waves taking
part in the formation of the block must also be large.
This assertion is based on the following arguments.
The largest partial cross section with angular momen-
tum [ allowed by the unitarity condition is

(64)

i.e., for given [ it falls off with increasing s. At the
same time the range of the strong interactions is finite
and given by r, ~ p”!. Therefore a strong interaction
characterized by the angular momentum ! can occur
provided the momenta |p| of the colliding particles
are sufficiently large: |p|r,2 I, that is, if |p| 2 1 u.
For smaller s the interaction practically does not oc-
cur, and for larger s it falls off according to (64). Let
us estimate the number of partial waves that must con-
tribute effectively to the cross section in order that the
necessary condition (63) be satisfied. In the range from
|Plmin =1 # to | plmax =[(80/4) — #2]¥? the contri-
bution of the wave with a given [* will be

(00 max =70 (2L 4 1)/p? == (21 - 1) - dr/ (s — 4p2),

AL (0)max ds & 47 (20 + 1) In (7727 ). (65)
Even this maximum value, for any ! in the range from
1to s¥?/2u, is smaller than the value 50 7° which
follows from (63), Setting s, ~ 10 GeV? in (65), we see
that the inequality

1/2
SO/
20

(0<l<

En ll“ax 8 ’n\ax
3
1617 == g Oods S Z g (0]) max ds = Z 4n(21+1)111(2—lz—‘;—2)
ipe I=1 4ns [

'max

~ N an@enm(R). (86)
1=t

must hold. This inequality is satisfied only for Imax

2 3, i.e., when at least three partial cross sections
contribute to the effective cross section. These esti-
mates show that the presence of a set of waves is es-
sential in order to satisfy the conditions (62) and (63).
Actually the effective number of partial waves must be
larger, since replacing the partial cross sections by
their maximum values decidedly increases the right
side of the inequality, because ordinarily none of the
partial cross sections attains the limit set by the uni-
tarity condition (cf. e.g.,!®®!). In practice the number of
partial waves contributing to the cross section is of the
order of L ~s¥?u ~ 10. However, the important point
here is that a fireball cannot be characterized by a
given angular momentum.

It follows from these considerations that a fireball
in the form in which it appears in the theory can cer-
tainly not be associated with any specific boson reso-
nance, since there is no resonance with a given angular
momentum [ that can give the required contribution to
the integral (63). Moreover, according to the duality
hypothesis (see Chapter VII, Sec. 2) a fireball can be
thought of as the set of all resonances, ‘‘weighted”’
according to the Bethe-Salpeter dynamical equation.

*We do not consider the s wave here. Including it would not change
our conclusions, but would make all of the calculations more cumber-
some.
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5. The Preasymptotic Behavior of the Cross Sections

Having written the kernel of Eq. (42) in the form
(54), we can determine the asymptotic value of the
cross section for peripheral interactions according to
(48). For ki =s, Eq. (47) can be rewritten in the form

hﬁ:no

Ry(p)=1g% | dkeiieD (1 (LR Ry (67)

RUEC TR
0

The eigenfunctions R, and the eigenvalues o, have
been calculated with a computer for three different
values of s, in Eq. (67). ¢F and otq¢ were determined
from (48) and (49). The results are shown in the table,

Values of the Cross Sections for Various
Choices of the Parameter so

80 = 250 pu3 sp = 400 p2 89 = 600 p2?

P P
[+1) o, Ctot [ 1i] Ty Otot [+1) Og Otyt

57 66 66 | 35.4] 43 43 23 30 30

We see that the parameter s, must lie in the range
55 80512 GeVEif 0o~ (3 - 1)u 2. The most import-
ant result is that at asymptotically high energies the
total cross section is found to be larger than its value
at low energies for all these values of so(c® > ay).
Therefore there must be a preasymptotic range of
energies where this cross section increases. We shall
show that this increase is monotonic. To do so we dif-
ferentiate (42) with respect to s. At large energies
[(s0/8)* K 1] we get

- kfuax R
da(s, p2) _ da(s, p?) + 1 dk?
ds T ds Br3(s-{ pt—p2)2 (k2-t-p2)2
kx’nin

*imax
x § ds@on vt R Ut p R —apthe
dp2
famax
x| dsy (st kP — ) 7 (52, ). (68)

In the model considered d4G/ds = 0 for s > s, Equa-
tion (68) is a homogeneous Volterra equation with a
positive definite kernel. Therefore the eigenfunctions
do/ds must be of definite sign. A numerical solution
of Eq. (42) showed that independently of s, the total
cross section begins to increase at s < 150 GeV?; that
is, the derivative do/ds is positive in this region.
Consequently, it must be positive in the entire region
in question, so that the cross section of the peripheral
processes increases monotonically.

