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I. INTRODUCTION

INELASTIC processes are of decisive importance in
the physics of the strong interactions of high-energy
particles. Nevertheless until very recently experimen-
ters working with accelerators as well as theorists
have preferred to deal with elastic scattering processes,
or with processes involving production of at most one
or two particles.

The experimental treatment of such events is less
laborious and more reliable. The theorist finds advan-
tages in the relative simplicity of the mathematical
apparatus, in the somewhat distinguished role of the
elastic scattering amplitude, which is connected with
the total cross section by the optical theorem, and,
finally, in the present availability of more complete and
accurate experimental information on elastic collisions
as compared with inelastic processes. Recently, owing
to the development of new methods for treating data and
the wide-spread use of computers there has been much
more interest in high-multiplicity inelastic processes
at energies accessible with accelerators. As for cos-
mic rays, their main use is with this sort of inelastic
processes, since the study of elastic and quasielastic
interactions encounters great experimental difficulties.

The interconnections of elastic and inelastic proces-
ses are of theoretical interest. As already mentioned,
the inelastic processes are of predominant importance.

Firstly, most (about 80 percent) collisions of
strongly interacting high-energy particles are inelastic.

Secondly, the elastic scattering amplitude itself is
completely determined by the character of the inelastic
processes at high energies.

Thirdly, at present accelerator energies (E]ab
~ 25—30 GeV at CERN and Brookhaven, and Eiab
~ 70 GeV at Serpukhov) the main part of the inelastic
interactions consists of processes of multiple produc-
tion, which do not reduce to binary processes and con-
sequently cannot be treated by analogies with elastic
processes. Therefore the problem of the theoretical
description of inelastic processes is of primary im-
portance.

In the present review we consider two main ques-
tions .

The first of these is, in what way high-multiplicity
inelastic processes affect the characteristics of elastic
scattering. Chapters Π and ΙΠ of this article are de-
voted to this. It is shown that the inelastic processes
determine the elastic scattering both at small angles
and also at intermediate and " l a r g e " angles.

The second question: What are the properties of the
inelastic processes themselves at high energies, and
how are they related with the elastic interactions in

the "asymptotic" energy range? The later chapters of
the review are devoted to this. Especial attention is
given to inelastic processes in which "fireballs" are
formed.

The review is theoretical in nature. Owing to this
we have not undertaken a detailed and complete dis-
cussion of the experimental data. We even think that
such a discussion would now be premature. The point
is that, on one hand, not one of the theoretical schemes
for the inelastic processes has been carried to the
level of accurate quantitative predictions over a wide
energy range (say from 1010 to 1015 eV), and on the
other hand, the experimental information obtained with
accelerators (Ejab ~ 20—30 GeV) and with cosmic
rays (Ejab ~ 10" to 1013 eV) is different in character.
In the former case most of the data relate to events
of small multiplicity, whereas in the latter case es-
sentially only many-prong events are examined. It may
be expected that this difference will be decreased as
the result of experiments with the Serpukhov accelera-
tor. At any rate many vexed questions will be cleared
up and a unified point of view will be developed, as is
necessary for a detailed analysis of the experimental
results. We shall discuss only some important qualita-
tive experimental results which have played a large
part in the formation of theoretical ideas.

First, we note the following data, originally obtained
from cosmic rays, and then—much more accurately,
but so far in a much smaller energy range—also with
accelerators.

1. The total interaction cross sections are constant
at energies 1010 eV to 1015 eV with accuracy ~ 50 per-
cent. (Accelerator data show that the energy depend-
ence of these cross sections is weak over the range
from 10 1 0to 7 x 1010 eV.)

2. At high energies, in the c.m.s. the secondary
particles are strongly collimated along the line of the
collision. The angular collimation increases with in-
creasing energy, so that the mean transverse momen-
tum pi remains constant (pL ~ 2.5 μ, where μ is the
pion mass; here and in what follows we shall set Κ = c
= 1) over practically the entire investigated energy
range.

3. The average multiplicity increases rather weakly
with increasing energy.

4. When high-energy nucleons interact they retain a
major fraction of the primary energy. The ratio of the
energy Ei that goes into the production of new particles
to the energy Eo of the primary particle in the c.m.s.
is on the average Ei/E 0 ~ 0.5 (though the scatter in
the values of this ratio is very large). This quantity is
called the inelasticity coefficient
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5. From our point of view it is particularly import-
ant that we note the data on the formation of fireballs
at high energies. These data are so far a matter for
discussion. The disagreements are mainly due to the
difficulties of obtaining and interpreting results with
cosmic rays. This question has been treated in detail
in a review by Miesowicz.[11 We shall not go into the
details of the discussion, but only briefly describe the
main conclusions. In the study of the interaction of
nucleons with energies ~ 1012 eV the idea has been
proposed that two centers of emission of secondary
pions are formed. These centers move with relativis-
tic speed in the c.m.s. The number of charged parti-
cles emitted from each center is of the order of six or
seven. The mass of an emission center is of the order
ffl! ~ 3 GeV.

These data were mainly obtained by Miesowicz and
Gierula and their group, [ 2 1 and independently by Niu. [ 3 ]

On the suggestion of Cocconi [4] these emission centers
have been named fireballs.

Subsequently in papers by Dobrotin and Slavatinskii
and their colleagues153 data were obtained which indi-
cated that in collisions of nucleons with somewhat lower
energies (Eiab ~ 3 x 1011 eV) a single emission center
is formed. The main characteristics of the center (its
mass, the number of secondary particles, and so on)
are the same as already stated. The conclusion was
that a single fireball is formed.

Then in papers by Hasegawa[61 and Rybickit?1 indi-
cations were found that at higher energies ~ 1013 eV
larger numbers of fireballs are formed. These data,
however, cannot so far be regarded as well established
even to the same extent as the conclusions about pro-
cesses with formation of one or two fireballs.

A comparison of the data suggests that with increas-
ing energy there is also an increase of the number of
fireballs, but that their characteristics (primarily the
mass) remain practically constant, that is, do not
change with increase of the energy in the range from
3 x 1011 to ~1013 eV. It is certainly a matter of interest
to look for processes with the formation of one fireball
at accelerator energies. The first preliminary results
were obtained by Walker1-8·1 in πρ interactions at en-
ergy 25 GeV and by Zhdanov and others [ 9 ] in pp inter-
actions at energies 21 and 24 GeV. At these energies,
however, the cross sections for such processes are
still very small, and their detailed investigation with
accelerators will evidently be possible only at the
energies of the Serpukhov accelerator.

We note that very recently extremely detailed in-
formation has been obtained on inelastic processes at
accelerator energies up to 16 GeV. t l 0 ] The contribution
of fireball processes at these energies is now being
studied.

Simultaneously with the experiments (and under
their influence) the theoretical ideas about inelastic
processes have been developed. For a long time the
only serious theoretical schemes for describing such
processes were the hydrodynamical theory1 1 1 1 used at
ultrahigh energies Eiab ^ 1012 eV, and the statistical
theory, which was applied in the energy range 10°
^ Eiab ~ 1010 eV. The Weizsacker-Williams method
was also used, but it contained many unknown parame-
ters . Ideas were put forward about peripheral interac-

tions of hadrons. t 1 3 1 5 ] The use of Feynman diagrams
with exchange of one meson, in papers by Goebel'-16] and
by Chew and Low,[171 made it possible to move further
in the study of inelastic processes. Papers by Dremin
and Chernavskii [ 1 8 ] and by F. and G. Salzman [ 1 9 ] formu-
lated the one-meson approximation; thereafter this was
on one hand improved by the inclusion of effects of in-
teraction in the initial and final states of such pro-
cesses,'·20·' and on the other hand led to the more ad-
vanced idea of peripheral interaction, and to the treat-
ment of multiperipheral diagrams, which were first
considered in a paper by Berestetsku and Pomeran-
chuk. t 2 1 ] This development was most fully represented
in papers by Amati, Fubini, Stanghellini, and Tonin, [221

who proposed a multiperipheral model (the AFST
model) which, unlike previous models, made use of a
closed equation describing a complete set of diagrams.
The model has been studied very intensively and sub-
jected to comparison with experiment. This revealed
its practical shortcomings: it could not give asymp-
totically constant cross sections and did not describe
the formation of fireballs. It was soon shown, [23] how-
ever, that these shortcomings were due only to an im-
precise interpretation of the kernel of the equation
used in the model of122·1. A subsequent treatment in the
framework of the Bethe-Salpeter equation, carried out
in a paper by Dremin, Roizen, White, and Chernav-
skii/ 2 3 3 gave an interpretation of this kernel as the set
of Feynman diagrams of a definite class and derived
the AFST model as a special case of the Bethe-Sal-
peter equation. Moreover, it turned out that the Bethe-
Salpeter equation together with the unitarity relation in
the s channel also makes possible a direct examina-
tion of the properties of the elastic scattering associ-
ated with inelastic processes of various types. The
restrictions imposed on the elastic scattering are then
simultaneously restrictions on the inelastic processes.
It turns out that as a result of the fulfilling of such
seemingly "abstract" requirements as the condition of
the existence of a solution and the presence of a vacuum
singularity near 1=1 the theory predicts in a natural
way an effect like fireball formation. Moreover, these
"abstract" conditions make possible the determination
(in order of magnitude) of parameters which were re-
garded as arbitrary in former models of peripheral
processes.

There has also been intensive development of
another approach in the theory of inelastic processes—
the many-reggeon model, which has been treated in
most detail in papers by Ter-Martirosyan and his
collaborators.1·241 The diagrams discussed in this
model are topologically equivalent to those of the
multiperipheral model. The only difference is that it
is a reggeon, not an elementary particle, that is ex-
changed. A phenomenological version of this model,
supplemented with some specific assumptions about
the behavior in the low-energy region, has been com-
pared with the experimental data at 8 and 16 GeV in [ 2 5 ' .
Chapter IX is devoted to a comparison of various
models of inelastic processes, in particular the many-
reggeon and multiperipheral models.

It must be noted that many models of inelastic
processes have been proposed, for example the model
of uncorrelated jets, [ 2 6 ' 2 7 ] the bremsstrahlung model,
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and the quark model. They have not been much devel-
oped, however, although they have helped in the ex-
planation of such important questions as the role of the
phases of matrix elements of inelastic processes (cf.
Chapter III), the isotopic relations between various
channels, and so on. Recently there has been renewed
interest in the statistical theory [ 1 2 ] in connection with
accelerator experiments on particle spectra, [ 3 0 i on
production of particle-antiparticle pairs and the re-
lated problem of quarks, [ 3 1 ] and so on. It is clear,
however, that the statistical model cannot pretend to
describe the whole set of inelastic processes. Its inter-
connections with other models are also discussed in
Chapter IX.

We would like to emphasize that in always using the
word "model" we are indicating that the fundamental
assumptions of the theory are insufficient for a com-
plete quantitative description of inelastic processes.
Owing to this one must at some stage make definite
assumptions about certain quantities, and a number of
parameters remain arbitrary prior to comparison with
experiment. Nevertheless the fact that one can theo-
retically describe the qualitative, and in some cases
also the quantitative, characteristics of inelastic
processes, and connect them with the properties of the
amplitude of the background elastic scattering repre-
sents an undoubted achievement of the work of recent
years.

Π. INTERRELATIONS OF ELASTIC AND INELASTIC
PROCESSES AT HIGH ENERGIES

Our Chapters Π and III a r e devoted to the question
of the relat ions of elastic and inelastic p r o c e s s e s .
Therefore the r e a d e r who is acquainted with this prob-
lem or is interested only in questions of the description
of inelastic p r o c e s s e s may go directly to Chapter IV.

In the present chapter we shal l show that the ampl i-
tude for elastic scat ter ing through an arb i t ra ry angle
at high energies is practically completely determined
by the character of the inelastic p r o c e s s e s . At f irst
glance this may seem a t r iv ia l a s se r t ion . On m o r e
detailed examination the following questions a r i s e .

1. It is known from experiment that immediately
beyond the diffraction cone'·32·' in the angular distr ibu-
tion of elastic scatter ing t h e r e is a region of weaker
dependence on the a n g l e s . [ 3 3 ]

As will be shown in Chapters Π, IV, and VI, the
scatter ing in the diffraction cone is practically com-
pletely determined by precisely the per iphera l inelastic
p r o c e s s e s with sufficiently high multiplicity. The
fixing of the absolute values of the matr ix elements of
these processes* allows us to find the slope of the main
vacuum singularity of the par t ia l wave in the c r o s s
channel [see Chapter VI, Eq. (47)]. But this slope is
too s m a l l to reproduce the experimentally observed
width of the diffraction peak, which is mainly de ter-
mined by the res idue at the leading pole. At the same
t i m e , as shown in Chapter III, there a r e additive posi-
tive contributions from the phases and absolute values

o f t h e a m p l i t u d e s f o r i n e l a s t i c p r o c e s s e s t o t h e r e c i p -

r o c a l w i d t h o f t h e d i f f r a c t i o n c o n e . F u r t h e r m o r e i t

f o l l o w s f r o m i n d e p e n d e n t e s t i m a t e s t h a t t h e c o n t r i b u -

t i o n o f t h e p h a s e s m u s t b e o f j u s t t h e s a m e o r d e r o f

m a g n i t u d e a s m u s t b e a s c r i b e d t o t h e r e s i d u e s i n t h e

p h e n o m e n o l o g i c a l t r e a t m e n t o f t h e d a t a a c c o r d i n g t o

t h e R e g g e f o r m u l a s . T h e r e f o r e t h e q u e s t i o n a r i s e s a s

t o a p o s s i b l e c o n n e c t i o n o f t h e R e g g e t r a j e c t o r i e s w i t h

t h e a b s o l u t e v a l u e s o f t h e s e m a t r i x e l e m e n t s . A c c o r d -

i n g l y , t h e s t u d y o f t h e e l a s t i c s c a t t e r i n g c a n g i v e s o m e

i n f o r m a t i o n ( t h o u g h i n d i r e c t a n d v e r y i n c o m p l e t e ) a b o u t

t h e p h a s e s o f t h e a m p l i t u d e s f o r i n e l a s t i c p r o c e s s e s .

2 . I n t h e s c a t t e r i n g o u t s i d e t h e d i f f r a c t i o n c o n e

t h e r e i s a r e g i o n i n w h i c h t h e c r o s s s e c t i o n d e c r e a s e s

e x p o n e n t i a l l y w i t h i n c r e a s e o f t h e a n g l e . H e r e t h e

d i r e c t c o n t r i b u t i o n o f t h e i n e l a s t i c p r o c e s s e s m a y b e

s m a l l . B u t e v e n i n t h i s c a s e t h e c h a r a c t e r i s t i c s o f t h e

e l a s t i c s c a t t e r i n g , i n p a r t i c u l a r t h e i n d e x o f t h e e x p o -

n e n t i a l , a r e u n i q u e l y d e t e r m i n e d b y t h e p a r a m e t e r s o f

t h e d i f f r a c t i o n p e a k . A c c o r d i n g l y , t h e e l a s t i c s c a t t e r i n g

i s , i n t h e f i n a l a n a l y s i s , o n c e a g a i n f i x e d b y t h e c h a r a c -

t e r o f t h e p e r i p h e r a l i n e l a s t i c p r o c e s s e s , e v e n t h o u g h

t h e d i r e c t c o n t r i b u t i o n m a y b e s m a l l .

