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1 WINNING together with slip is one of the fundamental
types of plastic deformation of crystals. The experi-
mental investigation of twinning in a number of crystals
can be carried out by very clean methods and is rather
exactly characterized quantitatively. In connection with
this, a detailed theoretical analysis of the twinning
process, which can be carried out on the basis of the
theory of dislocations, is of interest. At the present
time a detailed and systematic investigation of twins
has been completed for the stage of elastic twinning.
The exceptional nature of the situation which is
realized in the case of an elastic twin,—namely, the
macroscopic pileup of dislocations of the same type
which are in equilibrium with the external elastic field
and also in equilibrium with the resistive forces from
the side of the crystal lattice—has made it possible to
create a quantitative dislocation theory of thin twins by
using a comparatively simple model. Within the frame-
work of this theory, it has been possible to describe
the basic laws of elastic twinning and to obtain depend-
ences which are accessible to direct experimental
verification.

The theory of elastic twinning which is discussed
below is semi-microscopic in nature since it contains
two phenomenological parameters whose exact values
do not follow from the theory itself. However, at the
present time methods of determining these parameters
of the theory by setting-up quantitative experiments are
being proposed and realized. Therefore, one can as-
sume that a relatively complete quantitative descrip-
tion of the plasticity of a crystal in the case of elastic
twinning can be achieved at the level of dislocations.
Since such a description is absent in the majority of
cases of plastic deformation, but its derivation is the
most important problem in the physics of tensile
strength and plasticity, then it appears to us that an
exposition of the fundamental theoretical and experi-
mental results which are obtained by investigating
elastic twinning would be extremely useful.

INTRODUCTION

In the simplest case, that defect in a crystalline
lattice, which arises in connection with the simultane-
ous existence in the solid of two crystalline structures
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that are mirror images of each other (see Fig. 1), is
called a twin. The plane AA' shown in Fig. 1 (and any
plane parallel to it) carries the name, twinning plane.
It is natural that several equivalent systems of twinning
planes may exist in a crystal.

We shall confine our attention to precisely this
simplified definition of a twin since, on the one hand,
its content is sufficient for a description of the qualita-
tive properties of twinning in the general case but, on
the other hand, it is comprehensive enough for twins in
certain materials of the type of calcite (CaCO3),
sodium nitrate (NaNO3), antimony, etc. One can find a
complete crystallographic classification of twins in the
monograph11].

If one of the structures depicted in Fig. 1 occupies
an insignificant part of the crystal's volume, then by
convention this part is called the twinning layer
whereas the remaining part of the sample is called the
parent crystal. These two regions of the crystal are
separated by the twin boundary. In that case when the
twin boundary coincides with the twinning plane, in the
same way as shown in Fig. 1, it is called a coherent
boundary.

Twins may arise during the process of crystal
growth, during the transition from one modification to
another, and due to the influence of mechanical effects.
In what follows we shall be interested in mechanical
twinning, i.e., that process of plastic deformation in
which part of the crystal acquires a twinning orienta-
tion due to the influence of an external load. For the
experimental investigation of twinning, the most con-
venient crystals are those in which the observation of
this process is not impeded by slip flowing in parallel.
The classical object for the investigation of twinning is
calcite, in which slip is actually not observed at room
temperatures and under ordinary loadings.
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A very important step in the development of twinning
was the discovery by Garber[2] of the elastic twinning
phase. Elastic twinning usually refers to that process
of plastic deformation in which a twin, which appears
in the crystal owing to the effect of an external load,
changes its dimensions reversibly in connection with a
change of the external load. With an increase of the
loading the size of the twin increases, but with a reduc-
tion of the loading—it decreases, "escaping" from the
crystal upon removal of the load. In order to avoid
misunderstanding, we emphasize that the word
"elastic" in the present case does not have any con-
nection to the concept of an elastic deformation, since
the process of twinning itself is one of the realizations
of plastic deformation. The term "elastic twin" only
reflects the reversible nature of the corresponding de-
formation of the crystal.

The essential factor in Garber's experiments^2"51

was the application of concentrated loads in order to
create and maintain an elastic twin in the crystal.
Prior to Garber's experiments, distributed loads which
created an almost homogeneous elastic field in the
crystal were usually used for twinning. Under such
conditions it was possible to observe twins only in the
stage of residual twinning layers (twinning layers which
cross the entire crystal and remain in the crystal after
the removal of the loading). At the present time it is
clear (see Chapter 4 of the present review) that for the
existence of an elastic twin it is necessary to have an
inhomogeneous elastic field which falls off sufficiently
rapidly inside the crystal. Precisely such a field ap-
pears as a result of the application of concentrated
loads, which were also utilized in[2~5].

An external load concentrated in a small region on
the surface of the sample creates a twin having the
shape of a thin wedge-shaped lobe lying in the twinning
plane (see Fig. 2).

If the load is created by a knife-edge, then the twin
acquires the shape of a wedge which emerges onto the
lateral faces of the crystal. Such a twin in a clear
crystal causes interference, which is equivalent to the
interference in a thin wedge (see Fig. 2 b).

If the length of the elastic twin is appreciably
smaller than the thickness of the crystalline sample,
then its dimensions increase continuously with an in-
crease of the applied load. In samples of thickness
1 cm, twinning lobes up to several millimeters in
length can be observed. Information about the thickness
of an elastic twin can be estimated from its interfer-
ence coloring (Fig. 2). Elastic twins of large lengths
have thicknesses ranging from a few tenths of a mi-
cron up to several microns. Therefore, the ratio of
the thickness of an elastic twin to its length is usually
of the order of 10~4 to 10~3. Garber's observations and
also the detailed measurements of how the shape of an
elastic twin depends on the magnitude of the external
load, which were carried out by Obreimov and
Startsev,[6] showed that an elastic twin remains very
thin during the entire course of its growth in the
crystal. This result is the very important experimental
fact on which the expounded dislocation theory of twins
is essentially based.

If the length of the twin becomes comparable with
the thickness of the crystal, then the smooth depend-

(a) (6)

FIG. 2. (a) Interference of the elastic twinning lobe in a calcite
crystal, (b) Interference produced in an elastic twin in calcite by
knife-edge loading.

ence of its length on the load is violated, and a sudden
transition of the twinning lobe into the residual lamella
occurs .^

In that case when the external load begins to de-
crease before the instant of formation of the residual
twinning lamella, the twin usually shrinks in proportion
to the reduction in the load. The reversible nature of
the plastic deformation associated with twinning is a
very specific property of this phenomenon. The physi-
cal reason for this reversibility is very simple: The
interphase boundary between the twin and the parent
crystal possesses a certain surface energy which
generates surface-tension forces which act on the
contour of the twin. It is precisely these forces which,
after the removal of the external load, can reestablish
the original shape of the crystal, having "expelled"
the elastic twin from it.

The universal nature of the phenomenon of elastic
twinning as the compulsory initial stage in the develop-
ment of a twin is confirmed by the observed facts in
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regard to elastic twins in sodium nitrate, [ 7 ] , anti-
mony/8 1 bismuth/9 1 silicon iron/ 1 0 1 zinc,1-111 and also
graphite, albite, and so forth (for more details, see1-11).

The discovery of the phenomenon of elastic twinning,
described by a very simple connection between the ex-
ternal forces and the characteristic parameters of the
twin, did not attract the attention of theorists. A mac-
roscopic theory of twinning was constructed in the
articles by Vladimirskii [12] and Lifshitz Ε 1 3>1 4 ] Lifshitz
and Obreimov, [15] and also Frenkel' and Kontorova [16]

analyzed the process of twinning at the atomic level.
Stepanov[17] gave an explanation of twinning, having
considered it as a mechanically-oriented process in an
anisotropic crystal.

Vladimirskii t l 2 ] considered elastic twinning as the
establishment of mechanical equilibrium in the system
consisting of a crystal containing a twin and an ex-
ternal load. In article1-12] essentially the small ratio
of the thickness of the twin to its length was used, and
an estimate of this ratio was given in terms of the
macroscopic parameters. However, the most important
fundamental result of[12] is the introduction of the con-
cept of a twinning dislocation and the formulation of the
dislocation model of a twin. Vladimirskii's model of a
twinning dislocation, which he published in 1947, is
presented in Fig. 3. This dislocation appears as if
there were a separate step at the coherent boundary of
the twin; therefore a certain collection of dislocations
can ensure any arbitrary slope of the macroscopic
boundary of the twin to the twinning plane. Unfortunately,
in the foreign literature the opinion has been main-
tained that the model of a twinning dislocation was first
proposed by Frank and van der Merwe^181 in 1949, and
the work of Vladimirskii is usually not mentioned.

The general theory of planar macroscopic twins in
an unbounded medium, making it possible to more com-
pletely describe the process of elastic twinning, was
developed by I. M. Lifshitz [ 1 3 ) 1 4 ] on the basis of the
nonlinear theory of elasticity. In the articles by Lif-
shitz the local equilibrium of the twinning layers
associated with given forces was studied, where the
forces were applied to the interface between the parent
crystal and the twin. The equation describing the pro-
file of the twin was derived, and the following important
result was obtained: The aperture angle at the end of
a free twin must be equal to zero, i.e., the end of the
twinning wedge must be "infinitely sharp."

But since the forces acting on the twin boundary
were not specified in [ 1 3 ' 1 4 1 , a number of questions per-
taining to the equilibrium shape of the twin remained
unclear; in particular, the question concerning the
ratio of the thickness of the twin to its length. The
point is that the premises of t l3'14] did not contain any
physically small parameter which might determine the
ratio of the twin's thickness to its length, but experi-
ment always gives a small value for this ratio in the
case of an elastic twin.

In the article by Lifshitz and Obreimov/1 5 1 the
process of twinning was subjected to a systematic in-
vestigation at the atomic level. Whereas a nonlinear
relation between the stresses and the deformations
was assumed in the macroscopic theory,1·1 3 '"1 in [ 1 5 ] a
conjecture was made concerning the nonlinear nature
of the interatomic interaction forces, which reduced to

the introduction of a "twinning force" (a certain
special pair of forces). The process of twinning took
place as the displacement of atomic steps at the twin
boundary. The description of twinning in such terms is
very similar to the use of an atomic model of twinning
dislocations, although such concepts did not appear in
in [ 1 5 ] . In spite of the fact that the atomic approach de-
veloped tir151 makes it possible to treat the phenom-
enon of twinning at a microscopic level, the complexity
and inadequate investigation of the nature of the inter-
atomic interaction forces does not permit one to obtain,
within the framework of such an approach, quantitative
relations governing the process of twinning. It has
turned out to be possible to derive such relationships
by using the dislocation model of twinning. But before
we go on to the justification of the dislocation approach,
one should say something about the useful theoretical
conclusions which follow from the analysis of the one-
dimensional model of twinning due to Frenkel' and
Kontorova. [16] A profound analogy between the pro-
cesses of twinning and slip is pointed out in their arti-
cle. From the analysis given in [ 1 6 1 it follows that in
both cases the deformation process is due to the gradual
propagation of a finite displacement in the lattice.
These displacements differ only in the type of travelling
configurations of the atoms, by means of which the re-
quired rearrangement of the crystalline lattice is
achieved. In modern language this actually means that
the two indicated types of plastic deformation differ
only by the type of corresponding dislocations.

Direct experimental proof of the dislocation compo-
sition of the twin boundary has been obtained relatively
recently, only after a high level of development of the
technique of selective etching had been achieved. The
question of proving the dislocation structure of the
boundary between the twin and the parent crystal
arises because in principle a broad boundary region
could exist in which a continuous transition would oc-
cur from the crystal lattice of the initial crystal to its
twin modification. Precisely such a point of view was
put forward in the article by Kontorova/191 where the
question of the thickness of the twin boundary is dis-
cussed in analogy with a consideration of the interface
between the domains in a ferromagnetic substance.
However, etching the surface of a calcite sample onto
which the boundary of an elastic twin emerges/ 2 0 1

proved that this boundary consists of extended coherent
segments which are lightly etched in the form of nar-
row grooves and with isolated deep etching pits charac-
teristic of the dislocations, occurring at distances of
several microns from each other. The traces of these
defects vanish after the emergence of the elastic twin
from the crystal. Observation by using this same
method of the etching figures characteristic of dislo-
cations on the boundary of the residual twin were car-
ried out in 1 2 1" 2 3 ' 8 7 1. The most convincing proof of the

FIG. 3. The model of a twinning / / "7
dislocation according to Vladimir-
ski[12]·
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connection between these etching figures in calcite and
twinning dislocations is obtained in the experiments^231

where, in particular, the displacement of these defects
due to the influence of mechanical loads, was observed.
Direct experimental observations of twinning disloca-
tions in antimony are described in article t 2 4 1, where it
was shown that the dislocations are spaced in the twin
boundary at distances of the order of a micron. After
the enumerated publications, the results of a number
of researches became known in which the observation
of twinning dislocations was carried out by other
methods (electron microscope, [ 2 5 ] methods involving
X-ray topography/261 etc.). Thus, we consider that at
the present time there is no doubt to the dislocation
structure of a twin boundary.

In the dislocation model the problem of the shape of
the twin in an external elastic field reduces to the
problem of the equilibrium of a certain accumulation
of a single type of dislocations. In the case of a thin
twin, one can talk about twinning dislocations which
are located in a single slip plane. Then we arrive at
the problem of a planar pile-up of dislocations, which
has been repeatedly discussed in the literature. [ 2 7 ) 2 8>2 9^
But upon such a simplification of the problem, it be-
comes similar to another dislocation problem of
plasticity, in particular, the problem of a slip band t 3 0 1

or of thin fractures. [ 3 1 ] And what is more, it is found
that the dislocation description of thin fractures^321

leads to the basic equations of the so-called force
theory of fractures which was developed by Barenblatt
(see the review article [ 3 3 ]) and which does not use any
concepts involving dislocations at all. The similarity
between the description of the plastic deformation
associated with twinning or slip and the destruction of
the crystal associated with the development of fracture
is due to the following physical property. In a crystal-
line lattice with its enormous forces of binding between
the atoms, the kinetics of the indicated inelastic de-
formations of the crystal certainly must include locali-
zation of the front of growth of the process into a small
region and a certain gradualness of its propagation.

In virtue of the analogy between the dislocation
models of a thin twin, incomplete bands of slip, and
thin fracture, the distribution of the dislocations along
such macroscopic defects obeys one and the same
relations (only the Burgers vectors of the correspond-
ing dislocations and the forces acting on the disloca-
tion from the side of the crystal are different). And
what is more, in some kind of sense an incomplete
band of slip and a thin fracture are limiting cases of a
thin twin. A discussion of this situation is contained in
the review article [ 3 4 ] by one of the authors, and will be
repeated at the appropriate places in the discussion
which follows below.

1. THE MODEL OF A THIN TWIN

Let us consider an elastic twin near the surface of
the crystal. The cross section of such a twinning
wedge, where the trace of the twinning plane coincides
with the X axis, is schematically shown in Fig. 4. The
inclined parallel straight lines shown in the Figure in-
dicate the orientation of the atomic planes in the twin-
ning lamella and in the parent crystal. In that case

FIG. 4. A twin at the surface of a solid.

when the twinning is produced by the load on an in-
finitely long knife-edge, which acts on the crystal sur-
face along a straight line paral lel to the Ζ axis (per-
pendicular to the plane of the figure), the twin which
a r i s e s is infinitely extended along the Ζ axis . The
description of such a twin reduces to the specification
of its profile in the XOY plane, and the corresponding
mathematical problem about the equilibrium of such a
twin reduces to a planar problem in the theory of
elasticity. In connection with the lat ter , we shall call
such a twin a planar twin. However, it should be kept
in mind that usually the twins which a r i s e near the
surface of a crystal a re created by a concentrated
load, and therefore they a r e not planar. In connection
with a certain concentration of s t r e s s e s , the twin
generally does not appear at the surface but deep in-
side the c r y s t a l . [ 3 5 > 3 6 ] The cross section of a twin
located inside a crystal is shown in Fig. 5.

Proceeding to the dislocation description of a twin
and trying to make the initial model c lear, let us r e p r e -
sent it by a "monatomic twinning l a m e l l a , " where a
macroscopic twin is real ized by a collection of such
lamel la . A diagram of the cross section of such a
lamella, made in the spiri t of the generally accepted
atomic dislocation scheme, is shown in Fig. 6. The
monatomic twin is completed by a partial dislocation
whose length passes through the cross-hatched region
shown in the figure. The component of the Burgers
vector b in the XOY plane is shown in Fig. 6, and its
magnitude is obviously equal to b = 2a tan a (where
2a is the twinning angle).

It is easy to see that a twin boundary can be realized
by a certain collection of twinning dislocations of the
type shown in Fig. 3, distributed along the contour of
the twinning lamella (see Fig. 7).

Passing on to the conventional representat ion of
dislocations, the twin in Fig. 4 can be replaced by the
collection of twinning dislocations shown in Fig. 8. The
thickness h of the twin, which it has when it emerges
onto the surface, is equal to the product of the total
number Ν of dislocations forming the twin t imes the
distance a:

h = Na.

The magnitude δ of the step, which appears at the
crystal surface in connection with twinning, is related
to Ν and to the Burgers vector b in a s imi lar fashion.

FIG. 5. A twin in an unbounded
medium.
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FIG. 6. Monatomic twinning lamella
in a crystal.

111 III I Ullfl
FIG. 7. Dislocation model of a

twin boundary.

In the case of a thin twin, as was proved a long time
ago by Vladimirskii/1 2 ' the average distance between
dislocations along the length of the twin is of the order
of 10"6 m. Thus, this distance is approximately 10,000
times larger than the interatomic distance which
separates the slip planes of neighboring twinning dis-
locations. It is obvious that the average distance be-
tween the dislocations, expressed in interatomic dis-
tances, determines the order of magnitude of the ratio
of the twin's length to its thickness, i.e., the order of
magnitude of the ratio L/h. Therefore, in the funda-
mental approximation with respect to the small
parameter h/L, one can regard all dislocations as
distributed in a single plane (the twinning plane).1·371

The series of dislocations corresponding to a twin of
length L is conventionally depicted in Fig. 9. The
straight line, along which the dislocations are dis-
tributed and which is the trace of the twinning plane,
is usually called the line of twinning.

We shall assume the twin to be planar, and the X
axis coinciding with the twinning line is inclined at an
angle θ to the surface of the sample (see Fig. 9). Such
a twin is formed by the pile-up of straight dislocations,
which are parallel to the Ζ axis. We assume that at a
certain point χ = a 0 on the surface of the sample, there
is a source of straight twinning dislocations which is
able, due to the effect of the external loading, to create
the necessary number of dislocations. We shall regard
the position of the source of dislocations as separated
from the surface by a distance which, in order of mag-
nitude, cannot be smaller than the step δ which is
produced in connection with twinning at the surface of
the crystal. The latter is associated with the fact that
in the process of twin formation, the region where the
twinning plane emerges onto the surface of the crystal
may be subjected to distortions of a non-dislocation
type. The linear dimensions of this region are of the
order of δ. Since it is precisely in this region that

FIG. 8. A twin as a collection of
ι/ dislocations.