In our model this also leads to a preasymptotic in-
crease of the total cross section. In the general case,
however, we have not been able to prove this with the
given approach. Simple considerations of the predomi-
nance of the peripheral processes allow us to suppose
that the increase will also be found for the total cross
section.

We note that in the Regge model of weak coupling!®*!
the conclusion that there is a preasymptotic increase
has been proved precisely for the total cross section.
In that case it comes from the fact that the contribu-
tions from the branch points in the ! plane decrease
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with increasing energy, and that the main correction
to the asymptotically constant total cross section is
negative. One can also set a lower limit on the size of
the correction term. It turns out that in the preasymp-
totic region the cross section behaves in the following
way:[®:

(69)
is the slope of the

Gt (8) = Oy (00) [1 — (Bilns)],

where B > 0tot()/327a’, and o'
leading trajectory.

On this matter there are interesting experimental
results obtained in®’, which indicate that the total
cross sections for 1nteraction of cosmic-ray particles
with nuclei increase in the energy range from 2-10%°
to 10'% eV,

6. The Average Multiplicity

In the model under consideration the average num-
ber of irreducible blocks (fireballs) at high energies is
determined in exactly the same way as in!22

B == (da/dhg)s, —1, In (s/2k2), (70)

a=1
where A, is an additional variable parameter intro-
duced by replacing <p by rq@ in Eq. (32), where f,
is replaced by ¢q accordmg to (34a), and (34b) (for
more details see Appendix). The quantity da/ drgy can
be found by the method expounded in the Appendix, and
is given by

(der/dho)r,—ams = 0PWABTRY, (—p?), (1)

where the index 0 indicates that R, is normalized to
unity. The average multiplicity N in peripheral pro-
cesses is N = #n, where 1 is the average number of
particles produced in the decay of a fireball.

For various values of the parameter s, the numeri-
cal coefficients in (71) are as follows:

6.81g (s/2k%) for s,—8 GeV?® (72)

6.01g (s/2k7) for s,=5 GeV>
8 }
7.71g (/2R for s,—12GeV’®
Accordingly, the average multiplicity in peripheral
processes increases logarithmically with the energy, (!
the coefficients in the model considered being given
by (72).

The quantities n(s,) are obtained from calculations
with the statistical theory!®!: Ti(so) ~ 2(so/m?)*%. The
best description!® of the data on N(s) obtained with
accelerators and with cosmic rays is given by using the
followmg values of the parameters s¢ and KZ in (72):

~ 8 GeV? K2 ~ 2 GeV* (Fig. 8).

The models we have considered are of course only
a first approximation to reality, enabling us to under-
stand the main features of the processes and to esti-
mate their parameters. To carry out a comparison
with experiment it is necessary, first, to examine the
experimentally observed processes in proton-proton
and pion-proton collisions, and, second, to examine
more realistic models for & (for example, to take into
account the structures of low-energy resonances, and
so on). We shall now discuss the problems that arise
in the use of the simplest model for real processes.

i:
16
Iz
//
121 //// /J;\i
8+ 2
4 |
1]
0 10 10°? 10° Eggp, GeV

FIG. 8. Comparison of the theoretical predictions about the multi-
plicity with the experimental data. Since the experimental data include
only the charged pions, for the comparison the right member of (72)
has been multiplied by 2/3. A relative lowering of the theoretical esti-
mates may be due to the fact that some of the pions are produced as
the result of the decay of isobars. The straight line 1 is drawn through
the experimental points; the calculated curves 2—4 correspond to values
$o = 5,8, and 12 GeV2,

VIII. THE INTERACTION OF PROTONS WITH
PROTONS AND PIONS

We have been considering the case of the interaction
of neutral pseudoscalar particles. From the experi-
mental point of view, however, the main interest is in
the interaction of protons with protons and pions at
high energies. If we assume, as is now customary, that
at high energies the interaction does not depend on the
isospin state of the colliding particles, the effects of
spin rotation are negligibly small, and all of the am-
plitudes without spin reversal are equal, then the pp
and 7p scatterings will each be characterized by a
single amplitude. Therefore in the study of such pro-
cesses we must consider the following system of equa-
tions for the partial amplitudes'® [besides Eq. (35)
for the w7 scattering]:

s (0 p)—lp,,,,ﬁp,, (Z p?
‘ 2111”2[‘ Lo )
|
|

(Pnn_.p

de (k2)1+1 D2 k2

cg/qg

@ PR 9o n (L F2),

T Tty (z+ 2)
(73)

+

221n“2P °°
—EraT (ZH, S ke (k) D2 (k) @ (L, P %) By (1 1),
’ (14)
where ¢ = ¢ pq— g, and
Pppaps (D _&)pp—mp (l)
22,n1/2]-w o

Sdk2 (62)71 D2 () By (1 ) @ (1, ).

h 5
In a corresponding way we can also rewrite the systt(am)
of equations for the total cross sections, associated
with Eq. (42). In reality only (35) and (73) are equations,
and (74) and (75) are simply relations between the am-
plitudes of the different processes (the irreducible
blocks are regarded as given).