A t s t i l l l a r g e r a n g l e s t h e a n g u l a r d e p e n d e n c e i s

w e a k . H e r e t h e p r o p e r t i e s o f t h e e l a s t i c s c a t t e r i n g a r e

a g a i n d e t e r m i n e d b y t h e d i r e c t c o n t r i b u t i o n o f i n e l a s t i c

p r o c e s s e s o f t h e p e r i p h e r a l t y p e . A c c o r d i n g l y , t h e

a n g u l a r d e p e n d e n c e o f t h e e l a s t i c s c a t t e r i n g c a n g i v e

i n d i c a t i o n s a s t o t h e e x i s t e n c e o f i n e l a s t i c p r o c e s s e s o f

v a r i o u s t y p e s . T h e p r e s e n t e x p e r i m e n t a l d a t a c a n b e

s u f f i c i e n t l y w e l l d e s c r i b e d a s t h e c o n s e q u e n c e o f

p r o c e s s e s o f o n l y t w o t y p e s : p e r i p h e r a l a n d n o n p e r i -

p h e r a l ( p o s s i b l y s t a t i s t i c a l ) .

I n d i s c u s s i n g t h e s e q u e s t i o n s i t i s b e s t t o u s e t h e

u n i t a r i t y c o n d i t i o n , w h i c h d i r e c t l y c o n n e c t s t h e e l a s t i c

s c a t t e r i n g a m p l i t u d e w i t h t h e m a t r i x e l e m e n t s f o r t h e

i n e l a s t i c p r o c e s s e s . I t c a n b e w r i t t e n i n t h e f o r m

lmA{p, θ) =
t_ Γ » f »

~~ 32π* J ' J 2

s i n 9 i s i D 8 2 / l ( p , β,)Α*(ρ,

Here A(p, Θ) is the elast ic scat ter ing amplitude, which
depends on the momentum ρ = | ρ | and the scatter ing
angle θ (in the c.m.s.); F ( p , Θ) is the contribution to
the imaginary part of the amplitude Im A( ρ, Θ) from
al l the inelastic processes (the so-called overlap func-
tion), which can be symbollically written in the follow-
ing way:

F (Ρ, Θ) = 2 j ( Q- 2 ?,) ΊΦη; (2)

"The experimental distributions of the particles in inelastic proc-
esses give information only about the absolute values of the matrix
elements for these processes.

The quantities Μ a r e the matr ix elements for the
inelastic processes a —- η and a' — η (a and a ' a r e
the initial and final s ta tes of the elast ic scat ter ing
p r o c e s s in question, and η is an intermediate n-par t i -
cle s ta te) ; the integration is taken over the ent ire phase
volume Φη admitted by the conservation-law δ func-
tions for the p r o c e s s with tota l initial four-momentum
Q and four-momenta qi of the η final p a r t i c l e s . The
first t e r m in (1) corresponds to the contribution of
elast ic p r o c e s s e s , and in it the integration is taken
over the angular ranges

|θ ,—e, |<e, θ < θ , + θ 2 < 2 π - θ . (3)

At angle θ = 0° the condition (1) leads to the usual
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optical theorem, the first t e r m becoming the total
c r o s s section σβγ for e last ic scat ter ing, and the second
becoming the tota l c r o s s section CTjn for inelastic p r o -
c e s s e s :

Im A (p, 0) = V Ki + ii») = ν σ ί ο , , (4 )

and experiment shows that at high energies the largest
contribution to (1) for 6 = 0 ° is the second t e r m (about
80 percent of the total) .

The overlap function also gives the main contribu-
tion to the elast ic scat ter ing amplitude in the region of
the diffraction cone. In fact, if we note that (as is
shown by experiment) the elast ic scat ter ing amplitude
at s m a l l angles is a lmost purely imaginary, and the
differential c r o s s sections show a Gaussian type of
d e c r e a s e with increasing angle, we can write with good
accuracy for this range of angles

Α (ρ, θ) SB Aip2a,oie~a (5)

The p a r a m e t e r a is called the r e c i p r o c a l width of
the diffraction cone,* whose boundary we have denoted
by θ(ΐ. It can be easily verified by direct substitution
of (5) in (1) that the elast ic contribution in this region
will be of the form e x p ( - a p 2 e 2 / 4 ) , i .e., it cannot fit
the original form (5) and leads only to a s m a l l broad-
ening of the angular distribution given by the function
F ( p , Θ). It is not hard to show from (1) that for an
F ( p , Θ) approximately described by the formula

F (ρ, θ) ss 4p*ain exp ( - α/>2θ2/2) (6)

t h e e f f e c t i v e r e s u l t o f t h i s b r o a d e n i n g i s t h a t t h e

p a r a m e t e r a i n (5 ) i s c o n n e c t e d w i t h a i n t h e f o l l o w i n g

way (for σ θ 1 / σ ί η <C 1):

Accordingly, the inelastic processes determine the
form of the diffraction cone in the elast ic scatter ing,
since h e r e the overlap function is much larger than the
contribution of two-particle intermediate s tates [the
first t e r m in the right member of Eq. (1)].

Let us now examine the part played by F ( p , Θ) at
large scat ter ing angles ( θ > θά)· In this case the
main contribution to the integral is from regions where
one of the angles θί is s m a l l (smaller than θά) and
the other is large (of the o r d e r of Θ). Substituting in
(1) the amplitude in the form (5) for s m a l l angles, we
get the following integral equation for θ > θ^:

Im Α (ρ, Θ) = — ρ σ ' ° ' „ f dv exp [ - ap°- (Θ — v)2/2] Im A (p, v) -- F (ρ, θ),
4.ι(2πο)Ι ;" J . .

whose solution is of the form

,e) = F(p,e)-%fB. \ dvF(p,v) Τ dr
e

e x p [ ~ r f V ^( — Γ 2 / 2 Λ ) — ( σ ί ο ί /

exp [-&* (9)

w h e r e in g e n e r a l Ck a n d bk a r e c o m p l e x [but s t i l l the
whole s u m i s r e a l , s e e (10)] . If in s o m e s u b r e g i o n of
angles overlap is unimportant, then Im A(p, Θ) must
be described by the solution of the homogeneous equa-

tion [ i .e . , the last t e r m in (9)]:

Im Α (ρ, Θ) = Co (p) exp [ - fe0 (/>) ρθ]

+ J 2\Ck(p)\e-(*ebi>)v\oS(\\mbh\pe~<ik), (10)

where the bfc(p) a r e g iven by the f o r m u l a s

60=|2α1η(4πα/σ,ο,)]' -,

bh « (2na| k | ) m (1 + isignk) ( \ k \ > 1); (11)

the coef f ic ients Ck(p) a r e undetermined functions of
the energy, and the phases φκ can be taken equal to
JT/4 (cf . [ 3 4 1 ) . * For elast ic scat ter ing a l l p r o c e s s e s
studied at present b 0 < Re bk (k > 1). Therefore for
large values of ρθ only the first t e r m in (10) is im-
portant. As we go toward smal le r values of ρ θ other
t e r m s in (10) can become important; that is , there will
be oscil lations superposed on the exponential d e c r e a s e ,
and their amplitude increases with decreas ing ρθ.
F u r t h e r m o r e the p a r a m e t e r s b 0 and b ^ a r e determined
by the total c r o s s section and the r e c i p r o c a l width of
the diffraction peak, whose values a r e pr imar i ly due to
the inelastic p r o c e s s e s , as we have indicated above.

Accordingly, even in the range of angles where the
overlap function may be negligibly smal l , the inelastic
p r o c e s s e s determine the functional dependence of the
elast ic scat ter ing amplitude on the angle, owing to the
fact that they play the decisive role in the region of the
diffraction cone.t This is a factual proof of our a s -
ser t ion that the inelastic p r o c e s s e s determine the
elast ic scat ter ing at any angle.

The question as to whether or not there actually
exists a range of angles where F ( p , Θ) <§C Im A(p, Θ)
can be settled only by comparison with experiment. It
has been found [ 3 5 1 that our formula (10) gives a good
descript ion of the very exact data on proton-proton
scatter ing at l . s . momenta from 81 to 21.1 GeV"/c [ 3 3 ] in
the range 1 < ρθ < 2.4 GeV/c (i.e., 1 Ss | t | < 6
(GeV/c)2. F u r t h e r m o r e the index of the main exponen-
t i a l is exactly given, and also the damping of the ampl i-
tude of the oscil lations with increase of ρ θ , their
period, and the sign and the position of the z e r o e s .
This justifies the assumption that at these energies and
in this range of values of ρθ the contribution of F ( p , Θ)
to Im A(p, Θ) can be neglected.

Nevertheless it is possible that with increase of the
energy there is some sort of change in this range . For
example, in the reggeon-exchange m o d e l / 3 6 ' 3 7 1 or in-
deed in the Chou-Yang m o d e l , [ 3 8 i both of which claim
to give an asymptotic description of the elast ic s c a t t e r -
ing, it is easily verified that the overlap function is
always of the s a m e order of magnitude as the imaginary
part of the amplitude.

At larger angles the experimentally found behavior
of the c r o s s sections differs from that predicted by
Eq. (10).

In the region ρθ έ 2.4 GeV/c [ i .e . , 111 > 6
(GeV/c)2] the differential c r o s s sections for pp sca t-

*It is different for different processes and can depend on the
energy.

•"Inclusion of the real part of the elastic scattering amplitude would
require that in the formulas (11) the quantity σ(Ο{ be replaced by the
expression σ(0{ (1 + δ̂ δ ι) , where δ = ReA/ImA, δ ι means the average
value of δ at large angles, and δ̂  is the average value of δ in the region
of the diffraction cone.

•(•Consequently, neglect of the function F(p, Θ) by no means means
a complete denial of the importance of inelastic processes.
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tering in the energy range indicated above drop off
more weakly than exponentially with increase of the
angle [see Eq. (10)]. This can be understood if we
suppose that F ( p , θ) again becomes important. The
weak angular dependence of the differential c r o s s s e c -
tions allows us to assume that here there is also little
change in Im A(p, Θ). Then it is easily shown from (8)
and (9) that Im A(p, Θ) and F ( p , Θ) a r e connected by
the relat ion

lmA(p, 6) = f (ρ, θ)/(1-σ ί ο ί/4πα). (12)

Consequent ly, at large a n g l e s the i n e l a s t i c p r o c e s s e s
again d e t e r m i n e the e l a s t i c s c a t t e r i n g d i r e c t l y
[through F ( p , Θ)].

We can conclude that in the description of elast ic
scat ter ing the pr imary problem is to explain the b e -
havior of the overlap function F ( p , Θ) at smal l angles,
s ince this will make c lear the s t ructure of the diffrac-
tion peak, i .e., the main par t of the elast ic scat ter ing
p r o c e s s e s . At the same t ime at large angles the b e -
havior of this function can be connected with such
theoret ica l questions of principle as the t reatment of
micropar t ic le s as s tat i s t ica l objects.

Here we only note briefly that at tempts to descr ibe
the diffraction peak as the consequence of a definite
c lass of inelastic p r o c e s s e s a r e contained in the un-
corre lated- jet m o d e l , [ 2 6 > 2 7 ] and in models of the mult i-
per iphera l type, [ 2 2>2 4J while the region of scat ter ing at
very large angles is usually associated with the p r e s -
ence of inelastic p r o c e s s e s of the s tat i s t ica l t y p e . [ 3 1 ]

m . THE ROLE OF THE PHASES OF THE MATRIX
ELEMENTS FOR INELASTIC PROCESSES

Let us examine in m o r e detai l what sor t of proper-
t ies of the matr ix elements for inelastic p r o c e s s e s can
determine the form of the overlap function F ( p , θ) at
s m a l l scat ter ing angles . We have found that the uni tar-
ity condition along with the experimental data on
elast ic scat ter ing allow us to draw some conclusions
about the behavior of the function F ( p , Θ). Thus in the
region of s m a l l angles F( ρ, Θ) is well approximated by
a function with a Gaussian d e c r e a s e with increasing
angle [see Eq. (6)]. The question naturally a r i s e s a s
to what determines the r a t e of decrease of this function.
The point is that the matr ix e lements of the inelastic
p r o c e s s e s , which determine F ( p , Θ) according to (2),
a r e complex functions, having both absolute values and
phases . Fukuda and I s o [ 3 9 ] were the f irst to point out
the importance of the phases . It will be shown here that
the p a r a m e t e r α in (6) can be represented a s the sum
of two t e r m s , one of which is determined by the abso-
lute value of the matr ix element, and the other by the
p h a s e . [ 4 8 ] At the s a m e t ime a l l the possible distr ibu-
tions of part ic les in inelastic p r o c e s s e s a r e determined
only by the absolute value of the matr ix element (since
only squares of absolute values of matr ix elements a p -
pear in the express ions for the differential c r o s s s e c -
t ions*) . Therefore an examination of the diffraction

*In fact, as can be seen from (2), for θ Φ 0 we have a Φ a' and the
phases of the quantities Μ are important, while the total cross section
for the inelastic processes is determined by the quantity F(p, 0) and
the phases play no part, and the various distributions in inelastic proc-
esses are obtained if we omit the integrations over the variables in ques-
tion in the expression for F(p, 0).

peak of the e l a s t i c s c a t t e r i n g can g ive s o m e addit ional
information about the i n e l a s t i c p r o c e s s e s .

Let us write the overlap function F ( p , θ) in (2) a s
the sum of the contributions from al l inelastic channels:

where

Fn (Ρ, θ) = <>; η I exp (-i/,,θ) δ» ( < ? - | ] qj)

(13)

(14)

a n d w e h a v e i n t r o d u c e d t h e n o t a t i o n M a _ n

Equation (14) is a formal expression for F n , whose
physical meaning is that one takes the product of the
matr ix element for the transi t ion of two part ic les with
momenta ρ and - p into an η-part ic le s tate t imes the
conjugate of the matr ix element for the transi t ion of
these η part ic les into two with the momenta p ' and
- p ' , the angle between the vectors ρ and p ' being Θ.
This last fact is expressed by writing ( ρ', η |
= < ρ, η | e x p ( - i j y 6 ) , where J y is the component of the
total angular momentum operator in the direction per-
pendicular to the plane of the scat ter ing. Since we a r e
considering spinless par t ic les , J y can be replaced by
Ly, the component of the orbital angular momentum in
that direct ion. If, guided by the general form (6) of the
overlap function, we now assume that each n-particle
contribution to it is also well approximated by a Gaus-
sian function, i.e., that

Fn(p, θ) % 4 ρ 2 σ η β χ ρ ( —a,iP 2e2/2), ( 1 5 )

o r f o r v e r y s m a l l a n g l e s

( 1 6 )Fn (Ρ, Θ) % 4ρ'-ση [1 - (αηρ*θ»/2)],

t h e n

T h e n a l s o

W e r e w r i t e ( 1 7 ) i n t h e f o r m

- £ qj) [J d*,;o+(9? +"»?)
3=1 3=1

J>a J ... J | Λ η Λ [ 2 <lj) Q
3=1 i= 1

(IV)

(18)

(19)

where we have introduced the c o n c r e t e e x p r e s s i o n for
the operator Ly in the form

) _ . χ ι / d d \
(20)

Where δ+ is the positive-frequency delta function,
M a ^ n = Rne

i(Pn, with r e a l R n , and mj is the m a s s of
the j - t h par t ic le . It is not hard to see that

J ...
3=1 3=1

£ j) []
3=1 3=1

(q*+m1) (21)

since S?y is an antihermitian operator (sic).
Consequently, the quantity a n consists of two posi-

tive additive t e r m s , one of which is determined by the
absolute value of the m a t r i x element, and the other by
its phase. By (18) this is a lso t r u e for the quantity a,
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i.e.,

α = α Η + αφ, (22)

where α ρ > 0, αφ 2 0, and we have also for the quan-
tity a [see (7)]:

α^αη + αψ (23)

(ap > 0, a.φ > 0). There is no doubt that these results
hold only approximately in the region of small angles.
Owing to the assumptions we have made. If we use the
formal apparatus of work with wave packets, it can be
shown that the phase φ n is due to the shift of the
center of the wave packet in the interaction process,
while the absolute value R n is determined by the de-
formation of the wave packet.