FIG. 9. The dislocation model
of a thin twin. L X

nucleat ion of the twinning d i s l o c a t i o n s o c c u r s , but we
will not be interested in the mechanism of their forma-
tion, then it is sufficient to assume that the disloca-
tions are "generated" in pairs at the point χ = a0,
where a0 ^ δ. In virtue of the law for the conservation
of the Burgers vector, dislocations of the opposite sign
are simultaneously produced, where the number of
positive dislocations is equal to the number of negative
ones. We shall assume that the external load is such
that due to its influence, the negative dislocations
emerge onto the surface of the crystal, creating a
characteristic step on it, but the positive dislocations
are displaced into the region a 0 < χ < L where they
create a twinning wedge.

It only makes sense to talk about a macroscopic twin
when the number of twinning dislocations which are
produced is large and the length of the twin is appreci-
able (in an experiment the number of dislocations per
centimeter of twin's length frequently reaches the
order of magnitude of 104 for a twin length of the order
of a few millimeters). But in such a case the distribu-
tion of the dislocations can be described by a density
which is a continuous function of χ and which is subse-
quently denoted by p(x). The twin's thickness h(x) at
a certain point χ is related to the density of the dislo-
cations in the obvious manner:

(1.1)

From Eq. (1.1) it follows that the function p(x)
must always satisfy the condition

(* . . , ό h y.T /ι n\
Ι ρ (ζ) αχ = - = - = — = N, Κ*-·")
J ο a
no

where, as we have already mentioned, Ν denotes the
total number of twinning dislocations of a single sign,
and δ denotes the total shift along the line of twinning
at the surface of the solid.

The distribution of the dislocations along an elastic
twin cannot be arbitrary, but is determined by the con-
dition for equilibrium of the crystal containing the twin
under the influence of the external loads. It is quite
clear that such an equilibrium distribution is deter-
mined in the form of the solution of a certain varia-
tional problem. However, it is easy to formulate the
condition for equilibrium of the twin without formulat-
ing a variational principle, but by using very simple
physical considerations. In fact, it is well known that
the effect on a dislocation in a crystal can be described
in terms of the forces acting on it. Therefore, the
condition for equilibrium of the system of dislocations
can be written down in the form of setting all of the
forces acting on each dislocation equal to zero. In
connection with the formulation of such a condition,
one should bear in mind that two types of forces act on
a dislocation in a crystal: a force of elastic origin (the
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Peach-Koehler force) which takes into consideration
the elast ic fields created by both the external loads and
by the remaining dislocations in the crystal , and a
force of inelastic origin (of the type of the Pe ier l s
force or the surface-tension force) which hinders the
free " p i l e - u p " of dislocations in the crys ta l .

Being primari ly interested in qualitative physical
r e s u l t s , we shall analyze those situations which lead
to the s implest mathematical express ions, but also
possess sufficient generality. Proceeding along this
path, first of al l we make an assumption about whether
all of the dislocations in the twin a r e either purely
edge dislocations or purely screw dislocations. Then
the Burgers vector of the dislocations under considera-
tion will have only a single component (b = b x for
edge dislocations and b = b z for screw dislocations).
F u r t h e r , since to some extent the free movement of
the dislocations under consideration can occur only in
the twinning plane, then it is sufficient to consider the
components of the forces of interest to us only along
the X axis . In what follows, the projection of the force
along the X axis will be denoted without any subscript
indicating the axis .

The elast ic force, acting per unit length on a certain
dislocation on the part of the external field and the
other dislocations forming the twin, is given by (see
the Peach-Koehler formula i n [ 3 2 ] )

/ el (X) = bo' %) Ρ &) (1.3)

where σ(χ) is the appropriate component of the elastic
s t r e s s tensor, and where σ β ( χ ) denotes the s t r e s s e s
created by the external loads and σ°(χ, ξ) denotes the
s t r e s s created at the point χ on the line of twinning by
an individual dislocation located at the point ξ on this
same l ine.

The integral in Eq. (1.3) is to be understood in the
sense of a principal value which, on the one hand, ex-
cludes taking into account the self-interaction of the
dislocations under consideration, but on the other hand,
it makes the indicated integration reasonable, since the
function σ°(χ, ξ) has a singularity when its arguments
coincide (it has a singularity of the type of the singu-
larity in the Green ' s function).

In an unbounded homogeneous crysta l one can always
write

where the coefficient Β is of the order of magnitude of
the product of the shear modulus μ t imes the magni-
tude of the Burgers vector (Β ~ μ ^ , and its specific
value is determined by the anisotropy of the m e d i u m . t 3 8 1

In an isotropic medium we have the following resu l t s
for edge and screw dislocations, respect ively:

-
J-f WTPMJ "̂  <

where ν is Poisson's r a t i o .
For dislocations in a finite crystal we have

eous crysta l , its expression can be obtained on the
basis of the resu l t s of art icle 1 · 3 9 1 for an isotropic
medium or a r t i c l e [ 4 0 ] for an anisotropic medium.

The force of inelastic origin consists of two essen-
tially different p a r t s . In the first place, any a rb i t ra ry
dislocation (both a twinning dislocation and a perfect
dislocation) experiences a force of retardat ion which
is s imi lar to the force of dry friction. This force,
which is important even in a perfect crystal and which
is due to the d i screte nature of the s t ructure of the
crysta l latt ice, was first analyzed by P e i e r l s [ 4 1 ] and
then by N a b a r r o . [ 4 2 1

If the twins a r e being propagated in a defect crystal ,
then the effective force of retardat ion acting on the
dislocation includes, in addition to the Pe ier l s force,
a dragging force due to the defects distributed in the
sample . The defects turn out to have both a direct ef-
fect on the dislocations, impeding their passage around
their intersection, and so forth, and also a res i s t ive
effect which is described by their elastic fields. In
order to emphasize the fact that the described force
has t e r m s which differ from the Pe ier l s force, in what
follows we shall simply call it a friction force. In
equilibrium the magnitude and direction of this force
depends on the direction of motion of the dislocations
prior to equilibrium, since it includes the dissipative
force which is always directed against the motion.
Therefore, the form of the force of inelastic origin
depends, to a considerable extent, on the process of
twin formation.* We shall assume that it is directed
against the motion, and in the limit of an infinitesimal
velocity it is equal to a constant, nonvanishing quantity.

In the second place, the force of inelastic origin in-
cludes the surface-tension force which acts on the
twinning dislocation from the side of the parent crystal
along the twinning plane perpendicular to the line of
dislocation. This force is due to the fact that a twinning
dislocation, in contrast to a perfect dislocation, gener-
ates a certain two-dimensional stacking defect during
its motion (the "monatomic twinning l a m e l l a " shown
in Fig. 6), whose formation is associated with the ad-
ditional surface energy. It is obvious that only the
dislocations which a r e located at the end of the twin
experience the effect of such a force. In fact, the ad-
dition of a single dislocation to that part of the twin
whose width is of macroscopic dimensions actually
does not change the a r e a of the interface between the
parent and the twinned crystal , and does not signifi-
cantly change the surface energy. At the same t ime,
the addition of a single dislocation at the tip of the
twin, where the dividing boundaries a r e separated
from each other by severa l atomic layers , may ap-
preciably change the corresponding surface energy.
This assumption has been confirmed by a qualitative
investigation. [ 4 3 1 I n t 4 3 ] it is shown that the interphase
surface energy in the twin decreases substantially with
an increase of the number of atomic layers passing
into the twinning s ta te . In part icular, it turns out that
a t r ip le- layer twin can already be practically regarded
as one possessing two coherent twinning boundaries,

where the function K(x, ξ) of two variables has a very
cumbersome form; however, it does not have a singu-
larity at χ = ξ. In the case of a semi-finite homogen-

*As we will see below, the dependence of this force on the nature
of the motion prior to equilibrium is the reason for the hysteresis
which occurs during the process of elastic twinning.
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whereas a single-layer twin is a much more strongly
disturbed region of the crystal with a higher defect
energy.

The difference in the nature of the crystal deforma-
tions generated at the tip of the twin (by the leading
dislocations in the pile-up) and the dislocations on the
twin boundary can be discerned by a comparison of the
diagram shown in Fig. 6, corresponding to a leading
dislocation (a dislocation of the Shockley type), and the
diagram shown in Fig. 3 for a twinning dislocation.

We shall take the indicated propert ies of the surface
tension into account by assuming that this part of the
force of inelastic origin vanishes everywhere outside
of a smal l neighborhood at the end of the twin and
abruptly increases in magnitude at the end, attaining a
certain large finite value at the very end Of the twin.
The introduction of such a force is analogous to the
introduction of a "modulus of coupling" at the ends of
a thin f r a c t u r e / 3 3 1 but it has a different physical char-
a c t e r .

The condition for the equilibrium of a dislocation at
the point x, under the influence of al l the forces
enumerated above, is equivalent to the requirement

<A(z) + f™l(x) = 0, flinel(x)-=bS(x), (1.4)

where S(x) denotes the s t r e s s e s on the line of twinning,
which a r e equivalent to the presence of forces of in-
elast ic origin.

After isolating the character i s t ic singular part of
the kernel σ°(χ, ξ), relat ion (1.4) may be written in the
form

(1.5)

If the field of the external loads and the dependence
of the forces of inelastic origin on the coordinate χ
a r e considered to be known, then relation (1.5) may be
regarded as the equation for the determination of the
function p ( x ) from the given function ω ( χ ) . We note
that it is a singular integral equation.

Thus, an analysis of the density p ( x ) of the d i s t r i -
butions, and hence of the profile of the twin, reduces to
an investigation of the mathematical problem r e p r e -
sented by Eq. (1.5). The kernel of the equation under
consideration has a singularity of the same type as a
Cauchy singular kernel ; therefore, one can car ry out
a qualitative investigation of its solution in the general
case in considerable d e t a i l . [ 4 4 ]

2. CERTAIN CHARACTERISTIC PROPERTIES OF THE
PROFILE OF A TWIN

We have already mentioned that the profile of a
planar twin is completely described by the function
p ( x ) . Therefore, a qualitative investigation of its shape
actually reduces to an analysis of the equation for
equilibrium, whose derivation was completed in the
previous Chapter.

The explicit form of the equation for the equilibrium
of a twin in a certain crystall ine sample of a certain
shape is obtained by the substitution of the specific
expression for K(x, ξ) into Eq. (1.5). The kernel
K(x, ξ) essentially depends on the anisotropy of the
medium, the angle θ (see Fig. 9), and on the distance

of the twinning dislocations from the surface of the
crystal .*

We cannot give a closed analytic expression for the
solution of Eq. (1.5) for any a r b i t r a r y kernel K(x, ξ).
However, even in the general case one can reach a
number of physically important qualitative conclusions,
pertaining to the character i s t ic propert ies of the
equilibrium distribution p(x) of the dis locations.

F i r s t of al l we note that for L - a o « L ~ a 0 , when
the source of the dislocations is located far inside the
crysta l and the s t r e s s field of the dislocations is p r a c -
tically the s a m e as the s t r e s s field in an unbounded
crystal , then Eq. (1.5) goes over into the equation for
the equilibrium of a thin twin, which was first derived
by Li f shi tz : [ 1 3 ]

•Μ')· (2.1)

The definition of the function ω(χ) is given in Eq.
(1.5). It should only be noted that in the manner of
writing down Eq. (2.1) described h e r e , the force ω ( χ )
has a quite specific form and, in part icular, it ex-
plicitly includes the forces of inelastic origin which
were not included in the equations of [ 1 3 > 1 4 ] .

The important resul t of [ l 3 ], concerning the shape of
the twin, was the conclusion that the t ip of a free twin-
ning wedge has a zero a p e r t u r e angle (the opposite
boundaries of the twin touch each other at its end). A
s imi lar conclusion can be naturally reached on the
bas i s of Eq. (1.5) even in the general case, i.e., for a
twin in a crystal sample of a rb i t rary shape and for
arb i t ra ry anisotropy. It is sufficient to note that the
twin can increase its length upon an increase of the
external loading only in that case when the re tardat ion
forces acting on its t ip a r e bounded. But in such a
case, the quantity k>(L) must be finite and therefore
the first t e r m on the left hand side of Eq. (1.5),

ί-L

must a l s o be bounded at the corresponding point. In

order to sat i s fy th i s requ i rement it i s n e c e s s a r y that

ρ ( ξ ) — 0 as ξ — L. From the physical meaning of the
function p(x) defined by relation ( l . l ) , it follows that
the condition p ( L ) = 0 makes the t ip of the twin in-
finitely sharp, i.e., it requi res that the aper ture angle
of the profile at the end of the twin should be equal to
z e r o . In this case the profile of the end of the twin is
schematically shown in Fig. 10 a.

*For reference purposes we present a short list of articles devoted
to the explicit writing down of Eq. (1.5) and to the investigation of
the properties of the shape of the twin based on this equation in a num-
ber of special cases. A twin in an unbounded isotropic medium was
considered in [4S>46], and a twin in an unbounded anisotropic medium
was treated in [ 4 ?]. A twin perpendicular to the plane surface of an
isotropic solid is investigated in detail in [48·4!>.5°]. A twin whose twin-
ning plane is located at an arbitrary angle to the surface of an isotropic
solid is considered in [ s l ] ; equations are also derived there for the case
when the twin is located at a certain depth under the surface of the
isotropic solid. Article [40] is devoted to a twin at the surface of an
anisotropic medium. A twin in an isotropic plane-parallel slab is con-
sidered in [ s 2 · 5 3], and a twin near the boundary of two anisotropic
media having different moduli of elasticity is treated in [5 4].



D I S L O C A T I O N T H E O R Y O F T H E E L A S T I C T W I N N I N G O F C R Y S T A L S 293

FIG. 10. Shape of the end of an el-
~X astic twin deep inside a crystal: a) end

is free; b) end is blocked.

FIG. 11. Shape of the twin near its
emergence onto the crystal surface,
a) Surface of the crystal is free; b) there
is an obstruction on the surface which
prevents the emergence of the disloca-
tions upon unloading.

The same considerations pertain to the point
χ = a 0; if the twin is re s t ra ined in the crysta l by only
the force of the s t r e s s e s applied to the surface
(u>(a0) is finite), then p ( a 0 ) = 0. Usually all twinning
dislocations a r e " g e n e r a t e d " on the surface of the
solid (at the point χ = a 0, which is the only source of
dislocations) and under an increasing load they a r e
only displaced along the X axis . Then in the interval
a 0 < χ < L there a r e only dislocations of a single sign
(p(x) > 0) and the condition p ( a 0 ) = 0 means that the
twin emerges onto the surface of the solid in the form
of a plane-paral lel lamella (see Fig. l l a ) .

If the twin is free, i.e., if the forces res t ra ining it
a r e finite at both ends of the twin ( p ( a 0 ) = p ( L ) = 0),
then the question of its length remains open. In order
to formulate the mathematical condition which deter-
mines the length of the twin, it is s implest to utilize
certain formal resu l t s of the theory of singular inte-
gral equations. It is well known [ 4 4 ] that an equation of
the type (1.5) has a solution which vanishes at both
ends of the interval ( a 0 , L) only in that case when the
right hand side of this equation, ω(χ), satisfies the
following special orthogonality condition:

ω (χ) ρ0 (χ) dx = 0, ( 2 . 2 )

w h e r e p o ( x ) d e n o t e s t h e s o l u t i o n o f t h e h o m o g e n e o u s

e q u a t i o n w h i c h i s t h e a d j o i n t e q u a t i o n t o ( 1 . 5 ) . * T h e

p h y s i c a l m e a n i n g o f c o n d i t i o n ( 2 . 2 ) i s q u i t e s i m p l e 1 3 2 1 —

it e x p r e s s e s t h e r e q u i r e m e n t o f b o u n d e d n e s s of t h e

s t r e s s e s p r o d u c e d in t h e c r y s t a l b y t h e f r e e t w i n .

S i n c e t h e f u n c t i o n p o ( x ) i s u n i q u e l y d e t e r m i n e d b y

t h e k e r n e l o f t h e i n t e g r a l e q u a t i o n ( n a t u r a l l y , t o w i t h i n

a n a r b i t r a r y f a c t o r ) , t h e n r e l a t i o n ( 2 . 2 ) i s t h e c o n d i t i o n

f o r d e t e r m i n i n g t h e l e n g t h o f t h e t w i n . In t h e s i m p l e s t

c a s e of a t w i n i n a n u n b o u n d e d h o m o g e n e o u s m e d i u m ,

t h i s c o n d i t i o n t a k e s t h e f o l l o w i n g f o r m : 1 · 3 2 1

L·, ω (χ) dx
- = 0 . ( 2 . 3 )

U p t i l l n o w t h e s u b j e c t u n d e r d i s c u s s i o n h a s b e e n

f r e e e l a s t i c t w i n s . H o w e v e r , c o n d i t i o n s m a y a r i s e i n t h e

c r y s t a l s u c h t h a t t h e t w i n ' s g r o w t h i s s t o p p e d b y c e r -

t a i n b a r r i e r s i n t h e d e p t h s o f t h e s a m p l e . W e s h a l l

c a l l s u c h o b s t a c l e s , w h i c h s t o p t h e s l i p o f t h e t w i n n i n g

d i s l o c a t i o n s , " s t o p p e r s . " T h e f o l l o w i n g c a n s e r v e a s

* T h e h o m o g e n e o u s e q u a t i o n , w h i c h i s t h e a d j o i n t t o t h e i n t e g r a l
L L

equation \ A'(z, ξ) ρ (ζ) dx -— 0, has the form \ Α' (ξ, χ) p0 (z) ^x = o.

s o m e of t h e s i m p l e s t e x a m p l e s o f a t w o - d i m e n s i o n a l

" s t o p p e r " : t h e r e s i d u a l t w i n n i n g l a m e l l a o f a d i f f e r -

e n t t w i n n i n g s y s t e m , [ 5 5 ' 3 6 ] a c r y s t a l l i n e g r a i n b o u n d -

a r y / 5 6 1 a n d a n i n t e r p h a s e b o u n d a r y . In s u c h a c a s e , a n

i n c r e a s e of t h e e x t e r n a l l o a d i n g d o e s n o t l e a d t o a

c h a n g e in t h e l e n g t h o f t h e t w i n , i t s g r o w t h h a v i n g

r e a c h e d t h e " s t o p p e r . " T h e r e f o r e , t h e l e n g t h of t h e

t w i n m a y b e r e g a r d e d a s f i x e d f o r p r a c t i c a l l y a n y a r -

b i t r a r y e x t e r n a l l o a d i n g s . In s u c h a s i t u a t i o n , r e l a t i o n

( 1 . 2 ) d e t e r m i n e s t h e t o t a l n u m b e r of t w i n n i n g d i s l o c a -

t i o n s o f t h e s a m e s i g n w h i c h a r e p r o d u c e d b y a g i v e n

e x t e r n a l l o a d ( o r t h e t h i c k n e s s o f t h e t w i n f o r i t s

e m e r g e n c e o n t o t h e s u r f a c e ) .

S i n c e i n t h i s c a s e c o n d i t i o n ( 2 . 2 ) i s g e n e r a l l y n o t

s a t i s f i e d , t h e n f r o m t h e t h e o r y o f s i n g u l a r i n t e g r a l

e q u a t i o n s 1 4 4 1 i t f o l l o w s t h a t p ( L ) b e c o m e s u n b o u n d e d .

O n e c a n t a k e t h e " s t o p p e r " i n t o a c c o u n t i n E q . ( 1 . 5 )

b y i n t r o d u c i n g a c e r t a i n f o r c e , c o n c e n t r a t e d a t t h e

point χ = L, as a re tarding force. The presence of
such a point force leads to a singularity in the function
p(x) at the indicated point ( p ( L ) = °°). The geometrical
meaning of this property of the function p(x) reduces
to the fact that the aper ture angle of the twin's profile
is equal to 180° at its end (see Fig. 10b).