We shall now present the results that are obtained
on the basis of these ideas in the treatment of a con-
crete process of the one-fireball type in pp colli-
sions.!®®) As we shall show below, processes of this
type will appear in the energy range 30 $ Epap
S 500 GeV. For this process we have the three dia-
grams shown in Fig. 9. According to the optical
theorem the contribution to the total cross section

t T aFy 23T (z+2)
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FIG. 9. Diagrams for the calculation of pp scattering.

caused by each of these diagrams is determined by the
second iteration of the Bethe-Salpeter equation and can
be written in the form

d ak$ dkd dszd -
o8 9= s § 7 ﬁzpm @ R (0 K) Txp (5 1)
X R (52, K2) R (55, K%, K2 Oun (55, K2, 62) R (54, B2) Onp (50, B2, (76)
where
sy= —(py+ky)?, so= —(pa— k)2, s3= — (ks + k)%, 85= —(pa+FKo)?, )
(77
R(si, p, k%) =[(si4 p*+ 692 — 4p*k*) "%, R (s:, k) =R (51, —p2, &),
(78)

and the regions of integration are determined by the
relation (49) applied successively to the appropriate
sets of variables, It is clear that the quantities to be
substituted for Typ(si, p*, k*) in (76) are given in case
a by the expression

Gap (51 PP K?) =GRS (s —m2)/[(s: 4 p* + k2 — 4p*R2) V%, (79)
while in case b one of the quantities T, must be de-
termined according to (79) and the other must be set
equal to twice the cross section for the nonperipheral
7p interaction, since this diagram must be included
twice, and, finally, in case c both factors 0y, are
equal to the cross section for the nonperipheral np in-
teraction. In the concrete calculations it has been as-
sumed that this last cross section is equal to o, in the
region s < s,,4 <7 GeV® and is zero outside this
region; that is, it has been assumed that practically the
entire 7p interaction is due to the region of the reso-
nances (i.e., Ogy and ogp are quantities of the same
order of magnitude).

On this basis the cross sections of these processes
were calculated as functions of the energy (Fig. 10),
and also the following characteristics of the processes
at the energies where the cross sections have their
maxima, i.e., at 40, 70, and 250 GeV:

1. The mass distribution of the fireballs, which is
obtained if we omit the integration over sj in (76)

1 10° 10°

Ejapy GeV

FIG. 10. Energy dependences of the cross sections for the proc-
esses shown in Fig. 9, a, b, ¢ (curves 1, 2, 3, respectively). The total
cross section is shown as curve 4, The cross section for two-fireball
processes is shown by the solid curve without a number. The dashed
line shows approximately the asymptotic value of the cross section
for peripheral processes.

FIG. 11. Mass distribution of the
fireballs.

M, GeV

1 2 3 4 &

(Fig. 11). It must be emphasized that the specific shape
of this distribution is very sensitive to the particular
model. For example, the sharp upper limit of this dis-
tribution is altogether due to the fixing of ¥ in the
form (54), and cannot be justified outside the frame-
work of this model.

2. The distribution with respect to the square of the
momentum transfer ki, which is obtained if we omit
the integration over the appropriate ki in (76). (Fig.
12),

3. The distributions of the inelasticity coefficients
and the average values of the y factors of the nucleons
and isobars in the c.m.s. The inelasticity coefficient
K of a nucleon is defined as

K = (sy—m?)/s, (80)

and the inelasticity coefficient R of an isobar is de-
fined as the fraction of the original energy of the nu-
cleon that goes into the production of secondary parti-
cles, excluding those that are produced as the result of
decay of the isobar:

R =(s;—s,)/s. (81)

The corresponding y factors are defined by the formu-
las: for a nucleon

Y = (s 4 m®— $,)/2ms1/2 = (1 — K) s1/2/2m (82)
and for an isobar

= (s m—s2(ss) P = () (83)

& §q

The distributions of the inelasticity coefficients are
shown in Fig. 13, and the corresponding average values
v of the y factors can be found easily by using Egs.
(80)—(83).

One finds that yN = 2.5 at Ejgp =40 GeV, ¥N
®~ 3.6 at Ejgp = 70 GeV, and yg = 4 at Ejap =250 GeV.