We remark that the phases <pn can contribute to a
only if they depend on the momenta qj of the secondary
particles. If the phases are constant or if they depend
only on the total energy of the colliding particles, then
Άψ = 0 (cf . [ 2 1 ' 2 8 1 ) Accordingly, the assumption that the
phases are constant or that they depend only on the
total energy of the collision leads directly to the largest
width of the diffraction cone, a"1 = a^ . The introduc-
tion of a phase that depends on the momenta of the
secondary particles can only narrow the cone.

This general treatment cannot answer the question
as to which of the terms in (23) makes the main contri-
bution to a, i.e., determines the width of the diffrac-
tion cone. For this it is necessary to make some sort
of concrete assumptions about the form of the matrix
elements of inelastic processes. At present the role of
the phases has been studied in the uncorrelated-jet
model, [ 4 0 ' 4 2" 4 5 ] in the many-reggeon model, [ 4 0 ' 4 3 ' 4 4 1 and
in the hydrodynamic model.1·391 The quantitative results
obtained depend on the assumptions about the behavior
of the phases, and are somewhat different in different
papers. But from the whole set of papers we can draw
the general qualitative conclusion that: 1) in the ab-
sence of correlations between the secondary particles
the effects of the phases predominate (Ζψ is about an
order of magnitude larger than aft); 2) when such cor-
relations are introduced the importance of the phases
decreases, but in the many-reggeon model, for exam-
ple, they are still very important (&φ > ap) at ener-
gies now attainable with accelerators (In s ~ 3 to 4,
with s in GeV2), although it may become small asymp-
totically; 3) for very strong correlations (in the hydro-
dynamic model) we have ap ~ Ά,φ.

Accordingly, the phases of the matrix elements of
inelastic processes are very important in the forma-
tion of the diffraction peak of the elastic scattering.
Unfortunately, at the present time one sees no further
ways of studying these phases and their dependence on
the momenta of the secondary particles experimentally.

Inelastic processes in which the number of second-
ary particles is very large (n ^> 1) were the ones dis-
cussed in the papers cited.138'40'42""451 The question
naturally arises as to whether reactions with produc-
tion of a small number of particles, and in which one or
both of the colliding particles are converted into reso-
nances (so-called inelastic-binary or quasi-two-parti-
cle reactions) can determine the form of the diffraction
cone. The experimental data on such reactions 1 1 0 ' 4 6" 4 8 1

at energies from 10 to 30 GeV indicate that such

events are a small fraction of all the inelastic processes
(^10 percent). According to the optical theorem this
means that at θ = 0 the fraction of the overlap function
caused by them is equally small (SlO percent). At
nonzero angles, according to (2), the contribution of the
binary processes to the differential cross section for
elastic scattering must have an upper limit1-491 given by
the inequality

if we take into account the experimental fact1-10'46"481

that the cross section for binary reactions* falls off
exponentially with increasing | t | : dajS^'/dti
= [(dffb

i )/dti) t i_o]eC i . Substituting in (24) the values of

Ci and (dCTi i )/dt i)t i = o taken from experiment/1 0 '4 6"4 8 1

we can easily show that in the entire diffraction cone
the contribution of the shadow scattering caused by the
binary reactions is unimportant. Therefore we can
conclude that the small-angle elastic scattering is the
result of diffraction caused by the presence of large-
multiplicity inelastic processes.

IV. THE BETHE-SALPETER EQUATION

We now pass directly to the description of large-
multiplicity inelastic processes. As has been shown
above, they not only predominate in the total cross
section, but also essentially determine the form of the
diffraction cone in the elastic scattering. Therefore
without a detailed understanding of the character of
such processes any description of elastic scattering
must be regarded as only a formal phenomenological
approximation.

At the same time, as we have pointed out, to calcu-
late the differential cross sections for inelastic pro-
cesses one needs to know only the absolute values of
the matrix elements for these processes, while the
shadow elastic scattering caused by them depends
largely on their phases, about which we still have very
little information. Therefore at present it is more
realistic to solve the problem of the interconnection of
elastic and inelastic processes by dealing only with the
question of which singularities of the partial amplitude
for elastic scattering in the angular-momentum plane
of the cross channel correspond to given inelastic
processes in the direct channel. This restricted state-
ment of the problem will be the basis of all the follow-
ing exposition.

The theoretical treatment of essentially inelastic
collisions is undoubtedly an extremely complicated
problem. In this field of physics at present there are a
few general relations and a multitude of different
models.

The theory we shall expound here, which was pro-
posed in [ 2 3 l

( is an attempt to describe and classify pre-
cisely such processes and to elucidate their intercon-
nections with the elastic scattering (in the restricted
sense which we have specified). In this theory we make
a natural separation of the inelastic processes into

"The index b means "binary" and the index i indicates the type of
binary reaction; cj does not depend on t;.
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per iphera l and nonperipheral* in the very f i r s t equa-
t ion. The r e s u l t s show that a c h a r a c t e r i s t i c feature of
the p e r i p h e r a l c o l l i s i o n s in the high e n e r g y r e g i o n i s
the formation of pion bunches—f i reba l l s .

The b a s i c m a t h e m a t i c a l apparatus of the theory i s
the B e t h e - S a l p e t e r equation. It i s the u s e of t h i s equa-
tion that e n a b l e s us to show a d i rect connect ion b e t w e e n
the e l a s t i c and ine las t ic p r o c e s s e s , and at the s a m e
t i m e to s e p a r a t e the i n e l a s t i c p r o c e s s e s into per iphera l
and nonper ipheral p r o c e s s e s . It must be e m p h a s i z e d at
once that our t reatment w i l l not be the ladder approxi-
mat ion often r e f e r r e d to a s the B e t h e - S a l p e t e r method;
we s h a l l u s e the e x a c t B e t h e - S a l p e t e r equation in the
treatment of the g e n e r a l q u e s t i o n s . Of c o u r s e , it i s an
equation in the usua l s e n s e of the word only when i t s
k e r n e l and inhomogeneous t e r m a r e spec i f i ed . But
s o m e g e n e r a l proper t i es of the s c a t t e r i n g amplitude
which do not follow from the B e t h e - S a l p e t e r equation
(pr imar i ly , analyt ic i ty and unitarity) i m p o s e s e r i o u s
supp lementary r e s t r i c t i o n s on the quant i t ies that ap-
pear in it. The r e s u l t i s that desp i te the e x t r e m e l y
g e n e r a l nature of the equation we can extract from it
definite information about the p r o p e r t i e s of the inter-
act ion at high e n e r g i e s . * *

In examining a l l the g e n e r a l c o n s e q u e n c e s that fo l-
low from the combined u s e of the B e t h e - S a l p e t e r equa-
t ion, analyt ic i ty, and unitarity, we s h a l l for s i m p l i c i t y
a s s u m e at f i r s t that the only p a r t i c l e s involved in the
interact ion a r e ident ica l neutral p s e u d o s c a l a r p a r t i c l e s
of mass μ (for example, π° mesonst). We consider
the process of elastic scattering of such particles with
four-momenta p 1 ( p2, p3, p 4 . The Bethe-Salpeter equa-
tion involves the scattering amplitude not only on the
mass shell (with p2 = - μ 2 ) , but also off of it with re-
spect to two external momenta. We denote it by
A(s, t, p2, p | ) , where s = -(pi. + p 2 ) 2 , t = -(pi + p 3 ) 2 .
The Bethe-Salpeter equation can be written in the
following form:

A (s, t, p\, pi) = A (s, t, p\, Ρ^- <*'M (s,, t, p\, p\, k\, k\)

D(kl) (25)

here Si = - (p i - k j 2 , s 2 = - ( p 2 + k j 2 , k2 = p x + p 3

- ki. A" denotes the irreducible (in the t channel) part
of the amplitude,ί and D(k2) denotes the propagation
function. The diagram form of Eq. (25) is shown in
Fig. 1.

Ps P* Pa Pi Ps

F I G . 1. Diagram representation of the Bethe-Salpeter equation.

*We shall give an explanation of these terms later.
**Speaking more exactly, it enables us to relate some properties of

the interaction at high energies with the characteristics ot processes at
comparatively low energies. The situation is somewhat like that result-
ing from the sum rules (see Chapter VII, Sec. 2).

fin Chapter VIII we shall extend the treatment to actual processes
of NN and ττΝ collisions.

φ That is, the part that contains no two-particle intermediate states
in this channel.

Let us expand both the amplitude A i t se l f and i t s
i r reduc ib le part A" in t e r m s of part ia l w a v e s in the t
channel*:

A (s2, t, > = 2 (2/+1) η (t, *;, K) (26)

A(Sl, t, p\, pi k\, kl)= 2 (2/+l)/,(i, Pi, Pi K, kl)Pt(Zi), (27)
1=0

where Zj and z 2 are the cosines of the scattering
angles in the t channel with squared masses (μ 2 , μ2,
-kf, -k 2 ) and (-p2., -pi, -k2, - k 2 ) , respectively; that
is,

2*»i + ' (Pi + PJ + *! + *!) + {p\ - Pi) (*j -
1

a n d z 2 i s o b t a i n e d f r o m Ϊ Χ i f w e r e p l a c e S i w i t h s 2

and set pi = pi = - μ 2 . Substituting (26) and (27) in (25)
and using the orthogonality of the Legendre polynom-
ials, we get the Bethe-Salpeter equation for the partial
waves

W

where

'' k» *»> fl {u fc'· ̂  D № ) D №'
(29)

2-kio = (kl-kl)/2tm. (30)

Equations (25) and (26) are valid both for t > 4μ2 and
for t < 4μ2. It is an important point, however, that for
t < 4μ2 all of the singularities of the integrands in (25)
and (29) are in the second and fourth quadrants of the
q0 plane. Therefore, we perform the Wick rotation [ 5 o ]

and use the invariant variables

(31)

and write Eq. (30) for t < 4μ 2 in the form

/; (t, r0, ΙΌ) = /; (ί, r0, v0)

I — t(l — Γ — ί>2| 1 / 2 /,(ί, r0, ι>0, r, υ) f, (f, r, u)

( 3 2 )

w h e r e t h e r e g i o n o f i n t e g r a t i o n i s d e t e r m i n e d b y t h e

c o n d i t i o n

2ίΓ-ί(ί-4μ2)-ί;2>0. (33)

For t = 0 the region of integration over v, and ν it-
self, go to zero. In order to take the limit t — 0 in
Eq. (32), we must first separate out the kinematic fac-
tors of the functions fi and i u which go to zero and
infinity in this limit. Since for q — 0 these partial
amplitudes are proportionaljo q ,̂ it is convenient to
introduce functions φ ι and φ χ defined by the relations

φ ; = | ί | ' / 2 [ 2 ί Γ - ί ( ί - 4 μ 2 ) - ! ; 2 ] - ' / 2 ( ί - 4 μ 2 ) - ' / 2 / ; , ( 3 4 a )

φ ; = | ί | ' [ 2 ί Γ - ί ( ί - 4 μ 2 ) - ί ; 2 ] - ί / 2 [ 2 ί 7 · ο - ί ( ί - 4 μ 2 ) - ι ; ; ] - ί / 2 7 ί . ( 3 4 b )

T h e s e f u n c t i o n s n o l o n g e r c o n t a i n t h e k i n e m a t i c s i n g u -

l a r i t i e s , a n d t h e r e f o r e f o r t — 0 t h e y [ l i k e t h e p r o p a -

g a t i o n f u n c t i o n D ( k 2 ) ] c a n b e t a k e n o u t s i d e t h e s i g n o f

i n t e g r a t i o n o v e r v . I n t e g r a t i n g t h e e x p r e s s i o n r e m a i n -

i n g u n d e r t h e i n t e g r a l s i g n w i t h r e s p e c t t o v , w e g e t

t h e B e t h e - S a l p e t e r e q u a t i o n f o r t h e p a r t i a l a m p l i t u d e

a t t h e p o i n t t = 0 ,

* B o t h functions are expansible inside the Martin-Lehmann ellipse.
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; (Ρ2) = Φ; (Ρ2 ί 2' **> φ '
(35)

where p 2 = ρ? = ρ2: and k 2 = k 2 = k 2 .
An important peculiarity of Eq. (35) is that in the

region of integration the four-vector k is spacelike,
k 2 > 0. It must be emphasized that the Bethe-Salpeter
equation has this property only in the region t < 0. It
can be seen from (33) that for any value t > 0 the
region of integration also contains t ime-l ike four-
momenta k?,2, indeed arb i t rar i ly large such v e c t o r s .
For spacelike values of the momenta the Watson-
Sommerfeld formula (like the dispers ion re lat ions with
respect to s) is certainly applicable if it can be used
on the m a s s shel l k 2 = - μ 2 , s ince in this region the
imaginary part of the amplitude has no s i n g u l a r i t i e s . [ 5 i a ]

Therefore we can r e p r e s e n t the imaginary par t s of the
amplitude and of its i r reducible block at t = 0, Ai(s 2 )
= ( y 2 i ) [ A ( s 2 + ie) - A ( s 2 - ie)] and A ^ S i )
= ( y 2 i ) [A(s i + ie) - A ( s i - ie)] in the following form:

2), (36a)

;>), (36b)
ii-ioo

where b = const. The inverse relat ions a r e of the
form

fi = — [ A1(z2)Qi(z,)dzz, (37a)
π J

«in in

Ji = A ? Ι,(ζ,) ft (*.)&,. (37b)
zmin

The functions ψι and ~φχ can be expressed s imi lar ly* :

φ , (ρ2, /£=) = (Apk)-'^- j .4,(z2)(?i(22)^2
2min

= — I Ẑ2 — jj / σ ( £ 2 ) p2^ k2) Qi (z2) dz2, (38a)

φ, (ρ2, r-) = (4pfc)-' -|- J J , (z,) <?, (z.) dz,

ft(Zl)dZl, (38b)

where

S u b s t i t u t i n g t h e r e l a t i o n s (38a) a n d (38b) (and a l s o
t h e i r i n v e r s e s , w h i c h e x p r e s s A i a n d A x in t h e f o r m
of integrals of ψ and φ) in Eq. (35),t we get the follow-
ing expression for the imaginary part of the amplitude
at t = 0:

A,(s, p2) =

X A, (s2, №) D2 (k"-) dk2 dSl ds2. (39)

T h e r e g i o n of i n t e g r a t i o n in (39) i s d e t e r m i n e d b y
t h e c o n d i t i o n s

- k2 I - SU + (p2 + μ 2 ) 2 ] + ( S ( _|_ p2 + £2)2 μ 2 _ p 2 ( ^ _|_ k

2 - μ 2 ) 2

+ 4 / 2 · ( 4 0 )

A c c o r d i n g l y w e s e e t h a t i f t h e a m p l i t u d e c a n b e p u t

i n t h e f o r m o f a W a t s o n - S o m m e r f e l d i n t e g r a l , a t t = 0

i t i s p o s s i b l e t o g e t f r o m t h e B e t h e - S a l p e t e r e q u a t i o n

f o r t h e c o m p l e t e a m p l i t u d e a n a n a l o g o u s e q u a t i o n ( 3 9 )

f o r t h e i m a g i n a r y p a r t o f t h e a m p l i t u d e .