Of course, the contour of the twin shown in Fig. 10b
and also the l i tera l formulation of the asser t ion on
which it is constructed must be understood in the con-
ventional sense . The proposed theory of thin twins
s t a r t s from the assumption that the average distance
between neighboring dislocations is much larger than
the magnitude of the Burgers vector ( b p ( x ) < O ) .
Formally this assumption is violated in the immediate
neighborhood of the " s t o p p e r , " and a consistent in-
vestigation of the problem in general should be based
on an analysis of the equilibrium of a d i screte s e r i e s
of dislocations which a r e distributed in paral lel twin-
ning planes. A s imilar problem was discussed in the
ar t ic le by Eshelby, Frank, and N a b a r r o [ 2 7 ] in regard
to the pile-up of dislocations in a single slip plane
which is res t ra ined by a " s t o p p e r . " From the resu l t s
of1-271 it follows that for a large number of dislocations
in the pile-up, the distribution of practically al l of the
dislocations (except for a few dislocations near the
" s t o p p e r " itself) differs very little from that distr ibu-
tion which follows from a continuous t r e a t m e n t . But
since the macroscopic theory cannot pretend to give an
exact determination of the coordinates of the disloca-
tions which a r e nearest to the " s t o p p e r , " the c o r r e -
sponding conclusions a r e consistent within the f rame-
work of applicability of the macroscopic approach. It
is t r u e that the situation is complicated by the fact that
in the case of twinning the dislocations occur in
paral le l " s l i p " planes (they form a "d i f fe rent- t ie red"
pile-up). But even in this case one can have confidence
that right down to distances for which bp(x) ~ 1 the
qualitative behavior of the function ρ = ρ (χ) will not
differ from that which we predict on the bas is of the
analysis of the equations for the equilibrium of a thin
twin. Thus, the expounded theory "does not bear the
respons ib i l i ty" for the exact shape of the contour of
the twin shown in Fig. 10b only in the immediate
vicinity of the end of the twin, where bp(x) > 1.

A different situation may occur, namely, it may
come about that upon a certa in external loading the
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nucleation of the dislocations at the point χ = a 0

c e a s e s . This fixes the thickness of the twin at its
emergence onto the surface, or what is the s a m e thing,
the value of the quantity 6. If for any reason at al l a
" s t o p p e r " for the twinning dislocations is produced
on the surface of the solid, then upon unloading a con-
centrated force appears at the point χ = a 0 , and this
force r e s t r a i n s the dislocations from emerging from
the crys ta l . Then a singularity of the function p ( x )
appears at this point, and the profile of the twin will
have the shape indicated on Fig. l i b in this region.

We shall not present the cumbersome expressions
for the function p(x) , which a r e obtained by the se lec-
tion of different solutions of Eq. (1.5) corresponding to
the presence or absence of " s t o p p e r s " at the points
x = a 0 and χ = L (one can find, for example, the ap-
propriate expressions i n [ 3 2 ] ) . As an example of such
an analysis of the shape of a twin during its growth
p r o c e s s , we only consider the s implest case when the
ent i re qualitative description may be i l lustrated by
closed analytic express ions . Let us assume that the
twin, whose line of twinning is perpendicular to the
plane surface of the crystal , is formed by screw dis-
locations. Then the kernel K(x, ξ) has an extremely
simple form

ΛΓ(χ,ξ)= τ 1 Γ __» Τ ι (2.4)

which corresponds to the appearance of a force of
m i r r o r reflection for a screw dislocation near the
surface of the crys ta l . For such a kernel Eq. (1.5)
reduces to the following singular equation:

FIG. 12. Evolution of the shape and
dimensions of an elastic twin in a crystal
associated with loading (Figs, a to d) and
with unloading (Fig. e): a) Freely grow-
ing twin; b) growth of the twin after the
dislocation source on the surface of the
crystal ceases to operate; c) the end of
the twin encounters a "stopper" (a2 is the
point where the "stopper" is located);
d) the shape of the jammed twin in the
limit of an infinitely large loading; e) an
obstruction ("stopper") on the surface
prevents the emergence of the twin from
the crystal upon unloading.

that on the par ts of the twinning line near the source
(x = a 0 ) the dislocations must be completely absent:

(2.5)

where the point χ = a i determines the right-hand
boundary of the indicated interval. Therefore, in the
interval ( a 0 < χ < a j the twin has the shape of a
plane-parallel lamella (see Fig. 12b). To the right of
the point χ = a t the density p(x) of the dislocations is
determined by a formula of the type (2.6) with the
value a 0 replaced by a!. The quantity a ! and the
length L of the twin a r e now determ ined by formulas
of the type (1.2) and (2.2) in which one should again
replace a 0 by a ^

After the end of the twin reaches the " s t o p p e r "
(L = a 2 ) , the length of the twin becomes fixed, but its
end is rounded off* (see Fig. 12c), where the function
p(x) has the form

w h o s e s o l u t i o n c a n b e w r i t t e n d o w n e x p l i c i t l y w i t h o u t

any d i f f icul ty .

We s h a l l a s s u m e t h a t d u r i n g i t s g r o w t h t h e f r e e

e l a s t i c twin f i r s t of a l l e n c o u n t e r s a " s t o p p e r " a t t h e

point χ = a 2 on the line of twinning (Fig. 12). It may
happen that under the influence of the external load, the
dislocation source at the point χ = a 0 is able to emit
a number of dislocations, not exceeding a certain finite
value N. Then, provided that

j p(x)dx<N

the length of the twin is determined by the relation
(2.2) and the function p ( x ) itself has the form

(I2-*2) V(«-l 2 ) (I2-<-5)
(2.6)

One s h o u l d e x p e c t t h a t w i t h i n c r e a s i n g l o a d t h e l e n g t h

of t h e twin wi l l i n c r e a s e ( l a t e r w e wi l l ver i fy t h e

v a l i d i t y of t h i s a s s e r t i o n ) . L e t u s a s s u m e t h a t t h e

s o u r c e of t h e d i s l o c a t i o n s i s " e x h a u s t e d " b e f o r e t h e

end of t h e t w i n r e a c h e s t h e " s t o p p e r . " T h e n u p o n a

f u r t h e r i n c r e a s e of t h e e x t e r n a l load f o r t h i s twin, a s

w e l l a s for a n y a r b i t r a r y f r e e t w i n , c o n d i t i o n s of t h e

t y p e (1.2) and (2.2) m u s t b e s a t i s f i e d for a g iven v a l u e

of N . One c a n e a s i l y r e a s o n out t h a t w h e n t h e v a l u e

of a 0 i s f ixed, t h e s e m a t h e m a t i c a l c o n d i t i o n s g e n e r a l l y

c a n n o t b e s a t i s f i e d s i m u l t a n e o u s l y . T h i s a l s o i m p l i e s

(2.7)

It is easy to verify that in connection with a strong
increase of the external loading the point χ = a ! ap-
proaches the end of the twin, χ = L. In fact, let us a s -
sume that σ(χ) » S(x) at al l points of the twin, and the
external force is proportional to a certa in parameter
Ρ : σ(χ) = Ρ τ ( χ ) . Then ω ( χ ) « ( Ρ / Β ) τ ( χ ) , and from
the equation of equilibrium (of the type (1.5) with the
lower limit of integration equal to a j it follows that
p(x) = Ρ χ ( χ ) , where the function χ ( χ ) is the solution
of this equation for equilibrium with the right-hand
side equal to T ( X ) / B . In this case the condition of the
type (1.2) takes the form

Li
\ % (x) dx = const/P. (2.8)

With an increase of Ρ the left hand side of Eq. (2.8)
must d e c r e a s e , tending to z e r o . But since χ ( χ ) > 0
and x(L) is unbounded, a x will inevitably approach L.
Thus, in the limit of infinitely large values of Ρ the
twinning wedge is completely transformed into the

*In connection with the twin contour shown in Fig. 12c, it is nec-
essary to repeat the same remark which has made in connection with
Fig. 10b, namely, formula (2.7) describes this contour only in the range
of values χ where bp(x) % 1.
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plane-paral lel lamella* shown in Fig. 12d. Usually the
so-called res idual twinning lamella has such a shape.

Now if at this stage, when the twin has sti l l not been
converted into a plane-paral lel lamella, the external
loading is reduced (unloading), then from the stage
shown in Fig. 12c we again a r r i v e at the stage shown
in Fig. 12b. The subsequent behavior depends on the
type of defect which cuts off the action of the disloca-
tion s o u r c e . If this defect is equivalent to some kind
of " s t o p p e r , " then the twinning dislocations cannot
escape from the crystal and for sufficiently smal l
loads its shape takes the form shown in Fig. 12e, and
the function p ( x ) is given by the expression

(2.9)

where ω*(χ) is a function which differs from ω(χ) by
the change of the forces of inelastic origin associated
with unloading (for more details about th i s , see Chap-
t e r 4).

In concluding our analysis of the equation for equili-
br ium, we note that always when the function S(x) is
"sufficiently good" the behavior of p ( x ) at the ends of
the twin in the general case depends very little on the
shape of the function u>(x). At the free end of the twin
(x = Xi) the density of the dislocations falls off like the
square root of the distance to the point χ = Xi:

(2.10)

but for a n o b s t r u c t i o n a t t h e point

wi thout l i m i t a c c o r d i n g t o t h e law

χ = x2 it increases

(2.11)

Recalling the re s t r ic t ions which were imposed on
the domain of applicability of formula (2.11), let us
attempt to est imate the length of the interval near the
end of a " t r a p p e d " twin, where this formula is invalid.
Let us consider the most " d a n g e r o u s " case from this
point of view, namely, the case of a homogeneous ex-
terna l load: σ(χ) = Ρ = const. Then the density of the
dislocations near the " s t o p p e r " is given by [ 3 2 ]

_2P(1 —v) / s- a o P_ ,
V \x.-x\ μ V

(2.12)
\χι-χ\

A s w e m e n t i o n e d a b o v e , t h e c r i t i c a l d i s t a n c e s a r e

t h o s e f o r w h i c h b p ( x ) ~ 1 . I t f o l l o w s f r o m E q . ( 2 . 1 2 )

"The conclusion about the infinitely large value of Ρ at which the
conversion of the twin into a plane-parallel lamella occurs is, of course,
related to the assumption that all of the twinning dislocations are loca-
ted in a single plane. If it is taken into consideration that the disloca-
tions are located in neighboring atomic planes, separated by a distance
a from each other, then it turns out that even for finite stresses of the
order of σ ~ pb/a the twinning dislocations will be aligned in a wall one
above the other, being restrained only by the planar surface of the
"stopper." The latter assertion has been confirmed by a direct machine
calculation. [S7] The fact that the distance between the slip planes of
neighboring dislocations is finite plays an important role in connection
with the encounter between the twin and the "stopper," whose dimen-
sion d in the direction perpendicular to the twinning plane is small. In
this case, with an increase of the external loading the twin's thickness
h may exceed the value of d, after which the twinning dislocations are
able to pass "over the obstruction." The process of a twin passing a-
round a "stopper" of finite dimensions was experimentally observed in
art ic le ! 5 8 ] .

FIG. 13. The shape of the end of a twin in a bismuth crystal. [36]
a) Free twin; b) and c) correspond to trapped twins.

t h a t t h e s e d i s t a n c e s c o r r e s p o n d t o a d i s t a n c e f r o m t h e

end of t h e twin w h o s e o r d e r of m a g n i t u d e i s g iven by

\x —x\^ (JL\2L

If one takes Ρ ~ ΙΟ"3 μ, which even exceeds the
loadings which a r e customarily applied to a crystal
undergoing twinning, then it turns out that | x 2 - χ |
~ 1CT6 L. Twins having lengths of up to severa l mil l i-
m e t e r s a r e usually studied; for them the region of
nonvalidity of formula (2.11) turns out to be smal ler
than the resolving ability of the optical instruments
which a r e applicable in this case .

The resu l t s cited above, pertaining to the shape of
the twin, can be compared with the experimental data
obtained by Soldatov and Star t sev f 3 6 1 in connection with
their investigation of the shape of twins in bismuth. It
is observed that if the twin is moving freely in the
crysta l , without encountering any obstacles, then it has
the shape of a wedge which is very greatly elongated
in the direction of the motion and is very thin at the
end (see Fig. 13a). If the twin encounters an obstacle
during its motion in the depths of the crystal , in par-
t icular , an obstacle in the form of a twinning lamella
of a different orientation, then the increase in its
length c e a s e s . The thickness of the twin rapidly in-
c r e a s e s and a character i s t ic rounding-off occurs at
the " n o s e " of the twin; in regard to its shape this is
reminiscent of the semici rc le associated with the
boundaries of a twin (see Figs . 13b and 13c). Numeri-
cal differentiation of the experimental data on the
thickness of the twin according to the formula which is
the inverse of Eq. (1.2) makes it possible to determine
the function p(x) . For the case of a trapped twin, the
obtained dependence^3 6 5 is described by a formula of
the type (2.11) with a small amount of e r r o r .

In our opinion the described resul t s of [36 j indicate
good agreement between the dislocation description of
twins and their observed proper t ies ; in part icular,
these resu l t s confirm the theoret ical predictions about
the shape of a growing twin which encounters an obsta-
c le . "

*In principle one might imagine that a "trapped" twin remains
wedge-like, with an increase of the aperture angle of the wedge in pro-
portion to the loading.
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3 . WHY AN ELASTIC TWIN IS THIN

Many of the c h a r a c t e r i s t i c f eatures of the e l a s t i c
twinning p r o c e s s a r e e s s e n t i a l l y de termined by the
f o r c e s of i n e l a s t i c or ig in.* The s p e c i a l r o l e of t h e s e
f o r c e s can be b e s t i l lustrated in a d i s c u s s i o n of the
quest ion of the rat io of the t h i c k n e s s of an e l a s t i c twin
to i ts length. In part icular, we sha l l now veri fy that
only the inc lus ion of f o r c e s of ine las t ic or ig in in the
equation for equi l ibrium of the twin m a k e s it p o s s i b l e
to understand why a f ree twin of f inite length can e x i s t
in a f ield of e l a s t i c s t r e s s e s of constant s ign, and why
such a twin a l w a y s r e m a i n s thin.

In order to d i s c u s s th i s quest ion it i s n e c e s s a r y to
d e r i v e an e x p r e s s i o n for the t h i c k n e s s and length of an
e l a s t i c twin. It i s c l e a r that c l o s e d formulas for t h e s e
quant i t ies can be obtained only in cer ta in of the m o s t
s i m p l e c a s e s . One of t h e s e c a s e s c o r r e s p o n d s to a
plane twin produced by s c r e w d i s l o c a t i o n s , for which
the k e r n e l K ( x , | ) i s g iven by formula (2.4) . Us ing
t h i s k e r n e l , let us wr i te down an equation of the type
(2.5) in a s o m e w h a t different form:

ί^-W-M- (3-D
It is interesting to note that such an equation will de-
termine the equilibrium for a twin which is created in
an unbounded crystal by dislocations whose source is
located in the interval (-a0, a0) near the origin of co-
ordinates. For this it is sufficient to assume that the
external load is an even function of x, but two nascent
dislocations of the opposite sign simultaneously appear
at the points χ = ± a 0 .

In o r d e r to specify the function ω(χ) , which is de-
fined by relat ion (1.5), we shall a s sume that the twin is
growing, i.e., it is produced by a monotonically in-
creasing force. In this case, as mentioned in Chapter 1,
the forces of inelastic origin, which a r e described by
the function S(x), have the form

S (x) = — Sj— 5S (x), So = const. (3.2)

The f irst t e r m on the right hand side of Eq. (3.2),
namely So, determines the magnitude of the frictional
force which a twinning dislocation experiences in a
crysta l . In o r d e r of magnitude

S.~as, (3.3)

where <JS denotes the " m i c r o s c o p i c " limit of the yield
of the mater ia l with regard to twinning, that i s , the
start ing s t r e s s , beginning with which the external load
displaces an individual twinning dislocation. The s e c -
ond t e r m in Eq. (3.2), Sg(x), descr ibes the surface-
tension force, which differs from zero only in a smal l
neighborhood e near the end of the twin. If e <C L,
then this force does not depend on the length of the
twin. In order to emphasize the fact that Ss(x) does
not depend on the length of the twin, let us write S s ( x )

"Here the following analogy exists with electrostatics: In the same
way that taking account of the forces of nonelectrical origin is frequently
decisive for the description of the equilibrium of a system of electric
charges, in the theory of elasticity the forces of inelastic origin often
play a decisive role in connection with the investigation of the equili-
brium of a system of dislocations.

= A( L - x), where the function A( ξ) monotonically
decreases with increase of its argument from a certain
maximum value S s to z e r o over a smal l interval
( 0 < ξ < ε ) .

The solution of Eq. (3.1) or (2.3) for a free twin,
when p ( a 0 ) = p ( L ) = 0, is given by formula (2.4) where
the half-length L of the twin is determined from con-
dition (2.3). Since we shall only be interested in those
solutions of Eq. (3.1) which tend to zero at the point
χ = a 0 , in o r d e r to simplify the following analysis one
can set the smal l quantity a 0 equal to zero ( a 0 = 0).
Then Eq. (3.1) reduces to

(3.4)

(3.5)

(3.6a)

(3.6b)

and its solution (2.6) takes the form

Condition (2.2) is now replaced by the condition

F{L) = S0 + J(L), (3,7)

where the following notation is being used:

σ (ι) dx
(3.8)

C o n d i t i o n ( 3 . 7 ) i s a t r a n c e n d e n t a l e q u a t i o n w h i c h d e -

t e r m i n e s t h e l e n g t h o f t h e t w i n . L e t u s n o t e c e r t a i n

p r o p e r t i e s o f t h e f u n c t i o n s F ( L ) a n d J ( L ) a p p e a r i n g

i n t h i s e q u a t i o n , s a i d p r o p e r t i e s f o l l o w i n g f r o m t h e i r

d e f i n i t i o n s g i v e n b y E q s . ( 3 . 8 ) . L e t u s a s s u m e t h a t t h e

function σ(χ) is positive for all values of χ and inte-
grable over an infinite interval,* i .e., we assume that
a nonvanishing integral

Φο = χ \ a(x)dx. (3.9)

e x i s t s which, to within a factor, d e t e r m i n e s the total
externa l force act ing in the twinning plane (taken per
unit length along the Ζ axis) . If x 0 denotes the dis-
tance over which the function σ(χ) decreases substan-
tially, then it is obvious that in order of magnitude

Φ ο~ζ οσ(Ο). (3.9a)

From E q s . (3.7) and (3.8) it fo l lows that asymptot-
ica l ly for l a r g e v a l u e s of L

* < £ ) - £ as L - χ » . ( 3 1 0 )

As to J ( L ) , then from the propert ies of the function
S s (x) it follows that

/(Ζ)=Α(4ί^ι Μ

y z 1 .£(4$£-. (3.1D

for L > £ , where Μ is a constant which does not de-
pend on the length of the twin. t

*Any arbitrary elastic field created by a concentrated load possesses
this property.

tThe constant Μ differs from the modulus of coupling in article
[ 3 3 ] by the factor l/(7r\/2\and from the definition adopted in articles
[52,59,60] b y t
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F r o m the definition (3.11) of the modulus M, it fol-
lows that its order of magnitude is given by

M-VlSl (3.12)

S s charac ter izes the s t r e s s which is required in order
to move the leading dislocation (the part ial dislocation
schematically shown in Fig. 6), and in o r d e r of magni-
tude it is given by

« ~ 4 . (3.13)

where β denotes the energy per unit a r e a of the stack-
ing defect associated with this part ia l dislocation. For
an es t imate one can assume that it is equal to the
doubled value of the surface energy of a coherent twin-
ning boundary (for example, for calcite by using the
resu l t s of [ 5 9 '6 0 ] we obtain β ~ 2a ~ 70 e r g / c m 2 and
S s ~ 7 χ 103 kg/cm 2 ~ 3 x ΙΟ"2 μ ) . Apparently in the
majority of cases S s ~ 10 ' 1 to ΙΟ"2 μ.