4. The average value ¥t of the ¢ factor of the fire-
ball'was calculated; it is given by the expression

- s2-1-53-—54 i [(31—32—51)2—4332 (8—81—32)2—48132]“2
V= stso—s1 4s

2 (k — 53— k§) so -+ (sa— ki~ p}) (sa+53—54)
(s -+ K3+ pB2—4k3p3] 72 ((s— 53— 84)8 — 4s3,] 172

Here the average values, as found from the calculations

s-‘rsz—s} (84)

2 (ssp59) 172

k2, Gev?
FIG. 12. Distribution of square of four-momentum transfer.
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FIG. 13. Distribution of the in-
elasticity coefficients.
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already mentioned, were substituted for the quantities
si, ki, and p}.

Let us briefly discuss these results,

As was to be expected from simple kinematic con-
siderations, as the energy increases the one-fireball
processes of types a, b, and ¢ replace each other suc-
cessively, having their maxima at the respective ener-
gies 40, 70, and 250 GeV. With further increase of the
energy they must be replaced by a two-fireball pro-
cess. According to the results of preliminary calcula-
tions the maximum of the cross section of the two-
fireball process without excitation of the nucleons
comes at an energy of the order of 250 GeV. The total
cross section of the one-fireball processes attains a
value of the order of ¢, (curve 4 in Fig. 10), so that at
the energies in question these processes must make the
main contributions to the total cross section for pp
interaction. At the same time we see that at present
accelerator energies (with the exception of the Serpuk-
hov accelerator, at which experiments are only begin-
ning) the fireball interaction mechanism is inappreci-
able. Meanwhile the analysis of the experimental data
obtained at energies ~ 20 GeV already indicates the
present of a small fraction of events which can be in-
terpreted as manifestations of the one-fireball mecha-
nism of particle production.!®®! As for experiments
with cosmic rays, as has already been mentioned they
also permit us to speak of the existence of one and two-
fireball (and perhaps even three-fireball) processes,
although of course the accuracy of these data is far
from that which is necessary for a definite conclusion
on this question.

From the mass distributions it can be seen that the
average mass of a fireball turns out to be of the order
of 3 GeV and is in qualitative agreement with experi-
mental results.[?™®! At the same time it is clear that at
low energies, i.e., near the ‘‘threshold’’ for these
processes, the masses of the fireballs must be some-
what smaller.

The results of theoretical calculations given here
show that the distribution of k® is practically independ-
ent of the size of the total energy of the interaction and
has a maximum at k%~ 0.5 GeV?, but the effective
values are somewhat larger, of the order of 1—2 GeV?>.
Unfortunately, the details of this distribution are rather
sensitive to the choice of a model.

The average value of the inelasticity coefficient K
which is obtained from the distributions shown in Fig.
13 is of the order of 0.4 and is practically independent
of the energy. This also agrees with the data from
cosmic-ray experiments.

Finally, the value found for the average y factor of
a fireball, ¢ ~1.15, is also not in contradiction with
the experimental data, according to which'®:®) ¥j is
about 1.1—-1,2,

Accordingly we can say that all of the results ob-
tained on the basis of the fireball model for processes
of the one-fireball type are as a whole in agreement
with the very scanty experimental data available at
present.

IX. THE CONNECTION BETWEEN DIFFERENT
METHODS FOR DESCRIBING INELASTIC
PROCESSES AT HIGH ENERGIES

As already pointed out, the method described above
for theoretically describing inelastic interactions is
suitable for application only in the energy range where
the parameters used are stable.* At the same time
there are many other models of inelastic processes at
high energies. The ones most often used are the follow-
ing: 1) the statistical (thermodynamic)!*2:2%% 2) the
hydrodynamic method,!!] 3) the method of uncorre-
lated jets,[26%"2%%1 4) the many-reggeon method.[24:2%67s58]

The various models claim to describe processes of
different types and in different energy ranges. There-
fore it is interesting to consider briefly a possible in-
terconnection of all these models.

In accordance with the postulates on which the first
three models are based, they should most readily be
applied to describe nonperipheral interactions in the
framework of the Bethe-Salpeter equation. Further-
more it evidently makes sense to apply the statistical
model to interactions at rather low energies, i.e., to
describe the decay of a fireball (s S 10 GeV?). The
hydrodynamical model can be applied only at very high
energies (s Z 200 GeV?). Therefore it has nothing to
do with the decay of fireballs, and at such energies it
can describe only the inhomogeneous term in the Bethe-
Salpeter equation.

The region of applicability of the model of uncorre-
lated jets is still not really clear. An important point,
however, is that in the form developed in!?"! and!® it
is a certain extension of the statistical model, in which
the decrease of the cross sections & with increase of
virtuality, which was assumed ad hoc in the model
considered above [Eq. (54)] appears as the result of
the limited momentum transfers in nonperipheral in-
teractions.

The connection between our present scheme and the
Regge-pole model must be discussed in more detail.

In what follows we shall mean by the many-reggeon
scheme a description of inelastic processes in which
there is in general exchange of arbitrary reggeons be-
tween groups of particles.