U s i n g t h e o p t i c a l t h e o r e m , w h i c h s t a t e s t h a t

Λ, (s, ρ2) = σ (s, p2) l(s + ρ2 - μ2)2 + 4μ 2 ρ 2 ] 1 / ζ , (41a)

where σ is the total interaction c r o s s section, and de-
fining the quantity ? by the relat ion

A,(s, p2, i;2) = 0(s, p2, k2)l(s^rp
2 + k'iy- — ip2k2]"2, (41b)

we get from (39) an equation for the c ross section

o ( s , p 2 )

a(s, p2)=Z'(s, P2) + ĝ -3 \ dk2dsids2D
2(k2)'a(si, p2, k-)o(s2, k-)

AH(s,sl,s.l,p\k2), (42)

where

_μ2)2_(. 4μ2^2]1/2
ττ I (43)

For specific channels with production of η part ic les
Eq. (42) can be written in the form of a system of
equations**

C2(s, p
2)=02(s, p2),

n-1
ση (8, ρ2) = ση (s, p') + s 2 1 * 2 rfs'ds^2 (**> ' (44)

I_ I
X om (s,, ρ2, ί:2) on_m (s2, A:2) if. )

A c c o r d i n g l y , w e h a v e e s t a b l i s h e d a c o n n e c t i o n b e -
t w e e n t h e i n e l a s t i c p r o c e s s e s d e s c r i b e d b y E q s . (42)
a n d (44) (the m e a n i n g of t h e s e e q u a t i o n s w i l l b e e x -
p l a i n e d b e l o w ) a n d t h e e l a s t i c s c a t t e r i n g w h i c h t h e y
c a u s e , w h i c h h a s p a r t i a l a m p l i t u d e s in t h e c r o s s
c h a n n e l d e s c r i b e d by E q s . (29) a n d (35).

We n o t e a l s o t h a t t h a t in t h e a p p r o p r i a t e r e g i o n s of
t h e k i n e m a t i c v a r i a b l e s s and t it i s e a s y t o o b t a i n
f r o m t h e s e e q u a t i o n s t h e M a n d e l s t a m s p e c t r a l funct ion
(s > 4μ 2 , 4 μ 2 < t < 1 6 μ 2 ) , the nonrelativistic Bethe-
Salpeter equation ( s —• 4 μ 2 ) in which A can be inter-
preted as a potential, and the equation of the quasipo-
tentia l approximat ion^ 2 1 (c f . [ 2 3 ] ) .

V. PHYSICAL MEANING OF THE EQUATIONS AND
FUNDAMENTAL ASSUMPTIONS
Let us now analyze the physical meaning of the

various t e r m s that appear in Eq. (42), and also the way
it corresponds to the equation of the mult iper ipheral
model .

The integral t e r m in (42) r e p r e s e n t s the total c r o s s
section σ ρ of the per iphera l interaction. This t e r m
r e f e r s to al l p r o c e s s e s caused by the exchange of one
meson. In fact, the transi t ion from the equation (25)
for the elast ic amplitude to the equation (39) for its
imaginary part at t = 0, and then to the equation (42)
for the tota l c ros s sect ions, corresponds in diagram
language to the transi t ion from the d iagrams of Fig. 1
to those of Fig. 2. It can be seen from this that
s t r ic t ly speaking the express ion for the c r o s s section

*The inverse relations are analogous to (36a) and (36b).
tAnalogous calculations are given in detail in [ S 7 b ]. *σ, and ot denote form-factors.
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FIG. 2. Diagram representation of the equation for the total cross
sections.

of the peripheral interaction, as used in the first papers
on the one-meson approximation, [ 1 8 > l e ] is incorrect. It
was actually of the form of (42), but with the σ in the
integrand taken to be equal to the total cross section σ.

What is the meaning of the quantity σ? Equation
(42) is similar to the equation which Amaldi et a l . [ 2 2 ]

took as the basis of the multiperipheral model. In this
model σ was assumed simply equal to the cross sec-
tion of the interaction in the low-energy region (below
the threshold of inelastic processes), and this led to an
asymptotic decrease of the total cross section with in-
creasing energy. The use of the Bethe-Salpeter equa-
tion allows us to interpret the quantity <T more accu-
rately. According to the definition of the function A
which we have given, we can assert that σ is the sum
of the cross sections of all processes with more than
one meson and the contribution from the various inter-
ference terms. In the theory we have developed, as in
a number of related schemes (for example, the multi-
peripheral and many-reggeon models) it is extremely
important that the irreducible part is positive. It is
this fact that allows us to associate the irreducible
block with the cross section of the nonperipheral
(more-than-one-meson) inelastic interactions and to
interpret it as the formation of a fireball.

That the irreducible block is positive is due to the
magnitudes and signs of the interference terms. The
point is that besides the diagrams obtained by squaring
those shown in Figs. 3, a and 4, a, which of course are
positive, the irreducible block also includes contribu-
tions from diagrams of the type of Figs. 3, b and 4 b,
which describe the interference of the amplitudes for
inelastic processes. The sum of the contributions can
become negative only if the interference terms are
negative and exceed the main contribution.

If the interference terms are even of the order of
magnitude of the contribution of the main process (for
example, half or a third of it), but the kernal remains
positive, then all of our assertions (both mathematical
and interpretative) remain valid.

a) b)
FIG. 3. a) The one-meson process; b) its interference diagram in

the elastic scattering.

a) ^ b)
FIG. 4. a) The many-meson process; b) its interference with the one-

meson process.

The question of the magnitude and sign of the inter-
ference terms cannot be solved in the framework of
the original scheme (nor of models related to it).
Therefore in discussing it we can only rely on intuitive
physical arguments, which are to be regarded as less
rigorous. Even on this level, however, it is not suf-
ficiently discussed in the literature. Most of the papers
tacitly take it for granted as a matter of course that
the interference terms are unimportant. It seems to us
that this is true, but nevertheless the question deserves
discussion.

We must distinguish two types of interference terms.
The first is the interference between amplitudes of two
one-meson processes, and is often called in exchange
interference. It appears in cases in which some of the
particles produced in the first process at a certain
point of the diagram come out in the c.m.s. at the same
angles and with the same momenta as particles pro-
duced at a different point of the second process (see
Fig. 3, b). The contribution of such processes can be
estimated on the basis of kinematic considerations.

If the relative velocity of the blocks is very large
and the Lorentz factor y » 1, then this sort of inter-
ference is small. This is so because in the c.m.s. of
the blocks the particles produced in the different blocks
are strongly collimated and fly out in different direc-
tions with no overlap of their angular distributions.

On the other hand, if the relative velocity of the
blocks is small, ? < C l and the Lorentz factor is small,
γ - 1 -C 1, then the interference terms can be of the
same order of magnitude as the main contribution.

Our case is intermediate between these two situa-
tions. In fact, calculating γ in order of magnitude from
simple kinematical considerations'· ' we have

while

(here γ0 is the Lorentz factor of the blocks in their
c.m.s., s 0 is the square of the " m a s s " of a block, and
k2 is the square of the four-momentum transfer be-
tween the blocks).

It follows from this that γ is large only to the extent
that s 0 > k2. In actual cases, according to Chapter VII,
Sec. 2, So» 5k2 and γ » 3.5. The relative velocities of
the blocks are of the order of the speed of light, but not
extremely relativistic. Then the angular and momentum
distributions of the secondary particles produced in
different blocks overlap only partially. It is clear that
there cannot be any complete extinction of the main
contribution in such a case. Accordingly, the first type
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of interference cannot lead in our case to a negative
irreducible part.

The interference terms of the second type are due
to diagrams of the form of Fig. 4, b. The interference
is between inelastic processes of peripheral (right-
hand part) and many-meson (left-hand part) interac-
tions .

It is clear that the interference terms of this type
can be large only if the quantum numbers, multiplici-
ties, and also the angular and momentum distributions
of secondary particles in the peripheral and the many-
meson processes coincide.

However, it was shown in [ 5 3 ] that even when these
characteristic quantities coincide interference is pos-
sible only if an odd number of pions is exchanged in the
many-meson process. Although we cannot give a rigor-
ous proof that such an interference is small, we know
of no demonstration that the contrary situation can
actually occur.*

In summary, we conclude: that the irreducible part
is positive seems to be an altogether natural condition
(although it has not been rigorously proved).

We have gone into the question of the absence of in-
terference between one-meson and many-meson pro-
cesses only because it is basic to the whole further
development of the proposed scheme. That there is no
completely destructive interference is a main assump-
tion of the following theory. The arguments we have
given provide evidence that this assumption is not un-
justified.

If we accept this assumption, then the one-meson
(or peripheral) processes and the processes (nonperi-
pheral) with more than one meson are practically inde-
pendent of each other. The quantity σ in (42) is the total
cross section of all the processes with more than one
meson and therefore is positive; i.e., ά > 0 . We shall
also call σ the cross section of the nonperipheral in-
teraction. Accordingly, we are assuming that the total
cross section is the sum of two positive terms, the
cross sections of the peripheral and the nonperipheral
interactions. We emphasize once again that since we
have no rigorous proof of this assertion it is one of the
additional postulates or hypotheses which we adopt as
fundamental to our theory.

VI. SOME GENERAL PROPERTIES OF THE
PROCESSES

Let us examine a number of general consequences
of our equations in the framework of the assumption
we have made.

1. The Pomeranchuk Pole

To begin with, it follows from (38b) that ^i(p 2, k2 )
2 0 for I > lo is the position of the furthest-right
singularity of the function ψι. Since the analogous as-
sertion always holds for the function ψ,, [because by
(38a) its sign, in the part of the plane to the right of
all its singularities, is the same as the sign of the

total cross section σ], Eq. (12) cannot have solution if,
independently of p2 and k2, the positions of the furthest-
right singularities of the functions ψι and cpt coincide
and both functions go to infinity at the singularity,
Therefore at the singular point I = a of the function <px

the function φι is always finite if φ α —•«, so that for
I = a the inhomogeneous equation (35) becomes a homo-
geneous equation:

2Τ;π'):
2

Γ

Γ

(

<:4

+

2)
/2>

> < 4 5 )

where R a ( p 2 ) i s the coeff ic ient of the s ingular factor

in the function <pi(p2) at I = a ( s e e the Appendix).

F u r t h e r m o r e , if we u s e the unitarity re la t ion in the

s channel, then, a s we s h a l l show be low, it fo l lows at

once from what we have said that the vacuum Pomer-
anchuk pole a p ( t ) with αρ(0) = 1 is incompatible with
Eq. (35). [ 5 4 ] It is not hard to verify that this contradic-
tion is removed only if the partial amplitude in the t
channel, fi(t) [or <Pi(t)], has for t = 0 a singularity at
the point I = 1 which is weaker [ 5 0 ] than ψχ

~ 1/(1 - I ) l n 1 / 2 ( i - 1), or else if the singularity is
located to the left of the point 1 = 1, i.e., if op(0)
< l. [54>55l This means, of course, that at asymptotically
large energies the total cross section must decrease:

a<const/[ln 1η(ί/μ2)]1/2. (46)

To prove th is we f irst a s s u m e the oppos i te , i . e . ,

that there exists a vacuum pole with αρ(0) = 1. Then,
since the entire two-particle contribution to the unitar-
ity relation in the s channel is contained in A, for
s —-» the quantity σ must decrease at least logarith-
mically: σ( s, p\, pi) 2 ae\ 2 const/in s, where σ β ι is
the elastic scattering cross section.* It is easy to see
that in this case ψ>ι — °°, and consequently Eq. (35) has
no solution. This can also be verified directly by sub-
stituting σ s const/hi s and σ = σ (ρ2) = const, in the
integral term of Eq. (42); then when we integrate we
find that its increase with the energy is now slower
than hi In s, contrary to our initial assumption, t

Accordingly, the existence of a Pomeranchuk pole
with αρ(0) = 1 is in contradiction with our equations
(42) and (35). In order for them to have a solution it is
necessary that the total cross section decrease, al-
though this decrease can indeed be extremely weak.

Thus on the mass shell there can be a pole at the
point I = 1 for t = 0 only if its trajectory depends on
the external masses, or else if it ceases to be a pole
when we go off of the mass shell, i.e., there is a change
in the nature of the singularity. Strictly speaking there
can be no pole of the Regge type, depending only on t,
at this point.

Though this conclusion has been reached as a general
consequence of the equations considered here, never-
theless it is clear that actually the difference in nature
between the maximum admissible singularity and a

*tt might be supposed that there could be a strong interference be-
tween the amplitude of a one-meson inelastic process and that of dif-
fraction production. Here, however, interference is forbidden, as was
shown in [53], owing to the conservation of G parity.

*In fact, unless there is complete destructive interference the total
contribution of all the other intermediate states to ο cannot be nega-
tive.

tThe physical meaning of this contradiction is actually the same as
in [ 2 1 ] , where it was shown that if the quantities σ and σ are indepen-
dent of the energy the integral term in (42) increases logarithmically
with the energy.
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pole can show up only at ultrahigh energies, when
In In ( s/μ 2 ) » 1. Therefore if the actual behavior of
the total cross section is close to the limit of what is
allowed, then in either the phenomenological treatment
of experimental data or in the theoretical discussion of
inelastic processes there is no point in considering
this difference, at all reasonable energy values (up to
energies at which the difference causes a large drop
in the cross section). In what follows we shall use the
Pomeranchuk pole with αρ(Ο)« 1, with the under-
standing that this is not justified at ultrahigh energies.

2. The Character of the Leading Singularity

We shall now show that the leading singularity of
the partial amplitude φ,, must be a moving singularity.
To do so we determine the slope γ of the trajectory
a p ( t ) for this singularity. [ 5 6 1 By a method given in
detail in the Appendix, we readily find

~ ^ dt )t=o (4π)<
φ ; (ρ2, k2) R, (k2) Rl (p2)

X [p2k2D (p2) D {k2)]2 dp2 dk', (47)

where

R x ( p 2 ) i s d e f i n e d a s t h e c o r r e c t l y n o r m a l i z e d ( s e e

b e l o w ) s o l u t i o n o f t h e h o m o g e n e o u s e q u a t i o n [ s e e ( A . 4 ) ] :

i?i (P2) =-rL· Ι φι (Ρ2, k2) [k*D (A·2)]2 R, (k2) dk2. (45a)

In the integrand in (47) a l l of the functions a r e pos i t ive

def in i te: Rx > 0 , s i n c e a c c o r d i n g to (38a) the s i g n of

Ri i s the s a m e a s that of the tota l c r o s s s e c t i o n ;

<ρί(0, p2, k 2 ) > 0, since according to (38b) the sign of
ψΊ(Ο) is the same as that of 8A"x/8t; and the last factor
is positive.* Consequently, the slope of the leading
trajectory is positive, i.e., the inelastic processes de-
scribed by the integral term in (42) lead to moving
singularities in the elastic partial amplitude, and the
diffraction peak in the shadow elastic scattering caused
by these processes becomes narrower with increasing
energy. The physical meaning of this result was ex-
plained in1·58·1, where it was shown that the increase of
the interaction range (narrowing of the peak) is closely
connected with the increase of the number of blocks in
the iterative solution of Eq. (42), and the coefficient γ
is of the order of magnitude of the reciprocal of the
perpendicular component of the momentum transferred
from one block to another. We shall calculate its
numerical value in what follows.

3. The Physical Meaning of the Leading Moving
Singularity

The question is often asked: what sort of inelastic
processes is it that lead to the manifestation of the ex-
change of the leading moving singularity (the vacuum
reggeon)t in the elastic scattering? In the framework
of our present approach the answer to this question is

*We can easily verify that dAi /dt is positive by repeating for it the
well known proof [57a] that the quantity [3A(s, 9/3t] t = 0 is positive.

tHere we shall take no account of the slight difference between
this singularity and a pole, nor of the possible shift of the singularity,
as discussed earlier.

c l e a r . A s we have shown e a r l i e r , the inc lus ion of the

o n e - m e s o n d i a g r a m s in the i n e l a s t i c p r o c e s s e s on the

b a s i s of the Bethe-Sa lpeter equation leads to the ap-

pearancy of a moving pole in the I plane of the part ia l

wave in the c r o s s channel for the correspond ing e l a s t i c

diffraction p r o c e s s . F u r t h e r m o r e , accord ing to our

assumption that there is no completely destructive in-
terference and that therefore the function φΛΟ, ρ2, k 2 )
is positive definite, there is no such pole in the i rre-
ducible part ψι(,ί, ρ2, k 2 ) . We note that it is precisely
these one-meson diagrams that lead, in the study of the
elastic amplitude in the cross channel, below the
threshold for production of new particles, to the uni-
tarity of the scattering amplitude and to the appearance
of a branch point of the amplitude at t = 4μ2. At the
same time we know that the irreducible part
<pi(t, p2, k 2 ) is regular with respect to t at t = 4μ2,
while for the Pomeranchuk pole this point must be a
branch point.