Since the function Ss(x) differs from zero only at
the end of the twin, in al l of the calculations where we
a r e interested in the propert ies of the twin at points
far removed from its ends, this function can be r e -
placed by a concentrated function having the proper
normalization. It is easy to see that this change can
be real ized with the aid of a δ-function of the following
type:

1 / 2
-x) for x > 0 ,

for x < 0 .
(3.14)

By using Eq. (3.11) one can write Eq. (3.7) in the
form

(3.15)

For known values of So and Μ and for a given func-
tion σ(χ) , relat ion (3.15) is the equation for the deter-
mination of the length of the twin. Thus, the solution
of (3.5) and (3.6) together with this equation makes it
possible, for known external s t r e s s e s and known forces
of inelastic origin, to completely determine the
mechanically stable shape of an elast ic twin.* How-
ever, it is important for us to call attention to a certain
physical distinction between Eqs. (3.4) and (3.15),
which is related to the different degree of par t icular i-
zation of the function S s ( x ) . In order to describe the
profile of the twin (in any event near its ends), it is
necessary to know the exact form of the function Ss(x)
which appears in the integrand in Eq. (3.6b). But the
form of this function is essentially determined by the
nature of the interatomic interaction forces . This
property places the function S s ( x ) under special con-
ditions within the framework of our theory. In part icu-
l a r , one can hardly propose any kind of macroscopic
experiment for the determination of the form of this
function. Therefore, one can only obtain some kind of

•If Ss(x) ->• Ο then Eq. (3.4) gives the distribution of the perfect dis-
locations along an incomplete slip band, and Eq. (3.15) makes it pos-
sible to determine the length of the pile-up in an external field. As
So -• Ο Eq. (3.4) goes over into the equation which describes the shape
of a thin fracture, and Eq. (3.15) actually coincides with the basic equa-
tion for the force theory of thin fractures, [33] which determines the
length of the fracture in an external field.

i n f o r m a t i o n a b o u t S s ( x ) by m e a n s of t h e a n a l y s i s of
m i c r o s c o p i c m o d e l s of t w i n n i n g d i s l o c a t i o n s . U n f o r -
t u n a t e l y , t h e e x a c t f o r m of t h e p o t e n t i a l s of t h e i n t e r -
a t o m i c i n t e r a c t i o n s i s not known t o u s , and it i s i m -
p o s s i b l e t o r e g a r d s u c h a m e t h o d for t h e d e t e r m i n a t i o n
of S s ( x ) a s suf f ic ient ly r e l i a b l e .

On t h e o t h e r h a n d , E q . (3.15) for t h e l e n g t h of t h e
t w i n i n c l u d e s t h e f o r c e s of i n e l a s t i c o r i g i n only in t h e
f o r m of t h e two p a r a m e t e r s S o and M . Since t h e l e n g t h
of t h e t w i n i s i t s m a c r o s c o p i c c h a r a c t e r i s t i c , t h e
quantities So and Μ in Eq. (3.15) can be regarded as
phenomenological p a r a m e t e r s . Therefore, one can pro-
pose a method for the experimental determination of
the quantities So and M. The setting-up of a quantita-
tive experiment under conditions which a r e as close as
possible to those t reated in the theory was proposed
and real ized in ar t ic les [ 5 9 ~ 6 1 1 where the values of So

and Μ were determined for calcite (S o

 a 0.2 to
0.3 kg/cm 2 , Μ « 1 kg/cm 3 / 2 ) . In our opinion, the pos-
sibility of an experimental determination of the major
p a r a m e t e r s of the model is the major m e r i t of the
semi-microscopic theory of elastic twins.

Returning to the question of the length and thickness
of the twin, let us r e t u r n to Eq. (3.15), considering the
function σ(χ) to be positive for all values of χ and
integrable. F i r s t let us as sume that forces of inelastic
origin a r e not present . Then from the positiveness of
the function F ( L ) and from the form (3.10) of its
asymptotic behavior, it follows that for S(x) = 0 the
only possible solution of Eq. (3.15) corresponds to
L = °°, i.e., to an infinitely long twin.

Thus, we a r r i v e at the following asser t ion: If the
forces of inelastic origin were not present, then a free,
stable twin of finite dimensions could not exist in a
solid under the influence of external loadings of con-
stant sign.

It i s , of course, possible to imagine an alternating
field of e last ic s t r e s s e s which might stabilize the twin
even in the absence of forces of inelastic origin.* How-
ever, in connection with the study of elast ic twins the
case of a distribution of s t r e s s e s , all having the same
sign, is the case of most interest since the possibility
of a twin being in equilibrium under such conditions is
of fundamental importance.

Since the length of the twin would be infinite for
S(x) = 0, by virtue of the continuity of the functions
appearing in Eq. (3.15) the finite equilibrium length of
an elast ic twin in a crystal is large when the forces of
inelastic origin a r e reasonably smal l .

Keeping in mind the last conclusion, let us consider
the case when the forces of inelastic origin a r e very
smal l , that is, when S(x) and therefore also the right-
hand side of Eq. (3.15) a r e vanishingly smal l quantit ies.
Then the length L of the twin is very large and, as
follows from Eqs. (3.15) and (3.10), it is determined by
the equation

^ = 50 + ^ . (3.16)

It is c lear that Eq. (3.16) is valid for L » t .

•Such a situation occurs in electrostatics, where a specifically selec-
ted electric field can ensure the equilibrium of an arbitrary system of
charges.
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First of all let us estimate the relative role of the
two forces represented by the first and second terms
on the right-hand side of Eq. (3.16), having constructed
the ratio

7= Μ
( 3 . 1 7 )

S i n c e i n p r i n c i p l e a r a t h e r s i m p l e a n a l y s i s of E q .

(3.16) for arbitrary values of γ entails cumbersome
calculations, we shall confine the investigation to the
two limiting cases γ ^> 1 and ) < « 1 ,

When / > 1 , in order to obtain the half-length of
the twin it is sufficient to set Μ = 0 in Eq. (3.16) (we
note that Μ = 0 occurs, for example, for an incom-
plete slip band):

σ(0)
( 3 . 1 8 )

From Eq. (3.18) it is seen that the compulsory condi-
tion L » x0 can be realized only for σ(0) » as, that
is, only for a very large concentration of stresses at
the point where the dislocation source is located.

For y < l the half-length of the twin is given by

L = ( | 5 ) 2 . (3.19)

as is clear from Eq. (3.16). In this case the concentra-
tion of stresses which is required in order to create a
twin with L » x0 must be such that σ(0) 3> M//x^.

Formulas (3.18) and (3.19) explicitly confirm the
conclusions reached above to the effect that the length
of an elastic twin in a crystal is large if the forces of
inelastic origin are sufficiently small. However, the
length of the twin itself is not the complete character-
istic of its shape, and the ratio of the length of a twin
to its thickness is also of physical interest.

Let us consider the thickness h(0) of the twin at its
center, having represented it, in analogy with Eq. (3.5),
in the form of the sum

fe(O) = /io(O)-!-fcs(O). (3.20)

The first and second terms on the right-hand side
are defined in terms of p 0 and p s , respectively, ac-
cording to formula (1.1).

Before carrying out the calculations of h0 and h s ,
let us call attention to the following very important
property: The thickness of a twin is completely deter-
mined by the number of dislocations emitted by the
source. Since the concentration of external stresses in
the neighborhood of the source of dislocations is always
large, their role in this region is appreciably greater
than the role of the forces of inelastic origin. In con-
nection with this, the thickness of the twin at its center
is practically completely described by the term hQ.
Quantitative estimates carried out in art icle [ 4 6 ] con-
firm this conclusion. Therefore, in order to estimate
h(0) it is sufficient to calculate h0. Using Eqs. (1.1)
and (3.5), let us represent h0 in the form

, La r o(Lj)di tyi-x-

W e a g a i n r e c a l l t h a t t h e c o n d i t i o n L ;?> x 0 i s a s s u m e d

t o b e s a t i s f i e d f o r t h e t w i n s w e a r e c o n s i d e r i n g . B u t ,

i n t h i s c o n n e c t i o n , a s y m p t o t i c a l l y o n e f i n d s

-1 0

Therefore, in order of magnitude one has

(3.2D

S i n c e t h e e x p l i c i t d e p e n d e n c e o f t h e l e n g t h o f t h e

t w i n o n t h e e f f e c t i v e f o r c e s c a n b e o b t a i n e d o n l y i n t h e

l i m i t i n g c a s e s ( 3 . 1 8 ) a n d ( 3 . 1 9 ) , w e s h a l l c o n f i n e o u r

i n v e s t i g a t i o n t o p r e c i s e l y t h e s e c a s e s .

When γ > 1, then from Eqs. (3.18) and (3.21) it
follows that the ratio of the thickness of the twin to its
length is of the following order of magnitude:

4 ~ t l n ( ° J r ) · (3.22)

The estimate (3.22) indicates that, for a vanishingly
small value of tfs/V> the ratio h/L tends to zero
since σ(0) is always less than μ. As to the dependence
of h/L on the external stresses σ(0) at the point where
the dislocation source is located, one should expect a
weak logarithmic increase of the ratio h/L with in-
creasing values of σ(0).

In the case γ <ξί 1, by using Eqs. (3.19) and (3.21)
we obtain

φ° \h -- l m in
L ~ μ Φ 0

1 η (3.2

F r o m t h e e s t i m a t e ( 3 . 2 3 ) i t f o l l o w s t h a t f o r a

vanishingly small value of 1/μ(Μ2/Φ0) the ratio h/L
tends to zero, and it also follows that in this case the
value of h/L must decrease with an increasing value
of the external load.

Let us combine the conclusions reached in the two
limiting cases into a single statement: If the function
σ(χ) has a constant sign and the forces of inelastic
origin are small, then the ratio of the twin's thickness
to its length is a small quantity which tends to zero to-
gether with the vanishing of the forces of inelastic
origin.*

Concluding our discussion of the question about the
ratio of the thickness of an elastic twin to its length,
we consider it necessary to indicate that the first esti-
mates of h/L within the framework of the macro-
scopic theory were made by Vladimirskii, who ex-
pressed the value of this ratio in terms of the external
loading and the constants of the crystal (the modulus of
elasticity and the lattice constant). The work of
Cooper[62>63] should also be mentioned, in which the
thickness of the twin and also the ratio h/L were
estimated for a very simplified model of twinning.

In connection with the experimental investigation of
elastic twins/ 2" 1 1 ' 3 6 ' 6 4" 6 6 1 the small value for the ratio
of its thickness to its length has always been mentioned
(for example, h/L ~ 10"4 for calcite and h/L ~ 10"3

"The estimate proposed by Friedel [67] for the ratio of the length
of a twin, which is stabilized by only an external elastic field, to its
length is not of interest from the point of view of the problem under
discussion, since it implicitly assumes that the elastic field is described
by an alternating function of the coordinates, and in such a case the
length of the twin is determined by the characteristic distance over
which the sign of this function changes.
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for bismuth and antimony). However, it would appear
to us to be desirable to direct attention not toward the
determination of the numerical value of this quantity
but instead toward an explanation of its tendency to
vary with increasing length of the twin, which was done
in ar t ic le^ 6 5 1 . The corresponding experiment was c a r -
ried out with twins for which the condition γ <C 1 is
satisfied. But in this case , by combining E q s . (3.19)
and (3.23) we have

h 1 J/2 , (Λ/Ί7\ i Μ . L

Thus, the ratio h/L should decrease with increasing
length of the twin. Precisely this result of the theory
is confirmed in article [ 6 5 ] , where it is shown that with
an increase of the loading the twin's length increases
more rapidly than its thickness.

In order to estimate the ratio of the thickness of
the twin to its length we shall use the fact that h is
determined by the external elastic forces. But it is
necessary to keep in mind that the shape of the twin
essentially depends on the forces of inelastic origin,
in particular, on S s(x). And what is more, one can
verify that for materials having a large surface ten-
sion, for which one can neglect the force of friction
(So = 0), the shape of the end of a long twin is com-
pletely determined by the surface-tension force.

From Eq. (3.6a) it follows that the law governing the
decrease of po(x) at the end of the twin is described by
the function

( 3 . 2 4 )

S i m i l a r l y , f r o m E q . ( 3 . 6 b ) it f o l l o w s t h a t a t t h e e n d

of t h e t w i n w e h a v e

Μ

'Λ/Ι'

therefore for Δχ ^ e one obtains

ρ0 (ι) CO / ε \

M y

(3.25)

(3.26)

T h u s , f o r v e r y l o n g t w i n s ( L — °°) t h e c o n t r i b u t i o n

of t h e d e n s i t y P s ( x ) p l a y s t h e f u n d a m e n t a l r o l e , a n d

t h e p r o f i l e o f t h e t w i n n e a r i t s e n d a c t u a l l y d e p e n d s

only on Ps(x) . Κ -as the same shape as the end of a
thin f r a c t u r e / 6 8 ' and may be represented schematically
by the curve shown in Fig. 14. On the basis of formula
(1.1), the dependence of the thickness h(x) of the twin
on the coordinate is given by the expression

xf'\ L-x<e. 0 .27)

The dashed line shown in Fig. 14 r e p r e s e n t s the
curve

y (i) = const • ΥL1 — xz, ,g gg)

w h i c h j o i n s wi th t h e t r u e p r o f i l e of t h e twin for

L - χ Λ e. Therefore, the shape of the end of the twin
is actually determined only by the surface-tension
force and does not depend on the external loading or on
the length of the twin (it is thanks to this that the pos-
sibility of introducing the constant Μ a r i s e s ) .

Finally, by start ing from physical considerations
about the surface-tension force on the twin boundary,
it should be possible to indicate the order of magnitude
of e . Let us define e as the distance from the end of

FIG. 14. Diagram showing the profile of
the twin on the two outside end segments.

x-L

the twin, at which the twin's thickness is such that the
opposite surfaces of the twin cease to influence each
other by means of the molecular-interact ion forces .
Let us denote this thickness by hfc, and we shall
utilize (3.27), the est imate of C s in (3.25) and (3.12).
Then we find

(3.29)

10"7 cm and take S s ~ 10 ' 1 toIf we assume
10~2 μ, then for e we obtain the e s t i m a t e : e ~ 10"e to
10' 5 c m .

Although the est imate (3.29) is very rough, it indi-
cates that s tr ict ly speaking the conclusions about the
shape of the end of the twin were reached at the limit
of validity of the macroscopic theory which we have
been using. And what is m o r e , since the size of £ has
a semi-microscopic c h a r a c t e r , in any experiment in-
vestigating the macroscopic shape of the twin, a profile
will be observed which is close to the one described by
the curve (3.28). Precise ly such a profile was ob-
served in a r t i c l e [ 6 9 ] for wedge-shaped twins in u - F e .
The observation of a " b e a k " at the end of the twin r e -
quires a very large resolving power of the instruments
which a r e being used to study the profile of the twin.

In the present section we have discussed in detail
why a twin is thin, considering the example of a twin
created by knife-edge loading, i.e., produced by
straight dis locations. However, in connection with the
analysis of many questions of twinning in a crystal, in
part icular, the problem of the nucleation of twins, it is
necessary to analyze twins of a different shape. But no
matter what shape the free elastic twin has , the rat io
of its thickness to its length should obey the same qual-
itative relat ionships which have been expounded above.
The investigation of an axisymmetr ic twin in article^ 4 6 5 ,
where it is shown that the rat io of the thickness of such
a twin to its radius is smal l when the forces of inelastic
origin a r e reasonably smal l , can serve a s an i l lustra-
tion of this s tatement.

4. THE HYSTERESIS ASSOCIATED WITH ELASTIC
TWINNING

In the present chapter we shall study the growth of
a twin in an unbounded crystal associated with a non-
monotonic dependence of the external loading on the
t i m e . The change of the loading will be assumed to be
quasistat ic, i .e., taking place infinitely slowly and at
each moment of t ime completely described by the de-
pendence of the s t r e s s e s on a certain external p a r a m e -
t e r . Let us as sume that the function σ(χ) depends on
the parameter Ρ such that with a variation of Ρ from
0 to Po the value of °"(x) increases monotonically from
0 to σ ρ ( χ ) = σ( P o , x) . Then an increase of Ρ will cor-
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respond to an increase of the loading, and a decrease
of Ρ corresponds to the process of unloading. In the
simplest case the stresses σ(χ) are proportional to
the external load;* then σ( Ρ, χ) = Ρτ(χ) and F(L)
= PG(L) where G(L) only depends on the length of the
twin and is determined by the first formula in (3.8), in
which one should substitute τ(χ) in place of σ(χ).

It appears to us that the most significant indication
of the characteristics of the growth of a twin is the
variation of its length, which one can analyze by means
of a graphical solution of the transcendental equation
(3.7). The right-hand side of (3.7) is always a mono-
tonically decreasing function of L, having the maximum
value S* = So + S s at L = 0 and asymptotically ap-
proaching So as L - « (see Fig. 15, curves la and lb).
Therefore, the type of solution of Eq. (3.7) is essen-
tially determined by the form of the function G(L).
Let us assume that G(L) is a monotonically decreasing
function of its argument, decreasing more slowly than
J(L). The latter assumption corresponds to the condi-
tions which are usually encountered in an experiment.
The point is that an appreciable decrease of G(L) al-
ways occurs for macroscopic values of L. This is
associated with the small rate of decrease of the func-
tion τ (χ) with depth, due to the macroscopic nature of
the creation by external loading. As to the function
J(L), its fundamental decrease occurs for L ~ e.

First we shall assume that Ρ increases, and let us
consider Fig. 15, on which the graphical solution of
Eq. (3.7) is shown schematically. For very small
values of Ρ the graph of the function F(L) lies below
curve 3; therefore Eq. (3.7) does not have any solu-
tions. With increasing values of P, the graph of the
function F(L) touches curve 3 for a certain value
p = Pmin at the point ( P m i n , Lmin)· A solution of
Eq. (3.7) appears at this point. Upon a further in-
crease of Ρ the curves under consideration intersect
at two points, which indicates the splitting of the solu-
tion of Eq. (3.7) into two solutions (Li and L 2 shown
in Fig. 15). The solution L x decreases with increasing
P; therefore, as mentioned in [ 3 3 ], it corresponds to a
solution which is unstable with regard to an infinitesi-
mal change in the external loading on the twin. The
solution L2 corresponds to a stable twin, but neverthe-

FIG. 15. Determination of the length of a twin by means of a graph-
ical solution of Eq. (3.7). 1-The curve F(L) for the case of an external
field which falls off monotonically in the depths of the crystal (Curve
la corresponds to Ρ < Ρ*, curve lb corresponds to Ρ > Ρ*); 2-The
curve F(L) in the case of a homogeneous external field; 3-The curve
So + J(L).