If we consider the exchange of vacuum reggeons
only, such processes are different from the multiperi-
pheral processes. A consistent analysis of them has
been made in‘?*!, However, the region of phase volume
accessible to them is small. Experimentally they ap-
pear as diffraction inelastic processes with small cross
sections. Owing to this there have been attempts[2%:57,%8]
to extend many-reggeon theory by considering the ex-
change of other reggeons and the production of parti-
cles in groups, in order to apply the method in the

*Its application at energies of the order of 10 GeV is possible for
the phenomenological treatment of experimental data, with no claim
to derive predictions for other energies (since here the parameters can
depend on the energy).
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entire phase space. Such an extension, however, leads
in practice to a transition from the many-reggeon
scheme into the multiperipheral scheme in the main
part of the phase space.

1. The Role of Meson Exchange

The interrelation of the multiperipheral scheme and
the Regge pole model manifests itself in the topological
equivalence of the diagrams describing inelastic
processes.[?2?*] The main difference between the dia-
grams in the many-reggeon model and those shown in
Fig. 6 is that the exchange involves not a pion, but
some sort of reggeon. Therefore in the corresponding
analytic expression there corresponds to an internal
line, for example to a particle with positive signature,
not the propagator D(k?), but a factor I(t):

D (k) — | T (1) | (ne’ (0)/2) == (ma’ (0)/2) sin~? (s (£)/2),

ai(t) is the trajectory of the i-th Regge pole (the index

i stands for both the order number of the reggeon in

the chain and for the character of its trajectory).
Besides this, typical Regge factors of the form

zai(t) appear, where the quantities z are the corre-
sponding cosines of scattering angles in the t channel.
For example, for the one-reggeon diagram topolog-
ically equivalent to Fig. 3, a, with formations of groups
of particles with “masses’’ s¥? at the upper point and
-s¥/? at the lower point, and with momentum transfer
|t], the quantity z is of the form

2 (2|t]s/5,8,) — 1. (85)
The Regge approach, i.e., the introduction of factors of

the type sal(t), is justified when the quantity |z | is
large: |z | >> 1. In this case the exchange of a vacuum
trajectory is singled out.'?*!

It can be seen from (85) that |z | is large only if the
total energy s¥? not only is much larger than the
‘‘masses’’ sif 2 of the blocks that are produced, but
also offsets the influence of the small ratio of the
momentum transfer to the mass of a block. The region
of phase volume for this is small,

It has been shown in'®! that in the main part of the
phase space for inelastic processes the quantity z is
of the order of unity. In particular, for ‘‘“forward”’
inelastic scattering, i.e., at the boundary of the phase
volume, we have [t |pin ™ Si82/s and |z | = 1.

Therefore in the main part of the phase volume the
Regge factors ‘‘do not prefer’’ any particular Regge
trajectory. At the same time the signature factors
single out (numerically!) precisely the pion trajectory,
since at the poles they reduce to propagators, i.e., for
small |t| they single out the pion pole* as the one
nearest to the physical region.[®® Consequently it is
precisely in the main part of the inelastic processes
that the many-reggeon theory should be applicable.

In the inelastic processes (unlike the elastic pro-
cesses) the exchange of vacuum reggeons is not of
primary importance.®?%% They are important only
where |z | > 1, or for processes of resonance produc-

*For example, at t = 0 the ratio of the squares of the signature fac-
tors for the kaon and pion trajectories is of the order of (u/my)* ~ 1072,

tion (with masses sY?and s¥? independent of the

energy in the one-reggeon scheme), even if |z | ~ 1.
This last assertion is based on the study of the four-
dimensional type of reggistics in!™7* where an ex-
pansion of the amplitude for the process in question in
terms of irreducible representations of the four-
dimensional rotation group was carried out. Then on
the assumption that a Lorentz pole exists (i.e., the set
of a main pole and all its daughter poles in the ! plane)
it can be shown that the asymptotic form of the ampli-
tude for such a quasielastic process is given by the
usual Regge formula

T~ 1) gt s0)g (¢ s5) [8/(s150) V21D, (86)

Near the boundary of the phase volume (|z|~ 1)
this is due to the behavior of the residues of the partial
amplitude, and not to the asymptotic behavior of the
spherical functions,!®®!

However, neither the region |z | >> 1 nor the pro-
cesses of resonance production can give an asymptot-
ically constant contribution to the total cross section,*
and therefore the exchange of vacuum reggeons is not
the dominant mechanism in inelastic interactions at
high energies.