Therefore it seems to us natural to picture the
"physical s tructure" of the vacuum reggeon as en-
tirely due to the one-meson inelastic processes.***
Meanwhile the diffraction from nonperipheral inelastic
processes can lead to an important contribution to the
elastic scattering which is not described by the ex-
change of a vacuum reggeon.

We particularly emphasize that the interconnection
of the elastic and inelastic processes comes about by
means of the unitarity in the direct (s) channel, and
not in the cross (t) channel [transition from Eq. (39) to
Eq. (42)].

4. The Asymptotic Value of the Total Cross Section

The homogeneous equation (45) determines the
function Ri(p 2) only up to a normalizing factor. It was
derived, however, as the limit of an inhomogeneous
equation whose solution is unique and determines the
value of the cross section of the peripheral interactions
in the asymptotic region according to (38a) and (41a).
The correct normalization can be found if we consider
Eq. (35) at the point I = 1 + e (e — 0) (for details

see[59,6oa] a n d t h e Appendix). The result is that the
asymptotic value of the total cross section of the
peripheral interactions can be expressed in terms of
the function Ri(p 2) in the form

*, k2) p- dk\ (48)

where

K'-l "Kl ) Κ ID2 k2)-- Μ Γ ( ί + 3/2) Wi(J>
A l ^ l " i r J ; = r Λ ' {P ' " > - Ι2π)3 Γ (1 + 2)" (42-f

The tota l c r o s s s e c t i o n i s natural ly g iven by

= a-\-a'\ (50)

*We note that in principle one can imagine models in which there
exist simultaneously two vacuum poles of the function φ χ , which are
complex conjugates for t > 4μ 2, exactly cancel each other for t = 4μ2,
and for t < 4μ2 lead to some sort of compensation of the pole caused
by the integral term in the Bethe-Salpeter equation. However, in the
first place, for this we should have to assume that the interference is
very important at high energies, which, as we have explained, seems to
us unlikely; and in the second place, on the present phenomenological
level of the theory it scarcely makes any sense to complicate the model
before the simplest versions have encountered any contradictions.
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5. The Differential Distributions

It is also not hard to derive the m a s s distributions
of the i rreducible blocks and thei r distribution in the
squares of the momentum t r a n s f e r s in per iphera l
p r o c e s s e s (see Fig. 2). To do so we examine the inte-
g r a l t e r m in Eq. (42). Again including only the contr i-
bution from the pole at I = 1, we replace CT(S2, k 2 ) by
a p ( k 2 ) = R 1 ( k 2 ) a p / R 1 ( - M 2 ) and r e c a l l that the effec-
tive values of s 2 a r e much larger than the quantity k 2 .
Integrating over s 2 , we get the following dis tr ibut ions:

^ - W ( = ^ ) i ^ 2 ^
( * 2 ) 2 f l 2 ( * 2 ) j 4 l ( 8 l i - μ 2 ,

i k , . ( 5 i >

" D — / 2ΐ 1 **' ' — ~ Z i-

(52)
It is seen that the concrete form of these distributions
depends on the behavior of the function Ai(s i , - μ 2 , k 2 )
and the function R i ( k 2 ) which is associated with it by
(46). Nevertheless we can s ta te that these distributions
have a maximum, since they a r e integrable (i.e., they
go to z e r o when sr and k 2 simultaneously go to in-
finity for s — °°), and they go to zero at the points s x

= 4 μ 2

& η ό k 2 = k m i n ~ 0 .

VII. THE FUNDAMENTAL PARAMETERS AND THE
PROPERTIES OF PERIPHERAL INTERACTIONS

1. The Irreducible-block Model and Its Parameters

We now attempt a qualitative es t imate of the effec-
tive values of Si and k 2 that play the main part in
these distr ibutions. F i r s t we note that the kernel s of
the equations (35) and (42) a r e positive. Therefore in
the i terative solution of these equations each i teration
will also be positive.* Since the sum of these i terations
(the tota l c ros s section) exists and is finite for s — °°,
the i terat ion s e r i e s must converge. This means that
the k e r n e l ff(s1; p 2 , k 2 ) must be a decreasing function
of its arguments a s they go to infinity:

lim σ (s,, p2, k2) = 0.
2 &2

(53)

T o l o o k f o r t h e a p p r o x i m a t e n u m e r i c a l v a l u e s o f

t h e q u a n t i t i e s s 0 a n d k 2 , = p 2 a t w h i c h t h e r e m u s t b e a n

e f f e c t i v e c u t o f f o f t h e c r o s s s e c t i o n < f ( s , p 2 , k 2 ) , w e

f i r s t m a k e a v e r y c r u d e q u a l i t a t i v e e s t i m a t e . L a t e r

( s e e v n . 2 ) w e s h a l l d o t h i s m o r e c o r r e c t l y , b u t w e

b e l i e v e t h a t t h i s s o r t o f e s t i m a t e i s v e r y u s e f u l a s a

g u i d e t o u n d e r s t a n d i n g t h e r e l a t i o n s o f t h e v a r i o u s

p a r a m e t e r s .

Let σ have the very s imple form

σ (s, p2, k2) = σοθ (s0 - s) θ (kl - k2) θ (kf, - ρ2), (54)

w h e r e
1. x>0,
0, x<0.

Substituting (54) in (38b), we get the following expres-
sion for φι:

•Moreover, as we shall show, each term of the iteration series is an
observable quantity and has a clear physical meaning. For finite energy
the iteration series contains a finite number of terms, which increases
without bound as the energy goes to infinity.

φ ι (ρ2, №) « | £ - In (Zo/Zmin) θ (kl - λ'-) θ (kl - ρ2), (55)

where

zo = (so -r P2 + k2)!2kp, z m l n = (4μ2 + k2 -- p2)l2kp.

By subst i tut ing (55) in (45) we can find a connect ion
between the p a r a m e t e r s σ 0 , s 0 , and ko. To get it in
explicit form, we use a well known approximate r e l a -
tion, according to which the t r a c e of the k e r n e l must
be approximately equal to unity, i.e.,

Using the fact that it is values k 2

portant (see below), we get
μ 2 that a r e im-

2*5

j - ^ t ] ^ i for 2ft; < s0, (57a)

α. - % - ~ U i for so<2ft;, (57b)

3o0fc5/32it3 * 3σο%/64.-χ3« 1 for 2ltJi«S(, (57c)

Since the meaning of σ0 is the mean value of the c r o s s
section of nonperipheral interactions for s < s 0 , and
thus actually a lso in the resonance region (see below),
it is natura l to a s s u m e that μ"2 5 o0 < 3μ~2. Then from
one of our formulas, say (57c), we find that

4.3 GeV2 < 2kl«So < 13 GeV2 (58)

If the quantities k 2 and s 0 a r e very different, then a c -
cording to (56) the larger s 0 the s m a l l e r k 2, and
conversely. Accordingly, a new large p a r a m e t e r of the
dimensions of energy squared appears in the theory.
It is important that this resul t has been obtained only
from our justified requirement that the c r o s s section
for per iphera l processes be finite* [that Eq. (45) be
solvable].

2. A More Accurate Determination of the Parameters

We can est imate the p a r a m e t e r s 0 m o r e accu-
rate ly [ ] if we make use of the hypothesis of duality.
We shal l make the usual assumption that the imaginary
part of the elast ic scatter ing amplitude consists of two
contributions of different types—a contribution c o r r e -
sponding to the leading vacuum singularity, which does
not fit into the framework of the usual dual scheme, and
the remainder after subtraction of this contribution, to
which we can apply the duality hypothesis. As already
noted, the first contribution is completely contained in
the per iphera l part of the amplitude. As for the second
part, in the spir i t of the duality hypothesis it can be
represented as a sum of resonances in the s channel.
Therefore, in o r d e r to calculate its integral contribu-
tion, which is a l l that is of interest for Eq. (39) at large
energies [or, what is the s a m e thing, for Eq. (45)], it is
sufficient to substitute instead of the actual amplitude
Ai the sum of the contributions of the corresponding
Regge t r a j e c t o r i e s . This procedure, however, can be

*If the cross section at the large energies is only approximately
constant, i.e., if the vacuum singularity is located not right at the point
/ = 1, but near it, [S5] or even if the singularity is not a pole, [54] this
does not affect our conclusion, but can only have a slight effect on the
numerical value of this parameter, with no change in its order of mag-
nitude.
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justified only for integration up to some finite energy.
The point is that at a high enough energy, when the two-
pion exchange is really "reggeized," the contribution
of all trajectories that have a nonvanishing two-pion
vertex* is already contained in the peripheral term,
so that to use them in the duality condition for the non-
peripheral term would now be to count the diagrams
over again. It is reasonable to suppose that in the
sense indicated the boundary s 0 between "low" and
"high" energies is located where the clearly marked
resonance structure of the cross section of the non-
peripheral interactions disappears and it becomes of
the order of the geometric cross section, i.e., where
σ(1Ό) * μ~2. For s > s 0 we shall assume that this
cross section can be described as the tail, perhaps of
a large number, but still of a finite number of reso-
nances that exist in the region s < s0, i.e., that it be-
haves asymptotically like s~\t Joining these two
forms at the boundary, i.e., at s = s0, we arrive at the
following expression for 3.1 on the mass shell (in the
sense of the sum rules!):

(59)
where a is the effective value of the position of the
pole at t = 0. The possibility of such a "one-pole"
f o r m i s j u s t i f i e d b y t h e f a c t t h a t i n n o n p e r i p h e r a l Ή Ί Ι

s c a t t e r i n g t h e P ' o r f t r a j e c t o r y m u s t p r e d o m i n a t e ,

a n d i t i s n a t u r a l t o r e g a r d a l l o f t h e o t h e r c o n t r i b u t i o n s

a s s m a l l c o r r e c t i o n s . A c c o r d i n g l y w e m a y a s s u m e t h a t

α » 0.5—0.6. Incidentally, it will be seen further on
that the result (i.e., the value of s0) is not very sensi-
tive to the choice of the exact value of α . When we use
(38b) and (59) to calculate the function A"i in explicit
form and substitute it in (45), we arrive at the follow-
ing equation [we shall discuss the effect of the fact that
(45) actually involves the function A~i off the mass
shell at the end of this section]:

. (60)

where F(2, 1 + a, 2 + a; x) is the hypergeometric
function. It is clear that we can determine the quantity
s 0 from the condition for solvability of this equation.
For an approximate and incomplete calculation we
equate the trace of the kernel of Eq. (60) to unity and
recall that according to arguments given earlier
ir(so) « μ"2. The result is t

so/μ2» 32π3α/[1 + α — (πα/sinπα) (4μ2/ί0)"]. (61)

When we subst i tute in (61) a « 0 . 5 — 0 . 6 , i . e . , a value

c l o s e to that correspond ing to the P ' t ra jectory, we

*At any rate this is a property of all nonexotic trajectories with
positive G parity, and in particular of the P' and f trajectories, in which
we shall be primarily interested.

t i t must be pointed out that because of the presence of branch
points the kernel also contains another contribution, which decreases
much more slowly with increasing s, (see [54] and Sec. 1 of Chapter
VI). This contribution, important in principle, is apparently numeri-
cally small and unimportant for the questions treated here.

{Actually this approximation is very good within the limits of ac-
curacy to which the analysis in question can pretend. [ 6 0 b]

s e e that s 0 « 7 - 8 (GeV) 2. At the s a m e t i m e it i s c l e a r

that the average value 0Ό of the quantity σ(β) in the
range s < s 0 is much larger than μ"2. Using the ex-
pression (59) and the fact that ff(s0) * μ"2, we readily
verify that σ 0 « 3μ"2. Knowing the values of s 0 and σ0,
we can use (57a) to find the value of k2—the effective
parameter of the cutoff with respect to k2. We get kjj
« 1.2—1.5 (GeV)2. One can arrive at the same result [ e c b ]

by directly analyzing Eq. (60).
Here it is appropriate to point out that this estimate

of s 0 agrees well with the estimates that are obtained
as the result of analyses of the experimental data on
elastic scattering on the basis of finite-energy sum
rules [ 6 1 1 (FESR) and the interference model J 6 2 1 It is
well to discuss the latter method in a bit more detail.
If in first approximation we represent the elastic
scattering amplitude as the sum of the contributions of
resonances in the s channel and the contribution from
the exchange of a vacuum pole in the t channel, then a
direct analysis of the experimental data on jrp scatter-
ing at energies of the order of 2 GeV and higher
shows [ 6 2 ] that the irregularities of the amplitude caused
by the resonances in the direct channel show up strongly
only at energies E]ab ~ 3—4 GeV. This means, first,
that the entire nonperipheral interaction can be
described fundamentally by resonances in the direct
channel, and second, that the maximum masses of the
resonances are of the order of 2.5—3 GeV. We have
arrived at this conclusion by relying on the results of
comparison of the theory with the experimental data on
πρ scattering. Unfortunately, it is so far impossible to
analyze the im interaction in a similar way. However,
we see no grounds for expecting a large qualitative dif-
ference between the main properties of these interac-
tions. Accordingly, it is natural to expect that a valid
upper bound on s 0 is s 0 ~ 10 (GeV)2.

Let us now consider what the effect on these results
must be when_one takes into account the dependence of
the function Ai on p2 and k2. Since for_ p2, k2 > 0, i.e.,
in the spacelike region, the amplitude Ai must be a
decreasing function of the variables p2, k2, it is clear
that including this dependence can lead only to an in-
crease of the value of s 0 . At the same time we see no
reasons to expect a very strong decrease of the func-
tion Ai in the range p2, k2 <C k0, since none of the
ways now known to approach the description of the
strong interactions, including that expounded here,
involves a corresponding parameter.* Accordingly, the
value of the quantity s 0 which we have obtained is a
lower bound, and the value of ko is therefore an upper
bound, but the true values should not differ much from
these estimates. Arguments based on the interference
model also indicate that this is so.

It also follows from the treatment we have given that
in a certain sense the vacuum singularity can be in-
cluded in the framework of the dual scheme, if we let
it correspond to the multiple production of all possible
sets of resonances in the s channel, unlike the non-
vacuum trajectories, which are usually taken to corre-
spond to the set of single resonances. In this connec-
tion it is not surprising that its properties are essen-

*Evidently all the experimental data show reliably that the quan-
tity μ2 cannot be such a parameter.
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tially different from the universal properties of all the
other trajectories.

3. Fireballs

We shall now explain the physical meaning of our
results. For this purpose let us examine the iterative
solution of Eq. (25). In terms of diagrams it is of the
form shown in Fig. 5, where the terms correspond to
the first, second, third, and so on, iterations of (25).
The transition from (25) to the equation for the imagi-
nary parts, (39), and that for the total cross sections
(42), corresponds to letting the particles in the inter-
mediate states be on the mass shell, so that we go
from Fig. 5 to the diagrams of Fig. 6, which are
topologically the same as those considered in the AFST
model/ 2 2 1 To the blocks in these diagrams there cor-
respond irreducible parts described by the quantities
cr(si, p2, k 2 ) . It can be seen from the diagrams that the
production of the particles can be regarded as occur-
ring in the "blocks", i.e., in centers of emission which
are connected with each other by only one meson line.
The physical meaning of the parameters s 0 and k§ is
that they describe the effective squared masses of the
blocks and the squares of four-momentum transfers
from block to block. It follows from what we said
earlier that the " m a s s e s " of the blocks must remain
bounded for s —• °° (though indeed rather large, of the
order of s^ 2 ) , as must also the squares of the four-
momenta transfered between blocks.