*A similar situation arises when the application of an external load
to the surface of the crystal does not cause any appreciable crumpling
of the latter.

less in our method for the creation of a twin, such a
twin does not appear. In fact, as long as F(0) = σ(0)
< S* the external force applied to the dislocation at

the point where the dislocation source is located is
smaller than the total force of retardation. Therefore,
under the influence of the elastic field the dislocations
cannot be "separated" from their source (we recall
that nucleation of the dislocations is assumed to be in-
active and their multiplication consists in the emission
of dislocations from the source due to the external
stresses). Therefore, a twin of length L2 may arise
only by means of fluctuations. But if the changes of
the parameter Ρ under consideration take place during
the course of a finite time interval, then the fluctua-
tion mechanism for the formation of a macroscopic
twin cannot be taken into account. The possibility of
the formation of a twin cannot be realized up to the
value Ρ = Ρ*, which is determined from the condition
P*G(0) = S*. At this point the solution Li(P), corre-
sponding to the unstable twin, disappears and the con-
dition σ(0) = S* is satisfied, i.e., a sufficient condition
for the formation of the twin is fulfilled, thanks to
which a twin of finite length (let us denote it by L*)
suddenly appears. With a further increase of Ρ
( Ρ > Ρ*) only one solution of Eq. (3.7) remains (the
length L4 indicated on Fig. 15), and the twin smoothly
increases its length with increasing load.

A graph of the dependence of L on Ρ for the case
under consideration is shown in Fig. 16. The lower
segment of the curve L = L( P) for Ρ < P* corresponds
to the unstable twin, and the upper segment of this
curve for Ρ < P* corresponds to the length of the twin
which is produced only by means of fluctuations (there-
fore, the corresponding part of the curve is also repre-
sented by a dashed line).

The dependence L(P) will be somewhat different if
it is assumed that the monotonic function F(L) de-
creases with increasing values of its argument more
rapidly than J(L). Such a situation is certainly realized
for S s <§ί So and for any noticeable decrease of σ(χ),
i.e., in particular for the generation of dislocations
(Ss =0) due to the influence of a concentrated load.
Then, for the creation of the twin it is also necessary
to exceed the threshold load P*; in this case Eq. (3.7)
only has a single solution (the stable twin) and the
twin starts to grow with zero length.

An investigation of the limiting case of homogeneous
loading is of special physical interest. If σ(χ) = σ(0)
= const, then F(L) = σ(0) and for So < σ(0) < S* Eq.
(3.7) has only one solution (L = L 3 on Fig. 15), which
corresponds to an unstable twin. As soon as the
parameter Ρ reaches the value P*, this solution
vanishes. However, formally the solution L = °° still
exists. Therefore, in accordance with the analysis
presented above, we may conclude that at Ρ = P* a

FIG. 16. Dependence of the length of
the twin on the loading in the initial stage
of twinning.
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twin of infinite length suddenly a r i s e s . The physical
meaning of such an as ser t ion reduces to the fact that
at Ρ = P* a twinning lamella appears which passes
through the entire crys ta l . Thus, an equilibrium stable
twin of finite length cannot be produced in the crystal
by a homogeneous field of s t r e s s e s . In order to create
such a twin, a certain concentration of s t r e s s e s is r e -
quired, creating an elastic field which falls off suffic-
iently rapidly with dis tance. This conclusion is con-
firmed by the experimental re su l t s of G a r b e r . r 4 > 7 0 ]

We have already mentioned that usually the twins
which a r e observed in an experiment a r e not planar
and they have the form of " p l a t e l e t s , " produced by a
loading which is concentrated in a smal l region on the
surface of the c r y s t a l . [ 2 " 7 ' 2 0 ) 6 5 ' 6 6 ] The shape of such
twins is close to the shape of half of a very thin circu-
lar lens, and in the s implest case it may be represented
in the form of a cluster of round dislocation loops. An
analysis of the growth of a twin in such a model' 4 6 ^
shows that in this case one can repeat all of the basic
derivations with regard to the character i s t ic proper-
t ies of twin formation.

Summing up the resu l t s of the investigation of the
creation of the twin under an increasing load, let us
note the following important points. In the first place,
in any event the twin can a r i s e only when the loading
exceeds a certain threshold value. In the second place,
the initial stage of growth of the twin is completely
determined by the nature of the external loading. In
the third case, a stable twin of finite dimensions can
be produced only in connection with a concentration of
the s t r e s s e s in the region where the source of the
twinning dislocations is located. A homogeneous s t r e s s
field cannot create a twin of finite length.

Let us compare these conclusions with the experi-
mental resu l t s with regard to the formation of elastic
twins.

The necessity of reaching the threshold value of the
loading for the formation of the twin was mentioned in
the experimental a r t ic les [ 2 ~ 4 > 6 6 ] in connection with the
elast ic twinning of calcite and in a r t i c l e [ 9 ] in connec-
tion with twinning in m e t a l s . The role of the concen-
tration of the load in elastic twinning was indicated by
Garber [ 2 ~ 4 1 and was subsequently mentioned by al l of
the investigators who have studied elastic twinning. In
fact, it is precisely due to the application of a concen-
trated load that Garber was able to observe and study
elastic twinning, whereas before the e x p e r i m e n t s t 2 ]

the twinning in calcite had, in the majority of cases ,
been studied in a homogeneous s t r e s s field, when
elast ic twins of finite length could not be observed.
The dependence of the initial stage of growth of the
twin on the nature of the external load is i l lustrated,
in our opinion, by the resu l t s of the experiments [ 6 5 ^.
In this work it was actually shown that the length of
the abruptly generated twin increases with increasing
size of the region of the significant decrease of the
function F ( L ) which in turn is related to the degree of
concentration of the external loading.

After the formation of the twin, the nature of its
subsequent growth with increasing load is determined
by the form of the function F ( L ) . If F ( L ) is a mono-
tonic function of L, then the length of the twin will
smoothly increase with increasing P . A sudden elonga-

tion of the twin may be observed in connection with a
nonmonotonic dependence of F ( L ) on its argument. In
this case all of the qualitative conclusions for twins
coincide with the resu l t s of the theory of f r a c t u r e . ^ 3 1

Therefore we shall not discuss them in detail .
Now let us go on to an investigation of the behavior

of the twin upon unloading, i .e., upon decreasing the
p a r a m e t e r P. Let us assume that the increase of the
external loading was discontinued when the value of
the parameter Ρ = P m . Then the equilibrium density
p m ( x ) of the dislocations along the twin and its length
L m at the end of the loading process will be de ter-
mined by Eqs . (3.5) and (3.7), respectively, in which
one should set Ρ = P m .

The change of the dimensions and shape of the twin
upon unloading will occur at the expense of displace-
ments of its constituent dislocations in a direction op-
posite to the direction of their motion during loading.
But s ince the sign of the external s t r e s s e s σ(χ) does
not change upon a reduction in the value of P, the r e -
verse motion of the dislocations is possible only as a
resul t of the i r interaction and the effect of the surface-
tension force. However, it should be kept in mind that
the presence of the force of " d r y f r ic t ion," directed
against a possible displacement of a dislocation,
hinders the displacement of the dislocations during the
initial period of unloading, when the decrease in the
external force is very smal l and that part of the inter-
action force which is uncompensated by this decrease
is less than So. Therefore, initially the motion of a
certain dislocation essentially depends on the rat io of
the forces acting on it from the side of the external
field and from the side of the remaining dislocations.

To a considerable extent the analysis of the behavior
of the dislocations during the unloading process is
determined by the nature of the external s t r e s s e s . We
shall confine our attention to the simplest case when
the s t r e s s e s σ(χ) a r e monotonically decreasing func-
tions of | χ | and, as usual, a r e directly proportional
to the parameter P, that is, σ(χ) = Ρ τ ( χ ) .

As long as all of the dislocations a r e stationary,
their effect on a unit dislocation at the point χ is de-
termined by the s t r e s s ^o(x), an expression for which
follows from the equilibrium equation (3.4):

(4.1)

The total sum of the s t r e s s ψ(χ) - φ (Ρ, χ) acting
on the dislocation from the side of the remaining dis-
locations, the surface tension, and the external fields
is given by the following expression, at the beginning
of the unloading p r o c e s s :

<f(x) = %(x) + o(x)-Ss(x) = S0-(Pm-P)x(x). ( 4 · 2 )

In order for the dislocations to begin to move, the
magnitude of the corresponding force must exceed the
force of friction, even if only at a single point: |<p(x) |
> So. The feasibility of achieving this condition is de-

termined by the value of <Jm(Q) and by the relation be-
tween So and Sg, and depending on the relat ive values
of these quantities there may be three different c a s e s .

Case 1. S | < So and a m ( 0 ) < 2 S 0 . In this case, as
follows from Eq. (4.2),
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a n d t h e r e f o r e t h e f o r c e <p(x) c a n n o t e x c e e d t h e f o r c e

o f r e t a r d a t i o n f o r a n y v a l u e o f t h e p a r a m e t e r P .

T h e r e f o r e , n o t a s i n g l e d i s l o c a t i o n i s d i s p l a c e d d u r i n g

t h e u n l o a d i n g p r o c e s s , a n d t h e s h a p e o f t h e t w i n a f t e r

u n l o a d i n g r e m a i n s t h e s a m e a s i t w a s a t t h e e n d o f t h e

l o a d i n g p r o c e s s . T h u s , a t w i n p o s s e s s i n g a s m a l l s u r -

f a c e e n e r g y , p r o d u c e d b y a c o m p a r a t i v e l y s m a l l e x -

t e r n a l f o r c e , d o e s n o t c h a n g e i t s s h a p e a n d d i m e n s i o n s

a f t e r t h e r e m o v a l o f t h e l o a d i n g .

Case 2. Μ < VLm So and am(Q) > 2 So. In this case,
as long as the largest value of the absolute magnitude
of the force φ(Ί>, χ) is smaller than So, all of the dis-
locations will be found at their old positions, since at
no single point does the force applied to the dislocation
exceed the retardation force So. Upon a further de-
crease of P, the behavior of the dislocations depends
on the form of the function φ( Ρ, χ) and, in particular,
it depends on the position of the largest (in absolute
magnitude) negative value of φ(χ). In our case this
point will correspond to the minimum of ψ(Ρ, χ) for
x = 0 .

For the value of the parameter Ρ = P K , determined
from the condition φ(Ρκ, 0) = -S o , i.e., for VK = P m

- 2 S 0 / T ( 0 ) , at the center of the twin the force φ(0) is
comparable with the retardation force So, and upon a
further decrease of Ρ exceeds it, causing a displace-
ment of the dislocations in the central part of the twin.
We note that the difference P m - P K does not depend
on the length of the twin, and for a given type of load-
ing it is a fixed quantity.

The possibility of the motion of the dislocations for
Ρ > P K in a certain neighborhood of the point χ = 0
leads to their redistribution. Let this redistribution
encompass the interval (-x0, Xo), outside of which the
dislocations remain fixed. Then in the interval x0

< | x | < Lo the density of the dislocations is described
as usual by the function Po(x)> but in the interval
(-x0, x0) one can easily obtain the following expression
for the density of dislocations:1455

(4.3)

where the quantity x0 is determined from an ortho-
gonality condition analogous to (3.7), namely

τ (χ) dx 2nS0

zr*~pm—p
( 4 . 4 )

O n e c a n e a s i l y s e e t h a t u n d e r o u r a s s u m p t i o n s a b o u t

t h e f u n c t i o n T ( X ) , E q . ( 4 . 4 ) d e f i n e s a m o n o t o n i c a l l y

d e c r e a s i n g f u n c t i o n x 0 = x o ( P ) . F o r m a l l y , t h e l i m i t i n g

v a l u e x o ( 0 ) a t t h e e n d o f t h e l o a d i n g p r o c e s s ( f o r

Ρ = 0) is given by the equation

*0<0> τ [χ) iix 2 J I S 0

( 4 . 5 )

B u t E q . ( 4 . 5 ) h a s m e a n i n g o n l y i n t h e c a s e w h e n

x o ( 0 ) < L m . C o m p a r i n g E q . ( 4 . 5 ) w i t h ( 3 . 7 ) a n d b y

taking into account the assumed properties of the func-
tion σ(χ) (r ' (x) < 0 for χ a 0), one can easily verify
that for Μ < VLm So the limiting value xo(0) is always
less than L m .

Thus, when Μ < VLm So a twin remains in the
medium even after complete unloading (a "trapped"
twin), and the distribution of the dislocations along the
twin is substantially different from (3.5). To be sure,
at the end of the twin (x o (0)< | χ | < L m ) this distri-
bution as usual is described by the function p m ( x ) ;
however, in its center part the density of the disloca-
tions is given by expression (4.3) for Ρ = 0, when x0

= xo(0).
Therefore, if the twin is produced by the action of a

force of very large magnitude, so that VLm So > M,
then after unloading its length is unchanged, the shape
of the twin near the ends (xo(0) < | χ | < L m ) remains
unchanged, but the thickness of its center part is de-
creased.

The difference between the function p(x) associated
with the unloading and the density of dislocations
associated with loading implies that twinning exhibits
hysteresis. In the present case it is convenient to il-
lustrate the hysteresis in the dependence of the thick-
ness h of the central part of the twin on Ρ for an in-
crease and subsequent decrease of the external force.

As was shown above, for an increase of Ρ from 0
to P* the twin is absent (h = 0); at Ρ = P* the twin is
created with, let us assume, a thickness h*, and with a
subsequent increase of Ρ its thickness in the simplest
case increases monotonically (see Fig. 17), reaching
the value h m at Ρ = P o . Upon a change of Ρ in the
opposite direction (from P m to 0) the thickness h re-
mains constant for values PK < Ρ < P m and mono-
tonically decreases (in the simplest case*) in propor-
tion to the further decrease of P. At the end of the
loading process, the thickness of the twin differs from
zero by a certain definite amount Ah which is smaller
than h m (see Fig. 17).

An important conclusion follows from the nature of
the hysteresis considered above: A plane twin inside a
solid (formally—a twin inside an unbounded medium)
remains inside the crystal even after the removal of
the stresses, provided that it possesses a sufficiently
large length so that VLm S o > M. This conclusions is al-
ways valid for slip (for perfect dislocations S s = 0).

The question may arise as to whether a frictional
force is distributed along the twin which is "trapped"
in the crystal. It should be noted that up till now we
have only specified the limiting values of the friction
force, considering them to be equal to the quantities
± So (depending on the direction of the quasistatic mo-
tion of the dislocation). However, if the dislocation is
fixed and the forces applied to it are not known before-
hand, then the friction force is not determined, al-

FIG. 17. Dependence of the thickness
h of the central part of the twin on Ρ

upon loading and unloading.

Δ

h*

P*

"This will always occur for a monotonically decreasing function

σ(χ).
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though it is bounded; | s | < So. The force s and its
distribution s = s(x) along the twin a r e completely de-
termined by the condition for equilibrium of the dislo-
cations under the action of the remaining forces . In
the case of a twin which is trapped in the crysta l (when
σ(χ) = 0) under the unloading process described above,
the force s(x) can easily be determined on the basis
of Eqs . (3.4) and (4.3).

Case 3. Μ > V L m So. In this c a s e , for a certain
value of the p a r a m e t e r s P, Eqs . (4.4) for x 0 = xo( P)
has the solution xo( P j = L m corresponding to that in-
stant when, in the returning motion, the dislocations
a r r i v e along the ent ire length of the twin. During the
subsequent decrease of P, the density of the disloca-
tions along the twin is described by formula (3.5),
where the half-length L of the twin is determined by
the solution of the transcendental equation

st. ( - )
y L

A simple graphical analysis of Eq. (4.5') shows that
the twin disappears (L = 0) for Ρ = P 2 = S% - S O / T ( 0 ) .
It is easy to see that the difference between the load-
ings at which the twin appears and disappears is deter-
mined by the relat ion P* - P 2 = 2 S 0 / T ( 0 ) and does not
depend on the length of the twin. It is interesting to
note that this quantity exactly coincides with the length
of the hys teres i s segment on the curve showing the
dependence of the twin's thickness on the load P* - P 2

= P m - VK (see Figs . 17 and 18). The magnitude of
the hys teres i s segment Δ Ρ = P m - Pi on the curve
L = L ( P ) (see Fig. 18) significantly depends on the
length of the twin. In the s implest case, when F ( L )
= PG(L), the following expression for this quantity
follows from Eqs . (3.15) and (4.5):

_2So_
" G (L) •

(4.6)

Since the lengths of stable equilibrium twins correspond
to regions where the function G(L) is decreasing, the
value Δ Ρ of the hys teres i s region increases with the
length L of the twin. For example, from E q s . (4.6)
and (3.10) it follows that for twins of long lengths, Δ Ρ
increases in direct proportion to L.

Thus, in the case Μ > V L m So the hys teres i s a s s o -
ciated with twinning may also be character ized by a
different dependence of the length L of the twin on the
parameter Ρ for loading and unloading. After the
creation of the twin at Ρ = Ρ*, an increase in the length
of the twin occurs with an increase of P, where the
length r e a c h e s the value Lm for Ρ = P m (Fig. 18).
When the parameter Ρ d e c r e a s e s , then at f irst the r e -
distribution of the dislocations is not associated with a
change in the length of the twin ( P i < Ρ < P m ) and
only for Ρ < Pi does the twin become contracted,
disappearing under the load corresponding to Ρ = P 2 .

L*

FIG. 18. The hysteresis loop on the
curve showing the dependence of the
length L of a twin on the external load
P.

Therefore, a relatively short twin having a large sur-
face energy (Μ > V L m S o ) vanishes after the removal
of the load which produced it. In comparing the differ-
ent c a s e s , which we have been analyzing, for the behav-
ior of the twin upon unloading with the experimental
observations, we wish to emphasize one important
resul t of the expounded theory. If the process of con-
tract ion of the twin has s tar ted during the process of
unloading, then such a twin inevitably escapes from the
crystal upon the complete removal of the loading (it
exists in the form of an elastic field "which decreases
monotonically with depth). The "wedging" of the twin
after its part ia l contraction/ 8 ^ which has been noted
in experimental work, might be due to the appearance
of additional obstacles (associated with the elastic fields
of the glide dislocations which generate the accomoda-
tion band, or other types of obstructions) near the base
of the twin.