2. The Grouping of Particles

The contribution to the cross section for processes
with exchange of a reggeon and production of only one
particle in each irreducible block is thus even smaller.
This is the reason that in comparing a concrete phe-
nomenonological version of the reggeon scheme with
experiment in the energy range from 5 to 16 GeV it has
been necessary to assume!?! that the particles come
out from the points of a diagram in groups (clusters)
with relatively small total energies in their c.m.s.,
and that their disintegration is determined by the
statistical model. The clusters can be regarded as
fireballs that are not completely formed owing to in-
sufficiently high initial energy (the parameter does not
attain the value so).

3. The Correspondence between the Equations

We would like to emphasize that inclusion of the
grouping of particles and the exchange of different
reggeons is absolutely unavoidable in attempts at for-
mal application of the many-reggeon approach in the
main part of the phase volume, and actually corresponds
to a transition to the multiperipheral description.

This can most intuitively be seen from the fact that
one can write("»* a single multiperipheral equation
which, in the main part of the phase volume of inelastic
processes, goes over into the equation of multiperi-
pheral processes described in the framework of the
Bethe-Salpeter equation, and which also, in the region
of applicability of the Regge approach, goes over into
the equation for the many-reggeon diagrams that are
described by means of the equation of Chew, Gold-
berger, and Low.'® This single equation is of the

*With increasing energy the cross sections for these processes fall
off at least as In"!s (cf. [#9:24]).




INELASTIC PROCESSES AT HIGH ENERGIES

form
B (ky, Pas Po) =
=B (ks, Pas o)+ g | @5y i, bs) D® (62) R (s, Ko, D) B (ko vy o),

(87)
where B denotes the imaginary part of the elastic
scattering amplitude with one integration not yet done
{or the imaginary part of the ‘‘amplitude’’ for scatter-
ing of a reggeon by a particle), defined by the relation

A Py P =755 | @04, (par ) D () B (kyy P ). (88)
This equation holds both in the multiperipheral and in
the many-reggeon schemes, but in the former case A,
and D? are interpreted respectively as the imaginary
part of the irreducible block of the elastic scattering
amplitude and as the square of the propagator in the
Bethe-Salpeter equation (39), and in the latter case,
as the squares of the vertex part and of the signature
factor in the Chew-Goldberger-Low equation.* R de-
notes the typical Regge factor

(89)

2
R = (2a)*",

where a(k?) is the Regge trajectory that gets ex-
changed (a = 0 in the case of the Bethe-Salpeter equa-
tion), and B(k,, pa, bb) =A(ky, pp) X R*(k,, pa, pp). The
notation for the momenta is clear from Fig. 14 (for

t =0 we have ki = k3, k3 =k, etc.). The quantity |zas|
=(2|t|sas/saS1s) — 1 is the cosine of the scattering
angle (py — k3 ) in the t channel. Sometimes, without
justification, people take instead of zg,; the quantity
Sas/So with s, =const.

The dependence on p, comes into Eq. (87) only
through the factor R, but R= 1 in the case of the
Bethe-Salpeter equation. Therefore in the multiperi-
pheral scheme D does not depend on pay. The meaning
of this is that the correlation length in the peripheral
chain is much smaller in the case of exchange of an
elementary pion than for the exchange of a Regge tra-
jectory. This fact is very important in going over to
the corresponding equations for the partial amplitudes.
The analysis of these equations in!™®! showed that the
condition for their solvability with an asymptotically
constant total cross section is the relation

v+ 200 (k2) << 1, (90)
if the asymptotic form of &; is'
A, (s) ~st for s;—> 0. (91)

This makes clear the reasons for the nonselfcon-
sistency of the Pomeranchuk trajectory. It was shown
in'**! that the condition (90) was violated in the Bethe-
Salpeter equation because the value v =1 is not per-
missible for a = 0 (see Chapter VI, Sec. 1). In the
Chew-Goldberger-Low model, on the other hand, it was
assumed that v = -1 (the &-function model for A,)
but that a(k®) went to unity at the point k% = 0 (the
Pomeranchuk trajectory). Since for k* > 0 we have
everywhere a(k?) < 1, there are three ways to re-
move the difficulty in this case:

*In the concrete model considered in [$7] the choice was A, (Pa,
k)= g2 (P;, ki) 8 ((Pa'k1)2 +m?).
+The case with v<<-1 is equivalent to the case v = —1.

..
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FIG. 14. Elastic scattering caused by multiperipheral (or many-
reggeon) Processes.

1) by excluding the point k® = 0 from consideration,
requiring that the coupling constant between vacuum
reggeons and the particle go to zero at that point[z“]
(weak coupling model[®);

2) by assuming that the vacuum tra[jectory passes
below the point I =1, i.e., ap(0) < 1)[3%5%671,

3) by assuming that the singularity at this point is
weaker than a pole!5*! (cf. Chapter VI, Sec. 1).