Physically the blocks are separated because of the
comparatively large value of their relative γ factor
(this question was discussed in Chapter V).

These properties of the emission centers—their
bounded masses of a characteristic size (several GeV),
and the order of magnitude of the k2 connecting neigh-
boring centers—coincide with the properties of the
fireballs, the clumps of pion matter with bounded mass
of which we spoke in the Introduction (Chapter I).
Therefore hereafter we shall use the term "fireball"
to denote such centers of the emission of particles.
Here it must be kept in mind that in the scheme under-

A A A Pi Pi Pt p, Pi
FIG. 5. Iterative solution of the Bethe-Salpeter equation.

* /

— + •·

consideration the emission centers do not arise as in-
dependent objects, with properties not depending on the
interaction. On the contrary, the properties of the fire-
balls are completely determined by the peripheral
character of the process, namely by the fact that the
interaction between them is due to the exchange of one
meson. Therefore it would be correct to choose a term
defining the process as a whole, and not its separate
features. In other words, we cannot define what a fire-
ball is independently of the way it is "prepared." It
would be more logical to speak of processes of the
fireball type. Nevertheless, following an established
tradition, we shall hereafter use the term "fireball",
though keeping in mind its inadequacy.

The quantity σ which describes an irreducible block
comprises, in particular, the total cross section for
elastic scattering; that is, we must also consider, for
example, the diagram shown in Fig. 7, a. If an elastic
scattering is due to the exchange of a reggeon, then this
diagram is equivalent to that shown in Fig. 7, b . Join-
ing the pions with the nearer of the colliding particles,
we see that this process can also be simultaneously
interpreted as diffractive production of particles (an
inelastic process without exchange of quantum numbers
between the blocks). Since, however, the elastic cross
section is much smaller than the inelastic, we shall
still use the term "fireball."

FIG. 7. Contribution of elastic proc-
esses to an irreducible block.

Thus one of the main propositions of our theory,
following from rather general assumptions, is that in
peripheral interactions there must arise massive cen-
ters of particle emission—fireballs.

We also note here that from the fact that the mass
of a fireball and the square of the four-momentum
imparted to it are bounded it follows that the number
of fireballs will increase logarithmically with increas-
ing energy at high energies. Here all of the calculations
are analogous to those done in t 2 2 1 (for more details
see [ 2 3 1 ).

4. The Spin of Fireballs

This is also a proper place to discuss the question
as to what sort of angular momenta contribute to the
fireball-blocks. For this we note that a wide range of
energies must contribute to the integral in (42), and in
this entire region the cross section σ0 of the nonperi-
pheral reactions must be large:

σ ( Λ , ~ 5 Ο ΐ ι 3 > 1 . (62)

Th is e s t i m a t e w a s obtained above on the a s s u m p t i o n
that σ0 ~ 3/μ2 = const; in the case of an energy-de-
pendent σ 0 the integral

FIG. 6. Iterative solution of the equation for the inelastic proc-
esses.

(63)
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must satisfy the analogous condition.
It follows that the number of partial waves taking

part in the formation of the block must also be large.
This assertion is based on the following arguments.

The largest partial cross section with angular momen-
tum / allowed by the unitarity condition is

c = π (21 -f l)/p- =. {21 + 1) ·4.Ί,'(* — 4μ3), (64)

i . e . , for g iven I it fa l l s off with i n c r e a s i n g s . At the

s a m e t i m e the range of the s t r o n g in teract ions i s f inite

and given by r 0 ~ μ"1. Therefore a strong interaction
characterized by the angular momentum I can occur
provided the momenta | ρ | of the colliding particles
are sufficiently large: | ρ | r 0 ~ i, that is, if | ρ | <? 1 μ.
For smaller s the interaction practically does not oc-
cur, and for larger s it falls off according to (64). Let
us estimate the number of partial waves that must con-
tribute effectively to the cross section in order that the
necessary condition (63) be satisfied. In the range from
I P Imin = 1 Μ to | p | m a x = [(s o/4) - μ 2 ] 1 / 2 the contri-
bution of the wave with a given I* will be

ol)m^ds ~ 4π(21+ 1) In (65)

Even this maximum value, for any I in the range from
1 to βί/ 2/2μ, is smaller than the value 50 ττ3 which
follows from (63). Setting s 0 ~ 10 GeV2 in (65), we see
that the inequality

in

1=1 iii» [=1

(66)

must hold. Th is inequality i s sa t i s f i ed only for Z m a x

^ 3, i . e . , when at l e a s t t h r e e part ia l c r o s s s e c t i o n s

contribute to the e f fect ive c r o s s s e c t i o n . T h e s e e s t i -

m a t e s show that the p r e s e n c e of a s e t of w a v e s i s e s -

s e n t i a l in o r d e r to sat i s fy the condit ions (62) and (63).

Actual ly the ef fect ive number of part ia l w a v e s m u s t b e

l a r g e r , s i n c e r e p l a c i n g the part ia l c r o s s s e c t i o n s by

the i r m a x i m u m v a l u e s dec ided ly i n c r e a s e s the r ight

s i d e of the inequality, b e c a u s e ordinar i ly none of the

part ia l c r o s s s e c t i o n s at ta ins the l imi t s e t by the uni-

tar i ty condit ion (cf. e . g . , [ 6 3 1 ) . In p r a c t i c e the number of

part ia l w a v e s contributing to the c r o s s s e c t i o n i s of the

order of L ~ s ^ 2 μ ~ 10. However, the important point
here is that a fireball cannot be characterized by a
given angular momentum.

It follows from these considerations that a fireball
in the form in which it appears in the theory can cer-
tainly not be associated with any specific boson reso-
nance, since there is no resonance with a given angular
momentum I that can give the required contribution to
the integral (63). Moreover, according to the duality
hypothesis (see Chapter VII, Sec. 2) a fireball can be
thought of as the set of all resonances, "weighted"
according to the Bethe-Salpeter dynamical equation.

*We do not consider the s wave here. Including it would not change
our conclusions, but would make all of the calculations more cumber-
some.

5. The Preasymptotic Behavior of the Cross Sections

Having written the kernel of Eq. (42) in the form
(54), we can determine the asymptotic value of the
cross section for peripheral interactions according to
(48). For k2 = s 0 Eq. (47) can be rewritten in the form

<*'>!'In {$0
The eigenfunctions Ri and the eigenvalues σ 0 have
been calculated with a computer for three different
values of s 0 in Eq. (67). σ? and ff^ot were determined
from (48) and (49). The results are shown in the table.

Values of the Cross Sections for Various
Choices of the Parameter s 0

10 = 250 U*

σο

S7

o £

BS

" Ι ο ί

6 6

*o = 400 μ-

"o

3 5 . 4

· ' »

4 3

°lol

4 3

so = 600 μ3

σ0

23 30

"lot

30

W e s e e t h a t t h e p a r a m e t e r s 0 m u s t l i e in t h e r a n g e

5 ^ s 0 5 12 GeV2 if σ 0 ~ (3 - 1)μ 2. The most import-
ant result is that at asymptotically high energies the
total cross section is found to be larger than its value
at low energies for all these values of so(<y^ > σ 0 ) .
Therefore there must be a preasymptotic range of
energies where this cross section increases. We shall
show that this increase is monotonic. To do so we dif-
ferentiate (42) with respect to s. At large energies
[(s o /s) 2 < lj we get

*, Ρ"-)

ds
wax

'•mi η

" l r n a j

χ C dSla{slt p-, k~) [(s( ~\-pz +

F2rnax

In the model considered da/ds = 0 for s > s 0. Equa-
tion (68) is a homogeneous Volterra equation with a
positive definite kernel. Therefore the eigenfunctions
da/ds must be of definite sign. A numerical solution
of Eq. (42) showed that independently of s 0 the total
cross section begins to increase at s ^ 150 GeV2; that
is, the derivative da/ds is positive in this region.
Consequently, it must be positive in the entire region
in question, so that the cross section of the peripheral
processes increases monotonically.

In our model this also leads to a preasymptotic in-
crease of the total cross section. In the general case,
however, we have not been able to prove this with the
given approach. Simple considerations of the predomi-
nance of the peripheral processes allow us to suppose
that the increase will also be found for the total cross
section.

We note that in the Regge model of weak coupling1641

the conclusion that there is a preasymptotic increase
has been proved precisely for the total cross section.
In that case it comes from the fact that the contribu-
tions from the branch points in the I plane decrease
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with increasing energy, and that the main correct ion
to the asymptotically constant tota l c r o s s section is
negative. One can also set a lower limit on the s ize of
the correct ion t e r m . It turns out that in the p r e a s y m p -
totic region the c r o s s section behaves in the following

[ 6 4 ]

way:
g

: [ 6 4 ] :

(69)

where Β > σ£Ο{(°°)/32πα', and a' is the slope of the
leading t ra jectory .

On this mat ter there a r e interest ing experimental
resu l t s obtained i n [ 6 5 ] , which indicate that the total
c ross sections for interaction of cosmic-ray part ic les
with nuclei increase in the energy range from 2 ·10 1 0

to 10 1 2 eV.

6. The Average Multiplicity

In the model under consideration the average num-
b e r of i rreducible blocks (fireballs) at high energies is
determined in exactly the s a m e way as in^22·1:

31 ^ (da!dl.a);,a=u In (sl%¥), (70)

where λα is an additional variable p a r a m e t e r in t ro-
duced by replacing φ α by λ ^ α in Eq. (32), where i a

is replaced by ψα according to (34a), and (34b) (for
m o r e details see Appendix). The quantity da/d\a can
be found by the method expounded in the Appendix, and
is given by

(άα!άλα)λα=α=,^σρμ:!ί\6π3ϋ2ιι1{ — μ2),

where the index 0 indicates that Ri is normalized to
unity. The average multiplicity Ν in per iphera l pro-
c e s s e s is Ν = a n , where ή is the average number of
part ic les produced in the decay of a f ireball .

For various values of the parameter s 0 the numer i-
cal coefficients in (71) a r e as follows:

6.0lg(s/2/c2) for so = 5 GeV

-. { 6.8lg(s/2F) for so = 8 GeV2

7.7lg(s/2F) for so = l2GeV2

(72)

Accordingly, the average multiplicity in per iphera l
p r o c e s s e s increases logarithmically with the energy,1-221

the coefficients in the model considered being given
by (72).

The quantities n ( s 0 ) a r e obtained from calculations
with the s ta t i s t ica l t h e o r y [ 3 1 ] : n i s c ^ * 2 ( s o / m 2 ) 1 / i ! . The
best description1-6 6 1 of the data on N(s) obtained with
a c c e l e r a t o r s and with cosmic rays is given_by using the
following values of the p a r a m e t e r s s 0 and k 2 in (72):
So * 8 GeV2, k 2 « 2 GeV2 (Fig. 8).

The models we have considered a r e of course only
a first approximation to real i ty, enabling us to under-
stand the main features of the processes and to es t i -
mate their p a r a m e t e r s . To c a r r y out a comparison
with experiment it is necessary, f irst, to examine the
experimentally observed p r o c e s s e s in proton-proton
and pion-proton coll isions, and, second, to examine
m o r e rea l i s t ic models for σ (for example, to take into
account the s t r u c t u r e s of low-energy resonances , and
so on). We shal l now discuss the problems that a r i s e
in the use of the s implest model for r e a l p r o c e s s e s .

0 10 10 10 Elab.GeV

FIG. 8. Comparison of the theoretical predictions about the multi-
plicity with the experimental data. Since the experimental data include
only the charged pions, for the comparison the right member of (72)
has been multiplied by 2/3. A relative lowering of the theoretical esti-
mates may be due to the fact that some of the pions are produced as
the result of the decay of isobars. The straight line 1 is drawn through
the experimental points; the calculated curves 2—4 correspond to values
s0 = 5,8, and 12 GeV2.

VIII. THE INTERACTION OF PROTONS WITH
PROTONS AND PIONS

We have been considering the case of the interaction
of neutra l pseudoscalar p a r t i c l e s . F r o m the experi-
mental point of view, however, the main interest is in
the interaction of protons with protons and pions at
high energ ies . If we assume, as is now customary, that
at high energies the interaction does not depend on the
isospin state of the colliding par t ic les , the effects of
spin rotation a r e negligibly smal l , and al l of the a m -
plitudes without spin r e v e r s a l a r e equal, then the pp
and πρ scat ter ings will each be character ized by a
single amplitude. Therefore in the study of such p r o -
c e s s e s we must consider the following system of equa-
tions for the part ia l ampl i tudes^ 3 1 [besides Eq. (35)
for the 77ΤΓ scat ter ing] :

f dk2 (k2)'*1 D2 (k2) φ (I, p2, k2) φ π π ^

where φ = and

dk2 ) ' ^ D2 (k2) φ ^ - (I, k2) φ π ^ ρ - (I,

(73)

(74)

(75)(75)
In a corresponding way we can also rewri te the system
of equations for the total c r o s s sect ions, associated
with Eq. (42). In real i ty only (35) and (73) a r e equations,
and (74) and (75) a r e simply relat ions between the a m -
plitudes of the different p r o c e s s e s (the irreducible
blocks a r e regarded as given).

We shall now present the r e s u l t s that a r e obtained
on the bas i s of these ideas in the t reatment of a con-
cre te process of the one-fireball type in pp colli-
s i o n s . [ 6 6 ] As we shal l show below, p r o c e s s e s of this
type will appear in the energy range 30 ^ Ejab
i> 500 GeV. For this p r o c e s s we have the three dia-
g r a m s shown in Fig. 9. According to the optical
theorem the contribution to the tota l c r o s s section
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FIG. 9. Diagrams for the calculation of pp scattering.
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χ

w h e r e

> (s2, k\) R (»„ k\, , k\, k\) R (,t1 k\) σπρ

«2= - (

- μ 2 ,

and the r e g i o n s of integrat ion a r e de termined by the

(76)

(77)

(78)

relation (49) applied successively to the appropriate
sets of variables. It is clear that the quantities to be

p2, k 2 ) in (76) are given in casesubstituted for οΉρ( sj
a by the expression

onp(st, p\ fc2) = nG2fc2 2-4p2A:2li/2, (79)

while in case b one of the quantities σ™ must be de-
termined according to (79) and the other must be set
equal to twice the cross section for the nonperipheral
ττρ interaction, since this diagram must be included
twice, and, finally, in case c both factors σπρ are
equal to the cross section for the nonperipheral np in-
teraction. In the concrete calculations it has been as-
sumed that this last cross section is equal to σ0 in the
region s < Si,4 < 7 GeV2 and is zero outside this
region; that is, it has been assumed that practically the
entire irp interaction is due to the region of the reso-
nances (i.e., (7πΐΓ and σπρ are quantities of the same
order of magnitude).

On this basis the cross sections of these processes
were calculated as functions of the energy (Fig. 10),
and also the following characteristics of the processes
at the energies where the cross sections have their
maxima, i.e., at 40, 70, and 250 GeV:

1. The mass distribution of the fireballs, which is
obtained if we omit the integration over s 3 in (76)

10 10' 10' Eu b,GeV

F I G . 10. Energy dependences of the cross sections for the proc-

esses shown in Fig. 9, a, b, c (curves 1, 2, 3, respectively). The total

cross section is shown as curve 4. The cross section for two-fireball

processes is shown by the solid curve wi thout a number. The dashed

line shows approximately the asymptot ic value of the cross section

for peripheral processes.