Quantitative measurements of the hys teres i s a s s o -
ciated with elastic twinning in calcite were carr ied out
in a r t i c l e [ 6 0 ] . The corresponding experimental curve
is shown in Fig. 19, showing the dependence of the
twin's length (in t e r m s of a convenient scale) on the
macroscopic loading. The 1—2 segment of the curve
corresponds to the loading stage (an increase of the
load from σ, to σ 2 took place). After reaching the
value σ 2 a decrease of the loading occurred, during
which the length of the twin remained unchanged (the
segment 2—3 shown of Fig. 19) down to the value σ 3 for
the loading. The amount of hys teres i s , Δσ = σ 2 - σ 3,
associated with the given method of loading turned out
to be appreciable, which made it possible to carry out
the measurements with sufficient accuracy. The fur-
ther reduction of the loading was accompanied by a
decrease in the length of the twin (the segment 3—4
shown on Fig. 19). After the reduction of the loading to
the value σ4, at which the length of the twin coincided
with its initial value, the unloading process was dis-
continued. Subsequent loading (from σ 4 to σι) generated
the second horizontal segment on the diagram under
consideration (the interval 4—1 shown on Fig. 19),
which closes the hys teres i s loop indicated on the graph
by the open c i r c l e s . In order to verify the reproduci-
bility of the r e s u l t s , the cycle of measurements was
repeated. It was found that the second hysteres i s loop
(it is indicated on Fig. 19 by the black c i rc les) agrees
with the first loop to within an accuracy of tenths of a
percent, which indicates that the reproducibility of the
experiment is quite satisfactory. From Fig. 19 it is
seen that az - o3> σχ - σ 4 ; this is experimental con-
firmation of the asser t ion made above about the depend-

FIG. 19. Dependence of the rela-
tive length of the twin on the macro-
scopic load. [60] d denotes the width
of the crystal; the open circles cor-
respond to the experimental points
on the first hysteresis loop, and the
black circles represent experimental
points on the repeated loop.
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ence οί the amount of hysteresis on the length of the
twin.*

The hysteresis associated with twinning is com-
pletely due to the presence of the force of retardation,
which has the nature of a force of dry friction; there-
fore the experimental observation [ e o ] of the hysteresis
loop is a very reliable confirmation of the existence of
such a type of force. We are forced to make such a
comment in connection with the fact that certain in-
vestigators (see, for example, t 7 1 ]) ascribe to the force
of retardation the*nature of a viscous friction (the
force of viscous friction vanishes together with the
velocity of the dislocation, and it cannot lead to hystere-
sis under quasistatic conditions).

The analysis of hysteresis carried out by us was
based on an investigation of the length of a mechanically
stable twin, which corresponds to a certain instantane-
ous state associated with a quasistatic process. We
have verified that one and the same macroscopically
determined state (specified by the value of Ρ and, for
example, the temperature of the crystal) correspond to
at least two limiting values for the length of the twin
(for infinitely slow loading, when the force of friction
is given by s(x) = - So, and for infinitely slow unload-
ing when s(x) = So). We have already mentioned above
that in the general case the only requirement imposed
on the function s(x) is that its absolute value be
bounded, | s(x) < So; therefore, depending on the load-
ing conditions and, in particular, on the alternation of
the periods of loading and unloading, twins of different
shapes and lengths can be generated, corresponding to
different functions s(x). In this case, when the length
L of a symmetric twin appreciably exceeds the dis-
tance over which the external loading falls off substan-
tially, it is determined as the solution of the equation

(4.7)

If it is assumed that Μ 3> /L So, then in the linear
approximation with respect to VL S O / M the solution
of Eq. (4.7) can be written as

2VL0 <t>o\2

Thus,

where the longest length corresponds to s(x) = So and
the shortest length corresponds to s(x) = -S o . The
limiting values of L = L 0 ( l ± AL/L) as a function of
the parameter Ρ are schematically shown on Fig. 20
in the form of the curves 1 and 2. The hatched region
shown on Fig. 20 consists of the points (P, L) repre-
senting the mechanically stable states of the twin. The

"Let us recall that hysteresis in regard to the length of an elastic
twin was observed by Garber. [4] Detailed investigations of this effect
were then carried out by Williams andCahn. [66] However, the applica-
tion of a concentrated loading, and the uncontrollable changes in the
conditions of contact at the surface of the sample associated with this,
do not permit one to isolate the hysteresis in a pure form, and these
factors affect the reproducibility of the experiment. Therefore, in our
opinion, the methods used by the authors of articles [4·66] do not give
the possibility of making quantitative measurements of the hysteresis.

FIG. 20. The relation between the
length L of a twin and the external load-
ing Ρ as a function of the magnitude and
sign of the friction force s(x). 1— s(x) -
const = -s0; 2-s(x) = const = 0; 3-s(x)
= const = s0.

intersection of this region with the straight line
Ρ = const determines the range of the possible equili-
brium lengths for a fixed value of the parameter P.
But the length of the twin is a macroscopic character-
istic of the system; therefore, the presence of a certain
range for its equilibrium values indicates that the
mechanically stable twins being analyzed do not corre-
spond to thermodynamical equilibrium of the crystal.

The qualitative difference between mechanically
stable and thermodynamically stable twins was first
pointed out by Lifshitz. [X3] However, in the macroscopic
theory1·131 the parameters and relationships are not
present which would permit one to derive a quantitative
description of the difference between the shapes of a
twin in thermodynamical equilibrium and those of
twins in mechanical equilibrium. Therefore, we shall
follow the expounded dislocation theory of twins, and
we shall explain which twin, out of all of those which
are in mechanical equilibrium under a given external
loading, is the one in thermodynamical equilibrium.

Thermodynamical equilibrium of an elastic medium
containing a thin twin corresponds to the minimum of
the quantity

g = Ε ei, - §> <Ahut ώΣΛ + Es,
Σ

w h e r e E e l d e n o t e s t h e e l a s t i c d e f o r m a t i o n e n e r g y , E g

denotes the surface on the twinning plane, σ?^ denotes

the external loading on the surface of the solid, and
the integration in the surface integral is taken over
the surface £/ of the elastic solid.

It is easy to verify that [ 7 2 1

I — φ σ?*
ί

L
-bH \ dxf>(x

(4.10)

(*') dx' -

where the superscript e, just as earlier, denotes the
external field, and the superscript t denotes the field
created by the twin itself, that is, by those dislocations
which generate it. The length of the dislocation along
the Ζ axis is denoted by H.

It is a characteristic feature that only the displace-
ments created by the external stresses on the surface
of the solid appear in the integrand of the surface in-
tegral in Eq. (4.10).

The surface energy E s , generating the " force"
S s(x), is determined by the relation

Atp(*) (4.H)

Since the field of the external stresses is assumed
to be fixed, then the part of the quantity Ε οί interest
to us is given by
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(4.12)

The first t e r m in Eq. (4.12) determines the interac-
tion energy of the dislocations which generate the twin;
therefore

Table I. Determination of the
thermodynamically stable

length of an elast ic twin

L L
= - 4 - \dx j dx'\n\x-x'\p(x)p(x'). (4.13)

Let us differentiate (4.14) with respect to x:

The second t e r m in (4.12) determines the energy of
the dislocations in the external s t r e s s field.

Substituting (4.11) and (4.13) into (4.12), we obtain
ΔΕ as a functional of the density o(x) of the distr ibu-
tion of the dis locations. The function p(x) , giving the
minimum of this functional, satisfies the condition

(4.14)

-±la(x)-St{,)]. (4.15)

The condition (4.15) is a singular integral equation
with respect to p(x) and determines the density of the
dislocations along the twin which is in thermodynami-
cal equil ibrium. This equation formally agrees with
Eq. (3.4) if one sets S o = 0 in the l a t te r . Therefore,
al l of the formulas which we previously derived and
discussed also pertain to the case of the twin in thermo-
dynamical equilibrium, provided one sets So = 0 in
them. In part icular, formula (4.7) is replaced by

PG(L) = ^=-, (4.16)

and the graph of the function L = L( P) for all values
of Ρ is schematically represented by curve 3 in Fig.
20.

On the ( P , L) diagram the quasistatic processes
involving a change of the mechanical s tate of the twin
will be represented by the following curves, consisting
of two different segments . Upon loading, the first seg-
ment of the curve for the process is a s traight line,
passing from the point corresponding to an arb i t rary
initial s tate (the point 0 on Fig. 21 a) and terminating
on the lower limiting curve (point A on Fig. 21 a) .
During this part of the process , the twin's length does
not change. A further increase of the loading leads to
an increase in the twin's length, which is described by
the motion along the lower limiting curve (the segment
AQ on Fig. 21a). Similarly, for the unloading process
the curve consists of the straight line segment OM

Number
of the
twin

1
2
3
4

Initial
length

0.33
0.45
0.48
0.62

Final
length

0.25
0.35
0.45
0.60

Duration
of the ex-
periment,
in hours

51
170
96
83

FIG. 21. a) Quasistatic processes involving a change in the mechani-
cal state of the twin, b) Determination of the thermodynamically stable
length of a twin under a fixed external loading.

(L = const) and the segment MN on the upper limiting
curve (see Fig. 21 a) .

The curves for establishing the length of a twin in
thermodynamical equilibrium, corresponding to a fixed
external loading, have a different appearance. If a
mechanically stable twin, existing in the state ( P o , L j
during the loading process (see Fig. 21b), is granted
the possibility to go into the state of thermodynamical
equilibrium, then its length L will increase with t i m e .
The other situation was observed in experiment^ 6 0 1,
namely, the establishment of thermodynamical equili-
brium in the unloading stage, when the initial s tate
corresponded to the point ( P o , L 2 ) shown in Fig. 21b.
After completion of the process of part ial quasistatic
unloading, the loading was fixed and maintained for a
long t ime interval. The observations were carr ied out
as long as the daily change in the length of the twin
associated with (the variation of) the room tempera-
t u r e was not comparable to the e r r o r in the m e a s u r e -
ments of the length. In the experimental re su l t s which
a r e shown in Table I, it is easy to see a character i s t ic
tendency toward a contraction of the twin. A smal l
heating-up of the crystal led to an intensification of the
process involving the establishment of the thermody-
namically stable length of the twin.

By comparing the data shown in Table I with a
typical experimental graph shown in Fig. 19, one can
conclude that the ageing t ime in the described experi-
ment was not sufficient to complete the process of
establishing the thermodynamically stable length of the
twin. In fact, under the condition S o / L <S M, which
corresponds to the experimental setup, it follows from
Eq. (4.9) that the thermodynamically stable length is
given by L o = ( 'AKL, + L 2 ) (see Fig. 21 b). Even a
very roughly estimated ar rangement of the data of
Table I onto the graph shown in Fig. 19 shows that the
length of the twin at the end of the experiment sti l l ap-
preciably exceeded the value of L o predicted by the
theory.

Finally, let us point out that a twin which is trapped
in the crystal after complete unloading (cases 1 and 2
of hys teres i s which were discussed above) must
emerge from the crystal during the process of the
establishment of thermodynamical equilibrium. This
theoret ica l resu l t may explain the experimental facts
related to the annealing of twins which have been
trapped in N a N O 3 , t ? 3 ] b i s m u t h , [ 7 4 ] and ant imony [ 7 5 ] (of
course, the process which is being observed in these
experiments may be complicated by the overcoming of
obstructions).
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5. A TWIN IN A LAMINA. THE EXPERIMENTAL
DETERMINATION OF THE PARAMETERS OF THE
THEORY

The qualitative properties, discussed in the preced-
ing Sections, of the behavior of a twin associated with
the variation of the external loading have been analyzed
for the example of a twin in an unbounded crystal (or
a twin near the surface of a crystal occupying half-
space). However, in an experiment one usually has to
deal with a twin whose length is comparable to the
dimensions of the crystalline sample. Therefore, in
order to make a quantitative comparison of the experi-
mental results with the theoretical conclusions, it is
necessary to have the corresponding formulas for
twins in finite crystals, i.e., for those situations which
are as close as possible to the actual experimental
conditions. But, in addition to such a purely applied
side of the question, the investigation of twins in a
finite crystal has important fundamental value for the
study of qualitatively new properties of twins, said
properties not being present for twins in an infinite
crystal.

In order to clarify the last remark, let us briefly
discuss the problem of the stability of a twin in a
crystal. In [ 5 0 ] it was shown that a twin near the plane
surface of a semifinite crystal is always stable, pro-
vided that its length appreciably exceeds the dimen-
sions of the region of application of the external load-
ing. This is caused by the fact that at such a depth the
stress field already falls off monotonically inside the
crystal, as a consequence of which there is a smooth
and monotonic increase of the length of the twin with
increasing load. But an increase of the length with in-
creasing values of the external loading is an indication
of the stability of the twin. However, as long ago as
the work[12>13] it was noted that in that case when the
length of the twin becomes comparable with the thick-
ness of the crystal, its stability is destroyed. It is
clear that a rigorous determination of the boundaries
of stability for a twin in a finite crystal can be made
only on the basis of a quantitative analysis of the
corresponding problem.

As the simplest model of a finite crystal, let us
consider a plane-parallel lamina, i.e., a crystal
bounded by two parallel free planes. We shall regard
the twin in the lamina as planar, produced by a collec-
tion of screw dislocations, the twin being perpendicu-
lar to the surface and one of its ends emerging onto
the surface (see Fig. 22).

Such a twin must be counterbalanced by the surface
force, which is directed in parallel to each dislocation
line, and which does not vary along it (in the theory of
elasticity, the corresponding deformed state is called
an antiplane deformation). The choice of the coordinate
system is indicated on Fig. 22. In particular, this

ο
ν////////\'/Χ'//Α///////////

FIG. 22. Model of an elastic twin
in a lamina.

cho ice a s s u m e s that the d i s locat ion l i n e s a r e s tra ight
lines parallel to the Ζ axis. The problem of the
equilibrium of such a twin was completely solved in
article1·523, where the explicit form of the transcendental
equation which determines the length of the twin was
derived in the isotropic approximation. Confining our
attention to the case of an isotropic medium, let us
present the equation for equilibrium which was de-
rived in t 5 2 ' , and which determines the density of the
dislocations along the twin:

'• ρ (ξ) sin-^d?

Τ cos^-cos-ifL
(5.1)

where b is the Burgers vector, d is the thickness of
the lamina, and μ is the shear modulus.

By making the substitution χ = cos(ir£/d), Eq. (5.1)
can be reduced to a simple integral equation with a
Cauchy kernel; therefore its solution can be obtained
in general form. If one is interested in the bounded
solutions of this equation, i.e., if we consider only free
twins, then one can easily obtain a relation which is
equivalent to the orthogonality condition (3.7); without
changing the form in which Eq. (3.7) is written down,
let us present the new expressions for the functions
F(L) and J(L):

ζ (y) sin ̂ - dy

(5.2a)

(5.2b)

where the parameter Μ has the same meaning as be-
fore.

Let us consider the transcendental equation (3.7)
containing the function (5.2) from the point of view of
its utilization for the experimental determination of
the basic parameters of the theory, So and M.

If the elastic fields are proportional to the parame-
ter Ρ (<7xz(y) = Pi"(y)), then we may write down an
equation analogous to (3.15), namely

where G(L) is determined by formula (5.2a), in which
a x z ( y ) should be replaced by T(y).

In that case when the external loadings are known
(i.e., the PG(L)) and the length L of the twin corre-
sponding to these loadings is known, then from Eq.
(5.3) one can obtain information about So and M. Thus,
relations of the type (5.3) can be directly used for the
determination of the parameters of the theory, So and
M.

However, let us start with a discussion of the quali-
tatively new phenomena which are unique for twins in
a lamina. First of all, let us turn our attention to the
behavior of the function F(L) in the neighborhood of
L = d. One can easily verify that the condition F'(d)
= 0 always holds when the external stresses are con-
tinuous at the point where the line of twinning emerges
onto the opposite boundary (y = d) of the crystal slab.

We also note that, from Eq. (5.2) it follows that

(5.4)
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where the integral determines the total force on the
twinning plane, and Q z is equal to the z-component of
the total force which is applied to the external surface
of the crystal from one side of the twinning plane (if
the twinning plane is taken as the plane χ = 0, then we
are talking about the "right-hand" side, χ > 0). The
last part of Eq. (5.4) is obtained on the basis of the
static equations of equilibrium, from which it also
follows that the total force applied to the external sur-
face of the sample from the other side of the twinning
plane (x < 0) differs from Q z only by its sign.

It is interesting to note that, in that case when all
of the external stresses directed along the Ζ axis are
distributed on a single side of the twinning plane, then
F(d) = 0 .

As to the function J(L), its behavior in the neigh-
borhood of L = d is also of interest. One can easily
see that for d - L <?C d one can write

(5.5)

from which it follows that j (d) = 0 and j ' ( d ) = - «.
Having some general ideas about the functions F(L)

and J(L), let us go on to an analysis of the growth of a
twin. Under small external stresses (small P), as long
as L "C d, the nature of twin growth will be the same
as in a semi-finite medium, and the properties of twin
growth which are characteristic for a finite crystal
appear only for L ~ d.

Let us assume that during the loading process the
condition Q z < Sod is always satisfied (in order to
realize such a condition, it is sufficient to assume that
the curve F(L) at any arbitrary instant of loading
would cross the axis of abscissas at a single point).
Then, from an elementary analysis of the graphs shown
in Fig. 23 it follows that the equilibrium length of the
twin turns out to always be smaller than the thickness
of the sample (L < d). In the simplest case, when
F(L) = PG(L) and G(L) is an alternating function, one
can easily confirm the existence of a maximum length
Lmax, which cannot be exceeded for any finite loading.
It is obvious that Lmax is the smallest root of the
equation G(L) = 0 . It may turn out that L m a x = d (as
will occur, for example, when the external forces are
applied from a single side of the twinning plane). In
this connection, under the influence of the increasing
values of the loading, the twin will approach arbitrarily
close to the opposite surface of the crystal, without
ever reaching it for any finite value of the external
force.

If Qz > Sod starting with a certain loading and if
the curve F(L) does not intersect the axis of abscissas,
then for a sufficiently large external force the twin
passes through the entire lamina (it " jumps" through

t h e e n t i r e s a m p l e ) . I n t h i s s i t u a t i o n t h e q u e s t i o n o f h o w

t h e c o n c l u d i n g p h a s e o f c r o s s i n g t h e c r y s t a l i s a c h i e v e d

i s o f f u n d a m e n t a l i n t e r e s t . T h e l a t t e r p r o b l e m i s

d i r e c t l y r e l a t e d t o t h e q u e s t i o n o f t h e s t a b i l i t y o f a n

e l a s t i c t w i n i n a f i n i t e c r y s t a l . T h e p h y s i c a l r e a s o n f o r

t h e p o s s i b l e l o s s o f t h e t w i n ' s s t a b i l i t y h a s a s i m p l e

i n t e r p r e t a t i o n i n t e r m s o f d i s l o c a t i o n s . T h e p r e s e n c e

o f t h e o p p o s i t e c r y s t a l s u r f a c e g e n e r a t e s a f o r c e w h i c h

a t t r a c t s t h e d i s l o c a t i o n s t o w a r d i t a n d u n d e r c e r t a i n

c o n d i t i o n s t h e e f f e c t o f t h i s f o r c e m a y t u r n o u t t o b e

d e c i s i v e f o r t h e d i s l o c a t i o n s a t t h e e n d o f t h e t w i n . T h e

t w i n c e a s e s t o c o n t i n u o u s l y f o l l o w a f t e r t h e i n c r e a s e o f

t h e l o a d i n g , a n d u p o n a f u r t h e r i n c r e a s e o f t h e e x t e r n a l

f o r c e i t a b r u p t l y i n c r e a s e s i t s l e n g t h t o L = d .

I n t h e s a m e w a y a s i n t h e f o r c e t h e o r y o f f r a c t u r e , [ 3 3 '

t h e f o r m a l c r i t e r i o n f o r t h e s t a b i l i t y o f a t w i n w i t h r e -

s p e c t t o i n f i n i t e s i m a l c h a n g e s o f t h e e x t e r n a l l o a d r e -

d u c e s t o t h e r e q u i r e m e n t

( 5 . 6 )
dL

dP

I t i s e a s y t o s h o w t h a t i f t h e l e n g t h o f t h e t w i n c a n

i n c r e a s e u p t o L = d , t h e n r e q u i r e m e n t ( 5 . 6 ) m u s t b e

v i o l a t e d i n a n y c a s e f o r t w i n l e n g t h s w h i c h d i f f e r v e r y

s l i g h t l y f r o m t h e t h i c k n e s s o f t h e s a m p l e ( d - L < C d ) .