A second important conclusion which can be drawn
from an analysis of the equation for the partial ampli-
tudes!™' is that after integration over the Treiman-
Yang angle!™ the whole difference between the many-
reggeon and multiperipheral approaches drops out for
any choice of R (among those we have indicated), be-
cause the dependence on sg3 reduces simply to a de-
pendence on the product sg,-:s,3, i.e., to the choice of
definite form-factors at the vertices of the multiperi-
pheral chain,

Consequently, the equation actually reduces to the
Bethe-Salpeter equation, despite the fact that formally
it takes into account the ‘‘reggeization’’ of the particle
that is exchanged.

4. Diffraction Inelastic Processes

For processes in which the masses s, and s, are
fixed Eq. (86) leads to a number of interesting conclu-
sions. For large s the total cross section for the
processes caused by exchange of the i-th Regge tra-
jectory is given by

(92)

where the Cj are constants. It can be seen from (92)
that the contributions from all the nonvacuum trajec-
tories, for which «j(0) < 1, fall off with increasing s
according to power laws, whereas the exchange of a
vacuum reggeon [ay(0) = 1] leads to a cross section
for production of one or two resonances which falls off
only logarithmically with increasing energy.

It is, however, interesting to note that the coefficient
in (92) is the quantity [I;(0)|%, which in the case of the
pion trajectory is much larger than for the other tra-
jectories (where it is of the order of unity):

o= Cy|I; (0) 2 2O pa e

11 (0) |2 & 4/m2agint = 10° > 1.

Therefore in principle there could be a situation in
which at not too high energies pion exchange could be
more important for some resonance-production pro-
cesses than the exchange of a vacuum reggeon. This
may be the explanation of the fact that diffraction in-
elastic processes have appeared clearly only at energy
Elap ~ 20 GeV. At lower energies it turns out("®] that
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an analysis of the isospin relations, even for reactions
such as pr — Nww, in which few particles are produced,
leads to the conclusion that vacuum-reggeon exchange
is not always the main mechanism. Pion exchange must
also be taken into account in reactions of the type of
pp — ppr*n~ at energy 16 GeV.[™

In conclusion we emphasize once again that an analy-
sis of essentially inelastic processes with an attempt
to apply the many-reggeon scheme to them has shown
that in this case the many-reggeon scheme definitely
comes close to the method based on the Bethe-Salpeter
equation, since one has to recognize, first, the import-
ant role of meson trajectories, and second, the neces-
sity of ‘‘grouping’’ the final particles, both of which
follow in a natural way from the Bethe-Salpeter equa-
tion.

X. CONCLUSION

We have examined the question of the role of in-
elastic processes at high energies and of the methods
for describing them. By means of the unitarity princi-
ple we have shown that inelastic processes predominate
at high energies to such an extent that they determine
the elastic scattering at any angle. Therefore a theo-
retical description of elastic scattering is possible only
after one has understood the nature of the inelastic
processes. At the same time it has turned out that all
of the proposed theoretical models of inelastic pro-
cesses lead to an excessively wide diffraction cone of
the elastic shadow scattering. This is evidently due to
the fact that in these models one has not taken into ac-
count the relative phases of the matrix elements of the
inelastic interactions, which play a decisive part in the
formation of the diffraction cone.

1t is interesting to note that attempts to interpret
the elastic scattering in this range of angles by means
of Regge poles have led to a similar difficulty: the
main contribution to the width of the diffraction cone
must be ascribed to the residues at the poles, and not
to the term which determines the pole trajectory itself.

The interconnection of these problems can be under-
stood through a simultaneous study of elastic and in-
elastic processes by means of the Bethe-Salpeter equa-
tion. With such an approach we succeed in showing that
a knowledge of the absolute values of the matrix ele~
ments for the inelastic processes, or, more exactly,
of the total cross sections, allows us to study the ana-
lytic structure of the elastic scattering amplitude., At
the same time light is thrown on many features of in-
elastic processes at high energies.

Our theory of inelastic processes is based on an
exact relation of quantum field theory, the Bethe-
Salpeter equation, with the assumption of the absence
of interference (we have considered this question in
detail in Chapter V). The theory is internally self-
consistent, satisfactorily describes the available ex-
perimental data on inelastic processes obtained with
cosmic rays, and connects the properties of the in-
elastic process with those of the elastic scattering
amplitude. Furthermore the amplitude for elastic
shadow scattering has the correct analytic properties
and is connected with the inelastic processes by the
unitarity condition.

DREMIN, ROiZEN, and CHERNAVSKII

The theory provides a natural explanation of a fea-
ture of the inelastic process which in our opinion is
extremely interesting~the formation of fireballs.
Among the general consequences of the theory are
limits on the masses of fireballs and on the squares of
the four-momentum transfers, a logarithmic increase
of the number of fireballs with the energy, the appear-
ance of a moving singularity in the elastic scattering
amplitude owing to the existence of processes of the
fireball type, and the conclusion that the assumption of
the existence of a Pomeranchuk vacuum pole with
ap(0) =1 at ultrahigh energies is not internally self-
consistent. Moreover, the theory leads to a natural
connection between peripheral and nonperipheral pro-
cesses and the automatic appearance of a new energy
scale associated with the fireball mass.