( F i g . 1 1 ) . I t m u s t b e e m p h a s i z e d t h a t t h e s p e c i f i c s h a p e

o f t h i s d i s t r i b u t i o n i s v e r y s e n s i t i v e t o t h e p a r t i c u l a r

model. For example, the sharp upper limit of this dis-
tribution is altogether due to the fixing of σ in the
form (54), and cannot be justified outside the frame-
work of this model.

2. The distribution with respect to the square of the
momentum transfer kf, which is obtained if we omit
the integration over the appropriate k? in (76). (Fig.
12).

3. The distributions of the inelasticity coefficients
and the average values of the γ factors of the nucleons
and isobars in the c.m.s. The inelasticity coefficient
Κ of a nucleon is defined as

/i = (S2_m

2)/s, (80)

and the inelasticity coefficient R of an isobar is de-
fined as the fraction of the original energy of the nu-
cleon that goes into the production of secondary parti-
cles, excluding those that are produced as the result of
decay of the isobar:

= (%-«,)/». ( 8 1 )

The corresponding γ factors are defined by the formu-
las: for a nucleon

7w = (« + m- — s2)/2ms'/2 = (1 — K) sl^l2m (82)
and for an isobar

/. . . . w o / - v l / 2 1 — Ά I M W

T h e d i s t r i b u t i o n s o f t h e i n e l a s t i c i t y c o e f f i c i e n t s a r e

s h o w n i n F i g . 1 3 , a n d t h e c o r r e s p o n d i n g a v e r a g e v a l u e s

γ of the y factors can be found easily by using Eqs.
(80)-(83).

One finds that yN a 2 · 5 a t E lab = 40 GeV, γ-^
« 3.6 at Eiab = 70 GeV, and γR « 4 at Eiab =250 GeV.

4. The average value yf of the y factor of the fire-
ball-was calculated; it is given by the expression

V/ = 1 2 o-,/- ' + L T<+i i

l->1

 ?' '~~Ts U J

H e r e t h e a v e r a g e v a l u e s , a s f o u n d f r o m t h e c a l c u l a t i o n s

0 0.5 1 Ζ 3 4 5 6 7
k'.GeV2

F I G . 12. Distribution of square of four-momentum transfer.
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FIG. 13. Distribution of the in-
elasticity coefficients.
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a l r e a d y ment ioned, w e r e subst i tuted for the quantit ies

s i , k2, and p 2.

Let us br ief ly d i s c u s s t h e s e r e s u l t s .

As w a s to be expected f rom s i m p l e k inemat ic con-

s i d e r a t i o n s , a s the energy i n c r e a s e s the one- f i reba l l

p r o c e s s e s of t y p e s a, b, and c r e p l a c e each other s u c -

c e s s i v e l y , having the ir m a x i m a at the r e s p e c t i v e e n e r -

g i e s 4 0 , 7 0 , and 250 GeV. With further i n c r e a s e of the

energy they m u s t b e r e p l a c e d by a two-f i rebal l p r o -

c e s s . Accord ing to the r e s u l t s of pre l iminary c a l c u l a -

t i o n s the m a x i m u m of the c r o s s s e c t i o n of the t w o -

f i rebal l p r o c e s s without exc i ta t ion of the nuc leons

c o m e s at an energy of the o r d e r of 250 GeV. The tota l

c r o s s s e c t i o n of the one- f i reba l l p r o c e s s e s attains a

value of the order of σ0 (curve 4 in Fig. 10), so that at
the energies in question these processes must make the
main contributions to the total cross section for pp
interaction. At the same time we see that at present
accelerator energies (with the exception of the Serpuk-
hov accelerator, at which experiments are only begin-
ning) the fireball interaction mechanism is inappreci-
able. Meanwhile the analysis of the experimental data
obtained at energies ~ 20 GeV already indicates the
present of a small fraction of events which can be in-
terpreted as manifestations of the one-fireball mecha-
nism of particle production. [ 8 '9 ] As for experiments
with cosmic rays, as has already been mentioned they
also permit us to speak of the existence of one and two-
fireball (and perhaps even three-fireball) processes,
although of course the accuracy of these data is far
from that which is necessary for a definite conclusion
on this question.

From the mass distributions it can be seen that the
average mass of a fireball turns out to be of the order
of 3 GeV and is in qualitative agreement with experi-
mental results. t 1" 9 1 At the same time it is clear that at
low energies, i.e., near the "threshold" for these
processes, the masses of the fireballs must be some-
what smaller.

The results of theoretical calculations given here
show that the distribution of k2 is practically independ-
ent of the size of the total energy of the interaction and
has a maximum at k2 » 0.5 GeV2, but the effective
values are somewhat larger, of the order of 1 — 2 GeV2.
Unfortunately, the details of this distribution are rather
sensitive to the choice of a model.

The average value of the inelasticity coefficient Κ
which is obtained from the distributions shown in Fig.
13 is of the order of 0.4 and is practically independent
of the energy. This also agrees with the data from
cosmic-ray experiments.

Finally, the value found for the average γ factor of
a fireball, yf » 1.15, is also not in contradiction with
the experimental data, according to which[2>5-1 y"f is
about 1.1-1.2.

Accordingly we can say that all of the results ob-
tained on the basis of the fireball model for processes
of the one-fireball type are as a whole in agreement
with the very scanty experimental data available at
present.

IX. THE CONNECTION BETWEEN DIFFERENT
METHODS FOR DESCRIBING INELASTIC
PROCESSES AT HIGH ENERGIES

As already pointed out, the method described above
for theoretically describing inelastic interactions is
suitable for application only in the energy range where
the parameters used are stable.* At the same time
there are many other models of inelastic processes at
high energies. The ones most often used are the follow-
ing: 1) the statistical (thermodynamic) [ 1 2 '3 0 '3 1 ] 2) the
hydrodynamic method,[11-1 3) the method of uncorre-
lated jets, [ 2 6 ' 2 7 ' 4 2 1 4) the many-reggeon method. [ 2 4 ' 2 5 ' 6 7 ' 6 8 ]

The various models claim to describe processes of
different types and in different energy ranges. There-
fore it is interesting to consider briefly a possible in-
terconnection of all these models.

In accordance with the postulates on which the first
three models are based, they should most readily be
applied to describe nonperipheral interactions in the
framework of the Bethe-Salpeter equation. Further-
more it evidently makes sense to apply the statistical
model to interactions at rather low energies, i.e., to
describe the decay of a fireball (s ^ 10 GeV2). The
hydrodynamical model can be applied only at very high
energies (s > 200 GeV2). Therefore it has nothing to
do with the decay of fireballs, and at such energies it
can describe only the inhomogeneous term in the Bethe-
Salpeter equation.

The region of applicability of the model of uncorre-
lated jets is still not really clear. An important point,
however, is that in the form developed in [ 2 7 ] and [ 4 5 1 it
is a certain extension of the statistical model, in which
the decrease of the cross sections σ with increase of
virtuality, which was assumed ad hoc in the model
considered above [Eq. (54)] appears as the result of
the limited momentum transfers in nonperipheral in-
teractions .

The connection between our present scheme and the
Regge-pole model must be discussed in more detail.

In what follows we shall mean by the many-reggeon
scheme a description of inelastic processes in which
there is in general exchange of arbitrary reggeons be-
tween groups of particles.

If we consider the exchange of vacuum reggeons
only, such processes are different from the multiperi-
pheral processes. A consistent analysis of them has
been made in t 2 4 1 . However, the region of phase volume
accessible to them is small. Experimentally they ap-
pear as diffraction inelastic processes with small cross
sections. Owing to this there have been attempts^2 5 '6 7 '6 8 5

to extend many-reggeon theory by considering the ex-
change of other reggeons and the production of parti-
cles in groups, in order to apply the method in the

*Its application at energies of the order of 10 GeV is possible for
the phenomenological treatment of experimental data, with no claim
to derive predictions for other energies (since here the parameters can
depend on the energy).
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entire phase space. Such an extension, however, leads
in practice to a transition from the many-reggeon
scheme into the multiperipheral scheme in the main
part of the phase space.

1. The Role of Meson Exchange

The interrelation of the multiperipheral scheme and
the Regge pole model manifests itself in the topological
equivalence of the diagrams describing inelastic
processes. t 2 2 ) 2 4 ] The main difference between the dia-
grams in the many-reggeon model and those shown in
Fig. 6 is that the exchange involves not a pion, but
some sort of reggeon. Therefore in the corresponding
analytic expression there corresponds to an internal
line, for example to a particle with positive signature,
not the propagator D(k 2), but a factor I(t):

D (k-) - H / (i) Ι (πα' (0)/2) == (πα' (0)/2) sin"1 (nat (t)!2),

a i ( t ) i s the t ra jec tory of the i-th R e g g e pole (the index
i s tands for both the order number of the r e g g e o n in
the chain and for the c h a r a c t e r of i t s t ra jectory) .

B e s i d e s th i s , typ ica l R e g g e f a c t o r s of the form

za appear, where the quantities ζ a r e the c o r r e -
sponding cosines of scat ter ing angles in the t channel.
For example, for the one-reggeon diagram topolog-
ically equivalent to Fig. 3, a, with formations of groups
of part ic les with " m a s s e s " s} / 2 at the upper point and
- s ^ 2 at the lower point, and with momentum transfer
| t | , the quantity ζ is of the form

= (21 ί | s/Sls2> — ι. (85)

The Regge approach, i.e., the introduction of factors of

the type s , is justified when the quantity | ζ | is
large: | ζ | i » 1. In this case the exchange of a vacuum
trajectory is singled o u t . f 2 4 1

It can be seen from (85) that | ζ | is large only if the
total energy s l / 2 not only is much larger than the
" m a s s e s " s } ^ of the blocks that a r e produced, but
also offsets the influence of the s m a l l rat io of the
momentum t rans fer to the m a s s of a block. The region
of phase volume for this is smal l .

It has been shown i n [ 6 9 1 that in the main part of the
phase space for inelastic p r o c e s s e s the quantity ζ is
of the order of unity. In part icular , for " f o r w a r d "
inelastic scatter ing, i .e., at the boundary of the phase
volume, we have | t | m i n "* s i s 2 / s a n d l z I = 1·

Therefore in the main part of the phase volume the
Regge factors "do not p r e f e r " any part icular Regge
tra jectory . At the same t ime the s ignature factors
single out (numerically!) precisely the pion tra jectory,
since at the poles they reduce to propagators, i .e., for
s m a l l 111 they single out the pion pole* as the one
neares t to the physical r e g i o n . [ 6 9 ] Consequently it is
precisely in the main part of the inelastic processes
that the many-reggeon theory should be applicable.

In the inelastic p r o c e s s e s (unlike the elastic pro-
cesses) the exchange of vacuum reggeons is not of
pr imary impor tance . t 6 9 > 2 4 ) 6 8 ] They a r e important only
where | ζ | 3> 1, or for p r o c e s s e s of resonance produc-

t ion (with m a s s e s s } / 2 and s ^ 2 independent of the
energy in the one-reggeon scheme), even if | ζ | ~ 1.
This last asser t ion is based on the study of the four-
dimensional type of reggis t ics in [ 7 0 ) 7 1 ^, where an ex-
pansion of the amplitude for the process in question in
t e r m s of i rreducible representat ions of the four-
dimensional rotation group was c a r r i e d out. Then on
the assumption that a Lorentz pole exists (i.e., the set
of a main pole and al l its daughter poles in the I plane)
it can be shown that the asymptotic form of the ampli-
tude for such a quasielastic process is given by the
usual Regge formula

Τ ~ I (t) g (t, Si) g (t, S2)(s/(s,s 2 ) 1 / 2 ] a < l ) . ( 8 6 )

Near the boundary of the phase volume ( | ζ | ~ 1)
this is due to the behavior of the res idues of the par t ia l
amplitude, and not to the asymptotic behavior of the
spher ica l functions. [ 6 0 1

However, neither the region | ζ | 3> 1 nor the p r o -
c e s s e s of resonance production can give an asymptot-
ically constant contribution to the total c r o s s section,*
and therefore the exchange of vacuum reggeons is not
the dominant mechanism in inelastic interactions at
high energ ies .

2. The Grouping of P a r t i c l e s

The contribution to the c r o s s section for p r o c e s s e s
with exchange of a reggeon and production of only one
part ic le in each irreducible block is thus even s m a l l e r .
This is the reason that in comparing a concrete phe-
nomenonological version of the reggeon scheme with
experiment in the energy range from 5 to 16 GeV it has
been necessary to assume 1 2 5 · ' that the part ic les come
out from the points of a diagram in groups (clusters)
with relatively smal l total energies in their c .m.s . ,
and that their disintegration is determined by the
stat i s t ica l model. The c lus te r s can be regarded as
fireballs that a r e not completely formed owing to in-
sufficiently high initial energy (the parameter does not
attain the value s 0 ) .

3. The Correspondence between the Equations

We would like to emphasize that inclusion of the
grouping of part ic les and the exchange of different
reggeons is absolutely unavoidable in at tempts at for-
m a l application of the many-reggeon approach in the
main part of the phase volume, and actually corresponds
to a t rans i t ion to the mult iper iphera l descript ion.

This can most intuitively be seen from the fact that
one can write1·7 2 '7 3·1 a single mult iper iphera l equation
which, in the main part of the phase volume of inelastic
p r o c e s s e s , goes over into the equation of mult iper i-
pheral processes described in the framework of the
Bethe-Salpeter equation, and which also, in the region
of applicability of the Regge approach, goes over into
the equation for the many-reggeon diagrams that a r e
described by means of the equation of Chew, Gold-
b e r g e r , and Low.'·67·' This single equation is of the

*For example, at t = 0 the ratio of the squares of the signature fac-
tors for the kaon and pion trajectories is of the order of (μ/mjj)4 ~ 10"2.

*With increasing energy the cross sections for these processes fall
off at least as In"1 s (cf. [ 6 9 · 2 4 ]) .
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form

Β (fc,, pa, Pb) =

= Β (ku p -^ \ dlksA, (k,, k3) D* (kl) Λ2 (k3, h, pa) Β (k3, k,, pt),

(87)

where Β denotes the imaginary part of the elastic
scattering amplitude with one integration not yet done
(or the imaginary part of the "amplitude" for scatter-
ing of a reggeon by a particle), defined by the relation

Ai (Pa, Pb) = ~ j d%At (Pa, kt) O2 (kl) Β (k,. Pa, Pb). (88)

T h i s e q u a t i o n h o l d s b o t h in t h e m u l t i p e r i p h e r a l a n d in

t h e m a n y - r e g g e o n s c h e m e s , b u t in t h e f o r m e r c a s e A i

a n d D 2 a r e i n t e r p r e t e d r e s p e c t i v e l y a s t h e i m a g i n a r y

p a r t of t h e i r r e d u c i b l e b l o c k of t h e e l a s t i c s c a t t e r i n g

a m p l i t u d e a n d a s t h e s q u a r e of t h e p r o p a g a t o r in t h e

B e t h e - S a l p e t e r e q u a t i o n (39), a n d in t h e l a t t e r c a s e ,

a s t h e s q u a r e s of t h e v e r t e x p a r t and of t h e s i g n a t u r e

f a c t o r in t h e C h e w - G o l d b e r g e r - L o w e q u a t i o n . * R d e -

n o t e s t h e t y p i c a l R e g g e f a c t o r

fl = W № ! ) . (89)

w h e r e a ( k ? ) i s t h e R e g g e t r a j e c t o r y t h a t g e t s e x -

c h a n g e d (a = 0 in t h e c a s e of t h e B e t h e - S a l p e t e r e q u a -

t i o n ) , a n d B ( k i , p a , pb) = A ( k i , P b ) x R 2 ( k 1 ; p a , P b ) . T h e

n o t a t i o n for t h e m o m e n t a i s c l e a r f r o m F i g . 14 (for

t = 0 we h a v e k2. = k | , k§ = k l , e t c . ) . T h e q u a n t i t y | z a 3 j

= ( 2 111 s a 3 / s a . i S i 3 ) - 1 i s t h e c o s i n e of t h e s c a t t e r i n g

a n g l e ( p a — » k 3 ) in t h e t c h a n n e l . S o m e t i m e s , w i t h o u t

j u s t i f i c a t i o n , p e o p l e t a k e i n s t e a d of z a 3 t h e q u a n t i t y

S a 3 / S o wi th s 0 = c o n s t .