F r o m t h e c o n d i t i o n F ' ( d ) = 0 i t f o l l o w s t h a t f o r

d - L <tC d t h e g r a p h o f t h e f u n c t i o n F ( L ) h a s t h e f o r m

o f a h o r i z o n t a l s t r a i g h t l i n e , F ( L ) = F ( d ) , w h i c h i n -

t e r s e c t s t h e c u r v e S o + J ( L ) f o r v a l u e s o f F ( d )

s l i g h t l y e x c e e d i n g t h e v a l u e s S o . U s i n g t h e b e h a v i o r

( 5 . 5 ) o f t h e f u n c t i o n J ( L ) i n t h e r e g i o n u n d e r d i s c u s -

s i o n , o n e c a n e a s i l y d e t e r m i n e t h e d e p e n d e n c e o f t h e

t w i n ' s l e n g t h o n t h e l o a d i n g :

C o n s e q u e n t l y , i f ( d F / d P ) > 0 t h e n f o r F ( d ) > S o ,

i n s t e a d o f c o n d i t i o n ( 5 . 6 ) w e o b t a i n t h e o p p o s i t e i n -

e q u a l i t y d L / d P < 0 , s h o w i n g t h a t a s u f f i c i e n t l y l o n g

t w i n n e c e s s a r i l y l o s e s i t s s t a b i l i t y , q u i t e i n d e p e n d e n t l y

o f t h e m e t h o d o f i t s f o r m a t i o n .

A n e x a m i n a t i o n o f t h e g r a p h i c a l s o l u t i o n o f E q . ( 5 . 3 ) ,

s h o w n i n F i g . 2 4 , m a y s e r v e a s a n i l l u s t r a t i o n o f w h a t

h a s b e e n d e s c r i b e d a b o v e . L e t u s a s s u m e t h a t F ( L ) i s

a m o n o t o n i c a l l y d e c r e a s i n g f u n c t i o n . T h e n a r e g i o n

e x i s t s i n w h i c h E q . ( 5 . 3 ) h a s t w o s o l u t i o n s , L i a n d L 2

( c u r v e 1 ) . T h e s e c o n d o f t h e s e s o l u t i o n s d o e s n o t s a t -

i s f y t h e c o n d i t i o n f o r s t a b i l i t y . W i t h i n c r e a s i n g l o a d ,

t h e l e n g t h L x o f t h e s t a b l e t w i n i n c r e a s e s . F i n a l l y ,

c o n t a c t b e t w e e n t h e g r a p h s o f F ( L ) a n d [ J ( L ) + S 0 J

occurs upon reaching a certain value, Ρ = Ρ -̂, of the
loading parameter (see curve 2). At the point of con-
tact L = L^, the derivative dL/dP vanishes as one can
easily verify. The solution of Eq. (5.3) vanishes upon
a further increase of the loading, that is, the possibility

F(L),S0*№

FIG. 23. The graphical solution of

Eq. (5.3) for Q z < S o d. 1, 2 denote the

curves F(L) for different values of P; 3

is the curve of S o + J(L).

F(L),UL)

FIG. 24. Graphical solution of Eq. (5.3)

for Q z > S o d. 1, 2-curves of F(L); 3- the

curve of S o + J(L).

ψ Ί

'••Τ
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zero); the upper surface of the lamina is free for
χ > x a , and a force of magnitude Ρ parallel to the Ζ
axis is applied to its lower surface at the point χ = x c

> x a . Such boundary conditions are similar to the
situation realized in the experiment, when the crystal
is held in a clamp and an external force is applied to
it by means of a thin rod which is glued onto its sur-
face.

The required (by us) component of the stress tensor
as a function of y for χ = 0 has the form

d ( ny \ π φ

w h e r e

y * *

-- -j arctg ·

p

d

, cos

co" 2ny

sin ψ
ι 2π \χα | \ '

X: 2nxa

π | Xa | №

e d d

( 5 . 1 0 )

W e s e e t h a t t h e s t r e s s s t a t e i n t h e p r e s e n t c a s e c a n

b e r e p r e s e n t e d i n t h e f o r m a z x ( y ) = P r ( y ) , t h a t i s , t h e

e l a s t i c f i e l d i s p r o p o r t i o n a l t o t h e l o a d i n g p a r a m e t e r

P . E a r l i e r w e v e r i f i e d t h a t s u c h a d e p e n d e n c e o f t h e

elastic stresses on Ρ considerably simplifies the
theoretical analysis of the evolution of the twin.

In connection with the performance of the corre-
sponding experiment, it was possible to create an
elastic twin consisting of straight screw dislocations,
and then to ensure its stability and growth under the
influence of a distributed load, which was applied ac-
cording to a scheme similar to the one shown in Fig.
27. In order to do this, the sample of calcite 1 was
cemented into the clamp 2, as shown in Fig. 27. The
rod 3 for application of the load was glued on at a small
distance from the clamp. Before the experiment a con-
centrated load, sufficient for the formation of the elastic
twin 4 consisting of straight segments of twinning screw
dislocations, was applied with the aid of a special
set-up. Under the appropriate load P, the twin being
produced became stabilized.* Thus, in the experiment
it was actually possible to create conditions corre-
sponding to the scheme shown in Fig. 26.

For complete agreement of the experimental situa-
tion with the calculated stressed state, it is necessary
to demand that the thickness of the sample must be
appreciably smaller than its dimensions along the Ζ

FIG. 27. Diagram showing loading and
fastening of the crystal: [S9] 1-calcite crystal,
2—clamps, 3—rod, 4—twin.

*We call attention to the fact that the retention and exertion of in-
fluence on an elastic twin in a crystal with the aid of a distributed load
represents an interesting experimental problem which, so far as we know,
was first solved in [59].

axis (see Fig. 26). Unfortunately, this requirement
could not be fulfilled. However, estimates^801 indicate
that the experimental errors caused by this, and also
those arising in connection with the measurements of
Ρ and L, are altogether of the order of magnitude of

The described method of exerting influence on the
twin was used in quantitative experiments with regard
to the determination of the phenomenological parame-
ters So and M.

First let us describe the determination of the quan-
tities So and M, based on measurements of the depend-
ence of the length of the twin on the load. The scheme
used for their determination was as follows. The ex-
perimentally obtained values of the load Ρ and the twin
lengths L corresponding to them were first substituted
into Eq. (5.11), and then the result of the calculation
was substituted into (5.2a). After this had been done,
relation (5.3) was written down for each pair of values
Ρ and L. A systematic analysis of a large number of
the thus obtained relations for different twins enables
one to rather accurately determine So and M. The
results for two crystals are given in Table II.

The use of experimental data about hysteresis is
another method which allows one to determine So and
M. In fact, the combination of Eqs. (5.3) (for the in-
stant immediately preceding unloading) and (4.6) can
be regarded as a system permitting one to completely
determine the parameters So and Μ for a known stress
state and for the experimentally determined hysteresis
interval Δ P. The corresponding experiments and cal-
culations were carried out in article ^60\ The results
are presented in Table ΙΠ. The values of the parame-
ters So and M, obtained from an analysis of the L( P)
diagram for the same twins, are presented in parallel.

The calculation of a specific stress state usually
presents certain technical difficulties; therefore it is
useful to have some relationship which is only slightly
sensitive to the stress state. By eliminating G(L) from
Eqs. (4.6) and (5.3) we can obtain the following relation
between the parameters So and Μ:

(5.11)K-"M ~ 2P-AP V "2TCtg"S~'

which does not depend on the distribution of the
stresses and can be determined in experiments with
hysteresis. By comparing the value of κ, obtained
without calculation of the stressed state from experi-
ments on hysteresis, with the value of κ obtained after
an analysis of the L = L( P) diagram on the basis of
the calculated distribution of the elastic stresses, one
can verify the validity of the formulas calculated in
a r t i c l e ^ .

In the case of crystal No. 1 we have, respectively,
0.26 cm"V 2and 0.28 cm" V 2 , and for crystal No. 2 we

Table II. Values of So and Μ (from the dependence of the
length of the twin on the value of the load)

Number of
the crystal

1
2

So, kg/cm»

0.50+0.05
0.31 ±0.01

M, kg/cm»/1

1.00±0.12
1.03+0.02
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Table ΙΠ. Values of the parameters So and Μ (determined
from hysterisis and from the dependence of the length

of the twin on the load)

Number of the
crystal

1
2

From hysteresis

S,, kg/cm1

0.27±0.02
0.49±0.09

M, kg/cm1/"

1.04±0.06
0.93±0.09

From the dependence L(P)

So, kg/cm
1

0.28±0.05
0.49±0.17

M, kg/cm'/"

1.00±0.06
0.92±0.17

have, respectively, 0.53 cm"1 7 2 and 0.53 cm" l / ! . A com-
parison of the cited values of κ for each crystal shows
that the calculation of the stress state corresponds
rather well to the conditions of the experiment.

It is important to note that the spread in the experi-
mental values of Μ does not exceed the experimental
errors . For So the spread in the experimental values
from crystal to crystal turns out to be larger than the
experimental error . This may be due to differences in
the defect structure of the different samples. In order
to verify this conjecture, measurements of So and Μ
were made in crystals which necessarily differ very
strongly in regard to the number of defects. [ 8 1 ] In
crystals in which the density of perfect glide disloca-
tions varied from 102 cm"2 to 104 cm"2, the differences
in the values of Μ did not exceed the experimental
errors . As to the quantity S0) it varied correspond-
ingly within the limits from 0.3 kg/cm2 to 1 kg/cm2.*

As long as we are talking about what determines the
value of So, we note that defects which arise in the
process of elastic twinning also give a contribution to
the force of friction (the appearance of such defects
has been observed in antimony^821 and calcite1-831).
In [ 8 3 ] it is shown that during the process of multiple
repetitions of the loading-unloading cycles the number
of defects which are produced increases, and this is
accompanied by an increase in the area of the hystere-
sis loop.t

In comparatively pure single crystals, where the
initial density of the perfect dislocations ~102 cm"2,
the value of So is practically unchanged during such
a cycling process. And what is more, estimates show
that the average internal stresses from the defects
present in such crystals are substantially smaller than
the measured value of So. Therefore, one can conjec-
ture that the measured value of So in these crystals

*Such an increase is confined to that which must be generated by
the elastic fields of glide dislocations which are uniformly distributed
in the crystal with the appropriate densities.

t The observation of defects which arise in connection with elastic
twinning in calcite is also reported in the recent work by Kaga and
Gilman, [88] and the authors regard these defects as the cause of the
hysteresis associated with elastic twinning. In fact, as is shown in [83],
in the presence of a large density of perfect dislocations in a crystal an
appreciable part of the hysteresis loop is due to the defects which arise
in connection with elastic twinning. At the same time, in very good
crystals of calcite one is able to make up to 30 cycles of loading—un-
loading, and the change in the hysteresis loop is found to be within the
limits of the experimental errors. It appears to us that this testifies to
the fact that in good crystals the hysteresis is due to the lattice force of
friction, which corresponds to theoretical ideas.

only slightly exceeds the value of the lattice force of
friction on a twinning dislocation.*

The utilization of experimental data about the loss
of stability of an elastic twin is the third method en-
abling us to determine So and M. The set of Eqs. (5.8)
for the critical length and (5.3) for the length of the
twin at the instant of its loss of stability for the ex-
perimentally measured values of P K and LK give the
values of So and M. Such an approach was used in
article [ 6 0 ] , where the critical length turned out to be
equal to 0.85 to 0.90 of the thickness of the sample.
The values of So and Μ calculated on the basis of an
analysis of the loss of stability are presented in Table
IV, where the values obtained for the same twin by
using the other methods are also given.

In principle the parameter Μ can also be deter-
mined from relation (4.16) for a known stress state of
the crystal and the experimentally determined thermo-
dynamically stable length of the twin. However, as
mentioned in Chapter 4 the attempt to use this method
for quantitative measurements is related to the neces-
sity of maintaining the crystal under a fixed load for
an extremely long ageing period.t

The very important circumstance, which we regard
as necessary to call attention to, is the fact that three
different independent physical experiments give very
similar values for the quantities So and M. On this
basis we are justified in regarding them as the con-
stants of the real crystal. Thereby the dislocation
theory under consideration is freed from model
parameters and can be used for a reliable quantitative
description of those processes of plastic deformation
which are realized by means of elastic twinning.

In conclusion we note that one does not usually use
the parameter Μ as the constant of the material char-
acterizing its tendency toward twinning, but rather a
different macroscopic quantity is employed—namely,
the coefficient a of surface tension associated with the
interphase between the twin boundary and the parent
crystal. The relation between Μ and a for twins can
be derived in exactly the same way as the relation be-
tween the modulus of coupling and the coefficient for
the free surface of a crystal in the force theory of

Table IV. Values of So and Μ (determined
from the critical length, from hysterisis,

and from the dependence L(P))

Method of measurement

From the L(P) dependence
From hysteresis
From the critical length

S,, kg/cm1

0.22 '
0.37
0.29

M, kg/cm3/1

1.01
0.87
0.89

•Additional evidence in support of the assertion about the lattice
nature of the friction force in a crystal containing a small number of
defects is obtained in article [89] in connection with measuring the
temperature dependence of So. The nature of the observed temperature
dependence and the qunatitative characteristics turned out to be in
agreement with those calculated theoretically for the Peierls model of
the force of retardation. [90·91]

t Perhaps the process involving the establishment of the thermody-
namically stable length can be accelerated by some kind of weak cyclic
action; however, as far as we know such experiments have not been out.
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FIG. 25. Dependence of the length
of a twin on the loading in a finite crys-
tal.

p*

of the existence of a static equilibrium twin disap-
pears. Since at the instant when Ρ = PK the twin al-
ready had a length LK, but all of the dislocations
generating it experience the effect of an external force
along the direction of its growth for Ρ < PK, the sub-
sequent dynamical behavior of the twin must lead to
the result that the twin " jumps" through the entire
crystal.

Therefore, a certain critical length hK always
exists for the twins under consideration, this length
being determined by the distribution of the external
forces, and upon reaching this length the stability of
the static equilibrium twin is lost. A schematic graph
of the dependence L = L(P) is shown in Fig. 25, on
which the appearance of the critical length L^ is quite
evident. This diagram was constructed for the case
shown in Fig. 24.

In the general case the critical value LK is deter-
mined as the largest root of the equation

TF = °- (5.8)

In that case when F(L) = PG(L), condition (5.8) is
transformed into the following equation for the deter-
mination of the critical length of a stable twin:

Thus, only two possibilities can be realized in a
finite crystal. If F(L) is an alternating function, then
a maximum possible length exists which cannot be
exceeded for any finite value of P. However, if F(L)
is a function of constant sign, then for sufficiently
large values of Ρ (such that F(d) > So) a loss of
stability occurs with a subsequent abrupt transforma-
tion of the elastic twin into a residual twinning lamella.
A qualitative analysis shows that this rule holds even
in the case of elastic twins in a finite crystal with an
anisotropic general form,*52] and it also holds for
elastic twins near the interface between media posses-
sing different moduli of elasticity. [ 5 4 ] Therefore, the
theoretical conclusions expounded above can be used
in order to analyze the experimental data concerning
the behavior of elastic twins near the boundaries of
residual twinning lamella, grain boundaries, and so
forth. The loss of the stability of an elastic twin near
a residual twinning lamella has been experimentally
observed in calcite. [ 5 5 ] The interaction of a twin with
a grain boundary is described in [ 5 6 ] . It also appears to
us that the loss of the stability of twins in crystals may
be one of the causes leading to the discontinuous nature
of plastic deformation in polycrystals, when the latter
phenomenon is primarily realized by means of twinning
(see, for example, [ 7 6 '7 7 ]).

In concluding the discussion of the question of sta-
bility, we note that our entire investigation is also ap-
plicable to the so-called fractures of longitudinal

shear, the development of which was previously ana-
lyzed in article [ 7 8 ] . An approximate solution of the
problem of the behavior of a fracture of general form
near the surface of a solid was previously obtained in
article [ 7 B ] .

A somewhat different situation, involving the stabil-
ity of a twin produced by screw dislocations, must
arise in that special case when the twinning plane is
strictly parallel to the surfaces of the infinitely ex-
tended lamina. It turns out [ 5 3 ] that for such an orienta-
tion of the twinning plane, the critical length of the
twin is absent; however, the critical value P K of the
loading remains and as the loading approaches this
value the twin continuously increases its length, the
length tending to infinity as Ρ — VK.

One should say a few words about the hysteresis
associated with twinning in a finite crystal. One can
easily verify that all of the qualitative conclusions of
the previous section (chapter 4) can also be derived
for a twin near the surface of an isotropic solid^50]

and for a twin in a lamina. [ 5 2 ] However, the value of
the interval Δ Ρ = P m - Ρ! on the hysteresis curve
(see Fig. 18) essentially depends on the shape and
dimensions of the crystal in which the twinning occurs.
It is also clear that it only makes sense to talk about
hysteresis in the case of a twin whose length is smaller
than the critical length or the maximum possible
length.

Finally, let us go on to a description of the experi-
mental determination of the phenomenological parame-
ters of the theory, namely, the quantities So and M.
In order to determine these parameters, one should
use the theoretical relations connecting So and Μ with
the experimentally observable characteristics of an
elastic twin. Its mechanical-equilibrium and critical
lengths may be regarded as such quantities, and also
the magnitude of the hysteresis interval Δ Ρ on the
curve showing the dependence of the twin's length on
the loading. Integrals of the function σ(χ) enter into
some of the formulas relating the characteristic
lengths of the twin to the quantities So and M; in order
to calculate these integrals it is necessary to know the
distribution of the elastic stresses along the twinning
plane. In other words, in order to have the possibility
of making a quantitative interpretation of the experi-
mental results it is necessary to know the stress state
of the sample. This stress state must be found by
solving the corresponding problem in the theory of
elasticity with boundary conditions which are close to
those actually realized in the experiment. An exact
solution of the problem of the antiplane deformation of
a lamina under the following boundary conditions (see
Fig. 26) was obtained in article [ 5 9 ] . For χ < x a the
upper and lower surfaces of the lamina are clamped
together (their displacements are exactly equal to

FIG. 26. Schematic drawing of
the antiplane deformation of a
lamina.
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fracture. ' 3 3 ' 3 2 - 1 In the case of a twin produced by screw
dislocations we have

(5.12) FIG. 29. Twin of finite thickness inside
a crystal: 1—parent crystal; 2-twin.

If we substitute the values for Μ given above and
the value for the shear modulus along the appropriate
plane in calcite into Eq. (5.12), we obtain
α « 35 e r g / c m 2 . An est imate of the coefficient a a c -
cording to the approximate formulas given in the a r t i -
cle by Vladimirski i/ 1 2 1 using the experimental data
given in1-5 9 '6 0 1, leads to values of a of the same order
of magni tude. [ 8 0 ]

6. THE THEORY OF I. M. LIFSHITZ AND A DISLOCA-
TION DESCRIPTION OF TWINS OF FINITE
THICKNESS

In the preceding sections we have repeatedly men-
tioned the theory of Lifshitz and have turned our atten-
tion to the specification and development of formula-
tions of a number of the conclusions of this theory in
t e r m s of dis locations. Since the phenomenological
theory of twins proposed by Li f shi tz [ 1 3 > 1 4 ] does not use
any concepts about the twinning boundary, then it is
important to verify that the dislocation description of
a twin leads to re su l t s which a r e in agreement with the
conclusions of the macroscopic theory. Simultaneously
we wish to point out certain specific re su l t s which take
the finite thickness of the twin into account.