Along with this it must be pointed out that the
theory is still very crude; the parameters that appear
in it are still not fixed accurately enough, In other
words, in its present state the theory can predict quali-
tative effects, but is not yet able to give accurate quan-
titative results. This level of development has so far
been enough for comparison with the data obtained
with cosmic rays, but it is inadequate for detailed com-
parison with more accurate experiments with acceler-
ators. At present, however, there are no such exact
data in the required energy range. The point is that the
theory was developed for, and is suitable for, the de-
scription of processes at very high energies. It seems
to us senseless to use it for the description of experi-
ments at energies of the order of 10 GeV. The parame-
ters of the theory become stable and cease to be energy-
dependent at energies at which at least one fireball can
be produced. According to our estimates this requires
at least some tens of GeV. For comparison of the
theoretical results with experiments in this energy
range it is necessary, first, to get more accurate values
of the parameters, and second, to state the theoretical
information in a form convenient for comparison with
a specific experiment. By refining the parameters to
the extent allowed by the basic assumptions and the
supplementary conditions, one can obtain models which
lead to definite quantitative predictions. The first very
simple attempts of this kind are described here in
Chapters VII and VIII, At present, after the startup of
the Serpukhov accelerator, there has come to be a pos-
sibility of realizing this program.

After the parameters have been refined and a con-
crete model has been chosen with the aid of accelerator
data, it will be possible to return to experiments with
cosmic rays and make a number of predictions with
greater definiteness that at present. Only after this
will it be possible to make a detailed comparison be~
tween experiment and theory over a wide range of ener-
gies. In particular, the predictions obtained can then be
verified with the accelerators in the range 200300
GeV which are now planned.

In conclusion we take occasion to express our grati-
tude to E. L. Feinberg for important comments and to
V. N. Akimov for interesting discussions.

APPENDIX
The asymptotic value of the total cross section, the
slope of the diffraction cone, and the multiplicity of a
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process can be determined by a single method, which
we shall now explain. We consider Eq. (32), along with
(34a) and (34b), and write it in the most general form

(A.1)

Here, in order to simplify the writing of the formulas,
we have omitted from the arguments the dependence on
the external masses, have defined

t(t—4p2)— 2er —p2)H1/2
B Gt oty r, )

(A.2)
and have introduced an additional factor x;, which for
Eq. (32) is identically equal to unity, but which for the
present we regard as an additional free parameter.

Let us write ¢;(t) in the form

oL O =1 (M0 (R 1 (8).

— 1
anO@uO=—re [ arae

P (B) =By (O)/[1—a (1)),

where a(t) does not depend on the masses, and R, is
regular at [ = a(t). Then, expanding R,(t), a(t), and
@.(t) for small t, we have from (A.1)

Ry R =t —a—y1] [fo+ g1+ Mol + 9 @ (B +eR7), (AL3)
where, for example, R, = R,(0), and so on, primes
denote derivatives with respectto t at t =0, and
Y = da(t)/dt |t=o-*

Equating terms of the same order in t and consid-
ering all of them at the point [ = @, we have

(A.4)

{ Ra:kacaga & Ra,
(A.5)

Ry = _?Ea = A(zﬁz&& ® Ro+ }‘a"aazz RRG.

Differentiating (A.4) with respect to a, we get
dR, _ dhy

da da
It can be seen from these formulas that the kernels of
the integral equations (A.4), (A.5), and (A.6) are identi-
cal. But (A.4) is a homogeneous equation, while (A.5)
and (A.6) are inhomogeneous equations. In order for
all of these equations to have solutions, it is necessary
and sufficient that the inhomogeneous terms of Eqs.
(A.5) and (A.6) be orthogonal to the solutions of the
equation adjoint to (A.4). From this one easily finds the
values of y and dr,/do used in Egs. (46) and (69).
The asymptotic value of the total cross section O'P,
Eq. (48), is obtained by exactly the same method, if we
consider (A.3)for t =0, a; =1 and I =1 +¢€ (e — 0).
Equating terms of the same order in €, we get an in-
homogeneous equation for (dR,/d!) 1= The condition
that its inhomogeneous term be orthogonal to the solu-
tion of the equation adjoint to (A.4) leads to Eq. (48).

— d _ _
caPo @ Ra+ha ey [caPal @ Ro+ hataPe @ ddl';u . (A.G)

*The contribution of the term with ¢} is small, and therefore we
neglect it.
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