T h e d e p e n d e n c e on p a c o m e s into E q . (87) only

t h r o u g h t h e f a c t o r R, b u t R = 1 in t h e c a s e of t h e

B e t h e - S a l p e t e r e q u a t i o n . T h e r e f o r e in t h e m u l t i p e r i -

p h e r a l s c h e m e D d o e s not d e p e n d on p a . T h e m e a n i n g

of t h i s i s t h a t t h e c o r r e l a t i o n l e n g t h in t h e p e r i p h e r a l

c h a i n i s m u c h s m a l l e r in t h e c a s e of e x c h a n g e of a n

e l e m e n t a r y p i o n t h a n for t h e e x c h a n g e of a R e g g e t r a -

j e c t o r y . T h i s fac t i s v e r y i m p o r t a n t in go ing o v e r t o

t h e c o r r e s p o n d i n g e q u a t i o n s for t h e p a r t i a l a m p l i t u d e s .

T h e a n a l y s i s of t h e s e e q u a t i o n s i n [ 7 3 ] s h o w e d t h a t t h e

c o n d i t i o n for t h e i r s o l v a b i l i t y wi th a n a s y m p t o t i c a l l y

c o n s t a n t t o t a l c r o s s s e c t i o n i s t h e r e l a t i o n

+ 2α(Α: 2)<1,

if the asymptotic form of ΆΊ

Al (Si) ~ Si f

(90)

(91)

T h i s m a k e s c l e a r t h e r e a s o n s for t h e n o n s e l f c o n -

s i s t e n c y of t h e P o m e r a n c h u k t r a j e c t o r y . It w a s s h o w n

i n [ 5 4 1 t h a t t h e c o n d i t i o n (90) w a s v i o l a t e d in t h e B e t h e -

Salpeter equation because the value ν = 1 is not per-
missible for Q = 0 (see Chapter VI, Sec. 1). In the
Chew-Goldberger-Low model, on the other hand, it was
assumed that ν = -1 (the δ-function model for ΆΊ)
but that a ( k 2 ) went to unity at the point k2 = 0 (the
Pomeranchuk trajectory). Since for k2 > 0 we have
everywhere a ( k 2 ) < 1, there are three ways to re-
move the difficulty in this case:

*In the concrete model considered in [61] the choice was Ai (pa,
= g2 (p|> k^S+CCpa-lq)2 + m2).
tThe case with v<- 1 is equivalent to the case v~-\.

«"a pb
FIG. 14. Elastic scattering caused by multiperipheral (or many-

reggeon) processes.

1) b y e x c l u d i n g t h e point k 2 = 0 f r o m c o n s i d e r a t i o n ,

r e q u i r i n g t h a t t h e c o u p l i n g c o n s t a n t b e t w e e n v a c u u m

r e g g e o n s and t h e p a r t i c l e go t o z e r o a t t h a t p o i n t [ 2 4 ]

(weak c o u p l i n g m o d e l 1 6 4 - 1 ) ;

2) b y a s s u m i n g t h a t t h e v a c u u m t r a j e c t o r y p a s s e s

below the point 1=1, i.e., αρ(0) < i)t54>55>671;
3) by assuming that the singularity at this point is

weaker than a pole [ 5 4 ] (cf. Chapter VI, Sec. 1).
A second important conclusion which can be drawn

from an analysis of the equation for the partial ampli-
tudes' 7 3 1 is that after integration over the Treiman-
Yang angle1-741 the whole difference between the many-
reggeon and multiperipheral approaches drops out for
any choice of R (among those we have indicated), be-
cause the dependence on s a 3 reduces simply to a de-
pendence on the product s a i-Si 3 , i.e., to the choice of
definite form-factors at the vertices of the multiperi-
pheral chain.

Consequently, the equation actually reduces to the
Bethe-Salpeter equation, despite the fact that formally
it takes into account the "reggeization" of the particle
that is exchanged.

4. Diffraction Inelastic Processes

For processes in which the masses Si and s 2 are
fixed Eq. (86) leads to a number of interesting conclu-
sions. For large s the total cross section for the
processes caused by exchange of the i-th Regge tra-
jectory is given by [ 6 9 1

σ ; « C | | / j (0) ]2s l ' l ' " I n " 1 ! , (92)

w h e r e t h e C i a r e c o n s t a n t s . It c a n b e s e e n f r o m (92)

t h a t t h e c o n t r i b u t i o n s f r o m a l l t h e n o n v a c u u m t r a j e c -

t o r i e s , for w h i c h a i ( 0 ) < 1, f a l l off w i t h i n c r e a s i n g s

a c c o r d i n g t o p o w e r l a w s , w h e r e a s t h e e x c h a n g e of a

vacuum reggeon [αγ(0) = 1] leads to a cross section
for production of one or two resonances which falls off
only logarithmically with increasing energy.

It is, however, interesting to note that the coefficient
in (92) is the quantity | Ij(0) | 2 , which in the case of the
pion trajectory is much larger than for the other tra-
jectories (where it is of the order of unity):

Therefore in principle there could be a situation in
which at not too high energies pion exchange could be
more important for some resonance-production pro-
cesses than the exchange of a vacuum reggeon. This
may be the explanation of the fact that diffraction in-
elastic processes have appeared clearly only at energy
Elab ~ 20 GeV. At lower energies it turns out [ 7 5 ] that
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an analysis of the isospin relations, even for reactions
such as pit — ΝπΐΓ, in which few part ic les a r e produced,
leads to the conclusion that vacuum-reggeon exchange
is not always the main mechanism. Pion exchange must
also be taken into account in react ions of the type of
PP — PPirV at energy 16 GeV. [ 7 e 1

In conclusion we emphasize once again that an analy-
s i s of essentially inelastic p r o c e s s e s with an attempt
to apply the many-reggeon scheme to them has shown
that in this case the many-reggeon scheme definitely
comes close to the method based on the Bethe-Salpeter
equation, since one has to recognize, f irst, the import-
ant ro le of meson t ra jec tor ies , and second, the neces-
sity of " g r o u p i n g " the final par t ic les , both of which
follow in a natura l way from the Bethe-Salpeter equa-
tion.

X. CONCLUSION

We have examined the question of the role of in-
elast ic p r o c e s s e s at high energies and of the methods
for describing them. By means of the unitarity pr inci-
ple we have shown that inelastic p r o c e s s e s predominate
at high energies to such an extent that they determine
the elast ic scatter ing at any angle. Therefore a theo-
r e t i c a l description of elast ic scat ter ing is possible only
after one has understood the nature of the inelastic
p r o c e s s e s . At the same t ime it has turned out that a l l
of the proposed theoret ica l models of inelastic p r o -
c e s s e s lead to an excessively wide diffraction cone of
the elast ic shadow scat ter ing. This is evidently due to
the fact that in these models one has not taken into a c -
count the relative phases of the matr ix elements of the
inelastic interact ions, which play a decisive part in the
formation of the diffraction cone.

It i s interesting to note that at tempts to interpret
the elast ic scat ter ing in this range of angles by means
of Regge poles have led to a s imi la r difficulty: the
main contribution to the width of the diffraction cone
must be ascr ibed to the res idues at the poles, and not
to the t e r m which determines the pole tra jectory itself.

The interconnection of these problems can be under-
stood through a simultaneous study of elast ic and in-
elastic p r o c e s s e s by means of the Bethe-Salpeter equa-
tion. With such an approach we succeed in showing that
a knowledge of the absolute values of the matr ix e le-
ments for the inelastic p r o c e s s e s , or , m o r e exactly,
of the tota l c r o s s sect ions, allows us to study the ana-
lytic s t r u c t u r e of the elastic scat ter ing amplitude. At
the s a m e t ime light is thrown on many features of in-
elastic p r o c e s s e s at high energ ies .

Our theory of inelastic p r o c e s s e s is based on an
exact re lat ion of quantum field theory, the Bethe-
Salpeter equation, with the assumption of the absence
of interference (we have considered this question in
detai l in Chapter V). The theory is internally self-
consistent, satisfactorily descr ibes the available ex-
per imenta l data on inelastic processes obtained with
cosmic r a y s , and connects the propert ies of the in-
elastic p r o c e s s with those of the elast ic scat ter ing
amplitude. F u r t h e r m o r e the amplitude for elastic
shadow scat ter ing has the c o r r e c t analytic propert ies
and is connected with the inelastic p r o c e s s e s by the
unitarity condition.

The theory provides a natura l explanation of a fea-
t u r e of the inelastic process which in our opinion is
extremely interesting—the formation of f irebal ls .
Among the general consequences of the theory a r e
limits on the m a s s e s of f ireballs and on the squares of
the four-momentum t r a n s f e r s , a logarithmic increase
of the number of fireballs with the energy, the appear-
ance of a moving singularity in the elast ic scat ter ing
amplitude owing to the existence of processes of the
fireball type, and the conclusion that the assumption of
the existence of a Pomeranchuk vacuum pole with
α ρ ( 0 ) = 1 at ultrahigh energies is not internally self-
consistent. Moreover, the theory leads to a natural
connection between per iphera l and nonperipheral p r o -
c e s s e s and the automatic appearance of a new energy
scale associated with the fireball m a s s .

Along with this it must be pointed out that the
theory is s t i l l very crude; the p a r a m e t e r s that appear
in it a r e s t i l l not fixed accurately enough. In other
words, in its present state the theory can predict quali-
tative effects, but is not yet able to give accurate quan-
titative r e s u l t s . This level of development has so far
been enough for comparison with the data obtained
with cosmic rays , but it is inadequate for detailed com-
parison with more accurate experiments with a c c e l e r -
a t o r s . At present, however, there a r e no such exact
data in the required energy range . The point is that the
theory was developed for, and is suitable for, the de-
scr ipt ion of p r o c e s s e s at very high energies . It s e e m s
to us sense les s to use it for the description of experi-
ments at energies of the o r d e r of 10 GeV. The p a r a m e -
t e r s of the theory become stable and cease to be energy-
dependent at energies at which at least one fireball can
be produced. According to our es t imates this requi res
at least some tens of GeV. For comparison of the
theoret ica l r e s u l t s with experiments in this energy
range it is necessary, f irst, to get more accurate values
of the p a r a m e t e r s , and second, to s tate the theoret ica l
information in a form convenient for comparison with
a specific experiment. By refining the p a r a m e t e r s to
the extent allowed by the bas ic assumptions and the
supplementary conditions, one can obtain models which
lead to definite quantitative predict ions. The first very
simple attempts of this kind a r e described here in
Chapters VII and VHI, At present , after the s tar tup of
the Serpukhov acce lera tor , there has come to be a pos-
sibility of real izing this p rogram.

After the p a r a m e t e r s have been refined and a con-
c r e t e model has been chosen with the aid of acce lera tor
data, it will be possible to r e t u r n to experiments with
cosmic r a y s and make a number of predictions with
g r e a t e r definiteness that at present . Only after th is
will it be possible to make a detailed comparison b e -
tween experiment and theory over a wide range of ener-
gies. In par t icular , the predictions obtained can then be
verified with the a c c e l e r a t o r s in the range 200—300
GeV which a r e now planned.

In conclusion we take occasion to express our gra t i -
tude to E. L. Feinberg for important comments and to
V. N. Akimov for interesting discuss ions.

APPENDIX

The asymptotic value of the total c r o s s section, the
slope of the diffraction cone, and the multiplicity of a
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process can be determined by a single method, which
we shal l now explain. We consider Eq. (32), along with
(34a) and (34b), and write it in the most genera l form

φΐ(ί) = φΐ(ί) + λ(<:[φ,(ί)<8>φΙ(«). ( A . I )

H e r e , i n o r d e r t o s i m p l i f y t h e w r i t i n g o f t h e f o r m u l a s ,

w e h a v e o m i t t e d f r o m t h e a r g u m e n t s t h e d e p e n d e n c e o n

t h e e x t e r n a l m a s s e s , h a v e d e f i n e d

- φ ( (ί, r, ν) φι (ί, r, ν)

(Α.2)
and have introduced an additional factor λι, which for
Eq. (32) is identically equal to unity, but which for the
present we regard as an additional free p a r a m e t e r .

Let us write <pi(t) in the form

φ ; (») = •», (t )/[ i-ot(t )],

w h e r e a ( t ) d o e s n o t d e p e n d o n t h e m a s s e s , a n d R i i s

r e g u l a r a t I = a ( t ) . T h e n , e x p a n d i n g R i ( t ) , a ( t ) , a n d

< p i ( t ) f o r s m a l l t , w e h a v e f r o m ( A . I )

( A . 3 )

w h e r e , f o r e x a m p l e , R i = R i ( 0 ) , a n d s o o n , p r i m e s

d e n o t e d e r i v a t i v e s w i t h r e s p e c t t o t a t t = 0 , a n d

γ = d a ( t ) / d t | t = o . *
Equating t e r m s of the s a m e o r d e r in t and consid-

ering a l l of them at the point I = a, we have

{ — (Α Λ}

R =^ λ c Φ CR) R \ * * · ^ /
R'a ~ — VPa -τ λ α β α φ ^ C§) Ra 4- λα-?αφα 5ζ) R^- ( A . 5 )

D i f f e r e n t i a t i n g ( A . 4 ) w i t h r e s p e c t t o a , w e g e t
dR& dXa — _ „ ^ . d -~ — dRa / * /»\

I t c a n b e s e e n f r o m t h e s e f o r m u l a s t h a t t h e k e r n e l s o f

t h e i n t e g r a l e q u a t i o n s ( A . 4 ) , ( A . 5 ) , a n d ( A . 6 ) a r e i d e n t i -

c a l . B u t ( A . 4 ) i s a h o m o g e n e o u s e q u a t i o n , w h i l e ( A . 5 )

a n d ( A . 6 ) a r e i n h o m o g e n e o u s e q u a t i o n s . I n o r d e r f o r

a l l o f t h e s e e q u a t i o n s t o h a v e s o l u t i o n s , i t i s n e c e s s a r y

a n d s u f f i c i e n t t h a t t h e i n h o m o g e n e o u s t e r m s o f E q s .

( A . 5 ) a n d ( A . 6 ) b e o r t h o g o n a l t o t h e s o l u t i o n s o f t h e

e q u a t i o n a d j o i n t t o ( A . 4 ) . F r o m t h i s o n e e a s i l y f i n d s t h e

values of y and ά λ α / ^ α used in Eqs . (46) and (69).
The asymptotic value of the total c r o s s section σ ^ ,
Eq. (48), is obtained by exactly the same method, if we
consider (A.3) for t = 0, λι = 1 and I = 1 + e (e — 0).
Equating t e r m s of the same o r d e r in e, we get an in-
homogeneous equation for (dRi/dZ)j = 1 . The condition
that its inhomogeneous t e r m be orthogonal to the solu-
tion of the equation adjoint to (A.4) leads to Eq. (48).

*The contribution of the term with cj is small, and therefore we

neglect it.
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