In this connection, we r e g a r d it as useful to give a
brief exposition of the theory of twins of finite thick-
n e s s . The theory proposed by Lifshitz is based on the
concept of a specific nonlinear dependence of the
s t r e s s e s ffik on the deformations Ufe in a crystal
which is undergoing twinning. Such a dependence is due
to the fact that in such a crystal two equilibrium states
exist, corresponding to the twinned and the ordinary
states of the crys ta l , and differing by a shearing de-
formation equal to the angle of twinning. For simplicity
we shall a s sume that the medium is isotropic or
possesses cubic symmetry (in the lat ter case, the
axes of the Cartes ian coordinate system a r e assumed
to be directed along the symmetry axes of fourth
o r d e r ) . Jus t a s e a r l i e r , let the X axis coincide with
the t r a c e of the twinning plane. Then the graph of the
dependence of σ χ ν on u x v has the form shown schemat-
ically in Fig. 28a, where a is the angle of twinning.
However, the requirement of mechanical stability with
respect to infinitesimal displacements (for example,
those associated with t h e r m a l vibrations) leads to the
resu l t that the s tates of the crysta l associated with

FIG. 28. Nonlinear dependence of the shearing stresses on the de-
formations in a crystal undergoing twinning. [13] a) Diagram showing
the exact dependence; b) Simplified dependence used for small defor-
mations.

shearing deformations Vi < uXy < V2 a r e not real ized
(they a r e unstable). The part of the crystal in which
u X y reaches the cr i t ica l value Vi goes over into the
twinning state uXy > V2. Thus, the region of the twin
(region 2 shown in Fig. 29) will be separated from the
remaining crystal by a boundary of discontinuities of
the deformation tensor, and according to what has been
stated above we have

u!S<F,, (6.1a)
Wil>V» ( 6 J b )

where the indices (1) and (2) refer , respectively, to the
parent crysta l and to the twin.

For our purposes, instead of the graph shown in
Fig. 28a it is sufficient to consider the scheme con-
sist ing of two straight-l ine segments (see Fig. 28b),
where the f irst line corresponds to an elastic deforma-
tion of the parent c rys ta l :

and the second line corresponds to an elastic deforma-
tion of the twinned mater ia l

where α denotes the twinning angle (in our model
α = tan ' 1 (b/2a)) .

Since in the assumed model a discontinuity of the
elast ic s t r e s s e s a r i s e s on the interface between the
twin and the parent crysta l , the equilibrium of the
ordinary and twinning phases can exist only in that
case when a certa in surface force is distributed along
the indicated boundary. If χ = x( s ) and y = y( s ) a r e
the p a r a m e t r i c equations for the contour of the twin
( s denotes the length measured along the contour),
then according t o [ 1 3 1 in the two-dimensional problem
in the theory of elasticity this force has components
fx = fo(dx/ds) and fy = -f o (dy/ds), where f0 = 2 α μ . In
order to determine the s t r e s s e s on a twin inside a
crystal within the framework of such an approach, it is
necessary to solve the two-dimensional problem in the
theory of elasticity for the s t r e s s e s produced in a
medium by the concentrated forces f.

Let us use the general formulas of the theory of
elasticity for an anisotropic so l id , [ 8 4 ] specifying the
s t r e s s tensor in the case when the XOY plane is a
symmetry plane of the crys ta l . If the force generating
the elast ic s t r e s s e s has the form f(fx, fy, 0), then with
the aid of functions of a complex variable one can
r e p r e s e n t the tensor σ fa in the following way:

<3ii\x<y)— ĝ "> fi2(x, y) — -gj-i (6.2)
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where ζ α = χ + i m a y . In the case of cubic c r y s t a l s , the
ma a r e r e a l positive numbers determined by the
moduli of elasticity of the medium. The functions Φ
Φ α ( ζ ) a r e certa in functions of the complex variable
z/ 8 4 ] and the matr ix pia has the form

( — in>i -im2\
~\ 1 1 j "I I Λ . 1 1 =

In what follows it will be necessary for us to use
the derivatives F a ( z ) = [άΦ α (ζ)/(1ζ] > since it is p r e -
cisely in t e r m s of these derivatives that the compon-
ents ffik a r e expressed. In the case of a force f, which
is concentrated at the point ( ξ , η), the function F a ( z )
has the f o r m [ 8 4 ]

2

where Sa = I + ^ a 7 ? » N a j j is some completely de ter-
mined matr ix of the second rank, and the numbers Ck
(k = 1, 2) a r e given by

C , = - I m 2
C 2 = - I m

Let us utilize the specific form of the "twinning f o r c e "
f and let us consider the effect of al l of the forces
concentrated along the contour c. Then, in the case of
a twin the function F a ( z ) has the form

Κ{ζ)=£{^§ΐ^Τα-ις§ϊ=ΰ}· (6.3)

where the integral is taken around the closed contour
of the twin, which is situated in an infinite crystal.

It turns out that from the general formula (6.3) one
can derive a very important conclusion pertaining to
the nature of the sharp bend in the contour of a twin at
corner points. Let us assume that there is a corner
point on the contour c at ζ = 0, where the slopes of
the tangents to the curve c a r e equal to θι and θ 2
(see Fig. 30 where the contour c is being t raver sed
from left to r ight) . Let us clarify how the elast ic
s t r e s s e s created by the twin behave upon approaching
a corner point. In order to do this, it is sufficient to
analyze the behavior of the functions F a ( z ) as ζ — 0.
Let us r e p r e s e n t this function in the form

£Αί£Με (6.4)

where the piecewise-continuous function φ(ζ) is de-
fined by the relat ion

[ * + * ( £ ) ] - £ . ( 6 . 5 )

in which the constant factors A and Β a r e simply de-
termined in t e r m s of the constants in formula (6.3),
ζ = ξ + ίπΐ7)(ξ), and the dependence η = η(ξ) is the
equation of the contour c . It is obvious that the limiting

FIG. 30. Corner point on the
boundary of a twin.

X

values of the function φ(ζ) associated with approaching
the corner point from the left and from the right do not
coincide, since the derivatives άη/άξ which determine
the slopes of the rays which a r e tangent to the contour
c at the corner point do not coincide.

In the theory of singular integrals of the Cauchy
t y p e , [ 4 4 ' 8 5 ] it is shown that in the presence of a discon-
tinuity in the function ψ{ζ) at the point ζ = 0 the func-
tion F ( z ) has a logarithmic singularity at the point
ζ = 0 and its singular part is given by

ί·(*) = [ψ(+0)-ψ(-0)]1ηχ. (6.6)

If it is taken into consideration that

then on the bas is of expression (6.6) for the singular
part of the function F ( z ) one can derive the following
expression for its form:

F (2) = (Λ — i B ) ef«Pi-<P2> sin ( φ , — (ft) In z, ( 6 . 7 )

where

U p o n t h e i n c l u s i o n of t h e l o g a r i t h m i c s i n g u l a r i t y

( 6 . 7 ) in t h e e x p r e s s i o n f o r t h e e l a s t i c s t r e s s e s , i t i s

f o u n d t h a t t h e s t r e s s e s r e t a i n t h i s s i n g u l a r i t y . H o w -

e v e r , a n u n b o u n d e d i n c r e a s e o f aXy a n d h e n c e of t h e

t e n s o r u x y c o n t r a d i c t s t h e c o n d i t i o n ( 6 . 1 ) f o r m e c h a n -

i c a l s t a b i l i t y o f t h e t w i n . T h e r e f o r e , t h e s i n g u l a r i t y

w h i c h w e h a v e b e e n c o n s i d e r i n g i n t h e f u n c t i o n F ( z )

must not appear, which is possible only for <px = ψ2οτ
for φ ! - ψ 2 = ± π . The condition φ ι = φ 2 is t r iv ia l and
implies the absence of a corner point, but the condition
ψ! - ψ 2 = ±ιτ means that the corner point is a cuspidal
point. This implies that at such a point the t ip of the
twin must have zero aper ture angle. Thus, the conclu-
sion about the shape of the t ip of an " u n t r a p p e d " twin,
which was discussed in Chapter 2, is not related to the
assumption that the thickness of the twin is smal l . The
zero aper ture angle at the end of the twin is a general
property of any free twins.

Now let us go on to a comparison of the Lifshitz
theory with the dislocation theory of twinning j 4 7 1 As
mentioned in Chapter 1, the twin depicted in Fig. 29
can be represented by a set of dislocations distributed
around its contour (see Fig. 8). If the distribution of
the dislocations is regarded as continuous and one
introduces the density g(s) of this distribution along
the contour of the twin, then it is not difficult to write
down the relat ion between g( s ) and the thickness of
the twin at a given point:

A(i)=— a j g(s)ds, (6.8)

where, a s before, the OX axis is the t r a c e of the twin-
ning plane and a denotes the interatomic distance in
the direction perpendicular to the twinning plane. It is
easy to see that Eq. (6.8) is a generalization of formula
(1.1) to the case of a twin of finite thickness . For the
limiting case of a thin twin, Eq. (6.8) coincides with
Eq. (1.1) if one se t s p ( x ) = 2g(x).

Let us show, by following1 4 7 1, that the s t r e s s e s on a
twin inside a crystal , calculated on the bas i s of formula
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( 6 . 3 ) , c o i n c i d e w i t h t h o s e c r e a t e d b y t h e d i s l o c a t i o n s

d i s t r i b u t e d a r o u n d t h e c o n t o u r o f t h e t w i n . It i s n a t u r a l

t h a t w e c a r r y o u t t h e p r o o f u n d e r t h e s a m e a s s u m p t i o n s

w h i c h w e r e u s e d t o d e r i v e t h e r e s u l t s [ 1 3 ] , n a m e l y , l e t

u s a s s u m e t h a t t h e m e d i u m p o s s e s s e s c u b i c s y m m e t r y

a n d t h e c o o r d i n a t e a x e s a r e d i r e c t e d a l o n g t h e f o u r t h -

o r d e r s y m m e t r y a x e s . W e s h a l l r e g a r d t h e t w i n a s

infinitely extended along the Ζ axis and produced by a
set of twinning edge dislocations, whose axes a r e
located along its contour.

For the case of a single dislocation with a Burgers
vector b , which is located at the point (ξ , η) in an
infinite medium, the functions F a ( z ) have the f o r m [ 3 8 1

F (z\ — — (M<*k\ bk
\ (6.9)

where Μ α ^ is the matr ix which is the inverse of the
m a t r i x p k a , and the numbers D^ (k = 1, 2) a r e given
by

D, = - Im 2
i

2 = - Im

and the symbol N ^ denotes the matr ix which is the
inverse of N a k . Since the twin is produced by edge
dislocations whose B u r g e r s vectors a r e directed along
the χ axis, then b ^ = b6ki. Therefore, in the disloca-
tion model a twin corresponds to the following expres-
sion for the function F a ( z ) :

g (s) ds
s-EaM1 (6.10)

where £ a ( s ) = £(s ) + i m ^ s ) and ξ = £(s) , η = ?)(s)
a r e the p a r a m e t r i c equations for the contour of the
twin.

Now let us somewhat modify formula (6.3), bearing
in mind its comparison with Eq. (6.10). We shall use
the fact that j άζ/ζ - £ = 0 for ζ outside of the con-
tour c, and also the fact that ?}'(s) = a g ( s ) , and let us
t ransform Eq. (6.3) to the form

If the explicit form of the m a t r i c e s p i o and N j a is
taken into consideration (see [ M > 3 8 ' ) , then one can show
that the coefficients standing in front of the integrals
in (6.10) and (6.11) a r e equal.

Since the formulas for the s t r e s s e s a r e fundamental
for the analysis of the twinning process , the agreement
between express ions (6.10) and (6.11) proves the
equivalence of the two approaches . Thus, the disloca-
tion descript ion of an elast ic twin is exact from the
point of view of the theory of elasticity for a r b i t r a r y
thickness of the twin.

Having formulas (6.3) or (6.10) for the determina-
tion of the elast ic s t r e s s e s coming from the dis loca-
tions on the contour of the twin, one can write down the
condition for mechanical equilibrium, which in fact de-
t e r m i n e s the equation for the contour of the twin. We
shall not begin to analyze this equation in the general
case, but let us make the limiting transi t ion to the
case of a thin twin and let us t r a c e how the basic
formulas of the theory of thin twins a r e derived. Let
J) = V i( x) be the equation for the upper boundary of the
twin, and let η = η 2 ( χ ) be the equation for the lower

boundary (for such a definition to hold, rji(x) > i)2(x)).
The thickness of the twin at each point is determined
by the obvious equation h(x) = η ι ( χ ) - T?2(X), and the
position of its average length, whose equation we write
in the form y = η(χ), is given by the condition η ( χ )
= ( 2̂ ) ( T ) I ( X ) + i?2(x)). For the case of a thin twin, one
can regard the quantities h(x) and η(χ) a s smal l . Then
the s t r e s s e s on the upper and lower boundaries of the
twin can be determined by substituting (6.10) or (6.11)
into (6.2) and by the subsequent expansion in powers of
the smal l quantities TJ(X) and h ( x ) . [ 8 6 ] Retaining the
first two t e r m s of such an expansion and taking into
account all of the forces acting on the dislocations, we
also obtain the equations for equilibrium of the dislo-
cations on each of the boundaries of the twin:

T=J
τ ' <Λ W ^ <*> - 2 a p w η ' w }

= σ·(*, 0) +η, <*)(*£) c

τ, {A (*) % (ζ) - 2αρ (ζ) η' (ζ)}

= σ'(ζ, 0) + η,(*) ( £ ) ,

(6.12)

where, as before, ap(x) = - h ' ( x ) , and the constants T 0

and τ ι, which a r e of the order of magnitude of μ, a r e
respectively given by

S t (x) and S2(x) a r e the forces of inelastic origin on
the upper and lower boundaries of the twin, r e s p e c -
tively, (the difference between the forces of inelastic
origin on each of the boundaries may be caused by the
presence of obstructions on any of the boundaries, by
nonidentical conditions for the nucleation of disloca-
tions on each of the boundaries, e tc .) . The function
a e ( x , y) determines the distribution of the inhomo-
geneous external s t r e s s e s near the twinning plane.

The solution of the system of equations (6.12) for
given external s t r e s s e s cr e(x, 0), their gradients
acj e(x)/ay, and forces of inelastic origin Si(x) and
S2(x) enables us to rees tabl i sh the shape of the twin,
which is determined by the two functions h(x) and

If the forces of inelastic origin a r e the same on
both boundaries of the twin, and the asymmetry of the
shape of the twin is due only to the gradient of the
external s t r e s s e s , then in the first approximation one
can neglect t e r m s of order h 2 . Then, as the basic ap-
proximation in the p a r a m e t e r h/L, we obtain the equa-
tion

which agrees with the initial equation (1.5) for the
dislocation theory of thin twins. This equation actually
determines the thickness of the twin at each point x.

The equation of the second-order approximation is
obtained from (6.12) by calculating the half-difference
between the conditions on the upper and lower bound-
a r i e s : [ u ]

In this equation the functions p(x) and h(x) a r e
assumed to be known from the solution of the f irst-
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o r d e r approximate equation, and consequently it deter-
mines η ( χ ) , i .e., the kink of the twin in the inhomo-
geneous s t r e s s field. One can easily bring this equa-
tion into the form

dition jjU is satisfied on the boundary between

η" (*) + 2 [•£• In h (χ)] η' (χ) = - q (χ),

, . α / <№ (χ, 0) \

( 6 . 1 3 )

It is c lear that the solution of this equation can be
obtained by quadratures , s ince

-j i^x-j j ?(*')*'(*')<**'. (6.14)

I n w r i t i n g d o w n E q . ( 6 . 1 4 ) w e h a v e a s s u m e d t h e

n a t u r a l , i n o u r o p i n i o n , c o n d i t i o n T J ' ( L ) = 0 . I n f a c t , a s

w e s a w e a r l i e r , p ( L ) = 0 f o r a f r e e t w i n a n d s i n c e t h e

kink of average length η = η (χ) near the end of the
twin is only re lated to a redistr ibution of the disloca-
tions on the upper and lower boundaries of the twin
near its end, then one should set V ( L ) = ° ·

Near the end of the twin (for example, in the neigh-
borhood L - χ -C L) the explicit coordinate dependence
η = ί?(χ) can be derived s ince, on the one hand one can
assume q(x) = q(L) = const, and on the other hand the
function h = h(x) is known in this region. Using formu-
las (3.27) and (3.28) one can easily obtain

Χ<ε, (6.15)

On the bas i s of Eqs . (6.15) we conclude that near
the right-hand end of the twin the equation for i ts av-
erage length has the form

η (χ) = η (L) + const (L — x)2,

where the constant factor c h a n g e s by a factor of two
during the transi t ion from the region χ < e to the
region e <ίί χ <IC L.

In concluding this section, we wish to clarify the
specific physical meaning of certain quantities which
appear as p a r a m e t e r s in the phenomenological theory
proposed by Lifshitz. The s t r e s s e s in the elast ic
medium around the twin associated with a given ex-
terna l loading a r e determined by the conditions on the
boundary of the twin, where they a r e related to the
forces of inelastic origin in a quite definite way. Upon
approaching the twin boundary from the side of the
parent crys ta l we obtain (see relation (1.4))

<=ϋτ=-
S <*)
2JT-

(6.16)

By using the property - S o < S(x) which was d i s-
cussed e a r l i e r for the force S(x) of inelastic origin
during loading, we can verify that a stable elast ic twin
can exist in the medium provided that the deformations
satisfy the conditions

(6.17)
ν*--%ΈΓ1αίΎα

Going on to an analysis of the conditions inside the
twin, we note that in the case of a free twin of smal l
thickness the inclination of the profile of the twin to
the twinning plane is also smal l . In this case the con-

the parent crystal and the twin; therefore, one can de-
rive the relation

UXV = CC 2jT·

from which it follows that

( 6 . 1 8 )

2μ 2μ

I t i s i n t e r e s t i n g t o n o t e t h a t t h e q u a n t i t i e s V i a n d

V 2 , d e t e r m i n e d b y f o r m u l a s ( 6 . 1 7 ) a n d ( 6 . 1 8 ) , d o n o t

satisfy the condition Vi = α - V2 which was proposed
in art ic le^ 1 3 1 . And what is m o r e , one would expect that
Vi ^ OL - V2. This difference in the values of Vi and
α - V2 becomes quite obvious and natural if the nature
of the surface-tension force is taken into account,
which was not done in [ 1 3 ^. Jus t as i n [ 1 3 ] , in our model
the quantity Vi determines the onset of twinning; a s s o -
ciated with loading (the twin begins to form at ui.,,(0)

xy
= Vi), and the quantity V2 determines the onset of
"detwinning" associated with unloading (the twin begins
to decrease for u ^ ( 0 ) = u ^ ( 0 ) + a = V2). The physical
interpretation of the difference between V t and a - V2

in the presence of the surface-tension forces consists
in the fact that these forces " e x p e l " the twinning
wedge from the crystal ; therefore, they oppose the
formation of the twin, thus increasing the value of Vi,
and they favor the " e m e r g e n c e " of the twin from the
crystal , decreasing the value of a - V2.
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